]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/rcu/tree.c
Merge tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / kernel / rcu / tree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include <linux/context_tracking.h>
66 #include "../time/tick-internal.h"
67
68 #include "tree.h"
69 #include "rcu.h"
70
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75
76 /* Data structures. */
77
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 .gpwrap = true,
80 #ifdef CONFIG_RCU_NOCB_CPU
81 .cblist.flags = SEGCBLIST_RCU_CORE,
82 #endif
83 };
84 static struct rcu_state rcu_state = {
85 .level = { &rcu_state.node[0] },
86 .gp_state = RCU_GP_IDLE,
87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
90 .name = RCU_NAME,
91 .abbr = RCU_ABBR,
92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
95 };
96
97 /* Dump rcu_node combining tree at boot to verify correct setup. */
98 static bool dump_tree;
99 module_param(dump_tree, bool, 0444);
100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102 #ifndef CONFIG_PREEMPT_RT
103 module_param(use_softirq, bool, 0444);
104 #endif
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
116 /*
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
121 * optimize synchronize_rcu() to a simple barrier(). When this variable
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
127 */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
131 /*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143 static int rcu_scheduler_fully_active __read_mostly;
144
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
155
156 /*
157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
158 * real-time priority(enabling/disabling) is controlled by
159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
160 */
161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
162 module_param(kthread_prio, int, 0444);
163
164 /* Delay in jiffies for grace-period initialization delays, debug only. */
165
166 static int gp_preinit_delay;
167 module_param(gp_preinit_delay, int, 0444);
168 static int gp_init_delay;
169 module_param(gp_init_delay, int, 0444);
170 static int gp_cleanup_delay;
171 module_param(gp_cleanup_delay, int, 0444);
172
173 // Add delay to rcu_read_unlock() for strict grace periods.
174 static int rcu_unlock_delay;
175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
176 module_param(rcu_unlock_delay, int, 0444);
177 #endif
178
179 /*
180 * This rcu parameter is runtime-read-only. It reflects
181 * a minimum allowed number of objects which can be cached
182 * per-CPU. Object size is equal to one page. This value
183 * can be changed at boot time.
184 */
185 static int rcu_min_cached_objs = 5;
186 module_param(rcu_min_cached_objs, int, 0444);
187
188 // A page shrinker can ask for pages to be freed to make them
189 // available for other parts of the system. This usually happens
190 // under low memory conditions, and in that case we should also
191 // defer page-cache filling for a short time period.
192 //
193 // The default value is 5 seconds, which is long enough to reduce
194 // interference with the shrinker while it asks other systems to
195 // drain their caches.
196 static int rcu_delay_page_cache_fill_msec = 5000;
197 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
198
199 /* Retrieve RCU kthreads priority for rcutorture */
200 int rcu_get_gp_kthreads_prio(void)
201 {
202 return kthread_prio;
203 }
204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
205
206 /*
207 * Number of grace periods between delays, normalized by the duration of
208 * the delay. The longer the delay, the more the grace periods between
209 * each delay. The reason for this normalization is that it means that,
210 * for non-zero delays, the overall slowdown of grace periods is constant
211 * regardless of the duration of the delay. This arrangement balances
212 * the need for long delays to increase some race probabilities with the
213 * need for fast grace periods to increase other race probabilities.
214 */
215 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
216
217 /*
218 * Compute the mask of online CPUs for the specified rcu_node structure.
219 * This will not be stable unless the rcu_node structure's ->lock is
220 * held, but the bit corresponding to the current CPU will be stable
221 * in most contexts.
222 */
223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
224 {
225 return READ_ONCE(rnp->qsmaskinitnext);
226 }
227
228 /*
229 * Is the CPU corresponding to the specified rcu_data structure online
230 * from RCU's perspective? This perspective is given by that structure's
231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
232 */
233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
234 {
235 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
236 }
237
238 /*
239 * Return true if an RCU grace period is in progress. The READ_ONCE()s
240 * permit this function to be invoked without holding the root rcu_node
241 * structure's ->lock, but of course results can be subject to change.
242 */
243 static int rcu_gp_in_progress(void)
244 {
245 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
246 }
247
248 /*
249 * Return the number of callbacks queued on the specified CPU.
250 * Handles both the nocbs and normal cases.
251 */
252 static long rcu_get_n_cbs_cpu(int cpu)
253 {
254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
255
256 if (rcu_segcblist_is_enabled(&rdp->cblist))
257 return rcu_segcblist_n_cbs(&rdp->cblist);
258 return 0;
259 }
260
261 void rcu_softirq_qs(void)
262 {
263 rcu_qs();
264 rcu_preempt_deferred_qs(current);
265 rcu_tasks_qs(current, false);
266 }
267
268 /*
269 * Reset the current CPU's ->dynticks counter to indicate that the
270 * newly onlined CPU is no longer in an extended quiescent state.
271 * This will either leave the counter unchanged, or increment it
272 * to the next non-quiescent value.
273 *
274 * The non-atomic test/increment sequence works because the upper bits
275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
276 * or when the corresponding CPU is offline.
277 */
278 static void rcu_dynticks_eqs_online(void)
279 {
280 if (ct_dynticks() & RCU_DYNTICKS_IDX)
281 return;
282 ct_state_inc(RCU_DYNTICKS_IDX);
283 }
284
285 /*
286 * Snapshot the ->dynticks counter with full ordering so as to allow
287 * stable comparison of this counter with past and future snapshots.
288 */
289 static int rcu_dynticks_snap(int cpu)
290 {
291 smp_mb(); // Fundamental RCU ordering guarantee.
292 return ct_dynticks_cpu_acquire(cpu);
293 }
294
295 /*
296 * Return true if the snapshot returned from rcu_dynticks_snap()
297 * indicates that RCU is in an extended quiescent state.
298 */
299 static bool rcu_dynticks_in_eqs(int snap)
300 {
301 return !(snap & RCU_DYNTICKS_IDX);
302 }
303
304 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */
305 bool rcu_is_idle_cpu(int cpu)
306 {
307 return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
308 }
309
310 /*
311 * Return true if the CPU corresponding to the specified rcu_data
312 * structure has spent some time in an extended quiescent state since
313 * rcu_dynticks_snap() returned the specified snapshot.
314 */
315 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
316 {
317 return snap != rcu_dynticks_snap(rdp->cpu);
318 }
319
320 /*
321 * Return true if the referenced integer is zero while the specified
322 * CPU remains within a single extended quiescent state.
323 */
324 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
325 {
326 int snap;
327
328 // If not quiescent, force back to earlier extended quiescent state.
329 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
330 smp_rmb(); // Order ->dynticks and *vp reads.
331 if (READ_ONCE(*vp))
332 return false; // Non-zero, so report failure;
333 smp_rmb(); // Order *vp read and ->dynticks re-read.
334
335 // If still in the same extended quiescent state, we are good!
336 return snap == ct_dynticks_cpu(cpu);
337 }
338
339 /*
340 * Let the RCU core know that this CPU has gone through the scheduler,
341 * which is a quiescent state. This is called when the need for a
342 * quiescent state is urgent, so we burn an atomic operation and full
343 * memory barriers to let the RCU core know about it, regardless of what
344 * this CPU might (or might not) do in the near future.
345 *
346 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
347 *
348 * The caller must have disabled interrupts and must not be idle.
349 */
350 notrace void rcu_momentary_dyntick_idle(void)
351 {
352 int seq;
353
354 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
355 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
356 /* It is illegal to call this from idle state. */
357 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
358 rcu_preempt_deferred_qs(current);
359 }
360 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
361
362 /**
363 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
364 *
365 * If the current CPU is idle and running at a first-level (not nested)
366 * interrupt, or directly, from idle, return true.
367 *
368 * The caller must have at least disabled IRQs.
369 */
370 static int rcu_is_cpu_rrupt_from_idle(void)
371 {
372 long nesting;
373
374 /*
375 * Usually called from the tick; but also used from smp_function_call()
376 * for expedited grace periods. This latter can result in running from
377 * the idle task, instead of an actual IPI.
378 */
379 lockdep_assert_irqs_disabled();
380
381 /* Check for counter underflows */
382 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
383 "RCU dynticks_nesting counter underflow!");
384 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
385 "RCU dynticks_nmi_nesting counter underflow/zero!");
386
387 /* Are we at first interrupt nesting level? */
388 nesting = ct_dynticks_nmi_nesting();
389 if (nesting > 1)
390 return false;
391
392 /*
393 * If we're not in an interrupt, we must be in the idle task!
394 */
395 WARN_ON_ONCE(!nesting && !is_idle_task(current));
396
397 /* Does CPU appear to be idle from an RCU standpoint? */
398 return ct_dynticks_nesting() == 0;
399 }
400
401 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
402 // Maximum callbacks per rcu_do_batch ...
403 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
404 static long blimit = DEFAULT_RCU_BLIMIT;
405 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
406 static long qhimark = DEFAULT_RCU_QHIMARK;
407 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
408 static long qlowmark = DEFAULT_RCU_QLOMARK;
409 #define DEFAULT_RCU_QOVLD_MULT 2
410 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
411 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
412 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
413
414 module_param(blimit, long, 0444);
415 module_param(qhimark, long, 0444);
416 module_param(qlowmark, long, 0444);
417 module_param(qovld, long, 0444);
418
419 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
420 static ulong jiffies_till_next_fqs = ULONG_MAX;
421 static bool rcu_kick_kthreads;
422 static int rcu_divisor = 7;
423 module_param(rcu_divisor, int, 0644);
424
425 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
426 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
427 module_param(rcu_resched_ns, long, 0644);
428
429 /*
430 * How long the grace period must be before we start recruiting
431 * quiescent-state help from rcu_note_context_switch().
432 */
433 static ulong jiffies_till_sched_qs = ULONG_MAX;
434 module_param(jiffies_till_sched_qs, ulong, 0444);
435 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
436 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
437
438 /*
439 * Make sure that we give the grace-period kthread time to detect any
440 * idle CPUs before taking active measures to force quiescent states.
441 * However, don't go below 100 milliseconds, adjusted upwards for really
442 * large systems.
443 */
444 static void adjust_jiffies_till_sched_qs(void)
445 {
446 unsigned long j;
447
448 /* If jiffies_till_sched_qs was specified, respect the request. */
449 if (jiffies_till_sched_qs != ULONG_MAX) {
450 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
451 return;
452 }
453 /* Otherwise, set to third fqs scan, but bound below on large system. */
454 j = READ_ONCE(jiffies_till_first_fqs) +
455 2 * READ_ONCE(jiffies_till_next_fqs);
456 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
457 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
458 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
459 WRITE_ONCE(jiffies_to_sched_qs, j);
460 }
461
462 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
463 {
464 ulong j;
465 int ret = kstrtoul(val, 0, &j);
466
467 if (!ret) {
468 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
469 adjust_jiffies_till_sched_qs();
470 }
471 return ret;
472 }
473
474 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
475 {
476 ulong j;
477 int ret = kstrtoul(val, 0, &j);
478
479 if (!ret) {
480 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
481 adjust_jiffies_till_sched_qs();
482 }
483 return ret;
484 }
485
486 static const struct kernel_param_ops first_fqs_jiffies_ops = {
487 .set = param_set_first_fqs_jiffies,
488 .get = param_get_ulong,
489 };
490
491 static const struct kernel_param_ops next_fqs_jiffies_ops = {
492 .set = param_set_next_fqs_jiffies,
493 .get = param_get_ulong,
494 };
495
496 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
497 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
498 module_param(rcu_kick_kthreads, bool, 0644);
499
500 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
501 static int rcu_pending(int user);
502
503 /*
504 * Return the number of RCU GPs completed thus far for debug & stats.
505 */
506 unsigned long rcu_get_gp_seq(void)
507 {
508 return READ_ONCE(rcu_state.gp_seq);
509 }
510 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
511
512 /*
513 * Return the number of RCU expedited batches completed thus far for
514 * debug & stats. Odd numbers mean that a batch is in progress, even
515 * numbers mean idle. The value returned will thus be roughly double
516 * the cumulative batches since boot.
517 */
518 unsigned long rcu_exp_batches_completed(void)
519 {
520 return rcu_state.expedited_sequence;
521 }
522 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
523
524 /*
525 * Return the root node of the rcu_state structure.
526 */
527 static struct rcu_node *rcu_get_root(void)
528 {
529 return &rcu_state.node[0];
530 }
531
532 /*
533 * Send along grace-period-related data for rcutorture diagnostics.
534 */
535 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
536 unsigned long *gp_seq)
537 {
538 switch (test_type) {
539 case RCU_FLAVOR:
540 *flags = READ_ONCE(rcu_state.gp_flags);
541 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
542 break;
543 default:
544 break;
545 }
546 }
547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
548
549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
550 /*
551 * An empty function that will trigger a reschedule on
552 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
553 */
554 static void late_wakeup_func(struct irq_work *work)
555 {
556 }
557
558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
559 IRQ_WORK_INIT(late_wakeup_func);
560
561 /*
562 * If either:
563 *
564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
566 *
567 * In these cases the late RCU wake ups aren't supported in the resched loops and our
568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
569 * get re-enabled again.
570 */
571 noinstr void rcu_irq_work_resched(void)
572 {
573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
574
575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
576 return;
577
578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
579 return;
580
581 instrumentation_begin();
582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
583 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
584 }
585 instrumentation_end();
586 }
587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
588
589 #ifdef CONFIG_PROVE_RCU
590 /**
591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
592 */
593 void rcu_irq_exit_check_preempt(void)
594 {
595 lockdep_assert_irqs_disabled();
596
597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
598 "RCU dynticks_nesting counter underflow/zero!");
599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
600 DYNTICK_IRQ_NONIDLE,
601 "Bad RCU dynticks_nmi_nesting counter\n");
602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
603 "RCU in extended quiescent state!");
604 }
605 #endif /* #ifdef CONFIG_PROVE_RCU */
606
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
610 *
611 * The scheduler tick is not normally enabled when CPUs enter the kernel
612 * from nohz_full userspace execution. After all, nohz_full userspace
613 * execution is an RCU quiescent state and the time executing in the kernel
614 * is quite short. Except of course when it isn't. And it is not hard to
615 * cause a large system to spend tens of seconds or even minutes looping
616 * in the kernel, which can cause a number of problems, include RCU CPU
617 * stall warnings.
618 *
619 * Therefore, if a nohz_full CPU fails to report a quiescent state
620 * in a timely manner, the RCU grace-period kthread sets that CPU's
621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
622 * exception will invoke this function, which will turn on the scheduler
623 * tick, which will enable RCU to detect that CPU's quiescent states,
624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
625 * The tick will be disabled once a quiescent state is reported for
626 * this CPU.
627 *
628 * Of course, in carefully tuned systems, there might never be an
629 * interrupt or exception. In that case, the RCU grace-period kthread
630 * will eventually cause one to happen. However, in less carefully
631 * controlled environments, this function allows RCU to get what it
632 * needs without creating otherwise useless interruptions.
633 */
634 void __rcu_irq_enter_check_tick(void)
635 {
636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
637
638 // If we're here from NMI there's nothing to do.
639 if (in_nmi())
640 return;
641
642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
644
645 if (!tick_nohz_full_cpu(rdp->cpu) ||
646 !READ_ONCE(rdp->rcu_urgent_qs) ||
647 READ_ONCE(rdp->rcu_forced_tick)) {
648 // RCU doesn't need nohz_full help from this CPU, or it is
649 // already getting that help.
650 return;
651 }
652
653 // We get here only when not in an extended quiescent state and
654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
655 // already watching and (2) The fact that we are in an interrupt
656 // handler and that the rcu_node lock is an irq-disabled lock
657 // prevents self-deadlock. So we can safely recheck under the lock.
658 // Note that the nohz_full state currently cannot change.
659 raw_spin_lock_rcu_node(rdp->mynode);
660 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
661 // A nohz_full CPU is in the kernel and RCU needs a
662 // quiescent state. Turn on the tick!
663 WRITE_ONCE(rdp->rcu_forced_tick, true);
664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
665 }
666 raw_spin_unlock_rcu_node(rdp->mynode);
667 }
668 #endif /* CONFIG_NO_HZ_FULL */
669
670 /*
671 * Check to see if any future non-offloaded RCU-related work will need
672 * to be done by the current CPU, even if none need be done immediately,
673 * returning 1 if so. This function is part of the RCU implementation;
674 * it is -not- an exported member of the RCU API. This is used by
675 * the idle-entry code to figure out whether it is safe to disable the
676 * scheduler-clock interrupt.
677 *
678 * Just check whether or not this CPU has non-offloaded RCU callbacks
679 * queued.
680 */
681 int rcu_needs_cpu(void)
682 {
683 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
684 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
685 }
686
687 /*
688 * If any sort of urgency was applied to the current CPU (for example,
689 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
690 * to get to a quiescent state, disable it.
691 */
692 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
693 {
694 raw_lockdep_assert_held_rcu_node(rdp->mynode);
695 WRITE_ONCE(rdp->rcu_urgent_qs, false);
696 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
697 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
698 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
699 WRITE_ONCE(rdp->rcu_forced_tick, false);
700 }
701 }
702
703 /**
704 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
705 *
706 * Return true if RCU is watching the running CPU, which means that this
707 * CPU can safely enter RCU read-side critical sections. In other words,
708 * if the current CPU is not in its idle loop or is in an interrupt or
709 * NMI handler, return true.
710 *
711 * Make notrace because it can be called by the internal functions of
712 * ftrace, and making this notrace removes unnecessary recursion calls.
713 */
714 notrace bool rcu_is_watching(void)
715 {
716 bool ret;
717
718 preempt_disable_notrace();
719 ret = !rcu_dynticks_curr_cpu_in_eqs();
720 preempt_enable_notrace();
721 return ret;
722 }
723 EXPORT_SYMBOL_GPL(rcu_is_watching);
724
725 /*
726 * If a holdout task is actually running, request an urgent quiescent
727 * state from its CPU. This is unsynchronized, so migrations can cause
728 * the request to go to the wrong CPU. Which is OK, all that will happen
729 * is that the CPU's next context switch will be a bit slower and next
730 * time around this task will generate another request.
