]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/tree.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
58
59 #include "tree.h"
60 #include "rcu.h"
61
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "rcutree."
66
67 /* Data structures. */
68
69 /*
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
76 */
77 #ifdef CONFIG_TRACING
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
82 #else
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
85 #endif
86
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
93 .call = cr, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_rcu() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160 static void rcu_report_exp_rdp(struct rcu_state *rsp,
161 struct rcu_data *rdp, bool wake);
162 static void sync_sched_exp_online_cleanup(int cpu);
163
164 /* rcuc/rcub kthread realtime priority */
165 #ifdef CONFIG_RCU_KTHREAD_PRIO
166 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
167 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 module_param(kthread_prio, int, 0644);
171
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
173
174 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
175 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
176 module_param(gp_preinit_delay, int, 0644);
177 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178 static const int gp_preinit_delay;
179 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180
181 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
182 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
183 module_param(gp_init_delay, int, 0644);
184 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185 static const int gp_init_delay;
186 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187
188 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
189 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
190 module_param(gp_cleanup_delay, int, 0644);
191 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
192 static const int gp_cleanup_delay;
193 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194
195 /*
196 * Number of grace periods between delays, normalized by the duration of
197 * the delay. The longer the the delay, the more the grace periods between
198 * each delay. The reason for this normalization is that it means that,
199 * for non-zero delays, the overall slowdown of grace periods is constant
200 * regardless of the duration of the delay. This arrangement balances
201 * the need for long delays to increase some race probabilities with the
202 * need for fast grace periods to increase other race probabilities.
203 */
204 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
205
206 /*
207 * Track the rcutorture test sequence number and the update version
208 * number within a given test. The rcutorture_testseq is incremented
209 * on every rcutorture module load and unload, so has an odd value
210 * when a test is running. The rcutorture_vernum is set to zero
211 * when rcutorture starts and is incremented on each rcutorture update.
212 * These variables enable correlating rcutorture output with the
213 * RCU tracing information.
214 */
215 unsigned long rcutorture_testseq;
216 unsigned long rcutorture_vernum;
217
218 /*
219 * Compute the mask of online CPUs for the specified rcu_node structure.
220 * This will not be stable unless the rcu_node structure's ->lock is
221 * held, but the bit corresponding to the current CPU will be stable
222 * in most contexts.
223 */
224 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
225 {
226 return READ_ONCE(rnp->qsmaskinitnext);
227 }
228
229 /*
230 * Return true if an RCU grace period is in progress. The READ_ONCE()s
231 * permit this function to be invoked without holding the root rcu_node
232 * structure's ->lock, but of course results can be subject to change.
233 */
234 static int rcu_gp_in_progress(struct rcu_state *rsp)
235 {
236 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
237 }
238
239 /*
240 * Note a quiescent state. Because we do not need to know
241 * how many quiescent states passed, just if there was at least
242 * one since the start of the grace period, this just sets a flag.
243 * The caller must have disabled preemption.
244 */
245 void rcu_sched_qs(void)
246 {
247 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
248 return;
249 trace_rcu_grace_period(TPS("rcu_sched"),
250 __this_cpu_read(rcu_sched_data.gpnum),
251 TPS("cpuqs"));
252 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
253 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
254 return;
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
256 rcu_report_exp_rdp(&rcu_sched_state,
257 this_cpu_ptr(&rcu_sched_data), true);
258 }
259
260 void rcu_bh_qs(void)
261 {
262 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
263 trace_rcu_grace_period(TPS("rcu_bh"),
264 __this_cpu_read(rcu_bh_data.gpnum),
265 TPS("cpuqs"));
266 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
267 }
268 }
269
270 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
271
272 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
273 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
274 .dynticks = ATOMIC_INIT(1),
275 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
276 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
277 .dynticks_idle = ATOMIC_INIT(1),
278 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
279 };
280
281 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
282 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
283
284 /*
285 * Let the RCU core know that this CPU has gone through the scheduler,
286 * which is a quiescent state. This is called when the need for a
287 * quiescent state is urgent, so we burn an atomic operation and full
288 * memory barriers to let the RCU core know about it, regardless of what
289 * this CPU might (or might not) do in the near future.
290 *
291 * We inform the RCU core by emulating a zero-duration dyntick-idle
292 * period, which we in turn do by incrementing the ->dynticks counter
293 * by two.
294 *
295 * The caller must have disabled interrupts.
296 */
297 static void rcu_momentary_dyntick_idle(void)
298 {
299 struct rcu_data *rdp;
300 struct rcu_dynticks *rdtp;
301 int resched_mask;
302 struct rcu_state *rsp;
303
304 /*
305 * Yes, we can lose flag-setting operations. This is OK, because
306 * the flag will be set again after some delay.
307 */
308 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
309 raw_cpu_write(rcu_sched_qs_mask, 0);
310
311 /* Find the flavor that needs a quiescent state. */
312 for_each_rcu_flavor(rsp) {
313 rdp = raw_cpu_ptr(rsp->rda);
314 if (!(resched_mask & rsp->flavor_mask))
315 continue;
316 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
317 if (READ_ONCE(rdp->mynode->completed) !=
318 READ_ONCE(rdp->cond_resched_completed))
319 continue;
320
321 /*
322 * Pretend to be momentarily idle for the quiescent state.
323 * This allows the grace-period kthread to record the
324 * quiescent state, with no need for this CPU to do anything
325 * further.
326 */
327 rdtp = this_cpu_ptr(&rcu_dynticks);
328 smp_mb__before_atomic(); /* Earlier stuff before QS. */
329 atomic_add(2, &rdtp->dynticks); /* QS. */
330 smp_mb__after_atomic(); /* Later stuff after QS. */
331 break;
332 }
333 }
334
335 /*
336 * Note a context switch. This is a quiescent state for RCU-sched,
337 * and requires special handling for preemptible RCU.
338 * The caller must have disabled interrupts.
339 */
340 void rcu_note_context_switch(void)
341 {
342 barrier(); /* Avoid RCU read-side critical sections leaking down. */
343 trace_rcu_utilization(TPS("Start context switch"));
344 rcu_sched_qs();
345 rcu_preempt_note_context_switch();
346 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
347 rcu_momentary_dyntick_idle();
348 trace_rcu_utilization(TPS("End context switch"));
349 barrier(); /* Avoid RCU read-side critical sections leaking up. */
350 }
351 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
352
353 /*
354 * Register a quiescent state for all RCU flavors. If there is an
355 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
356 * dyntick-idle quiescent state visible to other CPUs (but only for those
357 * RCU flavors in desperate need of a quiescent state, which will normally
358 * be none of them). Either way, do a lightweight quiescent state for
359 * all RCU flavors.
360 *
361 * The barrier() calls are redundant in the common case when this is
362 * called externally, but just in case this is called from within this
363 * file.
364 *
365 */
366 void rcu_all_qs(void)
367 {
368 unsigned long flags;
369
370 barrier(); /* Avoid RCU read-side critical sections leaking down. */
371 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
372 local_irq_save(flags);
373 rcu_momentary_dyntick_idle();
374 local_irq_restore(flags);
375 }
376 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
377 /*
378 * Yes, we just checked a per-CPU variable with preemption
379 * enabled, so we might be migrated to some other CPU at
380 * this point. That is OK because in that case, the
381 * migration will supply the needed quiescent state.
382 * We might end up needlessly disabling preemption and
383 * invoking rcu_sched_qs() on the destination CPU, but
384 * the probability and cost are both quite low, so this
385 * should not be a problem in practice.
386 */
387 preempt_disable();
388 rcu_sched_qs();
389 preempt_enable();
390 }
391 this_cpu_inc(rcu_qs_ctr);
392 barrier(); /* Avoid RCU read-side critical sections leaking up. */
393 }
394 EXPORT_SYMBOL_GPL(rcu_all_qs);
395
396 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
397 static long qhimark = 10000; /* If this many pending, ignore blimit. */
398 static long qlowmark = 100; /* Once only this many pending, use blimit. */
399
400 module_param(blimit, long, 0444);
401 module_param(qhimark, long, 0444);
402 module_param(qlowmark, long, 0444);
403
404 static ulong jiffies_till_first_fqs = ULONG_MAX;
405 static ulong jiffies_till_next_fqs = ULONG_MAX;
406 static bool rcu_kick_kthreads;
407
408 module_param(jiffies_till_first_fqs, ulong, 0644);
409 module_param(jiffies_till_next_fqs, ulong, 0644);
410 module_param(rcu_kick_kthreads, bool, 0644);
411
412 /*
413 * How long the grace period must be before we start recruiting
414 * quiescent-state help from rcu_note_context_switch().
415 */
416 static ulong jiffies_till_sched_qs = HZ / 20;
417 module_param(jiffies_till_sched_qs, ulong, 0644);
418
419 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
420 struct rcu_data *rdp);
421 static void force_qs_rnp(struct rcu_state *rsp,
422 int (*f)(struct rcu_data *rsp, bool *isidle,
423 unsigned long *maxj),
424 bool *isidle, unsigned long *maxj);
425 static void force_quiescent_state(struct rcu_state *rsp);
426 static int rcu_pending(void);
427
428 /*
429 * Return the number of RCU batches started thus far for debug & stats.
430 */
431 unsigned long rcu_batches_started(void)
432 {
433 return rcu_state_p->gpnum;
434 }
435 EXPORT_SYMBOL_GPL(rcu_batches_started);
436
437 /*
438 * Return the number of RCU-sched batches started thus far for debug & stats.
439 */
440 unsigned long rcu_batches_started_sched(void)
441 {
442 return rcu_sched_state.gpnum;
443 }
444 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
445
446 /*
447 * Return the number of RCU BH batches started thus far for debug & stats.
448 */
449 unsigned long rcu_batches_started_bh(void)
450 {
451 return rcu_bh_state.gpnum;
452 }
453 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
454
455 /*
456 * Return the number of RCU batches completed thus far for debug & stats.
457 */
458 unsigned long rcu_batches_completed(void)
459 {
460 return rcu_state_p->completed;
461 }
462 EXPORT_SYMBOL_GPL(rcu_batches_completed);
463
464 /*
465 * Return the number of RCU-sched batches completed thus far for debug & stats.
466 */
467 unsigned long rcu_batches_completed_sched(void)
468 {
469 return rcu_sched_state.completed;
470 }
471 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
472
473 /*
474 * Return the number of RCU BH batches completed thus far for debug & stats.
475 */
476 unsigned long rcu_batches_completed_bh(void)
477 {
478 return rcu_bh_state.completed;
479 }
480 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
481
482 /*
483 * Return the number of RCU expedited batches completed thus far for
484 * debug & stats. Odd numbers mean that a batch is in progress, even
485 * numbers mean idle. The value returned will thus be roughly double
486 * the cumulative batches since boot.
487 */
488 unsigned long rcu_exp_batches_completed(void)
489 {
490 return rcu_state_p->expedited_sequence;
491 }
492 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
493
494 /*
495 * Return the number of RCU-sched expedited batches completed thus far
496 * for debug & stats. Similar to rcu_exp_batches_completed().
497 */
498 unsigned long rcu_exp_batches_completed_sched(void)
499 {
500 return rcu_sched_state.expedited_sequence;
501 }
502 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
503
504 /*
505 * Force a quiescent state.
506 */
507 void rcu_force_quiescent_state(void)
508 {
509 force_quiescent_state(rcu_state_p);
510 }
511 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
512
513 /*
514 * Force a quiescent state for RCU BH.
515 */
516 void rcu_bh_force_quiescent_state(void)
517 {
518 force_quiescent_state(&rcu_bh_state);
519 }
520 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
521
522 /*
523 * Force a quiescent state for RCU-sched.
524 */
525 void rcu_sched_force_quiescent_state(void)
526 {
527 force_quiescent_state(&rcu_sched_state);
528 }
529 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
530
531 /*
532 * Show the state of the grace-period kthreads.
533 */
534 void show_rcu_gp_kthreads(void)
535 {
536 struct rcu_state *rsp;
537
538 for_each_rcu_flavor(rsp) {
539 pr_info("%s: wait state: %d ->state: %#lx\n",
540 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
541 /* sched_show_task(rsp->gp_kthread); */
542 }
543 }
544 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
545
546 /*
547 * Record the number of times rcutorture tests have been initiated and
548 * terminated. This information allows the debugfs tracing stats to be
549 * correlated to the rcutorture messages, even when the rcutorture module
550 * is being repeatedly loaded and unloaded. In other words, we cannot
551 * store this state in rcutorture itself.
552 */
553 void rcutorture_record_test_transition(void)
554 {
555 rcutorture_testseq++;
556 rcutorture_vernum = 0;
557 }
558 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
559
560 /*
561 * Send along grace-period-related data for rcutorture diagnostics.
562 */
563 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
564 unsigned long *gpnum, unsigned long *completed)
565 {
566 struct rcu_state *rsp = NULL;
567
568 switch (test_type) {
569 case RCU_FLAVOR:
570 rsp = rcu_state_p;
571 break;
572 case RCU_BH_FLAVOR:
573 rsp = &rcu_bh_state;
574 break;
575 case RCU_SCHED_FLAVOR:
576 rsp = &rcu_sched_state;
577 break;
578 default:
579 break;
580 }
581 if (rsp != NULL) {
582 *flags = READ_ONCE(rsp->gp_flags);
583 *gpnum = READ_ONCE(rsp->gpnum);
584 *completed = READ_ONCE(rsp->completed);
585 return;
586 }
587 *flags = 0;
588 *gpnum = 0;
589 *completed = 0;
590 }
591 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
592
593 /*
594 * Record the number of writer passes through the current rcutorture test.
595 * This is also used to correlate debugfs tracing stats with the rcutorture
596 * messages.
