]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcu/tree.c
rcu: Allow for page faults in NMI handlers
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 /* Data structures. */
71
72 /*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
96 .call = cr, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 .name = RCU_STATE_NAME(sname), \
105 .abbr = sabbr, \
106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131
132 /*
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
137 * optimize synchronize_rcu() to a simple barrier(). When this variable
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
143 */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
147 /*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159 static int rcu_scheduler_fully_active __read_mostly;
160
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 static void invoke_rcu_core(void);
165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
168 static void sync_sched_exp_online_cleanup(int cpu);
169
170 /* rcuc/rcub kthread realtime priority */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 module_param(kthread_prio, int, 0644);
173
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
175
176 static int gp_preinit_delay;
177 module_param(gp_preinit_delay, int, 0444);
178 static int gp_init_delay;
179 module_param(gp_init_delay, int, 0444);
180 static int gp_cleanup_delay;
181 module_param(gp_cleanup_delay, int, 0444);
182
183 /*
184 * Number of grace periods between delays, normalized by the duration of
185 * the delay. The longer the delay, the more the grace periods between
186 * each delay. The reason for this normalization is that it means that,
187 * for non-zero delays, the overall slowdown of grace periods is constant
188 * regardless of the duration of the delay. This arrangement balances
189 * the need for long delays to increase some race probabilities with the
190 * need for fast grace periods to increase other race probabilities.
191 */
192 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
193
194 /*
195 * Track the rcutorture test sequence number and the update version
196 * number within a given test. The rcutorture_testseq is incremented
197 * on every rcutorture module load and unload, so has an odd value
198 * when a test is running. The rcutorture_vernum is set to zero
199 * when rcutorture starts and is incremented on each rcutorture update.
200 * These variables enable correlating rcutorture output with the
201 * RCU tracing information.
202 */
203 unsigned long rcutorture_testseq;
204 unsigned long rcutorture_vernum;
205
206 /*
207 * Compute the mask of online CPUs for the specified rcu_node structure.
208 * This will not be stable unless the rcu_node structure's ->lock is
209 * held, but the bit corresponding to the current CPU will be stable
210 * in most contexts.
211 */
212 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
213 {
214 return READ_ONCE(rnp->qsmaskinitnext);
215 }
216
217 /*
218 * Return true if an RCU grace period is in progress. The READ_ONCE()s
219 * permit this function to be invoked without holding the root rcu_node
220 * structure's ->lock, but of course results can be subject to change.
221 */
222 static int rcu_gp_in_progress(struct rcu_state *rsp)
223 {
224 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
225 }
226
227 /*
228 * Note a quiescent state. Because we do not need to know
229 * how many quiescent states passed, just if there was at least
230 * one since the start of the grace period, this just sets a flag.
231 * The caller must have disabled preemption.
232 */
233 void rcu_sched_qs(void)
234 {
235 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
236 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
237 return;
238 trace_rcu_grace_period(TPS("rcu_sched"),
239 __this_cpu_read(rcu_sched_data.gpnum),
240 TPS("cpuqs"));
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
242 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
243 return;
244 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
245 rcu_report_exp_rdp(&rcu_sched_state,
246 this_cpu_ptr(&rcu_sched_data), true);
247 }
248
249 void rcu_bh_qs(void)
250 {
251 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
252 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
253 trace_rcu_grace_period(TPS("rcu_bh"),
254 __this_cpu_read(rcu_bh_data.gpnum),
255 TPS("cpuqs"));
256 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
257 }
258 }
259
260 /*
261 * Steal a bit from the bottom of ->dynticks for idle entry/exit
262 * control. Initially this is for TLB flushing.
263 */
264 #define RCU_DYNTICK_CTRL_MASK 0x1
265 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
266 #ifndef rcu_eqs_special_exit
267 #define rcu_eqs_special_exit() do { } while (0)
268 #endif
269
270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
272 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
273 };
274
275 /*
276 * There's a few places, currently just in the tracing infrastructure,
277 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
278 * a small location where that will not even work. In those cases
279 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
280 * can be called.
281 */
282 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
283
284 bool rcu_irq_enter_disabled(void)
285 {
286 return this_cpu_read(disable_rcu_irq_enter);
287 }
288
289 /*
290 * Record entry into an extended quiescent state. This is only to be
291 * called when not already in an extended quiescent state.
292 */
293 static void rcu_dynticks_eqs_enter(void)
294 {
295 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
296 int seq;
297
298 /*
299 * CPUs seeing atomic_add_return() must see prior RCU read-side
300 * critical sections, and we also must force ordering with the
301 * next idle sojourn.
302 */
303 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
304 /* Better be in an extended quiescent state! */
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 (seq & RCU_DYNTICK_CTRL_CTR));
307 /* Better not have special action (TLB flush) pending! */
308 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
309 (seq & RCU_DYNTICK_CTRL_MASK));
310 }
311
312 /*
313 * Record exit from an extended quiescent state. This is only to be
314 * called from an extended quiescent state.
315 */
316 static void rcu_dynticks_eqs_exit(void)
317 {
318 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
319 int seq;
320
321 /*
322 * CPUs seeing atomic_add_return() must see prior idle sojourns,
323 * and we also must force ordering with the next RCU read-side
324 * critical section.
325 */
326 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 !(seq & RCU_DYNTICK_CTRL_CTR));
329 if (seq & RCU_DYNTICK_CTRL_MASK) {
330 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
331 smp_mb__after_atomic(); /* _exit after clearing mask. */
332 /* Prefer duplicate flushes to losing a flush. */
333 rcu_eqs_special_exit();
334 }
335 }
336
337 /*
338 * Reset the current CPU's ->dynticks counter to indicate that the
339 * newly onlined CPU is no longer in an extended quiescent state.
340 * This will either leave the counter unchanged, or increment it
341 * to the next non-quiescent value.
342 *
343 * The non-atomic test/increment sequence works because the upper bits
344 * of the ->dynticks counter are manipulated only by the corresponding CPU,
345 * or when the corresponding CPU is offline.
346 */
347 static void rcu_dynticks_eqs_online(void)
348 {
349 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350
351 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
352 return;
353 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
354 }
355
356 /*
357 * Is the current CPU in an extended quiescent state?
358 *
359 * No ordering, as we are sampling CPU-local information.
360 */
361 bool rcu_dynticks_curr_cpu_in_eqs(void)
362 {
363 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
364
365 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
366 }
367
368 /*
369 * Snapshot the ->dynticks counter with full ordering so as to allow
370 * stable comparison of this counter with past and future snapshots.
371 */
372 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
373 {
374 int snap = atomic_add_return(0, &rdtp->dynticks);
375
376 return snap & ~RCU_DYNTICK_CTRL_MASK;
377 }
378
379 /*
380 * Return true if the snapshot returned from rcu_dynticks_snap()
381 * indicates that RCU is in an extended quiescent state.
382 */
383 static bool rcu_dynticks_in_eqs(int snap)
384 {
385 return !(snap & RCU_DYNTICK_CTRL_CTR);
386 }
387
388 /*
389 * Return true if the CPU corresponding to the specified rcu_dynticks
390 * structure has spent some time in an extended quiescent state since
391 * rcu_dynticks_snap() returned the specified snapshot.
392 */
393 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
394 {
395 return snap != rcu_dynticks_snap(rdtp);
396 }
397
398 /*
399 * Do a double-increment of the ->dynticks counter to emulate a
400 * momentary idle-CPU quiescent state.
401 */
402 static void rcu_dynticks_momentary_idle(void)
403 {
404 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
405 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
406 &rdtp->dynticks);
407
408 /* It is illegal to call this from idle state. */
409 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
410 }
411
412 /*
413 * Set the special (bottom) bit of the specified CPU so that it
414 * will take special action (such as flushing its TLB) on the
415 * next exit from an extended quiescent state. Returns true if
416 * the bit was successfully set, or false if the CPU was not in
417 * an extended quiescent state.
418 */
419 bool rcu_eqs_special_set(int cpu)
420 {
421 int old;
422 int new;
423 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
424
425 do {
426 old = atomic_read(&rdtp->dynticks);
427 if (old & RCU_DYNTICK_CTRL_CTR)
428 return false;
429 new = old | RCU_DYNTICK_CTRL_MASK;
430 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
431 return true;
432 }
433
434 /*
435 * Let the RCU core know that this CPU has gone through the scheduler,
436 * which is a quiescent state. This is called when the need for a
437 * quiescent state is urgent, so we burn an atomic operation and full
438 * memory barriers to let the RCU core know about it, regardless of what
439 * this CPU might (or might not) do in the near future.
440 *
441 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
442 *
443 * The caller must have disabled interrupts.
444 */
445 static void rcu_momentary_dyntick_idle(void)
446 {
447 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
448 rcu_dynticks_momentary_idle();
449 }
450
451 /*
452 * Note a context switch. This is a quiescent state for RCU-sched,
453 * and requires special handling for preemptible RCU.
454 * The caller must have disabled interrupts.
455 */
456 void rcu_note_context_switch(bool preempt)
457 {
458 barrier(); /* Avoid RCU read-side critical sections leaking down. */
459 trace_rcu_utilization(TPS("Start context switch"));
460 rcu_sched_qs();
461 rcu_preempt_note_context_switch(preempt);
462 /* Load rcu_urgent_qs before other flags. */
463 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
464 goto out;
465 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
466 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
467 rcu_momentary_dyntick_idle();
468 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
469 if (!preempt)
470 rcu_note_voluntary_context_switch_lite(current);
471 out:
472 trace_rcu_utilization(TPS("End context switch"));
473 barrier(); /* Avoid RCU read-side critical sections leaking up. */
474 }
475 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
476
477 /*
478 * Register a quiescent state for all RCU flavors. If there is an
479 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
480 * dyntick-idle quiescent state visible to other CPUs (but only for those
481 * RCU flavors in desperate need of a quiescent state, which will normally
482 * be none of them). Either way, do a lightweight quiescent state for
483 * all RCU flavors.
484 *
485 * The barrier() calls are redundant in the common case when this is
486 * called externally, but just in case this is called from within this
487 * file.
488 *
489 */
490 void rcu_all_qs(void)
491 {
492 unsigned long flags;
493
494 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
495 return;
496 preempt_disable();
497 /* Load rcu_urgent_qs before other flags. */
498 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
499 preempt_enable();
500 return;
501 }
502 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
503 barrier(); /* Avoid RCU read-side critical sections leaking down. */
504 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
505 local_irq_save(flags);
506 rcu_momentary_dyntick_idle();
507 local_irq_restore(flags);
508 }
509 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
510 rcu_sched_qs();
511 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
512 barrier(); /* Avoid RCU read-side critical sections leaking up. */
513 preempt_enable();
514 }
515 EXPORT_SYMBOL_GPL(rcu_all_qs);
516
517 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
518 static long blimit = DEFAULT_RCU_BLIMIT;
519 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
520 static long qhimark = DEFAULT_RCU_QHIMARK;
521 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
522 static long qlowmark = DEFAULT_RCU_QLOMARK;
523
524 module_param(blimit, long, 0444);
525 module_param(qhimark, long, 0444);
526 module_param(qlowmark, long, 0444);
527
528 static ulong jiffies_till_first_fqs = ULONG_MAX;
529 static ulong jiffies_till_next_fqs = ULONG_MAX;
530 static bool rcu_kick_kthreads;
531
532 module_param(jiffies_till_first_fqs, ulong, 0644);
533 module_param(jiffies_till_next_fqs, ulong, 0644);
534 module_param(rcu_kick_kthreads, bool, 0644);
535
536 /*
537 * How long the grace period must be before we start recruiting
538 * quiescent-state help from rcu_note_context_switch().
539 */
540 static ulong jiffies_till_sched_qs = HZ / 20;
541 module_param(jiffies_till_sched_qs, ulong, 0644);
542
543 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
544 struct rcu_data *rdp);
545 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
546 static void force_quiescent_state(struct rcu_state *rsp);
547 static int rcu_pending(void);
548
549 /*
550 * Return the number of RCU batches started thus far for debug & stats.
551 */
552 unsigned long rcu_batches_started(void)
553 {
554 return rcu_state_p->gpnum;
555 }
556 EXPORT_SYMBOL_GPL(rcu_batches_started);
557
558 /*
559 * Return the number of RCU-sched batches started thus far for debug & stats.
560 */
561 unsigned long rcu_batches_started_sched(void)
562 {
563 return rcu_sched_state.gpnum;
564 }
565 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
566
567 /*
568 * Return the number of RCU BH batches started thus far for debug & stats.
569 */
570 unsigned long rcu_batches_started_bh(void)
571 {
572 return rcu_bh_state.gpnum;
573 }
574 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
575
576 /*
577 * Return the number of RCU batches completed thus far for debug & stats.
578 */
579 unsigned long rcu_batches_completed(void)
580 {
581 return rcu_state_p->completed;
582 }
583 EXPORT_SYMBOL_GPL(rcu_batches_completed);
584
585 /*
586 * Return the number of RCU-sched batches completed thus far for debug & stats.
587 */
588 unsigned long rcu_batches_completed_sched(void)
589 {
590 return rcu_sched_state.completed;
591 }
592 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
593
594 /*
595 * Return the number of RCU BH batches completed thus far for debug & stats.
596 */
597 unsigned long rcu_batches_completed_bh(void)
598 {
599 return rcu_bh_state.completed;
600 }
601 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
602
603 /*
604 * Return the number of RCU expedited batches completed thus far for
605 * debug & stats. Odd numbers mean that a batch is in progress, even
606 * numbers mean idle. The value returned will thus be roughly double
607 * the cumulative batches since boot.
608 */
609 unsigned long rcu_exp_batches_completed(void)
610 {
611 return rcu_state_p->expedited_sequence;
612 }
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
614
615 /*
616 * Return the number of RCU-sched expedited batches completed thus far
617 * for debug & stats. Similar to rcu_exp_batches_completed().
618 */
619 unsigned long rcu_exp_batches_completed_sched(void)
620 {
621 return rcu_sched_state.expedited_sequence;
622 }
623 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
624
625 /*
626 * Force a quiescent state.
627 */
628 void rcu_force_quiescent_state(void)
629 {
630 force_quiescent_state(rcu_state_p);
631 }
632 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
633
634 /*
635 * Force a quiescent state for RCU BH.
636 */
637 void rcu_bh_force_quiescent_state(void)
638 {
639 force_quiescent_state(&rcu_bh_state);
640 }
641 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
642
643 /*
644 * Force a quiescent state for RCU-sched.
645 */
646 void rcu_sched_force_quiescent_state(void)
647 {
648 force_quiescent_state(&rcu_sched_state);
649 }
650 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
651
652 /*
653 * Show the state of the grace-period kthreads.
654 */
655 void show_rcu_gp_kthreads(void)
656 {
657 struct rcu_state *rsp;
658
659 for_each_rcu_flavor(rsp) {
660 pr_info("%s: wait state: %d ->state: %#lx\n",
661 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
662 /* sched_show_task(rsp->gp_kthread); */
663 }
664 }
665 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
666
667 /*
668 * Record the number of times rcutorture tests have been initiated and
669 * terminated. This information allows the debugfs tracing stats to be
670 * correlated to the rcutorture messages, even when the rcutorture module
671 * is being repeatedly loaded and unloaded. In other words, we cannot
672 * store this state in rcutorture itself.
673 */
674 void rcutorture_record_test_transition(void)
675 {
676 rcutorture_testseq++;
677 rcutorture_vernum = 0;
678 }
679 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
680
681 /*
682 * Send along grace-period-related data for rcutorture diagnostics.
683 */
684 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
685 unsigned long *gpnum, unsigned long *completed)
686 {
687 struct rcu_state *rsp = NULL;
688
689 switch (test_type) {
690 case RCU_FLAVOR:
691 rsp = rcu_state_p;
692 break;
693 case RCU_BH_FLAVOR:
694 rsp = &rcu_bh_state;
695 break;
696 case RCU_SCHED_FLAVOR:
697 rsp = &rcu_sched_state;
698 break;
699 default:
700 break;
701 }
702 if (rsp == NULL)
703 return;
704 *flags = READ_ONCE(rsp->gp_flags);
705 *gpnum = READ_ONCE(rsp->gpnum);
706 *completed = READ_ONCE(rsp->completed);
707 }
708 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
709
710 /*
711 * Record the number of writer passes through the current rcutorture test.
