]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/tree.c
51d4c3acf32d40dff46610919602909f3372fd27
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 /* Data structures. */
71
72 /*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
96 .call = cr, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 .name = RCU_STATE_NAME(sname), \
105 .abbr = sabbr, \
106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131
132 /*
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
137 * optimize synchronize_rcu() to a simple barrier(). When this variable
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
143 */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
147 /*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159 static int rcu_scheduler_fully_active __read_mostly;
160
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 static void invoke_rcu_core(void);
165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
168 static void sync_sched_exp_online_cleanup(int cpu);
169
170 /* rcuc/rcub kthread realtime priority */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 module_param(kthread_prio, int, 0644);
173
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
175
176 static int gp_preinit_delay;
177 module_param(gp_preinit_delay, int, 0444);
178 static int gp_init_delay;
179 module_param(gp_init_delay, int, 0444);
180 static int gp_cleanup_delay;
181 module_param(gp_cleanup_delay, int, 0444);
182
183 /*
184 * Number of grace periods between delays, normalized by the duration of
185 * the delay. The longer the delay, the more the grace periods between
186 * each delay. The reason for this normalization is that it means that,
187 * for non-zero delays, the overall slowdown of grace periods is constant
188 * regardless of the duration of the delay. This arrangement balances
189 * the need for long delays to increase some race probabilities with the
190 * need for fast grace periods to increase other race probabilities.
191 */
192 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
193
194 /*
195 * Track the rcutorture test sequence number and the update version
196 * number within a given test. The rcutorture_testseq is incremented
197 * on every rcutorture module load and unload, so has an odd value
198 * when a test is running. The rcutorture_vernum is set to zero
199 * when rcutorture starts and is incremented on each rcutorture update.
200 * These variables enable correlating rcutorture output with the
201 * RCU tracing information.
202 */
203 unsigned long rcutorture_testseq;
204 unsigned long rcutorture_vernum;
205
206 /*
207 * Compute the mask of online CPUs for the specified rcu_node structure.
208 * This will not be stable unless the rcu_node structure's ->lock is
209 * held, but the bit corresponding to the current CPU will be stable
210 * in most contexts.
211 */
212 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
213 {
214 return READ_ONCE(rnp->qsmaskinitnext);
215 }
216
217 /*
218 * Return true if an RCU grace period is in progress. The READ_ONCE()s
219 * permit this function to be invoked without holding the root rcu_node
220 * structure's ->lock, but of course results can be subject to change.
221 */
222 static int rcu_gp_in_progress(struct rcu_state *rsp)
223 {
224 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
225 }
226
227 /*
228 * Note a quiescent state. Because we do not need to know
229 * how many quiescent states passed, just if there was at least
230 * one since the start of the grace period, this just sets a flag.
231 * The caller must have disabled preemption.
232 */
233 void rcu_sched_qs(void)
234 {
235 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
236 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
237 return;
238 trace_rcu_grace_period(TPS("rcu_sched"),
239 __this_cpu_read(rcu_sched_data.gpnum),
240 TPS("cpuqs"));
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
242 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
243 return;
244 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
245 rcu_report_exp_rdp(&rcu_sched_state,
246 this_cpu_ptr(&rcu_sched_data), true);
247 }
248
249 void rcu_bh_qs(void)
250 {
251 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
252 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
253 trace_rcu_grace_period(TPS("rcu_bh"),
254 __this_cpu_read(rcu_bh_data.gpnum),
255 TPS("cpuqs"));
256 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
257 }
258 }
259
260 /*
261 * Steal a bit from the bottom of ->dynticks for idle entry/exit
262 * control. Initially this is for TLB flushing.
263 */
264 #define RCU_DYNTICK_CTRL_MASK 0x1
265 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
266 #ifndef rcu_eqs_special_exit
267 #define rcu_eqs_special_exit() do { } while (0)
268 #endif
269
270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
272 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
273 };
274
275 /*
276 * There's a few places, currently just in the tracing infrastructure,
277 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
278 * a small location where that will not even work. In those cases
279 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
280 * can be called.
281 */
282 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
283
284 bool rcu_irq_enter_disabled(void)
285 {
286 return this_cpu_read(disable_rcu_irq_enter);
287 }
288
289 /*
290 * Record entry into an extended quiescent state. This is only to be
291 * called when not already in an extended quiescent state.
292 */
293 static void rcu_dynticks_eqs_enter(void)
294 {
295 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
296 int seq;
297
298 /*
299 * CPUs seeing atomic_add_return() must see prior RCU read-side
300 * critical sections, and we also must force ordering with the
301 * next idle sojourn.
302 */
303 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
304 /* Better be in an extended quiescent state! */
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 (seq & RCU_DYNTICK_CTRL_CTR));
307 /* Better not have special action (TLB flush) pending! */
308 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
309 (seq & RCU_DYNTICK_CTRL_MASK));
310 }
311
312 /*
313 * Record exit from an extended quiescent state. This is only to be
314 * called from an extended quiescent state.
315 */
316 static void rcu_dynticks_eqs_exit(void)
317 {
318 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
319 int seq;
320
321 /*
322 * CPUs seeing atomic_add_return() must see prior idle sojourns,
323 * and we also must force ordering with the next RCU read-side
324 * critical section.
325 */
326 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 !(seq & RCU_DYNTICK_CTRL_CTR));
329 if (seq & RCU_DYNTICK_CTRL_MASK) {
330 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
331 smp_mb__after_atomic(); /* _exit after clearing mask. */
332 /* Prefer duplicate flushes to losing a flush. */
333 rcu_eqs_special_exit();
334 }
335 }
336
337 /*
338 * Reset the current CPU's ->dynticks counter to indicate that the
339 * newly onlined CPU is no longer in an extended quiescent state.
340 * This will either leave the counter unchanged, or increment it
341 * to the next non-quiescent value.
342 *
343 * The non-atomic test/increment sequence works because the upper bits
344 * of the ->dynticks counter are manipulated only by the corresponding CPU,
345 * or when the corresponding CPU is offline.
346 */
347 static void rcu_dynticks_eqs_online(void)
348 {
349 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350
351 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
352 return;
353 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
354 }
355
356 /*
357 * Is the current CPU in an extended quiescent state?
358 *
359 * No ordering, as we are sampling CPU-local information.
360 */
361 bool rcu_dynticks_curr_cpu_in_eqs(void)
362 {
363 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
364
365 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
366 }
367
368 /*
369 * Snapshot the ->dynticks counter with full ordering so as to allow
370 * stable comparison of this counter with past and future snapshots.
371 */
372 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
373 {
374 int snap = atomic_add_return(0, &rdtp->dynticks);
375
376 return snap & ~RCU_DYNTICK_CTRL_MASK;
377 }
378
379 /*
380 * Return true if the snapshot returned from rcu_dynticks_snap()
381 * indicates that RCU is in an extended quiescent state.
382 */
383 static bool rcu_dynticks_in_eqs(int snap)
384 {
385 return !(snap & RCU_DYNTICK_CTRL_CTR);
386 }
387
388 /*
389 * Return true if the CPU corresponding to the specified rcu_dynticks
390 * structure has spent some time in an extended quiescent state since
391 * rcu_dynticks_snap() returned the specified snapshot.
392 */
393 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
394 {
395 return snap != rcu_dynticks_snap(rdtp);
396 }
397
398 /*
399 * Do a double-increment of the ->dynticks counter to emulate a
400 * momentary idle-CPU quiescent state.
401 */
402 static void rcu_dynticks_momentary_idle(void)
403 {
404 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
405 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
406 &rdtp->dynticks);
407
408 /* It is illegal to call this from idle state. */
409 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
410 }
411
412 /*
413 * Set the special (bottom) bit of the specified CPU so that it
414 * will take special action (such as flushing its TLB) on the
415 * next exit from an extended quiescent state. Returns true if
416 * the bit was successfully set, or false if the CPU was not in
417 * an extended quiescent state.
418 */
419 bool rcu_eqs_special_set(int cpu)
420 {
421 int old;
422 int new;
423 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
424
425 do {
426 old = atomic_read(&rdtp->dynticks);
427 if (old & RCU_DYNTICK_CTRL_CTR)
428 return false;
429 new = old | RCU_DYNTICK_CTRL_MASK;
430 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
431 return true;
432 }
433
434 /*
435 * Let the RCU core know that this CPU has gone through the scheduler,
436 * which is a quiescent state. This is called when the need for a
437 * quiescent state is urgent, so we burn an atomic operation and full
438 * memory barriers to let the RCU core know about it, regardless of what
439 * this CPU might (or might not) do in the near future.
440 *
441 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
442 *
443 * The caller must have disabled interrupts.
444 */
445 static void rcu_momentary_dyntick_idle(void)
446 {
447 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
448 rcu_dynticks_momentary_idle();
449 }
450
451 /*
452 * Note a context switch. This is a quiescent state for RCU-sched,
453 * and requires special handling for preemptible RCU.
454 * The caller must have disabled interrupts.
455 */
456 void rcu_note_context_switch(bool preempt)
457 {
458 barrier(); /* Avoid RCU read-side critical sections leaking down. */
459 trace_rcu_utilization(TPS("Start context switch"));
460 rcu_sched_qs();
461 rcu_preempt_note_context_switch(preempt);
462 /* Load rcu_urgent_qs before other flags. */
463 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
464 goto out;
465 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
466 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
467 rcu_momentary_dyntick_idle();
468 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
469 if (!preempt)
470 rcu_note_voluntary_context_switch_lite(current);
471 out:
472 trace_rcu_utilization(TPS("End context switch"));
473 barrier(); /* Avoid RCU read-side critical sections leaking up. */
474 }
475 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
476
477 /*
478 * Register a quiescent state for all RCU flavors. If there is an
479 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
480 * dyntick-idle quiescent state visible to other CPUs (but only for those
481 * RCU flavors in desperate need of a quiescent state, which will normally
482 * be none of them). Either way, do a lightweight quiescent state for
483 * all RCU flavors.
484 *
485 * The barrier() calls are redundant in the common case when this is
486 * called externally, but just in case this is called from within this
487 * file.
488 *
489 */
490 void rcu_all_qs(void)
491 {
492 unsigned long flags;
493
494 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
495 return;
496 preempt_disable();
497 /* Load rcu_urgent_qs before other flags. */
498 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
499 preempt_enable();
500 return;
501 }
502 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
503 barrier(); /* Avoid RCU read-side critical sections leaking down. */
504 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
505 local_irq_save(flags);
506 rcu_momentary_dyntick_idle();
507 local_irq_restore(flags);
508 }
509 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
510 rcu_sched_qs();
511 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
512 barrier(); /* Avoid RCU read-side critical sections leaking up. */
513 preempt_enable();
514 }
515 EXPORT_SYMBOL_GPL(rcu_all_qs);
516
517 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
518 static long blimit = DEFAULT_RCU_BLIMIT;
519 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
520 static long qhimark = DEFAULT_RCU_QHIMARK;
521 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
522 static long qlowmark = DEFAULT_RCU_QLOMARK;
523
524 module_param(blimit, long, 0444);
525 module_param(qhimark, long, 0444);
526 module_param(qlowmark, long, 0444);
527
528 static ulong jiffies_till_first_fqs = ULONG_MAX;
529 static ulong jiffies_till_next_fqs = ULONG_MAX;
530 static bool rcu_kick_kthreads;
531
532 module_param(jiffies_till_first_fqs, ulong, 0644);
533 module_param(jiffies_till_next_fqs, ulong, 0644);
534 module_param(rcu_kick_kthreads, bool, 0644);
535
536 /*
537 * How long the grace period must be before we start recruiting
538 * quiescent-state help from rcu_note_context_switch().
539 */
540 static ulong jiffies_till_sched_qs = HZ / 20;
541 module_param(jiffies_till_sched_qs, ulong, 0644);
542
543 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
544 struct rcu_data *rdp);
545 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
546 static void force_quiescent_state(struct rcu_state *rsp);
547 static int rcu_pending(void);
548
549 /*
550 * Return the number of RCU batches started thus far for debug & stats.
551 */
552 unsigned long rcu_batches_started(void)
553 {
554 return rcu_state_p->gpnum;
555 }
556 EXPORT_SYMBOL_GPL(rcu_batches_started);
557
558 /*
559 * Return the number of RCU-sched batches started thus far for debug & stats.
560 */
561 unsigned long rcu_batches_started_sched(void)
562 {
563 return rcu_sched_state.gpnum;
564 }
565 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
566
567 /*
568 * Return the number of RCU BH batches started thus far for debug & stats.
569 */
570 unsigned long rcu_batches_started_bh(void)
571 {
572 return rcu_bh_state.gpnum;
573 }
574 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
575
576 /*
577 * Return the number of RCU batches completed thus far for debug & stats.
578 */
579 unsigned long rcu_batches_completed(void)
580 {
581 return rcu_state_p->completed;
582 }
583 EXPORT_SYMBOL_GPL(rcu_batches_completed);
584
585 /*
586 * Return the number of RCU-sched batches completed thus far for debug & stats.
587 */
588 unsigned long rcu_batches_completed_sched(void)
589 {
590 return rcu_sched_state.completed;
591 }
592 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
593
594 /*
595 * Return the number of RCU BH batches completed thus far for debug & stats.
596 */
597 unsigned long rcu_batches_completed_bh(void)
598 {
599 return rcu_bh_state.completed;
600 }
601 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
602
603 /*
604 * Return the number of RCU expedited batches completed thus far for
605 * debug & stats. Odd numbers mean that a batch is in progress, even
606 * numbers mean idle. The value returned will thus be roughly double
607 * the cumulative batches since boot.
608 */
609 unsigned long rcu_exp_batches_completed(void)
610 {
611 return rcu_state_p->expedited_sequence;
612 }
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
614
615 /*
616 * Return the number of RCU-sched expedited batches completed thus far
617 * for debug & stats. Similar to rcu_exp_batches_completed().
618 */
619 unsigned long rcu_exp_batches_completed_sched(void)
620 {
621 return rcu_sched_state.expedited_sequence;
622 }
623 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
624
625 /*
626 * Force a quiescent state.
627 */
628 void rcu_force_quiescent_state(void)
629 {
630 force_quiescent_state(rcu_state_p);
631 }
632 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
633
634 /*
635 * Force a quiescent state for RCU BH.
636 */
637 void rcu_bh_force_quiescent_state(void)
638 {
639 force_quiescent_state(&rcu_bh_state);
640 }
641 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
642
643 /*
644 * Force a quiescent state for RCU-sched.
645 */
646 void rcu_sched_force_quiescent_state(void)
647 {
648 force_quiescent_state(&rcu_sched_state);
649 }
650 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
651
652 /*
653 * Show the state of the grace-period kthreads.
654 */
655 void show_rcu_gp_kthreads(void)
656 {
657 struct rcu_state *rsp;
658
659 for_each_rcu_flavor(rsp) {
660 pr_info("%s: wait state: %d ->state: %#lx\n",
661 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
662 /* sched_show_task(rsp->gp_kthread); */
663 }
664 }
665 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
666
667 /*
668 * Record the number of times rcutorture tests have been initiated and
669 * terminated. This information allows the debugfs tracing stats to be
670 * correlated to the rcutorture messages, even when the rcutorture module
671 * is being repeatedly loaded and unloaded. In other words, we cannot
672 * store this state in rcutorture itself.
673 */
674 void rcutorture_record_test_transition(void)
675 {
676 rcutorture_testseq++;
677 rcutorture_vernum = 0;
678 }
679 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
680
681 /*
682 * Send along grace-period-related data for rcutorture diagnostics.
683 */
684 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
685 unsigned long *gpnum, unsigned long *completed)
686 {
687 struct rcu_state *rsp = NULL;
688
689 switch (test_type) {
690 case RCU_FLAVOR:
691 rsp = rcu_state_p;
692 break;
693 case RCU_BH_FLAVOR:
694 rsp = &rcu_bh_state;
695 break;
696 case RCU_SCHED_FLAVOR:
697 rsp = &rcu_sched_state;
698 break;
699 default:
700 break;
701 }
702 if (rsp == NULL)
703 return;
704 *flags = READ_ONCE(rsp->gp_flags);
705 *gpnum = READ_ONCE(rsp->gpnum);
706 *completed = READ_ONCE(rsp->completed);
707 }
708 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
709
710 /*
711 * Record the number of writer passes through the current rcutorture test.