597 */
598 void rcutorture_record_progress(unsigned long vernum)
599 {
600 rcutorture_vernum++;
601 }
602 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
603
604 /*
605 * Does the CPU have callbacks ready to be invoked?
606 */
607 static int
608 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
609 {
610 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
611 rdp->nxttail[RCU_DONE_TAIL] != NULL;
612 }
613
614 /*
615 * Return the root node of the specified rcu_state structure.
616 */
617 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
618 {
619 return &rsp->node[0];
620 }
621
622 /*
623 * Is there any need for future grace periods?
624 * Interrupts must be disabled. If the caller does not hold the root
625 * rnp_node structure's ->lock, the results are advisory only.
626 */
627 static int rcu_future_needs_gp(struct rcu_state *rsp)
628 {
629 struct rcu_node *rnp = rcu_get_root(rsp);
630 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
631 int *fp = &rnp->need_future_gp[idx];
632
633 return READ_ONCE(*fp);
634 }
635
636 /*
637 * Does the current CPU require a not-yet-started grace period?
638 * The caller must have disabled interrupts to prevent races with
639 * normal callback registry.
640 */
641 static bool
642 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
643 {
644 int i;
645
646 if (rcu_gp_in_progress(rsp))
647 return false; /* No, a grace period is already in progress. */
648 if (rcu_future_needs_gp(rsp))
649 return true; /* Yes, a no-CBs CPU needs one. */
650 if (!rdp->nxttail[RCU_NEXT_TAIL])
651 return false; /* No, this is a no-CBs (or offline) CPU. */
652 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
653 return true; /* Yes, CPU has newly registered callbacks. */
654 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
655 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
656 ULONG_CMP_LT(READ_ONCE(rsp->completed),
657 rdp->nxtcompleted[i]))
658 return true; /* Yes, CBs for future grace period. */
659 return false; /* No grace period needed. */
660 }
661
662 /*
663 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
664 *
665 * If the new value of the ->dynticks_nesting counter now is zero,
666 * we really have entered idle, and must do the appropriate accounting.
667 * The caller must have disabled interrupts.
668 */
669 static void rcu_eqs_enter_common(long long oldval, bool user)
670 {
671 struct rcu_state *rsp;
672 struct rcu_data *rdp;
673 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
674
675 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
676 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
677 !user && !is_idle_task(current)) {
678 struct task_struct *idle __maybe_unused =
679 idle_task(smp_processor_id());
680
681 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
682 rcu_ftrace_dump(DUMP_ORIG);
683 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
684 current->pid, current->comm,
685 idle->pid, idle->comm); /* must be idle task! */
686 }
687 for_each_rcu_flavor(rsp) {
688 rdp = this_cpu_ptr(rsp->rda);
689 do_nocb_deferred_wakeup(rdp);
690 }
691 rcu_prepare_for_idle();
692 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
693 smp_mb__before_atomic(); /* See above. */
694 atomic_inc(&rdtp->dynticks);
695 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
696 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
697 atomic_read(&rdtp->dynticks) & 0x1);
698 rcu_dynticks_task_enter();
699
700 /*
701 * It is illegal to enter an extended quiescent state while
702 * in an RCU read-side critical section.
703 */
704 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
705 "Illegal idle entry in RCU read-side critical section.");
706 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
707 "Illegal idle entry in RCU-bh read-side critical section.");
708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
709 "Illegal idle entry in RCU-sched read-side critical section.");
710 }
711
712 /*
713 * Enter an RCU extended quiescent state, which can be either the
714 * idle loop or adaptive-tickless usermode execution.
715 */
716 static void rcu_eqs_enter(bool user)
717 {
718 long long oldval;
719 struct rcu_dynticks *rdtp;
720
721 rdtp = this_cpu_ptr(&rcu_dynticks);
722 oldval = rdtp->dynticks_nesting;
723 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
724 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
725 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
726 rdtp->dynticks_nesting = 0;
727 rcu_eqs_enter_common(oldval, user);
728 } else {
729 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
730 }
731 }
732
733 /**
734 * rcu_idle_enter - inform RCU that current CPU is entering idle
735 *
736 * Enter idle mode, in other words, -leave- the mode in which RCU
737 * read-side critical sections can occur. (Though RCU read-side
738 * critical sections can occur in irq handlers in idle, a possibility
739 * handled by irq_enter() and irq_exit().)
740 *
741 * We crowbar the ->dynticks_nesting field to zero to allow for
742 * the possibility of usermode upcalls having messed up our count
743 * of interrupt nesting level during the prior busy period.
744 */
745 void rcu_idle_enter(void)
746 {
747 unsigned long flags;
748
749 local_irq_save(flags);
750 rcu_eqs_enter(false);
751 rcu_sysidle_enter(0);
752 local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL_GPL(rcu_idle_enter);
755
756 #ifdef CONFIG_NO_HZ_FULL
757 /**
758 * rcu_user_enter - inform RCU that we are resuming userspace.
759 *
760 * Enter RCU idle mode right before resuming userspace. No use of RCU
761 * is permitted between this call and rcu_user_exit(). This way the
762 * CPU doesn't need to maintain the tick for RCU maintenance purposes
763 * when the CPU runs in userspace.
764 */
765 void rcu_user_enter(void)
766 {
767 rcu_eqs_enter(1);
768 }
769 #endif /* CONFIG_NO_HZ_FULL */
770
771 /**
772 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
773 *
774 * Exit from an interrupt handler, which might possibly result in entering
775 * idle mode, in other words, leaving the mode in which read-side critical
776 * sections can occur. The caller must have disabled interrupts.
777 *
778 * This code assumes that the idle loop never does anything that might
779 * result in unbalanced calls to irq_enter() and irq_exit(). If your
780 * architecture violates this assumption, RCU will give you what you
781 * deserve, good and hard. But very infrequently and irreproducibly.
782 *
783 * Use things like work queues to work around this limitation.
784 *
785 * You have been warned.
786 */
787 void rcu_irq_exit(void)
788 {
789 long long oldval;
790 struct rcu_dynticks *rdtp;
791
792 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
793 rdtp = this_cpu_ptr(&rcu_dynticks);
794 oldval = rdtp->dynticks_nesting;
795 rdtp->dynticks_nesting--;
796 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
797 rdtp->dynticks_nesting < 0);
798 if (rdtp->dynticks_nesting)
799 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
800 else
801 rcu_eqs_enter_common(oldval, true);
802 rcu_sysidle_enter(1);
803 }
804
805 /*
806 * Wrapper for rcu_irq_exit() where interrupts are enabled.
807 */
808 void rcu_irq_exit_irqson(void)
809 {
810 unsigned long flags;
811
812 local_irq_save(flags);
813 rcu_irq_exit();
814 local_irq_restore(flags);
815 }
816
817 /*
818 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
819 *
820 * If the new value of the ->dynticks_nesting counter was previously zero,
821 * we really have exited idle, and must do the appropriate accounting.
822 * The caller must have disabled interrupts.
823 */
824 static void rcu_eqs_exit_common(long long oldval, int user)
825 {
826 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
827
828 rcu_dynticks_task_exit();
829 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
830 atomic_inc(&rdtp->dynticks);
831 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
832 smp_mb__after_atomic(); /* See above. */
833 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
834 !(atomic_read(&rdtp->dynticks) & 0x1));
835 rcu_cleanup_after_idle();
836 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
837 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
838 !user && !is_idle_task(current)) {
839 struct task_struct *idle __maybe_unused =
840 idle_task(smp_processor_id());
841
842 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
843 oldval, rdtp->dynticks_nesting);
844 rcu_ftrace_dump(DUMP_ORIG);
845 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
846 current->pid, current->comm,
847 idle->pid, idle->comm); /* must be idle task! */
848 }
849 }
850
851 /*
852 * Exit an RCU extended quiescent state, which can be either the
853 * idle loop or adaptive-tickless usermode execution.
854 */
855 static void rcu_eqs_exit(bool user)
856 {
857 struct rcu_dynticks *rdtp;
858 long long oldval;
859
860 rdtp = this_cpu_ptr(&rcu_dynticks);
861 oldval = rdtp->dynticks_nesting;
862 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
863 if (oldval & DYNTICK_TASK_NEST_MASK) {
864 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
865 } else {
866 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
867 rcu_eqs_exit_common(oldval, user);
868 }
869 }
870
871 /**
872 * rcu_idle_exit - inform RCU that current CPU is leaving idle
873 *
874 * Exit idle mode, in other words, -enter- the mode in which RCU
875 * read-side critical sections can occur.
876 *
877 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
878 * allow for the possibility of usermode upcalls messing up our count
879 * of interrupt nesting level during the busy period that is just
880 * now starting.
881 */
882 void rcu_idle_exit(void)
883 {
884 unsigned long flags;
885
886 local_irq_save(flags);
887 rcu_eqs_exit(false);
888 rcu_sysidle_exit(0);
889 local_irq_restore(flags);
890 }
891 EXPORT_SYMBOL_GPL(rcu_idle_exit);
892
893 #ifdef CONFIG_NO_HZ_FULL
894 /**
895 * rcu_user_exit - inform RCU that we are exiting userspace.
896 *
897 * Exit RCU idle mode while entering the kernel because it can
898 * run a RCU read side critical section anytime.
899 */
900 void rcu_user_exit(void)
901 {
902 rcu_eqs_exit(1);
903 }
904 #endif /* CONFIG_NO_HZ_FULL */
905
906 /**
907 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
908 *
909 * Enter an interrupt handler, which might possibly result in exiting
910 * idle mode, in other words, entering the mode in which read-side critical
911 * sections can occur. The caller must have disabled interrupts.
912 *
913 * Note that the Linux kernel is fully capable of entering an interrupt
914 * handler that it never exits, for example when doing upcalls to
915 * user mode! This code assumes that the idle loop never does upcalls to
916 * user mode. If your architecture does do upcalls from the idle loop (or
917 * does anything else that results in unbalanced calls to the irq_enter()
918 * and irq_exit() functions), RCU will give you what you deserve, good
919 * and hard. But very infrequently and irreproducibly.
920 *
921 * Use things like work queues to work around this limitation.
922 *
923 * You have been warned.
924 */
925 void rcu_irq_enter(void)
926 {
927 struct rcu_dynticks *rdtp;
928 long long oldval;
929
930 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
931 rdtp = this_cpu_ptr(&rcu_dynticks);
932 oldval = rdtp->dynticks_nesting;
933 rdtp->dynticks_nesting++;
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
935 rdtp->dynticks_nesting == 0);
936 if (oldval)
937 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
938 else
939 rcu_eqs_exit_common(oldval, true);
940 rcu_sysidle_exit(1);
941 }
942
943 /*
944 * Wrapper for rcu_irq_enter() where interrupts are enabled.
945 */
946 void rcu_irq_enter_irqson(void)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
951 rcu_irq_enter();
952 local_irq_restore(flags);
953 }
954
955 /**
956 * rcu_nmi_enter - inform RCU of entry to NMI context
957 *
958 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
959 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
960 * that the CPU is active. This implementation permits nested NMIs, as
961 * long as the nesting level does not overflow an int. (You will probably
962 * run out of stack space first.)
963 */
964 void rcu_nmi_enter(void)
965 {
966 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
967 int incby = 2;
968
969 /* Complain about underflow. */
970 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
971
972 /*
973 * If idle from RCU viewpoint, atomically increment ->dynticks
974 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
975 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
976 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
977 * to be in the outermost NMI handler that interrupted an RCU-idle
978 * period (observation due to Andy Lutomirski).
979 */
980 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
981 smp_mb__before_atomic(); /* Force delay from prior write. */
982 atomic_inc(&rdtp->dynticks);
983 /* atomic_inc() before later RCU read-side crit sects */
984 smp_mb__after_atomic(); /* See above. */
985 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
986 incby = 1;
987 }
988 rdtp->dynticks_nmi_nesting += incby;
989 barrier();
990 }
991
992 /**
993 * rcu_nmi_exit - inform RCU of exit from NMI context
994 *
995 * If we are returning from the outermost NMI handler that interrupted an
996 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
997 * to let the RCU grace-period handling know that the CPU is back to
998 * being RCU-idle.
999 */
1000 void rcu_nmi_exit(void)
1001 {
1002 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1003
1004 /*
1005 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1006 * (We are exiting an NMI handler, so RCU better be paying attention
1007 * to us!)
1008 */
1009 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1010 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1011
1012 /*
1013 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1014 * leave it in non-RCU-idle state.
1015 */
1016 if (rdtp->dynticks_nmi_nesting != 1) {
1017 rdtp->dynticks_nmi_nesting -= 2;
1018 return;
1019 }
1020
1021 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1022 rdtp->dynticks_nmi_nesting = 0;
1023 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1024 smp_mb__before_atomic(); /* See above. */
1025 atomic_inc(&rdtp->dynticks);
1026 smp_mb__after_atomic(); /* Force delay to next write. */
1027 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1028 }
1029
1030 /**
1031 * __rcu_is_watching - are RCU read-side critical sections safe?
1032 *
1033 * Return true if RCU is watching the running CPU, which means that
1034 * this CPU can safely enter RCU read-side critical sections. Unlike
1035 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1036 * least disabled preemption.
1037 */
1038 bool notrace __rcu_is_watching(void)
1039 {
1040 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1041 }
1042
1043 /**
1044 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1045 *
1046 * If the current CPU is in its idle loop and is neither in an interrupt
1047 * or NMI handler, return true.