731 */
732 void rcu_request_urgent_qs_task(struct task_struct *t)
733 {
734 int cpu;
735
736 barrier();
737 cpu = task_cpu(t);
738 if (!task_curr(t))
739 return; /* This task is not running on that CPU. */
740 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
741 }
742
743 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
744
745 /*
746 * Is the current CPU online as far as RCU is concerned?
747 *
748 * Disable preemption to avoid false positives that could otherwise
749 * happen due to the current CPU number being sampled, this task being
750 * preempted, its old CPU being taken offline, resuming on some other CPU,
751 * then determining that its old CPU is now offline.
752 *
753 * Disable checking if in an NMI handler because we cannot safely
754 * report errors from NMI handlers anyway. In addition, it is OK to use
755 * RCU on an offline processor during initial boot, hence the check for
756 * rcu_scheduler_fully_active.
757 */
758 bool rcu_lockdep_current_cpu_online(void)
759 {
760 struct rcu_data *rdp;
761 bool ret = false;
762
763 if (in_nmi() || !rcu_scheduler_fully_active)
764 return true;
765 preempt_disable_notrace();
766 rdp = this_cpu_ptr(&rcu_data);
767 /*
768 * Strictly, we care here about the case where the current CPU is
769 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
770 * not being up to date. So arch_spin_is_locked() might have a
771 * false positive if it's held by some *other* CPU, but that's
772 * OK because that just means a false *negative* on the warning.
773 */
774 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
775 ret = true;
776 preempt_enable_notrace();
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
780
781 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
782
783 /*
784 * When trying to report a quiescent state on behalf of some other CPU,
785 * it is our responsibility to check for and handle potential overflow
786 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
787 * After all, the CPU might be in deep idle state, and thus executing no
788 * code whatsoever.
789 */
790 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
791 {
792 raw_lockdep_assert_held_rcu_node(rnp);
793 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
794 rnp->gp_seq))
795 WRITE_ONCE(rdp->gpwrap, true);
796 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
797 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
798 }
799
800 /*
801 * Snapshot the specified CPU's dynticks counter so that we can later
802 * credit them with an implicit quiescent state. Return 1 if this CPU
803 * is in dynticks idle mode, which is an extended quiescent state.
804 */
805 static int dyntick_save_progress_counter(struct rcu_data *rdp)
806 {
807 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
808 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
809 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
810 rcu_gpnum_ovf(rdp->mynode, rdp);
811 return 1;
812 }
813 return 0;
814 }
815
816 /*
817 * Return true if the specified CPU has passed through a quiescent
818 * state by virtue of being in or having passed through an dynticks
819 * idle state since the last call to dyntick_save_progress_counter()
820 * for this same CPU, or by virtue of having been offline.
821 */
822 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
823 {
824 unsigned long jtsq;
825 struct rcu_node *rnp = rdp->mynode;
826
827 /*
828 * If the CPU passed through or entered a dynticks idle phase with
829 * no active irq/NMI handlers, then we can safely pretend that the CPU
830 * already acknowledged the request to pass through a quiescent
831 * state. Either way, that CPU cannot possibly be in an RCU
832 * read-side critical section that started before the beginning
833 * of the current RCU grace period.
834 */
835 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
836 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
837 rcu_gpnum_ovf(rnp, rdp);
838 return 1;
839 }
840
841 /*
842 * Complain if a CPU that is considered to be offline from RCU's
843 * perspective has not yet reported a quiescent state. After all,
844 * the offline CPU should have reported a quiescent state during
845 * the CPU-offline process, or, failing that, by rcu_gp_init()
846 * if it ran concurrently with either the CPU going offline or the
847 * last task on a leaf rcu_node structure exiting its RCU read-side
848 * critical section while all CPUs corresponding to that structure
849 * are offline. This added warning detects bugs in any of these
850 * code paths.
851 *
852 * The rcu_node structure's ->lock is held here, which excludes
853 * the relevant portions the CPU-hotplug code, the grace-period
854 * initialization code, and the rcu_read_unlock() code paths.
855 *
856 * For more detail, please refer to the "Hotplug CPU" section
857 * of RCU's Requirements documentation.
858 */
859 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
860 struct rcu_node *rnp1;
861
862 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
863 __func__, rnp->grplo, rnp->grphi, rnp->level,
864 (long)rnp->gp_seq, (long)rnp->completedqs);
865 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
866 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
867 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
868 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
869 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
870 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
871 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
872 return 1; /* Break things loose after complaining. */
873 }
874
875 /*
876 * A CPU running for an extended time within the kernel can
877 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
878 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
879 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
880 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
881 * variable are safe because the assignments are repeated if this
882 * CPU failed to pass through a quiescent state. This code
883 * also checks .jiffies_resched in case jiffies_to_sched_qs
884 * is set way high.
885 */
886 jtsq = READ_ONCE(jiffies_to_sched_qs);
887 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
888 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
889 time_after(jiffies, rcu_state.jiffies_resched) ||
890 rcu_state.cbovld)) {
891 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
892 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
893 smp_store_release(&rdp->rcu_urgent_qs, true);
894 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
895 WRITE_ONCE(rdp->rcu_urgent_qs, true);
896 }
897
898 /*
899 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
900 * The above code handles this, but only for straight cond_resched().
901 * And some in-kernel loops check need_resched() before calling
902 * cond_resched(), which defeats the above code for CPUs that are
903 * running in-kernel with scheduling-clock interrupts disabled.
904 * So hit them over the head with the resched_cpu() hammer!
905 */
906 if (tick_nohz_full_cpu(rdp->cpu) &&
907 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
908 rcu_state.cbovld)) {
909 WRITE_ONCE(rdp->rcu_urgent_qs, true);
910 resched_cpu(rdp->cpu);
911 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
912 }
913
914 /*
915 * If more than halfway to RCU CPU stall-warning time, invoke
916 * resched_cpu() more frequently to try to loosen things up a bit.
917 * Also check to see if the CPU is getting hammered with interrupts,
918 * but only once per grace period, just to keep the IPIs down to
919 * a dull roar.
920 */
921 if (time_after(jiffies, rcu_state.jiffies_resched)) {
922 if (time_after(jiffies,
923 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
924 resched_cpu(rdp->cpu);
925 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
926 }
927 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
928 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
929 (rnp->ffmask & rdp->grpmask)) {
930 rdp->rcu_iw_pending = true;
931 rdp->rcu_iw_gp_seq = rnp->gp_seq;
932 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
933 }
934 }
935
936 return 0;
937 }
938
939 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
940 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
941 unsigned long gp_seq_req, const char *s)
942 {
943 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
944 gp_seq_req, rnp->level,
945 rnp->grplo, rnp->grphi, s);
946 }
947
948 /*
949 * rcu_start_this_gp - Request the start of a particular grace period
950 * @rnp_start: The leaf node of the CPU from which to start.
951 * @rdp: The rcu_data corresponding to the CPU from which to start.
952 * @gp_seq_req: The gp_seq of the grace period to start.
953 *
954 * Start the specified grace period, as needed to handle newly arrived
955 * callbacks. The required future grace periods are recorded in each
956 * rcu_node structure's ->gp_seq_needed field. Returns true if there
957 * is reason to awaken the grace-period kthread.
958 *
959 * The caller must hold the specified rcu_node structure's ->lock, which
960 * is why the caller is responsible for waking the grace-period kthread.
961 *
962 * Returns true if the GP thread needs to be awakened else false.
963 */
964 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
965 unsigned long gp_seq_req)
966 {
967 bool ret = false;
968 struct rcu_node *rnp;
969
970 /*
971 * Use funnel locking to either acquire the root rcu_node
972 * structure's lock or bail out if the need for this grace period
973 * has already been recorded -- or if that grace period has in
974 * fact already started. If there is already a grace period in
975 * progress in a non-leaf node, no recording is needed because the
976 * end of the grace period will scan the leaf rcu_node structures.
977 * Note that rnp_start->lock must not be released.
978 */
979 raw_lockdep_assert_held_rcu_node(rnp_start);
980 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
981 for (rnp = rnp_start; 1; rnp = rnp->parent) {
982 if (rnp != rnp_start)
983 raw_spin_lock_rcu_node(rnp);
984 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
985 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
986 (rnp != rnp_start &&
987 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
988 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
989 TPS("Prestarted"));
990 goto unlock_out;
991 }
992 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
993 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
994 /*
995 * We just marked the leaf or internal node, and a
996 * grace period is in progress, which means that
997 * rcu_gp_cleanup() will see the marking. Bail to
998 * reduce contention.
999 */
1000 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1001 TPS("Startedleaf"));
1002 goto unlock_out;
1003 }
1004 if (rnp != rnp_start && rnp->parent != NULL)
1005 raw_spin_unlock_rcu_node(rnp);
1006 if (!rnp->parent)
1007 break; /* At root, and perhaps also leaf. */
1008 }
1009
1010 /* If GP already in progress, just leave, otherwise start one. */
1011 if (rcu_gp_in_progress()) {
1012 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1013 goto unlock_out;
1014 }
1015 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1016 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1017 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1018 if (!READ_ONCE(rcu_state.gp_kthread)) {
1019 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1020 goto unlock_out;
1021 }
1022 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1023 ret = true; /* Caller must wake GP kthread. */
1024 unlock_out:
1025 /* Push furthest requested GP to leaf node and rcu_data structure. */
1026 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1027 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1028 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1029 }
1030 if (rnp != rnp_start)
1031 raw_spin_unlock_rcu_node(rnp);
1032 return ret;
1033 }
1034
1035 /*
1036 * Clean up any old requests for the just-ended grace period. Also return
1037 * whether any additional grace periods have been requested.
1038 */
1039 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1040 {
1041 bool needmore;
1042 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1043
1044 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1045 if (!needmore)
1046 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1047 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1048 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1049 return needmore;
1050 }
1051
1052 /*
1053 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1054 * interrupt or softirq handler, in which case we just might immediately
1055 * sleep upon return, resulting in a grace-period hang), and don't bother
1056 * awakening when there is nothing for the grace-period kthread to do
1057 * (as in several CPUs raced to awaken, we lost), and finally don't try
1058 * to awaken a kthread that has not yet been created. If all those checks
1059 * are passed, track some debug information and awaken.
1060 *
1061 * So why do the self-wakeup when in an interrupt or softirq handler
1062 * in the grace-period kthread's context? Because the kthread might have
1063 * been interrupted just as it was going to sleep, and just after the final
1064 * pre-sleep check of the awaken condition. In this case, a wakeup really
1065 * is required, and is therefore supplied.
1066 */
1067 static void rcu_gp_kthread_wake(void)
1068 {
1069 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1070
1071 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1072 !READ_ONCE(rcu_state.gp_flags) || !t)
1073 return;
1074 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1075 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1076 swake_up_one(&rcu_state.gp_wq);
1077 }
1078
1079 /*
1080 * If there is room, assign a ->gp_seq number to any callbacks on this
1081 * CPU that have not already been assigned. Also accelerate any callbacks
1082 * that were previously assigned a ->gp_seq number that has since proven
1083 * to be too conservative, which can happen if callbacks get assigned a
1084 * ->gp_seq number while RCU is idle, but with reference to a non-root
1085 * rcu_node structure. This function is idempotent, so it does not hurt
1086 * to call it repeatedly. Returns an flag saying that we should awaken
1087 * the RCU grace-period kthread.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1092 {
1093 unsigned long gp_seq_req;
1094 bool ret = false;
1095
1096 rcu_lockdep_assert_cblist_protected(rdp);
1097 raw_lockdep_assert_held_rcu_node(rnp);
1098
1099 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1100 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1101 return false;
1102
1103 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1104
1105 /*
1106 * Callbacks are often registered with incomplete grace-period
1107 * information. Something about the fact that getting exact
1108 * information requires acquiring a global lock... RCU therefore
1109 * makes a conservative estimate of the grace period number at which
1110 * a given callback will become ready to invoke. The following
1111 * code checks this estimate and improves it when possible, thus
1112 * accelerating callback invocation to an earlier grace-period
1113 * number.
1114 */
1115 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1116 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1117 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1118
1119 /* Trace depending on how much we were able to accelerate. */
1120 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1121 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1122 else
1123 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1124
1125 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1126
1127 return ret;
1128 }
1129
1130 /*
1131 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1132 * rcu_node structure's ->lock be held. It consults the cached value
1133 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1134 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1135 * while holding the leaf rcu_node structure's ->lock.
1136 */
1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1138 struct rcu_data *rdp)
1139 {
1140 unsigned long c;
1141 bool needwake;
1142
1143 rcu_lockdep_assert_cblist_protected(rdp);
1144 c = rcu_seq_snap(&rcu_state.gp_seq);
1145 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1146 /* Old request still live, so mark recent callbacks. */
1147 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1148 return;
1149 }
1150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1151 needwake = rcu_accelerate_cbs(rnp, rdp);
1152 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1153 if (needwake)
1154 rcu_gp_kthread_wake();
1155 }
1156
1157 /*
1158 * Move any callbacks whose grace period has completed to the
1159 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1160 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1161 * sublist. This function is idempotent, so it does not hurt to
1162 * invoke it repeatedly. As long as it is not invoked -too- often...
1163 * Returns true if the RCU grace-period kthread needs to be awakened.
1164 *
1165 * The caller must hold rnp->lock with interrupts disabled.
1166 */
1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1168 {
1169 rcu_lockdep_assert_cblist_protected(rdp);
1170 raw_lockdep_assert_held_rcu_node(rnp);
1171
1172 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1173 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1174 return false;
1175
1176 /*
1177 * Find all callbacks whose ->gp_seq numbers indicate that they
1178 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1179 */
1180 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1181
1182 /* Classify any remaining callbacks. */
1183 return rcu_accelerate_cbs(rnp, rdp);
1184 }
1185
1186 /*
1187 * Move and classify callbacks, but only if doing so won't require
1188 * that the RCU grace-period kthread be awakened.
1189 */
1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1191 struct rcu_data *rdp)
1192 {
1193 rcu_lockdep_assert_cblist_protected(rdp);
1194 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1195 return;
1196 // The grace period cannot end while we hold the rcu_node lock.
1197 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1198 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1199 raw_spin_unlock_rcu_node(rnp);
1200 }
1201
1202 /*
1203 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1204 * quiescent state. This is intended to be invoked when the CPU notices
1205 * a new grace period.
1206 */
1207 static void rcu_strict_gp_check_qs(void)
1208 {
1209 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1210 rcu_read_lock();
1211 rcu_read_unlock();
1212 }
1213 }
1214
1215 /*
1216 * Update CPU-local rcu_data state to record the beginnings and ends of
1217 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1218 * structure corresponding to the current CPU, and must have irqs disabled.
1219 * Returns true if the grace-period kthread needs to be awakened.
1220 */
1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1222 {
1223 bool ret = false;
1224 bool need_qs;
1225 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1226
1227 raw_lockdep_assert_held_rcu_node(rnp);
1228
1229 if (rdp->gp_seq == rnp->gp_seq)
1230 return false; /* Nothing to do. */
1231
1232 /* Handle the ends of any preceding grace periods first. */
1233 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1234 unlikely(READ_ONCE(rdp->gpwrap))) {
1235 if (!offloaded)
1236 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1237 rdp->core_needs_qs = false;
1238 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1239 } else {
1240 if (!offloaded)
1241 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1242 if (rdp->core_needs_qs)
1243 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1244 }
1245
1246 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1247 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1248 unlikely(READ_ONCE(rdp->gpwrap))) {
1249 /*
1250 * If the current grace period is waiting for this CPU,
1251 * set up to detect a quiescent state, otherwise don't
1252 * go looking for one.
1253 */
1254 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1255 need_qs = !!(rnp->qsmask & rdp->grpmask);
1256 rdp->cpu_no_qs.b.norm = need_qs;
1257 rdp->core_needs_qs = need_qs;
1258 zero_cpu_stall_ticks(rdp);
1259 }
1260 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1261 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1262 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1263 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1264 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1265 WRITE_ONCE(rdp->gpwrap, false);
1266 rcu_gpnum_ovf(rnp, rdp);
1267 return ret;
1268 }
1269
1270 static void note_gp_changes(struct rcu_data *rdp)
1271 {
1272 unsigned long flags;
1273 bool needwake;
1274 struct rcu_node *rnp;
1275
1276 local_irq_save(flags);
1277 rnp = rdp->mynode;
1278 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1279 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1280 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1281 local_irq_restore(flags);
1282 return;
1283 }
1284 needwake = __note_gp_changes(rnp, rdp);
1285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1286 rcu_strict_gp_check_qs();
1287 if (needwake)
1288 rcu_gp_kthread_wake();
1289 }
1290
1291 static atomic_t *rcu_gp_slow_suppress;
1292
1293 /* Register a counter to suppress debugging grace-period delays. */
1294 void rcu_gp_slow_register(atomic_t *rgssp)
1295 {
1296 WARN_ON_ONCE(rcu_gp_slow_suppress);
1297
1298 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1299 }
1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1301
1302 /* Unregister a counter, with NULL for not caring which. */
1303 void rcu_gp_slow_unregister(atomic_t *rgssp)
1304 {
1305 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1306
1307 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1310
1311 static bool rcu_gp_slow_is_suppressed(void)
1312 {
1313 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1314
1315 return rgssp && atomic_read(rgssp);
1316 }
1317
1318 static void rcu_gp_slow(int delay)
1319 {
1320 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1321 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1322 schedule_timeout_idle(delay);
1323 }
1324
1325 static unsigned long sleep_duration;
1326
1327 /* Allow rcutorture to stall the grace-period kthread. */
1328 void rcu_gp_set_torture_wait(int duration)
1329 {
1330 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1331 WRITE_ONCE(sleep_duration, duration);
1332 }
1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1334
1335 /* Actually implement the aforementioned wait. */
1336 static void rcu_gp_torture_wait(void)
1337 {
1338 unsigned long duration;
1339
1340 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1341 return;
1342 duration = xchg(&sleep_duration, 0UL);
1343 if (duration > 0) {
1344 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1345 schedule_timeout_idle(duration);
1346 pr_alert("%s: Wait complete\n", __func__);
1347 }
1348 }
1349
1350 /*
1351 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1352 * processing.
1353 */
1354 static void rcu_strict_gp_boundary(void *unused)
1355 {
1356 invoke_rcu_core();
1357 }
1358
1359 // Has rcu_init() been invoked? This is used (for example) to determine
1360 // whether spinlocks may be acquired safely.