712 * This is also used to correlate debugfs tracing stats with the rcutorture
713 * messages.
714 */
715 void rcutorture_record_progress(unsigned long vernum)
716 {
717 rcutorture_vernum++;
718 }
719 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
720
721 /*
722 * Return the root node of the specified rcu_state structure.
723 */
724 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
725 {
726 return &rsp->node[0];
727 }
728
729 /*
730 * Is there any need for future grace periods?
731 * Interrupts must be disabled. If the caller does not hold the root
732 * rnp_node structure's ->lock, the results are advisory only.
733 */
734 static int rcu_future_needs_gp(struct rcu_state *rsp)
735 {
736 struct rcu_node *rnp = rcu_get_root(rsp);
737 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
738 int *fp = &rnp->need_future_gp[idx];
739
740 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
741 return READ_ONCE(*fp);
742 }
743
744 /*
745 * Does the current CPU require a not-yet-started grace period?
746 * The caller must have disabled interrupts to prevent races with
747 * normal callback registry.
748 */
749 static bool
750 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
751 {
752 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
753 if (rcu_gp_in_progress(rsp))
754 return false; /* No, a grace period is already in progress. */
755 if (rcu_future_needs_gp(rsp))
756 return true; /* Yes, a no-CBs CPU needs one. */
757 if (!rcu_segcblist_is_enabled(&rdp->cblist))
758 return false; /* No, this is a no-CBs (or offline) CPU. */
759 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
760 return true; /* Yes, CPU has newly registered callbacks. */
761 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
762 READ_ONCE(rsp->completed)))
763 return true; /* Yes, CBs for future grace period. */
764 return false; /* No grace period needed. */
765 }
766
767 /*
768 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
769 *
770 * Enter idle, doing appropriate accounting. The caller must have
771 * disabled interrupts.
772 */
773 static void rcu_eqs_enter_common(bool user)
774 {
775 struct rcu_state *rsp;
776 struct rcu_data *rdp;
777 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
778
779 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
780 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
781 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
782 !user && !is_idle_task(current)) {
783 struct task_struct *idle __maybe_unused =
784 idle_task(smp_processor_id());
785
786 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
787 rcu_ftrace_dump(DUMP_ORIG);
788 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
789 current->pid, current->comm,
790 idle->pid, idle->comm); /* must be idle task! */
791 }
792 for_each_rcu_flavor(rsp) {
793 rdp = this_cpu_ptr(rsp->rda);
794 do_nocb_deferred_wakeup(rdp);
795 }
796 rcu_prepare_for_idle();
797 __this_cpu_inc(disable_rcu_irq_enter);
798 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
799 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
800 __this_cpu_dec(disable_rcu_irq_enter);
801 rcu_dynticks_task_enter();
802
803 /*
804 * It is illegal to enter an extended quiescent state while
805 * in an RCU read-side critical section.
806 */
807 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
808 "Illegal idle entry in RCU read-side critical section.");
809 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
810 "Illegal idle entry in RCU-bh read-side critical section.");
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
812 "Illegal idle entry in RCU-sched read-side critical section.");
813 }
814
815 /*
816 * Enter an RCU extended quiescent state, which can be either the
817 * idle loop or adaptive-tickless usermode execution.
818 */
819 static void rcu_eqs_enter(bool user)
820 {
821 struct rcu_dynticks *rdtp;
822
823 rdtp = this_cpu_ptr(&rcu_dynticks);
824 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
825 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
826 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
827 rcu_eqs_enter_common(user);
828 else
829 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
830 }
831
832 /**
833 * rcu_idle_enter - inform RCU that current CPU is entering idle
834 *
835 * Enter idle mode, in other words, -leave- the mode in which RCU
836 * read-side critical sections can occur. (Though RCU read-side
837 * critical sections can occur in irq handlers in idle, a possibility
838 * handled by irq_enter() and irq_exit().)
839 *
840 * We crowbar the ->dynticks_nesting field to zero to allow for
841 * the possibility of usermode upcalls having messed up our count
842 * of interrupt nesting level during the prior busy period.
843 */
844 void rcu_idle_enter(void)
845 {
846 unsigned long flags;
847
848 local_irq_save(flags);
849 rcu_eqs_enter(false);
850 local_irq_restore(flags);
851 }
852 EXPORT_SYMBOL_GPL(rcu_idle_enter);
853
854 #ifdef CONFIG_NO_HZ_FULL
855 /**
856 * rcu_user_enter - inform RCU that we are resuming userspace.
857 *
858 * Enter RCU idle mode right before resuming userspace. No use of RCU
859 * is permitted between this call and rcu_user_exit(). This way the
860 * CPU doesn't need to maintain the tick for RCU maintenance purposes
861 * when the CPU runs in userspace.
862 */
863 void rcu_user_enter(void)
864 {
865 rcu_eqs_enter(1);
866 }
867 #endif /* CONFIG_NO_HZ_FULL */
868
869 /**
870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
871 *
872 * Exit from an interrupt handler, which might possibly result in entering
873 * idle mode, in other words, leaving the mode in which read-side critical
874 * sections can occur. The caller must have disabled interrupts.
875 *
876 * This code assumes that the idle loop never does anything that might
877 * result in unbalanced calls to irq_enter() and irq_exit(). If your
878 * architecture violates this assumption, RCU will give you what you
879 * deserve, good and hard. But very infrequently and irreproducibly.
880 *
881 * Use things like work queues to work around this limitation.
882 *
883 * You have been warned.
884 */
885 void rcu_irq_exit(void)
886 {
887 struct rcu_dynticks *rdtp;
888
889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
890 rdtp = this_cpu_ptr(&rcu_dynticks);
891
892 /* Page faults can happen in NMI handlers, so check... */
893 if (READ_ONCE(rdtp->dynticks_nmi_nesting))
894 return;
895
896 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
897 rdtp->dynticks_nesting < 1);
898 if (rdtp->dynticks_nesting <= 1) {
899 rcu_eqs_enter_common(true);
900 } else {
901 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
902 rdtp->dynticks_nesting--;
903 }
904 }
905
906 /*
907 * Wrapper for rcu_irq_exit() where interrupts are enabled.
908 */
909 void rcu_irq_exit_irqson(void)
910 {
911 unsigned long flags;
912
913 local_irq_save(flags);
914 rcu_irq_exit();
915 local_irq_restore(flags);
916 }
917
918 /*
919 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
920 *
921 * If the new value of the ->dynticks_nesting counter was previously zero,
922 * we really have exited idle, and must do the appropriate accounting.
923 * The caller must have disabled interrupts.
924 */
925 static void rcu_eqs_exit_common(long long oldval, int user)
926 {
927 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
928
929 rcu_dynticks_task_exit();
930 rcu_dynticks_eqs_exit();
931 rcu_cleanup_after_idle();
932 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
933 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
934 !user && !is_idle_task(current)) {
935 struct task_struct *idle __maybe_unused =
936 idle_task(smp_processor_id());
937
938 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
939 oldval, rdtp->dynticks_nesting);
940 rcu_ftrace_dump(DUMP_ORIG);
941 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
942 current->pid, current->comm,
943 idle->pid, idle->comm); /* must be idle task! */
944 }
945 }
946
947 /*
948 * Exit an RCU extended quiescent state, which can be either the
949 * idle loop or adaptive-tickless usermode execution.
950 */
951 static void rcu_eqs_exit(bool user)
952 {
953 struct rcu_dynticks *rdtp;
954 long long oldval;
955
956 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
957 rdtp = this_cpu_ptr(&rcu_dynticks);
958 oldval = rdtp->dynticks_nesting;
959 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
960 if (oldval & DYNTICK_TASK_NEST_MASK) {
961 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
962 } else {
963 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
964 rcu_eqs_exit_common(oldval, user);
965 }
966 }
967
968 /**
969 * rcu_idle_exit - inform RCU that current CPU is leaving idle
970 *
971 * Exit idle mode, in other words, -enter- the mode in which RCU
972 * read-side critical sections can occur.
973 *
974 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
975 * allow for the possibility of usermode upcalls messing up our count
976 * of interrupt nesting level during the busy period that is just
977 * now starting.
978 */
979 void rcu_idle_exit(void)
980 {
981 unsigned long flags;
982
983 local_irq_save(flags);
984 rcu_eqs_exit(false);
985 local_irq_restore(flags);
986 }
987 EXPORT_SYMBOL_GPL(rcu_idle_exit);
988
989 #ifdef CONFIG_NO_HZ_FULL
990 /**
991 * rcu_user_exit - inform RCU that we are exiting userspace.
992 *
993 * Exit RCU idle mode while entering the kernel because it can
994 * run a RCU read side critical section anytime.
995 */
996 void rcu_user_exit(void)
997 {
998 rcu_eqs_exit(1);
999 }
1000 #endif /* CONFIG_NO_HZ_FULL */
1001
1002 /**
1003 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1004 *
1005 * Enter an interrupt handler, which might possibly result in exiting
1006 * idle mode, in other words, entering the mode in which read-side critical
1007 * sections can occur. The caller must have disabled interrupts.
1008 *
1009 * Note that the Linux kernel is fully capable of entering an interrupt
1010 * handler that it never exits, for example when doing upcalls to
1011 * user mode! This code assumes that the idle loop never does upcalls to
1012 * user mode. If your architecture does do upcalls from the idle loop (or
1013 * does anything else that results in unbalanced calls to the irq_enter()
1014 * and irq_exit() functions), RCU will give you what you deserve, good
1015 * and hard. But very infrequently and irreproducibly.
1016 *
1017 * Use things like work queues to work around this limitation.
1018 *
1019 * You have been warned.
1020 */
1021 void rcu_irq_enter(void)
1022 {
1023 struct rcu_dynticks *rdtp;
1024 long long oldval;
1025
1026 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1027 rdtp = this_cpu_ptr(&rcu_dynticks);
1028
1029 /* Page faults can happen in NMI handlers, so check... */
1030 if (READ_ONCE(rdtp->dynticks_nmi_nesting))
1031 return;
1032
1033 oldval = rdtp->dynticks_nesting;
1034 rdtp->dynticks_nesting++;
1035 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1036 rdtp->dynticks_nesting == 0);
1037 if (oldval)
1038 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1039 else
1040 rcu_eqs_exit_common(oldval, true);
1041 }
1042
1043 /*
1044 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1045 */
1046 void rcu_irq_enter_irqson(void)
1047 {
1048 unsigned long flags;
1049
1050 local_irq_save(flags);
1051 rcu_irq_enter();
1052 local_irq_restore(flags);
1053 }
1054
1055 /**
1056 * rcu_nmi_enter - inform RCU of entry to NMI context
1057 *
1058 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1059 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1060 * that the CPU is active. This implementation permits nested NMIs, as
1061 * long as the nesting level does not overflow an int. (You will probably
1062 * run out of stack space first.)
1063 */
1064 void rcu_nmi_enter(void)
1065 {
1066 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1067 int incby = 2;
1068
1069 /* Complain about underflow. */
1070 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1071
1072 /*
1073 * If idle from RCU viewpoint, atomically increment ->dynticks
1074 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1075 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1076 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1077 * to be in the outermost NMI handler that interrupted an RCU-idle
1078 * period (observation due to Andy Lutomirski).
1079 */
1080 if (rcu_dynticks_curr_cpu_in_eqs()) {
1081 rcu_dynticks_eqs_exit();
1082 incby = 1;
1083 }
1084 rdtp->dynticks_nmi_nesting += incby;
1085 barrier();
1086 }
1087
1088 /**
1089 * rcu_nmi_exit - inform RCU of exit from NMI context
1090 *
1091 * If we are returning from the outermost NMI handler that interrupted an
1092 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1093 * to let the RCU grace-period handling know that the CPU is back to
1094 * being RCU-idle.
1095 */
1096 void rcu_nmi_exit(void)
1097 {
1098 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1099
1100 /*
1101 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1102 * (We are exiting an NMI handler, so RCU better be paying attention
1103 * to us!)
1104 */
1105 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1106 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1107
1108 /*
1109 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1110 * leave it in non-RCU-idle state.
1111 */
1112 if (rdtp->dynticks_nmi_nesting != 1) {
1113 rdtp->dynticks_nmi_nesting -= 2;
1114 return;
1115 }
1116
1117 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1118 rdtp->dynticks_nmi_nesting = 0;
1119 rcu_dynticks_eqs_enter();
1120 }
1121
1122 /**
1123 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1124 *
1125 * Return true if RCU is watching the running CPU, which means that this
1126 * CPU can safely enter RCU read-side critical sections. In other words,
1127 * if the current CPU is in its idle loop and is neither in an interrupt
1128 * or NMI handler, return true.
1129 */
1130 bool notrace rcu_is_watching(void)
1131 {
1132 bool ret;
1133
1134 preempt_disable_notrace();
1135 ret = !rcu_dynticks_curr_cpu_in_eqs();
1136 preempt_enable_notrace();
1137 return ret;
1138 }
1139 EXPORT_SYMBOL_GPL(rcu_is_watching);
1140
1141 /*
1142 * If a holdout task is actually running, request an urgent quiescent
1143 * state from its CPU. This is unsynchronized, so migrations can cause
1144 * the request to go to the wrong CPU. Which is OK, all that will happen
1145 * is that the CPU's next context switch will be a bit slower and next
1146 * time around this task will generate another request.
1147 */
1148 void rcu_request_urgent_qs_task(struct task_struct *t)
1149 {
1150 int cpu;
1151
1152 barrier();
1153 cpu = task_cpu(t);
1154 if (!task_curr(t))
1155 return; /* This task is not running on that CPU. */
1156 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1157 }
1158
1159 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1160
1161 /*
1162 * Is the current CPU online? Disable preemption to avoid false positives
1163 * that could otherwise happen due to the current CPU number being sampled,
1164 * this task being preempted, its old CPU being taken offline, resuming
1165 * on some other CPU, then determining that its old CPU is now offline.
1166 * It is OK to use RCU on an offline processor during initial boot, hence
1167 * the check for rcu_scheduler_fully_active. Note also that it is OK
1168 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1169 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1170 * offline to continue to use RCU for one jiffy after marking itself
1171 * offline in the cpu_online_mask. This leniency is necessary given the
1172 * non-atomic nature of the online and offline processing, for example,
1173 * the fact that a CPU enters the scheduler after completing the teardown
1174 * of the CPU.
1175 *
1176 * This is also why RCU internally marks CPUs online during in the
1177 * preparation phase and offline after the CPU has been taken down.
1178 *
1179 * Disable checking if in an NMI handler because we cannot safely report
1180 * errors from NMI handlers anyway.
1181 */
1182 bool rcu_lockdep_current_cpu_online(void)
1183 {
1184 struct rcu_data *rdp;
1185 struct rcu_node *rnp;
1186 bool ret;
1187
1188 if (in_nmi())
1189 return true;
1190 preempt_disable();
1191 rdp = this_cpu_ptr(&rcu_sched_data);
1192 rnp = rdp->mynode;
1193 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1194 !rcu_scheduler_fully_active;
1195 preempt_enable();
1196 return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1199
1200 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1201
1202 /**
1203 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1204 *
1205 * If the current CPU is idle or running at a first-level (not nested)
1206 * interrupt from idle, return true. The caller must have at least
1207 * disabled preemption.
1208 */
1209 static int rcu_is_cpu_rrupt_from_idle(void)
1210 {
1211 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1212 }
1213
1214 /*
1215 * Snapshot the specified CPU's dynticks counter so that we can later
1216 * credit them with an implicit quiescent state. Return 1 if this CPU
1217 * is in dynticks idle mode, which is an extended quiescent state.