712 * This is also used to correlate debugfs tracing stats with the rcutorture
713 * messages.
714 */
715 void rcutorture_record_progress(unsigned long vernum)
716 {
717 rcutorture_vernum++;
718 }
719 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
720
721 /*
722 * Return the root node of the specified rcu_state structure.
723 */
724 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
725 {
726 return &rsp->node[0];
727 }
728
729 /*
730 * Is there any need for future grace periods?
731 * Interrupts must be disabled. If the caller does not hold the root
732 * rnp_node structure's ->lock, the results are advisory only.
733 */
734 static int rcu_future_needs_gp(struct rcu_state *rsp)
735 {
736 struct rcu_node *rnp = rcu_get_root(rsp);
737 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
738 int *fp = &rnp->need_future_gp[idx];
739
740 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
741 return READ_ONCE(*fp);
742 }
743
744 /*
745 * Does the current CPU require a not-yet-started grace period?
746 * The caller must have disabled interrupts to prevent races with
747 * normal callback registry.
748 */
749 static bool
750 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
751 {
752 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
753 if (rcu_gp_in_progress(rsp))
754 return false; /* No, a grace period is already in progress. */
755 if (rcu_future_needs_gp(rsp))
756 return true; /* Yes, a no-CBs CPU needs one. */
757 if (!rcu_segcblist_is_enabled(&rdp->cblist))
758 return false; /* No, this is a no-CBs (or offline) CPU. */
759 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
760 return true; /* Yes, CPU has newly registered callbacks. */
761 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
762 READ_ONCE(rsp->completed)))
763 return true; /* Yes, CBs for future grace period. */
764 return false; /* No grace period needed. */
765 }
766
767 /*
768 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
769 *
770 * Enter idle, doing appropriate accounting. The caller must have
771 * disabled interrupts.
772 */
773 static void rcu_eqs_enter_common(bool user)
774 {
775 struct rcu_state *rsp;
776 struct rcu_data *rdp;
777 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
778
779 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
780 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
781 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
782 !user && !is_idle_task(current)) {
783 struct task_struct *idle __maybe_unused =
784 idle_task(smp_processor_id());
785
786 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
787 rcu_ftrace_dump(DUMP_ORIG);
788 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
789 current->pid, current->comm,
790 idle->pid, idle->comm); /* must be idle task! */
791 }
792 for_each_rcu_flavor(rsp) {
793 rdp = this_cpu_ptr(rsp->rda);
794 do_nocb_deferred_wakeup(rdp);
795 }
796 rcu_prepare_for_idle();
797 __this_cpu_inc(disable_rcu_irq_enter);
798 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
799 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
800 __this_cpu_dec(disable_rcu_irq_enter);
801 rcu_dynticks_task_enter();
802
803 /*
804 * It is illegal to enter an extended quiescent state while
805 * in an RCU read-side critical section.
806 */
807 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
808 "Illegal idle entry in RCU read-side critical section.");
809 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
810 "Illegal idle entry in RCU-bh read-side critical section.");
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
812 "Illegal idle entry in RCU-sched read-side critical section.");
813 }
814
815 /*
816 * Enter an RCU extended quiescent state, which can be either the
817 * idle loop or adaptive-tickless usermode execution.
818 */
819 static void rcu_eqs_enter(bool user)
820 {
821 struct rcu_dynticks *rdtp;
822
823 rdtp = this_cpu_ptr(&rcu_dynticks);
824 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
825 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
826 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
827 rcu_eqs_enter_common(user);
828 else
829 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
830 }
831
832 /**
833 * rcu_idle_enter - inform RCU that current CPU is entering idle
834 *
835 * Enter idle mode, in other words, -leave- the mode in which RCU
836 * read-side critical sections can occur. (Though RCU read-side
837 * critical sections can occur in irq handlers in idle, a possibility
838 * handled by irq_enter() and irq_exit().)
839 *
840 * We crowbar the ->dynticks_nesting field to zero to allow for
841 * the possibility of usermode upcalls having messed up our count
842 * of interrupt nesting level during the prior busy period.
843 */
844 void rcu_idle_enter(void)
845 {
846 unsigned long flags;
847
848 local_irq_save(flags);
849 rcu_eqs_enter(false);
850 local_irq_restore(flags);
851 }
852 EXPORT_SYMBOL_GPL(rcu_idle_enter);
853
854 #ifdef CONFIG_NO_HZ_FULL
855 /**
856 * rcu_user_enter - inform RCU that we are resuming userspace.
857 *
858 * Enter RCU idle mode right before resuming userspace. No use of RCU
859 * is permitted between this call and rcu_user_exit(). This way the
860 * CPU doesn't need to maintain the tick for RCU maintenance purposes
861 * when the CPU runs in userspace.
862 */
863 void rcu_user_enter(void)
864 {
865 rcu_eqs_enter(1);
866 }
867 #endif /* CONFIG_NO_HZ_FULL */
868
869 /**
870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
871 *
872 * Exit from an interrupt handler, which might possibly result in entering
873 * idle mode, in other words, leaving the mode in which read-side critical
874 * sections can occur. The caller must have disabled interrupts.
875 *
876 * This code assumes that the idle loop never does anything that might
877 * result in unbalanced calls to irq_enter() and irq_exit(). If your
878 * architecture violates this assumption, RCU will give you what you
879 * deserve, good and hard. But very infrequently and irreproducibly.
880 *
881 * Use things like work queues to work around this limitation.
882 *
883 * You have been warned.
884 */
885 void rcu_irq_exit(void)
886 {
887 struct rcu_dynticks *rdtp;
888
889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
890 rdtp = this_cpu_ptr(&rcu_dynticks);
891 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
892 rdtp->dynticks_nesting < 1);
893 if (rdtp->dynticks_nesting <= 1) {
894 rcu_eqs_enter_common(true);
895 } else {
896 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
897 rdtp->dynticks_nesting--;
898 }
899 }
900
901 /*
902 * Wrapper for rcu_irq_exit() where interrupts are enabled.
903 */
904 void rcu_irq_exit_irqson(void)
905 {
906 unsigned long flags;
907
908 local_irq_save(flags);
909 rcu_irq_exit();
910 local_irq_restore(flags);
911 }
912
913 /*
914 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
915 *
916 * If the new value of the ->dynticks_nesting counter was previously zero,
917 * we really have exited idle, and must do the appropriate accounting.
918 * The caller must have disabled interrupts.
919 */
920 static void rcu_eqs_exit_common(long long oldval, int user)
921 {
922 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
923
924 rcu_dynticks_task_exit();
925 rcu_dynticks_eqs_exit();
926 rcu_cleanup_after_idle();
927 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
928 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
929 !user && !is_idle_task(current)) {
930 struct task_struct *idle __maybe_unused =
931 idle_task(smp_processor_id());
932
933 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
934 oldval, rdtp->dynticks_nesting);
935 rcu_ftrace_dump(DUMP_ORIG);
936 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
937 current->pid, current->comm,
938 idle->pid, idle->comm); /* must be idle task! */
939 }
940 }
941
942 /*
943 * Exit an RCU extended quiescent state, which can be either the
944 * idle loop or adaptive-tickless usermode execution.
945 */
946 static void rcu_eqs_exit(bool user)
947 {
948 struct rcu_dynticks *rdtp;
949 long long oldval;
950
951 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
952 rdtp = this_cpu_ptr(&rcu_dynticks);
953 oldval = rdtp->dynticks_nesting;
954 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
955 if (oldval & DYNTICK_TASK_NEST_MASK) {
956 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
957 } else {
958 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
959 rcu_eqs_exit_common(oldval, user);
960 }
961 }
962
963 /**
964 * rcu_idle_exit - inform RCU that current CPU is leaving idle
965 *
966 * Exit idle mode, in other words, -enter- the mode in which RCU
967 * read-side critical sections can occur.
968 *
969 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
970 * allow for the possibility of usermode upcalls messing up our count
971 * of interrupt nesting level during the busy period that is just
972 * now starting.
973 */
974 void rcu_idle_exit(void)
975 {
976 unsigned long flags;
977
978 local_irq_save(flags);
979 rcu_eqs_exit(false);
980 local_irq_restore(flags);
981 }
982 EXPORT_SYMBOL_GPL(rcu_idle_exit);
983
984 #ifdef CONFIG_NO_HZ_FULL
985 /**
986 * rcu_user_exit - inform RCU that we are exiting userspace.
987 *
988 * Exit RCU idle mode while entering the kernel because it can
989 * run a RCU read side critical section anytime.
990 */
991 void rcu_user_exit(void)
992 {
993 rcu_eqs_exit(1);
994 }
995 #endif /* CONFIG_NO_HZ_FULL */
996
997 /**
998 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
999 *
1000 * Enter an interrupt handler, which might possibly result in exiting
1001 * idle mode, in other words, entering the mode in which read-side critical
1002 * sections can occur. The caller must have disabled interrupts.
1003 *
1004 * Note that the Linux kernel is fully capable of entering an interrupt
1005 * handler that it never exits, for example when doing upcalls to
1006 * user mode! This code assumes that the idle loop never does upcalls to
1007 * user mode. If your architecture does do upcalls from the idle loop (or
1008 * does anything else that results in unbalanced calls to the irq_enter()
1009 * and irq_exit() functions), RCU will give you what you deserve, good
1010 * and hard. But very infrequently and irreproducibly.
1011 *
1012 * Use things like work queues to work around this limitation.
1013 *
1014 * You have been warned.
1015 */
1016 void rcu_irq_enter(void)
1017 {
1018 struct rcu_dynticks *rdtp;
1019 long long oldval;
1020
1021 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1022 rdtp = this_cpu_ptr(&rcu_dynticks);
1023 oldval = rdtp->dynticks_nesting;
1024 rdtp->dynticks_nesting++;
1025 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1026 rdtp->dynticks_nesting == 0);
1027 if (oldval)
1028 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1029 else
1030 rcu_eqs_exit_common(oldval, true);
1031 }
1032
1033 /*
1034 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1035 */
1036 void rcu_irq_enter_irqson(void)
1037 {
1038 unsigned long flags;
1039
1040 local_irq_save(flags);
1041 rcu_irq_enter();
1042 local_irq_restore(flags);
1043 }
1044
1045 /**
1046 * rcu_nmi_enter - inform RCU of entry to NMI context
1047 *
1048 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1049 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1050 * that the CPU is active. This implementation permits nested NMIs, as
1051 * long as the nesting level does not overflow an int. (You will probably
1052 * run out of stack space first.)
1053 */
1054 void rcu_nmi_enter(void)
1055 {
1056 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1057 int incby = 2;
1058
1059 /* Complain about underflow. */
1060 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1061
1062 /*
1063 * If idle from RCU viewpoint, atomically increment ->dynticks
1064 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1065 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1066 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1067 * to be in the outermost NMI handler that interrupted an RCU-idle
1068 * period (observation due to Andy Lutomirski).
1069 */
1070 if (rcu_dynticks_curr_cpu_in_eqs()) {
1071 rcu_dynticks_eqs_exit();
1072 incby = 1;
1073 }
1074 rdtp->dynticks_nmi_nesting += incby;
1075 barrier();
1076 }
1077
1078 /**
1079 * rcu_nmi_exit - inform RCU of exit from NMI context
1080 *
1081 * If we are returning from the outermost NMI handler that interrupted an
1082 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1083 * to let the RCU grace-period handling know that the CPU is back to
1084 * being RCU-idle.
1085 */
1086 void rcu_nmi_exit(void)
1087 {
1088 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1089
1090 /*
1091 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1092 * (We are exiting an NMI handler, so RCU better be paying attention
1093 * to us!)
1094 */
1095 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1096 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1097
1098 /*
1099 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1100 * leave it in non-RCU-idle state.
1101 */
1102 if (rdtp->dynticks_nmi_nesting != 1) {
1103 rdtp->dynticks_nmi_nesting -= 2;
1104 return;
1105 }
1106
1107 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1108 rdtp->dynticks_nmi_nesting = 0;
1109 rcu_dynticks_eqs_enter();
1110 }
1111
1112 /**
1113 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1114 *
1115 * Return true if RCU is watching the running CPU, which means that this
1116 * CPU can safely enter RCU read-side critical sections. In other words,
1117 * if the current CPU is in its idle loop and is neither in an interrupt
1118 * or NMI handler, return true.
1119 */
1120 bool notrace rcu_is_watching(void)
1121 {
1122 bool ret;
1123
1124 preempt_disable_notrace();
1125 ret = !rcu_dynticks_curr_cpu_in_eqs();
1126 preempt_enable_notrace();
1127 return ret;
1128 }
1129 EXPORT_SYMBOL_GPL(rcu_is_watching);
1130
1131 /*
1132 * If a holdout task is actually running, request an urgent quiescent
1133 * state from its CPU. This is unsynchronized, so migrations can cause
1134 * the request to go to the wrong CPU. Which is OK, all that will happen
1135 * is that the CPU's next context switch will be a bit slower and next
1136 * time around this task will generate another request.
1137 */
1138 void rcu_request_urgent_qs_task(struct task_struct *t)
1139 {
1140 int cpu;
1141
1142 barrier();
1143 cpu = task_cpu(t);
1144 if (!task_curr(t))
1145 return; /* This task is not running on that CPU. */
1146 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1147 }
1148
1149 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1150
1151 /*
1152 * Is the current CPU online? Disable preemption to avoid false positives
1153 * that could otherwise happen due to the current CPU number being sampled,
1154 * this task being preempted, its old CPU being taken offline, resuming
1155 * on some other CPU, then determining that its old CPU is now offline.
1156 * It is OK to use RCU on an offline processor during initial boot, hence
1157 * the check for rcu_scheduler_fully_active. Note also that it is OK
1158 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1159 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1160 * offline to continue to use RCU for one jiffy after marking itself
1161 * offline in the cpu_online_mask. This leniency is necessary given the
1162 * non-atomic nature of the online and offline processing, for example,
1163 * the fact that a CPU enters the scheduler after completing the teardown
1164 * of the CPU.
1165 *
1166 * This is also why RCU internally marks CPUs online during in the
1167 * preparation phase and offline after the CPU has been taken down.
1168 *
1169 * Disable checking if in an NMI handler because we cannot safely report
1170 * errors from NMI handlers anyway.
1171 */
1172 bool rcu_lockdep_current_cpu_online(void)
1173 {
1174 struct rcu_data *rdp;
1175 struct rcu_node *rnp;
1176 bool ret;
1177
1178 if (in_nmi())
1179 return true;
1180 preempt_disable();
1181 rdp = this_cpu_ptr(&rcu_sched_data);
1182 rnp = rdp->mynode;
1183 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1184 !rcu_scheduler_fully_active;
1185 preempt_enable();
1186 return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1189
1190 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1191
1192 /**
1193 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1194 *
1195 * If the current CPU is idle or running at a first-level (not nested)
1196 * interrupt from idle, return true. The caller must have at least
1197 * disabled preemption.
1198 */
1199 static int rcu_is_cpu_rrupt_from_idle(void)
1200 {
1201 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1202 }
1203
1204 /*
1205 * Snapshot the specified CPU's dynticks counter so that we can later
1206 * credit them with an implicit quiescent state. Return 1 if this CPU
1207 * is in dynticks idle mode, which is an extended quiescent state.
1208 */
1209 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1210 {
1211 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1212 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1213 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1214 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1215 rdp->mynode->gpnum))
1216 WRITE_ONCE(rdp->gpwrap, true);
1217 return 1;
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * Return true if the specified CPU has passed through a quiescent
1224 * state by virtue of being in or having passed through an dynticks
1225 * idle state since the last call to dyntick_save_progress_counter()
1226 * for this same CPU, or by virtue of having been offline.