1361 static bool rcu_init_invoked(void)
1362 {
1363 return !!rcu_state.n_online_cpus;
1364 }
1365
1366 // Make the polled API aware of the beginning of a grace period.
1367 static void rcu_poll_gp_seq_start(unsigned long *snap)
1368 {
1369 struct rcu_node *rnp = rcu_get_root();
1370
1371 if (rcu_init_invoked())
1372 raw_lockdep_assert_held_rcu_node(rnp);
1373
1374 // If RCU was idle, note beginning of GP.
1375 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1376 rcu_seq_start(&rcu_state.gp_seq_polled);
1377
1378 // Either way, record current state.
1379 *snap = rcu_state.gp_seq_polled;
1380 }
1381
1382 // Make the polled API aware of the end of a grace period.
1383 static void rcu_poll_gp_seq_end(unsigned long *snap)
1384 {
1385 struct rcu_node *rnp = rcu_get_root();
1386
1387 if (rcu_init_invoked())
1388 raw_lockdep_assert_held_rcu_node(rnp);
1389
1390 // If the previously noted GP is still in effect, record the
1391 // end of that GP. Either way, zero counter to avoid counter-wrap
1392 // problems.
1393 if (*snap && *snap == rcu_state.gp_seq_polled) {
1394 rcu_seq_end(&rcu_state.gp_seq_polled);
1395 rcu_state.gp_seq_polled_snap = 0;
1396 rcu_state.gp_seq_polled_exp_snap = 0;
1397 } else {
1398 *snap = 0;
1399 }
1400 }
1401
1402 // Make the polled API aware of the beginning of a grace period, but
1403 // where caller does not hold the root rcu_node structure's lock.
1404 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1405 {
1406 struct rcu_node *rnp = rcu_get_root();
1407
1408 if (rcu_init_invoked()) {
1409 lockdep_assert_irqs_enabled();
1410 raw_spin_lock_irq_rcu_node(rnp);
1411 }
1412 rcu_poll_gp_seq_start(snap);
1413 if (rcu_init_invoked())
1414 raw_spin_unlock_irq_rcu_node(rnp);
1415 }
1416
1417 // Make the polled API aware of the end of a grace period, but where
1418 // caller does not hold the root rcu_node structure's lock.
1419 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1420 {
1421 struct rcu_node *rnp = rcu_get_root();
1422
1423 if (rcu_init_invoked()) {
1424 lockdep_assert_irqs_enabled();
1425 raw_spin_lock_irq_rcu_node(rnp);
1426 }
1427 rcu_poll_gp_seq_end(snap);
1428 if (rcu_init_invoked())
1429 raw_spin_unlock_irq_rcu_node(rnp);
1430 }
1431
1432 /*
1433 * Initialize a new grace period. Return false if no grace period required.
1434 */
1435 static noinline_for_stack bool rcu_gp_init(void)
1436 {
1437 unsigned long flags;
1438 unsigned long oldmask;
1439 unsigned long mask;
1440 struct rcu_data *rdp;
1441 struct rcu_node *rnp = rcu_get_root();
1442
1443 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1444 raw_spin_lock_irq_rcu_node(rnp);
1445 if (!READ_ONCE(rcu_state.gp_flags)) {
1446 /* Spurious wakeup, tell caller to go back to sleep. */
1447 raw_spin_unlock_irq_rcu_node(rnp);
1448 return false;
1449 }
1450 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1451
1452 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1453 /*
1454 * Grace period already in progress, don't start another.
1455 * Not supposed to be able to happen.
1456 */
1457 raw_spin_unlock_irq_rcu_node(rnp);
1458 return false;
1459 }
1460
1461 /* Advance to a new grace period and initialize state. */
1462 record_gp_stall_check_time();
1463 /* Record GP times before starting GP, hence rcu_seq_start(). */
1464 rcu_seq_start(&rcu_state.gp_seq);
1465 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1466 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1467 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1468 raw_spin_unlock_irq_rcu_node(rnp);
1469
1470 /*
1471 * Apply per-leaf buffered online and offline operations to
1472 * the rcu_node tree. Note that this new grace period need not
1473 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1474 * offlining path, when combined with checks in this function,
1475 * will handle CPUs that are currently going offline or that will
1476 * go offline later. Please also refer to "Hotplug CPU" section
1477 * of RCU's Requirements documentation.
1478 */
1479 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1480 /* Exclude CPU hotplug operations. */
1481 rcu_for_each_leaf_node(rnp) {
1482 local_irq_save(flags);
1483 arch_spin_lock(&rcu_state.ofl_lock);
1484 raw_spin_lock_rcu_node(rnp);
1485 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1486 !rnp->wait_blkd_tasks) {
1487 /* Nothing to do on this leaf rcu_node structure. */
1488 raw_spin_unlock_rcu_node(rnp);
1489 arch_spin_unlock(&rcu_state.ofl_lock);
1490 local_irq_restore(flags);
1491 continue;
1492 }
1493
1494 /* Record old state, apply changes to ->qsmaskinit field. */
1495 oldmask = rnp->qsmaskinit;
1496 rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499 if (!oldmask != !rnp->qsmaskinit) {
1500 if (!oldmask) { /* First online CPU for rcu_node. */
1501 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502 rcu_init_new_rnp(rnp);
1503 } else if (rcu_preempt_has_tasks(rnp)) {
1504 rnp->wait_blkd_tasks = true; /* blocked tasks */
1505 } else { /* Last offline CPU and can propagate. */
1506 rcu_cleanup_dead_rnp(rnp);
1507 }
1508 }
1509
1510 /*
1511 * If all waited-on tasks from prior grace period are
1512 * done, and if all this rcu_node structure's CPUs are
1513 * still offline, propagate up the rcu_node tree and
1514 * clear ->wait_blkd_tasks. Otherwise, if one of this
1515 * rcu_node structure's CPUs has since come back online,
1516 * simply clear ->wait_blkd_tasks.
1517 */
1518 if (rnp->wait_blkd_tasks &&
1519 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1520 rnp->wait_blkd_tasks = false;
1521 if (!rnp->qsmaskinit)
1522 rcu_cleanup_dead_rnp(rnp);
1523 }
1524
1525 raw_spin_unlock_rcu_node(rnp);
1526 arch_spin_unlock(&rcu_state.ofl_lock);
1527 local_irq_restore(flags);
1528 }
1529 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1530
1531 /*
1532 * Set the quiescent-state-needed bits in all the rcu_node
1533 * structures for all currently online CPUs in breadth-first
1534 * order, starting from the root rcu_node structure, relying on the
1535 * layout of the tree within the rcu_state.node[] array. Note that
1536 * other CPUs will access only the leaves of the hierarchy, thus
1537 * seeing that no grace period is in progress, at least until the
1538 * corresponding leaf node has been initialized.
1539 *
1540 * The grace period cannot complete until the initialization
1541 * process finishes, because this kthread handles both.
1542 */
1543 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1544 rcu_for_each_node_breadth_first(rnp) {
1545 rcu_gp_slow(gp_init_delay);
1546 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1547 rdp = this_cpu_ptr(&rcu_data);
1548 rcu_preempt_check_blocked_tasks(rnp);
1549 rnp->qsmask = rnp->qsmaskinit;
1550 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1551 if (rnp == rdp->mynode)
1552 (void)__note_gp_changes(rnp, rdp);
1553 rcu_preempt_boost_start_gp(rnp);
1554 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1555 rnp->level, rnp->grplo,
1556 rnp->grphi, rnp->qsmask);
1557 /* Quiescent states for tasks on any now-offline CPUs. */
1558 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1559 rnp->rcu_gp_init_mask = mask;
1560 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1561 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1562 else
1563 raw_spin_unlock_irq_rcu_node(rnp);
1564 cond_resched_tasks_rcu_qs();
1565 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1566 }
1567
1568 // If strict, make all CPUs aware of new grace period.
1569 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1570 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1571
1572 return true;
1573 }
1574
1575 /*
1576 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1577 * time.
1578 */
1579 static bool rcu_gp_fqs_check_wake(int *gfp)
1580 {
1581 struct rcu_node *rnp = rcu_get_root();
1582
1583 // If under overload conditions, force an immediate FQS scan.
1584 if (*gfp & RCU_GP_FLAG_OVLD)
1585 return true;
1586
1587 // Someone like call_rcu() requested a force-quiescent-state scan.
1588 *gfp = READ_ONCE(rcu_state.gp_flags);
1589 if (*gfp & RCU_GP_FLAG_FQS)
1590 return true;
1591
1592 // The current grace period has completed.
1593 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1594 return true;
1595
1596 return false;
1597 }
1598
1599 /*
1600 * Do one round of quiescent-state forcing.
1601 */
1602 static void rcu_gp_fqs(bool first_time)
1603 {
1604 struct rcu_node *rnp = rcu_get_root();
1605
1606 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1607 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1608 if (first_time) {
1609 /* Collect dyntick-idle snapshots. */
1610 force_qs_rnp(dyntick_save_progress_counter);
1611 } else {
1612 /* Handle dyntick-idle and offline CPUs. */
1613 force_qs_rnp(rcu_implicit_dynticks_qs);
1614 }
1615 /* Clear flag to prevent immediate re-entry. */
1616 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1617 raw_spin_lock_irq_rcu_node(rnp);
1618 WRITE_ONCE(rcu_state.gp_flags,
1619 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1620 raw_spin_unlock_irq_rcu_node(rnp);
1621 }
1622 }
1623
1624 /*
1625 * Loop doing repeated quiescent-state forcing until the grace period ends.
1626 */
1627 static noinline_for_stack void rcu_gp_fqs_loop(void)
1628 {
1629 bool first_gp_fqs = true;
1630 int gf = 0;
1631 unsigned long j;
1632 int ret;
1633 struct rcu_node *rnp = rcu_get_root();
1634
1635 j = READ_ONCE(jiffies_till_first_fqs);
1636 if (rcu_state.cbovld)
1637 gf = RCU_GP_FLAG_OVLD;
1638 ret = 0;
1639 for (;;) {
1640 if (rcu_state.cbovld) {
1641 j = (j + 2) / 3;
1642 if (j <= 0)
1643 j = 1;
1644 }
1645 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1646 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1647 /*
1648 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1649 * update; required for stall checks.
1650 */
1651 smp_wmb();
1652 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1653 jiffies + (j ? 3 * j : 2));
1654 }
1655 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1656 TPS("fqswait"));
1657 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1658 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1659 rcu_gp_fqs_check_wake(&gf), j);
1660 rcu_gp_torture_wait();
1661 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1662 /* Locking provides needed memory barriers. */
1663 /*
1664 * Exit the loop if the root rcu_node structure indicates that the grace period
1665 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1666 * is required only for single-node rcu_node trees because readers blocking
1667 * the current grace period are queued only on leaf rcu_node structures.
1668 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1669 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1670 * the corresponding leaf nodes have passed through their quiescent state.
1671 */
1672 if (!READ_ONCE(rnp->qsmask) &&
1673 !rcu_preempt_blocked_readers_cgp(rnp))
1674 break;
1675 /* If time for quiescent-state forcing, do it. */
1676 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1677 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1678 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1679 TPS("fqsstart"));
1680 rcu_gp_fqs(first_gp_fqs);
1681 gf = 0;
1682 if (first_gp_fqs) {
1683 first_gp_fqs = false;
1684 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1685 }
1686 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1687 TPS("fqsend"));
1688 cond_resched_tasks_rcu_qs();
1689 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1690 ret = 0; /* Force full wait till next FQS. */
1691 j = READ_ONCE(jiffies_till_next_fqs);
1692 } else {
1693 /* Deal with stray signal. */
1694 cond_resched_tasks_rcu_qs();
1695 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1696 WARN_ON(signal_pending(current));
1697 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1698 TPS("fqswaitsig"));
1699 ret = 1; /* Keep old FQS timing. */
1700 j = jiffies;
1701 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1702 j = 1;
1703 else
1704 j = rcu_state.jiffies_force_qs - j;
1705 gf = 0;
1706 }
1707 }
1708 }
1709
1710 /*
1711 * Clean up after the old grace period.
1712 */
1713 static noinline void rcu_gp_cleanup(void)
1714 {
1715 int cpu;
1716 bool needgp = false;
1717 unsigned long gp_duration;
1718 unsigned long new_gp_seq;
1719 bool offloaded;
1720 struct rcu_data *rdp;
1721 struct rcu_node *rnp = rcu_get_root();
1722 struct swait_queue_head *sq;
1723
1724 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1725 raw_spin_lock_irq_rcu_node(rnp);
1726 rcu_state.gp_end = jiffies;
1727 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1728 if (gp_duration > rcu_state.gp_max)
1729 rcu_state.gp_max = gp_duration;
1730
1731 /*
1732 * We know the grace period is complete, but to everyone else
1733 * it appears to still be ongoing. But it is also the case
1734 * that to everyone else it looks like there is nothing that
1735 * they can do to advance the grace period. It is therefore
1736 * safe for us to drop the lock in order to mark the grace
1737 * period as completed in all of the rcu_node structures.
1738 */
1739 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1740 raw_spin_unlock_irq_rcu_node(rnp);
1741
1742 /*
1743 * Propagate new ->gp_seq value to rcu_node structures so that
1744 * other CPUs don't have to wait until the start of the next grace
1745 * period to process their callbacks. This also avoids some nasty
1746 * RCU grace-period initialization races by forcing the end of
1747 * the current grace period to be completely recorded in all of
1748 * the rcu_node structures before the beginning of the next grace
1749 * period is recorded in any of the rcu_node structures.
1750 */
1751 new_gp_seq = rcu_state.gp_seq;
1752 rcu_seq_end(&new_gp_seq);
1753 rcu_for_each_node_breadth_first(rnp) {
1754 raw_spin_lock_irq_rcu_node(rnp);
1755 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1756 dump_blkd_tasks(rnp, 10);
1757 WARN_ON_ONCE(rnp->qsmask);
1758 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1759 if (!rnp->parent)
1760 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1761 rdp = this_cpu_ptr(&rcu_data);
1762 if (rnp == rdp->mynode)
1763 needgp = __note_gp_changes(rnp, rdp) || needgp;
1764 /* smp_mb() provided by prior unlock-lock pair. */
1765 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1766 // Reset overload indication for CPUs no longer overloaded
1767 if (rcu_is_leaf_node(rnp))
1768 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1769 rdp = per_cpu_ptr(&rcu_data, cpu);
1770 check_cb_ovld_locked(rdp, rnp);
1771 }
1772 sq = rcu_nocb_gp_get(rnp);
1773 raw_spin_unlock_irq_rcu_node(rnp);
1774 rcu_nocb_gp_cleanup(sq);
1775 cond_resched_tasks_rcu_qs();
1776 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1777 rcu_gp_slow(gp_cleanup_delay);
1778 }
1779 rnp = rcu_get_root();
1780 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1781
1782 /* Declare grace period done, trace first to use old GP number. */
1783 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1784 rcu_seq_end(&rcu_state.gp_seq);
1785 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1786 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1787 /* Check for GP requests since above loop. */
1788 rdp = this_cpu_ptr(&rcu_data);
1789 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1790 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1791 TPS("CleanupMore"));
1792 needgp = true;
1793 }
1794 /* Advance CBs to reduce false positives below. */
1795 offloaded = rcu_rdp_is_offloaded(rdp);
1796 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1797
1798 // We get here if a grace period was needed (“needgp”)
1799 // and the above call to rcu_accelerate_cbs() did not set
1800 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1801 // the need for another grace period).  The purpose
1802 // of the “offloaded” check is to avoid invoking
1803 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1804 // hold the ->nocb_lock needed to safely access an offloaded
1805 // ->cblist.  We do not want to acquire that lock because
1806 // it can be heavily contended during callback floods.
1807
1808 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1809 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1810 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1811 } else {
1812
1813 // We get here either if there is no need for an
1814 // additional grace period or if rcu_accelerate_cbs() has
1815 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1816 // So all we need to do is to clear all of the other
1817 // ->gp_flags bits.
1818
1819 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1820 }
1821 raw_spin_unlock_irq_rcu_node(rnp);
1822
1823 // If strict, make all CPUs aware of the end of the old grace period.
1824 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1825 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1826 }
1827
1828 /*
1829 * Body of kthread that handles grace periods.
1830 */
1831 static int __noreturn rcu_gp_kthread(void *unused)
1832 {
1833 rcu_bind_gp_kthread();
1834 for (;;) {
1835
1836 /* Handle grace-period start. */
1837 for (;;) {
1838 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1839 TPS("reqwait"));
1840 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1841 swait_event_idle_exclusive(rcu_state.gp_wq,
1842 READ_ONCE(rcu_state.gp_flags) &
1843 RCU_GP_FLAG_INIT);
1844 rcu_gp_torture_wait();
1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1846 /* Locking provides needed memory barrier. */
1847 if (rcu_gp_init())
1848 break;
1849 cond_resched_tasks_rcu_qs();
1850 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1851 WARN_ON(signal_pending(current));
1852 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1853 TPS("reqwaitsig"));
1854 }
1855
1856 /* Handle quiescent-state forcing. */
1857 rcu_gp_fqs_loop();
1858
1859 /* Handle grace-period end. */
1860 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1861 rcu_gp_cleanup();
1862 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1863 }
1864 }
1865
1866 /*
1867 * Report a full set of quiescent states to the rcu_state data structure.
1868 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1869 * another grace period is required. Whether we wake the grace-period
1870 * kthread or it awakens itself for the next round of quiescent-state
1871 * forcing, that kthread will clean up after the just-completed grace
1872 * period. Note that the caller must hold rnp->lock, which is released
1873 * before return.
1874 */
1875 static void rcu_report_qs_rsp(unsigned long flags)
1876 __releases(rcu_get_root()->lock)
1877 {
1878 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1879 WARN_ON_ONCE(!rcu_gp_in_progress());
1880 WRITE_ONCE(rcu_state.gp_flags,
1881 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1882 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1883 rcu_gp_kthread_wake();
1884 }
1885
1886 /*
1887 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1888 * Allows quiescent states for a group of CPUs to be reported at one go
1889 * to the specified rcu_node structure, though all the CPUs in the group
1890 * must be represented by the same rcu_node structure (which need not be a
1891 * leaf rcu_node structure, though it often will be). The gps parameter
1892 * is the grace-period snapshot, which means that the quiescent states
1893 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1894 * must be held upon entry, and it is released before return.