1048 */
1049 bool notrace rcu_is_watching(void)
1050 {
1051 bool ret;
1052
1053 preempt_disable_notrace();
1054 ret = __rcu_is_watching();
1055 preempt_enable_notrace();
1056 return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(rcu_is_watching);
1059
1060 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1061
1062 /*
1063 * Is the current CPU online? Disable preemption to avoid false positives
1064 * that could otherwise happen due to the current CPU number being sampled,
1065 * this task being preempted, its old CPU being taken offline, resuming
1066 * on some other CPU, then determining that its old CPU is now offline.
1067 * It is OK to use RCU on an offline processor during initial boot, hence
1068 * the check for rcu_scheduler_fully_active. Note also that it is OK
1069 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1070 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1071 * offline to continue to use RCU for one jiffy after marking itself
1072 * offline in the cpu_online_mask. This leniency is necessary given the
1073 * non-atomic nature of the online and offline processing, for example,
1074 * the fact that a CPU enters the scheduler after completing the teardown
1075 * of the CPU.
1076 *
1077 * This is also why RCU internally marks CPUs online during in the
1078 * preparation phase and offline after the CPU has been taken down.
1079 *
1080 * Disable checking if in an NMI handler because we cannot safely report
1081 * errors from NMI handlers anyway.
1082 */
1083 bool rcu_lockdep_current_cpu_online(void)
1084 {
1085 struct rcu_data *rdp;
1086 struct rcu_node *rnp;
1087 bool ret;
1088
1089 if (in_nmi())
1090 return true;
1091 preempt_disable();
1092 rdp = this_cpu_ptr(&rcu_sched_data);
1093 rnp = rdp->mynode;
1094 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1095 !rcu_scheduler_fully_active;
1096 preempt_enable();
1097 return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1100
1101 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1102
1103 /**
1104 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1105 *
1106 * If the current CPU is idle or running at a first-level (not nested)
1107 * interrupt from idle, return true. The caller must have at least
1108 * disabled preemption.
1109 */
1110 static int rcu_is_cpu_rrupt_from_idle(void)
1111 {
1112 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1113 }
1114
1115 /*
1116 * Snapshot the specified CPU's dynticks counter so that we can later
1117 * credit them with an implicit quiescent state. Return 1 if this CPU
1118 * is in dynticks idle mode, which is an extended quiescent state.
1119 */
1120 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1121 bool *isidle, unsigned long *maxj)
1122 {
1123 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1124 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1125 if ((rdp->dynticks_snap & 0x1) == 0) {
1126 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1127 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1128 rdp->mynode->gpnum))
1129 WRITE_ONCE(rdp->gpwrap, true);
1130 return 1;
1131 }
1132 return 0;
1133 }
1134
1135 /*
1136 * Return true if the specified CPU has passed through a quiescent
1137 * state by virtue of being in or having passed through an dynticks
1138 * idle state since the last call to dyntick_save_progress_counter()
1139 * for this same CPU, or by virtue of having been offline.
1140 */
1141 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1142 bool *isidle, unsigned long *maxj)
1143 {
1144 unsigned int curr;
1145 int *rcrmp;
1146 unsigned int snap;
1147
1148 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1149 snap = (unsigned int)rdp->dynticks_snap;
1150
1151 /*
1152 * If the CPU passed through or entered a dynticks idle phase with
1153 * no active irq/NMI handlers, then we can safely pretend that the CPU
1154 * already acknowledged the request to pass through a quiescent
1155 * state. Either way, that CPU cannot possibly be in an RCU
1156 * read-side critical section that started before the beginning
1157 * of the current RCU grace period.
1158 */
1159 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1160 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1161 rdp->dynticks_fqs++;
1162 return 1;
1163 }
1164
1165 /*
1166 * Check for the CPU being offline, but only if the grace period
1167 * is old enough. We don't need to worry about the CPU changing
1168 * state: If we see it offline even once, it has been through a
1169 * quiescent state.
1170 *
1171 * The reason for insisting that the grace period be at least
1172 * one jiffy old is that CPUs that are not quite online and that
1173 * have just gone offline can still execute RCU read-side critical
1174 * sections.
1175 */
1176 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1177 return 0; /* Grace period is not old enough. */
1178 barrier();
1179 if (cpu_is_offline(rdp->cpu)) {
1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1181 rdp->offline_fqs++;
1182 return 1;
1183 }
1184
1185 /*
1186 * A CPU running for an extended time within the kernel can
1187 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1188 * even context-switching back and forth between a pair of
1189 * in-kernel CPU-bound tasks cannot advance grace periods.
1190 * So if the grace period is old enough, make the CPU pay attention.
1191 * Note that the unsynchronized assignments to the per-CPU
1192 * rcu_sched_qs_mask variable are safe. Yes, setting of
1193 * bits can be lost, but they will be set again on the next
1194 * force-quiescent-state pass. So lost bit sets do not result
1195 * in incorrect behavior, merely in a grace period lasting
1196 * a few jiffies longer than it might otherwise. Because
1197 * there are at most four threads involved, and because the
1198 * updates are only once every few jiffies, the probability of
1199 * lossage (and thus of slight grace-period extension) is
1200 * quite low.
1201 *
1202 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1203 * is set too high, we override with half of the RCU CPU stall
1204 * warning delay.
1205 */
1206 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1207 if (ULONG_CMP_GE(jiffies,
1208 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1209 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1210 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1211 WRITE_ONCE(rdp->cond_resched_completed,
1212 READ_ONCE(rdp->mynode->completed));
1213 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1214 WRITE_ONCE(*rcrmp,
1215 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1216 }
1217 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1218 }
1219
1220 /* And if it has been a really long time, kick the CPU as well. */
1221 if (ULONG_CMP_GE(jiffies,
1222 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1223 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1224 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1225
1226 return 0;
1227 }
1228
1229 static void record_gp_stall_check_time(struct rcu_state *rsp)
1230 {
1231 unsigned long j = jiffies;
1232 unsigned long j1;
1233
1234 rsp->gp_start = j;
1235 smp_wmb(); /* Record start time before stall time. */
1236 j1 = rcu_jiffies_till_stall_check();
1237 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1238 rsp->jiffies_resched = j + j1 / 2;
1239 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1240 }
1241
1242 /*
1243 * Convert a ->gp_state value to a character string.
1244 */
1245 static const char *gp_state_getname(short gs)
1246 {
1247 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1248 return "???";
1249 return gp_state_names[gs];
1250 }
1251
1252 /*
1253 * Complain about starvation of grace-period kthread.
1254 */
1255 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1256 {
1257 unsigned long gpa;
1258 unsigned long j;
1259
1260 j = jiffies;
1261 gpa = READ_ONCE(rsp->gp_activity);
1262 if (j - gpa > 2 * HZ) {
1263 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1264 rsp->name, j - gpa,
1265 rsp->gpnum, rsp->completed,
1266 rsp->gp_flags,
1267 gp_state_getname(rsp->gp_state), rsp->gp_state,
1268 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1269 if (rsp->gp_kthread) {
1270 sched_show_task(rsp->gp_kthread);
1271 wake_up_process(rsp->gp_kthread);
1272 }
1273 }
1274 }
1275
1276 /*
1277 * Dump stacks of all tasks running on stalled CPUs.
1278 */
1279 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1280 {
1281 int cpu;
1282 unsigned long flags;
1283 struct rcu_node *rnp;
1284
1285 rcu_for_each_leaf_node(rsp, rnp) {
1286 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1287 if (rnp->qsmask != 0) {
1288 for_each_leaf_node_possible_cpu(rnp, cpu)
1289 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1290 dump_cpu_task(cpu);
1291 }
1292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1293 }
1294 }
1295
1296 /*
1297 * If too much time has passed in the current grace period, and if
1298 * so configured, go kick the relevant kthreads.
1299 */
1300 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1301 {
1302 unsigned long j;
1303
1304 if (!rcu_kick_kthreads)
1305 return;
1306 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1307 if (time_after(jiffies, j) && rsp->gp_kthread) {
1308 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1309 rcu_ftrace_dump(DUMP_ALL);
1310 wake_up_process(rsp->gp_kthread);
1311 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1312 }
1313 }
1314
1315 static inline void panic_on_rcu_stall(void)
1316 {
1317 if (sysctl_panic_on_rcu_stall)
1318 panic("RCU Stall\n");
1319 }
1320
1321 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1322 {
1323 int cpu;
1324 long delta;
1325 unsigned long flags;
1326 unsigned long gpa;
1327 unsigned long j;
1328 int ndetected = 0;
1329 struct rcu_node *rnp = rcu_get_root(rsp);
1330 long totqlen = 0;
1331
1332 /* Kick and suppress, if so configured. */
1333 rcu_stall_kick_kthreads(rsp);
1334 if (rcu_cpu_stall_suppress)
1335 return;
1336
1337 /* Only let one CPU complain about others per time interval. */
1338
1339 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1340 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1341 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1342 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1343 return;
1344 }
1345 WRITE_ONCE(rsp->jiffies_stall,
1346 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1347 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1348
1349 /*
1350 * OK, time to rat on our buddy...
1351 * See Documentation/RCU/stallwarn.txt for info on how to debug
1352 * RCU CPU stall warnings.
1353 */
1354 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1355 rsp->name);
1356 print_cpu_stall_info_begin();
1357 rcu_for_each_leaf_node(rsp, rnp) {
1358 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1359 ndetected += rcu_print_task_stall(rnp);
1360 if (rnp->qsmask != 0) {
1361 for_each_leaf_node_possible_cpu(rnp, cpu)
1362 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1363 print_cpu_stall_info(rsp, cpu);
1364 ndetected++;
1365 }
1366 }
1367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1368 }
1369
1370 print_cpu_stall_info_end();
1371 for_each_possible_cpu(cpu)
1372 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1373 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1374 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1375 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1376 if (ndetected) {
1377 rcu_dump_cpu_stacks(rsp);
1378 } else {
1379 if (READ_ONCE(rsp->gpnum) != gpnum ||
1380 READ_ONCE(rsp->completed) == gpnum) {
1381 pr_err("INFO: Stall ended before state dump start\n");
1382 } else {
1383 j = jiffies;
1384 gpa = READ_ONCE(rsp->gp_activity);
1385 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1386 rsp->name, j - gpa, j, gpa,
1387 jiffies_till_next_fqs,
1388 rcu_get_root(rsp)->qsmask);
1389 /* In this case, the current CPU might be at fault. */
1390 sched_show_task(current);
1391 }
1392 }
1393
1394 /* Complain about tasks blocking the grace period. */
1395 rcu_print_detail_task_stall(rsp);
1396
1397 rcu_check_gp_kthread_starvation(rsp);
1398
1399 panic_on_rcu_stall();
1400
1401 force_quiescent_state(rsp); /* Kick them all. */
1402 }
1403
1404 static void print_cpu_stall(struct rcu_state *rsp)
1405 {
1406 int cpu;
1407 unsigned long flags;
1408 struct rcu_node *rnp = rcu_get_root(rsp);
1409 long totqlen = 0;
1410
1411 /* Kick and suppress, if so configured. */
1412 rcu_stall_kick_kthreads(rsp);
1413 if (rcu_cpu_stall_suppress)
1414 return;
1415
1416 /*
1417 * OK, time to rat on ourselves...
1418 * See Documentation/RCU/stallwarn.txt for info on how to debug
1419 * RCU CPU stall warnings.
1420 */
1421 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1422 print_cpu_stall_info_begin();
1423 print_cpu_stall_info(rsp, smp_processor_id());
1424 print_cpu_stall_info_end();
1425 for_each_possible_cpu(cpu)
1426 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1427 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1428 jiffies - rsp->gp_start,
1429 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1430
1431 rcu_check_gp_kthread_starvation(rsp);
1432
1433 rcu_dump_cpu_stacks(rsp);
1434
1435 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1436 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1437 WRITE_ONCE(rsp->jiffies_stall,
1438 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1439 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1440
1441 panic_on_rcu_stall();
1442
1443 /*
1444 * Attempt to revive the RCU machinery by forcing a context switch.
1445 *
1446 * A context switch would normally allow the RCU state machine to make
1447 * progress and it could be we're stuck in kernel space without context
1448 * switches for an entirely unreasonable amount of time.
1449 */
1450 resched_cpu(smp_processor_id());
1451 }
1452
1453 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1454 {
1455 unsigned long completed;
1456 unsigned long gpnum;
1457 unsigned long gps;
1458 unsigned long j;
1459 unsigned long js;
1460 struct rcu_node *rnp;
1461
1462 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1463 !rcu_gp_in_progress(rsp))
1464 return;
1465 rcu_stall_kick_kthreads(rsp);
1466 j = jiffies;
1467
1468 /*
1469 * Lots of memory barriers to reject false positives.
1470 *
1471 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1472 * then rsp->gp_start, and finally rsp->completed. These values
1473 * are updated in the opposite order with memory barriers (or
1474 * equivalent) during grace-period initialization and cleanup.
1475 * Now, a false positive can occur if we get an new value of
1476 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1477 * the memory barriers, the only way that this can happen is if one
1478 * grace period ends and another starts between these two fetches.
1479 * Detect this by comparing rsp->completed with the previous fetch
1480 * from rsp->gpnum.
1481 *
1482 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1483 * and rsp->gp_start suffice to forestall false positives.