1218 */
1219 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1220 {
1221 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1222 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1223 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1224 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1225 rdp->mynode->gpnum))
1226 WRITE_ONCE(rdp->gpwrap, true);
1227 return 1;
1228 }
1229 return 0;
1230 }
1231
1232 /*
1233 * Return true if the specified CPU has passed through a quiescent
1234 * state by virtue of being in or having passed through an dynticks
1235 * idle state since the last call to dyntick_save_progress_counter()
1236 * for this same CPU, or by virtue of having been offline.
1237 */
1238 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1239 {
1240 unsigned long jtsq;
1241 bool *rnhqp;
1242 bool *ruqp;
1243 unsigned long rjtsc;
1244 struct rcu_node *rnp;
1245
1246 /*
1247 * If the CPU passed through or entered a dynticks idle phase with
1248 * no active irq/NMI handlers, then we can safely pretend that the CPU
1249 * already acknowledged the request to pass through a quiescent
1250 * state. Either way, that CPU cannot possibly be in an RCU
1251 * read-side critical section that started before the beginning
1252 * of the current RCU grace period.
1253 */
1254 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1255 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1256 rdp->dynticks_fqs++;
1257 return 1;
1258 }
1259
1260 /* Compute and saturate jiffies_till_sched_qs. */
1261 jtsq = jiffies_till_sched_qs;
1262 rjtsc = rcu_jiffies_till_stall_check();
1263 if (jtsq > rjtsc / 2) {
1264 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1265 jtsq = rjtsc / 2;
1266 } else if (jtsq < 1) {
1267 WRITE_ONCE(jiffies_till_sched_qs, 1);
1268 jtsq = 1;
1269 }
1270
1271 /*
1272 * Has this CPU encountered a cond_resched_rcu_qs() since the
1273 * beginning of the grace period? For this to be the case,
1274 * the CPU has to have noticed the current grace period. This
1275 * might not be the case for nohz_full CPUs looping in the kernel.
1276 */
1277 rnp = rdp->mynode;
1278 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1279 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1280 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1281 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1282 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1283 return 1;
1284 } else {
1285 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1286 smp_store_release(ruqp, true);
1287 }
1288
1289 /* Check for the CPU being offline. */
1290 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1291 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1292 rdp->offline_fqs++;
1293 return 1;
1294 }
1295
1296 /*
1297 * A CPU running for an extended time within the kernel can
1298 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1299 * even context-switching back and forth between a pair of
1300 * in-kernel CPU-bound tasks cannot advance grace periods.
1301 * So if the grace period is old enough, make the CPU pay attention.
1302 * Note that the unsynchronized assignments to the per-CPU
1303 * rcu_need_heavy_qs variable are safe. Yes, setting of
1304 * bits can be lost, but they will be set again on the next
1305 * force-quiescent-state pass. So lost bit sets do not result
1306 * in incorrect behavior, merely in a grace period lasting
1307 * a few jiffies longer than it might otherwise. Because
1308 * there are at most four threads involved, and because the
1309 * updates are only once every few jiffies, the probability of
1310 * lossage (and thus of slight grace-period extension) is
1311 * quite low.
1312 *
1313 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1314 * is set too high, we override with half of the RCU CPU stall
1315 * warning delay.
1316 */
1317 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1318 if (!READ_ONCE(*rnhqp) &&
1319 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1320 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1321 WRITE_ONCE(*rnhqp, true);
1322 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1323 smp_store_release(ruqp, true);
1324 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1325 }
1326
1327 /*
1328 * If more than halfway to RCU CPU stall-warning time, do
1329 * a resched_cpu() to try to loosen things up a bit.
1330 */
1331 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1332 resched_cpu(rdp->cpu);
1333
1334 return 0;
1335 }
1336
1337 static void record_gp_stall_check_time(struct rcu_state *rsp)
1338 {
1339 unsigned long j = jiffies;
1340 unsigned long j1;
1341
1342 rsp->gp_start = j;
1343 smp_wmb(); /* Record start time before stall time. */
1344 j1 = rcu_jiffies_till_stall_check();
1345 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1346 rsp->jiffies_resched = j + j1 / 2;
1347 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1348 }
1349
1350 /*
1351 * Convert a ->gp_state value to a character string.
1352 */
1353 static const char *gp_state_getname(short gs)
1354 {
1355 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1356 return "???";
1357 return gp_state_names[gs];
1358 }
1359
1360 /*
1361 * Complain about starvation of grace-period kthread.
1362 */
1363 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1364 {
1365 unsigned long gpa;
1366 unsigned long j;
1367
1368 j = jiffies;
1369 gpa = READ_ONCE(rsp->gp_activity);
1370 if (j - gpa > 2 * HZ) {
1371 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1372 rsp->name, j - gpa,
1373 rsp->gpnum, rsp->completed,
1374 rsp->gp_flags,
1375 gp_state_getname(rsp->gp_state), rsp->gp_state,
1376 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1377 if (rsp->gp_kthread) {
1378 sched_show_task(rsp->gp_kthread);
1379 wake_up_process(rsp->gp_kthread);
1380 }
1381 }
1382 }
1383
1384 /*
1385 * Dump stacks of all tasks running on stalled CPUs. First try using
1386 * NMIs, but fall back to manual remote stack tracing on architectures
1387 * that don't support NMI-based stack dumps. The NMI-triggered stack
1388 * traces are more accurate because they are printed by the target CPU.
1389 */
1390 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1391 {
1392 int cpu;
1393 unsigned long flags;
1394 struct rcu_node *rnp;
1395
1396 rcu_for_each_leaf_node(rsp, rnp) {
1397 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1398 for_each_leaf_node_possible_cpu(rnp, cpu)
1399 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1400 if (!trigger_single_cpu_backtrace(cpu))
1401 dump_cpu_task(cpu);
1402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1403 }
1404 }
1405
1406 /*
1407 * If too much time has passed in the current grace period, and if
1408 * so configured, go kick the relevant kthreads.
1409 */
1410 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1411 {
1412 unsigned long j;
1413
1414 if (!rcu_kick_kthreads)
1415 return;
1416 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1417 if (time_after(jiffies, j) && rsp->gp_kthread &&
1418 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1419 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1420 rcu_ftrace_dump(DUMP_ALL);
1421 wake_up_process(rsp->gp_kthread);
1422 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1423 }
1424 }
1425
1426 static inline void panic_on_rcu_stall(void)
1427 {
1428 if (sysctl_panic_on_rcu_stall)
1429 panic("RCU Stall\n");
1430 }
1431
1432 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1433 {
1434 int cpu;
1435 long delta;
1436 unsigned long flags;
1437 unsigned long gpa;
1438 unsigned long j;
1439 int ndetected = 0;
1440 struct rcu_node *rnp = rcu_get_root(rsp);
1441 long totqlen = 0;
1442
1443 /* Kick and suppress, if so configured. */
1444 rcu_stall_kick_kthreads(rsp);
1445 if (rcu_cpu_stall_suppress)
1446 return;
1447
1448 /* Only let one CPU complain about others per time interval. */
1449
1450 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1451 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1452 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454 return;
1455 }
1456 WRITE_ONCE(rsp->jiffies_stall,
1457 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1458 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1459
1460 /*
1461 * OK, time to rat on our buddy...
1462 * See Documentation/RCU/stallwarn.txt for info on how to debug
1463 * RCU CPU stall warnings.
1464 */
1465 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1466 rsp->name);
1467 print_cpu_stall_info_begin();
1468 rcu_for_each_leaf_node(rsp, rnp) {
1469 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1470 ndetected += rcu_print_task_stall(rnp);
1471 if (rnp->qsmask != 0) {
1472 for_each_leaf_node_possible_cpu(rnp, cpu)
1473 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1474 print_cpu_stall_info(rsp, cpu);
1475 ndetected++;
1476 }
1477 }
1478 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1479 }
1480
1481 print_cpu_stall_info_end();
1482 for_each_possible_cpu(cpu)
1483 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1484 cpu)->cblist);
1485 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1486 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1487 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1488 if (ndetected) {
1489 rcu_dump_cpu_stacks(rsp);
1490
1491 /* Complain about tasks blocking the grace period. */
1492 rcu_print_detail_task_stall(rsp);
1493 } else {
1494 if (READ_ONCE(rsp->gpnum) != gpnum ||
1495 READ_ONCE(rsp->completed) == gpnum) {
1496 pr_err("INFO: Stall ended before state dump start\n");
1497 } else {
1498 j = jiffies;
1499 gpa = READ_ONCE(rsp->gp_activity);
1500 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1501 rsp->name, j - gpa, j, gpa,
1502 jiffies_till_next_fqs,
1503 rcu_get_root(rsp)->qsmask);
1504 /* In this case, the current CPU might be at fault. */
1505 sched_show_task(current);
1506 }
1507 }
1508
1509 rcu_check_gp_kthread_starvation(rsp);
1510
1511 panic_on_rcu_stall();
1512
1513 force_quiescent_state(rsp); /* Kick them all. */
1514 }
1515
1516 static void print_cpu_stall(struct rcu_state *rsp)
1517 {
1518 int cpu;
1519 unsigned long flags;
1520 struct rcu_node *rnp = rcu_get_root(rsp);
1521 long totqlen = 0;
1522
1523 /* Kick and suppress, if so configured. */
1524 rcu_stall_kick_kthreads(rsp);
1525 if (rcu_cpu_stall_suppress)
1526 return;
1527
1528 /*
1529 * OK, time to rat on ourselves...
1530 * See Documentation/RCU/stallwarn.txt for info on how to debug
1531 * RCU CPU stall warnings.
1532 */
1533 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1534 print_cpu_stall_info_begin();
1535 print_cpu_stall_info(rsp, smp_processor_id());
1536 print_cpu_stall_info_end();
1537 for_each_possible_cpu(cpu)
1538 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1539 cpu)->cblist);
1540 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1541 jiffies - rsp->gp_start,
1542 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1543
1544 rcu_check_gp_kthread_starvation(rsp);
1545
1546 rcu_dump_cpu_stacks(rsp);
1547
1548 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1549 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1550 WRITE_ONCE(rsp->jiffies_stall,
1551 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1552 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1553
1554 panic_on_rcu_stall();
1555
1556 /*
1557 * Attempt to revive the RCU machinery by forcing a context switch.
1558 *
1559 * A context switch would normally allow the RCU state machine to make
1560 * progress and it could be we're stuck in kernel space without context
1561 * switches for an entirely unreasonable amount of time.
1562 */
1563 resched_cpu(smp_processor_id());
1564 }
1565
1566 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1567 {
1568 unsigned long completed;
1569 unsigned long gpnum;
1570 unsigned long gps;
1571 unsigned long j;
1572 unsigned long js;
1573 struct rcu_node *rnp;
1574
1575 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1576 !rcu_gp_in_progress(rsp))
1577 return;
1578 rcu_stall_kick_kthreads(rsp);
1579 j = jiffies;
1580
1581 /*
1582 * Lots of memory barriers to reject false positives.
1583 *
1584 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1585 * then rsp->gp_start, and finally rsp->completed. These values
1586 * are updated in the opposite order with memory barriers (or
1587 * equivalent) during grace-period initialization and cleanup.
1588 * Now, a false positive can occur if we get an new value of
1589 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1590 * the memory barriers, the only way that this can happen is if one
1591 * grace period ends and another starts between these two fetches.
1592 * Detect this by comparing rsp->completed with the previous fetch
1593 * from rsp->gpnum.
1594 *
1595 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1596 * and rsp->gp_start suffice to forestall false positives.
1597 */
1598 gpnum = READ_ONCE(rsp->gpnum);
1599 smp_rmb(); /* Pick up ->gpnum first... */
1600 js = READ_ONCE(rsp->jiffies_stall);
1601 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1602 gps = READ_ONCE(rsp->gp_start);
1603 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1604 completed = READ_ONCE(rsp->completed);
1605 if (ULONG_CMP_GE(completed, gpnum) ||
1606 ULONG_CMP_LT(j, js) ||
1607 ULONG_CMP_GE(gps, js))
1608 return; /* No stall or GP completed since entering function. */
1609 rnp = rdp->mynode;
1610 if (rcu_gp_in_progress(rsp) &&
1611 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1612
1613 /* We haven't checked in, so go dump stack. */
1614 print_cpu_stall(rsp);
1615
1616 } else if (rcu_gp_in_progress(rsp) &&
1617 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1618
1619 /* They had a few time units to dump stack, so complain. */
1620 print_other_cpu_stall(rsp, gpnum);
1621 }
1622 }
1623
1624 /**
1625 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1626 *
1627 * Set the stall-warning timeout way off into the future, thus preventing
1628 * any RCU CPU stall-warning messages from appearing in the current set of
1629 * RCU grace periods.
1630 *
1631 * The caller must disable hard irqs.
1632 */
1633 void rcu_cpu_stall_reset(void)
1634 {
1635 struct rcu_state *rsp;
1636
1637 for_each_rcu_flavor(rsp)
1638 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1639 }
1640
1641 /*
1642 * Determine the value that ->completed will have at the end of the
1643 * next subsequent grace period. This is used to tag callbacks so that
1644 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1645 * been dyntick-idle for an extended period with callbacks under the
1646 * influence of RCU_FAST_NO_HZ.
1647 *
1648 * The caller must hold rnp->lock with interrupts disabled.
1649 */
1650 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1651 struct rcu_node *rnp)
1652 {
1653 lockdep_assert_held(&rnp->lock);
1654
1655 /*
1656 * If RCU is idle, we just wait for the next grace period.
1657 * But we can only be sure that RCU is idle if we are looking
1658 * at the root rcu_node structure -- otherwise, a new grace
1659 * period might have started, but just not yet gotten around
1660 * to initializing the current non-root rcu_node structure.
1661 */
1662 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1663 return rnp->completed + 1;
1664
1665 /*
1666 * Otherwise, wait for a possible partial grace period and
1667 * then the subsequent full grace period.
1668 */
1669 return rnp->completed + 2;
1670 }
1671
1672 /*
1673 * Trace-event helper function for rcu_start_future_gp() and
1674 * rcu_nocb_wait_gp().
1675 */
1676 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1677 unsigned long c, const char *s)
1678 {
1679 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1680 rnp->completed, c, rnp->level,
1681 rnp->grplo, rnp->grphi, s);
1682 }
1683
1684 /*
1685 * Start some future grace period, as needed to handle newly arrived
1686 * callbacks. The required future grace periods are recorded in each
1687 * rcu_node structure's ->need_future_gp field. Returns true if there
1688 * is reason to awaken the grace-period kthread.
1689 *
1690 * The caller must hold the specified rcu_node structure's ->lock.
1691 */
1692 static bool __maybe_unused
1693 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1694 unsigned long *c_out)
1695 {
1696 unsigned long c;
1697 bool ret = false;
1698 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1699
1700 lockdep_assert_held(&rnp->lock);
1701
1702 /*
1703 * Pick up grace-period number for new callbacks. If this
1704 * grace period is already marked as needed, return to the caller.
1705 */
1706 c = rcu_cbs_completed(rdp->rsp, rnp);
1707 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1708 if (rnp->need_future_gp[c & 0x1]) {
1709 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1710 goto out;
1711 }
1712
1713 /*
1714 * If either this rcu_node structure or the root rcu_node structure
1715 * believe that a grace period is in progress, then we must wait
1716 * for the one following, which is in "c". Because our request
1717 * will be noticed at the end of the current grace period, we don't
1718 * need to explicitly start one. We only do the lockless check
1719 * of rnp_root's fields if the current rcu_node structure thinks
1720 * there is no grace period in flight, and because we hold rnp->lock,
1721 * the only possible change is when rnp_root's two fields are
1722 * equal, in which case rnp_root->gpnum might be concurrently
1723 * incremented. But that is OK, as it will just result in our
1724 * doing some extra useless work.
1725 */
1726 if (rnp->gpnum != rnp->completed ||
1727 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1728 rnp->need_future_gp[c & 0x1]++;
1729 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1730 goto out;
1731 }
1732
1733 /*
1734 * There might be no grace period in progress. If we don't already
1735 * hold it, acquire the root rcu_node structure's lock in order to
1736 * start one (if needed).