1895 *
1896 * As a special case, if mask is zero, the bit-already-cleared check is
1897 * disabled. This allows propagating quiescent state due to resumed tasks
1898 * during grace-period initialization.
1899 */
1900 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1901 unsigned long gps, unsigned long flags)
1902 __releases(rnp->lock)
1903 {
1904 unsigned long oldmask = 0;
1905 struct rcu_node *rnp_c;
1906
1907 raw_lockdep_assert_held_rcu_node(rnp);
1908
1909 /* Walk up the rcu_node hierarchy. */
1910 for (;;) {
1911 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1912
1913 /*
1914 * Our bit has already been cleared, or the
1915 * relevant grace period is already over, so done.
1916 */
1917 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1918 return;
1919 }
1920 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1921 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1922 rcu_preempt_blocked_readers_cgp(rnp));
1923 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1924 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1925 mask, rnp->qsmask, rnp->level,
1926 rnp->grplo, rnp->grphi,
1927 !!rnp->gp_tasks);
1928 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1929
1930 /* Other bits still set at this level, so done. */
1931 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1932 return;
1933 }
1934 rnp->completedqs = rnp->gp_seq;
1935 mask = rnp->grpmask;
1936 if (rnp->parent == NULL) {
1937
1938 /* No more levels. Exit loop holding root lock. */
1939
1940 break;
1941 }
1942 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1943 rnp_c = rnp;
1944 rnp = rnp->parent;
1945 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1946 oldmask = READ_ONCE(rnp_c->qsmask);
1947 }
1948
1949 /*
1950 * Get here if we are the last CPU to pass through a quiescent
1951 * state for this grace period. Invoke rcu_report_qs_rsp()
1952 * to clean up and start the next grace period if one is needed.
1953 */
1954 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1955 }
1956
1957 /*
1958 * Record a quiescent state for all tasks that were previously queued
1959 * on the specified rcu_node structure and that were blocking the current
1960 * RCU grace period. The caller must hold the corresponding rnp->lock with
1961 * irqs disabled, and this lock is released upon return, but irqs remain
1962 * disabled.
1963 */
1964 static void __maybe_unused
1965 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1966 __releases(rnp->lock)
1967 {
1968 unsigned long gps;
1969 unsigned long mask;
1970 struct rcu_node *rnp_p;
1971
1972 raw_lockdep_assert_held_rcu_node(rnp);
1973 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1974 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1975 rnp->qsmask != 0) {
1976 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1977 return; /* Still need more quiescent states! */
1978 }
1979
1980 rnp->completedqs = rnp->gp_seq;
1981 rnp_p = rnp->parent;
1982 if (rnp_p == NULL) {
1983 /*
1984 * Only one rcu_node structure in the tree, so don't
1985 * try to report up to its nonexistent parent!
1986 */
1987 rcu_report_qs_rsp(flags);
1988 return;
1989 }
1990
1991 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1992 gps = rnp->gp_seq;
1993 mask = rnp->grpmask;
1994 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1995 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1996 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1997 }
1998
1999 /*
2000 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2001 * structure. This must be called from the specified CPU.
2002 */
2003 static void
2004 rcu_report_qs_rdp(struct rcu_data *rdp)
2005 {
2006 unsigned long flags;
2007 unsigned long mask;
2008 bool needwake = false;
2009 bool needacc = false;
2010 struct rcu_node *rnp;
2011
2012 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2013 rnp = rdp->mynode;
2014 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2015 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2016 rdp->gpwrap) {
2017
2018 /*
2019 * The grace period in which this quiescent state was
2020 * recorded has ended, so don't report it upwards.
2021 * We will instead need a new quiescent state that lies
2022 * within the current grace period.
2023 */
2024 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2025 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2026 return;
2027 }
2028 mask = rdp->grpmask;
2029 rdp->core_needs_qs = false;
2030 if ((rnp->qsmask & mask) == 0) {
2031 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2032 } else {
2033 /*
2034 * This GP can't end until cpu checks in, so all of our
2035 * callbacks can be processed during the next GP.
2036 *
2037 * NOCB kthreads have their own way to deal with that...
2038 */
2039 if (!rcu_rdp_is_offloaded(rdp)) {
2040 needwake = rcu_accelerate_cbs(rnp, rdp);
2041 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2042 /*
2043 * ...but NOCB kthreads may miss or delay callbacks acceleration
2044 * if in the middle of a (de-)offloading process.
2045 */
2046 needacc = true;
2047 }
2048
2049 rcu_disable_urgency_upon_qs(rdp);
2050 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2051 /* ^^^ Released rnp->lock */
2052 if (needwake)
2053 rcu_gp_kthread_wake();
2054
2055 if (needacc) {
2056 rcu_nocb_lock_irqsave(rdp, flags);
2057 rcu_accelerate_cbs_unlocked(rnp, rdp);
2058 rcu_nocb_unlock_irqrestore(rdp, flags);
2059 }
2060 }
2061 }
2062
2063 /*
2064 * Check to see if there is a new grace period of which this CPU
2065 * is not yet aware, and if so, set up local rcu_data state for it.
2066 * Otherwise, see if this CPU has just passed through its first
2067 * quiescent state for this grace period, and record that fact if so.
2068 */
2069 static void
2070 rcu_check_quiescent_state(struct rcu_data *rdp)
2071 {
2072 /* Check for grace-period ends and beginnings. */
2073 note_gp_changes(rdp);
2074
2075 /*
2076 * Does this CPU still need to do its part for current grace period?
2077 * If no, return and let the other CPUs do their part as well.
2078 */
2079 if (!rdp->core_needs_qs)
2080 return;
2081
2082 /*
2083 * Was there a quiescent state since the beginning of the grace
2084 * period? If no, then exit and wait for the next call.
2085 */
2086 if (rdp->cpu_no_qs.b.norm)
2087 return;
2088
2089 /*
2090 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2091 * judge of that).
2092 */
2093 rcu_report_qs_rdp(rdp);
2094 }
2095
2096 /*
2097 * Near the end of the offline process. Trace the fact that this CPU
2098 * is going offline.
2099 */
2100 int rcutree_dying_cpu(unsigned int cpu)
2101 {
2102 bool blkd;
2103 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2104 struct rcu_node *rnp = rdp->mynode;
2105
2106 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2107 return 0;
2108
2109 blkd = !!(rnp->qsmask & rdp->grpmask);
2110 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2111 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2112 return 0;
2113 }
2114
2115 /*
2116 * All CPUs for the specified rcu_node structure have gone offline,
2117 * and all tasks that were preempted within an RCU read-side critical
2118 * section while running on one of those CPUs have since exited their RCU
2119 * read-side critical section. Some other CPU is reporting this fact with
2120 * the specified rcu_node structure's ->lock held and interrupts disabled.
2121 * This function therefore goes up the tree of rcu_node structures,
2122 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2123 * the leaf rcu_node structure's ->qsmaskinit field has already been
2124 * updated.
2125 *
2126 * This function does check that the specified rcu_node structure has
2127 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2128 * prematurely. That said, invoking it after the fact will cost you
2129 * a needless lock acquisition. So once it has done its work, don't
2130 * invoke it again.
2131 */
2132 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2133 {
2134 long mask;
2135 struct rcu_node *rnp = rnp_leaf;
2136
2137 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2138 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2139 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2140 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2141 return;
2142 for (;;) {
2143 mask = rnp->grpmask;
2144 rnp = rnp->parent;
2145 if (!rnp)
2146 break;
2147 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2148 rnp->qsmaskinit &= ~mask;
2149 /* Between grace periods, so better already be zero! */
2150 WARN_ON_ONCE(rnp->qsmask);
2151 if (rnp->qsmaskinit) {
2152 raw_spin_unlock_rcu_node(rnp);
2153 /* irqs remain disabled. */
2154 return;
2155 }
2156 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2157 }
2158 }
2159
2160 /*
2161 * The CPU has been completely removed, and some other CPU is reporting
2162 * this fact from process context. Do the remainder of the cleanup.
2163 * There can only be one CPU hotplug operation at a time, so no need for
2164 * explicit locking.
2165 */
2166 int rcutree_dead_cpu(unsigned int cpu)
2167 {
2168 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2169 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2170
2171 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2172 return 0;
2173
2174 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2175 /* Adjust any no-longer-needed kthreads. */
2176 rcu_boost_kthread_setaffinity(rnp, -1);
2177 // Stop-machine done, so allow nohz_full to disable tick.
2178 tick_dep_clear(TICK_DEP_BIT_RCU);
2179 return 0;
2180 }
2181
2182 /*
2183 * Invoke any RCU callbacks that have made it to the end of their grace
2184 * period. Throttle as specified by rdp->blimit.
2185 */
2186 static void rcu_do_batch(struct rcu_data *rdp)
2187 {
2188 int div;
2189 bool __maybe_unused empty;
2190 unsigned long flags;
2191 struct rcu_head *rhp;
2192 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2193 long bl, count = 0;
2194 long pending, tlimit = 0;
2195
2196 /* If no callbacks are ready, just return. */
2197 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2198 trace_rcu_batch_start(rcu_state.name,
2199 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2200 trace_rcu_batch_end(rcu_state.name, 0,
2201 !rcu_segcblist_empty(&rdp->cblist),
2202 need_resched(), is_idle_task(current),
2203 rcu_is_callbacks_kthread(rdp));
2204 return;
2205 }
2206
2207 /*
2208 * Extract the list of ready callbacks, disabling IRQs to prevent
2209 * races with call_rcu() from interrupt handlers. Leave the
2210 * callback counts, as rcu_barrier() needs to be conservative.
2211 */
2212 rcu_nocb_lock_irqsave(rdp, flags);
2213 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2214 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2215 div = READ_ONCE(rcu_divisor);
2216 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2217 bl = max(rdp->blimit, pending >> div);
2218 if (in_serving_softirq() && unlikely(bl > 100)) {
2219 long rrn = READ_ONCE(rcu_resched_ns);
2220
2221 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2222 tlimit = local_clock() + rrn;
2223 }
2224 trace_rcu_batch_start(rcu_state.name,
2225 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2226 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2227 if (rcu_rdp_is_offloaded(rdp))
2228 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2229
2230 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2231 rcu_nocb_unlock_irqrestore(rdp, flags);
2232
2233 /* Invoke callbacks. */
2234 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2235 rhp = rcu_cblist_dequeue(&rcl);
2236
2237 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2238 rcu_callback_t f;
2239
2240 count++;
2241 debug_rcu_head_unqueue(rhp);
2242
2243 rcu_lock_acquire(&rcu_callback_map);
2244 trace_rcu_invoke_callback(rcu_state.name, rhp);
2245
2246 f = rhp->func;
2247 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2248 f(rhp);
2249
2250 rcu_lock_release(&rcu_callback_map);
2251
2252 /*
2253 * Stop only if limit reached and CPU has something to do.
2254 */
2255 if (in_serving_softirq()) {
2256 if (count >= bl && (need_resched() || !is_idle_task(current)))
2257 break;
2258 /*
2259 * Make sure we don't spend too much time here and deprive other
2260 * softirq vectors of CPU cycles.
2261 */
2262 if (unlikely(tlimit)) {
2263 /* only call local_clock() every 32 callbacks */
2264 if (likely((count & 31) || local_clock() < tlimit))
2265 continue;
2266 /* Exceeded the time limit, so leave. */
2267 break;
2268 }
2269 } else {
2270 local_bh_enable();
2271 lockdep_assert_irqs_enabled();
2272 cond_resched_tasks_rcu_qs();
2273 lockdep_assert_irqs_enabled();
2274 local_bh_disable();
2275 }
2276 }
2277
2278 rcu_nocb_lock_irqsave(rdp, flags);
2279 rdp->n_cbs_invoked += count;
2280 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2281 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2282
2283 /* Update counts and requeue any remaining callbacks. */
2284 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2285 rcu_segcblist_add_len(&rdp->cblist, -count);
2286
2287 /* Reinstate batch limit if we have worked down the excess. */
2288 count = rcu_segcblist_n_cbs(&rdp->cblist);
2289 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2290 rdp->blimit = blimit;
2291
2292 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2293 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2294 rdp->qlen_last_fqs_check = 0;
2295 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2296 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2297 rdp->qlen_last_fqs_check = count;
2298
2299 /*
2300 * The following usually indicates a double call_rcu(). To track
2301 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2302 */
2303 empty = rcu_segcblist_empty(&rdp->cblist);
2304 WARN_ON_ONCE(count == 0 && !empty);
2305 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2306 count != 0 && empty);
2307 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2308 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2309
2310 rcu_nocb_unlock_irqrestore(rdp, flags);
2311
2312 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2313 }
2314
2315 /*
2316 * This function is invoked from each scheduling-clock interrupt,
2317 * and checks to see if this CPU is in a non-context-switch quiescent
2318 * state, for example, user mode or idle loop. It also schedules RCU
2319 * core processing. If the current grace period has gone on too long,
2320 * it will ask the scheduler to manufacture a context switch for the sole
2321 * purpose of providing the needed quiescent state.
2322 */
2323 void rcu_sched_clock_irq(int user)
2324 {
2325 unsigned long j;
2326
2327 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2328 j = jiffies;
2329 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2330 __this_cpu_write(rcu_data.last_sched_clock, j);
2331 }
2332 trace_rcu_utilization(TPS("Start scheduler-tick"));
2333 lockdep_assert_irqs_disabled();
2334 raw_cpu_inc(rcu_data.ticks_this_gp);
2335 /* The load-acquire pairs with the store-release setting to true. */
2336 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2337 /* Idle and userspace execution already are quiescent states. */
2338 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2339 set_tsk_need_resched(current);
2340 set_preempt_need_resched();
2341 }
2342 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2343 }
2344 rcu_flavor_sched_clock_irq(user);
2345 if (rcu_pending(user))
2346 invoke_rcu_core();
2347 if (user || rcu_is_cpu_rrupt_from_idle())
2348 rcu_note_voluntary_context_switch(current);
2349 lockdep_assert_irqs_disabled();
2350
2351 trace_rcu_utilization(TPS("End scheduler-tick"));
2352 }
2353
2354 /*
2355 * Scan the leaf rcu_node structures. For each structure on which all
2356 * CPUs have reported a quiescent state and on which there are tasks
2357 * blocking the current grace period, initiate RCU priority boosting.
2358 * Otherwise, invoke the specified function to check dyntick state for
2359 * each CPU that has not yet reported a quiescent state.
2360 */
2361 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2362 {
2363 int cpu;
2364 unsigned long flags;
2365 unsigned long mask;
2366 struct rcu_data *rdp;
2367 struct rcu_node *rnp;
2368
2369 rcu_state.cbovld = rcu_state.cbovldnext;
2370 rcu_state.cbovldnext = false;
2371 rcu_for_each_leaf_node(rnp) {
2372 cond_resched_tasks_rcu_qs();
2373 mask = 0;
2374 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2375 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2376 if (rnp->qsmask == 0) {
2377 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2378 /*
2379 * No point in scanning bits because they
2380 * are all zero. But we might need to
2381 * priority-boost blocked readers.
2382 */
2383 rcu_initiate_boost(rnp, flags);
2384 /* rcu_initiate_boost() releases rnp->lock */
2385 continue;
2386 }
2387 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2388 continue;
2389 }
2390 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2391 rdp = per_cpu_ptr(&rcu_data, cpu);
2392 if (f(rdp)) {
2393 mask |= rdp->grpmask;
2394 rcu_disable_urgency_upon_qs(rdp);
2395 }
2396 }
2397 if (mask != 0) {
2398 /* Idle/offline CPUs, report (releases rnp->lock). */
2399 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2400 } else {
2401 /* Nothing to do here, so just drop the lock. */
2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403 }
2404 }
2405 }
2406
2407 /*
2408 * Force quiescent states on reluctant CPUs, and also detect which
2409 * CPUs are in dyntick-idle mode.
2410 */
2411 void rcu_force_quiescent_state(void)
2412 {
2413 unsigned long flags;
2414 bool ret;
2415 struct rcu_node *rnp;
2416 struct rcu_node *rnp_old = NULL;
2417
2418 /* Funnel through hierarchy to reduce memory contention. */
2419 rnp = __this_cpu_read(rcu_data.mynode);
2420 for (; rnp != NULL; rnp = rnp->parent) {
2421 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2422 !raw_spin_trylock(&rnp->fqslock);
2423 if (rnp_old != NULL)
2424 raw_spin_unlock(&rnp_old->fqslock);
2425 if (ret)
2426 return;
2427 rnp_old = rnp;
2428 }
2429 /* rnp_old == rcu_get_root(), rnp == NULL. */
2430
2431 /* Reached the root of the rcu_node tree, acquire lock. */
2432 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2433 raw_spin_unlock(&rnp_old->fqslock);
2434 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2435 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2436 return; /* Someone beat us to it. */
2437 }
2438 WRITE_ONCE(rcu_state.gp_flags,
2439 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2440 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2441 rcu_gp_kthread_wake();
2442 }
2443 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2444
2445 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2446 // grace periods.
2447 static void strict_work_handler(struct work_struct *work)
2448 {
2449 rcu_read_lock();
2450 rcu_read_unlock();
2451 }
2452
2453 /* Perform RCU core processing work for the current CPU. */
2454 static __latent_entropy void rcu_core(void)
2455 {
2456 unsigned long flags;
2457 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2458 struct rcu_node *rnp = rdp->mynode;
2459 /*
2460 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2461 * Therefore this function can race with concurrent NOCB (de-)offloading
2462 * on this CPU and the below condition must be considered volatile.
2463 * However if we race with:
2464 *
2465 * _ Offloading: In the worst case we accelerate or process callbacks
2466 * concurrently with NOCB kthreads. We are guaranteed to
2467 * call rcu_nocb_lock() if that happens.
2468 *
2469 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2470 * processing. This is fine because the early stage
2471 * of deoffloading invokes rcu_core() after setting
2472 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2473 * what could have been dismissed without the need to wait
2474 * for the next rcu_pending() check in the next jiffy.