1227 */
1228 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1229 {
1230 unsigned long jtsq;
1231 bool *rnhqp;
1232 bool *ruqp;
1233 unsigned long rjtsc;
1234 struct rcu_node *rnp;
1235
1236 /*
1237 * If the CPU passed through or entered a dynticks idle phase with
1238 * no active irq/NMI handlers, then we can safely pretend that the CPU
1239 * already acknowledged the request to pass through a quiescent
1240 * state. Either way, that CPU cannot possibly be in an RCU
1241 * read-side critical section that started before the beginning
1242 * of the current RCU grace period.
1243 */
1244 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1245 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1246 rdp->dynticks_fqs++;
1247 return 1;
1248 }
1249
1250 /* Compute and saturate jiffies_till_sched_qs. */
1251 jtsq = jiffies_till_sched_qs;
1252 rjtsc = rcu_jiffies_till_stall_check();
1253 if (jtsq > rjtsc / 2) {
1254 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1255 jtsq = rjtsc / 2;
1256 } else if (jtsq < 1) {
1257 WRITE_ONCE(jiffies_till_sched_qs, 1);
1258 jtsq = 1;
1259 }
1260
1261 /*
1262 * Has this CPU encountered a cond_resched_rcu_qs() since the
1263 * beginning of the grace period? For this to be the case,
1264 * the CPU has to have noticed the current grace period. This
1265 * might not be the case for nohz_full CPUs looping in the kernel.
1266 */
1267 rnp = rdp->mynode;
1268 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1269 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1270 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1271 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1272 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1273 return 1;
1274 } else {
1275 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1276 smp_store_release(ruqp, true);
1277 }
1278
1279 /* Check for the CPU being offline. */
1280 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1281 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1282 rdp->offline_fqs++;
1283 return 1;
1284 }
1285
1286 /*
1287 * A CPU running for an extended time within the kernel can
1288 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1289 * even context-switching back and forth between a pair of
1290 * in-kernel CPU-bound tasks cannot advance grace periods.
1291 * So if the grace period is old enough, make the CPU pay attention.
1292 * Note that the unsynchronized assignments to the per-CPU
1293 * rcu_need_heavy_qs variable are safe. Yes, setting of
1294 * bits can be lost, but they will be set again on the next
1295 * force-quiescent-state pass. So lost bit sets do not result
1296 * in incorrect behavior, merely in a grace period lasting
1297 * a few jiffies longer than it might otherwise. Because
1298 * there are at most four threads involved, and because the
1299 * updates are only once every few jiffies, the probability of
1300 * lossage (and thus of slight grace-period extension) is
1301 * quite low.
1302 *
1303 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1304 * is set too high, we override with half of the RCU CPU stall
1305 * warning delay.
1306 */
1307 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1308 if (!READ_ONCE(*rnhqp) &&
1309 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1310 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1311 WRITE_ONCE(*rnhqp, true);
1312 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1313 smp_store_release(ruqp, true);
1314 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1315 }
1316
1317 /*
1318 * If more than halfway to RCU CPU stall-warning time, do
1319 * a resched_cpu() to try to loosen things up a bit.
1320 */
1321 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1322 resched_cpu(rdp->cpu);
1323
1324 return 0;
1325 }
1326
1327 static void record_gp_stall_check_time(struct rcu_state *rsp)
1328 {
1329 unsigned long j = jiffies;
1330 unsigned long j1;
1331
1332 rsp->gp_start = j;
1333 smp_wmb(); /* Record start time before stall time. */
1334 j1 = rcu_jiffies_till_stall_check();
1335 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1336 rsp->jiffies_resched = j + j1 / 2;
1337 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1338 }
1339
1340 /*
1341 * Convert a ->gp_state value to a character string.
1342 */
1343 static const char *gp_state_getname(short gs)
1344 {
1345 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1346 return "???";
1347 return gp_state_names[gs];
1348 }
1349
1350 /*
1351 * Complain about starvation of grace-period kthread.
1352 */
1353 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1354 {
1355 unsigned long gpa;
1356 unsigned long j;
1357
1358 j = jiffies;
1359 gpa = READ_ONCE(rsp->gp_activity);
1360 if (j - gpa > 2 * HZ) {
1361 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1362 rsp->name, j - gpa,
1363 rsp->gpnum, rsp->completed,
1364 rsp->gp_flags,
1365 gp_state_getname(rsp->gp_state), rsp->gp_state,
1366 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1367 if (rsp->gp_kthread) {
1368 sched_show_task(rsp->gp_kthread);
1369 wake_up_process(rsp->gp_kthread);
1370 }
1371 }
1372 }
1373
1374 /*
1375 * Dump stacks of all tasks running on stalled CPUs. First try using
1376 * NMIs, but fall back to manual remote stack tracing on architectures
1377 * that don't support NMI-based stack dumps. The NMI-triggered stack
1378 * traces are more accurate because they are printed by the target CPU.
1379 */
1380 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1381 {
1382 int cpu;
1383 unsigned long flags;
1384 struct rcu_node *rnp;
1385
1386 rcu_for_each_leaf_node(rsp, rnp) {
1387 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1388 for_each_leaf_node_possible_cpu(rnp, cpu)
1389 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1390 if (!trigger_single_cpu_backtrace(cpu))
1391 dump_cpu_task(cpu);
1392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1393 }
1394 }
1395
1396 /*
1397 * If too much time has passed in the current grace period, and if
1398 * so configured, go kick the relevant kthreads.
1399 */
1400 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1401 {
1402 unsigned long j;
1403
1404 if (!rcu_kick_kthreads)
1405 return;
1406 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1407 if (time_after(jiffies, j) && rsp->gp_kthread &&
1408 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1409 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1410 rcu_ftrace_dump(DUMP_ALL);
1411 wake_up_process(rsp->gp_kthread);
1412 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1413 }
1414 }
1415
1416 static inline void panic_on_rcu_stall(void)
1417 {
1418 if (sysctl_panic_on_rcu_stall)
1419 panic("RCU Stall\n");
1420 }
1421
1422 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1423 {
1424 int cpu;
1425 long delta;
1426 unsigned long flags;
1427 unsigned long gpa;
1428 unsigned long j;
1429 int ndetected = 0;
1430 struct rcu_node *rnp = rcu_get_root(rsp);
1431 long totqlen = 0;
1432
1433 /* Kick and suppress, if so configured. */
1434 rcu_stall_kick_kthreads(rsp);
1435 if (rcu_cpu_stall_suppress)
1436 return;
1437
1438 /* Only let one CPU complain about others per time interval. */
1439
1440 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1441 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1442 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444 return;
1445 }
1446 WRITE_ONCE(rsp->jiffies_stall,
1447 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1449
1450 /*
1451 * OK, time to rat on our buddy...
1452 * See Documentation/RCU/stallwarn.txt for info on how to debug
1453 * RCU CPU stall warnings.
1454 */
1455 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1456 rsp->name);
1457 print_cpu_stall_info_begin();
1458 rcu_for_each_leaf_node(rsp, rnp) {
1459 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1460 ndetected += rcu_print_task_stall(rnp);
1461 if (rnp->qsmask != 0) {
1462 for_each_leaf_node_possible_cpu(rnp, cpu)
1463 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1464 print_cpu_stall_info(rsp, cpu);
1465 ndetected++;
1466 }
1467 }
1468 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1469 }
1470
1471 print_cpu_stall_info_end();
1472 for_each_possible_cpu(cpu)
1473 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1474 cpu)->cblist);
1475 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1476 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1477 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1478 if (ndetected) {
1479 rcu_dump_cpu_stacks(rsp);
1480
1481 /* Complain about tasks blocking the grace period. */
1482 rcu_print_detail_task_stall(rsp);
1483 } else {
1484 if (READ_ONCE(rsp->gpnum) != gpnum ||
1485 READ_ONCE(rsp->completed) == gpnum) {
1486 pr_err("INFO: Stall ended before state dump start\n");
1487 } else {
1488 j = jiffies;
1489 gpa = READ_ONCE(rsp->gp_activity);
1490 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1491 rsp->name, j - gpa, j, gpa,
1492 jiffies_till_next_fqs,
1493 rcu_get_root(rsp)->qsmask);
1494 /* In this case, the current CPU might be at fault. */
1495 sched_show_task(current);
1496 }
1497 }
1498
1499 rcu_check_gp_kthread_starvation(rsp);
1500
1501 panic_on_rcu_stall();
1502
1503 force_quiescent_state(rsp); /* Kick them all. */
1504 }
1505
1506 static void print_cpu_stall(struct rcu_state *rsp)
1507 {
1508 int cpu;
1509 unsigned long flags;
1510 struct rcu_node *rnp = rcu_get_root(rsp);
1511 long totqlen = 0;
1512
1513 /* Kick and suppress, if so configured. */
1514 rcu_stall_kick_kthreads(rsp);
1515 if (rcu_cpu_stall_suppress)
1516 return;
1517
1518 /*
1519 * OK, time to rat on ourselves...
1520 * See Documentation/RCU/stallwarn.txt for info on how to debug
1521 * RCU CPU stall warnings.
1522 */
1523 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1524 print_cpu_stall_info_begin();
1525 print_cpu_stall_info(rsp, smp_processor_id());
1526 print_cpu_stall_info_end();
1527 for_each_possible_cpu(cpu)
1528 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1529 cpu)->cblist);
1530 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1531 jiffies - rsp->gp_start,
1532 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1533
1534 rcu_check_gp_kthread_starvation(rsp);
1535
1536 rcu_dump_cpu_stacks(rsp);
1537
1538 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1539 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1540 WRITE_ONCE(rsp->jiffies_stall,
1541 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1542 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1543
1544 panic_on_rcu_stall();
1545
1546 /*
1547 * Attempt to revive the RCU machinery by forcing a context switch.
1548 *
1549 * A context switch would normally allow the RCU state machine to make
1550 * progress and it could be we're stuck in kernel space without context
1551 * switches for an entirely unreasonable amount of time.
1552 */
1553 resched_cpu(smp_processor_id());
1554 }
1555
1556 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1557 {
1558 unsigned long completed;
1559 unsigned long gpnum;
1560 unsigned long gps;
1561 unsigned long j;
1562 unsigned long js;
1563 struct rcu_node *rnp;
1564
1565 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1566 !rcu_gp_in_progress(rsp))
1567 return;
1568 rcu_stall_kick_kthreads(rsp);
1569 j = jiffies;
1570
1571 /*
1572 * Lots of memory barriers to reject false positives.
1573 *
1574 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1575 * then rsp->gp_start, and finally rsp->completed. These values
1576 * are updated in the opposite order with memory barriers (or
1577 * equivalent) during grace-period initialization and cleanup.
1578 * Now, a false positive can occur if we get an new value of
1579 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1580 * the memory barriers, the only way that this can happen is if one
1581 * grace period ends and another starts between these two fetches.
1582 * Detect this by comparing rsp->completed with the previous fetch
1583 * from rsp->gpnum.
1584 *
1585 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1586 * and rsp->gp_start suffice to forestall false positives.
1587 */
1588 gpnum = READ_ONCE(rsp->gpnum);
1589 smp_rmb(); /* Pick up ->gpnum first... */
1590 js = READ_ONCE(rsp->jiffies_stall);
1591 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1592 gps = READ_ONCE(rsp->gp_start);
1593 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1594 completed = READ_ONCE(rsp->completed);
1595 if (ULONG_CMP_GE(completed, gpnum) ||
1596 ULONG_CMP_LT(j, js) ||
1597 ULONG_CMP_GE(gps, js))
1598 return; /* No stall or GP completed since entering function. */
1599 rnp = rdp->mynode;
1600 if (rcu_gp_in_progress(rsp) &&
1601 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1602
1603 /* We haven't checked in, so go dump stack. */
1604 print_cpu_stall(rsp);
1605
1606 } else if (rcu_gp_in_progress(rsp) &&
1607 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1608
1609 /* They had a few time units to dump stack, so complain. */
1610 print_other_cpu_stall(rsp, gpnum);
1611 }
1612 }
1613
1614 /**
1615 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1616 *
1617 * Set the stall-warning timeout way off into the future, thus preventing
1618 * any RCU CPU stall-warning messages from appearing in the current set of
1619 * RCU grace periods.
1620 *
1621 * The caller must disable hard irqs.
1622 */
1623 void rcu_cpu_stall_reset(void)
1624 {
1625 struct rcu_state *rsp;
1626
1627 for_each_rcu_flavor(rsp)
1628 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1629 }
1630
1631 /*
1632 * Determine the value that ->completed will have at the end of the
1633 * next subsequent grace period. This is used to tag callbacks so that
1634 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1635 * been dyntick-idle for an extended period with callbacks under the
1636 * influence of RCU_FAST_NO_HZ.
1637 *
1638 * The caller must hold rnp->lock with interrupts disabled.
1639 */
1640 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1641 struct rcu_node *rnp)
1642 {
1643 lockdep_assert_held(&rnp->lock);
1644
1645 /*
1646 * If RCU is idle, we just wait for the next grace period.
1647 * But we can only be sure that RCU is idle if we are looking
1648 * at the root rcu_node structure -- otherwise, a new grace
1649 * period might have started, but just not yet gotten around
1650 * to initializing the current non-root rcu_node structure.
1651 */
1652 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1653 return rnp->completed + 1;
1654
1655 /*
1656 * Otherwise, wait for a possible partial grace period and
1657 * then the subsequent full grace period.
1658 */
1659 return rnp->completed + 2;
1660 }
1661
1662 /*
1663 * Trace-event helper function for rcu_start_future_gp() and
1664 * rcu_nocb_wait_gp().
1665 */
1666 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1667 unsigned long c, const char *s)
1668 {
1669 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1670 rnp->completed, c, rnp->level,
1671 rnp->grplo, rnp->grphi, s);
1672 }
1673
1674 /*
1675 * Start some future grace period, as needed to handle newly arrived
1676 * callbacks. The required future grace periods are recorded in each
1677 * rcu_node structure's ->need_future_gp field. Returns true if there
1678 * is reason to awaken the grace-period kthread.
1679 *
1680 * The caller must hold the specified rcu_node structure's ->lock.
1681 */
1682 static bool __maybe_unused
1683 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1684 unsigned long *c_out)
1685 {
1686 unsigned long c;
1687 bool ret = false;
1688 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1689
1690 lockdep_assert_held(&rnp->lock);
1691
1692 /*
1693 * Pick up grace-period number for new callbacks. If this
1694 * grace period is already marked as needed, return to the caller.
1695 */
1696 c = rcu_cbs_completed(rdp->rsp, rnp);
1697 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1698 if (rnp->need_future_gp[c & 0x1]) {
1699 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1700 goto out;
1701 }
1702
1703 /*
1704 * If either this rcu_node structure or the root rcu_node structure
1705 * believe that a grace period is in progress, then we must wait
1706 * for the one following, which is in "c". Because our request
1707 * will be noticed at the end of the current grace period, we don't
1708 * need to explicitly start one. We only do the lockless check
1709 * of rnp_root's fields if the current rcu_node structure thinks
1710 * there is no grace period in flight, and because we hold rnp->lock,
1711 * the only possible change is when rnp_root's two fields are
1712 * equal, in which case rnp_root->gpnum might be concurrently
1713 * incremented. But that is OK, as it will just result in our
1714 * doing some extra useless work.
1715 */
1716 if (rnp->gpnum != rnp->completed ||
1717 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1718 rnp->need_future_gp[c & 0x1]++;
1719 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1720 goto out;
1721 }
1722
1723 /*
1724 * There might be no grace period in progress. If we don't already
1725 * hold it, acquire the root rcu_node structure's lock in order to
1726 * start one (if needed).
1727 */
1728 if (rnp != rnp_root)
1729 raw_spin_lock_rcu_node(rnp_root);
1730
1731 /*
1732 * Get a new grace-period number. If there really is no grace
1733 * period in progress, it will be smaller than the one we obtained
1734 * earlier. Adjust callbacks as needed.