1484 */
1485 gpnum = READ_ONCE(rsp->gpnum);
1486 smp_rmb(); /* Pick up ->gpnum first... */
1487 js = READ_ONCE(rsp->jiffies_stall);
1488 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1489 gps = READ_ONCE(rsp->gp_start);
1490 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1491 completed = READ_ONCE(rsp->completed);
1492 if (ULONG_CMP_GE(completed, gpnum) ||
1493 ULONG_CMP_LT(j, js) ||
1494 ULONG_CMP_GE(gps, js))
1495 return; /* No stall or GP completed since entering function. */
1496 rnp = rdp->mynode;
1497 if (rcu_gp_in_progress(rsp) &&
1498 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1499
1500 /* We haven't checked in, so go dump stack. */
1501 print_cpu_stall(rsp);
1502
1503 } else if (rcu_gp_in_progress(rsp) &&
1504 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1505
1506 /* They had a few time units to dump stack, so complain. */
1507 print_other_cpu_stall(rsp, gpnum);
1508 }
1509 }
1510
1511 /**
1512 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1513 *
1514 * Set the stall-warning timeout way off into the future, thus preventing
1515 * any RCU CPU stall-warning messages from appearing in the current set of
1516 * RCU grace periods.
1517 *
1518 * The caller must disable hard irqs.
1519 */
1520 void rcu_cpu_stall_reset(void)
1521 {
1522 struct rcu_state *rsp;
1523
1524 for_each_rcu_flavor(rsp)
1525 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1526 }
1527
1528 /*
1529 * Initialize the specified rcu_data structure's default callback list
1530 * to empty. The default callback list is the one that is not used by
1531 * no-callbacks CPUs.
1532 */
1533 static void init_default_callback_list(struct rcu_data *rdp)
1534 {
1535 int i;
1536
1537 rdp->nxtlist = NULL;
1538 for (i = 0; i < RCU_NEXT_SIZE; i++)
1539 rdp->nxttail[i] = &rdp->nxtlist;
1540 }
1541
1542 /*
1543 * Initialize the specified rcu_data structure's callback list to empty.
1544 */
1545 static void init_callback_list(struct rcu_data *rdp)
1546 {
1547 if (init_nocb_callback_list(rdp))
1548 return;
1549 init_default_callback_list(rdp);
1550 }
1551
1552 /*
1553 * Determine the value that ->completed will have at the end of the
1554 * next subsequent grace period. This is used to tag callbacks so that
1555 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1556 * been dyntick-idle for an extended period with callbacks under the
1557 * influence of RCU_FAST_NO_HZ.
1558 *
1559 * The caller must hold rnp->lock with interrupts disabled.
1560 */
1561 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1562 struct rcu_node *rnp)
1563 {
1564 /*
1565 * If RCU is idle, we just wait for the next grace period.
1566 * But we can only be sure that RCU is idle if we are looking
1567 * at the root rcu_node structure -- otherwise, a new grace
1568 * period might have started, but just not yet gotten around
1569 * to initializing the current non-root rcu_node structure.
1570 */
1571 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1572 return rnp->completed + 1;
1573
1574 /*
1575 * Otherwise, wait for a possible partial grace period and
1576 * then the subsequent full grace period.
1577 */
1578 return rnp->completed + 2;
1579 }
1580
1581 /*
1582 * Trace-event helper function for rcu_start_future_gp() and
1583 * rcu_nocb_wait_gp().
1584 */
1585 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1586 unsigned long c, const char *s)
1587 {
1588 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1589 rnp->completed, c, rnp->level,
1590 rnp->grplo, rnp->grphi, s);
1591 }
1592
1593 /*
1594 * Start some future grace period, as needed to handle newly arrived
1595 * callbacks. The required future grace periods are recorded in each
1596 * rcu_node structure's ->need_future_gp field. Returns true if there
1597 * is reason to awaken the grace-period kthread.
1598 *
1599 * The caller must hold the specified rcu_node structure's ->lock.
1600 */
1601 static bool __maybe_unused
1602 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1603 unsigned long *c_out)
1604 {
1605 unsigned long c;
1606 int i;
1607 bool ret = false;
1608 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1609
1610 /*
1611 * Pick up grace-period number for new callbacks. If this
1612 * grace period is already marked as needed, return to the caller.
1613 */
1614 c = rcu_cbs_completed(rdp->rsp, rnp);
1615 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1616 if (rnp->need_future_gp[c & 0x1]) {
1617 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1618 goto out;
1619 }
1620
1621 /*
1622 * If either this rcu_node structure or the root rcu_node structure
1623 * believe that a grace period is in progress, then we must wait
1624 * for the one following, which is in "c". Because our request
1625 * will be noticed at the end of the current grace period, we don't
1626 * need to explicitly start one. We only do the lockless check
1627 * of rnp_root's fields if the current rcu_node structure thinks
1628 * there is no grace period in flight, and because we hold rnp->lock,
1629 * the only possible change is when rnp_root's two fields are
1630 * equal, in which case rnp_root->gpnum might be concurrently
1631 * incremented. But that is OK, as it will just result in our
1632 * doing some extra useless work.
1633 */
1634 if (rnp->gpnum != rnp->completed ||
1635 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1636 rnp->need_future_gp[c & 0x1]++;
1637 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1638 goto out;
1639 }
1640
1641 /*
1642 * There might be no grace period in progress. If we don't already
1643 * hold it, acquire the root rcu_node structure's lock in order to
1644 * start one (if needed).
1645 */
1646 if (rnp != rnp_root)
1647 raw_spin_lock_rcu_node(rnp_root);
1648
1649 /*
1650 * Get a new grace-period number. If there really is no grace
1651 * period in progress, it will be smaller than the one we obtained
1652 * earlier. Adjust callbacks as needed. Note that even no-CBs
1653 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1654 */
1655 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1656 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1657 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1658 rdp->nxtcompleted[i] = c;
1659
1660 /*
1661 * If the needed for the required grace period is already
1662 * recorded, trace and leave.
1663 */
1664 if (rnp_root->need_future_gp[c & 0x1]) {
1665 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1666 goto unlock_out;
1667 }
1668
1669 /* Record the need for the future grace period. */
1670 rnp_root->need_future_gp[c & 0x1]++;
1671
1672 /* If a grace period is not already in progress, start one. */
1673 if (rnp_root->gpnum != rnp_root->completed) {
1674 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1675 } else {
1676 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1677 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1678 }
1679 unlock_out:
1680 if (rnp != rnp_root)
1681 raw_spin_unlock_rcu_node(rnp_root);
1682 out:
1683 if (c_out != NULL)
1684 *c_out = c;
1685 return ret;
1686 }
1687
1688 /*
1689 * Clean up any old requests for the just-ended grace period. Also return
1690 * whether any additional grace periods have been requested. Also invoke
1691 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1692 * waiting for this grace period to complete.
1693 */
1694 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1695 {
1696 int c = rnp->completed;
1697 int needmore;
1698 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1699
1700 rnp->need_future_gp[c & 0x1] = 0;
1701 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1702 trace_rcu_future_gp(rnp, rdp, c,
1703 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1704 return needmore;
1705 }
1706
1707 /*
1708 * Awaken the grace-period kthread for the specified flavor of RCU.
1709 * Don't do a self-awaken, and don't bother awakening when there is
1710 * nothing for the grace-period kthread to do (as in several CPUs
1711 * raced to awaken, and we lost), and finally don't try to awaken
1712 * a kthread that has not yet been created.
1713 */
1714 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1715 {
1716 if (current == rsp->gp_kthread ||
1717 !READ_ONCE(rsp->gp_flags) ||
1718 !rsp->gp_kthread)
1719 return;
1720 swake_up(&rsp->gp_wq);
1721 }
1722
1723 /*
1724 * If there is room, assign a ->completed number to any callbacks on
1725 * this CPU that have not already been assigned. Also accelerate any
1726 * callbacks that were previously assigned a ->completed number that has
1727 * since proven to be too conservative, which can happen if callbacks get
1728 * assigned a ->completed number while RCU is idle, but with reference to
1729 * a non-root rcu_node structure. This function is idempotent, so it does
1730 * not hurt to call it repeatedly. Returns an flag saying that we should
1731 * awaken the RCU grace-period kthread.
1732 *
1733 * The caller must hold rnp->lock with interrupts disabled.
1734 */
1735 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1736 struct rcu_data *rdp)
1737 {
1738 unsigned long c;
1739 int i;
1740 bool ret;
1741
1742 /* If the CPU has no callbacks, nothing to do. */
1743 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1744 return false;
1745
1746 /*
1747 * Starting from the sublist containing the callbacks most
1748 * recently assigned a ->completed number and working down, find the
1749 * first sublist that is not assignable to an upcoming grace period.
1750 * Such a sublist has something in it (first two tests) and has
1751 * a ->completed number assigned that will complete sooner than
1752 * the ->completed number for newly arrived callbacks (last test).
1753 *
1754 * The key point is that any later sublist can be assigned the
1755 * same ->completed number as the newly arrived callbacks, which
1756 * means that the callbacks in any of these later sublist can be
1757 * grouped into a single sublist, whether or not they have already
1758 * been assigned a ->completed number.
1759 */
1760 c = rcu_cbs_completed(rsp, rnp);
1761 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1762 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1763 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1764 break;
1765
1766 /*
1767 * If there are no sublist for unassigned callbacks, leave.
1768 * At the same time, advance "i" one sublist, so that "i" will
1769 * index into the sublist where all the remaining callbacks should
1770 * be grouped into.
1771 */
1772 if (++i >= RCU_NEXT_TAIL)
1773 return false;
1774
1775 /*
1776 * Assign all subsequent callbacks' ->completed number to the next
1777 * full grace period and group them all in the sublist initially
1778 * indexed by "i".
1779 */
1780 for (; i <= RCU_NEXT_TAIL; i++) {
1781 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1782 rdp->nxtcompleted[i] = c;
1783 }
1784 /* Record any needed additional grace periods. */
1785 ret = rcu_start_future_gp(rnp, rdp, NULL);
1786
1787 /* Trace depending on how much we were able to accelerate. */
1788 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1789 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1790 else
1791 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1792 return ret;
1793 }
1794
1795 /*
1796 * Move any callbacks whose grace period has completed to the
1797 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1798 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1799 * sublist. This function is idempotent, so it does not hurt to
1800 * invoke it repeatedly. As long as it is not invoked -too- often...
1801 * Returns true if the RCU grace-period kthread needs to be awakened.
1802 *
1803 * The caller must hold rnp->lock with interrupts disabled.
1804 */
1805 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1806 struct rcu_data *rdp)
1807 {
1808 int i, j;
1809
1810 /* If the CPU has no callbacks, nothing to do. */
1811 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1812 return false;
1813
1814 /*
1815 * Find all callbacks whose ->completed numbers indicate that they
1816 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1817 */
1818 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1819 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1820 break;
1821 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1822 }
1823 /* Clean up any sublist tail pointers that were misordered above. */
1824 for (j = RCU_WAIT_TAIL; j < i; j++)
1825 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1826
1827 /* Copy down callbacks to fill in empty sublists. */
1828 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1829 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1830 break;
1831 rdp->nxttail[j] = rdp->nxttail[i];
1832 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1833 }
1834
1835 /* Classify any remaining callbacks. */
1836 return rcu_accelerate_cbs(rsp, rnp, rdp);
1837 }
1838
1839 /*
1840 * Update CPU-local rcu_data state to record the beginnings and ends of
1841 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1842 * structure corresponding to the current CPU, and must have irqs disabled.
1843 * Returns true if the grace-period kthread needs to be awakened.
1844 */
1845 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1846 struct rcu_data *rdp)
1847 {
1848 bool ret;
1849 bool need_gp;
1850
1851 /* Handle the ends of any preceding grace periods first. */
1852 if (rdp->completed == rnp->completed &&
1853 !unlikely(READ_ONCE(rdp->gpwrap))) {
1854
1855 /* No grace period end, so just accelerate recent callbacks. */
1856 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1857
1858 } else {
1859
1860 /* Advance callbacks. */
1861 ret = rcu_advance_cbs(rsp, rnp, rdp);
1862
1863 /* Remember that we saw this grace-period completion. */
1864 rdp->completed = rnp->completed;
1865 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1866 }
1867
1868 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1869 /*
1870 * If the current grace period is waiting for this CPU,
1871 * set up to detect a quiescent state, otherwise don't
1872 * go looking for one.
1873 */
1874 rdp->gpnum = rnp->gpnum;
1875 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1876 need_gp = !!(rnp->qsmask & rdp->grpmask);
1877 rdp->cpu_no_qs.b.norm = need_gp;
1878 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1879 rdp->core_needs_qs = need_gp;
1880 zero_cpu_stall_ticks(rdp);
1881 WRITE_ONCE(rdp->gpwrap, false);
1882 }
1883 return ret;
1884 }
1885
1886 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1887 {
1888 unsigned long flags;
1889 bool needwake;
1890 struct rcu_node *rnp;
1891
1892 local_irq_save(flags);
1893 rnp = rdp->mynode;
1894 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1895 rdp->completed == READ_ONCE(rnp->completed) &&
1896 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1897 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1898 local_irq_restore(flags);
1899 return;
1900 }
1901 needwake = __note_gp_changes(rsp, rnp, rdp);
1902 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1903 if (needwake)
1904 rcu_gp_kthread_wake(rsp);
1905 }
1906
1907 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1908 {
1909 if (delay > 0 &&
1910 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1911 schedule_timeout_uninterruptible(delay);
1912 }
1913
1914 /*
1915 * Initialize a new grace period. Return false if no grace period required.
1916 */
1917 static bool rcu_gp_init(struct rcu_state *rsp)
1918 {
1919 unsigned long oldmask;
1920 struct rcu_data *rdp;
1921 struct rcu_node *rnp = rcu_get_root(rsp);
1922
1923 WRITE_ONCE(rsp->gp_activity, jiffies);
1924 raw_spin_lock_irq_rcu_node(rnp);
1925 if (!READ_ONCE(rsp->gp_flags)) {
1926 /* Spurious wakeup, tell caller to go back to sleep. */
1927 raw_spin_unlock_irq_rcu_node(rnp);
1928 return false;
1929 }
1930 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1931
1932 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1933 /*
1934 * Grace period already in progress, don't start another.