2475 */
2476 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2477
2478 if (cpu_is_offline(smp_processor_id()))
2479 return;
2480 trace_rcu_utilization(TPS("Start RCU core"));
2481 WARN_ON_ONCE(!rdp->beenonline);
2482
2483 /* Report any deferred quiescent states if preemption enabled. */
2484 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2485 rcu_preempt_deferred_qs(current);
2486 } else if (rcu_preempt_need_deferred_qs(current)) {
2487 set_tsk_need_resched(current);
2488 set_preempt_need_resched();
2489 }
2490
2491 /* Update RCU state based on any recent quiescent states. */
2492 rcu_check_quiescent_state(rdp);
2493
2494 /* No grace period and unregistered callbacks? */
2495 if (!rcu_gp_in_progress() &&
2496 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2497 rcu_nocb_lock_irqsave(rdp, flags);
2498 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2499 rcu_accelerate_cbs_unlocked(rnp, rdp);
2500 rcu_nocb_unlock_irqrestore(rdp, flags);
2501 }
2502
2503 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2504
2505 /* If there are callbacks ready, invoke them. */
2506 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2507 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2508 rcu_do_batch(rdp);
2509 /* Re-invoke RCU core processing if there are callbacks remaining. */
2510 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2511 invoke_rcu_core();
2512 }
2513
2514 /* Do any needed deferred wakeups of rcuo kthreads. */
2515 do_nocb_deferred_wakeup(rdp);
2516 trace_rcu_utilization(TPS("End RCU core"));
2517
2518 // If strict GPs, schedule an RCU reader in a clean environment.
2519 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2520 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2521 }
2522
2523 static void rcu_core_si(struct softirq_action *h)
2524 {
2525 rcu_core();
2526 }
2527
2528 static void rcu_wake_cond(struct task_struct *t, int status)
2529 {
2530 /*
2531 * If the thread is yielding, only wake it when this
2532 * is invoked from idle
2533 */
2534 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2535 wake_up_process(t);
2536 }
2537
2538 static void invoke_rcu_core_kthread(void)
2539 {
2540 struct task_struct *t;
2541 unsigned long flags;
2542
2543 local_irq_save(flags);
2544 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2545 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2546 if (t != NULL && t != current)
2547 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2548 local_irq_restore(flags);
2549 }
2550
2551 /*
2552 * Wake up this CPU's rcuc kthread to do RCU core processing.
2553 */
2554 static void invoke_rcu_core(void)
2555 {
2556 if (!cpu_online(smp_processor_id()))
2557 return;
2558 if (use_softirq)
2559 raise_softirq(RCU_SOFTIRQ);
2560 else
2561 invoke_rcu_core_kthread();
2562 }
2563
2564 static void rcu_cpu_kthread_park(unsigned int cpu)
2565 {
2566 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2567 }
2568
2569 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2570 {
2571 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2572 }
2573
2574 /*
2575 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2576 * the RCU softirq used in configurations of RCU that do not support RCU
2577 * priority boosting.
2578 */
2579 static void rcu_cpu_kthread(unsigned int cpu)
2580 {
2581 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2582 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2583 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2584 int spincnt;
2585
2586 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2587 for (spincnt = 0; spincnt < 10; spincnt++) {
2588 WRITE_ONCE(*j, jiffies);
2589 local_bh_disable();
2590 *statusp = RCU_KTHREAD_RUNNING;
2591 local_irq_disable();
2592 work = *workp;
2593 *workp = 0;
2594 local_irq_enable();
2595 if (work)
2596 rcu_core();
2597 local_bh_enable();
2598 if (*workp == 0) {
2599 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2600 *statusp = RCU_KTHREAD_WAITING;
2601 return;
2602 }
2603 }
2604 *statusp = RCU_KTHREAD_YIELDING;
2605 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2606 schedule_timeout_idle(2);
2607 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2608 *statusp = RCU_KTHREAD_WAITING;
2609 WRITE_ONCE(*j, jiffies);
2610 }
2611
2612 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2613 .store = &rcu_data.rcu_cpu_kthread_task,
2614 .thread_should_run = rcu_cpu_kthread_should_run,
2615 .thread_fn = rcu_cpu_kthread,
2616 .thread_comm = "rcuc/%u",
2617 .setup = rcu_cpu_kthread_setup,
2618 .park = rcu_cpu_kthread_park,
2619 };
2620
2621 /*
2622 * Spawn per-CPU RCU core processing kthreads.
2623 */
2624 static int __init rcu_spawn_core_kthreads(void)
2625 {
2626 int cpu;
2627
2628 for_each_possible_cpu(cpu)
2629 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2630 if (use_softirq)
2631 return 0;
2632 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2633 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2634 return 0;
2635 }
2636
2637 /*
2638 * Handle any core-RCU processing required by a call_rcu() invocation.
2639 */
2640 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2641 unsigned long flags)
2642 {
2643 /*
2644 * If called from an extended quiescent state, invoke the RCU
2645 * core in order to force a re-evaluation of RCU's idleness.
2646 */
2647 if (!rcu_is_watching())
2648 invoke_rcu_core();
2649
2650 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2651 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2652 return;
2653
2654 /*
2655 * Force the grace period if too many callbacks or too long waiting.
2656 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2657 * if some other CPU has recently done so. Also, don't bother
2658 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2659 * is the only one waiting for a grace period to complete.
2660 */
2661 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2662 rdp->qlen_last_fqs_check + qhimark)) {
2663
2664 /* Are we ignoring a completed grace period? */
2665 note_gp_changes(rdp);
2666
2667 /* Start a new grace period if one not already started. */
2668 if (!rcu_gp_in_progress()) {
2669 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2670 } else {
2671 /* Give the grace period a kick. */
2672 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2673 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2674 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2675 rcu_force_quiescent_state();
2676 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2677 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2678 }
2679 }
2680 }
2681
2682 /*
2683 * RCU callback function to leak a callback.
2684 */
2685 static void rcu_leak_callback(struct rcu_head *rhp)
2686 {
2687 }
2688
2689 /*
2690 * Check and if necessary update the leaf rcu_node structure's
2691 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2692 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2693 * structure's ->lock.
2694 */
2695 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2696 {
2697 raw_lockdep_assert_held_rcu_node(rnp);
2698 if (qovld_calc <= 0)
2699 return; // Early boot and wildcard value set.
2700 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2701 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2702 else
2703 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2704 }
2705
2706 /*
2707 * Check and if necessary update the leaf rcu_node structure's
2708 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2709 * number of queued RCU callbacks. No locks need be held, but the
2710 * caller must have disabled interrupts.
2711 *
2712 * Note that this function ignores the possibility that there are a lot
2713 * of callbacks all of which have already seen the end of their respective
2714 * grace periods. This omission is due to the need for no-CBs CPUs to
2715 * be holding ->nocb_lock to do this check, which is too heavy for a
2716 * common-case operation.
2717 */
2718 static void check_cb_ovld(struct rcu_data *rdp)
2719 {
2720 struct rcu_node *const rnp = rdp->mynode;
2721
2722 if (qovld_calc <= 0 ||
2723 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2724 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2725 return; // Early boot wildcard value or already set correctly.
2726 raw_spin_lock_rcu_node(rnp);
2727 check_cb_ovld_locked(rdp, rnp);
2728 raw_spin_unlock_rcu_node(rnp);
2729 }
2730
2731 /**
2732 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2733 * @head: structure to be used for queueing the RCU updates.
2734 * @func: actual callback function to be invoked after the grace period
2735 *
2736 * The callback function will be invoked some time after a full grace
2737 * period elapses, in other words after all pre-existing RCU read-side
2738 * critical sections have completed. However, the callback function
2739 * might well execute concurrently with RCU read-side critical sections
2740 * that started after call_rcu() was invoked.
2741 *
2742 * RCU read-side critical sections are delimited by rcu_read_lock()
2743 * and rcu_read_unlock(), and may be nested. In addition, but only in
2744 * v5.0 and later, regions of code across which interrupts, preemption,
2745 * or softirqs have been disabled also serve as RCU read-side critical
2746 * sections. This includes hardware interrupt handlers, softirq handlers,
2747 * and NMI handlers.
2748 *
2749 * Note that all CPUs must agree that the grace period extended beyond
2750 * all pre-existing RCU read-side critical section. On systems with more
2751 * than one CPU, this means that when "func()" is invoked, each CPU is
2752 * guaranteed to have executed a full memory barrier since the end of its
2753 * last RCU read-side critical section whose beginning preceded the call
2754 * to call_rcu(). It also means that each CPU executing an RCU read-side
2755 * critical section that continues beyond the start of "func()" must have
2756 * executed a memory barrier after the call_rcu() but before the beginning
2757 * of that RCU read-side critical section. Note that these guarantees
2758 * include CPUs that are offline, idle, or executing in user mode, as
2759 * well as CPUs that are executing in the kernel.
2760 *
2761 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2762 * resulting RCU callback function "func()", then both CPU A and CPU B are
2763 * guaranteed to execute a full memory barrier during the time interval
2764 * between the call to call_rcu() and the invocation of "func()" -- even
2765 * if CPU A and CPU B are the same CPU (but again only if the system has
2766 * more than one CPU).
2767 *
2768 * Implementation of these memory-ordering guarantees is described here:
2769 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2770 */
2771 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2772 {
2773 static atomic_t doublefrees;
2774 unsigned long flags;
2775 struct rcu_data *rdp;
2776 bool was_alldone;
2777
2778 /* Misaligned rcu_head! */
2779 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2780
2781 if (debug_rcu_head_queue(head)) {
2782 /*
2783 * Probable double call_rcu(), so leak the callback.
2784 * Use rcu:rcu_callback trace event to find the previous
2785 * time callback was passed to call_rcu().
2786 */
2787 if (atomic_inc_return(&doublefrees) < 4) {
2788 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2789 mem_dump_obj(head);
2790 }
2791 WRITE_ONCE(head->func, rcu_leak_callback);
2792 return;
2793 }
2794 head->func = func;
2795 head->next = NULL;
2796 kasan_record_aux_stack_noalloc(head);
2797 local_irq_save(flags);
2798 rdp = this_cpu_ptr(&rcu_data);
2799
2800 /* Add the callback to our list. */
2801 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2802 // This can trigger due to call_rcu() from offline CPU:
2803 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2804 WARN_ON_ONCE(!rcu_is_watching());
2805 // Very early boot, before rcu_init(). Initialize if needed
2806 // and then drop through to queue the callback.
2807 if (rcu_segcblist_empty(&rdp->cblist))
2808 rcu_segcblist_init(&rdp->cblist);
2809 }
2810
2811 check_cb_ovld(rdp);
2812 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2813 return; // Enqueued onto ->nocb_bypass, so just leave.
2814 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2815 rcu_segcblist_enqueue(&rdp->cblist, head);
2816 if (__is_kvfree_rcu_offset((unsigned long)func))
2817 trace_rcu_kvfree_callback(rcu_state.name, head,
2818 (unsigned long)func,
2819 rcu_segcblist_n_cbs(&rdp->cblist));
2820 else
2821 trace_rcu_callback(rcu_state.name, head,
2822 rcu_segcblist_n_cbs(&rdp->cblist));
2823
2824 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2825
2826 /* Go handle any RCU core processing required. */
2827 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2828 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2829 } else {
2830 __call_rcu_core(rdp, head, flags);
2831 local_irq_restore(flags);
2832 }
2833 }
2834 EXPORT_SYMBOL_GPL(call_rcu);
2835
2836
2837 /* Maximum number of jiffies to wait before draining a batch. */
2838 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2839 #define KFREE_N_BATCHES 2
2840 #define FREE_N_CHANNELS 2
2841
2842 /**
2843 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2844 * @nr_records: Number of active pointers in the array
2845 * @next: Next bulk object in the block chain
2846 * @records: Array of the kvfree_rcu() pointers
2847 */
2848 struct kvfree_rcu_bulk_data {
2849 unsigned long nr_records;
2850 struct kvfree_rcu_bulk_data *next;
2851 void *records[];
2852 };
2853
2854 /*
2855 * This macro defines how many entries the "records" array
2856 * will contain. It is based on the fact that the size of
2857 * kvfree_rcu_bulk_data structure becomes exactly one page.
2858 */
2859 #define KVFREE_BULK_MAX_ENTR \
2860 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2861
2862 /**
2863 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2864 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2865 * @head_free: List of kfree_rcu() objects waiting for a grace period
2866 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2867 * @krcp: Pointer to @kfree_rcu_cpu structure
2868 */
2869
2870 struct kfree_rcu_cpu_work {
2871 struct rcu_work rcu_work;
2872 struct rcu_head *head_free;
2873 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2874 struct kfree_rcu_cpu *krcp;
2875 };
2876
2877 /**
2878 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2879 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2880 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2881 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2882 * @lock: Synchronize access to this structure
2883 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2884 * @initialized: The @rcu_work fields have been initialized
2885 * @count: Number of objects for which GP not started
2886 * @bkvcache:
2887 * A simple cache list that contains objects for reuse purpose.
2888 * In order to save some per-cpu space the list is singular.
2889 * Even though it is lockless an access has to be protected by the
2890 * per-cpu lock.
2891 * @page_cache_work: A work to refill the cache when it is empty
2892 * @backoff_page_cache_fill: Delay cache refills
2893 * @work_in_progress: Indicates that page_cache_work is running
2894 * @hrtimer: A hrtimer for scheduling a page_cache_work
2895 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2896 *
2897 * This is a per-CPU structure. The reason that it is not included in
2898 * the rcu_data structure is to permit this code to be extracted from
2899 * the RCU files. Such extraction could allow further optimization of
2900 * the interactions with the slab allocators.
2901 */
2902 struct kfree_rcu_cpu {
2903 struct rcu_head *head;
2904 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2905 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2906 raw_spinlock_t lock;
2907 struct delayed_work monitor_work;
2908 bool initialized;
2909 int count;
2910
2911 struct delayed_work page_cache_work;
2912 atomic_t backoff_page_cache_fill;
2913 atomic_t work_in_progress;
2914 struct hrtimer hrtimer;
2915
2916 struct llist_head bkvcache;
2917 int nr_bkv_objs;
2918 };
2919
2920 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2921 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2922 };
2923
2924 static __always_inline void
2925 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2926 {
2927 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2928 int i;
2929
2930 for (i = 0; i < bhead->nr_records; i++)
2931 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2932 #endif
2933 }
2934
2935 static inline struct kfree_rcu_cpu *
2936 krc_this_cpu_lock(unsigned long *flags)
2937 {
2938 struct kfree_rcu_cpu *krcp;
2939
2940 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2941 krcp = this_cpu_ptr(&krc);
2942 raw_spin_lock(&krcp->lock);
2943
2944 return krcp;
2945 }
2946
2947 static inline void
2948 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2949 {
2950 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2951 }
2952
2953 static inline struct kvfree_rcu_bulk_data *
2954 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2955 {
2956 if (!krcp->nr_bkv_objs)
2957 return NULL;
2958
2959 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2960 return (struct kvfree_rcu_bulk_data *)
2961 llist_del_first(&krcp->bkvcache);
2962 }
2963
2964 static inline bool
2965 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2966 struct kvfree_rcu_bulk_data *bnode)
2967 {
2968 // Check the limit.
2969 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2970 return false;
2971
2972 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2973 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2974 return true;
2975 }
2976
2977 static int
2978 drain_page_cache(struct kfree_rcu_cpu *krcp)
2979 {
2980 unsigned long flags;
2981 struct llist_node *page_list, *pos, *n;
2982 int freed = 0;
2983
2984 raw_spin_lock_irqsave(&krcp->lock, flags);
2985 page_list = llist_del_all(&krcp->bkvcache);
2986 WRITE_ONCE(krcp->nr_bkv_objs, 0);
2987 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2988
2989 llist_for_each_safe(pos, n, page_list) {
2990 free_page((unsigned long)pos);
2991 freed++;
2992 }
2993
2994 return freed;
2995 }
2996
2997 /*
2998 * This function is invoked in workqueue context after a grace period.
2999 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3000 */
3001 static void kfree_rcu_work(struct work_struct *work)
3002 {
3003 unsigned long flags;
3004 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3005 struct rcu_head *head, *next;
3006 struct kfree_rcu_cpu *krcp;
3007 struct kfree_rcu_cpu_work *krwp;
3008 int i, j;
3009
3010 krwp = container_of(to_rcu_work(work),
3011 struct kfree_rcu_cpu_work, rcu_work);
3012 krcp = krwp->krcp;
3013
3014 raw_spin_lock_irqsave(&krcp->lock, flags);
3015 // Channels 1 and 2.
3016 for (i = 0; i < FREE_N_CHANNELS; i++) {
3017 bkvhead[i] = krwp->bkvhead_free[i];
3018 krwp->bkvhead_free[i] = NULL;
3019 }
3020
3021 // Channel 3.
3022 head = krwp->head_free;
3023 krwp->head_free = NULL;
3024 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3025
3026 // Handle the first two channels.
3027 for (i = 0; i < FREE_N_CHANNELS; i++) {
3028 for (; bkvhead[i]; bkvhead[i] = bnext) {
3029 bnext = bkvhead[i]->next;
3030 debug_rcu_bhead_unqueue(bkvhead[i]);
3031
3032 rcu_lock_acquire(&rcu_callback_map);
3033 if (i == 0) { // kmalloc() / kfree().
3034 trace_rcu_invoke_kfree_bulk_callback(
3035 rcu_state.name, bkvhead[i]->nr_records,
3036 bkvhead[i]->records);
3037
3038 kfree_bulk(bkvhead[i]->nr_records,
3039 bkvhead[i]->records);
3040 } else { // vmalloc() / vfree().
3041 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3042 trace_rcu_invoke_kvfree_callback(
3043 rcu_state.name,
3044 bkvhead[i]->records[j], 0);
3045
3046 vfree(bkvhead[i]->records[j]);
3047 }
3048 }
3049 rcu_lock_release(&rcu_callback_map);
3050
3051 raw_spin_lock_irqsave(&krcp->lock, flags);
3052 if (put_cached_bnode(krcp, bkvhead[i]))
3053 bkvhead[i] = NULL;
3054 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3055
3056 if (bkvhead[i])
3057 free_page((unsigned long) bkvhead[i]);
3058
3059 cond_resched_tasks_rcu_qs();
3060 }
3061 }
3062
3063 /*
3064 * This is used when the "bulk" path can not be used for the
3065 * double-argument of kvfree_rcu(). This happens when the
3066 * page-cache is empty, which means that objects are instead
3067 * queued on a linked list through their rcu_head structures.