1737 */
1738 if (rnp != rnp_root)
1739 raw_spin_lock_rcu_node(rnp_root);
1740
1741 /*
1742 * Get a new grace-period number. If there really is no grace
1743 * period in progress, it will be smaller than the one we obtained
1744 * earlier. Adjust callbacks as needed.
1745 */
1746 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1747 if (!rcu_is_nocb_cpu(rdp->cpu))
1748 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1749
1750 /*
1751 * If the needed for the required grace period is already
1752 * recorded, trace and leave.
1753 */
1754 if (rnp_root->need_future_gp[c & 0x1]) {
1755 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1756 goto unlock_out;
1757 }
1758
1759 /* Record the need for the future grace period. */
1760 rnp_root->need_future_gp[c & 0x1]++;
1761
1762 /* If a grace period is not already in progress, start one. */
1763 if (rnp_root->gpnum != rnp_root->completed) {
1764 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1765 } else {
1766 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1767 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1768 }
1769 unlock_out:
1770 if (rnp != rnp_root)
1771 raw_spin_unlock_rcu_node(rnp_root);
1772 out:
1773 if (c_out != NULL)
1774 *c_out = c;
1775 return ret;
1776 }
1777
1778 /*
1779 * Clean up any old requests for the just-ended grace period. Also return
1780 * whether any additional grace periods have been requested.
1781 */
1782 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1783 {
1784 int c = rnp->completed;
1785 int needmore;
1786 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1787
1788 rnp->need_future_gp[c & 0x1] = 0;
1789 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1790 trace_rcu_future_gp(rnp, rdp, c,
1791 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1792 return needmore;
1793 }
1794
1795 /*
1796 * Awaken the grace-period kthread for the specified flavor of RCU.
1797 * Don't do a self-awaken, and don't bother awakening when there is
1798 * nothing for the grace-period kthread to do (as in several CPUs
1799 * raced to awaken, and we lost), and finally don't try to awaken
1800 * a kthread that has not yet been created.
1801 */
1802 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1803 {
1804 if (current == rsp->gp_kthread ||
1805 !READ_ONCE(rsp->gp_flags) ||
1806 !rsp->gp_kthread)
1807 return;
1808 swake_up(&rsp->gp_wq);
1809 }
1810
1811 /*
1812 * If there is room, assign a ->completed number to any callbacks on
1813 * this CPU that have not already been assigned. Also accelerate any
1814 * callbacks that were previously assigned a ->completed number that has
1815 * since proven to be too conservative, which can happen if callbacks get
1816 * assigned a ->completed number while RCU is idle, but with reference to
1817 * a non-root rcu_node structure. This function is idempotent, so it does
1818 * not hurt to call it repeatedly. Returns an flag saying that we should
1819 * awaken the RCU grace-period kthread.
1820 *
1821 * The caller must hold rnp->lock with interrupts disabled.
1822 */
1823 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1824 struct rcu_data *rdp)
1825 {
1826 bool ret = false;
1827
1828 lockdep_assert_held(&rnp->lock);
1829
1830 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1831 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1832 return false;
1833
1834 /*
1835 * Callbacks are often registered with incomplete grace-period
1836 * information. Something about the fact that getting exact
1837 * information requires acquiring a global lock... RCU therefore
1838 * makes a conservative estimate of the grace period number at which
1839 * a given callback will become ready to invoke. The following
1840 * code checks this estimate and improves it when possible, thus
1841 * accelerating callback invocation to an earlier grace-period
1842 * number.
1843 */
1844 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1845 ret = rcu_start_future_gp(rnp, rdp, NULL);
1846
1847 /* Trace depending on how much we were able to accelerate. */
1848 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1849 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1850 else
1851 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1852 return ret;
1853 }
1854
1855 /*
1856 * Move any callbacks whose grace period has completed to the
1857 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1858 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1859 * sublist. This function is idempotent, so it does not hurt to
1860 * invoke it repeatedly. As long as it is not invoked -too- often...
1861 * Returns true if the RCU grace-period kthread needs to be awakened.
1862 *
1863 * The caller must hold rnp->lock with interrupts disabled.
1864 */
1865 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1866 struct rcu_data *rdp)
1867 {
1868 lockdep_assert_held(&rnp->lock);
1869
1870 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1871 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1872 return false;
1873
1874 /*
1875 * Find all callbacks whose ->completed numbers indicate that they
1876 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1877 */
1878 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1879
1880 /* Classify any remaining callbacks. */
1881 return rcu_accelerate_cbs(rsp, rnp, rdp);
1882 }
1883
1884 /*
1885 * Update CPU-local rcu_data state to record the beginnings and ends of
1886 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1887 * structure corresponding to the current CPU, and must have irqs disabled.
1888 * Returns true if the grace-period kthread needs to be awakened.
1889 */
1890 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1891 struct rcu_data *rdp)
1892 {
1893 bool ret;
1894 bool need_gp;
1895
1896 lockdep_assert_held(&rnp->lock);
1897
1898 /* Handle the ends of any preceding grace periods first. */
1899 if (rdp->completed == rnp->completed &&
1900 !unlikely(READ_ONCE(rdp->gpwrap))) {
1901
1902 /* No grace period end, so just accelerate recent callbacks. */
1903 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1904
1905 } else {
1906
1907 /* Advance callbacks. */
1908 ret = rcu_advance_cbs(rsp, rnp, rdp);
1909
1910 /* Remember that we saw this grace-period completion. */
1911 rdp->completed = rnp->completed;
1912 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1913 }
1914
1915 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1916 /*
1917 * If the current grace period is waiting for this CPU,
1918 * set up to detect a quiescent state, otherwise don't
1919 * go looking for one.
1920 */
1921 rdp->gpnum = rnp->gpnum;
1922 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1923 need_gp = !!(rnp->qsmask & rdp->grpmask);
1924 rdp->cpu_no_qs.b.norm = need_gp;
1925 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1926 rdp->core_needs_qs = need_gp;
1927 zero_cpu_stall_ticks(rdp);
1928 WRITE_ONCE(rdp->gpwrap, false);
1929 }
1930 return ret;
1931 }
1932
1933 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1934 {
1935 unsigned long flags;
1936 bool needwake;
1937 struct rcu_node *rnp;
1938
1939 local_irq_save(flags);
1940 rnp = rdp->mynode;
1941 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1942 rdp->completed == READ_ONCE(rnp->completed) &&
1943 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1944 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1945 local_irq_restore(flags);
1946 return;
1947 }
1948 needwake = __note_gp_changes(rsp, rnp, rdp);
1949 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1950 if (needwake)
1951 rcu_gp_kthread_wake(rsp);
1952 }
1953
1954 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1955 {
1956 if (delay > 0 &&
1957 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1958 schedule_timeout_uninterruptible(delay);
1959 }
1960
1961 /*
1962 * Initialize a new grace period. Return false if no grace period required.
1963 */
1964 static bool rcu_gp_init(struct rcu_state *rsp)
1965 {
1966 unsigned long oldmask;
1967 struct rcu_data *rdp;
1968 struct rcu_node *rnp = rcu_get_root(rsp);
1969
1970 WRITE_ONCE(rsp->gp_activity, jiffies);
1971 raw_spin_lock_irq_rcu_node(rnp);
1972 if (!READ_ONCE(rsp->gp_flags)) {
1973 /* Spurious wakeup, tell caller to go back to sleep. */
1974 raw_spin_unlock_irq_rcu_node(rnp);
1975 return false;
1976 }
1977 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1978
1979 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1980 /*
1981 * Grace period already in progress, don't start another.
1982 * Not supposed to be able to happen.
1983 */
1984 raw_spin_unlock_irq_rcu_node(rnp);
1985 return false;
1986 }
1987
1988 /* Advance to a new grace period and initialize state. */
1989 record_gp_stall_check_time(rsp);
1990 /* Record GP times before starting GP, hence smp_store_release(). */
1991 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1992 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1993 raw_spin_unlock_irq_rcu_node(rnp);
1994
1995 /*
1996 * Apply per-leaf buffered online and offline operations to the
1997 * rcu_node tree. Note that this new grace period need not wait
1998 * for subsequent online CPUs, and that quiescent-state forcing
1999 * will handle subsequent offline CPUs.
2000 */
2001 rcu_for_each_leaf_node(rsp, rnp) {
2002 rcu_gp_slow(rsp, gp_preinit_delay);
2003 raw_spin_lock_irq_rcu_node(rnp);
2004 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2005 !rnp->wait_blkd_tasks) {
2006 /* Nothing to do on this leaf rcu_node structure. */
2007 raw_spin_unlock_irq_rcu_node(rnp);
2008 continue;
2009 }
2010
2011 /* Record old state, apply changes to ->qsmaskinit field. */
2012 oldmask = rnp->qsmaskinit;
2013 rnp->qsmaskinit = rnp->qsmaskinitnext;
2014
2015 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2016 if (!oldmask != !rnp->qsmaskinit) {
2017 if (!oldmask) /* First online CPU for this rcu_node. */
2018 rcu_init_new_rnp(rnp);
2019 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2020 rnp->wait_blkd_tasks = true;
2021 else /* Last offline CPU and can propagate. */
2022 rcu_cleanup_dead_rnp(rnp);
2023 }
2024
2025 /*
2026 * If all waited-on tasks from prior grace period are
2027 * done, and if all this rcu_node structure's CPUs are
2028 * still offline, propagate up the rcu_node tree and
2029 * clear ->wait_blkd_tasks. Otherwise, if one of this
2030 * rcu_node structure's CPUs has since come back online,
2031 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2032 * checks for this, so just call it unconditionally).
2033 */
2034 if (rnp->wait_blkd_tasks &&
2035 (!rcu_preempt_has_tasks(rnp) ||
2036 rnp->qsmaskinit)) {
2037 rnp->wait_blkd_tasks = false;
2038 rcu_cleanup_dead_rnp(rnp);
2039 }
2040
2041 raw_spin_unlock_irq_rcu_node(rnp);
2042 }
2043
2044 /*
2045 * Set the quiescent-state-needed bits in all the rcu_node
2046 * structures for all currently online CPUs in breadth-first order,
2047 * starting from the root rcu_node structure, relying on the layout
2048 * of the tree within the rsp->node[] array. Note that other CPUs
2049 * will access only the leaves of the hierarchy, thus seeing that no
2050 * grace period is in progress, at least until the corresponding
2051 * leaf node has been initialized.
2052 *
2053 * The grace period cannot complete until the initialization
2054 * process finishes, because this kthread handles both.
2055 */
2056 rcu_for_each_node_breadth_first(rsp, rnp) {
2057 rcu_gp_slow(rsp, gp_init_delay);
2058 raw_spin_lock_irq_rcu_node(rnp);
2059 rdp = this_cpu_ptr(rsp->rda);
2060 rcu_preempt_check_blocked_tasks(rnp);
2061 rnp->qsmask = rnp->qsmaskinit;
2062 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2063 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2064 WRITE_ONCE(rnp->completed, rsp->completed);
2065 if (rnp == rdp->mynode)
2066 (void)__note_gp_changes(rsp, rnp, rdp);
2067 rcu_preempt_boost_start_gp(rnp);
2068 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2069 rnp->level, rnp->grplo,
2070 rnp->grphi, rnp->qsmask);
2071 raw_spin_unlock_irq_rcu_node(rnp);
2072 cond_resched_rcu_qs();
2073 WRITE_ONCE(rsp->gp_activity, jiffies);
2074 }
2075
2076 return true;
2077 }
2078
2079 /*
2080 * Helper function for wait_event_interruptible_timeout() wakeup
2081 * at force-quiescent-state time.
2082 */
2083 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2084 {
2085 struct rcu_node *rnp = rcu_get_root(rsp);
2086
2087 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2088 *gfp = READ_ONCE(rsp->gp_flags);
2089 if (*gfp & RCU_GP_FLAG_FQS)
2090 return true;
2091
2092 /* The current grace period has completed. */
2093 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2094 return true;
2095
2096 return false;
2097 }
2098
2099 /*
2100 * Do one round of quiescent-state forcing.
2101 */
2102 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2103 {
2104 struct rcu_node *rnp = rcu_get_root(rsp);
2105
2106 WRITE_ONCE(rsp->gp_activity, jiffies);
2107 rsp->n_force_qs++;
2108 if (first_time) {
2109 /* Collect dyntick-idle snapshots. */
2110 force_qs_rnp(rsp, dyntick_save_progress_counter);
2111 } else {
2112 /* Handle dyntick-idle and offline CPUs. */
2113 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2114 }
2115 /* Clear flag to prevent immediate re-entry. */
2116 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2117 raw_spin_lock_irq_rcu_node(rnp);
2118 WRITE_ONCE(rsp->gp_flags,
2119 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2120 raw_spin_unlock_irq_rcu_node(rnp);
2121 }
2122 }
2123
2124 /*
2125 * Clean up after the old grace period.
2126 */
2127 static void rcu_gp_cleanup(struct rcu_state *rsp)
2128 {
2129 unsigned long gp_duration;
2130 bool needgp = false;
2131 int nocb = 0;
2132 struct rcu_data *rdp;
2133 struct rcu_node *rnp = rcu_get_root(rsp);
2134 struct swait_queue_head *sq;
2135
2136 WRITE_ONCE(rsp->gp_activity, jiffies);
2137 raw_spin_lock_irq_rcu_node(rnp);
2138 gp_duration = jiffies - rsp->gp_start;
2139 if (gp_duration > rsp->gp_max)
2140 rsp->gp_max = gp_duration;
2141
2142 /*
2143 * We know the grace period is complete, but to everyone else
2144 * it appears to still be ongoing. But it is also the case
2145 * that to everyone else it looks like there is nothing that
2146 * they can do to advance the grace period. It is therefore
2147 * safe for us to drop the lock in order to mark the grace
2148 * period as completed in all of the rcu_node structures.
2149 */
2150 raw_spin_unlock_irq_rcu_node(rnp);
2151
2152 /*
2153 * Propagate new ->completed value to rcu_node structures so
2154 * that other CPUs don't have to wait until the start of the next
2155 * grace period to process their callbacks. This also avoids
2156 * some nasty RCU grace-period initialization races by forcing
2157 * the end of the current grace period to be completely recorded in
2158 * all of the rcu_node structures before the beginning of the next
2159 * grace period is recorded in any of the rcu_node structures.
2160 */
2161 rcu_for_each_node_breadth_first(rsp, rnp) {
2162 raw_spin_lock_irq_rcu_node(rnp);
2163 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2164 WARN_ON_ONCE(rnp->qsmask);
2165 WRITE_ONCE(rnp->completed, rsp->gpnum);
2166 rdp = this_cpu_ptr(rsp->rda);
2167 if (rnp == rdp->mynode)
2168 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2169 /* smp_mb() provided by prior unlock-lock pair. */
2170 nocb += rcu_future_gp_cleanup(rsp, rnp);
2171 sq = rcu_nocb_gp_get(rnp);
2172 raw_spin_unlock_irq_rcu_node(rnp);
2173 rcu_nocb_gp_cleanup(sq);
2174 cond_resched_rcu_qs();
2175 WRITE_ONCE(rsp->gp_activity, jiffies);
2176 rcu_gp_slow(rsp, gp_cleanup_delay);
2177 }
2178 rnp = rcu_get_root(rsp);
2179 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2180 rcu_nocb_gp_set(rnp, nocb);
2181
2182 /* Declare grace period done. */
2183 WRITE_ONCE(rsp->completed, rsp->gpnum);
2184 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2185 rsp->gp_state = RCU_GP_IDLE;
2186 rdp = this_cpu_ptr(rsp->rda);
2187 /* Advance CBs to reduce false positives below. */
2188 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2189 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2190 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2191 trace_rcu_grace_period(rsp->name,
2192 READ_ONCE(rsp->gpnum),
2193 TPS("newreq"));
2194 }
2195 raw_spin_unlock_irq_rcu_node(rnp);
2196 }
2197
2198 /*
2199 * Body of kthread that handles grace periods.