1735 */
1736 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1737 if (!rcu_is_nocb_cpu(rdp->cpu))
1738 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1739
1740 /*
1741 * If the needed for the required grace period is already
1742 * recorded, trace and leave.
1743 */
1744 if (rnp_root->need_future_gp[c & 0x1]) {
1745 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1746 goto unlock_out;
1747 }
1748
1749 /* Record the need for the future grace period. */
1750 rnp_root->need_future_gp[c & 0x1]++;
1751
1752 /* If a grace period is not already in progress, start one. */
1753 if (rnp_root->gpnum != rnp_root->completed) {
1754 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1755 } else {
1756 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1757 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1758 }
1759 unlock_out:
1760 if (rnp != rnp_root)
1761 raw_spin_unlock_rcu_node(rnp_root);
1762 out:
1763 if (c_out != NULL)
1764 *c_out = c;
1765 return ret;
1766 }
1767
1768 /*
1769 * Clean up any old requests for the just-ended grace period. Also return
1770 * whether any additional grace periods have been requested.
1771 */
1772 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1773 {
1774 int c = rnp->completed;
1775 int needmore;
1776 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1777
1778 rnp->need_future_gp[c & 0x1] = 0;
1779 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1780 trace_rcu_future_gp(rnp, rdp, c,
1781 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1782 return needmore;
1783 }
1784
1785 /*
1786 * Awaken the grace-period kthread for the specified flavor of RCU.
1787 * Don't do a self-awaken, and don't bother awakening when there is
1788 * nothing for the grace-period kthread to do (as in several CPUs
1789 * raced to awaken, and we lost), and finally don't try to awaken
1790 * a kthread that has not yet been created.
1791 */
1792 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1793 {
1794 if (current == rsp->gp_kthread ||
1795 !READ_ONCE(rsp->gp_flags) ||
1796 !rsp->gp_kthread)
1797 return;
1798 swake_up(&rsp->gp_wq);
1799 }
1800
1801 /*
1802 * If there is room, assign a ->completed number to any callbacks on
1803 * this CPU that have not already been assigned. Also accelerate any
1804 * callbacks that were previously assigned a ->completed number that has
1805 * since proven to be too conservative, which can happen if callbacks get
1806 * assigned a ->completed number while RCU is idle, but with reference to
1807 * a non-root rcu_node structure. This function is idempotent, so it does
1808 * not hurt to call it repeatedly. Returns an flag saying that we should
1809 * awaken the RCU grace-period kthread.
1810 *
1811 * The caller must hold rnp->lock with interrupts disabled.
1812 */
1813 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1814 struct rcu_data *rdp)
1815 {
1816 bool ret = false;
1817
1818 lockdep_assert_held(&rnp->lock);
1819
1820 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1821 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1822 return false;
1823
1824 /*
1825 * Callbacks are often registered with incomplete grace-period
1826 * information. Something about the fact that getting exact
1827 * information requires acquiring a global lock... RCU therefore
1828 * makes a conservative estimate of the grace period number at which
1829 * a given callback will become ready to invoke. The following
1830 * code checks this estimate and improves it when possible, thus
1831 * accelerating callback invocation to an earlier grace-period
1832 * number.
1833 */
1834 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1835 ret = rcu_start_future_gp(rnp, rdp, NULL);
1836
1837 /* Trace depending on how much we were able to accelerate. */
1838 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1839 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1840 else
1841 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1842 return ret;
1843 }
1844
1845 /*
1846 * Move any callbacks whose grace period has completed to the
1847 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1848 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1849 * sublist. This function is idempotent, so it does not hurt to
1850 * invoke it repeatedly. As long as it is not invoked -too- often...
1851 * Returns true if the RCU grace-period kthread needs to be awakened.
1852 *
1853 * The caller must hold rnp->lock with interrupts disabled.
1854 */
1855 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1856 struct rcu_data *rdp)
1857 {
1858 lockdep_assert_held(&rnp->lock);
1859
1860 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1861 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1862 return false;
1863
1864 /*
1865 * Find all callbacks whose ->completed numbers indicate that they
1866 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1867 */
1868 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1869
1870 /* Classify any remaining callbacks. */
1871 return rcu_accelerate_cbs(rsp, rnp, rdp);
1872 }
1873
1874 /*
1875 * Update CPU-local rcu_data state to record the beginnings and ends of
1876 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1877 * structure corresponding to the current CPU, and must have irqs disabled.
1878 * Returns true if the grace-period kthread needs to be awakened.
1879 */
1880 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1881 struct rcu_data *rdp)
1882 {
1883 bool ret;
1884 bool need_gp;
1885
1886 lockdep_assert_held(&rnp->lock);
1887
1888 /* Handle the ends of any preceding grace periods first. */
1889 if (rdp->completed == rnp->completed &&
1890 !unlikely(READ_ONCE(rdp->gpwrap))) {
1891
1892 /* No grace period end, so just accelerate recent callbacks. */
1893 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1894
1895 } else {
1896
1897 /* Advance callbacks. */
1898 ret = rcu_advance_cbs(rsp, rnp, rdp);
1899
1900 /* Remember that we saw this grace-period completion. */
1901 rdp->completed = rnp->completed;
1902 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1903 }
1904
1905 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1906 /*
1907 * If the current grace period is waiting for this CPU,
1908 * set up to detect a quiescent state, otherwise don't
1909 * go looking for one.
1910 */
1911 rdp->gpnum = rnp->gpnum;
1912 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1913 need_gp = !!(rnp->qsmask & rdp->grpmask);
1914 rdp->cpu_no_qs.b.norm = need_gp;
1915 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1916 rdp->core_needs_qs = need_gp;
1917 zero_cpu_stall_ticks(rdp);
1918 WRITE_ONCE(rdp->gpwrap, false);
1919 }
1920 return ret;
1921 }
1922
1923 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1924 {
1925 unsigned long flags;
1926 bool needwake;
1927 struct rcu_node *rnp;
1928
1929 local_irq_save(flags);
1930 rnp = rdp->mynode;
1931 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1932 rdp->completed == READ_ONCE(rnp->completed) &&
1933 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1934 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1935 local_irq_restore(flags);
1936 return;
1937 }
1938 needwake = __note_gp_changes(rsp, rnp, rdp);
1939 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1940 if (needwake)
1941 rcu_gp_kthread_wake(rsp);
1942 }
1943
1944 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1945 {
1946 if (delay > 0 &&
1947 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1948 schedule_timeout_uninterruptible(delay);
1949 }
1950
1951 /*
1952 * Initialize a new grace period. Return false if no grace period required.
1953 */
1954 static bool rcu_gp_init(struct rcu_state *rsp)
1955 {
1956 unsigned long oldmask;
1957 struct rcu_data *rdp;
1958 struct rcu_node *rnp = rcu_get_root(rsp);
1959
1960 WRITE_ONCE(rsp->gp_activity, jiffies);
1961 raw_spin_lock_irq_rcu_node(rnp);
1962 if (!READ_ONCE(rsp->gp_flags)) {
1963 /* Spurious wakeup, tell caller to go back to sleep. */
1964 raw_spin_unlock_irq_rcu_node(rnp);
1965 return false;
1966 }
1967 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1968
1969 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1970 /*
1971 * Grace period already in progress, don't start another.
1972 * Not supposed to be able to happen.
1973 */
1974 raw_spin_unlock_irq_rcu_node(rnp);
1975 return false;
1976 }
1977
1978 /* Advance to a new grace period and initialize state. */
1979 record_gp_stall_check_time(rsp);
1980 /* Record GP times before starting GP, hence smp_store_release(). */
1981 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1982 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1983 raw_spin_unlock_irq_rcu_node(rnp);
1984
1985 /*
1986 * Apply per-leaf buffered online and offline operations to the
1987 * rcu_node tree. Note that this new grace period need not wait
1988 * for subsequent online CPUs, and that quiescent-state forcing
1989 * will handle subsequent offline CPUs.
1990 */
1991 rcu_for_each_leaf_node(rsp, rnp) {
1992 rcu_gp_slow(rsp, gp_preinit_delay);
1993 raw_spin_lock_irq_rcu_node(rnp);
1994 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1995 !rnp->wait_blkd_tasks) {
1996 /* Nothing to do on this leaf rcu_node structure. */
1997 raw_spin_unlock_irq_rcu_node(rnp);
1998 continue;
1999 }
2000
2001 /* Record old state, apply changes to ->qsmaskinit field. */
2002 oldmask = rnp->qsmaskinit;
2003 rnp->qsmaskinit = rnp->qsmaskinitnext;
2004
2005 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2006 if (!oldmask != !rnp->qsmaskinit) {
2007 if (!oldmask) /* First online CPU for this rcu_node. */
2008 rcu_init_new_rnp(rnp);
2009 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2010 rnp->wait_blkd_tasks = true;
2011 else /* Last offline CPU and can propagate. */
2012 rcu_cleanup_dead_rnp(rnp);
2013 }
2014
2015 /*
2016 * If all waited-on tasks from prior grace period are
2017 * done, and if all this rcu_node structure's CPUs are
2018 * still offline, propagate up the rcu_node tree and
2019 * clear ->wait_blkd_tasks. Otherwise, if one of this
2020 * rcu_node structure's CPUs has since come back online,
2021 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2022 * checks for this, so just call it unconditionally).
2023 */
2024 if (rnp->wait_blkd_tasks &&
2025 (!rcu_preempt_has_tasks(rnp) ||
2026 rnp->qsmaskinit)) {
2027 rnp->wait_blkd_tasks = false;
2028 rcu_cleanup_dead_rnp(rnp);
2029 }
2030
2031 raw_spin_unlock_irq_rcu_node(rnp);
2032 }
2033
2034 /*
2035 * Set the quiescent-state-needed bits in all the rcu_node
2036 * structures for all currently online CPUs in breadth-first order,
2037 * starting from the root rcu_node structure, relying on the layout
2038 * of the tree within the rsp->node[] array. Note that other CPUs
2039 * will access only the leaves of the hierarchy, thus seeing that no
2040 * grace period is in progress, at least until the corresponding
2041 * leaf node has been initialized.
2042 *
2043 * The grace period cannot complete until the initialization
2044 * process finishes, because this kthread handles both.
2045 */
2046 rcu_for_each_node_breadth_first(rsp, rnp) {
2047 rcu_gp_slow(rsp, gp_init_delay);
2048 raw_spin_lock_irq_rcu_node(rnp);
2049 rdp = this_cpu_ptr(rsp->rda);
2050 rcu_preempt_check_blocked_tasks(rnp);
2051 rnp->qsmask = rnp->qsmaskinit;
2052 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2053 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2054 WRITE_ONCE(rnp->completed, rsp->completed);
2055 if (rnp == rdp->mynode)
2056 (void)__note_gp_changes(rsp, rnp, rdp);
2057 rcu_preempt_boost_start_gp(rnp);
2058 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2059 rnp->level, rnp->grplo,
2060 rnp->grphi, rnp->qsmask);
2061 raw_spin_unlock_irq_rcu_node(rnp);
2062 cond_resched_rcu_qs();
2063 WRITE_ONCE(rsp->gp_activity, jiffies);
2064 }
2065
2066 return true;
2067 }
2068
2069 /*
2070 * Helper function for wait_event_interruptible_timeout() wakeup
2071 * at force-quiescent-state time.
2072 */
2073 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2074 {
2075 struct rcu_node *rnp = rcu_get_root(rsp);
2076
2077 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2078 *gfp = READ_ONCE(rsp->gp_flags);
2079 if (*gfp & RCU_GP_FLAG_FQS)
2080 return true;
2081
2082 /* The current grace period has completed. */
2083 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2084 return true;
2085
2086 return false;
2087 }
2088
2089 /*
2090 * Do one round of quiescent-state forcing.
2091 */
2092 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2093 {
2094 struct rcu_node *rnp = rcu_get_root(rsp);
2095
2096 WRITE_ONCE(rsp->gp_activity, jiffies);
2097 rsp->n_force_qs++;
2098 if (first_time) {
2099 /* Collect dyntick-idle snapshots. */
2100 force_qs_rnp(rsp, dyntick_save_progress_counter);
2101 } else {
2102 /* Handle dyntick-idle and offline CPUs. */
2103 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2104 }
2105 /* Clear flag to prevent immediate re-entry. */
2106 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2107 raw_spin_lock_irq_rcu_node(rnp);
2108 WRITE_ONCE(rsp->gp_flags,
2109 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2110 raw_spin_unlock_irq_rcu_node(rnp);
2111 }
2112 }
2113
2114 /*
2115 * Clean up after the old grace period.
2116 */
2117 static void rcu_gp_cleanup(struct rcu_state *rsp)
2118 {
2119 unsigned long gp_duration;
2120 bool needgp = false;
2121 int nocb = 0;
2122 struct rcu_data *rdp;
2123 struct rcu_node *rnp = rcu_get_root(rsp);
2124 struct swait_queue_head *sq;
2125
2126 WRITE_ONCE(rsp->gp_activity, jiffies);
2127 raw_spin_lock_irq_rcu_node(rnp);
2128 gp_duration = jiffies - rsp->gp_start;
2129 if (gp_duration > rsp->gp_max)
2130 rsp->gp_max = gp_duration;
2131
2132 /*
2133 * We know the grace period is complete, but to everyone else
2134 * it appears to still be ongoing. But it is also the case
2135 * that to everyone else it looks like there is nothing that
2136 * they can do to advance the grace period. It is therefore
2137 * safe for us to drop the lock in order to mark the grace
2138 * period as completed in all of the rcu_node structures.
2139 */
2140 raw_spin_unlock_irq_rcu_node(rnp);
2141
2142 /*
2143 * Propagate new ->completed value to rcu_node structures so
2144 * that other CPUs don't have to wait until the start of the next
2145 * grace period to process their callbacks. This also avoids
2146 * some nasty RCU grace-period initialization races by forcing
2147 * the end of the current grace period to be completely recorded in
2148 * all of the rcu_node structures before the beginning of the next
2149 * grace period is recorded in any of the rcu_node structures.
2150 */
2151 rcu_for_each_node_breadth_first(rsp, rnp) {
2152 raw_spin_lock_irq_rcu_node(rnp);
2153 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2154 WARN_ON_ONCE(rnp->qsmask);
2155 WRITE_ONCE(rnp->completed, rsp->gpnum);
2156 rdp = this_cpu_ptr(rsp->rda);
2157 if (rnp == rdp->mynode)
2158 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2159 /* smp_mb() provided by prior unlock-lock pair. */
2160 nocb += rcu_future_gp_cleanup(rsp, rnp);
2161 sq = rcu_nocb_gp_get(rnp);
2162 raw_spin_unlock_irq_rcu_node(rnp);
2163 rcu_nocb_gp_cleanup(sq);
2164 cond_resched_rcu_qs();
2165 WRITE_ONCE(rsp->gp_activity, jiffies);
2166 rcu_gp_slow(rsp, gp_cleanup_delay);
2167 }
2168 rnp = rcu_get_root(rsp);
2169 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2170 rcu_nocb_gp_set(rnp, nocb);
2171
2172 /* Declare grace period done. */
2173 WRITE_ONCE(rsp->completed, rsp->gpnum);
2174 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2175 rsp->gp_state = RCU_GP_IDLE;
2176 rdp = this_cpu_ptr(rsp->rda);
2177 /* Advance CBs to reduce false positives below. */
2178 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2179 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2180 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2181 trace_rcu_grace_period(rsp->name,
2182 READ_ONCE(rsp->gpnum),
2183 TPS("newreq"));
2184 }
2185 raw_spin_unlock_irq_rcu_node(rnp);
2186 }
2187
2188 /*
2189 * Body of kthread that handles grace periods.