3068 * This list is named "Channel 3".
3069 */
3070 for (; head; head = next) {
3071 unsigned long offset = (unsigned long)head->func;
3072 void *ptr = (void *)head - offset;
3073
3074 next = head->next;
3075 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3076 rcu_lock_acquire(&rcu_callback_map);
3077 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3078
3079 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3080 kvfree(ptr);
3081
3082 rcu_lock_release(&rcu_callback_map);
3083 cond_resched_tasks_rcu_qs();
3084 }
3085 }
3086
3087 static bool
3088 need_offload_krc(struct kfree_rcu_cpu *krcp)
3089 {
3090 int i;
3091
3092 for (i = 0; i < FREE_N_CHANNELS; i++)
3093 if (krcp->bkvhead[i])
3094 return true;
3095
3096 return !!krcp->head;
3097 }
3098
3099 static void
3100 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3101 {
3102 long delay, delay_left;
3103
3104 delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3105 if (delayed_work_pending(&krcp->monitor_work)) {
3106 delay_left = krcp->monitor_work.timer.expires - jiffies;
3107 if (delay < delay_left)
3108 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3109 return;
3110 }
3111 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3112 }
3113
3114 /*
3115 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3116 */
3117 static void kfree_rcu_monitor(struct work_struct *work)
3118 {
3119 struct kfree_rcu_cpu *krcp = container_of(work,
3120 struct kfree_rcu_cpu, monitor_work.work);
3121 unsigned long flags;
3122 int i, j;
3123
3124 raw_spin_lock_irqsave(&krcp->lock, flags);
3125
3126 // Attempt to start a new batch.
3127 for (i = 0; i < KFREE_N_BATCHES; i++) {
3128 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3129
3130 // Try to detach bkvhead or head and attach it over any
3131 // available corresponding free channel. It can be that
3132 // a previous RCU batch is in progress, it means that
3133 // immediately to queue another one is not possible so
3134 // in that case the monitor work is rearmed.
3135 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3136 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3137 (krcp->head && !krwp->head_free)) {
3138 // Channel 1 corresponds to the SLAB-pointer bulk path.
3139 // Channel 2 corresponds to vmalloc-pointer bulk path.
3140 for (j = 0; j < FREE_N_CHANNELS; j++) {
3141 if (!krwp->bkvhead_free[j]) {
3142 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3143 krcp->bkvhead[j] = NULL;
3144 }
3145 }
3146
3147 // Channel 3 corresponds to both SLAB and vmalloc
3148 // objects queued on the linked list.
3149 if (!krwp->head_free) {
3150 krwp->head_free = krcp->head;
3151 krcp->head = NULL;
3152 }
3153
3154 WRITE_ONCE(krcp->count, 0);
3155
3156 // One work is per one batch, so there are three
3157 // "free channels", the batch can handle. It can
3158 // be that the work is in the pending state when
3159 // channels have been detached following by each
3160 // other.
3161 queue_rcu_work(system_wq, &krwp->rcu_work);
3162 }
3163 }
3164
3165 // If there is nothing to detach, it means that our job is
3166 // successfully done here. In case of having at least one
3167 // of the channels that is still busy we should rearm the
3168 // work to repeat an attempt. Because previous batches are
3169 // still in progress.
3170 if (need_offload_krc(krcp))
3171 schedule_delayed_monitor_work(krcp);
3172
3173 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3174 }
3175
3176 static enum hrtimer_restart
3177 schedule_page_work_fn(struct hrtimer *t)
3178 {
3179 struct kfree_rcu_cpu *krcp =
3180 container_of(t, struct kfree_rcu_cpu, hrtimer);
3181
3182 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3183 return HRTIMER_NORESTART;
3184 }
3185
3186 static void fill_page_cache_func(struct work_struct *work)
3187 {
3188 struct kvfree_rcu_bulk_data *bnode;
3189 struct kfree_rcu_cpu *krcp =
3190 container_of(work, struct kfree_rcu_cpu,
3191 page_cache_work.work);
3192 unsigned long flags;
3193 int nr_pages;
3194 bool pushed;
3195 int i;
3196
3197 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3198 1 : rcu_min_cached_objs;
3199
3200 for (i = 0; i < nr_pages; i++) {
3201 bnode = (struct kvfree_rcu_bulk_data *)
3202 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3203
3204 if (!bnode)
3205 break;
3206
3207 raw_spin_lock_irqsave(&krcp->lock, flags);
3208 pushed = put_cached_bnode(krcp, bnode);
3209 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3210
3211 if (!pushed) {
3212 free_page((unsigned long) bnode);
3213 break;
3214 }
3215 }
3216
3217 atomic_set(&krcp->work_in_progress, 0);
3218 atomic_set(&krcp->backoff_page_cache_fill, 0);
3219 }
3220
3221 static void
3222 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3223 {
3224 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3225 !atomic_xchg(&krcp->work_in_progress, 1)) {
3226 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3227 queue_delayed_work(system_wq,
3228 &krcp->page_cache_work,
3229 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3230 } else {
3231 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3232 krcp->hrtimer.function = schedule_page_work_fn;
3233 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3234 }
3235 }
3236 }
3237
3238 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3239 // state specified by flags. If can_alloc is true, the caller must
3240 // be schedulable and not be holding any locks or mutexes that might be
3241 // acquired by the memory allocator or anything that it might invoke.
3242 // Returns true if ptr was successfully recorded, else the caller must
3243 // use a fallback.
3244 static inline bool
3245 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3246 unsigned long *flags, void *ptr, bool can_alloc)
3247 {
3248 struct kvfree_rcu_bulk_data *bnode;
3249 int idx;
3250
3251 *krcp = krc_this_cpu_lock(flags);
3252 if (unlikely(!(*krcp)->initialized))
3253 return false;
3254
3255 idx = !!is_vmalloc_addr(ptr);
3256
3257 /* Check if a new block is required. */
3258 if (!(*krcp)->bkvhead[idx] ||
3259 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3260 bnode = get_cached_bnode(*krcp);
3261 if (!bnode && can_alloc) {
3262 krc_this_cpu_unlock(*krcp, *flags);
3263
3264 // __GFP_NORETRY - allows a light-weight direct reclaim
3265 // what is OK from minimizing of fallback hitting point of
3266 // view. Apart of that it forbids any OOM invoking what is
3267 // also beneficial since we are about to release memory soon.
3268 //
3269 // __GFP_NOMEMALLOC - prevents from consuming of all the
3270 // memory reserves. Please note we have a fallback path.
3271 //
3272 // __GFP_NOWARN - it is supposed that an allocation can
3273 // be failed under low memory or high memory pressure
3274 // scenarios.
3275 bnode = (struct kvfree_rcu_bulk_data *)
3276 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3277 *krcp = krc_this_cpu_lock(flags);
3278 }
3279
3280 if (!bnode)
3281 return false;
3282
3283 /* Initialize the new block. */
3284 bnode->nr_records = 0;
3285 bnode->next = (*krcp)->bkvhead[idx];
3286
3287 /* Attach it to the head. */
3288 (*krcp)->bkvhead[idx] = bnode;
3289 }
3290
3291 /* Finally insert. */
3292 (*krcp)->bkvhead[idx]->records
3293 [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3294
3295 return true;
3296 }
3297
3298 /*
3299 * Queue a request for lazy invocation of the appropriate free routine
3300 * after a grace period. Please note that three paths are maintained,
3301 * two for the common case using arrays of pointers and a third one that
3302 * is used only when the main paths cannot be used, for example, due to
3303 * memory pressure.
3304 *
3305 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3306 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3307 * be free'd in workqueue context. This allows us to: batch requests together to
3308 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3309 */
3310 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3311 {
3312 unsigned long flags;
3313 struct kfree_rcu_cpu *krcp;
3314 bool success;
3315 void *ptr;
3316
3317 if (head) {
3318 ptr = (void *) head - (unsigned long) func;
3319 } else {
3320 /*
3321 * Please note there is a limitation for the head-less
3322 * variant, that is why there is a clear rule for such
3323 * objects: it can be used from might_sleep() context
3324 * only. For other places please embed an rcu_head to
3325 * your data.
3326 */
3327 might_sleep();
3328 ptr = (unsigned long *) func;
3329 }
3330
3331 // Queue the object but don't yet schedule the batch.
3332 if (debug_rcu_head_queue(ptr)) {
3333 // Probable double kfree_rcu(), just leak.
3334 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3335 __func__, head);
3336
3337 // Mark as success and leave.
3338 return;
3339 }
3340
3341 kasan_record_aux_stack_noalloc(ptr);
3342 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3343 if (!success) {
3344 run_page_cache_worker(krcp);
3345
3346 if (head == NULL)
3347 // Inline if kvfree_rcu(one_arg) call.
3348 goto unlock_return;
3349
3350 head->func = func;
3351 head->next = krcp->head;
3352 krcp->head = head;
3353 success = true;
3354 }
3355
3356 WRITE_ONCE(krcp->count, krcp->count + 1);
3357
3358 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3359 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3360 schedule_delayed_monitor_work(krcp);
3361
3362 unlock_return:
3363 krc_this_cpu_unlock(krcp, flags);
3364
3365 /*
3366 * Inline kvfree() after synchronize_rcu(). We can do
3367 * it from might_sleep() context only, so the current
3368 * CPU can pass the QS state.
3369 */
3370 if (!success) {
3371 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3372 synchronize_rcu();
3373 kvfree(ptr);
3374 }
3375 }
3376 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3377
3378 static unsigned long
3379 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3380 {
3381 int cpu;
3382 unsigned long count = 0;
3383
3384 /* Snapshot count of all CPUs */
3385 for_each_possible_cpu(cpu) {
3386 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3387
3388 count += READ_ONCE(krcp->count);
3389 count += READ_ONCE(krcp->nr_bkv_objs);
3390 atomic_set(&krcp->backoff_page_cache_fill, 1);
3391 }
3392
3393 return count == 0 ? SHRINK_EMPTY : count;
3394 }
3395
3396 static unsigned long
3397 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3398 {
3399 int cpu, freed = 0;
3400
3401 for_each_possible_cpu(cpu) {
3402 int count;
3403 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3404
3405 count = krcp->count;
3406 count += drain_page_cache(krcp);
3407 kfree_rcu_monitor(&krcp->monitor_work.work);
3408
3409 sc->nr_to_scan -= count;
3410 freed += count;
3411
3412 if (sc->nr_to_scan <= 0)
3413 break;
3414 }
3415
3416 return freed == 0 ? SHRINK_STOP : freed;
3417 }
3418
3419 static struct shrinker kfree_rcu_shrinker = {
3420 .count_objects = kfree_rcu_shrink_count,
3421 .scan_objects = kfree_rcu_shrink_scan,
3422 .batch = 0,
3423 .seeks = DEFAULT_SEEKS,
3424 };
3425
3426 void __init kfree_rcu_scheduler_running(void)
3427 {
3428 int cpu;
3429 unsigned long flags;
3430
3431 for_each_possible_cpu(cpu) {
3432 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3433
3434 raw_spin_lock_irqsave(&krcp->lock, flags);
3435 if (need_offload_krc(krcp))
3436 schedule_delayed_monitor_work(krcp);
3437 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3438 }
3439 }
3440
3441 /*
3442 * During early boot, any blocking grace-period wait automatically
3443 * implies a grace period.
3444 *
3445 * Later on, this could in theory be the case for kernels built with
3446 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3447 * is not a common case. Furthermore, this optimization would cause
3448 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3449 * grace-period optimization is ignored once the scheduler is running.
3450 */
3451 static int rcu_blocking_is_gp(void)
3452 {
3453 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3454 return false;
3455 might_sleep(); /* Check for RCU read-side critical section. */
3456 return true;
3457 }
3458
3459 /**
3460 * synchronize_rcu - wait until a grace period has elapsed.
3461 *
3462 * Control will return to the caller some time after a full grace
3463 * period has elapsed, in other words after all currently executing RCU
3464 * read-side critical sections have completed. Note, however, that
3465 * upon return from synchronize_rcu(), the caller might well be executing
3466 * concurrently with new RCU read-side critical sections that began while
3467 * synchronize_rcu() was waiting.
3468 *
3469 * RCU read-side critical sections are delimited by rcu_read_lock()
3470 * and rcu_read_unlock(), and may be nested. In addition, but only in
3471 * v5.0 and later, regions of code across which interrupts, preemption,
3472 * or softirqs have been disabled also serve as RCU read-side critical
3473 * sections. This includes hardware interrupt handlers, softirq handlers,
3474 * and NMI handlers.
3475 *
3476 * Note that this guarantee implies further memory-ordering guarantees.
3477 * On systems with more than one CPU, when synchronize_rcu() returns,
3478 * each CPU is guaranteed to have executed a full memory barrier since
3479 * the end of its last RCU read-side critical section whose beginning
3480 * preceded the call to synchronize_rcu(). In addition, each CPU having
3481 * an RCU read-side critical section that extends beyond the return from
3482 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3483 * after the beginning of synchronize_rcu() and before the beginning of
3484 * that RCU read-side critical section. Note that these guarantees include
3485 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3486 * that are executing in the kernel.
3487 *
3488 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3489 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3490 * to have executed a full memory barrier during the execution of
3491 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3492 * again only if the system has more than one CPU).
3493 *
3494 * Implementation of these memory-ordering guarantees is described here:
3495 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3496 */
3497 void synchronize_rcu(void)
3498 {
3499 unsigned long flags;
3500 struct rcu_node *rnp;
3501
3502 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3503 lock_is_held(&rcu_lock_map) ||
3504 lock_is_held(&rcu_sched_lock_map),
3505 "Illegal synchronize_rcu() in RCU read-side critical section");
3506 if (!rcu_blocking_is_gp()) {
3507 if (rcu_gp_is_expedited())
3508 synchronize_rcu_expedited();
3509 else
3510 wait_rcu_gp(call_rcu);
3511 return;
3512 }
3513
3514 // Context allows vacuous grace periods.
3515 // Note well that this code runs with !PREEMPT && !SMP.
3516 // In addition, all code that advances grace periods runs at
3517 // process level. Therefore, this normal GP overlaps with other
3518 // normal GPs only by being fully nested within them, which allows
3519 // reuse of ->gp_seq_polled_snap.
3520 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3521 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3522
3523 // Update the normal grace-period counters to record
3524 // this grace period, but only those used by the boot CPU.
3525 // The rcu_scheduler_starting() will take care of the rest of
3526 // these counters.
3527 local_irq_save(flags);
3528 WARN_ON_ONCE(num_online_cpus() > 1);
3529 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3530 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3531 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3532 local_irq_restore(flags);
3533 }
3534 EXPORT_SYMBOL_GPL(synchronize_rcu);
3535
3536 /**
3537 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3538 * @rgosp: Place to put state cookie
3539 *
3540 * Stores into @rgosp a value that will always be treated by functions
3541 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3542 * has already completed.
3543 */
3544 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3545 {
3546 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3547 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3548 }
3549 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3550
3551 /**
3552 * get_state_synchronize_rcu - Snapshot current RCU state
3553 *
3554 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3555 * or poll_state_synchronize_rcu() to determine whether or not a full
3556 * grace period has elapsed in the meantime.
3557 */
3558 unsigned long get_state_synchronize_rcu(void)
3559 {
3560 /*
3561 * Any prior manipulation of RCU-protected data must happen
3562 * before the load from ->gp_seq.
3563 */
3564 smp_mb(); /* ^^^ */
3565 return rcu_seq_snap(&rcu_state.gp_seq_polled);
3566 }
3567 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3568
3569 /**
3570 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3571 * @rgosp: location to place combined normal/expedited grace-period state
3572 *
3573 * Places the normal and expedited grace-period states in @rgosp. This
3574 * state value can be passed to a later call to cond_synchronize_rcu_full()
3575 * or poll_state_synchronize_rcu_full() to determine whether or not a
3576 * grace period (whether normal or expedited) has elapsed in the meantime.
3577 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3578 * long, but is guaranteed to see all grace periods. In contrast, the
3579 * combined state occupies less memory, but can sometimes fail to take
3580 * grace periods into account.
3581 *
3582 * This does not guarantee that the needed grace period will actually
3583 * start.
3584 */
3585 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3586 {
3587 struct rcu_node *rnp = rcu_get_root();
3588
3589 /*
3590 * Any prior manipulation of RCU-protected data must happen
3591 * before the loads from ->gp_seq and ->expedited_sequence.
3592 */
3593 smp_mb(); /* ^^^ */
3594 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3595 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3596 }
3597 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3598
3599 /*
3600 * Helper function for start_poll_synchronize_rcu() and
3601 * start_poll_synchronize_rcu_full().
3602 */
3603 static void start_poll_synchronize_rcu_common(void)
3604 {
3605 unsigned long flags;
3606 bool needwake;
3607 struct rcu_data *rdp;
3608 struct rcu_node *rnp;
3609
3610 lockdep_assert_irqs_enabled();
3611 local_irq_save(flags);
3612 rdp = this_cpu_ptr(&rcu_data);
3613 rnp = rdp->mynode;
3614 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3615 // Note it is possible for a grace period to have elapsed between
3616 // the above call to get_state_synchronize_rcu() and the below call
3617 // to rcu_seq_snap. This is OK, the worst that happens is that we
3618 // get a grace period that no one needed. These accesses are ordered
3619 // by smp_mb(), and we are accessing them in the opposite order
3620 // from which they are updated at grace-period start, as required.
3621 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3622 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3623 if (needwake)
3624 rcu_gp_kthread_wake();
3625 }
3626
3627 /**
3628 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3629 *
3630 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3631 * or poll_state_synchronize_rcu() to determine whether or not a full
3632 * grace period has elapsed in the meantime. If the needed grace period
3633 * is not already slated to start, notifies RCU core of the need for that
3634 * grace period.
3635 *
3636 * Interrupts must be enabled for the case where it is necessary to awaken
3637 * the grace-period kthread.