2200 */
2201 static int __noreturn rcu_gp_kthread(void *arg)
2202 {
2203 bool first_gp_fqs;
2204 int gf;
2205 unsigned long j;
2206 int ret;
2207 struct rcu_state *rsp = arg;
2208 struct rcu_node *rnp = rcu_get_root(rsp);
2209
2210 rcu_bind_gp_kthread();
2211 for (;;) {
2212
2213 /* Handle grace-period start. */
2214 for (;;) {
2215 trace_rcu_grace_period(rsp->name,
2216 READ_ONCE(rsp->gpnum),
2217 TPS("reqwait"));
2218 rsp->gp_state = RCU_GP_WAIT_GPS;
2219 swait_event_interruptible(rsp->gp_wq,
2220 READ_ONCE(rsp->gp_flags) &
2221 RCU_GP_FLAG_INIT);
2222 rsp->gp_state = RCU_GP_DONE_GPS;
2223 /* Locking provides needed memory barrier. */
2224 if (rcu_gp_init(rsp))
2225 break;
2226 cond_resched_rcu_qs();
2227 WRITE_ONCE(rsp->gp_activity, jiffies);
2228 WARN_ON(signal_pending(current));
2229 trace_rcu_grace_period(rsp->name,
2230 READ_ONCE(rsp->gpnum),
2231 TPS("reqwaitsig"));
2232 }
2233
2234 /* Handle quiescent-state forcing. */
2235 first_gp_fqs = true;
2236 j = jiffies_till_first_fqs;
2237 if (j > HZ) {
2238 j = HZ;
2239 jiffies_till_first_fqs = HZ;
2240 }
2241 ret = 0;
2242 for (;;) {
2243 if (!ret) {
2244 rsp->jiffies_force_qs = jiffies + j;
2245 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2246 jiffies + 3 * j);
2247 }
2248 trace_rcu_grace_period(rsp->name,
2249 READ_ONCE(rsp->gpnum),
2250 TPS("fqswait"));
2251 rsp->gp_state = RCU_GP_WAIT_FQS;
2252 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2253 rcu_gp_fqs_check_wake(rsp, &gf), j);
2254 rsp->gp_state = RCU_GP_DOING_FQS;
2255 /* Locking provides needed memory barriers. */
2256 /* If grace period done, leave loop. */
2257 if (!READ_ONCE(rnp->qsmask) &&
2258 !rcu_preempt_blocked_readers_cgp(rnp))
2259 break;
2260 /* If time for quiescent-state forcing, do it. */
2261 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2262 (gf & RCU_GP_FLAG_FQS)) {
2263 trace_rcu_grace_period(rsp->name,
2264 READ_ONCE(rsp->gpnum),
2265 TPS("fqsstart"));
2266 rcu_gp_fqs(rsp, first_gp_fqs);
2267 first_gp_fqs = false;
2268 trace_rcu_grace_period(rsp->name,
2269 READ_ONCE(rsp->gpnum),
2270 TPS("fqsend"));
2271 cond_resched_rcu_qs();
2272 WRITE_ONCE(rsp->gp_activity, jiffies);
2273 ret = 0; /* Force full wait till next FQS. */
2274 j = jiffies_till_next_fqs;
2275 if (j > HZ) {
2276 j = HZ;
2277 jiffies_till_next_fqs = HZ;
2278 } else if (j < 1) {
2279 j = 1;
2280 jiffies_till_next_fqs = 1;
2281 }
2282 } else {
2283 /* Deal with stray signal. */
2284 cond_resched_rcu_qs();
2285 WRITE_ONCE(rsp->gp_activity, jiffies);
2286 WARN_ON(signal_pending(current));
2287 trace_rcu_grace_period(rsp->name,
2288 READ_ONCE(rsp->gpnum),
2289 TPS("fqswaitsig"));
2290 ret = 1; /* Keep old FQS timing. */
2291 j = jiffies;
2292 if (time_after(jiffies, rsp->jiffies_force_qs))
2293 j = 1;
2294 else
2295 j = rsp->jiffies_force_qs - j;
2296 }
2297 }
2298
2299 /* Handle grace-period end. */
2300 rsp->gp_state = RCU_GP_CLEANUP;
2301 rcu_gp_cleanup(rsp);
2302 rsp->gp_state = RCU_GP_CLEANED;
2303 }
2304 }
2305
2306 /*
2307 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2308 * in preparation for detecting the next grace period. The caller must hold
2309 * the root node's ->lock and hard irqs must be disabled.
2310 *
2311 * Note that it is legal for a dying CPU (which is marked as offline) to
2312 * invoke this function. This can happen when the dying CPU reports its
2313 * quiescent state.
2314 *
2315 * Returns true if the grace-period kthread must be awakened.
2316 */
2317 static bool
2318 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2319 struct rcu_data *rdp)
2320 {
2321 lockdep_assert_held(&rnp->lock);
2322 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2323 /*
2324 * Either we have not yet spawned the grace-period
2325 * task, this CPU does not need another grace period,
2326 * or a grace period is already in progress.
2327 * Either way, don't start a new grace period.
2328 */
2329 return false;
2330 }
2331 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2332 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2333 TPS("newreq"));
2334
2335 /*
2336 * We can't do wakeups while holding the rnp->lock, as that
2337 * could cause possible deadlocks with the rq->lock. Defer
2338 * the wakeup to our caller.
2339 */
2340 return true;
2341 }
2342
2343 /*
2344 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2345 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2346 * is invoked indirectly from rcu_advance_cbs(), which would result in
2347 * endless recursion -- or would do so if it wasn't for the self-deadlock
2348 * that is encountered beforehand.
2349 *
2350 * Returns true if the grace-period kthread needs to be awakened.
2351 */
2352 static bool rcu_start_gp(struct rcu_state *rsp)
2353 {
2354 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2355 struct rcu_node *rnp = rcu_get_root(rsp);
2356 bool ret = false;
2357
2358 /*
2359 * If there is no grace period in progress right now, any
2360 * callbacks we have up to this point will be satisfied by the
2361 * next grace period. Also, advancing the callbacks reduces the
2362 * probability of false positives from cpu_needs_another_gp()
2363 * resulting in pointless grace periods. So, advance callbacks
2364 * then start the grace period!
2365 */
2366 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2367 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2368 return ret;
2369 }
2370
2371 /*
2372 * Report a full set of quiescent states to the specified rcu_state data
2373 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2374 * kthread if another grace period is required. Whether we wake
2375 * the grace-period kthread or it awakens itself for the next round
2376 * of quiescent-state forcing, that kthread will clean up after the
2377 * just-completed grace period. Note that the caller must hold rnp->lock,
2378 * which is released before return.
2379 */
2380 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2381 __releases(rcu_get_root(rsp)->lock)
2382 {
2383 lockdep_assert_held(&rcu_get_root(rsp)->lock);
2384 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2385 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2386 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2387 rcu_gp_kthread_wake(rsp);
2388 }
2389
2390 /*
2391 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2392 * Allows quiescent states for a group of CPUs to be reported at one go
2393 * to the specified rcu_node structure, though all the CPUs in the group
2394 * must be represented by the same rcu_node structure (which need not be a
2395 * leaf rcu_node structure, though it often will be). The gps parameter
2396 * is the grace-period snapshot, which means that the quiescent states
2397 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2398 * must be held upon entry, and it is released before return.
2399 */
2400 static void
2401 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2402 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2403 __releases(rnp->lock)
2404 {
2405 unsigned long oldmask = 0;
2406 struct rcu_node *rnp_c;
2407
2408 lockdep_assert_held(&rnp->lock);
2409
2410 /* Walk up the rcu_node hierarchy. */
2411 for (;;) {
2412 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2413
2414 /*
2415 * Our bit has already been cleared, or the
2416 * relevant grace period is already over, so done.
2417 */
2418 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2419 return;
2420 }
2421 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2422 rnp->qsmask &= ~mask;
2423 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2424 mask, rnp->qsmask, rnp->level,
2425 rnp->grplo, rnp->grphi,
2426 !!rnp->gp_tasks);
2427 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2428
2429 /* Other bits still set at this level, so done. */
2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431 return;
2432 }
2433 mask = rnp->grpmask;
2434 if (rnp->parent == NULL) {
2435
2436 /* No more levels. Exit loop holding root lock. */
2437
2438 break;
2439 }
2440 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2441 rnp_c = rnp;
2442 rnp = rnp->parent;
2443 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2444 oldmask = rnp_c->qsmask;
2445 }
2446
2447 /*
2448 * Get here if we are the last CPU to pass through a quiescent
2449 * state for this grace period. Invoke rcu_report_qs_rsp()
2450 * to clean up and start the next grace period if one is needed.
2451 */
2452 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2453 }
2454
2455 /*
2456 * Record a quiescent state for all tasks that were previously queued
2457 * on the specified rcu_node structure and that were blocking the current
2458 * RCU grace period. The caller must hold the specified rnp->lock with
2459 * irqs disabled, and this lock is released upon return, but irqs remain
2460 * disabled.
2461 */
2462 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2463 struct rcu_node *rnp, unsigned long flags)
2464 __releases(rnp->lock)
2465 {
2466 unsigned long gps;
2467 unsigned long mask;
2468 struct rcu_node *rnp_p;
2469
2470 lockdep_assert_held(&rnp->lock);
2471 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2472 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2474 return; /* Still need more quiescent states! */
2475 }
2476
2477 rnp_p = rnp->parent;
2478 if (rnp_p == NULL) {
2479 /*
2480 * Only one rcu_node structure in the tree, so don't
2481 * try to report up to its nonexistent parent!
2482 */
2483 rcu_report_qs_rsp(rsp, flags);
2484 return;
2485 }
2486
2487 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2488 gps = rnp->gpnum;
2489 mask = rnp->grpmask;
2490 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2491 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2492 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2493 }
2494
2495 /*
2496 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2497 * structure. This must be called from the specified CPU.
2498 */
2499 static void
2500 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2501 {
2502 unsigned long flags;
2503 unsigned long mask;
2504 bool needwake;
2505 struct rcu_node *rnp;
2506
2507 rnp = rdp->mynode;
2508 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2509 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2510 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2511
2512 /*
2513 * The grace period in which this quiescent state was
2514 * recorded has ended, so don't report it upwards.
2515 * We will instead need a new quiescent state that lies
2516 * within the current grace period.
2517 */
2518 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2519 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2520 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2521 return;
2522 }
2523 mask = rdp->grpmask;
2524 if ((rnp->qsmask & mask) == 0) {
2525 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2526 } else {
2527 rdp->core_needs_qs = false;
2528
2529 /*
2530 * This GP can't end until cpu checks in, so all of our
2531 * callbacks can be processed during the next GP.
2532 */
2533 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2534
2535 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2536 /* ^^^ Released rnp->lock */
2537 if (needwake)
2538 rcu_gp_kthread_wake(rsp);
2539 }
2540 }
2541
2542 /*
2543 * Check to see if there is a new grace period of which this CPU
2544 * is not yet aware, and if so, set up local rcu_data state for it.
2545 * Otherwise, see if this CPU has just passed through its first
2546 * quiescent state for this grace period, and record that fact if so.
2547 */
2548 static void
2549 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2550 {
2551 /* Check for grace-period ends and beginnings. */
2552 note_gp_changes(rsp, rdp);
2553
2554 /*
2555 * Does this CPU still need to do its part for current grace period?
2556 * If no, return and let the other CPUs do their part as well.
2557 */
2558 if (!rdp->core_needs_qs)
2559 return;
2560
2561 /*
2562 * Was there a quiescent state since the beginning of the grace
2563 * period? If no, then exit and wait for the next call.
2564 */
2565 if (rdp->cpu_no_qs.b.norm)
2566 return;
2567
2568 /*
2569 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2570 * judge of that).
2571 */
2572 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2573 }
2574
2575 /*
2576 * Send the specified CPU's RCU callbacks to the orphanage. The
2577 * specified CPU must be offline, and the caller must hold the
2578 * ->orphan_lock.
2579 */
2580 static void
2581 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2582 struct rcu_node *rnp, struct rcu_data *rdp)
2583 {
2584 lockdep_assert_held(&rsp->orphan_lock);
2585
2586 /* No-CBs CPUs do not have orphanable callbacks. */
2587 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2588 return;
2589
2590 /*
2591 * Orphan the callbacks. First adjust the counts. This is safe
2592 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2593 * cannot be running now. Thus no memory barrier is required.
2594 */
2595 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2596 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2597
2598 /*
2599 * Next, move those callbacks still needing a grace period to
2600 * the orphanage, where some other CPU will pick them up.
2601 * Some of the callbacks might have gone partway through a grace
2602 * period, but that is too bad. They get to start over because we
2603 * cannot assume that grace periods are synchronized across CPUs.
2604 */
2605 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2606
2607 /*
2608 * Then move the ready-to-invoke callbacks to the orphanage,
2609 * where some other CPU will pick them up. These will not be
2610 * required to pass though another grace period: They are done.
2611 */
2612 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2613
2614 /* Finally, disallow further callbacks on this CPU. */
2615 rcu_segcblist_disable(&rdp->cblist);
2616 }
2617
2618 /*
2619 * Adopt the RCU callbacks from the specified rcu_state structure's
2620 * orphanage. The caller must hold the ->orphan_lock.
2621 */
2622 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2623 {
2624 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2625
2626 lockdep_assert_held(&rsp->orphan_lock);
2627
2628 /* No-CBs CPUs are handled specially. */
2629 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2630 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2631 return;
2632
2633 /* Do the accounting first. */
2634 rdp->n_cbs_adopted += rsp->orphan_done.len;
2635 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2636 rcu_idle_count_callbacks_posted();
2637 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2638
2639 /*
2640 * We do not need a memory barrier here because the only way we
2641 * can get here if there is an rcu_barrier() in flight is if
2642 * we are the task doing the rcu_barrier().
2643 */
2644
2645 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2646 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2647 WARN_ON_ONCE(rsp->orphan_done.head);
2648 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2649 WARN_ON_ONCE(rsp->orphan_pend.head);
2650 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2651 !rcu_segcblist_n_cbs(&rdp->cblist));
2652 }
2653
2654 /*
2655 * Trace the fact that this CPU is going offline.
2656 */
2657 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2658 {
2659 RCU_TRACE(unsigned long mask;)
2660 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2661 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2662
2663 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2664 return;
2665
2666 RCU_TRACE(mask = rdp->grpmask;)
2667 trace_rcu_grace_period(rsp->name,
2668 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2669 TPS("cpuofl"));
2670 }
2671
2672 /*
2673 * All CPUs for the specified rcu_node structure have gone offline,
2674 * and all tasks that were preempted within an RCU read-side critical
2675 * section while running on one of those CPUs have since exited their RCU
2676 * read-side critical section. Some other CPU is reporting this fact with
2677 * the specified rcu_node structure's ->lock held and interrupts disabled.
2678 * This function therefore goes up the tree of rcu_node structures,
2679 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2680 * the leaf rcu_node structure's ->qsmaskinit field has already been
2681 * updated
2682 *
2683 * This function does check that the specified rcu_node structure has
2684 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2685 * prematurely. That said, invoking it after the fact will cost you
2686 * a needless lock acquisition. So once it has done its work, don't
2687 * invoke it again.