2190 */
2191 static int __noreturn rcu_gp_kthread(void *arg)
2192 {
2193 bool first_gp_fqs;
2194 int gf;
2195 unsigned long j;
2196 int ret;
2197 struct rcu_state *rsp = arg;
2198 struct rcu_node *rnp = rcu_get_root(rsp);
2199
2200 rcu_bind_gp_kthread();
2201 for (;;) {
2202
2203 /* Handle grace-period start. */
2204 for (;;) {
2205 trace_rcu_grace_period(rsp->name,
2206 READ_ONCE(rsp->gpnum),
2207 TPS("reqwait"));
2208 rsp->gp_state = RCU_GP_WAIT_GPS;
2209 swait_event_interruptible(rsp->gp_wq,
2210 READ_ONCE(rsp->gp_flags) &
2211 RCU_GP_FLAG_INIT);
2212 rsp->gp_state = RCU_GP_DONE_GPS;
2213 /* Locking provides needed memory barrier. */
2214 if (rcu_gp_init(rsp))
2215 break;
2216 cond_resched_rcu_qs();
2217 WRITE_ONCE(rsp->gp_activity, jiffies);
2218 WARN_ON(signal_pending(current));
2219 trace_rcu_grace_period(rsp->name,
2220 READ_ONCE(rsp->gpnum),
2221 TPS("reqwaitsig"));
2222 }
2223
2224 /* Handle quiescent-state forcing. */
2225 first_gp_fqs = true;
2226 j = jiffies_till_first_fqs;
2227 if (j > HZ) {
2228 j = HZ;
2229 jiffies_till_first_fqs = HZ;
2230 }
2231 ret = 0;
2232 for (;;) {
2233 if (!ret) {
2234 rsp->jiffies_force_qs = jiffies + j;
2235 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2236 jiffies + 3 * j);
2237 }
2238 trace_rcu_grace_period(rsp->name,
2239 READ_ONCE(rsp->gpnum),
2240 TPS("fqswait"));
2241 rsp->gp_state = RCU_GP_WAIT_FQS;
2242 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2243 rcu_gp_fqs_check_wake(rsp, &gf), j);
2244 rsp->gp_state = RCU_GP_DOING_FQS;
2245 /* Locking provides needed memory barriers. */
2246 /* If grace period done, leave loop. */
2247 if (!READ_ONCE(rnp->qsmask) &&
2248 !rcu_preempt_blocked_readers_cgp(rnp))
2249 break;
2250 /* If time for quiescent-state forcing, do it. */
2251 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2252 (gf & RCU_GP_FLAG_FQS)) {
2253 trace_rcu_grace_period(rsp->name,
2254 READ_ONCE(rsp->gpnum),
2255 TPS("fqsstart"));
2256 rcu_gp_fqs(rsp, first_gp_fqs);
2257 first_gp_fqs = false;
2258 trace_rcu_grace_period(rsp->name,
2259 READ_ONCE(rsp->gpnum),
2260 TPS("fqsend"));
2261 cond_resched_rcu_qs();
2262 WRITE_ONCE(rsp->gp_activity, jiffies);
2263 ret = 0; /* Force full wait till next FQS. */
2264 j = jiffies_till_next_fqs;
2265 if (j > HZ) {
2266 j = HZ;
2267 jiffies_till_next_fqs = HZ;
2268 } else if (j < 1) {
2269 j = 1;
2270 jiffies_till_next_fqs = 1;
2271 }
2272 } else {
2273 /* Deal with stray signal. */
2274 cond_resched_rcu_qs();
2275 WRITE_ONCE(rsp->gp_activity, jiffies);
2276 WARN_ON(signal_pending(current));
2277 trace_rcu_grace_period(rsp->name,
2278 READ_ONCE(rsp->gpnum),
2279 TPS("fqswaitsig"));
2280 ret = 1; /* Keep old FQS timing. */
2281 j = jiffies;
2282 if (time_after(jiffies, rsp->jiffies_force_qs))
2283 j = 1;
2284 else
2285 j = rsp->jiffies_force_qs - j;
2286 }
2287 }
2288
2289 /* Handle grace-period end. */
2290 rsp->gp_state = RCU_GP_CLEANUP;
2291 rcu_gp_cleanup(rsp);
2292 rsp->gp_state = RCU_GP_CLEANED;
2293 }
2294 }
2295
2296 /*
2297 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2298 * in preparation for detecting the next grace period. The caller must hold
2299 * the root node's ->lock and hard irqs must be disabled.
2300 *
2301 * Note that it is legal for a dying CPU (which is marked as offline) to
2302 * invoke this function. This can happen when the dying CPU reports its
2303 * quiescent state.
2304 *
2305 * Returns true if the grace-period kthread must be awakened.
2306 */
2307 static bool
2308 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2309 struct rcu_data *rdp)
2310 {
2311 lockdep_assert_held(&rnp->lock);
2312 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2313 /*
2314 * Either we have not yet spawned the grace-period
2315 * task, this CPU does not need another grace period,
2316 * or a grace period is already in progress.
2317 * Either way, don't start a new grace period.
2318 */
2319 return false;
2320 }
2321 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2322 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2323 TPS("newreq"));
2324
2325 /*
2326 * We can't do wakeups while holding the rnp->lock, as that
2327 * could cause possible deadlocks with the rq->lock. Defer
2328 * the wakeup to our caller.
2329 */
2330 return true;
2331 }
2332
2333 /*
2334 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2335 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2336 * is invoked indirectly from rcu_advance_cbs(), which would result in
2337 * endless recursion -- or would do so if it wasn't for the self-deadlock
2338 * that is encountered beforehand.
2339 *
2340 * Returns true if the grace-period kthread needs to be awakened.
2341 */
2342 static bool rcu_start_gp(struct rcu_state *rsp)
2343 {
2344 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2345 struct rcu_node *rnp = rcu_get_root(rsp);
2346 bool ret = false;
2347
2348 /*
2349 * If there is no grace period in progress right now, any
2350 * callbacks we have up to this point will be satisfied by the
2351 * next grace period. Also, advancing the callbacks reduces the
2352 * probability of false positives from cpu_needs_another_gp()
2353 * resulting in pointless grace periods. So, advance callbacks
2354 * then start the grace period!
2355 */
2356 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2357 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2358 return ret;
2359 }
2360
2361 /*
2362 * Report a full set of quiescent states to the specified rcu_state data
2363 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2364 * kthread if another grace period is required. Whether we wake
2365 * the grace-period kthread or it awakens itself for the next round
2366 * of quiescent-state forcing, that kthread will clean up after the
2367 * just-completed grace period. Note that the caller must hold rnp->lock,
2368 * which is released before return.
2369 */
2370 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2371 __releases(rcu_get_root(rsp)->lock)
2372 {
2373 lockdep_assert_held(&rcu_get_root(rsp)->lock);
2374 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2375 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2376 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2377 rcu_gp_kthread_wake(rsp);
2378 }
2379
2380 /*
2381 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2382 * Allows quiescent states for a group of CPUs to be reported at one go
2383 * to the specified rcu_node structure, though all the CPUs in the group
2384 * must be represented by the same rcu_node structure (which need not be a
2385 * leaf rcu_node structure, though it often will be). The gps parameter
2386 * is the grace-period snapshot, which means that the quiescent states
2387 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2388 * must be held upon entry, and it is released before return.
2389 */
2390 static void
2391 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2392 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2393 __releases(rnp->lock)
2394 {
2395 unsigned long oldmask = 0;
2396 struct rcu_node *rnp_c;
2397
2398 lockdep_assert_held(&rnp->lock);
2399
2400 /* Walk up the rcu_node hierarchy. */
2401 for (;;) {
2402 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2403
2404 /*
2405 * Our bit has already been cleared, or the
2406 * relevant grace period is already over, so done.
2407 */
2408 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2409 return;
2410 }
2411 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2412 rnp->qsmask &= ~mask;
2413 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2414 mask, rnp->qsmask, rnp->level,
2415 rnp->grplo, rnp->grphi,
2416 !!rnp->gp_tasks);
2417 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2418
2419 /* Other bits still set at this level, so done. */
2420 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2421 return;
2422 }
2423 mask = rnp->grpmask;
2424 if (rnp->parent == NULL) {
2425
2426 /* No more levels. Exit loop holding root lock. */
2427
2428 break;
2429 }
2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431 rnp_c = rnp;
2432 rnp = rnp->parent;
2433 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2434 oldmask = rnp_c->qsmask;
2435 }
2436
2437 /*
2438 * Get here if we are the last CPU to pass through a quiescent
2439 * state for this grace period. Invoke rcu_report_qs_rsp()
2440 * to clean up and start the next grace period if one is needed.
2441 */
2442 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2443 }
2444
2445 /*
2446 * Record a quiescent state for all tasks that were previously queued
2447 * on the specified rcu_node structure and that were blocking the current
2448 * RCU grace period. The caller must hold the specified rnp->lock with
2449 * irqs disabled, and this lock is released upon return, but irqs remain
2450 * disabled.
2451 */
2452 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2453 struct rcu_node *rnp, unsigned long flags)
2454 __releases(rnp->lock)
2455 {
2456 unsigned long gps;
2457 unsigned long mask;
2458 struct rcu_node *rnp_p;
2459
2460 lockdep_assert_held(&rnp->lock);
2461 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2462 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2463 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2464 return; /* Still need more quiescent states! */
2465 }
2466
2467 rnp_p = rnp->parent;
2468 if (rnp_p == NULL) {
2469 /*
2470 * Only one rcu_node structure in the tree, so don't
2471 * try to report up to its nonexistent parent!
2472 */
2473 rcu_report_qs_rsp(rsp, flags);
2474 return;
2475 }
2476
2477 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2478 gps = rnp->gpnum;
2479 mask = rnp->grpmask;
2480 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2481 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2482 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2483 }
2484
2485 /*
2486 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2487 * structure. This must be called from the specified CPU.
2488 */
2489 static void
2490 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2491 {
2492 unsigned long flags;
2493 unsigned long mask;
2494 bool needwake;
2495 struct rcu_node *rnp;
2496
2497 rnp = rdp->mynode;
2498 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2499 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2500 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2501
2502 /*
2503 * The grace period in which this quiescent state was
2504 * recorded has ended, so don't report it upwards.
2505 * We will instead need a new quiescent state that lies
2506 * within the current grace period.
2507 */
2508 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2509 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2510 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2511 return;
2512 }
2513 mask = rdp->grpmask;
2514 if ((rnp->qsmask & mask) == 0) {
2515 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2516 } else {
2517 rdp->core_needs_qs = false;
2518
2519 /*
2520 * This GP can't end until cpu checks in, so all of our
2521 * callbacks can be processed during the next GP.
2522 */
2523 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2524
2525 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2526 /* ^^^ Released rnp->lock */
2527 if (needwake)
2528 rcu_gp_kthread_wake(rsp);
2529 }
2530 }
2531
2532 /*
2533 * Check to see if there is a new grace period of which this CPU
2534 * is not yet aware, and if so, set up local rcu_data state for it.
2535 * Otherwise, see if this CPU has just passed through its first
2536 * quiescent state for this grace period, and record that fact if so.
2537 */
2538 static void
2539 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2540 {
2541 /* Check for grace-period ends and beginnings. */
2542 note_gp_changes(rsp, rdp);
2543
2544 /*
2545 * Does this CPU still need to do its part for current grace period?
2546 * If no, return and let the other CPUs do their part as well.
2547 */
2548 if (!rdp->core_needs_qs)
2549 return;
2550
2551 /*
2552 * Was there a quiescent state since the beginning of the grace
2553 * period? If no, then exit and wait for the next call.
2554 */
2555 if (rdp->cpu_no_qs.b.norm)
2556 return;
2557
2558 /*
2559 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2560 * judge of that).
2561 */
2562 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2563 }
2564
2565 /*
2566 * Send the specified CPU's RCU callbacks to the orphanage. The
2567 * specified CPU must be offline, and the caller must hold the
2568 * ->orphan_lock.
2569 */
2570 static void
2571 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2572 struct rcu_node *rnp, struct rcu_data *rdp)
2573 {
2574 lockdep_assert_held(&rsp->orphan_lock);
2575
2576 /* No-CBs CPUs do not have orphanable callbacks. */
2577 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2578 return;
2579
2580 /*
2581 * Orphan the callbacks. First adjust the counts. This is safe
2582 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2583 * cannot be running now. Thus no memory barrier is required.
2584 */
2585 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2586 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2587
2588 /*
2589 * Next, move those callbacks still needing a grace period to
2590 * the orphanage, where some other CPU will pick them up.
2591 * Some of the callbacks might have gone partway through a grace
2592 * period, but that is too bad. They get to start over because we
2593 * cannot assume that grace periods are synchronized across CPUs.
2594 */
2595 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2596
2597 /*
2598 * Then move the ready-to-invoke callbacks to the orphanage,
2599 * where some other CPU will pick them up. These will not be
2600 * required to pass though another grace period: They are done.
2601 */
2602 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2603
2604 /* Finally, disallow further callbacks on this CPU. */
2605 rcu_segcblist_disable(&rdp->cblist);
2606 }
2607
2608 /*
2609 * Adopt the RCU callbacks from the specified rcu_state structure's
2610 * orphanage. The caller must hold the ->orphan_lock.
2611 */
2612 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2613 {
2614 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2615
2616 lockdep_assert_held(&rsp->orphan_lock);
2617
2618 /* No-CBs CPUs are handled specially. */
2619 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2620 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2621 return;
2622
2623 /* Do the accounting first. */
2624 rdp->n_cbs_adopted += rsp->orphan_done.len;
2625 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2626 rcu_idle_count_callbacks_posted();
2627 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2628
2629 /*
2630 * We do not need a memory barrier here because the only way we
2631 * can get here if there is an rcu_barrier() in flight is if
2632 * we are the task doing the rcu_barrier().
2633 */
2634
2635 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2636 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2637 WARN_ON_ONCE(rsp->orphan_done.head);
2638 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2639 WARN_ON_ONCE(rsp->orphan_pend.head);
2640 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2641 !rcu_segcblist_n_cbs(&rdp->cblist));
2642 }
2643
2644 /*
2645 * Trace the fact that this CPU is going offline.
2646 */
2647 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2648 {
2649 RCU_TRACE(unsigned long mask;)
2650 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2651 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2652
2653 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2654 return;
2655
2656 RCU_TRACE(mask = rdp->grpmask;)
2657 trace_rcu_grace_period(rsp->name,
2658 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2659 TPS("cpuofl"));
2660 }
2661
2662 /*
2663 * All CPUs for the specified rcu_node structure have gone offline,
2664 * and all tasks that were preempted within an RCU read-side critical
2665 * section while running on one of those CPUs have since exited their RCU
2666 * read-side critical section. Some other CPU is reporting this fact with
2667 * the specified rcu_node structure's ->lock held and interrupts disabled.
2668 * This function therefore goes up the tree of rcu_node structures,
2669 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2670 * the leaf rcu_node structure's ->qsmaskinit field has already been
2671 * updated
2672 *
2673 * This function does check that the specified rcu_node structure has
2674 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2675 * prematurely. That said, invoking it after the fact will cost you
2676 * a needless lock acquisition. So once it has done its work, don't
2677 * invoke it again.
2678 */
2679 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2680 {
2681 long mask;
2682 struct rcu_node *rnp = rnp_leaf;
2683
2684 lockdep_assert_held(&rnp->lock);
2685 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2686 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2687 return;
2688 for (;;) {
2689 mask = rnp->grpmask;
2690 rnp = rnp->parent;
2691 if (!rnp)
2692 break;
2693 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2694 rnp->qsmaskinit &= ~mask;
2695 rnp->qsmask &= ~mask;
2696 if (rnp->qsmaskinit) {
2697 raw_spin_unlock_rcu_node(rnp);
2698 /* irqs remain disabled. */
2699 return;
2700 }
2701 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2702 }
2703 }
2704
2705 /*
2706 * The CPU has been completely removed, and some other CPU is reporting
2707 * this fact from process context. Do the remainder of the cleanup,
2708 * including orphaning the outgoing CPU's RCU callbacks, and also
2709 * adopting them. There can only be one CPU hotplug operation at a time,
2710 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2711 */
2712 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2713 {
2714 unsigned long flags;
2715 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2716 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2717
2718 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2719 return;
2720
2721 /* Adjust any no-longer-needed kthreads. */
2722 rcu_boost_kthread_setaffinity(rnp, -1);
2723
2724 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2725 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2726 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2727 rcu_adopt_orphan_cbs(rsp, flags);
2728 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2729
2730 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2731 !rcu_segcblist_empty(&rdp->cblist),
2732 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2733 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2734 rcu_segcblist_first_cb(&rdp->cblist));
2735 }
2736
2737 /*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period. Thottle as specified by rdp->blimit.