1935 * Not supposed to be able to happen.
1936 */
1937 raw_spin_unlock_irq_rcu_node(rnp);
1938 return false;
1939 }
1940
1941 /* Advance to a new grace period and initialize state. */
1942 record_gp_stall_check_time(rsp);
1943 /* Record GP times before starting GP, hence smp_store_release(). */
1944 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1945 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1946 raw_spin_unlock_irq_rcu_node(rnp);
1947
1948 /*
1949 * Apply per-leaf buffered online and offline operations to the
1950 * rcu_node tree. Note that this new grace period need not wait
1951 * for subsequent online CPUs, and that quiescent-state forcing
1952 * will handle subsequent offline CPUs.
1953 */
1954 rcu_for_each_leaf_node(rsp, rnp) {
1955 rcu_gp_slow(rsp, gp_preinit_delay);
1956 raw_spin_lock_irq_rcu_node(rnp);
1957 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1958 !rnp->wait_blkd_tasks) {
1959 /* Nothing to do on this leaf rcu_node structure. */
1960 raw_spin_unlock_irq_rcu_node(rnp);
1961 continue;
1962 }
1963
1964 /* Record old state, apply changes to ->qsmaskinit field. */
1965 oldmask = rnp->qsmaskinit;
1966 rnp->qsmaskinit = rnp->qsmaskinitnext;
1967
1968 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1969 if (!oldmask != !rnp->qsmaskinit) {
1970 if (!oldmask) /* First online CPU for this rcu_node. */
1971 rcu_init_new_rnp(rnp);
1972 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1973 rnp->wait_blkd_tasks = true;
1974 else /* Last offline CPU and can propagate. */
1975 rcu_cleanup_dead_rnp(rnp);
1976 }
1977
1978 /*
1979 * If all waited-on tasks from prior grace period are
1980 * done, and if all this rcu_node structure's CPUs are
1981 * still offline, propagate up the rcu_node tree and
1982 * clear ->wait_blkd_tasks. Otherwise, if one of this
1983 * rcu_node structure's CPUs has since come back online,
1984 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1985 * checks for this, so just call it unconditionally).
1986 */
1987 if (rnp->wait_blkd_tasks &&
1988 (!rcu_preempt_has_tasks(rnp) ||
1989 rnp->qsmaskinit)) {
1990 rnp->wait_blkd_tasks = false;
1991 rcu_cleanup_dead_rnp(rnp);
1992 }
1993
1994 raw_spin_unlock_irq_rcu_node(rnp);
1995 }
1996
1997 /*
1998 * Set the quiescent-state-needed bits in all the rcu_node
1999 * structures for all currently online CPUs in breadth-first order,
2000 * starting from the root rcu_node structure, relying on the layout
2001 * of the tree within the rsp->node[] array. Note that other CPUs
2002 * will access only the leaves of the hierarchy, thus seeing that no
2003 * grace period is in progress, at least until the corresponding
2004 * leaf node has been initialized.
2005 *
2006 * The grace period cannot complete until the initialization
2007 * process finishes, because this kthread handles both.
2008 */
2009 rcu_for_each_node_breadth_first(rsp, rnp) {
2010 rcu_gp_slow(rsp, gp_init_delay);
2011 raw_spin_lock_irq_rcu_node(rnp);
2012 rdp = this_cpu_ptr(rsp->rda);
2013 rcu_preempt_check_blocked_tasks(rnp);
2014 rnp->qsmask = rnp->qsmaskinit;
2015 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2016 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2017 WRITE_ONCE(rnp->completed, rsp->completed);
2018 if (rnp == rdp->mynode)
2019 (void)__note_gp_changes(rsp, rnp, rdp);
2020 rcu_preempt_boost_start_gp(rnp);
2021 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2022 rnp->level, rnp->grplo,
2023 rnp->grphi, rnp->qsmask);
2024 raw_spin_unlock_irq_rcu_node(rnp);
2025 cond_resched_rcu_qs();
2026 WRITE_ONCE(rsp->gp_activity, jiffies);
2027 }
2028
2029 return true;
2030 }
2031
2032 /*
2033 * Helper function for wait_event_interruptible_timeout() wakeup
2034 * at force-quiescent-state time.
2035 */
2036 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2037 {
2038 struct rcu_node *rnp = rcu_get_root(rsp);
2039
2040 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2041 *gfp = READ_ONCE(rsp->gp_flags);
2042 if (*gfp & RCU_GP_FLAG_FQS)
2043 return true;
2044
2045 /* The current grace period has completed. */
2046 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2047 return true;
2048
2049 return false;
2050 }
2051
2052 /*
2053 * Do one round of quiescent-state forcing.
2054 */
2055 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2056 {
2057 bool isidle = false;
2058 unsigned long maxj;
2059 struct rcu_node *rnp = rcu_get_root(rsp);
2060
2061 WRITE_ONCE(rsp->gp_activity, jiffies);
2062 rsp->n_force_qs++;
2063 if (first_time) {
2064 /* Collect dyntick-idle snapshots. */
2065 if (is_sysidle_rcu_state(rsp)) {
2066 isidle = true;
2067 maxj = jiffies - ULONG_MAX / 4;
2068 }
2069 force_qs_rnp(rsp, dyntick_save_progress_counter,
2070 &isidle, &maxj);
2071 rcu_sysidle_report_gp(rsp, isidle, maxj);
2072 } else {
2073 /* Handle dyntick-idle and offline CPUs. */
2074 isidle = true;
2075 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2076 }
2077 /* Clear flag to prevent immediate re-entry. */
2078 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2079 raw_spin_lock_irq_rcu_node(rnp);
2080 WRITE_ONCE(rsp->gp_flags,
2081 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2082 raw_spin_unlock_irq_rcu_node(rnp);
2083 }
2084 }
2085
2086 /*
2087 * Clean up after the old grace period.
2088 */
2089 static void rcu_gp_cleanup(struct rcu_state *rsp)
2090 {
2091 unsigned long gp_duration;
2092 bool needgp = false;
2093 int nocb = 0;
2094 struct rcu_data *rdp;
2095 struct rcu_node *rnp = rcu_get_root(rsp);
2096 struct swait_queue_head *sq;
2097
2098 WRITE_ONCE(rsp->gp_activity, jiffies);
2099 raw_spin_lock_irq_rcu_node(rnp);
2100 gp_duration = jiffies - rsp->gp_start;
2101 if (gp_duration > rsp->gp_max)
2102 rsp->gp_max = gp_duration;
2103
2104 /*
2105 * We know the grace period is complete, but to everyone else
2106 * it appears to still be ongoing. But it is also the case
2107 * that to everyone else it looks like there is nothing that
2108 * they can do to advance the grace period. It is therefore
2109 * safe for us to drop the lock in order to mark the grace
2110 * period as completed in all of the rcu_node structures.
2111 */
2112 raw_spin_unlock_irq_rcu_node(rnp);
2113
2114 /*
2115 * Propagate new ->completed value to rcu_node structures so
2116 * that other CPUs don't have to wait until the start of the next
2117 * grace period to process their callbacks. This also avoids
2118 * some nasty RCU grace-period initialization races by forcing
2119 * the end of the current grace period to be completely recorded in
2120 * all of the rcu_node structures before the beginning of the next
2121 * grace period is recorded in any of the rcu_node structures.
2122 */
2123 rcu_for_each_node_breadth_first(rsp, rnp) {
2124 raw_spin_lock_irq_rcu_node(rnp);
2125 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2126 WARN_ON_ONCE(rnp->qsmask);
2127 WRITE_ONCE(rnp->completed, rsp->gpnum);
2128 rdp = this_cpu_ptr(rsp->rda);
2129 if (rnp == rdp->mynode)
2130 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2131 /* smp_mb() provided by prior unlock-lock pair. */
2132 nocb += rcu_future_gp_cleanup(rsp, rnp);
2133 sq = rcu_nocb_gp_get(rnp);
2134 raw_spin_unlock_irq_rcu_node(rnp);
2135 rcu_nocb_gp_cleanup(sq);
2136 cond_resched_rcu_qs();
2137 WRITE_ONCE(rsp->gp_activity, jiffies);
2138 rcu_gp_slow(rsp, gp_cleanup_delay);
2139 }
2140 rnp = rcu_get_root(rsp);
2141 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2142 rcu_nocb_gp_set(rnp, nocb);
2143
2144 /* Declare grace period done. */
2145 WRITE_ONCE(rsp->completed, rsp->gpnum);
2146 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2147 rsp->gp_state = RCU_GP_IDLE;
2148 rdp = this_cpu_ptr(rsp->rda);
2149 /* Advance CBs to reduce false positives below. */
2150 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2151 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2152 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2153 trace_rcu_grace_period(rsp->name,
2154 READ_ONCE(rsp->gpnum),
2155 TPS("newreq"));
2156 }
2157 raw_spin_unlock_irq_rcu_node(rnp);
2158 }
2159
2160 /*
2161 * Body of kthread that handles grace periods.
2162 */
2163 static int __noreturn rcu_gp_kthread(void *arg)
2164 {
2165 bool first_gp_fqs;
2166 int gf;
2167 unsigned long j;
2168 int ret;
2169 struct rcu_state *rsp = arg;
2170 struct rcu_node *rnp = rcu_get_root(rsp);
2171
2172 rcu_bind_gp_kthread();
2173 for (;;) {
2174
2175 /* Handle grace-period start. */
2176 for (;;) {
2177 trace_rcu_grace_period(rsp->name,
2178 READ_ONCE(rsp->gpnum),
2179 TPS("reqwait"));
2180 rsp->gp_state = RCU_GP_WAIT_GPS;
2181 swait_event_interruptible(rsp->gp_wq,
2182 READ_ONCE(rsp->gp_flags) &
2183 RCU_GP_FLAG_INIT);
2184 rsp->gp_state = RCU_GP_DONE_GPS;
2185 /* Locking provides needed memory barrier. */
2186 if (rcu_gp_init(rsp))
2187 break;
2188 cond_resched_rcu_qs();
2189 WRITE_ONCE(rsp->gp_activity, jiffies);
2190 WARN_ON(signal_pending(current));
2191 trace_rcu_grace_period(rsp->name,
2192 READ_ONCE(rsp->gpnum),
2193 TPS("reqwaitsig"));
2194 }
2195
2196 /* Handle quiescent-state forcing. */
2197 first_gp_fqs = true;
2198 j = jiffies_till_first_fqs;
2199 if (j > HZ) {
2200 j = HZ;
2201 jiffies_till_first_fqs = HZ;
2202 }
2203 ret = 0;
2204 for (;;) {
2205 if (!ret) {
2206 rsp->jiffies_force_qs = jiffies + j;
2207 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2208 jiffies + 3 * j);
2209 }
2210 trace_rcu_grace_period(rsp->name,
2211 READ_ONCE(rsp->gpnum),
2212 TPS("fqswait"));
2213 rsp->gp_state = RCU_GP_WAIT_FQS;
2214 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2215 rcu_gp_fqs_check_wake(rsp, &gf), j);
2216 rsp->gp_state = RCU_GP_DOING_FQS;
2217 /* Locking provides needed memory barriers. */
2218 /* If grace period done, leave loop. */
2219 if (!READ_ONCE(rnp->qsmask) &&
2220 !rcu_preempt_blocked_readers_cgp(rnp))
2221 break;
2222 /* If time for quiescent-state forcing, do it. */
2223 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2224 (gf & RCU_GP_FLAG_FQS)) {
2225 trace_rcu_grace_period(rsp->name,
2226 READ_ONCE(rsp->gpnum),
2227 TPS("fqsstart"));
2228 rcu_gp_fqs(rsp, first_gp_fqs);
2229 first_gp_fqs = false;
2230 trace_rcu_grace_period(rsp->name,
2231 READ_ONCE(rsp->gpnum),
2232 TPS("fqsend"));
2233 cond_resched_rcu_qs();
2234 WRITE_ONCE(rsp->gp_activity, jiffies);
2235 ret = 0; /* Force full wait till next FQS. */
2236 j = jiffies_till_next_fqs;
2237 if (j > HZ) {
2238 j = HZ;
2239 jiffies_till_next_fqs = HZ;
2240 } else if (j < 1) {
2241 j = 1;
2242 jiffies_till_next_fqs = 1;
2243 }
2244 } else {
2245 /* Deal with stray signal. */
2246 cond_resched_rcu_qs();
2247 WRITE_ONCE(rsp->gp_activity, jiffies);
2248 WARN_ON(signal_pending(current));
2249 trace_rcu_grace_period(rsp->name,
2250 READ_ONCE(rsp->gpnum),
2251 TPS("fqswaitsig"));
2252 ret = 1; /* Keep old FQS timing. */
2253 j = jiffies;
2254 if (time_after(jiffies, rsp->jiffies_force_qs))
2255 j = 1;
2256 else
2257 j = rsp->jiffies_force_qs - j;
2258 }
2259 }
2260
2261 /* Handle grace-period end. */
2262 rsp->gp_state = RCU_GP_CLEANUP;
2263 rcu_gp_cleanup(rsp);
2264 rsp->gp_state = RCU_GP_CLEANED;
2265 }
2266 }
2267
2268 /*
2269 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2270 * in preparation for detecting the next grace period. The caller must hold
2271 * the root node's ->lock and hard irqs must be disabled.
2272 *
2273 * Note that it is legal for a dying CPU (which is marked as offline) to
2274 * invoke this function. This can happen when the dying CPU reports its
2275 * quiescent state.
2276 *
2277 * Returns true if the grace-period kthread must be awakened.