3638 */
3639 unsigned long start_poll_synchronize_rcu(void)
3640 {
3641 unsigned long gp_seq = get_state_synchronize_rcu();
3642
3643 start_poll_synchronize_rcu_common();
3644 return gp_seq;
3645 }
3646 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3647
3648 /**
3649 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3650 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3651 *
3652 * Places the normal and expedited grace-period states in *@rgos. This
3653 * state value can be passed to a later call to cond_synchronize_rcu_full()
3654 * or poll_state_synchronize_rcu_full() to determine whether or not a
3655 * grace period (whether normal or expedited) has elapsed in the meantime.
3656 * If the needed grace period is not already slated to start, notifies
3657 * RCU core of the need for that grace period.
3658 *
3659 * Interrupts must be enabled for the case where it is necessary to awaken
3660 * the grace-period kthread.
3661 */
3662 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3663 {
3664 get_state_synchronize_rcu_full(rgosp);
3665
3666 start_poll_synchronize_rcu_common();
3667 }
3668 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3669
3670 /**
3671 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3672 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3673 *
3674 * If a full RCU grace period has elapsed since the earlier call from
3675 * which @oldstate was obtained, return @true, otherwise return @false.
3676 * If @false is returned, it is the caller's responsibility to invoke this
3677 * function later on until it does return @true. Alternatively, the caller
3678 * can explicitly wait for a grace period, for example, by passing @oldstate
3679 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3680 *
3681 * Yes, this function does not take counter wrap into account.
3682 * But counter wrap is harmless. If the counter wraps, we have waited for
3683 * more than a billion grace periods (and way more on a 64-bit system!).
3684 * Those needing to keep old state values for very long time periods
3685 * (many hours even on 32-bit systems) should check them occasionally and
3686 * either refresh them or set a flag indicating that the grace period has
3687 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3688 * to get a guaranteed-completed grace-period state.
3689 *
3690 * This function provides the same memory-ordering guarantees that
3691 * would be provided by a synchronize_rcu() that was invoked at the call
3692 * to the function that provided @oldstate, and that returned at the end
3693 * of this function.
3694 */
3695 bool poll_state_synchronize_rcu(unsigned long oldstate)
3696 {
3697 if (oldstate == RCU_GET_STATE_COMPLETED ||
3698 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3699 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3700 return true;
3701 }
3702 return false;
3703 }
3704 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3705
3706 /**
3707 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3708 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3709 *
3710 * If a full RCU grace period has elapsed since the earlier call from
3711 * which *rgosp was obtained, return @true, otherwise return @false.
3712 * If @false is returned, it is the caller's responsibility to invoke this
3713 * function later on until it does return @true. Alternatively, the caller
3714 * can explicitly wait for a grace period, for example, by passing @rgosp
3715 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3716 *
3717 * Yes, this function does not take counter wrap into account.
3718 * But counter wrap is harmless. If the counter wraps, we have waited
3719 * for more than a billion grace periods (and way more on a 64-bit
3720 * system!). Those needing to keep rcu_gp_oldstate values for very
3721 * long time periods (many hours even on 32-bit systems) should check
3722 * them occasionally and either refresh them or set a flag indicating
3723 * that the grace period has completed. Alternatively, they can use
3724 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3725 * grace-period state.
3726 *
3727 * This function provides the same memory-ordering guarantees that would
3728 * be provided by a synchronize_rcu() that was invoked at the call to
3729 * the function that provided @rgosp, and that returned at the end of this
3730 * function. And this guarantee requires that the root rcu_node structure's
3731 * ->gp_seq field be checked instead of that of the rcu_state structure.
3732 * The problem is that the just-ending grace-period's callbacks can be
3733 * invoked between the time that the root rcu_node structure's ->gp_seq
3734 * field is updated and the time that the rcu_state structure's ->gp_seq
3735 * field is updated. Therefore, if a single synchronize_rcu() is to
3736 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3737 * then the root rcu_node structure is the one that needs to be polled.
3738 */
3739 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3740 {
3741 struct rcu_node *rnp = rcu_get_root();
3742
3743 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3744 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3745 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3746 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3747 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3748 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3749 return true;
3750 }
3751 return false;
3752 }
3753 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3754
3755 /**
3756 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3757 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3758 *
3759 * If a full RCU grace period has elapsed since the earlier call to
3760 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3761 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3762 *
3763 * Yes, this function does not take counter wrap into account.
3764 * But counter wrap is harmless. If the counter wraps, we have waited for
3765 * more than 2 billion grace periods (and way more on a 64-bit system!),
3766 * so waiting for a couple of additional grace periods should be just fine.
3767 *
3768 * This function provides the same memory-ordering guarantees that
3769 * would be provided by a synchronize_rcu() that was invoked at the call
3770 * to the function that provided @oldstate and that returned at the end
3771 * of this function.
3772 */
3773 void cond_synchronize_rcu(unsigned long oldstate)
3774 {
3775 if (!poll_state_synchronize_rcu(oldstate))
3776 synchronize_rcu();
3777 }
3778 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3779
3780 /**
3781 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3782 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3783 *
3784 * If a full RCU grace period has elapsed since the call to
3785 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3786 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3787 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3788 * for a full grace period.
3789 *
3790 * Yes, this function does not take counter wrap into account.
3791 * But counter wrap is harmless. If the counter wraps, we have waited for
3792 * more than 2 billion grace periods (and way more on a 64-bit system!),
3793 * so waiting for a couple of additional grace periods should be just fine.
3794 *
3795 * This function provides the same memory-ordering guarantees that
3796 * would be provided by a synchronize_rcu() that was invoked at the call
3797 * to the function that provided @rgosp and that returned at the end of
3798 * this function.
3799 */
3800 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3801 {
3802 if (!poll_state_synchronize_rcu_full(rgosp))
3803 synchronize_rcu();
3804 }
3805 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3806
3807 /*
3808 * Check to see if there is any immediate RCU-related work to be done by
3809 * the current CPU, returning 1 if so and zero otherwise. The checks are
3810 * in order of increasing expense: checks that can be carried out against
3811 * CPU-local state are performed first. However, we must check for CPU
3812 * stalls first, else we might not get a chance.
3813 */
3814 static int rcu_pending(int user)
3815 {
3816 bool gp_in_progress;
3817 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3818 struct rcu_node *rnp = rdp->mynode;
3819
3820 lockdep_assert_irqs_disabled();
3821
3822 /* Check for CPU stalls, if enabled. */
3823 check_cpu_stall(rdp);
3824
3825 /* Does this CPU need a deferred NOCB wakeup? */
3826 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3827 return 1;
3828
3829 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3830 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3831 return 0;
3832
3833 /* Is the RCU core waiting for a quiescent state from this CPU? */
3834 gp_in_progress = rcu_gp_in_progress();
3835 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3836 return 1;
3837
3838 /* Does this CPU have callbacks ready to invoke? */
3839 if (!rcu_rdp_is_offloaded(rdp) &&
3840 rcu_segcblist_ready_cbs(&rdp->cblist))
3841 return 1;
3842
3843 /* Has RCU gone idle with this CPU needing another grace period? */
3844 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3845 !rcu_rdp_is_offloaded(rdp) &&
3846 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3847 return 1;
3848
3849 /* Have RCU grace period completed or started? */
3850 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3851 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3852 return 1;
3853
3854 /* nothing to do */
3855 return 0;
3856 }
3857
3858 /*
3859 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3860 * the compiler is expected to optimize this away.
3861 */
3862 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3863 {
3864 trace_rcu_barrier(rcu_state.name, s, cpu,
3865 atomic_read(&rcu_state.barrier_cpu_count), done);
3866 }
3867
3868 /*
3869 * RCU callback function for rcu_barrier(). If we are last, wake
3870 * up the task executing rcu_barrier().
3871 *
3872 * Note that the value of rcu_state.barrier_sequence must be captured
3873 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3874 * other CPUs might count the value down to zero before this CPU gets
3875 * around to invoking rcu_barrier_trace(), which might result in bogus
3876 * data from the next instance of rcu_barrier().
3877 */
3878 static void rcu_barrier_callback(struct rcu_head *rhp)
3879 {
3880 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3881
3882 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3883 rcu_barrier_trace(TPS("LastCB"), -1, s);
3884 complete(&rcu_state.barrier_completion);
3885 } else {
3886 rcu_barrier_trace(TPS("CB"), -1, s);
3887 }
3888 }
3889
3890 /*
3891 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3892 */
3893 static void rcu_barrier_entrain(struct rcu_data *rdp)
3894 {
3895 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3896 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3897
3898 lockdep_assert_held(&rcu_state.barrier_lock);
3899 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3900 return;
3901 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3902 rdp->barrier_head.func = rcu_barrier_callback;
3903 debug_rcu_head_queue(&rdp->barrier_head);
3904 rcu_nocb_lock(rdp);
3905 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3906 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3907 atomic_inc(&rcu_state.barrier_cpu_count);
3908 } else {
3909 debug_rcu_head_unqueue(&rdp->barrier_head);
3910 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3911 }
3912 rcu_nocb_unlock(rdp);
3913 smp_store_release(&rdp->barrier_seq_snap, gseq);
3914 }
3915
3916 /*
3917 * Called with preemption disabled, and from cross-cpu IRQ context.
3918 */
3919 static void rcu_barrier_handler(void *cpu_in)
3920 {
3921 uintptr_t cpu = (uintptr_t)cpu_in;
3922 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3923
3924 lockdep_assert_irqs_disabled();
3925 WARN_ON_ONCE(cpu != rdp->cpu);
3926 WARN_ON_ONCE(cpu != smp_processor_id());
3927 raw_spin_lock(&rcu_state.barrier_lock);
3928 rcu_barrier_entrain(rdp);
3929 raw_spin_unlock(&rcu_state.barrier_lock);
3930 }
3931
3932 /**
3933 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3934 *
3935 * Note that this primitive does not necessarily wait for an RCU grace period
3936 * to complete. For example, if there are no RCU callbacks queued anywhere
3937 * in the system, then rcu_barrier() is within its rights to return
3938 * immediately, without waiting for anything, much less an RCU grace period.
3939 */
3940 void rcu_barrier(void)
3941 {
3942 uintptr_t cpu;
3943 unsigned long flags;
3944 unsigned long gseq;
3945 struct rcu_data *rdp;
3946 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3947
3948 rcu_barrier_trace(TPS("Begin"), -1, s);
3949
3950 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3951 mutex_lock(&rcu_state.barrier_mutex);
3952
3953 /* Did someone else do our work for us? */
3954 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3955 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3956 smp_mb(); /* caller's subsequent code after above check. */
3957 mutex_unlock(&rcu_state.barrier_mutex);
3958 return;
3959 }
3960
3961 /* Mark the start of the barrier operation. */
3962 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3963 rcu_seq_start(&rcu_state.barrier_sequence);
3964 gseq = rcu_state.barrier_sequence;
3965 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3966
3967 /*
3968 * Initialize the count to two rather than to zero in order
3969 * to avoid a too-soon return to zero in case of an immediate
3970 * invocation of the just-enqueued callback (or preemption of
3971 * this task). Exclude CPU-hotplug operations to ensure that no
3972 * offline non-offloaded CPU has callbacks queued.
3973 */
3974 init_completion(&rcu_state.barrier_completion);
3975 atomic_set(&rcu_state.barrier_cpu_count, 2);
3976 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3977
3978 /*
3979 * Force each CPU with callbacks to register a new callback.
3980 * When that callback is invoked, we will know that all of the
3981 * corresponding CPU's preceding callbacks have been invoked.
3982 */
3983 for_each_possible_cpu(cpu) {
3984 rdp = per_cpu_ptr(&rcu_data, cpu);
3985 retry:
3986 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3987 continue;
3988 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3989 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
3990 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3991 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3992 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
3993 continue;
3994 }
3995 if (!rcu_rdp_cpu_online(rdp)) {
3996 rcu_barrier_entrain(rdp);
3997 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3998 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3999 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4000 continue;
4001 }
4002 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4003 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4004 schedule_timeout_uninterruptible(1);
4005 goto retry;
4006 }
4007 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4008 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4009 }
4010
4011 /*
4012 * Now that we have an rcu_barrier_callback() callback on each
4013 * CPU, and thus each counted, remove the initial count.
4014 */
4015 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4016 complete(&rcu_state.barrier_completion);
4017
4018 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4019 wait_for_completion(&rcu_state.barrier_completion);
4020
4021 /* Mark the end of the barrier operation. */
4022 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4023 rcu_seq_end(&rcu_state.barrier_sequence);
4024 gseq = rcu_state.barrier_sequence;
4025 for_each_possible_cpu(cpu) {
4026 rdp = per_cpu_ptr(&rcu_data, cpu);
4027
4028 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4029 }
4030
4031 /* Other rcu_barrier() invocations can now safely proceed. */
4032 mutex_unlock(&rcu_state.barrier_mutex);
4033 }
4034 EXPORT_SYMBOL_GPL(rcu_barrier);
4035
4036 /*
4037 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4038 * first CPU in a given leaf rcu_node structure coming online. The caller
4039 * must hold the corresponding leaf rcu_node ->lock with interrupts
4040 * disabled.
4041 */
4042 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4043 {
4044 long mask;
4045 long oldmask;
4046 struct rcu_node *rnp = rnp_leaf;
4047
4048 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4049 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4050 for (;;) {
4051 mask = rnp->grpmask;
4052 rnp = rnp->parent;
4053 if (rnp == NULL)
4054 return;
4055 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4056 oldmask = rnp->qsmaskinit;
4057 rnp->qsmaskinit |= mask;
4058 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4059 if (oldmask)
4060 return;
4061 }
4062 }
4063
4064 /*
4065 * Do boot-time initialization of a CPU's per-CPU RCU data.
4066 */
4067 static void __init
4068 rcu_boot_init_percpu_data(int cpu)
4069 {
4070 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4071 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4072
4073 /* Set up local state, ensuring consistent view of global state. */
4074 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4075 INIT_WORK(&rdp->strict_work, strict_work_handler);
4076 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4077 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4078 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4079 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4080 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4081 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4082 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4083 rdp->last_sched_clock = jiffies;
4084 rdp->cpu = cpu;
4085 rcu_boot_init_nocb_percpu_data(rdp);
4086 }
4087
4088 /*
4089 * Invoked early in the CPU-online process, when pretty much all services
4090 * are available. The incoming CPU is not present.
4091 *
4092 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4093 * offline event can be happening at a given time. Note also that we can
4094 * accept some slop in the rsp->gp_seq access due to the fact that this
4095 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4096 * And any offloaded callbacks are being numbered elsewhere.
4097 */
4098 int rcutree_prepare_cpu(unsigned int cpu)
4099 {
4100 unsigned long flags;
4101 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4102 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4103 struct rcu_node *rnp = rcu_get_root();
4104
4105 /* Set up local state, ensuring consistent view of global state. */
4106 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4107 rdp->qlen_last_fqs_check = 0;
4108 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4109 rdp->blimit = blimit;
4110 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4111 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4112
4113 /*
4114 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4115 * (re-)initialized.
4116 */
4117 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4118 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4119
4120 /*
4121 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4122 * propagation up the rcu_node tree will happen at the beginning
4123 * of the next grace period.
4124 */
4125 rnp = rdp->mynode;
4126 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4127 rdp->beenonline = true; /* We have now been online. */
4128 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4129 rdp->gp_seq_needed = rdp->gp_seq;
4130 rdp->cpu_no_qs.b.norm = true;
4131 rdp->core_needs_qs = false;
4132 rdp->rcu_iw_pending = false;
4133 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4134 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4135 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4136 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4137 rcu_spawn_one_boost_kthread(rnp);
4138 rcu_spawn_cpu_nocb_kthread(cpu);
4139 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4140
4141 return 0;
4142 }
4143
4144 /*
4145 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4146 */
4147 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4148 {
4149 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4150
4151 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4152 }
4153
4154 /*
4155 * Near the end of the CPU-online process. Pretty much all services
4156 * enabled, and the CPU is now very much alive.
4157 */
4158 int rcutree_online_cpu(unsigned int cpu)
4159 {
4160 unsigned long flags;
4161 struct rcu_data *rdp;
4162 struct rcu_node *rnp;
4163
4164 rdp = per_cpu_ptr(&rcu_data, cpu);
4165 rnp = rdp->mynode;
4166 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4167 rnp->ffmask |= rdp->grpmask;
4168 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4169 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4170 return 0; /* Too early in boot for scheduler work. */
4171 sync_sched_exp_online_cleanup(cpu);
4172 rcutree_affinity_setting(cpu, -1);
4173
4174 // Stop-machine done, so allow nohz_full to disable tick.
4175 tick_dep_clear(TICK_DEP_BIT_RCU);
4176 return 0;
4177 }
4178
4179 /*
4180 * Near the beginning of the process. The CPU is still very much alive
4181 * with pretty much all services enabled.
4182 */
4183 int rcutree_offline_cpu(unsigned int cpu)
4184 {
4185 unsigned long flags;
4186 struct rcu_data *rdp;
4187 struct rcu_node *rnp;
4188
4189 rdp = per_cpu_ptr(&rcu_data, cpu);
4190 rnp = rdp->mynode;
4191 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4192 rnp->ffmask &= ~rdp->grpmask;
4193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4194
4195 rcutree_affinity_setting(cpu, cpu);
4196
4197 // nohz_full CPUs need the tick for stop-machine to work quickly
4198 tick_dep_set(TICK_DEP_BIT_RCU);
4199 return 0;
4200 }
4201
4202 /*
4203 * Mark the specified CPU as being online so that subsequent grace periods
4204 * (both expedited and normal) will wait on it. Note that this means that
4205 * incoming CPUs are not allowed to use RCU read-side critical sections
4206 * until this function is called. Failing to observe this restriction
4207 * will result in lockdep splats.
4208 *
4209 * Note that this function is special in that it is invoked directly
4210 * from the incoming CPU rather than from the cpuhp_step mechanism.
4211 * This is because this function must be invoked at a precise location.