2740 */
2741 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742 {
2743 unsigned long flags;
2744 struct rcu_head *rhp;
2745 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2746 long bl, count;
2747
2748 /* If no callbacks are ready, just return. */
2749 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2750 trace_rcu_batch_start(rsp->name,
2751 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2752 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2753 trace_rcu_batch_end(rsp->name, 0,
2754 !rcu_segcblist_empty(&rdp->cblist),
2755 need_resched(), is_idle_task(current),
2756 rcu_is_callbacks_kthread());
2757 return;
2758 }
2759
2760 /*
2761 * Extract the list of ready callbacks, disabling to prevent
2762 * races with call_rcu() from interrupt handlers. Leave the
2763 * callback counts, as rcu_barrier() needs to be conservative.
2764 */
2765 local_irq_save(flags);
2766 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2767 bl = rdp->blimit;
2768 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2769 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2770 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2771 local_irq_restore(flags);
2772
2773 /* Invoke callbacks. */
2774 rhp = rcu_cblist_dequeue(&rcl);
2775 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2776 debug_rcu_head_unqueue(rhp);
2777 if (__rcu_reclaim(rsp->name, rhp))
2778 rcu_cblist_dequeued_lazy(&rcl);
2779 /*
2780 * Stop only if limit reached and CPU has something to do.
2781 * Note: The rcl structure counts down from zero.
2782 */
2783 if (-rcl.len >= bl &&
2784 (need_resched() ||
2785 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2786 break;
2787 }
2788
2789 local_irq_save(flags);
2790 count = -rcl.len;
2791 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2792 is_idle_task(current), rcu_is_callbacks_kthread());
2793
2794 /* Update counts and requeue any remaining callbacks. */
2795 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2796 smp_mb(); /* List handling before counting for rcu_barrier(). */
2797 rdp->n_cbs_invoked += count;
2798 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2799
2800 /* Reinstate batch limit if we have worked down the excess. */
2801 count = rcu_segcblist_n_cbs(&rdp->cblist);
2802 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2803 rdp->blimit = blimit;
2804
2805 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2806 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2807 rdp->qlen_last_fqs_check = 0;
2808 rdp->n_force_qs_snap = rsp->n_force_qs;
2809 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2810 rdp->qlen_last_fqs_check = count;
2811 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2812
2813 local_irq_restore(flags);
2814
2815 /* Re-invoke RCU core processing if there are callbacks remaining. */
2816 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2817 invoke_rcu_core();
2818 }
2819
2820 /*
2821 * Check to see if this CPU is in a non-context-switch quiescent state
2822 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2823 * Also schedule RCU core processing.
2824 *
2825 * This function must be called from hardirq context. It is normally
2826 * invoked from the scheduling-clock interrupt.
2827 */
2828 void rcu_check_callbacks(int user)
2829 {
2830 trace_rcu_utilization(TPS("Start scheduler-tick"));
2831 increment_cpu_stall_ticks();
2832 if (user || rcu_is_cpu_rrupt_from_idle()) {
2833
2834 /*
2835 * Get here if this CPU took its interrupt from user
2836 * mode or from the idle loop, and if this is not a
2837 * nested interrupt. In this case, the CPU is in
2838 * a quiescent state, so note it.
2839 *
2840 * No memory barrier is required here because both
2841 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2842 * variables that other CPUs neither access nor modify,
2843 * at least not while the corresponding CPU is online.
2844 */
2845
2846 rcu_sched_qs();
2847 rcu_bh_qs();
2848
2849 } else if (!in_softirq()) {
2850
2851 /*
2852 * Get here if this CPU did not take its interrupt from
2853 * softirq, in other words, if it is not interrupting
2854 * a rcu_bh read-side critical section. This is an _bh
2855 * critical section, so note it.
2856 */
2857
2858 rcu_bh_qs();
2859 }
2860 rcu_preempt_check_callbacks();
2861 if (rcu_pending())
2862 invoke_rcu_core();
2863 if (user)
2864 rcu_note_voluntary_context_switch(current);
2865 trace_rcu_utilization(TPS("End scheduler-tick"));
2866 }
2867
2868 /*
2869 * Scan the leaf rcu_node structures, processing dyntick state for any that
2870 * have not yet encountered a quiescent state, using the function specified.
2871 * Also initiate boosting for any threads blocked on the root rcu_node.
2872 *
2873 * The caller must have suppressed start of new grace periods.
2874 */
2875 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2876 {
2877 int cpu;
2878 unsigned long flags;
2879 unsigned long mask;
2880 struct rcu_node *rnp;
2881
2882 rcu_for_each_leaf_node(rsp, rnp) {
2883 cond_resched_rcu_qs();
2884 mask = 0;
2885 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2886 if (rnp->qsmask == 0) {
2887 if (rcu_state_p == &rcu_sched_state ||
2888 rsp != rcu_state_p ||
2889 rcu_preempt_blocked_readers_cgp(rnp)) {
2890 /*
2891 * No point in scanning bits because they
2892 * are all zero. But we might need to
2893 * priority-boost blocked readers.
2894 */
2895 rcu_initiate_boost(rnp, flags);
2896 /* rcu_initiate_boost() releases rnp->lock */
2897 continue;
2898 }
2899 if (rnp->parent &&
2900 (rnp->parent->qsmask & rnp->grpmask)) {
2901 /*
2902 * Race between grace-period
2903 * initialization and task exiting RCU
2904 * read-side critical section: Report.
2905 */
2906 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2907 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2908 continue;
2909 }
2910 }
2911 for_each_leaf_node_possible_cpu(rnp, cpu) {
2912 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2913 if ((rnp->qsmask & bit) != 0) {
2914 if (f(per_cpu_ptr(rsp->rda, cpu)))
2915 mask |= bit;
2916 }
2917 }
2918 if (mask != 0) {
2919 /* Idle/offline CPUs, report (releases rnp->lock. */
2920 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2921 } else {
2922 /* Nothing to do here, so just drop the lock. */
2923 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2924 }
2925 }
2926 }
2927
2928 /*
2929 * Force quiescent states on reluctant CPUs, and also detect which
2930 * CPUs are in dyntick-idle mode.
2931 */
2932 static void force_quiescent_state(struct rcu_state *rsp)
2933 {
2934 unsigned long flags;
2935 bool ret;
2936 struct rcu_node *rnp;
2937 struct rcu_node *rnp_old = NULL;
2938
2939 /* Funnel through hierarchy to reduce memory contention. */
2940 rnp = __this_cpu_read(rsp->rda->mynode);
2941 for (; rnp != NULL; rnp = rnp->parent) {
2942 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2943 !raw_spin_trylock(&rnp->fqslock);
2944 if (rnp_old != NULL)
2945 raw_spin_unlock(&rnp_old->fqslock);
2946 if (ret) {
2947 rsp->n_force_qs_lh++;
2948 return;
2949 }
2950 rnp_old = rnp;
2951 }
2952 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2953
2954 /* Reached the root of the rcu_node tree, acquire lock. */
2955 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2956 raw_spin_unlock(&rnp_old->fqslock);
2957 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2958 rsp->n_force_qs_lh++;
2959 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2960 return; /* Someone beat us to it. */
2961 }
2962 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2963 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2964 rcu_gp_kthread_wake(rsp);
2965 }
2966
2967 /*
2968 * This does the RCU core processing work for the specified rcu_state
2969 * and rcu_data structures. This may be called only from the CPU to
2970 * whom the rdp belongs.
2971 */
2972 static void
2973 __rcu_process_callbacks(struct rcu_state *rsp)
2974 {
2975 unsigned long flags;
2976 bool needwake;
2977 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2978
2979 WARN_ON_ONCE(!rdp->beenonline);
2980
2981 /* Update RCU state based on any recent quiescent states. */
2982 rcu_check_quiescent_state(rsp, rdp);
2983
2984 /* Does this CPU require a not-yet-started grace period? */
2985 local_irq_save(flags);
2986 if (cpu_needs_another_gp(rsp, rdp)) {
2987 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2988 needwake = rcu_start_gp(rsp);
2989 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2990 if (needwake)
2991 rcu_gp_kthread_wake(rsp);
2992 } else {
2993 local_irq_restore(flags);
2994 }
2995
2996 /* If there are callbacks ready, invoke them. */
2997 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2998 invoke_rcu_callbacks(rsp, rdp);
2999
3000 /* Do any needed deferred wakeups of rcuo kthreads. */
3001 do_nocb_deferred_wakeup(rdp);
3002 }
3003
3004 /*
3005 * Do RCU core processing for the current CPU.
3006 */
3007 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3008 {
3009 struct rcu_state *rsp;
3010
3011 if (cpu_is_offline(smp_processor_id()))
3012 return;
3013 trace_rcu_utilization(TPS("Start RCU core"));
3014 for_each_rcu_flavor(rsp)
3015 __rcu_process_callbacks(rsp);
3016 trace_rcu_utilization(TPS("End RCU core"));
3017 }
3018
3019 /*
3020 * Schedule RCU callback invocation. If the specified type of RCU
3021 * does not support RCU priority boosting, just do a direct call,
3022 * otherwise wake up the per-CPU kernel kthread. Note that because we
3023 * are running on the current CPU with softirqs disabled, the
3024 * rcu_cpu_kthread_task cannot disappear out from under us.
3025 */
3026 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3027 {
3028 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3029 return;
3030 if (likely(!rsp->boost)) {
3031 rcu_do_batch(rsp, rdp);
3032 return;
3033 }
3034 invoke_rcu_callbacks_kthread();
3035 }
3036
3037 static void invoke_rcu_core(void)
3038 {
3039 if (cpu_online(smp_processor_id()))
3040 raise_softirq(RCU_SOFTIRQ);
3041 }
3042
3043 /*
3044 * Handle any core-RCU processing required by a call_rcu() invocation.
3045 */
3046 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3047 struct rcu_head *head, unsigned long flags)
3048 {
3049 bool needwake;
3050
3051 /*
3052 * If called from an extended quiescent state, invoke the RCU
3053 * core in order to force a re-evaluation of RCU's idleness.
3054 */
3055 if (!rcu_is_watching())
3056 invoke_rcu_core();
3057
3058 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3059 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3060 return;
3061
3062 /*
3063 * Force the grace period if too many callbacks or too long waiting.
3064 * Enforce hysteresis, and don't invoke force_quiescent_state()
3065 * if some other CPU has recently done so. Also, don't bother
3066 * invoking force_quiescent_state() if the newly enqueued callback
3067 * is the only one waiting for a grace period to complete.
3068 */
3069 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3070 rdp->qlen_last_fqs_check + qhimark)) {
3071
3072 /* Are we ignoring a completed grace period? */
3073 note_gp_changes(rsp, rdp);
3074
3075 /* Start a new grace period if one not already started. */
3076 if (!rcu_gp_in_progress(rsp)) {
3077 struct rcu_node *rnp_root = rcu_get_root(rsp);
3078
3079 raw_spin_lock_rcu_node(rnp_root);
3080 needwake = rcu_start_gp(rsp);
3081 raw_spin_unlock_rcu_node(rnp_root);
3082 if (needwake)
3083 rcu_gp_kthread_wake(rsp);
3084 } else {
3085 /* Give the grace period a kick. */
3086 rdp->blimit = LONG_MAX;
3087 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3088 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3089 force_quiescent_state(rsp);
3090 rdp->n_force_qs_snap = rsp->n_force_qs;
3091 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3092 }
3093 }
3094 }
3095
3096 /*
3097 * RCU callback function to leak a callback.
3098 */
3099 static void rcu_leak_callback(struct rcu_head *rhp)
3100 {
3101 }
3102
3103 /*
3104 * Helper function for call_rcu() and friends. The cpu argument will
3105 * normally be -1, indicating "currently running CPU". It may specify
3106 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3107 * is expected to specify a CPU.
3108 */
3109 static void
3110 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3111 struct rcu_state *rsp, int cpu, bool lazy)
3112 {
3113 unsigned long flags;
3114 struct rcu_data *rdp;
3115
3116 /* Misaligned rcu_head! */
3117 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3118
3119 if (debug_rcu_head_queue(head)) {
3120 /*
3121 * Probable double call_rcu(), so leak the callback.
3122 * Use rcu:rcu_callback trace event to find the previous
3123 * time callback was passed to __call_rcu().
3124 */
3125 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3126 head, head->func);
3127 WRITE_ONCE(head->func, rcu_leak_callback);
3128 return;
3129 }
3130 head->func = func;
3131 head->next = NULL;
3132 local_irq_save(flags);
3133 rdp = this_cpu_ptr(rsp->rda);
3134
3135 /* Add the callback to our list. */
3136 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3137 int offline;
3138
3139 if (cpu != -1)
3140 rdp = per_cpu_ptr(rsp->rda, cpu);
3141 if (likely(rdp->mynode)) {
3142 /* Post-boot, so this should be for a no-CBs CPU. */
3143 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3144 WARN_ON_ONCE(offline);
3145 /* Offline CPU, _call_rcu() illegal, leak callback. */
3146 local_irq_restore(flags);
3147 return;
3148 }
3149 /*
3150 * Very early boot, before rcu_init(). Initialize if needed
3151 * and then drop through to queue the callback.
3152 */
3153 BUG_ON(cpu != -1);
3154 WARN_ON_ONCE(!rcu_is_watching());
3155 if (rcu_segcblist_empty(&rdp->cblist))
3156 rcu_segcblist_init(&rdp->cblist);
3157 }
3158 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3159 if (!lazy)
3160 rcu_idle_count_callbacks_posted();
3161
3162 if (__is_kfree_rcu_offset((unsigned long)func))
3163 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3164 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3165 rcu_segcblist_n_cbs(&rdp->cblist));
3166 else
3167 trace_rcu_callback(rsp->name, head,
3168 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3169 rcu_segcblist_n_cbs(&rdp->cblist));
3170
3171 /* Go handle any RCU core processing required. */
3172 __call_rcu_core(rsp, rdp, head, flags);
3173 local_irq_restore(flags);
3174 }
3175
3176 /**
3177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3178 * @head: structure to be used for queueing the RCU updates.
3179 * @func: actual callback function to be invoked after the grace period
3180 *
3181 * The callback function will be invoked some time after a full grace
3182 * period elapses, in other words after all currently executing RCU
3183 * read-side critical sections have completed. call_rcu_sched() assumes
3184 * that the read-side critical sections end on enabling of preemption
3185 * or on voluntary preemption.
3186 * RCU read-side critical sections are delimited by :
3187 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3188 * - anything that disables preemption.
3189 *
3190 * These may be nested.
3191 *
3192 * See the description of call_rcu() for more detailed information on
3193 * memory ordering guarantees.
3194 */
3195 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3196 {
3197 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3198 }
3199 EXPORT_SYMBOL_GPL(call_rcu_sched);
3200
3201 /**
3202 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3203 * @head: structure to be used for queueing the RCU updates.
3204 * @func: actual callback function to be invoked after the grace period
3205 *
3206 * The callback function will be invoked some time after a full grace
3207 * period elapses, in other words after all currently executing RCU
3208 * read-side critical sections have completed. call_rcu_bh() assumes
3209 * that the read-side critical sections end on completion of a softirq
3210 * handler. This means that read-side critical sections in process
3211 * context must not be interrupted by softirqs. This interface is to be
3212 * used when most of the read-side critical sections are in softirq context.