2278 */
2279 static bool
2280 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2281 struct rcu_data *rdp)
2282 {
2283 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2284 /*
2285 * Either we have not yet spawned the grace-period
2286 * task, this CPU does not need another grace period,
2287 * or a grace period is already in progress.
2288 * Either way, don't start a new grace period.
2289 */
2290 return false;
2291 }
2292 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2293 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2294 TPS("newreq"));
2295
2296 /*
2297 * We can't do wakeups while holding the rnp->lock, as that
2298 * could cause possible deadlocks with the rq->lock. Defer
2299 * the wakeup to our caller.
2300 */
2301 return true;
2302 }
2303
2304 /*
2305 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2306 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2307 * is invoked indirectly from rcu_advance_cbs(), which would result in
2308 * endless recursion -- or would do so if it wasn't for the self-deadlock
2309 * that is encountered beforehand.
2310 *
2311 * Returns true if the grace-period kthread needs to be awakened.
2312 */
2313 static bool rcu_start_gp(struct rcu_state *rsp)
2314 {
2315 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2316 struct rcu_node *rnp = rcu_get_root(rsp);
2317 bool ret = false;
2318
2319 /*
2320 * If there is no grace period in progress right now, any
2321 * callbacks we have up to this point will be satisfied by the
2322 * next grace period. Also, advancing the callbacks reduces the
2323 * probability of false positives from cpu_needs_another_gp()
2324 * resulting in pointless grace periods. So, advance callbacks
2325 * then start the grace period!
2326 */
2327 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2328 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2329 return ret;
2330 }
2331
2332 /*
2333 * Report a full set of quiescent states to the specified rcu_state data
2334 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2335 * kthread if another grace period is required. Whether we wake
2336 * the grace-period kthread or it awakens itself for the next round
2337 * of quiescent-state forcing, that kthread will clean up after the
2338 * just-completed grace period. Note that the caller must hold rnp->lock,
2339 * which is released before return.
2340 */
2341 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2342 __releases(rcu_get_root(rsp)->lock)
2343 {
2344 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2345 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2346 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2347 rcu_gp_kthread_wake(rsp);
2348 }
2349
2350 /*
2351 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2352 * Allows quiescent states for a group of CPUs to be reported at one go
2353 * to the specified rcu_node structure, though all the CPUs in the group
2354 * must be represented by the same rcu_node structure (which need not be a
2355 * leaf rcu_node structure, though it often will be). The gps parameter
2356 * is the grace-period snapshot, which means that the quiescent states
2357 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2358 * must be held upon entry, and it is released before return.
2359 */
2360 static void
2361 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2362 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2363 __releases(rnp->lock)
2364 {
2365 unsigned long oldmask = 0;
2366 struct rcu_node *rnp_c;
2367
2368 /* Walk up the rcu_node hierarchy. */
2369 for (;;) {
2370 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2371
2372 /*
2373 * Our bit has already been cleared, or the
2374 * relevant grace period is already over, so done.
2375 */
2376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2377 return;
2378 }
2379 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2380 rnp->qsmask &= ~mask;
2381 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2382 mask, rnp->qsmask, rnp->level,
2383 rnp->grplo, rnp->grphi,
2384 !!rnp->gp_tasks);
2385 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2386
2387 /* Other bits still set at this level, so done. */
2388 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2389 return;
2390 }
2391 mask = rnp->grpmask;
2392 if (rnp->parent == NULL) {
2393
2394 /* No more levels. Exit loop holding root lock. */
2395
2396 break;
2397 }
2398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2399 rnp_c = rnp;
2400 rnp = rnp->parent;
2401 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2402 oldmask = rnp_c->qsmask;
2403 }
2404
2405 /*
2406 * Get here if we are the last CPU to pass through a quiescent
2407 * state for this grace period. Invoke rcu_report_qs_rsp()
2408 * to clean up and start the next grace period if one is needed.
2409 */
2410 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2411 }
2412
2413 /*
2414 * Record a quiescent state for all tasks that were previously queued
2415 * on the specified rcu_node structure and that were blocking the current
2416 * RCU grace period. The caller must hold the specified rnp->lock with
2417 * irqs disabled, and this lock is released upon return, but irqs remain
2418 * disabled.
2419 */
2420 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2421 struct rcu_node *rnp, unsigned long flags)
2422 __releases(rnp->lock)
2423 {
2424 unsigned long gps;
2425 unsigned long mask;
2426 struct rcu_node *rnp_p;
2427
2428 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2429 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431 return; /* Still need more quiescent states! */
2432 }
2433
2434 rnp_p = rnp->parent;
2435 if (rnp_p == NULL) {
2436 /*
2437 * Only one rcu_node structure in the tree, so don't
2438 * try to report up to its nonexistent parent!
2439 */
2440 rcu_report_qs_rsp(rsp, flags);
2441 return;
2442 }
2443
2444 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2445 gps = rnp->gpnum;
2446 mask = rnp->grpmask;
2447 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2448 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2449 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2450 }
2451
2452 /*
2453 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2454 * structure. This must be called from the specified CPU.
2455 */
2456 static void
2457 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2458 {
2459 unsigned long flags;
2460 unsigned long mask;
2461 bool needwake;
2462 struct rcu_node *rnp;
2463
2464 rnp = rdp->mynode;
2465 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2466 if ((rdp->cpu_no_qs.b.norm &&
2467 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2468 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2469 rdp->gpwrap) {
2470
2471 /*
2472 * The grace period in which this quiescent state was
2473 * recorded has ended, so don't report it upwards.
2474 * We will instead need a new quiescent state that lies
2475 * within the current grace period.
2476 */
2477 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2478 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2479 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2480 return;
2481 }
2482 mask = rdp->grpmask;
2483 if ((rnp->qsmask & mask) == 0) {
2484 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2485 } else {
2486 rdp->core_needs_qs = false;
2487
2488 /*
2489 * This GP can't end until cpu checks in, so all of our
2490 * callbacks can be processed during the next GP.
2491 */
2492 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2493
2494 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2495 /* ^^^ Released rnp->lock */
2496 if (needwake)
2497 rcu_gp_kthread_wake(rsp);
2498 }
2499 }
2500
2501 /*
2502 * Check to see if there is a new grace period of which this CPU
2503 * is not yet aware, and if so, set up local rcu_data state for it.
2504 * Otherwise, see if this CPU has just passed through its first
2505 * quiescent state for this grace period, and record that fact if so.
2506 */
2507 static void
2508 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2509 {
2510 /* Check for grace-period ends and beginnings. */
2511 note_gp_changes(rsp, rdp);
2512
2513 /*
2514 * Does this CPU still need to do its part for current grace period?
2515 * If no, return and let the other CPUs do their part as well.
2516 */
2517 if (!rdp->core_needs_qs)
2518 return;
2519
2520 /*
2521 * Was there a quiescent state since the beginning of the grace
2522 * period? If no, then exit and wait for the next call.
2523 */
2524 if (rdp->cpu_no_qs.b.norm &&
2525 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2526 return;
2527
2528 /*
2529 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2530 * judge of that).
2531 */
2532 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2533 }
2534
2535 /*
2536 * Send the specified CPU's RCU callbacks to the orphanage. The
2537 * specified CPU must be offline, and the caller must hold the
2538 * ->orphan_lock.
2539 */
2540 static void
2541 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2542 struct rcu_node *rnp, struct rcu_data *rdp)
2543 {
2544 /* No-CBs CPUs do not have orphanable callbacks. */
2545 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2546 return;
2547
2548 /*
2549 * Orphan the callbacks. First adjust the counts. This is safe
2550 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2551 * cannot be running now. Thus no memory barrier is required.
2552 */
2553 if (rdp->nxtlist != NULL) {
2554 rsp->qlen_lazy += rdp->qlen_lazy;
2555 rsp->qlen += rdp->qlen;
2556 rdp->n_cbs_orphaned += rdp->qlen;
2557 rdp->qlen_lazy = 0;
2558 WRITE_ONCE(rdp->qlen, 0);
2559 }
2560
2561 /*
2562 * Next, move those callbacks still needing a grace period to
2563 * the orphanage, where some other CPU will pick them up.
2564 * Some of the callbacks might have gone partway through a grace
2565 * period, but that is too bad. They get to start over because we
2566 * cannot assume that grace periods are synchronized across CPUs.
2567 * We don't bother updating the ->nxttail[] array yet, instead
2568 * we just reset the whole thing later on.
2569 */
2570 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2571 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2572 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2573 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2574 }
2575
2576 /*
2577 * Then move the ready-to-invoke callbacks to the orphanage,
2578 * where some other CPU will pick them up. These will not be
2579 * required to pass though another grace period: They are done.
2580 */
2581 if (rdp->nxtlist != NULL) {
2582 *rsp->orphan_donetail = rdp->nxtlist;
2583 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2584 }
2585
2586 /*
2587 * Finally, initialize the rcu_data structure's list to empty and
2588 * disallow further callbacks on this CPU.
2589 */
2590 init_callback_list(rdp);
2591 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2592 }
2593
2594 /*
2595 * Adopt the RCU callbacks from the specified rcu_state structure's
2596 * orphanage. The caller must hold the ->orphan_lock.
2597 */
2598 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2599 {
2600 int i;
2601 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2602
2603 /* No-CBs CPUs are handled specially. */
2604 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2605 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2606 return;
2607
2608 /* Do the accounting first. */
2609 rdp->qlen_lazy += rsp->qlen_lazy;
2610 rdp->qlen += rsp->qlen;
2611 rdp->n_cbs_adopted += rsp->qlen;
2612 if (rsp->qlen_lazy != rsp->qlen)
2613 rcu_idle_count_callbacks_posted();
2614 rsp->qlen_lazy = 0;
2615 rsp->qlen = 0;
2616
2617 /*
2618 * We do not need a memory barrier here because the only way we
2619 * can get here if there is an rcu_barrier() in flight is if
2620 * we are the task doing the rcu_barrier().
2621 */
2622
2623 /* First adopt the ready-to-invoke callbacks. */
2624 if (rsp->orphan_donelist != NULL) {
2625 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2626 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2627 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2628 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2629 rdp->nxttail[i] = rsp->orphan_donetail;
2630 rsp->orphan_donelist = NULL;
2631 rsp->orphan_donetail = &rsp->orphan_donelist;
2632 }
2633
2634 /* And then adopt the callbacks that still need a grace period. */
2635 if (rsp->orphan_nxtlist != NULL) {
2636 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2637 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2638 rsp->orphan_nxtlist = NULL;
2639 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2640 }
2641 }
2642
2643 /*
2644 * Trace the fact that this CPU is going offline.
2645 */
2646 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2647 {
2648 RCU_TRACE(unsigned long mask);
2649 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2650 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2651
2652 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2653 return;
2654
2655 RCU_TRACE(mask = rdp->grpmask);
2656 trace_rcu_grace_period(rsp->name,
2657 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2658 TPS("cpuofl"));
2659 }
2660
2661 /*
2662 * All CPUs for the specified rcu_node structure have gone offline,
2663 * and all tasks that were preempted within an RCU read-side critical
2664 * section while running on one of those CPUs have since exited their RCU
2665 * read-side critical section. Some other CPU is reporting this fact with
2666 * the specified rcu_node structure's ->lock held and interrupts disabled.
2667 * This function therefore goes up the tree of rcu_node structures,
2668 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2669 * the leaf rcu_node structure's ->qsmaskinit field has already been
2670 * updated
2671 *
2672 * This function does check that the specified rcu_node structure has
2673 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2674 * prematurely. That said, invoking it after the fact will cost you
2675 * a needless lock acquisition. So once it has done its work, don't
2676 * invoke it again.
2677 */
2678 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2679 {
2680 long mask;
2681 struct rcu_node *rnp = rnp_leaf;
2682
2683 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2684 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2685 return;
2686 for (;;) {
2687 mask = rnp->grpmask;
2688 rnp = rnp->parent;
2689 if (!rnp)
2690 break;
2691 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2692 rnp->qsmaskinit &= ~mask;
2693 rnp->qsmask &= ~mask;
2694 if (rnp->qsmaskinit) {
2695 raw_spin_unlock_rcu_node(rnp);
2696 /* irqs remain disabled. */
2697 return;
2698 }
2699 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2700 }
2701 }
2702
2703 /*
2704 * The CPU has been completely removed, and some other CPU is reporting
2705 * this fact from process context. Do the remainder of the cleanup,
2706 * including orphaning the outgoing CPU's RCU callbacks, and also
2707 * adopting them. There can only be one CPU hotplug operation at a time,
2708 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2709 */
2710 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2711 {
2712 unsigned long flags;
2713 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2714 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2715
2716 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2717 return;
2718
2719 /* Adjust any no-longer-needed kthreads. */
2720 rcu_boost_kthread_setaffinity(rnp, -1);
2721
2722 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2723 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2724 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2725 rcu_adopt_orphan_cbs(rsp, flags);
2726 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2727
2728 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2729 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2730 cpu, rdp->qlen, rdp->nxtlist);
2731 }
2732
2733 /*
2734 * Invoke any RCU callbacks that have made it to the end of their grace
2735 * period. Thottle as specified by rdp->blimit.
2736 */
2737 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2738 {
2739 unsigned long flags;
2740 struct rcu_head *next, *list, **tail;
2741 long bl, count, count_lazy;
2742 int i;
2743
2744 /* If no callbacks are ready, just return. */
2745 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2746 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2747 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2748 need_resched(), is_idle_task(current),
2749 rcu_is_callbacks_kthread());
2750 return;
2751 }
2752
2753 /*
2754 * Extract the list of ready callbacks, disabling to prevent
2755 * races with call_rcu() from interrupt handlers.