4212 */
4213 void rcu_cpu_starting(unsigned int cpu)
4214 {
4215 unsigned long flags;
4216 unsigned long mask;
4217 struct rcu_data *rdp;
4218 struct rcu_node *rnp;
4219 bool newcpu;
4220
4221 rdp = per_cpu_ptr(&rcu_data, cpu);
4222 if (rdp->cpu_started)
4223 return;
4224 rdp->cpu_started = true;
4225
4226 rnp = rdp->mynode;
4227 mask = rdp->grpmask;
4228 local_irq_save(flags);
4229 arch_spin_lock(&rcu_state.ofl_lock);
4230 rcu_dynticks_eqs_online();
4231 raw_spin_lock(&rcu_state.barrier_lock);
4232 raw_spin_lock_rcu_node(rnp);
4233 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4234 raw_spin_unlock(&rcu_state.barrier_lock);
4235 newcpu = !(rnp->expmaskinitnext & mask);
4236 rnp->expmaskinitnext |= mask;
4237 /* Allow lockless access for expedited grace periods. */
4238 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4239 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4240 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4241 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4242 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4243
4244 /* An incoming CPU should never be blocking a grace period. */
4245 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4246 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4247 unsigned long flags2;
4248
4249 local_irq_save(flags2);
4250 rcu_disable_urgency_upon_qs(rdp);
4251 /* Report QS -after- changing ->qsmaskinitnext! */
4252 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4253 } else {
4254 raw_spin_unlock_rcu_node(rnp);
4255 }
4256 arch_spin_unlock(&rcu_state.ofl_lock);
4257 local_irq_restore(flags);
4258 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4259 }
4260
4261 /*
4262 * The outgoing function has no further need of RCU, so remove it from
4263 * the rcu_node tree's ->qsmaskinitnext bit masks.
4264 *
4265 * Note that this function is special in that it is invoked directly
4266 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4267 * This is because this function must be invoked at a precise location.
4268 */
4269 void rcu_report_dead(unsigned int cpu)
4270 {
4271 unsigned long flags, seq_flags;
4272 unsigned long mask;
4273 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4274 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4275
4276 // Do any dangling deferred wakeups.
4277 do_nocb_deferred_wakeup(rdp);
4278
4279 /* QS for any half-done expedited grace period. */
4280 rcu_report_exp_rdp(rdp);
4281 rcu_preempt_deferred_qs(current);
4282
4283 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4284 mask = rdp->grpmask;
4285 local_irq_save(seq_flags);
4286 arch_spin_lock(&rcu_state.ofl_lock);
4287 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4288 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4289 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4290 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4291 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4292 rcu_disable_urgency_upon_qs(rdp);
4293 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4294 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4295 }
4296 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4298 arch_spin_unlock(&rcu_state.ofl_lock);
4299 local_irq_restore(seq_flags);
4300
4301 rdp->cpu_started = false;
4302 }
4303
4304 #ifdef CONFIG_HOTPLUG_CPU
4305 /*
4306 * The outgoing CPU has just passed through the dying-idle state, and we
4307 * are being invoked from the CPU that was IPIed to continue the offline
4308 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4309 */
4310 void rcutree_migrate_callbacks(int cpu)
4311 {
4312 unsigned long flags;
4313 struct rcu_data *my_rdp;
4314 struct rcu_node *my_rnp;
4315 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4316 bool needwake;
4317
4318 if (rcu_rdp_is_offloaded(rdp) ||
4319 rcu_segcblist_empty(&rdp->cblist))
4320 return; /* No callbacks to migrate. */
4321
4322 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4323 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4324 rcu_barrier_entrain(rdp);
4325 my_rdp = this_cpu_ptr(&rcu_data);
4326 my_rnp = my_rdp->mynode;
4327 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4328 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4329 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4330 /* Leverage recent GPs and set GP for new callbacks. */
4331 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4332 rcu_advance_cbs(my_rnp, my_rdp);
4333 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4334 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4335 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4336 rcu_segcblist_disable(&rdp->cblist);
4337 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4338 check_cb_ovld_locked(my_rdp, my_rnp);
4339 if (rcu_rdp_is_offloaded(my_rdp)) {
4340 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4341 __call_rcu_nocb_wake(my_rdp, true, flags);
4342 } else {
4343 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4344 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4345 }
4346 if (needwake)
4347 rcu_gp_kthread_wake();
4348 lockdep_assert_irqs_enabled();
4349 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4350 !rcu_segcblist_empty(&rdp->cblist),
4351 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4352 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4353 rcu_segcblist_first_cb(&rdp->cblist));
4354 }
4355 #endif
4356
4357 /*
4358 * On non-huge systems, use expedited RCU grace periods to make suspend
4359 * and hibernation run faster.
4360 */
4361 static int rcu_pm_notify(struct notifier_block *self,
4362 unsigned long action, void *hcpu)
4363 {
4364 switch (action) {
4365 case PM_HIBERNATION_PREPARE:
4366 case PM_SUSPEND_PREPARE:
4367 rcu_expedite_gp();
4368 break;
4369 case PM_POST_HIBERNATION:
4370 case PM_POST_SUSPEND:
4371 rcu_unexpedite_gp();
4372 break;
4373 default:
4374 break;
4375 }
4376 return NOTIFY_OK;
4377 }
4378
4379 #ifdef CONFIG_RCU_EXP_KTHREAD
4380 struct kthread_worker *rcu_exp_gp_kworker;
4381 struct kthread_worker *rcu_exp_par_gp_kworker;
4382
4383 static void __init rcu_start_exp_gp_kworkers(void)
4384 {
4385 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4386 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4387 struct sched_param param = { .sched_priority = kthread_prio };
4388
4389 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4390 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4391 pr_err("Failed to create %s!\n", gp_kworker_name);
4392 return;
4393 }
4394
4395 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4396 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4397 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4398 kthread_destroy_worker(rcu_exp_gp_kworker);
4399 return;
4400 }
4401
4402 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4403 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4404 &param);
4405 }
4406
4407 static inline void rcu_alloc_par_gp_wq(void)
4408 {
4409 }
4410 #else /* !CONFIG_RCU_EXP_KTHREAD */
4411 struct workqueue_struct *rcu_par_gp_wq;
4412
4413 static void __init rcu_start_exp_gp_kworkers(void)
4414 {
4415 }
4416
4417 static inline void rcu_alloc_par_gp_wq(void)
4418 {
4419 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4420 WARN_ON(!rcu_par_gp_wq);
4421 }
4422 #endif /* CONFIG_RCU_EXP_KTHREAD */
4423
4424 /*
4425 * Spawn the kthreads that handle RCU's grace periods.
4426 */
4427 static int __init rcu_spawn_gp_kthread(void)
4428 {
4429 unsigned long flags;
4430 struct rcu_node *rnp;
4431 struct sched_param sp;
4432 struct task_struct *t;
4433 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4434
4435 rcu_scheduler_fully_active = 1;
4436 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4437 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4438 return 0;
4439 if (kthread_prio) {
4440 sp.sched_priority = kthread_prio;
4441 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4442 }
4443 rnp = rcu_get_root();
4444 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4445 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4446 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4447 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4448 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4450 wake_up_process(t);
4451 /* This is a pre-SMP initcall, we expect a single CPU */
4452 WARN_ON(num_online_cpus() > 1);
4453 /*
4454 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4455 * due to rcu_scheduler_fully_active.
4456 */
4457 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4458 rcu_spawn_one_boost_kthread(rdp->mynode);
4459 rcu_spawn_core_kthreads();
4460 /* Create kthread worker for expedited GPs */
4461 rcu_start_exp_gp_kworkers();
4462 return 0;
4463 }
4464 early_initcall(rcu_spawn_gp_kthread);
4465
4466 /*
4467 * This function is invoked towards the end of the scheduler's
4468 * initialization process. Before this is called, the idle task might
4469 * contain synchronous grace-period primitives (during which time, this idle
4470 * task is booting the system, and such primitives are no-ops). After this
4471 * function is called, any synchronous grace-period primitives are run as
4472 * expedited, with the requesting task driving the grace period forward.
4473 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4474 * runtime RCU functionality.
4475 */
4476 void rcu_scheduler_starting(void)
4477 {
4478 unsigned long flags;
4479 struct rcu_node *rnp;
4480
4481 WARN_ON(num_online_cpus() != 1);
4482 WARN_ON(nr_context_switches() > 0);
4483 rcu_test_sync_prims();
4484
4485 // Fix up the ->gp_seq counters.
4486 local_irq_save(flags);
4487 rcu_for_each_node_breadth_first(rnp)
4488 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4489 local_irq_restore(flags);
4490
4491 // Switch out of early boot mode.
4492 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4493 rcu_test_sync_prims();
4494 }
4495
4496 /*
4497 * Helper function for rcu_init() that initializes the rcu_state structure.
4498 */
4499 static void __init rcu_init_one(void)
4500 {
4501 static const char * const buf[] = RCU_NODE_NAME_INIT;
4502 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4503 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4504 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4505
4506 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4507 int cpustride = 1;
4508 int i;
4509 int j;
4510 struct rcu_node *rnp;
4511
4512 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4513
4514 /* Silence gcc 4.8 false positive about array index out of range. */
4515 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4516 panic("rcu_init_one: rcu_num_lvls out of range");
4517
4518 /* Initialize the level-tracking arrays. */
4519
4520 for (i = 1; i < rcu_num_lvls; i++)
4521 rcu_state.level[i] =
4522 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4523 rcu_init_levelspread(levelspread, num_rcu_lvl);
4524
4525 /* Initialize the elements themselves, starting from the leaves. */
4526
4527 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4528 cpustride *= levelspread[i];
4529 rnp = rcu_state.level[i];
4530 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4531 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4532 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4533 &rcu_node_class[i], buf[i]);
4534 raw_spin_lock_init(&rnp->fqslock);
4535 lockdep_set_class_and_name(&rnp->fqslock,
4536 &rcu_fqs_class[i], fqs[i]);
4537 rnp->gp_seq = rcu_state.gp_seq;
4538 rnp->gp_seq_needed = rcu_state.gp_seq;
4539 rnp->completedqs = rcu_state.gp_seq;
4540 rnp->qsmask = 0;
4541 rnp->qsmaskinit = 0;
4542 rnp->grplo = j * cpustride;
4543 rnp->grphi = (j + 1) * cpustride - 1;
4544 if (rnp->grphi >= nr_cpu_ids)
4545 rnp->grphi = nr_cpu_ids - 1;
4546 if (i == 0) {
4547 rnp->grpnum = 0;
4548 rnp->grpmask = 0;
4549 rnp->parent = NULL;
4550 } else {
4551 rnp->grpnum = j % levelspread[i - 1];
4552 rnp->grpmask = BIT(rnp->grpnum);
4553 rnp->parent = rcu_state.level[i - 1] +
4554 j / levelspread[i - 1];
4555 }
4556 rnp->level = i;
4557 INIT_LIST_HEAD(&rnp->blkd_tasks);
4558 rcu_init_one_nocb(rnp);
4559 init_waitqueue_head(&rnp->exp_wq[0]);
4560 init_waitqueue_head(&rnp->exp_wq[1]);
4561 init_waitqueue_head(&rnp->exp_wq[2]);
4562 init_waitqueue_head(&rnp->exp_wq[3]);
4563 spin_lock_init(&rnp->exp_lock);
4564 mutex_init(&rnp->boost_kthread_mutex);
4565 raw_spin_lock_init(&rnp->exp_poll_lock);
4566 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4567 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4568 }
4569 }
4570
4571 init_swait_queue_head(&rcu_state.gp_wq);
4572 init_swait_queue_head(&rcu_state.expedited_wq);
4573 rnp = rcu_first_leaf_node();
4574 for_each_possible_cpu(i) {
4575 while (i > rnp->grphi)
4576 rnp++;
4577 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4578 rcu_boot_init_percpu_data(i);
4579 }
4580 }
4581
4582 /*
4583 * Force priority from the kernel command-line into range.
4584 */
4585 static void __init sanitize_kthread_prio(void)
4586 {
4587 int kthread_prio_in = kthread_prio;
4588
4589 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4590 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4591 kthread_prio = 2;
4592 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4593 kthread_prio = 1;
4594 else if (kthread_prio < 0)
4595 kthread_prio = 0;
4596 else if (kthread_prio > 99)
4597 kthread_prio = 99;
4598
4599 if (kthread_prio != kthread_prio_in)
4600 pr_alert("%s: Limited prio to %d from %d\n",
4601 __func__, kthread_prio, kthread_prio_in);
4602 }
4603
4604 /*
4605 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4606 * replace the definitions in tree.h because those are needed to size
4607 * the ->node array in the rcu_state structure.
4608 */
4609 void rcu_init_geometry(void)
4610 {
4611 ulong d;
4612 int i;
4613 static unsigned long old_nr_cpu_ids;
4614 int rcu_capacity[RCU_NUM_LVLS];
4615 static bool initialized;
4616
4617 if (initialized) {
4618 /*
4619 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4620 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4621 */
4622 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4623 return;
4624 }
4625
4626 old_nr_cpu_ids = nr_cpu_ids;
4627 initialized = true;
4628
4629 /*
4630 * Initialize any unspecified boot parameters.
4631 * The default values of jiffies_till_first_fqs and
4632 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4633 * value, which is a function of HZ, then adding one for each
4634 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4635 */
4636 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4637 if (jiffies_till_first_fqs == ULONG_MAX)
4638 jiffies_till_first_fqs = d;
4639 if (jiffies_till_next_fqs == ULONG_MAX)
4640 jiffies_till_next_fqs = d;
4641 adjust_jiffies_till_sched_qs();
4642
4643 /* If the compile-time values are accurate, just leave. */
4644 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4645 nr_cpu_ids == NR_CPUS)
4646 return;
4647 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4648 rcu_fanout_leaf, nr_cpu_ids);
4649
4650 /*
4651 * The boot-time rcu_fanout_leaf parameter must be at least two
4652 * and cannot exceed the number of bits in the rcu_node masks.
4653 * Complain and fall back to the compile-time values if this
4654 * limit is exceeded.
4655 */
4656 if (rcu_fanout_leaf < 2 ||
4657 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4658 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4659 WARN_ON(1);
4660 return;
4661 }
4662
4663 /*
4664 * Compute number of nodes that can be handled an rcu_node tree
4665 * with the given number of levels.
4666 */
4667 rcu_capacity[0] = rcu_fanout_leaf;
4668 for (i = 1; i < RCU_NUM_LVLS; i++)
4669 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4670
4671 /*
4672 * The tree must be able to accommodate the configured number of CPUs.
4673 * If this limit is exceeded, fall back to the compile-time values.
4674 */
4675 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4676 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4677 WARN_ON(1);
4678 return;
4679 }
4680
4681 /* Calculate the number of levels in the tree. */
4682 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4683 }
4684 rcu_num_lvls = i + 1;
4685
4686 /* Calculate the number of rcu_nodes at each level of the tree. */
4687 for (i = 0; i < rcu_num_lvls; i++) {
4688 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4689 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4690 }
4691
4692 /* Calculate the total number of rcu_node structures. */
4693 rcu_num_nodes = 0;
4694 for (i = 0; i < rcu_num_lvls; i++)
4695 rcu_num_nodes += num_rcu_lvl[i];
4696 }
4697
4698 /*
4699 * Dump out the structure of the rcu_node combining tree associated
4700 * with the rcu_state structure.
4701 */
4702 static void __init rcu_dump_rcu_node_tree(void)
4703 {
4704 int level = 0;
4705 struct rcu_node *rnp;
4706
4707 pr_info("rcu_node tree layout dump\n");
4708 pr_info(" ");
4709 rcu_for_each_node_breadth_first(rnp) {
4710 if (rnp->level != level) {
4711 pr_cont("\n");
4712 pr_info(" ");
4713 level = rnp->level;
4714 }
4715 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4716 }
4717 pr_cont("\n");
4718 }
4719
4720 struct workqueue_struct *rcu_gp_wq;
4721
4722 static void __init kfree_rcu_batch_init(void)
4723 {
4724 int cpu;
4725 int i;
4726
4727 /* Clamp it to [0:100] seconds interval. */
4728 if (rcu_delay_page_cache_fill_msec < 0 ||
4729 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4730
4731 rcu_delay_page_cache_fill_msec =
4732 clamp(rcu_delay_page_cache_fill_msec, 0,
4733 (int) (100 * MSEC_PER_SEC));
4734
4735 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4736 rcu_delay_page_cache_fill_msec);
4737 }
4738
4739 for_each_possible_cpu(cpu) {
4740 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4741
4742 for (i = 0; i < KFREE_N_BATCHES; i++) {
4743 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4744 krcp->krw_arr[i].krcp = krcp;
4745 }
4746
4747 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4748 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4749 krcp->initialized = true;
4750 }
4751 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4752 pr_err("Failed to register kfree_rcu() shrinker!\n");
4753 }
4754
4755 void __init rcu_init(void)
4756 {
4757 int cpu = smp_processor_id();
4758
4759 rcu_early_boot_tests();
4760
4761 kfree_rcu_batch_init();
4762 rcu_bootup_announce();
4763 sanitize_kthread_prio();
4764 rcu_init_geometry();
4765 rcu_init_one();
4766 if (dump_tree)
4767 rcu_dump_rcu_node_tree();
4768 if (use_softirq)
4769 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4770
4771 /*
4772 * We don't need protection against CPU-hotplug here because
4773 * this is called early in boot, before either interrupts
4774 * or the scheduler are operational.
4775 */
4776 pm_notifier(rcu_pm_notify, 0);
4777 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4778 rcutree_prepare_cpu(cpu);
4779 rcu_cpu_starting(cpu);
4780 rcutree_online_cpu(cpu);
4781
4782 /* Create workqueue for Tree SRCU and for expedited GPs. */
4783 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4784 WARN_ON(!rcu_gp_wq);
4785 rcu_alloc_par_gp_wq();
4786
4787 /* Fill in default value for rcutree.qovld boot parameter. */
4788 /* -After- the rcu_node ->lock fields are initialized! */
4789 if (qovld < 0)
4790 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4791 else
4792 qovld_calc = qovld;
4793
4794 // Kick-start any polled grace periods that started early.
4795 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4796 (void)start_poll_synchronize_rcu_expedited();
4797 }
4798
4799 #include "tree_stall.h"
4800 #include "tree_exp.h"
4801 #include "tree_nocb.h"
4802 #include "tree_plugin.h"