2688 */
2689 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2690 {
2691 long mask;
2692 struct rcu_node *rnp = rnp_leaf;
2693
2694 lockdep_assert_held(&rnp->lock);
2695 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2696 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2697 return;
2698 for (;;) {
2699 mask = rnp->grpmask;
2700 rnp = rnp->parent;
2701 if (!rnp)
2702 break;
2703 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2704 rnp->qsmaskinit &= ~mask;
2705 rnp->qsmask &= ~mask;
2706 if (rnp->qsmaskinit) {
2707 raw_spin_unlock_rcu_node(rnp);
2708 /* irqs remain disabled. */
2709 return;
2710 }
2711 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2712 }
2713 }
2714
2715 /*
2716 * The CPU has been completely removed, and some other CPU is reporting
2717 * this fact from process context. Do the remainder of the cleanup,
2718 * including orphaning the outgoing CPU's RCU callbacks, and also
2719 * adopting them. There can only be one CPU hotplug operation at a time,
2720 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2721 */
2722 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2723 {
2724 unsigned long flags;
2725 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2726 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2727
2728 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2729 return;
2730
2731 /* Adjust any no-longer-needed kthreads. */
2732 rcu_boost_kthread_setaffinity(rnp, -1);
2733
2734 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2735 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2736 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2737 rcu_adopt_orphan_cbs(rsp, flags);
2738 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2739
2740 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2741 !rcu_segcblist_empty(&rdp->cblist),
2742 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2743 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2744 rcu_segcblist_first_cb(&rdp->cblist));
2745 }
2746
2747 /*
2748 * Invoke any RCU callbacks that have made it to the end of their grace
2749 * period. Thottle as specified by rdp->blimit.
2750 */
2751 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2752 {
2753 unsigned long flags;
2754 struct rcu_head *rhp;
2755 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2756 long bl, count;
2757
2758 /* If no callbacks are ready, just return. */
2759 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2760 trace_rcu_batch_start(rsp->name,
2761 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2762 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2763 trace_rcu_batch_end(rsp->name, 0,
2764 !rcu_segcblist_empty(&rdp->cblist),
2765 need_resched(), is_idle_task(current),
2766 rcu_is_callbacks_kthread());
2767 return;
2768 }
2769
2770 /*
2771 * Extract the list of ready callbacks, disabling to prevent
2772 * races with call_rcu() from interrupt handlers. Leave the
2773 * callback counts, as rcu_barrier() needs to be conservative.
2774 */
2775 local_irq_save(flags);
2776 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2777 bl = rdp->blimit;
2778 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2779 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2780 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2781 local_irq_restore(flags);
2782
2783 /* Invoke callbacks. */
2784 rhp = rcu_cblist_dequeue(&rcl);
2785 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2786 debug_rcu_head_unqueue(rhp);
2787 if (__rcu_reclaim(rsp->name, rhp))
2788 rcu_cblist_dequeued_lazy(&rcl);
2789 /*
2790 * Stop only if limit reached and CPU has something to do.
2791 * Note: The rcl structure counts down from zero.
2792 */
2793 if (-rcl.len >= bl &&
2794 (need_resched() ||
2795 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2796 break;
2797 }
2798
2799 local_irq_save(flags);
2800 count = -rcl.len;
2801 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2802 is_idle_task(current), rcu_is_callbacks_kthread());
2803
2804 /* Update counts and requeue any remaining callbacks. */
2805 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2806 smp_mb(); /* List handling before counting for rcu_barrier(). */
2807 rdp->n_cbs_invoked += count;
2808 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2809
2810 /* Reinstate batch limit if we have worked down the excess. */
2811 count = rcu_segcblist_n_cbs(&rdp->cblist);
2812 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2813 rdp->blimit = blimit;
2814
2815 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2816 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2817 rdp->qlen_last_fqs_check = 0;
2818 rdp->n_force_qs_snap = rsp->n_force_qs;
2819 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2820 rdp->qlen_last_fqs_check = count;
2821 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2822
2823 local_irq_restore(flags);
2824
2825 /* Re-invoke RCU core processing if there are callbacks remaining. */
2826 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2827 invoke_rcu_core();
2828 }
2829
2830 /*
2831 * Check to see if this CPU is in a non-context-switch quiescent state
2832 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2833 * Also schedule RCU core processing.
2834 *
2835 * This function must be called from hardirq context. It is normally
2836 * invoked from the scheduling-clock interrupt.
2837 */
2838 void rcu_check_callbacks(int user)
2839 {
2840 trace_rcu_utilization(TPS("Start scheduler-tick"));
2841 increment_cpu_stall_ticks();
2842 if (user || rcu_is_cpu_rrupt_from_idle()) {
2843
2844 /*
2845 * Get here if this CPU took its interrupt from user
2846 * mode or from the idle loop, and if this is not a
2847 * nested interrupt. In this case, the CPU is in
2848 * a quiescent state, so note it.
2849 *
2850 * No memory barrier is required here because both
2851 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2852 * variables that other CPUs neither access nor modify,
2853 * at least not while the corresponding CPU is online.
2854 */
2855
2856 rcu_sched_qs();
2857 rcu_bh_qs();
2858
2859 } else if (!in_softirq()) {
2860
2861 /*
2862 * Get here if this CPU did not take its interrupt from
2863 * softirq, in other words, if it is not interrupting
2864 * a rcu_bh read-side critical section. This is an _bh
2865 * critical section, so note it.
2866 */
2867
2868 rcu_bh_qs();
2869 }
2870 rcu_preempt_check_callbacks();
2871 if (rcu_pending())
2872 invoke_rcu_core();
2873 if (user)
2874 rcu_note_voluntary_context_switch(current);
2875 trace_rcu_utilization(TPS("End scheduler-tick"));
2876 }
2877
2878 /*
2879 * Scan the leaf rcu_node structures, processing dyntick state for any that
2880 * have not yet encountered a quiescent state, using the function specified.
2881 * Also initiate boosting for any threads blocked on the root rcu_node.
2882 *
2883 * The caller must have suppressed start of new grace periods.
2884 */
2885 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2886 {
2887 int cpu;
2888 unsigned long flags;
2889 unsigned long mask;
2890 struct rcu_node *rnp;
2891
2892 rcu_for_each_leaf_node(rsp, rnp) {
2893 cond_resched_rcu_qs();
2894 mask = 0;
2895 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2896 if (rnp->qsmask == 0) {
2897 if (rcu_state_p == &rcu_sched_state ||
2898 rsp != rcu_state_p ||
2899 rcu_preempt_blocked_readers_cgp(rnp)) {
2900 /*
2901 * No point in scanning bits because they
2902 * are all zero. But we might need to
2903 * priority-boost blocked readers.
2904 */
2905 rcu_initiate_boost(rnp, flags);
2906 /* rcu_initiate_boost() releases rnp->lock */
2907 continue;
2908 }
2909 if (rnp->parent &&
2910 (rnp->parent->qsmask & rnp->grpmask)) {
2911 /*
2912 * Race between grace-period
2913 * initialization and task exiting RCU
2914 * read-side critical section: Report.
2915 */
2916 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2917 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2918 continue;
2919 }
2920 }
2921 for_each_leaf_node_possible_cpu(rnp, cpu) {
2922 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2923 if ((rnp->qsmask & bit) != 0) {
2924 if (f(per_cpu_ptr(rsp->rda, cpu)))
2925 mask |= bit;
2926 }
2927 }
2928 if (mask != 0) {
2929 /* Idle/offline CPUs, report (releases rnp->lock. */
2930 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2931 } else {
2932 /* Nothing to do here, so just drop the lock. */
2933 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2934 }
2935 }
2936 }
2937
2938 /*
2939 * Force quiescent states on reluctant CPUs, and also detect which
2940 * CPUs are in dyntick-idle mode.
2941 */
2942 static void force_quiescent_state(struct rcu_state *rsp)
2943 {
2944 unsigned long flags;
2945 bool ret;
2946 struct rcu_node *rnp;
2947 struct rcu_node *rnp_old = NULL;
2948
2949 /* Funnel through hierarchy to reduce memory contention. */
2950 rnp = __this_cpu_read(rsp->rda->mynode);
2951 for (; rnp != NULL; rnp = rnp->parent) {
2952 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2953 !raw_spin_trylock(&rnp->fqslock);
2954 if (rnp_old != NULL)
2955 raw_spin_unlock(&rnp_old->fqslock);
2956 if (ret) {
2957 rsp->n_force_qs_lh++;
2958 return;
2959 }
2960 rnp_old = rnp;
2961 }
2962 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2963
2964 /* Reached the root of the rcu_node tree, acquire lock. */
2965 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2966 raw_spin_unlock(&rnp_old->fqslock);
2967 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2968 rsp->n_force_qs_lh++;
2969 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2970 return; /* Someone beat us to it. */
2971 }
2972 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2973 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2974 rcu_gp_kthread_wake(rsp);
2975 }
2976
2977 /*
2978 * This does the RCU core processing work for the specified rcu_state
2979 * and rcu_data structures. This may be called only from the CPU to
2980 * whom the rdp belongs.
2981 */
2982 static void
2983 __rcu_process_callbacks(struct rcu_state *rsp)
2984 {
2985 unsigned long flags;
2986 bool needwake;
2987 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2988
2989 WARN_ON_ONCE(!rdp->beenonline);
2990
2991 /* Update RCU state based on any recent quiescent states. */
2992 rcu_check_quiescent_state(rsp, rdp);
2993
2994 /* Does this CPU require a not-yet-started grace period? */
2995 local_irq_save(flags);
2996 if (cpu_needs_another_gp(rsp, rdp)) {
2997 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2998 needwake = rcu_start_gp(rsp);
2999 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3000 if (needwake)
3001 rcu_gp_kthread_wake(rsp);
3002 } else {
3003 local_irq_restore(flags);
3004 }
3005
3006 /* If there are callbacks ready, invoke them. */
3007 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3008 invoke_rcu_callbacks(rsp, rdp);
3009
3010 /* Do any needed deferred wakeups of rcuo kthreads. */
3011 do_nocb_deferred_wakeup(rdp);
3012 }
3013
3014 /*
3015 * Do RCU core processing for the current CPU.
3016 */
3017 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3018 {
3019 struct rcu_state *rsp;
3020
3021 if (cpu_is_offline(smp_processor_id()))
3022 return;
3023 trace_rcu_utilization(TPS("Start RCU core"));
3024 for_each_rcu_flavor(rsp)
3025 __rcu_process_callbacks(rsp);
3026 trace_rcu_utilization(TPS("End RCU core"));
3027 }
3028
3029 /*
3030 * Schedule RCU callback invocation. If the specified type of RCU
3031 * does not support RCU priority boosting, just do a direct call,
3032 * otherwise wake up the per-CPU kernel kthread. Note that because we
3033 * are running on the current CPU with softirqs disabled, the
3034 * rcu_cpu_kthread_task cannot disappear out from under us.
3035 */
3036 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3037 {
3038 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3039 return;
3040 if (likely(!rsp->boost)) {
3041 rcu_do_batch(rsp, rdp);
3042 return;
3043 }
3044 invoke_rcu_callbacks_kthread();
3045 }
3046
3047 static void invoke_rcu_core(void)
3048 {
3049 if (cpu_online(smp_processor_id()))
3050 raise_softirq(RCU_SOFTIRQ);
3051 }
3052
3053 /*
3054 * Handle any core-RCU processing required by a call_rcu() invocation.
3055 */
3056 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3057 struct rcu_head *head, unsigned long flags)
3058 {
3059 bool needwake;
3060
3061 /*
3062 * If called from an extended quiescent state, invoke the RCU
3063 * core in order to force a re-evaluation of RCU's idleness.
3064 */
3065 if (!rcu_is_watching())
3066 invoke_rcu_core();
3067
3068 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3069 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3070 return;
3071
3072 /*
3073 * Force the grace period if too many callbacks or too long waiting.
3074 * Enforce hysteresis, and don't invoke force_quiescent_state()
3075 * if some other CPU has recently done so. Also, don't bother
3076 * invoking force_quiescent_state() if the newly enqueued callback
3077 * is the only one waiting for a grace period to complete.
3078 */
3079 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3080 rdp->qlen_last_fqs_check + qhimark)) {
3081
3082 /* Are we ignoring a completed grace period? */
3083 note_gp_changes(rsp, rdp);
3084
3085 /* Start a new grace period if one not already started. */
3086 if (!rcu_gp_in_progress(rsp)) {
3087 struct rcu_node *rnp_root = rcu_get_root(rsp);
3088
3089 raw_spin_lock_rcu_node(rnp_root);
3090 needwake = rcu_start_gp(rsp);
3091 raw_spin_unlock_rcu_node(rnp_root);
3092 if (needwake)
3093 rcu_gp_kthread_wake(rsp);
3094 } else {
3095 /* Give the grace period a kick. */
3096 rdp->blimit = LONG_MAX;
3097 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3098 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3099 force_quiescent_state(rsp);
3100 rdp->n_force_qs_snap = rsp->n_force_qs;
3101 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3102 }
3103 }
3104 }
3105
3106 /*
3107 * RCU callback function to leak a callback.
3108 */
3109 static void rcu_leak_callback(struct rcu_head *rhp)
3110 {
3111 }
3112
3113 /*
3114 * Helper function for call_rcu() and friends. The cpu argument will
3115 * normally be -1, indicating "currently running CPU". It may specify
3116 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3117 * is expected to specify a CPU.
3118 */
3119 static void
3120 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3121 struct rcu_state *rsp, int cpu, bool lazy)
3122 {
3123 unsigned long flags;
3124 struct rcu_data *rdp;
3125
3126 /* Misaligned rcu_head! */
3127 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3128
3129 if (debug_rcu_head_queue(head)) {
3130 /*
3131 * Probable double call_rcu(), so leak the callback.
3132 * Use rcu:rcu_callback trace event to find the previous
3133 * time callback was passed to __call_rcu().
3134 */
3135 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3136 head, head->func);
3137 WRITE_ONCE(head->func, rcu_leak_callback);
3138 return;
3139 }
3140 head->func = func;
3141 head->next = NULL;
3142 local_irq_save(flags);
3143 rdp = this_cpu_ptr(rsp->rda);
3144
3145 /* Add the callback to our list. */
3146 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3147 int offline;
3148
3149 if (cpu != -1)
3150 rdp = per_cpu_ptr(rsp->rda, cpu);
3151 if (likely(rdp->mynode)) {
3152 /* Post-boot, so this should be for a no-CBs CPU. */
3153 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3154 WARN_ON_ONCE(offline);
3155 /* Offline CPU, _call_rcu() illegal, leak callback. */
3156 local_irq_restore(flags);
3157 return;
3158 }
3159 /*
3160 * Very early boot, before rcu_init(). Initialize if needed
3161 * and then drop through to queue the callback.
3162 */
3163 BUG_ON(cpu != -1);
3164 WARN_ON_ONCE(!rcu_is_watching());
3165 if (rcu_segcblist_empty(&rdp->cblist))
3166 rcu_segcblist_init(&rdp->cblist);
3167 }
3168 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3169 if (!lazy)
3170 rcu_idle_count_callbacks_posted();
3171
3172 if (__is_kfree_rcu_offset((unsigned long)func))
3173 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3174 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3175 rcu_segcblist_n_cbs(&rdp->cblist));
3176 else
3177 trace_rcu_callback(rsp->name, head,
3178 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3179 rcu_segcblist_n_cbs(&rdp->cblist));
3180
3181 /* Go handle any RCU core processing required. */
3182 __call_rcu_core(rsp, rdp, head, flags);
3183 local_irq_restore(flags);
3184 }
3185
3186 /**
3187 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3188 * @head: structure to be used for queueing the RCU updates.
3189 * @func: actual callback function to be invoked after the grace period
3190 *
3191 * The callback function will be invoked some time after a full grace
3192 * period elapses, in other words after all currently executing RCU
3193 * read-side critical sections have completed. call_rcu_sched() assumes
3194 * that the read-side critical sections end on enabling of preemption
3195 * or on voluntary preemption.
3196 * RCU read-side critical sections are delimited by :
3197 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3198 * - anything that disables preemption.
3199 *
3200 * These may be nested.
3201 *
3202 * See the description of call_rcu() for more detailed information on
3203 * memory ordering guarantees.
3204 */
3205 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3206 {
3207 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3208 }
3209 EXPORT_SYMBOL_GPL(call_rcu_sched);
3210
3211 /**
3212 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3213 * @head: structure to be used for queueing the RCU updates.
3214 * @func: actual callback function to be invoked after the grace period
3215 *
3216 * The callback function will be invoked some time after a full grace
3217 * period elapses, in other words after all currently executing RCU
3218 * read-side critical sections have completed. call_rcu_bh() assumes
3219 * that the read-side critical sections end on completion of a softirq
3220 * handler. This means that read-side critical sections in process
3221 * context must not be interrupted by softirqs. This interface is to be
3222 * used when most of the read-side critical sections are in softirq context.