2756 */
2757 local_irq_save(flags);
2758 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2759 bl = rdp->blimit;
2760 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2761 list = rdp->nxtlist;
2762 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2763 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2764 tail = rdp->nxttail[RCU_DONE_TAIL];
2765 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2766 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2767 rdp->nxttail[i] = &rdp->nxtlist;
2768 local_irq_restore(flags);
2769
2770 /* Invoke callbacks. */
2771 count = count_lazy = 0;
2772 while (list) {
2773 next = list->next;
2774 prefetch(next);
2775 debug_rcu_head_unqueue(list);
2776 if (__rcu_reclaim(rsp->name, list))
2777 count_lazy++;
2778 list = next;
2779 /* Stop only if limit reached and CPU has something to do. */
2780 if (++count >= bl &&
2781 (need_resched() ||
2782 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2783 break;
2784 }
2785
2786 local_irq_save(flags);
2787 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2788 is_idle_task(current),
2789 rcu_is_callbacks_kthread());
2790
2791 /* Update count, and requeue any remaining callbacks. */
2792 if (list != NULL) {
2793 *tail = rdp->nxtlist;
2794 rdp->nxtlist = list;
2795 for (i = 0; i < RCU_NEXT_SIZE; i++)
2796 if (&rdp->nxtlist == rdp->nxttail[i])
2797 rdp->nxttail[i] = tail;
2798 else
2799 break;
2800 }
2801 smp_mb(); /* List handling before counting for rcu_barrier(). */
2802 rdp->qlen_lazy -= count_lazy;
2803 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2804 rdp->n_cbs_invoked += count;
2805
2806 /* Reinstate batch limit if we have worked down the excess. */
2807 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2808 rdp->blimit = blimit;
2809
2810 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2811 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2812 rdp->qlen_last_fqs_check = 0;
2813 rdp->n_force_qs_snap = rsp->n_force_qs;
2814 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2815 rdp->qlen_last_fqs_check = rdp->qlen;
2816 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2817
2818 local_irq_restore(flags);
2819
2820 /* Re-invoke RCU core processing if there are callbacks remaining. */
2821 if (cpu_has_callbacks_ready_to_invoke(rdp))
2822 invoke_rcu_core();
2823 }
2824
2825 /*
2826 * Check to see if this CPU is in a non-context-switch quiescent state
2827 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2828 * Also schedule RCU core processing.
2829 *
2830 * This function must be called from hardirq context. It is normally
2831 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2832 * false, there is no point in invoking rcu_check_callbacks().
2833 */
2834 void rcu_check_callbacks(int user)
2835 {
2836 trace_rcu_utilization(TPS("Start scheduler-tick"));
2837 increment_cpu_stall_ticks();
2838 if (user || rcu_is_cpu_rrupt_from_idle()) {
2839
2840 /*
2841 * Get here if this CPU took its interrupt from user
2842 * mode or from the idle loop, and if this is not a
2843 * nested interrupt. In this case, the CPU is in
2844 * a quiescent state, so note it.
2845 *
2846 * No memory barrier is required here because both
2847 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2848 * variables that other CPUs neither access nor modify,
2849 * at least not while the corresponding CPU is online.
2850 */
2851
2852 rcu_sched_qs();
2853 rcu_bh_qs();
2854
2855 } else if (!in_softirq()) {
2856
2857 /*
2858 * Get here if this CPU did not take its interrupt from
2859 * softirq, in other words, if it is not interrupting
2860 * a rcu_bh read-side critical section. This is an _bh
2861 * critical section, so note it.
2862 */
2863
2864 rcu_bh_qs();
2865 }
2866 rcu_preempt_check_callbacks();
2867 if (rcu_pending())
2868 invoke_rcu_core();
2869 if (user)
2870 rcu_note_voluntary_context_switch(current);
2871 trace_rcu_utilization(TPS("End scheduler-tick"));
2872 }
2873
2874 /*
2875 * Scan the leaf rcu_node structures, processing dyntick state for any that
2876 * have not yet encountered a quiescent state, using the function specified.
2877 * Also initiate boosting for any threads blocked on the root rcu_node.
2878 *
2879 * The caller must have suppressed start of new grace periods.
2880 */
2881 static void force_qs_rnp(struct rcu_state *rsp,
2882 int (*f)(struct rcu_data *rsp, bool *isidle,
2883 unsigned long *maxj),
2884 bool *isidle, unsigned long *maxj)
2885 {
2886 int cpu;
2887 unsigned long flags;
2888 unsigned long mask;
2889 struct rcu_node *rnp;
2890
2891 rcu_for_each_leaf_node(rsp, rnp) {
2892 cond_resched_rcu_qs();
2893 mask = 0;
2894 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2895 if (rnp->qsmask == 0) {
2896 if (rcu_state_p == &rcu_sched_state ||
2897 rsp != rcu_state_p ||
2898 rcu_preempt_blocked_readers_cgp(rnp)) {
2899 /*
2900 * No point in scanning bits because they
2901 * are all zero. But we might need to
2902 * priority-boost blocked readers.
2903 */
2904 rcu_initiate_boost(rnp, flags);
2905 /* rcu_initiate_boost() releases rnp->lock */
2906 continue;
2907 }
2908 if (rnp->parent &&
2909 (rnp->parent->qsmask & rnp->grpmask)) {
2910 /*
2911 * Race between grace-period
2912 * initialization and task exiting RCU
2913 * read-side critical section: Report.
2914 */
2915 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2916 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2917 continue;
2918 }
2919 }
2920 for_each_leaf_node_possible_cpu(rnp, cpu) {
2921 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2922 if ((rnp->qsmask & bit) != 0) {
2923 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2924 mask |= bit;
2925 }
2926 }
2927 if (mask != 0) {
2928 /* Idle/offline CPUs, report (releases rnp->lock. */
2929 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2930 } else {
2931 /* Nothing to do here, so just drop the lock. */
2932 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2933 }
2934 }
2935 }
2936
2937 /*
2938 * Force quiescent states on reluctant CPUs, and also detect which
2939 * CPUs are in dyntick-idle mode.
2940 */
2941 static void force_quiescent_state(struct rcu_state *rsp)
2942 {
2943 unsigned long flags;
2944 bool ret;
2945 struct rcu_node *rnp;
2946 struct rcu_node *rnp_old = NULL;
2947
2948 /* Funnel through hierarchy to reduce memory contention. */
2949 rnp = __this_cpu_read(rsp->rda->mynode);
2950 for (; rnp != NULL; rnp = rnp->parent) {
2951 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2952 !raw_spin_trylock(&rnp->fqslock);
2953 if (rnp_old != NULL)
2954 raw_spin_unlock(&rnp_old->fqslock);
2955 if (ret) {
2956 rsp->n_force_qs_lh++;
2957 return;
2958 }
2959 rnp_old = rnp;
2960 }
2961 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2962
2963 /* Reached the root of the rcu_node tree, acquire lock. */
2964 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2965 raw_spin_unlock(&rnp_old->fqslock);
2966 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2967 rsp->n_force_qs_lh++;
2968 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2969 return; /* Someone beat us to it. */
2970 }
2971 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2972 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2973 rcu_gp_kthread_wake(rsp);
2974 }
2975
2976 /*
2977 * This does the RCU core processing work for the specified rcu_state
2978 * and rcu_data structures. This may be called only from the CPU to
2979 * whom the rdp belongs.
2980 */
2981 static void
2982 __rcu_process_callbacks(struct rcu_state *rsp)
2983 {
2984 unsigned long flags;
2985 bool needwake;
2986 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2987
2988 WARN_ON_ONCE(rdp->beenonline == 0);
2989
2990 /* Update RCU state based on any recent quiescent states. */
2991 rcu_check_quiescent_state(rsp, rdp);
2992
2993 /* Does this CPU require a not-yet-started grace period? */
2994 local_irq_save(flags);
2995 if (cpu_needs_another_gp(rsp, rdp)) {
2996 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2997 needwake = rcu_start_gp(rsp);
2998 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
3001 } else {
3002 local_irq_restore(flags);
3003 }
3004
3005 /* If there are callbacks ready, invoke them. */
3006 if (cpu_has_callbacks_ready_to_invoke(rdp))
3007 invoke_rcu_callbacks(rsp, rdp);
3008
3009 /* Do any needed deferred wakeups of rcuo kthreads. */
3010 do_nocb_deferred_wakeup(rdp);
3011 }
3012
3013 /*
3014 * Do RCU core processing for the current CPU.
3015 */
3016 static void rcu_process_callbacks(struct softirq_action *unused)
3017 {
3018 struct rcu_state *rsp;
3019
3020 if (cpu_is_offline(smp_processor_id()))
3021 return;
3022 trace_rcu_utilization(TPS("Start RCU core"));
3023 for_each_rcu_flavor(rsp)
3024 __rcu_process_callbacks(rsp);
3025 trace_rcu_utilization(TPS("End RCU core"));
3026 }
3027
3028 /*
3029 * Schedule RCU callback invocation. If the specified type of RCU
3030 * does not support RCU priority boosting, just do a direct call,
3031 * otherwise wake up the per-CPU kernel kthread. Note that because we
3032 * are running on the current CPU with softirqs disabled, the
3033 * rcu_cpu_kthread_task cannot disappear out from under us.
3034 */
3035 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3036 {
3037 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3038 return;
3039 if (likely(!rsp->boost)) {
3040 rcu_do_batch(rsp, rdp);
3041 return;
3042 }
3043 invoke_rcu_callbacks_kthread();
3044 }
3045
3046 static void invoke_rcu_core(void)
3047 {
3048 if (cpu_online(smp_processor_id()))
3049 raise_softirq(RCU_SOFTIRQ);
3050 }
3051
3052 /*
3053 * Handle any core-RCU processing required by a call_rcu() invocation.
3054 */
3055 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3056 struct rcu_head *head, unsigned long flags)
3057 {
3058 bool needwake;
3059
3060 /*
3061 * If called from an extended quiescent state, invoke the RCU
3062 * core in order to force a re-evaluation of RCU's idleness.
3063 */
3064 if (!rcu_is_watching())
3065 invoke_rcu_core();
3066
3067 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3068 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3069 return;
3070
3071 /*
3072 * Force the grace period if too many callbacks or too long waiting.
3073 * Enforce hysteresis, and don't invoke force_quiescent_state()
3074 * if some other CPU has recently done so. Also, don't bother
3075 * invoking force_quiescent_state() if the newly enqueued callback
3076 * is the only one waiting for a grace period to complete.
3077 */
3078 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3079
3080 /* Are we ignoring a completed grace period? */
3081 note_gp_changes(rsp, rdp);
3082
3083 /* Start a new grace period if one not already started. */
3084 if (!rcu_gp_in_progress(rsp)) {
3085 struct rcu_node *rnp_root = rcu_get_root(rsp);
3086
3087 raw_spin_lock_rcu_node(rnp_root);
3088 needwake = rcu_start_gp(rsp);
3089 raw_spin_unlock_rcu_node(rnp_root);
3090 if (needwake)
3091 rcu_gp_kthread_wake(rsp);
3092 } else {
3093 /* Give the grace period a kick. */
3094 rdp->blimit = LONG_MAX;
3095 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3096 *rdp->nxttail[RCU_DONE_TAIL] != head)
3097 force_quiescent_state(rsp);
3098 rdp->n_force_qs_snap = rsp->n_force_qs;
3099 rdp->qlen_last_fqs_check = rdp->qlen;
3100 }
3101 }
3102 }
3103
3104 /*
3105 * RCU callback function to leak a callback.
3106 */
3107 static void rcu_leak_callback(struct rcu_head *rhp)
3108 {
3109 }
3110
3111 /*
3112 * Helper function for call_rcu() and friends. The cpu argument will
3113 * normally be -1, indicating "currently running CPU". It may specify
3114 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3115 * is expected to specify a CPU.
3116 */
3117 static void
3118 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3119 struct rcu_state *rsp, int cpu, bool lazy)
3120 {
3121 unsigned long flags;
3122 struct rcu_data *rdp;
3123
3124 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3125 if (debug_rcu_head_queue(head)) {
3126 /* Probable double call_rcu(), so leak the callback. */
3127 WRITE_ONCE(head->func, rcu_leak_callback);
3128 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3129 return;
3130 }
3131 head->func = func;
3132 head->next = NULL;
3133
3134 /*
3135 * Opportunistically note grace-period endings and beginnings.
3136 * Note that we might see a beginning right after we see an
3137 * end, but never vice versa, since this CPU has to pass through
3138 * a quiescent state betweentimes.
3139 */
3140 local_irq_save(flags);
3141 rdp = this_cpu_ptr(rsp->rda);
3142
3143 /* Add the callback to our list. */
3144 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3145 int offline;
3146
3147 if (cpu != -1)
3148 rdp = per_cpu_ptr(rsp->rda, cpu);
3149 if (likely(rdp->mynode)) {
3150 /* Post-boot, so this should be for a no-CBs CPU. */
3151 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3152 WARN_ON_ONCE(offline);
3153 /* Offline CPU, _call_rcu() illegal, leak callback. */
3154 local_irq_restore(flags);
3155 return;
3156 }
3157 /*
3158 * Very early boot, before rcu_init(). Initialize if needed
3159 * and then drop through to queue the callback.
3160 */
3161 BUG_ON(cpu != -1);
3162 WARN_ON_ONCE(!rcu_is_watching());
3163 if (!likely(rdp->nxtlist))
3164 init_default_callback_list(rdp);
3165 }
3166 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3167 if (lazy)
3168 rdp->qlen_lazy++;
3169 else
3170 rcu_idle_count_callbacks_posted();
3171 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3172 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3173 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3174
3175 if (__is_kfree_rcu_offset((unsigned long)func))
3176 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3177 rdp->qlen_lazy, rdp->qlen);
3178 else
3179 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3180
3181 /* Go handle any RCU core processing required. */
3182 __call_rcu_core(rsp, rdp, head, flags);
3183 local_irq_restore(flags);
3184 }
3185
3186 /*
3187 * Queue an RCU-sched callback for invocation after a grace period.