3213 * RCU read-side critical sections are delimited by :
3214 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
3215 * OR
3216 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3217 * These may be nested.
3218 *
3219 * See the description of call_rcu() for more detailed information on
3220 * memory ordering guarantees.
3221 */
3222 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3223 {
3224 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3225 }
3226 EXPORT_SYMBOL_GPL(call_rcu_bh);
3227
3228 /*
3229 * Queue an RCU callback for lazy invocation after a grace period.
3230 * This will likely be later named something like "call_rcu_lazy()",
3231 * but this change will require some way of tagging the lazy RCU
3232 * callbacks in the list of pending callbacks. Until then, this
3233 * function may only be called from __kfree_rcu().
3234 */
3235 void kfree_call_rcu(struct rcu_head *head,
3236 rcu_callback_t func)
3237 {
3238 __call_rcu(head, func, rcu_state_p, -1, 1);
3239 }
3240 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3241
3242 /*
3243 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3244 * any blocking grace-period wait automatically implies a grace period
3245 * if there is only one CPU online at any point time during execution
3246 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3247 * occasionally incorrectly indicate that there are multiple CPUs online
3248 * when there was in fact only one the whole time, as this just adds
3249 * some overhead: RCU still operates correctly.
3250 */
3251 static inline int rcu_blocking_is_gp(void)
3252 {
3253 int ret;
3254
3255 might_sleep(); /* Check for RCU read-side critical section. */
3256 preempt_disable();
3257 ret = num_online_cpus() <= 1;
3258 preempt_enable();
3259 return ret;
3260 }
3261
3262 /**
3263 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3264 *
3265 * Control will return to the caller some time after a full rcu-sched
3266 * grace period has elapsed, in other words after all currently executing
3267 * rcu-sched read-side critical sections have completed. These read-side
3268 * critical sections are delimited by rcu_read_lock_sched() and
3269 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3270 * local_irq_disable(), and so on may be used in place of
3271 * rcu_read_lock_sched().
3272 *
3273 * This means that all preempt_disable code sequences, including NMI and
3274 * non-threaded hardware-interrupt handlers, in progress on entry will
3275 * have completed before this primitive returns. However, this does not
3276 * guarantee that softirq handlers will have completed, since in some
3277 * kernels, these handlers can run in process context, and can block.
3278 *
3279 * Note that this guarantee implies further memory-ordering guarantees.
3280 * On systems with more than one CPU, when synchronize_sched() returns,
3281 * each CPU is guaranteed to have executed a full memory barrier since the
3282 * end of its last RCU-sched read-side critical section whose beginning
3283 * preceded the call to synchronize_sched(). In addition, each CPU having
3284 * an RCU read-side critical section that extends beyond the return from
3285 * synchronize_sched() is guaranteed to have executed a full memory barrier
3286 * after the beginning of synchronize_sched() and before the beginning of
3287 * that RCU read-side critical section. Note that these guarantees include
3288 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3289 * that are executing in the kernel.
3290 *
3291 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3292 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3293 * to have executed a full memory barrier during the execution of
3294 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3295 * again only if the system has more than one CPU).
3296 */
3297 void synchronize_sched(void)
3298 {
3299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3300 lock_is_held(&rcu_lock_map) ||
3301 lock_is_held(&rcu_sched_lock_map),
3302 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3303 if (rcu_blocking_is_gp())
3304 return;
3305 if (rcu_gp_is_expedited())
3306 synchronize_sched_expedited();
3307 else
3308 wait_rcu_gp(call_rcu_sched);
3309 }
3310 EXPORT_SYMBOL_GPL(synchronize_sched);
3311
3312 /**
3313 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3314 *
3315 * Control will return to the caller some time after a full rcu_bh grace
3316 * period has elapsed, in other words after all currently executing rcu_bh
3317 * read-side critical sections have completed. RCU read-side critical
3318 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3319 * and may be nested.
3320 *
3321 * See the description of synchronize_sched() for more detailed information
3322 * on memory ordering guarantees.
3323 */
3324 void synchronize_rcu_bh(void)
3325 {
3326 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3327 lock_is_held(&rcu_lock_map) ||
3328 lock_is_held(&rcu_sched_lock_map),
3329 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3330 if (rcu_blocking_is_gp())
3331 return;
3332 if (rcu_gp_is_expedited())
3333 synchronize_rcu_bh_expedited();
3334 else
3335 wait_rcu_gp(call_rcu_bh);
3336 }
3337 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3338
3339 /**
3340 * get_state_synchronize_rcu - Snapshot current RCU state
3341 *
3342 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3343 * to determine whether or not a full grace period has elapsed in the
3344 * meantime.
3345 */
3346 unsigned long get_state_synchronize_rcu(void)
3347 {
3348 /*
3349 * Any prior manipulation of RCU-protected data must happen
3350 * before the load from ->gpnum.
3351 */
3352 smp_mb(); /* ^^^ */
3353
3354 /*
3355 * Make sure this load happens before the purportedly
3356 * time-consuming work between get_state_synchronize_rcu()
3357 * and cond_synchronize_rcu().
3358 */
3359 return smp_load_acquire(&rcu_state_p->gpnum);
3360 }
3361 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3362
3363 /**
3364 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3365 *
3366 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3367 *
3368 * If a full RCU grace period has elapsed since the earlier call to
3369 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3370 * synchronize_rcu() to wait for a full grace period.
3371 *
3372 * Yes, this function does not take counter wrap into account. But
3373 * counter wrap is harmless. If the counter wraps, we have waited for
3374 * more than 2 billion grace periods (and way more on a 64-bit system!),
3375 * so waiting for one additional grace period should be just fine.
3376 */
3377 void cond_synchronize_rcu(unsigned long oldstate)
3378 {
3379 unsigned long newstate;
3380
3381 /*
3382 * Ensure that this load happens before any RCU-destructive
3383 * actions the caller might carry out after we return.
3384 */
3385 newstate = smp_load_acquire(&rcu_state_p->completed);
3386 if (ULONG_CMP_GE(oldstate, newstate))
3387 synchronize_rcu();
3388 }
3389 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3390
3391 /**
3392 * get_state_synchronize_sched - Snapshot current RCU-sched state
3393 *
3394 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3395 * to determine whether or not a full grace period has elapsed in the
3396 * meantime.
3397 */
3398 unsigned long get_state_synchronize_sched(void)
3399 {
3400 /*
3401 * Any prior manipulation of RCU-protected data must happen
3402 * before the load from ->gpnum.
3403 */
3404 smp_mb(); /* ^^^ */
3405
3406 /*
3407 * Make sure this load happens before the purportedly
3408 * time-consuming work between get_state_synchronize_sched()
3409 * and cond_synchronize_sched().
3410 */
3411 return smp_load_acquire(&rcu_sched_state.gpnum);
3412 }
3413 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3414
3415 /**
3416 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3417 *
3418 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3419 *
3420 * If a full RCU-sched grace period has elapsed since the earlier call to
3421 * get_state_synchronize_sched(), just return. Otherwise, invoke
3422 * synchronize_sched() to wait for a full grace period.
3423 *
3424 * Yes, this function does not take counter wrap into account. But
3425 * counter wrap is harmless. If the counter wraps, we have waited for
3426 * more than 2 billion grace periods (and way more on a 64-bit system!),
3427 * so waiting for one additional grace period should be just fine.
3428 */
3429 void cond_synchronize_sched(unsigned long oldstate)
3430 {
3431 unsigned long newstate;
3432
3433 /*
3434 * Ensure that this load happens before any RCU-destructive
3435 * actions the caller might carry out after we return.
3436 */
3437 newstate = smp_load_acquire(&rcu_sched_state.completed);
3438 if (ULONG_CMP_GE(oldstate, newstate))
3439 synchronize_sched();
3440 }
3441 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3442
3443 /*
3444 * Check to see if there is any immediate RCU-related work to be done
3445 * by the current CPU, for the specified type of RCU, returning 1 if so.
3446 * The checks are in order of increasing expense: checks that can be
3447 * carried out against CPU-local state are performed first. However,
3448 * we must check for CPU stalls first, else we might not get a chance.
3449 */
3450 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3451 {
3452 struct rcu_node *rnp = rdp->mynode;
3453
3454 rdp->n_rcu_pending++;
3455
3456 /* Check for CPU stalls, if enabled. */
3457 check_cpu_stall(rsp, rdp);
3458
3459 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3460 if (rcu_nohz_full_cpu(rsp))
3461 return 0;
3462
3463 /* Is the RCU core waiting for a quiescent state from this CPU? */
3464 if (rcu_scheduler_fully_active &&
3465 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3466 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3467 rdp->n_rp_core_needs_qs++;
3468 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3469 rdp->n_rp_report_qs++;
3470 return 1;
3471 }
3472
3473 /* Does this CPU have callbacks ready to invoke? */
3474 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3475 rdp->n_rp_cb_ready++;
3476 return 1;
3477 }
3478
3479 /* Has RCU gone idle with this CPU needing another grace period? */
3480 if (cpu_needs_another_gp(rsp, rdp)) {
3481 rdp->n_rp_cpu_needs_gp++;
3482 return 1;
3483 }
3484
3485 /* Has another RCU grace period completed? */
3486 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3487 rdp->n_rp_gp_completed++;
3488 return 1;
3489 }
3490
3491 /* Has a new RCU grace period started? */
3492 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3493 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3494 rdp->n_rp_gp_started++;
3495 return 1;
3496 }
3497
3498 /* Does this CPU need a deferred NOCB wakeup? */
3499 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3500 rdp->n_rp_nocb_defer_wakeup++;
3501 return 1;
3502 }
3503
3504 /* nothing to do */
3505 rdp->n_rp_need_nothing++;
3506 return 0;
3507 }
3508
3509 /*
3510 * Check to see if there is any immediate RCU-related work to be done
3511 * by the current CPU, returning 1 if so. This function is part of the
3512 * RCU implementation; it is -not- an exported member of the RCU API.
3513 */
3514 static int rcu_pending(void)
3515 {
3516 struct rcu_state *rsp;
3517
3518 for_each_rcu_flavor(rsp)
3519 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3520 return 1;
3521 return 0;
3522 }
3523
3524 /*
3525 * Return true if the specified CPU has any callback. If all_lazy is
3526 * non-NULL, store an indication of whether all callbacks are lazy.
3527 * (If there are no callbacks, all of them are deemed to be lazy.)
3528 */
3529 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3530 {
3531 bool al = true;
3532 bool hc = false;
3533 struct rcu_data *rdp;
3534 struct rcu_state *rsp;
3535
3536 for_each_rcu_flavor(rsp) {
3537 rdp = this_cpu_ptr(rsp->rda);
3538 if (rcu_segcblist_empty(&rdp->cblist))
3539 continue;
3540 hc = true;
3541 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3542 al = false;
3543 break;
3544 }
3545 }
3546 if (all_lazy)
3547 *all_lazy = al;
3548 return hc;
3549 }
3550
3551 /*
3552 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3553 * the compiler is expected to optimize this away.
3554 */
3555 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3556 int cpu, unsigned long done)
3557 {
3558 trace_rcu_barrier(rsp->name, s, cpu,
3559 atomic_read(&rsp->barrier_cpu_count), done);
3560 }
3561
3562 /*
3563 * RCU callback function for _rcu_barrier(). If we are last, wake
3564 * up the task executing _rcu_barrier().
3565 */
3566 static void rcu_barrier_callback(struct rcu_head *rhp)
3567 {
3568 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3569 struct rcu_state *rsp = rdp->rsp;
3570
3571 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3572 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3573 complete(&rsp->barrier_completion);
3574 } else {
3575 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3576 }
3577 }
3578
3579 /*
3580 * Called with preemption disabled, and from cross-cpu IRQ context.
3581 */
3582 static void rcu_barrier_func(void *type)
3583 {
3584 struct rcu_state *rsp = type;
3585 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3586
3587 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3588 rdp->barrier_head.func = rcu_barrier_callback;
3589 debug_rcu_head_queue(&rdp->barrier_head);
3590 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3591 atomic_inc(&rsp->barrier_cpu_count);
3592 } else {
3593 debug_rcu_head_unqueue(&rdp->barrier_head);
3594 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3595 }
3596 }
3597
3598 /*
3599 * Orchestrate the specified type of RCU barrier, waiting for all
3600 * RCU callbacks of the specified type to complete.
3601 */
3602 static void _rcu_barrier(struct rcu_state *rsp)
3603 {
3604 int cpu;
3605 struct rcu_data *rdp;
3606 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3607
3608 _rcu_barrier_trace(rsp, "Begin", -1, s);
3609
3610 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3611 mutex_lock(&rsp->barrier_mutex);
3612
3613 /* Did someone else do our work for us? */
3614 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3615 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3616 smp_mb(); /* caller's subsequent code after above check. */
3617 mutex_unlock(&rsp->barrier_mutex);
3618 return;
3619 }
3620
3621 /* Mark the start of the barrier operation. */
3622 rcu_seq_start(&rsp->barrier_sequence);
3623 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3624
3625 /*
3626 * Initialize the count to one rather than to zero in order to
3627 * avoid a too-soon return to zero in case of a short grace period
3628 * (or preemption of this task). Exclude CPU-hotplug operations
3629 * to ensure that no offline CPU has callbacks queued.
3630 */
3631 init_completion(&rsp->barrier_completion);
3632 atomic_set(&rsp->barrier_cpu_count, 1);
3633 get_online_cpus();
3634
3635 /*
3636 * Force each CPU with callbacks to register a new callback.
3637 * When that callback is invoked, we will know that all of the
3638 * corresponding CPU's preceding callbacks have been invoked.
3639 */
3640 for_each_possible_cpu(cpu) {
3641 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3642 continue;
3643 rdp = per_cpu_ptr(rsp->rda, cpu);
3644 if (rcu_is_nocb_cpu(cpu)) {
3645 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3646 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3647 rsp->barrier_sequence);
3648 } else {
3649 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3650 rsp->barrier_sequence);
3651 smp_mb__before_atomic();
3652 atomic_inc(&rsp->barrier_cpu_count);
3653 __call_rcu(&rdp->barrier_head,
3654 rcu_barrier_callback, rsp, cpu, 0);
3655 }
3656 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3657 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3658 rsp->barrier_sequence);
3659 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3660 } else {
3661 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3662 rsp->barrier_sequence);
3663 }
3664 }
3665 put_online_cpus();
3666
3667 /*
3668 * Now that we have an rcu_barrier_callback() callback on each
3669 * CPU, and thus each counted, remove the initial count.
3670 */
3671 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3672 complete(&rsp->barrier_completion);
3673
3674 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3675 wait_for_completion(&rsp->barrier_completion);
3676
3677 /* Mark the end of the barrier operation. */
3678 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3679 rcu_seq_end(&rsp->barrier_sequence);
3680
3681 /* Other rcu_barrier() invocations can now safely proceed. */
3682 mutex_unlock(&rsp->barrier_mutex);
3683 }
3684
3685 /**
3686 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3687 */
3688 void rcu_barrier_bh(void)
3689 {
3690 _rcu_barrier(&rcu_bh_state);
3691 }
3692 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3693
3694 /**
3695 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3696 */
3697 void rcu_barrier_sched(void)
3698 {
3699 _rcu_barrier(&rcu_sched_state);
3700 }
3701 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3702
3703 /*
3704 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3705 * first CPU in a given leaf rcu_node structure coming online. The caller
3706 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3707 * disabled.
3708 */
3709 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3710 {
3711 long mask;
3712 struct rcu_node *rnp = rnp_leaf;
3713
3714 lockdep_assert_held(&rnp->lock);
3715 for (;;) {
3716 mask = rnp->grpmask;
3717 rnp = rnp->parent;
3718 if (rnp == NULL)
3719 return;
3720 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3721 rnp->qsmaskinit |= mask;
3722 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3723 }
3724 }
3725
3726 /*
3727 * Do boot-time initialization of a CPU's per-CPU RCU data.