3223 * RCU read-side critical sections are delimited by :
3224 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
3225 * OR
3226 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3227 * These may be nested.
3228 *
3229 * See the description of call_rcu() for more detailed information on
3230 * memory ordering guarantees.
3231 */
3232 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3233 {
3234 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3235 }
3236 EXPORT_SYMBOL_GPL(call_rcu_bh);
3237
3238 /*
3239 * Queue an RCU callback for lazy invocation after a grace period.
3240 * This will likely be later named something like "call_rcu_lazy()",
3241 * but this change will require some way of tagging the lazy RCU
3242 * callbacks in the list of pending callbacks. Until then, this
3243 * function may only be called from __kfree_rcu().
3244 */
3245 void kfree_call_rcu(struct rcu_head *head,
3246 rcu_callback_t func)
3247 {
3248 __call_rcu(head, func, rcu_state_p, -1, 1);
3249 }
3250 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3251
3252 /*
3253 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3254 * any blocking grace-period wait automatically implies a grace period
3255 * if there is only one CPU online at any point time during execution
3256 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3257 * occasionally incorrectly indicate that there are multiple CPUs online
3258 * when there was in fact only one the whole time, as this just adds
3259 * some overhead: RCU still operates correctly.
3260 */
3261 static inline int rcu_blocking_is_gp(void)
3262 {
3263 int ret;
3264
3265 might_sleep(); /* Check for RCU read-side critical section. */
3266 preempt_disable();
3267 ret = num_online_cpus() <= 1;
3268 preempt_enable();
3269 return ret;
3270 }
3271
3272 /**
3273 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3274 *
3275 * Control will return to the caller some time after a full rcu-sched
3276 * grace period has elapsed, in other words after all currently executing
3277 * rcu-sched read-side critical sections have completed. These read-side
3278 * critical sections are delimited by rcu_read_lock_sched() and
3279 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3280 * local_irq_disable(), and so on may be used in place of
3281 * rcu_read_lock_sched().
3282 *
3283 * This means that all preempt_disable code sequences, including NMI and
3284 * non-threaded hardware-interrupt handlers, in progress on entry will
3285 * have completed before this primitive returns. However, this does not
3286 * guarantee that softirq handlers will have completed, since in some
3287 * kernels, these handlers can run in process context, and can block.
3288 *
3289 * Note that this guarantee implies further memory-ordering guarantees.
3290 * On systems with more than one CPU, when synchronize_sched() returns,
3291 * each CPU is guaranteed to have executed a full memory barrier since the
3292 * end of its last RCU-sched read-side critical section whose beginning
3293 * preceded the call to synchronize_sched(). In addition, each CPU having
3294 * an RCU read-side critical section that extends beyond the return from
3295 * synchronize_sched() is guaranteed to have executed a full memory barrier
3296 * after the beginning of synchronize_sched() and before the beginning of
3297 * that RCU read-side critical section. Note that these guarantees include
3298 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3299 * that are executing in the kernel.
3300 *
3301 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3302 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3303 * to have executed a full memory barrier during the execution of
3304 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3305 * again only if the system has more than one CPU).
3306 */
3307 void synchronize_sched(void)
3308 {
3309 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3310 lock_is_held(&rcu_lock_map) ||
3311 lock_is_held(&rcu_sched_lock_map),
3312 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3313 if (rcu_blocking_is_gp())
3314 return;
3315 if (rcu_gp_is_expedited())
3316 synchronize_sched_expedited();
3317 else
3318 wait_rcu_gp(call_rcu_sched);
3319 }
3320 EXPORT_SYMBOL_GPL(synchronize_sched);
3321
3322 /**
3323 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3324 *
3325 * Control will return to the caller some time after a full rcu_bh grace
3326 * period has elapsed, in other words after all currently executing rcu_bh
3327 * read-side critical sections have completed. RCU read-side critical
3328 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3329 * and may be nested.
3330 *
3331 * See the description of synchronize_sched() for more detailed information
3332 * on memory ordering guarantees.
3333 */
3334 void synchronize_rcu_bh(void)
3335 {
3336 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3337 lock_is_held(&rcu_lock_map) ||
3338 lock_is_held(&rcu_sched_lock_map),
3339 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3340 if (rcu_blocking_is_gp())
3341 return;
3342 if (rcu_gp_is_expedited())
3343 synchronize_rcu_bh_expedited();
3344 else
3345 wait_rcu_gp(call_rcu_bh);
3346 }
3347 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3348
3349 /**
3350 * get_state_synchronize_rcu - Snapshot current RCU state
3351 *
3352 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3353 * to determine whether or not a full grace period has elapsed in the
3354 * meantime.
3355 */
3356 unsigned long get_state_synchronize_rcu(void)
3357 {
3358 /*
3359 * Any prior manipulation of RCU-protected data must happen
3360 * before the load from ->gpnum.
3361 */
3362 smp_mb(); /* ^^^ */
3363
3364 /*
3365 * Make sure this load happens before the purportedly
3366 * time-consuming work between get_state_synchronize_rcu()
3367 * and cond_synchronize_rcu().
3368 */
3369 return smp_load_acquire(&rcu_state_p->gpnum);
3370 }
3371 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3372
3373 /**
3374 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3375 *
3376 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3377 *
3378 * If a full RCU grace period has elapsed since the earlier call to
3379 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3380 * synchronize_rcu() to wait for a full grace period.
3381 *
3382 * Yes, this function does not take counter wrap into account. But
3383 * counter wrap is harmless. If the counter wraps, we have waited for
3384 * more than 2 billion grace periods (and way more on a 64-bit system!),
3385 * so waiting for one additional grace period should be just fine.
3386 */
3387 void cond_synchronize_rcu(unsigned long oldstate)
3388 {
3389 unsigned long newstate;
3390
3391 /*
3392 * Ensure that this load happens before any RCU-destructive
3393 * actions the caller might carry out after we return.
3394 */
3395 newstate = smp_load_acquire(&rcu_state_p->completed);
3396 if (ULONG_CMP_GE(oldstate, newstate))
3397 synchronize_rcu();
3398 }
3399 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3400
3401 /**
3402 * get_state_synchronize_sched - Snapshot current RCU-sched state
3403 *
3404 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3405 * to determine whether or not a full grace period has elapsed in the
3406 * meantime.
3407 */
3408 unsigned long get_state_synchronize_sched(void)
3409 {
3410 /*
3411 * Any prior manipulation of RCU-protected data must happen
3412 * before the load from ->gpnum.
3413 */
3414 smp_mb(); /* ^^^ */
3415
3416 /*
3417 * Make sure this load happens before the purportedly
3418 * time-consuming work between get_state_synchronize_sched()
3419 * and cond_synchronize_sched().
3420 */
3421 return smp_load_acquire(&rcu_sched_state.gpnum);
3422 }
3423 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3424
3425 /**
3426 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3427 *
3428 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3429 *
3430 * If a full RCU-sched grace period has elapsed since the earlier call to
3431 * get_state_synchronize_sched(), just return. Otherwise, invoke
3432 * synchronize_sched() to wait for a full grace period.
3433 *
3434 * Yes, this function does not take counter wrap into account. But
3435 * counter wrap is harmless. If the counter wraps, we have waited for
3436 * more than 2 billion grace periods (and way more on a 64-bit system!),
3437 * so waiting for one additional grace period should be just fine.
3438 */
3439 void cond_synchronize_sched(unsigned long oldstate)
3440 {
3441 unsigned long newstate;
3442
3443 /*
3444 * Ensure that this load happens before any RCU-destructive
3445 * actions the caller might carry out after we return.
3446 */
3447 newstate = smp_load_acquire(&rcu_sched_state.completed);
3448 if (ULONG_CMP_GE(oldstate, newstate))
3449 synchronize_sched();
3450 }
3451 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3452
3453 /*
3454 * Check to see if there is any immediate RCU-related work to be done
3455 * by the current CPU, for the specified type of RCU, returning 1 if so.
3456 * The checks are in order of increasing expense: checks that can be
3457 * carried out against CPU-local state are performed first. However,
3458 * we must check for CPU stalls first, else we might not get a chance.
3459 */
3460 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3461 {
3462 struct rcu_node *rnp = rdp->mynode;
3463
3464 rdp->n_rcu_pending++;
3465
3466 /* Check for CPU stalls, if enabled. */
3467 check_cpu_stall(rsp, rdp);
3468
3469 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3470 if (rcu_nohz_full_cpu(rsp))
3471 return 0;
3472
3473 /* Is the RCU core waiting for a quiescent state from this CPU? */
3474 if (rcu_scheduler_fully_active &&
3475 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3476 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3477 rdp->n_rp_core_needs_qs++;
3478 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3479 rdp->n_rp_report_qs++;
3480 return 1;
3481 }
3482
3483 /* Does this CPU have callbacks ready to invoke? */
3484 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3485 rdp->n_rp_cb_ready++;
3486 return 1;
3487 }
3488
3489 /* Has RCU gone idle with this CPU needing another grace period? */
3490 if (cpu_needs_another_gp(rsp, rdp)) {
3491 rdp->n_rp_cpu_needs_gp++;
3492 return 1;
3493 }
3494
3495 /* Has another RCU grace period completed? */
3496 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3497 rdp->n_rp_gp_completed++;
3498 return 1;
3499 }
3500
3501 /* Has a new RCU grace period started? */
3502 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3503 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3504 rdp->n_rp_gp_started++;
3505 return 1;
3506 }
3507
3508 /* Does this CPU need a deferred NOCB wakeup? */
3509 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3510 rdp->n_rp_nocb_defer_wakeup++;
3511 return 1;
3512 }
3513
3514 /* nothing to do */
3515 rdp->n_rp_need_nothing++;
3516 return 0;
3517 }
3518
3519 /*
3520 * Check to see if there is any immediate RCU-related work to be done
3521 * by the current CPU, returning 1 if so. This function is part of the
3522 * RCU implementation; it is -not- an exported member of the RCU API.
3523 */
3524 static int rcu_pending(void)
3525 {
3526 struct rcu_state *rsp;
3527
3528 for_each_rcu_flavor(rsp)
3529 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3530 return 1;
3531 return 0;
3532 }
3533
3534 /*
3535 * Return true if the specified CPU has any callback. If all_lazy is
3536 * non-NULL, store an indication of whether all callbacks are lazy.
3537 * (If there are no callbacks, all of them are deemed to be lazy.)
3538 */
3539 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3540 {
3541 bool al = true;
3542 bool hc = false;
3543 struct rcu_data *rdp;
3544 struct rcu_state *rsp;
3545
3546 for_each_rcu_flavor(rsp) {
3547 rdp = this_cpu_ptr(rsp->rda);
3548 if (rcu_segcblist_empty(&rdp->cblist))
3549 continue;
3550 hc = true;
3551 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3552 al = false;
3553 break;
3554 }
3555 }
3556 if (all_lazy)
3557 *all_lazy = al;
3558 return hc;
3559 }
3560
3561 /*
3562 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3563 * the compiler is expected to optimize this away.
3564 */
3565 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3566 int cpu, unsigned long done)
3567 {
3568 trace_rcu_barrier(rsp->name, s, cpu,
3569 atomic_read(&rsp->barrier_cpu_count), done);
3570 }
3571
3572 /*
3573 * RCU callback function for _rcu_barrier(). If we are last, wake
3574 * up the task executing _rcu_barrier().
3575 */
3576 static void rcu_barrier_callback(struct rcu_head *rhp)
3577 {
3578 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3579 struct rcu_state *rsp = rdp->rsp;
3580
3581 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3582 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3583 complete(&rsp->barrier_completion);
3584 } else {
3585 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3586 }
3587 }
3588
3589 /*
3590 * Called with preemption disabled, and from cross-cpu IRQ context.
3591 */
3592 static void rcu_barrier_func(void *type)
3593 {
3594 struct rcu_state *rsp = type;
3595 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3596
3597 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3598 rdp->barrier_head.func = rcu_barrier_callback;
3599 debug_rcu_head_queue(&rdp->barrier_head);
3600 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3601 atomic_inc(&rsp->barrier_cpu_count);
3602 } else {
3603 debug_rcu_head_unqueue(&rdp->barrier_head);
3604 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3605 }
3606 }
3607
3608 /*
3609 * Orchestrate the specified type of RCU barrier, waiting for all
3610 * RCU callbacks of the specified type to complete.
3611 */
3612 static void _rcu_barrier(struct rcu_state *rsp)
3613 {
3614 int cpu;
3615 struct rcu_data *rdp;
3616 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3617
3618 _rcu_barrier_trace(rsp, "Begin", -1, s);
3619
3620 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3621 mutex_lock(&rsp->barrier_mutex);
3622
3623 /* Did someone else do our work for us? */
3624 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3625 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3626 smp_mb(); /* caller's subsequent code after above check. */
3627 mutex_unlock(&rsp->barrier_mutex);
3628 return;
3629 }
3630
3631 /* Mark the start of the barrier operation. */
3632 rcu_seq_start(&rsp->barrier_sequence);
3633 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3634
3635 /*
3636 * Initialize the count to one rather than to zero in order to
3637 * avoid a too-soon return to zero in case of a short grace period
3638 * (or preemption of this task). Exclude CPU-hotplug operations
3639 * to ensure that no offline CPU has callbacks queued.
3640 */
3641 init_completion(&rsp->barrier_completion);
3642 atomic_set(&rsp->barrier_cpu_count, 1);
3643 get_online_cpus();
3644
3645 /*
3646 * Force each CPU with callbacks to register a new callback.
3647 * When that callback is invoked, we will know that all of the
3648 * corresponding CPU's preceding callbacks have been invoked.
3649 */
3650 for_each_possible_cpu(cpu) {
3651 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3652 continue;
3653 rdp = per_cpu_ptr(rsp->rda, cpu);
3654 if (rcu_is_nocb_cpu(cpu)) {
3655 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3656 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3657 rsp->barrier_sequence);
3658 } else {
3659 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3660 rsp->barrier_sequence);
3661 smp_mb__before_atomic();
3662 atomic_inc(&rsp->barrier_cpu_count);
3663 __call_rcu(&rdp->barrier_head,
3664 rcu_barrier_callback, rsp, cpu, 0);
3665 }
3666 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3667 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3668 rsp->barrier_sequence);
3669 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3670 } else {
3671 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3672 rsp->barrier_sequence);
3673 }
3674 }
3675 put_online_cpus();
3676
3677 /*
3678 * Now that we have an rcu_barrier_callback() callback on each
3679 * CPU, and thus each counted, remove the initial count.
3680 */
3681 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3682 complete(&rsp->barrier_completion);
3683
3684 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3685 wait_for_completion(&rsp->barrier_completion);
3686
3687 /* Mark the end of the barrier operation. */
3688 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3689 rcu_seq_end(&rsp->barrier_sequence);
3690
3691 /* Other rcu_barrier() invocations can now safely proceed. */
3692 mutex_unlock(&rsp->barrier_mutex);
3693 }
3694
3695 /**
3696 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3697 */
3698 void rcu_barrier_bh(void)
3699 {
3700 _rcu_barrier(&rcu_bh_state);
3701 }
3702 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3703
3704 /**
3705 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3706 */
3707 void rcu_barrier_sched(void)
3708 {
3709 _rcu_barrier(&rcu_sched_state);
3710 }
3711 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3712
3713 /*
3714 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3715 * first CPU in a given leaf rcu_node structure coming online. The caller
3716 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3717 * disabled.
3718 */
3719 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3720 {
3721 long mask;
3722 struct rcu_node *rnp = rnp_leaf;
3723
3724 lockdep_assert_held(&rnp->lock);
3725 for (;;) {
3726 mask = rnp->grpmask;
3727 rnp = rnp->parent;
3728 if (rnp == NULL)
3729 return;
3730 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3731 rnp->qsmaskinit |= mask;
3732 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3733 }
3734 }
3735
3736 /*
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738 */
3739 static void __init
3740 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741 {
3742 unsigned long flags;
3743 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744 struct rcu_node *rnp = rcu_get_root(rsp);
3745
3746 /* Set up local state, ensuring consistent view of global state. */
3747 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3752 rdp->cpu = cpu;
3753 rdp->rsp = rsp;
3754 rcu_boot_init_nocb_percpu_data(rdp);
3755 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756 }
3757
3758 /*
3759 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3760 * offline event can be happening at a given time. Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3763 */
3764 static void
3765 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766 {
3767 unsigned long flags;
3768 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3769 struct rcu_node *rnp = rcu_get_root(rsp);
3770
3771 /* Set up local state, ensuring consistent view of global state. */
3772 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3773 rdp->qlen_last_fqs_check = 0;
3774 rdp->n_force_qs_snap = rsp->n_force_qs;
3775 rdp->blimit = blimit;
3776 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3777 !init_nocb_callback_list(rdp))
3778 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3779 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780 rcu_dynticks_eqs_online();
3781 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3782
3783 /*
3784 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3785 * propagation up the rcu_node tree will happen at the beginning
3786 * of the next grace period.
3787 */
3788 rnp = rdp->mynode;
3789 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3790 if (!rdp->beenonline)
3791 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3792 rdp->beenonline = true; /* We have now been online. */
3793 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3794 rdp->completed = rnp->completed;
3795 rdp->cpu_no_qs.b.norm = true;
3796 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3797 rdp->core_needs_qs = false;
3798 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3799 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3800 }
3801
3802 /*
3803 * Invoked early in the CPU-online process, when pretty much all
3804 * services are available. The incoming CPU is not present.
3805 */
3806 int rcutree_prepare_cpu(unsigned int cpu)
3807 {
3808 struct rcu_state *rsp;
3809
3810 for_each_rcu_flavor(rsp)
3811 rcu_init_percpu_data(cpu, rsp);
3812
3813 rcu_prepare_kthreads(cpu);
3814 rcu_spawn_all_nocb_kthreads(cpu);
3815
3816 return 0;
3817 }
3818
3819 /*
3820 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3821 */
3822 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3823 {
3824 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3825
3826 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3827 }
3828
3829 /*
3830 * Near the end of the CPU-online process. Pretty much all services
3831 * enabled, and the CPU is now very much alive.
3832 */
3833 int rcutree_online_cpu(unsigned int cpu)
3834 {
3835 sync_sched_exp_online_cleanup(cpu);
3836 rcutree_affinity_setting(cpu, -1);
3837 if (IS_ENABLED(CONFIG_TREE_SRCU))
3838 srcu_online_cpu(cpu);
3839 return 0;
3840 }
3841
3842 /*
3843 * Near the beginning of the process. The CPU is still very much alive
3844 * with pretty much all services enabled.
3845 */
3846 int rcutree_offline_cpu(unsigned int cpu)
3847 {
3848 rcutree_affinity_setting(cpu, cpu);
3849 if (IS_ENABLED(CONFIG_TREE_SRCU))
3850 srcu_offline_cpu(cpu);
3851 return 0;
3852 }
3853
3854 /*
3855 * Near the end of the offline process. We do only tracing here.
3856 */
3857 int rcutree_dying_cpu(unsigned int cpu)
3858 {
3859 struct rcu_state *rsp;
3860
3861 for_each_rcu_flavor(rsp)
3862 rcu_cleanup_dying_cpu(rsp);
3863 return 0;
3864 }
3865
3866 /*
3867 * The outgoing CPU is gone and we are running elsewhere.
3868 */
3869 int rcutree_dead_cpu(unsigned int cpu)
3870 {
3871 struct rcu_state *rsp;
3872
3873 for_each_rcu_flavor(rsp) {
3874 rcu_cleanup_dead_cpu(cpu, rsp);
3875 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3876 }
3877 return 0;
3878 }
3879
3880 /*
3881 * Mark the specified CPU as being online so that subsequent grace periods
3882 * (both expedited and normal) will wait on it. Note that this means that
3883 * incoming CPUs are not allowed to use RCU read-side critical sections
3884 * until this function is called. Failing to observe this restriction
3885 * will result in lockdep splats.
3886 *
3887 * Note that this function is special in that it is invoked directly
3888 * from the incoming CPU rather than from the cpuhp_step mechanism.
3889 * This is because this function must be invoked at a precise location.
3890 */
3891 void rcu_cpu_starting(unsigned int cpu)
3892 {
3893 unsigned long flags;
3894 unsigned long mask;
3895 struct rcu_data *rdp;
3896 struct rcu_node *rnp;
3897 struct rcu_state *rsp;
3898
3899 for_each_rcu_flavor(rsp) {
3900 rdp = per_cpu_ptr(rsp->rda, cpu);
3901 rnp = rdp->mynode;
3902 mask = rdp->grpmask;
3903 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3904 rnp->qsmaskinitnext |= mask;
3905 rnp->expmaskinitnext |= mask;
3906 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3907 }
3908 }
3909
3910 #ifdef CONFIG_HOTPLUG_CPU
3911 /*
3912 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3913 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3914 * bit masks.
3915 */
3916 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3917 {
3918 unsigned long flags;
3919 unsigned long mask;
3920 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3921 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3922
3923 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3924 mask = rdp->grpmask;
3925 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3926 rnp->qsmaskinitnext &= ~mask;
3927 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3928 }
3929
3930 /*
3931 * The outgoing function has no further need of RCU, so remove it from
3932 * the list of CPUs that RCU must track.
3933 *
3934 * Note that this function is special in that it is invoked directly
3935 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3936 * This is because this function must be invoked at a precise location.
3937 */
3938 void rcu_report_dead(unsigned int cpu)
3939 {
3940 struct rcu_state *rsp;
3941
3942 /* QS for any half-done expedited RCU-sched GP. */
3943 preempt_disable();
3944 rcu_report_exp_rdp(&rcu_sched_state,
3945 this_cpu_ptr(rcu_sched_state.rda), true);
3946 preempt_enable();
3947 for_each_rcu_flavor(rsp)
3948 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3949 }
3950 #endif
3951
3952 /*
3953 * On non-huge systems, use expedited RCU grace periods to make suspend
3954 * and hibernation run faster.
3955 */
3956 static int rcu_pm_notify(struct notifier_block *self,
3957 unsigned long action, void *hcpu)
3958 {
3959 switch (action) {
3960 case PM_HIBERNATION_PREPARE:
3961 case PM_SUSPEND_PREPARE:
3962 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3963 rcu_expedite_gp();
3964 break;
3965 case PM_POST_HIBERNATION:
3966 case PM_POST_SUSPEND:
3967 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3968 rcu_unexpedite_gp();
3969 break;
3970 default:
3971 break;
3972 }
3973 return NOTIFY_OK;
3974 }
3975
3976 /*
3977 * Spawn the kthreads that handle each RCU flavor's grace periods.
3978 */
3979 static int __init rcu_spawn_gp_kthread(void)
3980 {
3981 unsigned long flags;
3982 int kthread_prio_in = kthread_prio;
3983 struct rcu_node *rnp;
3984 struct rcu_state *rsp;
3985 struct sched_param sp;
3986 struct task_struct *t;
3987
3988 /* Force priority into range. */
3989 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3990 kthread_prio = 1;
3991 else if (kthread_prio < 0)
3992 kthread_prio = 0;
3993 else if (kthread_prio > 99)
3994 kthread_prio = 99;
3995 if (kthread_prio != kthread_prio_in)
3996 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3997 kthread_prio, kthread_prio_in);
3998
3999 rcu_scheduler_fully_active = 1;
4000 for_each_rcu_flavor(rsp) {
4001 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4002 BUG_ON(IS_ERR(t));
4003 rnp = rcu_get_root(rsp);
4004 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4005 rsp->gp_kthread = t;
4006 if (kthread_prio) {
4007 sp.sched_priority = kthread_prio;
4008 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4009 }
4010 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4011 wake_up_process(t);
4012 }
4013 rcu_spawn_nocb_kthreads();
4014 rcu_spawn_boost_kthreads();
4015 return 0;
4016 }
4017 early_initcall(rcu_spawn_gp_kthread);
4018
4019 /*
4020 * This function is invoked towards the end of the scheduler's
4021 * initialization process. Before this is called, the idle task might
4022 * contain synchronous grace-period primitives (during which time, this idle
4023 * task is booting the system, and such primitives are no-ops). After this
4024 * function is called, any synchronous grace-period primitives are run as
4025 * expedited, with the requesting task driving the grace period forward.
4026 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4027 * runtime RCU functionality.
4028 */
4029 void rcu_scheduler_starting(void)
4030 {
4031 WARN_ON(num_online_cpus() != 1);
4032 WARN_ON(nr_context_switches() > 0);
4033 rcu_test_sync_prims();
4034 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4035 rcu_test_sync_prims();
4036 }
4037
4038 /*
4039 * Helper function for rcu_init() that initializes one rcu_state structure.
4040 */
4041 static void __init rcu_init_one(struct rcu_state *rsp)
4042 {
4043 static const char * const buf[] = RCU_NODE_NAME_INIT;
4044 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4045 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4046 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4047
4048 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4049 int cpustride = 1;
4050 int i;
4051 int j;
4052 struct rcu_node *rnp;
4053
4054 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4055
4056 /* Silence gcc 4.8 false positive about array index out of range. */
4057 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4058 panic("rcu_init_one: rcu_num_lvls out of range");
4059
4060 /* Initialize the level-tracking arrays. */
4061
4062 for (i = 1; i < rcu_num_lvls; i++)
4063 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4064 rcu_init_levelspread(levelspread, num_rcu_lvl);
4065
4066 /* Initialize the elements themselves, starting from the leaves. */
4067
4068 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4069 cpustride *= levelspread[i];
4070 rnp = rsp->level[i];
4071 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4072 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4073 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4074 &rcu_node_class[i], buf[i]);
4075 raw_spin_lock_init(&rnp->fqslock);
4076 lockdep_set_class_and_name(&rnp->fqslock,
4077 &rcu_fqs_class[i], fqs[i]);
4078 rnp->gpnum = rsp->gpnum;
4079 rnp->completed = rsp->completed;
4080 rnp->qsmask = 0;
4081 rnp->qsmaskinit = 0;
4082 rnp->grplo = j * cpustride;
4083 rnp->grphi = (j + 1) * cpustride - 1;
4084 if (rnp->grphi >= nr_cpu_ids)
4085 rnp->grphi = nr_cpu_ids - 1;
4086 if (i == 0) {
4087 rnp->grpnum = 0;
4088 rnp->grpmask = 0;
4089 rnp->parent = NULL;
4090 } else {
4091 rnp->grpnum = j % levelspread[i - 1];
4092 rnp->grpmask = 1UL << rnp->grpnum;
4093 rnp->parent = rsp->level[i - 1] +
4094 j / levelspread[i - 1];
4095 }
4096 rnp->level = i;
4097 INIT_LIST_HEAD(&rnp->blkd_tasks);
4098 rcu_init_one_nocb(rnp);
4099 init_waitqueue_head(&rnp->exp_wq[0]);
4100 init_waitqueue_head(&rnp->exp_wq[1]);
4101 init_waitqueue_head(&rnp->exp_wq[2]);
4102 init_waitqueue_head(&rnp->exp_wq[3]);
4103 spin_lock_init(&rnp->exp_lock);
4104 }
4105 }
4106
4107 init_swait_queue_head(&rsp->gp_wq);
4108 init_swait_queue_head(&rsp->expedited_wq);
4109 rnp = rsp->level[rcu_num_lvls - 1];
4110 for_each_possible_cpu(i) {
4111 while (i > rnp->grphi)
4112 rnp++;
4113 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4114 rcu_boot_init_percpu_data(i, rsp);
4115 }
4116 list_add(&rsp->flavors, &rcu_struct_flavors);
4117 }
4118
4119 /*
4120 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4121 * replace the definitions in tree.h because those are needed to size
4122 * the ->node array in the rcu_state structure.
4123 */
4124 static void __init rcu_init_geometry(void)
4125 {
4126 ulong d;
4127 int i;
4128 int rcu_capacity[RCU_NUM_LVLS];
4129
4130 /*
4131 * Initialize any unspecified boot parameters.
4132 * The default values of jiffies_till_first_fqs and
4133 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4134 * value, which is a function of HZ, then adding one for each
4135 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4136 */
4137 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4138 if (jiffies_till_first_fqs == ULONG_MAX)
4139 jiffies_till_first_fqs = d;
4140 if (jiffies_till_next_fqs == ULONG_MAX)
4141 jiffies_till_next_fqs = d;
4142
4143 /* If the compile-time values are accurate, just leave. */
4144 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4145 nr_cpu_ids == NR_CPUS)
4146 return;
4147 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4148 rcu_fanout_leaf, nr_cpu_ids);
4149
4150 /*
4151 * The boot-time rcu_fanout_leaf parameter must be at least two
4152 * and cannot exceed the number of bits in the rcu_node masks.
4153 * Complain and fall back to the compile-time values if this
4154 * limit is exceeded.
4155 */
4156 if (rcu_fanout_leaf < 2 ||
4157 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4158 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4159 WARN_ON(1);
4160 return;
4161 }
4162
4163 /*
4164 * Compute number of nodes that can be handled an rcu_node tree
4165 * with the given number of levels.
4166 */
4167 rcu_capacity[0] = rcu_fanout_leaf;
4168 for (i = 1; i < RCU_NUM_LVLS; i++)
4169 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4170
4171 /*
4172 * The tree must be able to accommodate the configured number of CPUs.
4173 * If this limit is exceeded, fall back to the compile-time values.
4174 */
4175 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4176 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4177 WARN_ON(1);
4178 return;
4179 }
4180
4181 /* Calculate the number of levels in the tree. */
4182 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4183 }
4184 rcu_num_lvls = i + 1;
4185
4186 /* Calculate the number of rcu_nodes at each level of the tree. */
4187 for (i = 0; i < rcu_num_lvls; i++) {
4188 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4189 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4190 }
4191
4192 /* Calculate the total number of rcu_node structures. */
4193 rcu_num_nodes = 0;
4194 for (i = 0; i < rcu_num_lvls; i++)
4195 rcu_num_nodes += num_rcu_lvl[i];
4196 }
4197
4198 /*
4199 * Dump out the structure of the rcu_node combining tree associated
4200 * with the rcu_state structure referenced by rsp.
4201 */
4202 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4203 {
4204 int level = 0;
4205 struct rcu_node *rnp;
4206
4207 pr_info("rcu_node tree layout dump\n");
4208 pr_info(" ");
4209 rcu_for_each_node_breadth_first(rsp, rnp) {
4210 if (rnp->level != level) {
4211 pr_cont("\n");
4212 pr_info(" ");
4213 level = rnp->level;
4214 }
4215 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4216 }
4217 pr_cont("\n");
4218 }
4219
4220 void __init rcu_init(void)
4221 {
4222 int cpu;
4223
4224 rcu_early_boot_tests();
4225
4226 rcu_bootup_announce();
4227 rcu_init_geometry();
4228 rcu_init_one(&rcu_bh_state);
4229 rcu_init_one(&rcu_sched_state);
4230 if (dump_tree)
4231 rcu_dump_rcu_node_tree(&rcu_sched_state);
4232 __rcu_init_preempt();
4233 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4234
4235 /*
4236 * We don't need protection against CPU-hotplug here because
4237 * this is called early in boot, before either interrupts
4238 * or the scheduler are operational.
4239 */
4240 pm_notifier(rcu_pm_notify, 0);
4241 for_each_online_cpu(cpu) {
4242 rcutree_prepare_cpu(cpu);
4243 rcu_cpu_starting(cpu);
4244 if (IS_ENABLED(CONFIG_TREE_SRCU))
4245 srcu_online_cpu(cpu);
4246 }
4247 }
4248
4249 #include "tree_exp.h"
4250 #include "tree_plugin.h"