3728 */
3729 static void __init
3730 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3731 {
3732 unsigned long flags;
3733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3734 struct rcu_node *rnp = rcu_get_root(rsp);
3735
3736 /* Set up local state, ensuring consistent view of global state. */
3737 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3738 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3739 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3740 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3741 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3742 rdp->cpu = cpu;
3743 rdp->rsp = rsp;
3744 rcu_boot_init_nocb_percpu_data(rdp);
3745 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3746 }
3747
3748 /*
3749 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3750 * offline event can be happening at a given time. Note also that we
3751 * can accept some slop in the rsp->completed access due to the fact
3752 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3753 */
3754 static void
3755 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3756 {
3757 unsigned long flags;
3758 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3759 struct rcu_node *rnp = rcu_get_root(rsp);
3760
3761 /* Set up local state, ensuring consistent view of global state. */
3762 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3763 rdp->qlen_last_fqs_check = 0;
3764 rdp->n_force_qs_snap = rsp->n_force_qs;
3765 rdp->blimit = blimit;
3766 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3767 !init_nocb_callback_list(rdp))
3768 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3769 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3770 rcu_dynticks_eqs_online();
3771 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3772
3773 /*
3774 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3775 * propagation up the rcu_node tree will happen at the beginning
3776 * of the next grace period.
3777 */
3778 rnp = rdp->mynode;
3779 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3780 if (!rdp->beenonline)
3781 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3782 rdp->beenonline = true; /* We have now been online. */
3783 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3784 rdp->completed = rnp->completed;
3785 rdp->cpu_no_qs.b.norm = true;
3786 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3787 rdp->core_needs_qs = false;
3788 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3789 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3790 }
3791
3792 /*
3793 * Invoked early in the CPU-online process, when pretty much all
3794 * services are available. The incoming CPU is not present.
3795 */
3796 int rcutree_prepare_cpu(unsigned int cpu)
3797 {
3798 struct rcu_state *rsp;
3799
3800 for_each_rcu_flavor(rsp)
3801 rcu_init_percpu_data(cpu, rsp);
3802
3803 rcu_prepare_kthreads(cpu);
3804 rcu_spawn_all_nocb_kthreads(cpu);
3805
3806 return 0;
3807 }
3808
3809 /*
3810 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3811 */
3812 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3813 {
3814 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3815
3816 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3817 }
3818
3819 /*
3820 * Near the end of the CPU-online process. Pretty much all services
3821 * enabled, and the CPU is now very much alive.
3822 */
3823 int rcutree_online_cpu(unsigned int cpu)
3824 {
3825 sync_sched_exp_online_cleanup(cpu);
3826 rcutree_affinity_setting(cpu, -1);
3827 if (IS_ENABLED(CONFIG_TREE_SRCU))
3828 srcu_online_cpu(cpu);
3829 return 0;
3830 }
3831
3832 /*
3833 * Near the beginning of the process. The CPU is still very much alive
3834 * with pretty much all services enabled.
3835 */
3836 int rcutree_offline_cpu(unsigned int cpu)
3837 {
3838 rcutree_affinity_setting(cpu, cpu);
3839 if (IS_ENABLED(CONFIG_TREE_SRCU))
3840 srcu_offline_cpu(cpu);
3841 return 0;
3842 }
3843
3844 /*
3845 * Near the end of the offline process. We do only tracing here.
3846 */
3847 int rcutree_dying_cpu(unsigned int cpu)
3848 {
3849 struct rcu_state *rsp;
3850
3851 for_each_rcu_flavor(rsp)
3852 rcu_cleanup_dying_cpu(rsp);
3853 return 0;
3854 }
3855
3856 /*
3857 * The outgoing CPU is gone and we are running elsewhere.
3858 */
3859 int rcutree_dead_cpu(unsigned int cpu)
3860 {
3861 struct rcu_state *rsp;
3862
3863 for_each_rcu_flavor(rsp) {
3864 rcu_cleanup_dead_cpu(cpu, rsp);
3865 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3866 }
3867 return 0;
3868 }
3869
3870 /*
3871 * Mark the specified CPU as being online so that subsequent grace periods
3872 * (both expedited and normal) will wait on it. Note that this means that
3873 * incoming CPUs are not allowed to use RCU read-side critical sections
3874 * until this function is called. Failing to observe this restriction
3875 * will result in lockdep splats.
3876 *
3877 * Note that this function is special in that it is invoked directly
3878 * from the incoming CPU rather than from the cpuhp_step mechanism.
3879 * This is because this function must be invoked at a precise location.
3880 */
3881 void rcu_cpu_starting(unsigned int cpu)
3882 {
3883 unsigned long flags;
3884 unsigned long mask;
3885 struct rcu_data *rdp;
3886 struct rcu_node *rnp;
3887 struct rcu_state *rsp;
3888
3889 for_each_rcu_flavor(rsp) {
3890 rdp = per_cpu_ptr(rsp->rda, cpu);
3891 rnp = rdp->mynode;
3892 mask = rdp->grpmask;
3893 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894 rnp->qsmaskinitnext |= mask;
3895 rnp->expmaskinitnext |= mask;
3896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897 }
3898 }
3899
3900 #ifdef CONFIG_HOTPLUG_CPU
3901 /*
3902 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3903 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3904 * bit masks.
3905 */
3906 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3907 {
3908 unsigned long flags;
3909 unsigned long mask;
3910 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3911 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3912
3913 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3914 mask = rdp->grpmask;
3915 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3916 rnp->qsmaskinitnext &= ~mask;
3917 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3918 }
3919
3920 /*
3921 * The outgoing function has no further need of RCU, so remove it from
3922 * the list of CPUs that RCU must track.
3923 *
3924 * Note that this function is special in that it is invoked directly
3925 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3926 * This is because this function must be invoked at a precise location.
3927 */
3928 void rcu_report_dead(unsigned int cpu)
3929 {
3930 struct rcu_state *rsp;
3931
3932 /* QS for any half-done expedited RCU-sched GP. */
3933 preempt_disable();
3934 rcu_report_exp_rdp(&rcu_sched_state,
3935 this_cpu_ptr(rcu_sched_state.rda), true);
3936 preempt_enable();
3937 for_each_rcu_flavor(rsp)
3938 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3939 }
3940 #endif
3941
3942 /*
3943 * On non-huge systems, use expedited RCU grace periods to make suspend
3944 * and hibernation run faster.
3945 */
3946 static int rcu_pm_notify(struct notifier_block *self,
3947 unsigned long action, void *hcpu)
3948 {
3949 switch (action) {
3950 case PM_HIBERNATION_PREPARE:
3951 case PM_SUSPEND_PREPARE:
3952 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3953 rcu_expedite_gp();
3954 break;
3955 case PM_POST_HIBERNATION:
3956 case PM_POST_SUSPEND:
3957 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3958 rcu_unexpedite_gp();
3959 break;
3960 default:
3961 break;
3962 }
3963 return NOTIFY_OK;
3964 }
3965
3966 /*
3967 * Spawn the kthreads that handle each RCU flavor's grace periods.
3968 */
3969 static int __init rcu_spawn_gp_kthread(void)
3970 {
3971 unsigned long flags;
3972 int kthread_prio_in = kthread_prio;
3973 struct rcu_node *rnp;
3974 struct rcu_state *rsp;
3975 struct sched_param sp;
3976 struct task_struct *t;
3977
3978 /* Force priority into range. */
3979 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3980 kthread_prio = 1;
3981 else if (kthread_prio < 0)
3982 kthread_prio = 0;
3983 else if (kthread_prio > 99)
3984 kthread_prio = 99;
3985 if (kthread_prio != kthread_prio_in)
3986 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3987 kthread_prio, kthread_prio_in);
3988
3989 rcu_scheduler_fully_active = 1;
3990 for_each_rcu_flavor(rsp) {
3991 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3992 BUG_ON(IS_ERR(t));
3993 rnp = rcu_get_root(rsp);
3994 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3995 rsp->gp_kthread = t;
3996 if (kthread_prio) {
3997 sp.sched_priority = kthread_prio;
3998 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3999 }
4000 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4001 wake_up_process(t);
4002 }
4003 rcu_spawn_nocb_kthreads();
4004 rcu_spawn_boost_kthreads();
4005 return 0;
4006 }
4007 early_initcall(rcu_spawn_gp_kthread);
4008
4009 /*
4010 * This function is invoked towards the end of the scheduler's
4011 * initialization process. Before this is called, the idle task might
4012 * contain synchronous grace-period primitives (during which time, this idle
4013 * task is booting the system, and such primitives are no-ops). After this
4014 * function is called, any synchronous grace-period primitives are run as
4015 * expedited, with the requesting task driving the grace period forward.
4016 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4017 * runtime RCU functionality.
4018 */
4019 void rcu_scheduler_starting(void)
4020 {
4021 WARN_ON(num_online_cpus() != 1);
4022 WARN_ON(nr_context_switches() > 0);
4023 rcu_test_sync_prims();
4024 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4025 rcu_test_sync_prims();
4026 }
4027
4028 /*
4029 * Helper function for rcu_init() that initializes one rcu_state structure.
4030 */
4031 static void __init rcu_init_one(struct rcu_state *rsp)
4032 {
4033 static const char * const buf[] = RCU_NODE_NAME_INIT;
4034 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4035 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4036 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4037
4038 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4039 int cpustride = 1;
4040 int i;
4041 int j;
4042 struct rcu_node *rnp;
4043
4044 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4045
4046 /* Silence gcc 4.8 false positive about array index out of range. */
4047 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4048 panic("rcu_init_one: rcu_num_lvls out of range");
4049
4050 /* Initialize the level-tracking arrays. */
4051
4052 for (i = 1; i < rcu_num_lvls; i++)
4053 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4054 rcu_init_levelspread(levelspread, num_rcu_lvl);
4055
4056 /* Initialize the elements themselves, starting from the leaves. */
4057
4058 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4059 cpustride *= levelspread[i];
4060 rnp = rsp->level[i];
4061 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4062 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4063 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4064 &rcu_node_class[i], buf[i]);
4065 raw_spin_lock_init(&rnp->fqslock);
4066 lockdep_set_class_and_name(&rnp->fqslock,
4067 &rcu_fqs_class[i], fqs[i]);
4068 rnp->gpnum = rsp->gpnum;
4069 rnp->completed = rsp->completed;
4070 rnp->qsmask = 0;
4071 rnp->qsmaskinit = 0;
4072 rnp->grplo = j * cpustride;
4073 rnp->grphi = (j + 1) * cpustride - 1;
4074 if (rnp->grphi >= nr_cpu_ids)
4075 rnp->grphi = nr_cpu_ids - 1;
4076 if (i == 0) {
4077 rnp->grpnum = 0;
4078 rnp->grpmask = 0;
4079 rnp->parent = NULL;
4080 } else {
4081 rnp->grpnum = j % levelspread[i - 1];
4082 rnp->grpmask = 1UL << rnp->grpnum;
4083 rnp->parent = rsp->level[i - 1] +
4084 j / levelspread[i - 1];
4085 }
4086 rnp->level = i;
4087 INIT_LIST_HEAD(&rnp->blkd_tasks);
4088 rcu_init_one_nocb(rnp);
4089 init_waitqueue_head(&rnp->exp_wq[0]);
4090 init_waitqueue_head(&rnp->exp_wq[1]);
4091 init_waitqueue_head(&rnp->exp_wq[2]);
4092 init_waitqueue_head(&rnp->exp_wq[3]);
4093 spin_lock_init(&rnp->exp_lock);
4094 }
4095 }
4096
4097 init_swait_queue_head(&rsp->gp_wq);
4098 init_swait_queue_head(&rsp->expedited_wq);
4099 rnp = rsp->level[rcu_num_lvls - 1];
4100 for_each_possible_cpu(i) {
4101 while (i > rnp->grphi)
4102 rnp++;
4103 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4104 rcu_boot_init_percpu_data(i, rsp);
4105 }
4106 list_add(&rsp->flavors, &rcu_struct_flavors);
4107 }
4108
4109 /*
4110 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4111 * replace the definitions in tree.h because those are needed to size
4112 * the ->node array in the rcu_state structure.
4113 */
4114 static void __init rcu_init_geometry(void)
4115 {
4116 ulong d;
4117 int i;
4118 int rcu_capacity[RCU_NUM_LVLS];
4119
4120 /*
4121 * Initialize any unspecified boot parameters.
4122 * The default values of jiffies_till_first_fqs and
4123 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4124 * value, which is a function of HZ, then adding one for each
4125 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4126 */
4127 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4128 if (jiffies_till_first_fqs == ULONG_MAX)
4129 jiffies_till_first_fqs = d;
4130 if (jiffies_till_next_fqs == ULONG_MAX)
4131 jiffies_till_next_fqs = d;
4132
4133 /* If the compile-time values are accurate, just leave. */
4134 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4135 nr_cpu_ids == NR_CPUS)
4136 return;
4137 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4138 rcu_fanout_leaf, nr_cpu_ids);
4139
4140 /*
4141 * The boot-time rcu_fanout_leaf parameter must be at least two
4142 * and cannot exceed the number of bits in the rcu_node masks.
4143 * Complain and fall back to the compile-time values if this
4144 * limit is exceeded.
4145 */
4146 if (rcu_fanout_leaf < 2 ||
4147 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4148 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4149 WARN_ON(1);
4150 return;
4151 }
4152
4153 /*
4154 * Compute number of nodes that can be handled an rcu_node tree
4155 * with the given number of levels.
4156 */
4157 rcu_capacity[0] = rcu_fanout_leaf;
4158 for (i = 1; i < RCU_NUM_LVLS; i++)
4159 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4160
4161 /*
4162 * The tree must be able to accommodate the configured number of CPUs.
4163 * If this limit is exceeded, fall back to the compile-time values.
4164 */
4165 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4166 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4167 WARN_ON(1);
4168 return;
4169 }
4170
4171 /* Calculate the number of levels in the tree. */
4172 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4173 }
4174 rcu_num_lvls = i + 1;
4175
4176 /* Calculate the number of rcu_nodes at each level of the tree. */
4177 for (i = 0; i < rcu_num_lvls; i++) {
4178 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4179 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4180 }
4181
4182 /* Calculate the total number of rcu_node structures. */
4183 rcu_num_nodes = 0;
4184 for (i = 0; i < rcu_num_lvls; i++)
4185 rcu_num_nodes += num_rcu_lvl[i];
4186 }
4187
4188 /*
4189 * Dump out the structure of the rcu_node combining tree associated
4190 * with the rcu_state structure referenced by rsp.
4191 */
4192 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4193 {
4194 int level = 0;
4195 struct rcu_node *rnp;
4196
4197 pr_info("rcu_node tree layout dump\n");
4198 pr_info(" ");
4199 rcu_for_each_node_breadth_first(rsp, rnp) {
4200 if (rnp->level != level) {
4201 pr_cont("\n");
4202 pr_info(" ");
4203 level = rnp->level;
4204 }
4205 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4206 }
4207 pr_cont("\n");
4208 }
4209
4210 void __init rcu_init(void)
4211 {
4212 int cpu;
4213
4214 rcu_early_boot_tests();
4215
4216 rcu_bootup_announce();
4217 rcu_init_geometry();
4218 rcu_init_one(&rcu_bh_state);
4219 rcu_init_one(&rcu_sched_state);
4220 if (dump_tree)
4221 rcu_dump_rcu_node_tree(&rcu_sched_state);
4222 __rcu_init_preempt();
4223 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4224
4225 /*
4226 * We don't need protection against CPU-hotplug here because
4227 * this is called early in boot, before either interrupts
4228 * or the scheduler are operational.
4229 */
4230 pm_notifier(rcu_pm_notify, 0);
4231 for_each_online_cpu(cpu) {
4232 rcutree_prepare_cpu(cpu);
4233 rcu_cpu_starting(cpu);
4234 if (IS_ENABLED(CONFIG_TREE_SRCU))
4235 srcu_online_cpu(cpu);
4236 }
4237 }
4238
4239 #include "tree_exp.h"
4240 #include "tree_plugin.h"