3188 */
3189 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3190 {
3191 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3192 }
3193 EXPORT_SYMBOL_GPL(call_rcu_sched);
3194
3195 /*
3196 * Queue an RCU callback for invocation after a quicker grace period.
3197 */
3198 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3199 {
3200 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3201 }
3202 EXPORT_SYMBOL_GPL(call_rcu_bh);
3203
3204 /*
3205 * Queue an RCU callback for lazy invocation after a grace period.
3206 * This will likely be later named something like "call_rcu_lazy()",
3207 * but this change will require some way of tagging the lazy RCU
3208 * callbacks in the list of pending callbacks. Until then, this
3209 * function may only be called from __kfree_rcu().
3210 */
3211 void kfree_call_rcu(struct rcu_head *head,
3212 rcu_callback_t func)
3213 {
3214 __call_rcu(head, func, rcu_state_p, -1, 1);
3215 }
3216 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3217
3218 /*
3219 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3220 * any blocking grace-period wait automatically implies a grace period
3221 * if there is only one CPU online at any point time during execution
3222 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3223 * occasionally incorrectly indicate that there are multiple CPUs online
3224 * when there was in fact only one the whole time, as this just adds
3225 * some overhead: RCU still operates correctly.
3226 */
3227 static inline int rcu_blocking_is_gp(void)
3228 {
3229 int ret;
3230
3231 might_sleep(); /* Check for RCU read-side critical section. */
3232 preempt_disable();
3233 ret = num_online_cpus() <= 1;
3234 preempt_enable();
3235 return ret;
3236 }
3237
3238 /**
3239 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3240 *
3241 * Control will return to the caller some time after a full rcu-sched
3242 * grace period has elapsed, in other words after all currently executing
3243 * rcu-sched read-side critical sections have completed. These read-side
3244 * critical sections are delimited by rcu_read_lock_sched() and
3245 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3246 * local_irq_disable(), and so on may be used in place of
3247 * rcu_read_lock_sched().
3248 *
3249 * This means that all preempt_disable code sequences, including NMI and
3250 * non-threaded hardware-interrupt handlers, in progress on entry will
3251 * have completed before this primitive returns. However, this does not
3252 * guarantee that softirq handlers will have completed, since in some
3253 * kernels, these handlers can run in process context, and can block.
3254 *
3255 * Note that this guarantee implies further memory-ordering guarantees.
3256 * On systems with more than one CPU, when synchronize_sched() returns,
3257 * each CPU is guaranteed to have executed a full memory barrier since the
3258 * end of its last RCU-sched read-side critical section whose beginning
3259 * preceded the call to synchronize_sched(). In addition, each CPU having
3260 * an RCU read-side critical section that extends beyond the return from
3261 * synchronize_sched() is guaranteed to have executed a full memory barrier
3262 * after the beginning of synchronize_sched() and before the beginning of
3263 * that RCU read-side critical section. Note that these guarantees include
3264 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3265 * that are executing in the kernel.
3266 *
3267 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3268 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3269 * to have executed a full memory barrier during the execution of
3270 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3271 * again only if the system has more than one CPU).
3272 *
3273 * This primitive provides the guarantees made by the (now removed)
3274 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3275 * guarantees that rcu_read_lock() sections will have completed.
3276 * In "classic RCU", these two guarantees happen to be one and
3277 * the same, but can differ in realtime RCU implementations.
3278 */
3279 void synchronize_sched(void)
3280 {
3281 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3282 lock_is_held(&rcu_lock_map) ||
3283 lock_is_held(&rcu_sched_lock_map),
3284 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3285 if (rcu_blocking_is_gp())
3286 return;
3287 if (rcu_gp_is_expedited())
3288 synchronize_sched_expedited();
3289 else
3290 wait_rcu_gp(call_rcu_sched);
3291 }
3292 EXPORT_SYMBOL_GPL(synchronize_sched);
3293
3294 /**
3295 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3296 *
3297 * Control will return to the caller some time after a full rcu_bh grace
3298 * period has elapsed, in other words after all currently executing rcu_bh
3299 * read-side critical sections have completed. RCU read-side critical
3300 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3301 * and may be nested.
3302 *
3303 * See the description of synchronize_sched() for more detailed information
3304 * on memory ordering guarantees.
3305 */
3306 void synchronize_rcu_bh(void)
3307 {
3308 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3309 lock_is_held(&rcu_lock_map) ||
3310 lock_is_held(&rcu_sched_lock_map),
3311 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3312 if (rcu_blocking_is_gp())
3313 return;
3314 if (rcu_gp_is_expedited())
3315 synchronize_rcu_bh_expedited();
3316 else
3317 wait_rcu_gp(call_rcu_bh);
3318 }
3319 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3320
3321 /**
3322 * get_state_synchronize_rcu - Snapshot current RCU state
3323 *
3324 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3325 * to determine whether or not a full grace period has elapsed in the
3326 * meantime.
3327 */
3328 unsigned long get_state_synchronize_rcu(void)
3329 {
3330 /*
3331 * Any prior manipulation of RCU-protected data must happen
3332 * before the load from ->gpnum.
3333 */
3334 smp_mb(); /* ^^^ */
3335
3336 /*
3337 * Make sure this load happens before the purportedly
3338 * time-consuming work between get_state_synchronize_rcu()
3339 * and cond_synchronize_rcu().
3340 */
3341 return smp_load_acquire(&rcu_state_p->gpnum);
3342 }
3343 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3344
3345 /**
3346 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3347 *
3348 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3349 *
3350 * If a full RCU grace period has elapsed since the earlier call to
3351 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3352 * synchronize_rcu() to wait for a full grace period.
3353 *
3354 * Yes, this function does not take counter wrap into account. But
3355 * counter wrap is harmless. If the counter wraps, we have waited for
3356 * more than 2 billion grace periods (and way more on a 64-bit system!),
3357 * so waiting for one additional grace period should be just fine.
3358 */
3359 void cond_synchronize_rcu(unsigned long oldstate)
3360 {
3361 unsigned long newstate;
3362
3363 /*
3364 * Ensure that this load happens before any RCU-destructive
3365 * actions the caller might carry out after we return.
3366 */
3367 newstate = smp_load_acquire(&rcu_state_p->completed);
3368 if (ULONG_CMP_GE(oldstate, newstate))
3369 synchronize_rcu();
3370 }
3371 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3372
3373 /**
3374 * get_state_synchronize_sched - Snapshot current RCU-sched state
3375 *
3376 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3377 * to determine whether or not a full grace period has elapsed in the
3378 * meantime.
3379 */
3380 unsigned long get_state_synchronize_sched(void)
3381 {
3382 /*
3383 * Any prior manipulation of RCU-protected data must happen
3384 * before the load from ->gpnum.
3385 */
3386 smp_mb(); /* ^^^ */
3387
3388 /*
3389 * Make sure this load happens before the purportedly
3390 * time-consuming work between get_state_synchronize_sched()
3391 * and cond_synchronize_sched().
3392 */
3393 return smp_load_acquire(&rcu_sched_state.gpnum);
3394 }
3395 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3396
3397 /**
3398 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3399 *
3400 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3401 *
3402 * If a full RCU-sched grace period has elapsed since the earlier call to
3403 * get_state_synchronize_sched(), just return. Otherwise, invoke
3404 * synchronize_sched() to wait for a full grace period.
3405 *
3406 * Yes, this function does not take counter wrap into account. But
3407 * counter wrap is harmless. If the counter wraps, we have waited for
3408 * more than 2 billion grace periods (and way more on a 64-bit system!),
3409 * so waiting for one additional grace period should be just fine.
3410 */
3411 void cond_synchronize_sched(unsigned long oldstate)
3412 {
3413 unsigned long newstate;
3414
3415 /*
3416 * Ensure that this load happens before any RCU-destructive
3417 * actions the caller might carry out after we return.
3418 */
3419 newstate = smp_load_acquire(&rcu_sched_state.completed);
3420 if (ULONG_CMP_GE(oldstate, newstate))
3421 synchronize_sched();
3422 }
3423 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3424
3425 /* Adjust sequence number for start of update-side operation. */
3426 static void rcu_seq_start(unsigned long *sp)
3427 {
3428 WRITE_ONCE(*sp, *sp + 1);
3429 smp_mb(); /* Ensure update-side operation after counter increment. */
3430 WARN_ON_ONCE(!(*sp & 0x1));
3431 }
3432
3433 /* Adjust sequence number for end of update-side operation. */
3434 static void rcu_seq_end(unsigned long *sp)
3435 {
3436 smp_mb(); /* Ensure update-side operation before counter increment. */
3437 WRITE_ONCE(*sp, *sp + 1);
3438 WARN_ON_ONCE(*sp & 0x1);
3439 }
3440
3441 /* Take a snapshot of the update side's sequence number. */
3442 static unsigned long rcu_seq_snap(unsigned long *sp)
3443 {
3444 unsigned long s;
3445
3446 s = (READ_ONCE(*sp) + 3) & ~0x1;
3447 smp_mb(); /* Above access must not bleed into critical section. */
3448 return s;
3449 }
3450
3451 /*
3452 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3453 * full update-side operation has occurred.
3454 */
3455 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3456 {
3457 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3458 }
3459
3460 /*
3461 * Check to see if there is any immediate RCU-related work to be done
3462 * by the current CPU, for the specified type of RCU, returning 1 if so.
3463 * The checks are in order of increasing expense: checks that can be
3464 * carried out against CPU-local state are performed first. However,
3465 * we must check for CPU stalls first, else we might not get a chance.
3466 */
3467 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3468 {
3469 struct rcu_node *rnp = rdp->mynode;
3470
3471 rdp->n_rcu_pending++;
3472
3473 /* Check for CPU stalls, if enabled. */
3474 check_cpu_stall(rsp, rdp);
3475
3476 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3477 if (rcu_nohz_full_cpu(rsp))
3478 return 0;
3479
3480 /* Is the RCU core waiting for a quiescent state from this CPU? */
3481 if (rcu_scheduler_fully_active &&
3482 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3483 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3484 rdp->n_rp_core_needs_qs++;
3485 } else if (rdp->core_needs_qs &&
3486 (!rdp->cpu_no_qs.b.norm ||
3487 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3488 rdp->n_rp_report_qs++;
3489 return 1;
3490 }
3491
3492 /* Does this CPU have callbacks ready to invoke? */
3493 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3494 rdp->n_rp_cb_ready++;
3495 return 1;
3496 }
3497
3498 /* Has RCU gone idle with this CPU needing another grace period? */
3499 if (cpu_needs_another_gp(rsp, rdp)) {
3500 rdp->n_rp_cpu_needs_gp++;
3501 return 1;
3502 }
3503
3504 /* Has another RCU grace period completed? */
3505 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3506 rdp->n_rp_gp_completed++;
3507 return 1;
3508 }
3509
3510 /* Has a new RCU grace period started? */
3511 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3512 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3513 rdp->n_rp_gp_started++;
3514 return 1;
3515 }
3516
3517 /* Does this CPU need a deferred NOCB wakeup? */
3518 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3519 rdp->n_rp_nocb_defer_wakeup++;
3520 return 1;
3521 }
3522
3523 /* nothing to do */
3524 rdp->n_rp_need_nothing++;
3525 return 0;
3526 }
3527
3528 /*
3529 * Check to see if there is any immediate RCU-related work to be done
3530 * by the current CPU, returning 1 if so. This function is part of the
3531 * RCU implementation; it is -not- an exported member of the RCU API.
3532 */
3533 static int rcu_pending(void)
3534 {
3535 struct rcu_state *rsp;
3536
3537 for_each_rcu_flavor(rsp)
3538 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3539 return 1;
3540 return 0;
3541 }
3542
3543 /*
3544 * Return true if the specified CPU has any callback. If all_lazy is
3545 * non-NULL, store an indication of whether all callbacks are lazy.
3546 * (If there are no callbacks, all of them are deemed to be lazy.)
3547 */
3548 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3549 {
3550 bool al = true;
3551 bool hc = false;
3552 struct rcu_data *rdp;
3553 struct rcu_state *rsp;
3554
3555 for_each_rcu_flavor(rsp) {
3556 rdp = this_cpu_ptr(rsp->rda);
3557 if (!rdp->nxtlist)
3558 continue;
3559 hc = true;
3560 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3561 al = false;
3562 break;
3563 }
3564 }
3565 if (all_lazy)
3566 *all_lazy = al;
3567 return hc;
3568 }
3569
3570 /*
3571 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3572 * the compiler is expected to optimize this away.
3573 */
3574 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3575 int cpu, unsigned long done)
3576 {
3577 trace_rcu_barrier(rsp->name, s, cpu,
3578 atomic_read(&rsp->barrier_cpu_count), done);
3579 }
3580
3581 /*
3582 * RCU callback function for _rcu_barrier(). If we are last, wake
3583 * up the task executing _rcu_barrier().
3584 */
3585 static void rcu_barrier_callback(struct rcu_head *rhp)
3586 {
3587 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3588 struct rcu_state *rsp = rdp->rsp;
3589
3590 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3591 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3592 complete(&rsp->barrier_completion);
3593 } else {
3594 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3595 }
3596 }
3597
3598 /*
3599 * Called with preemption disabled, and from cross-cpu IRQ context.
3600 */
3601 static void rcu_barrier_func(void *type)
3602 {
3603 struct rcu_state *rsp = type;
3604 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3605
3606 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3607 atomic_inc(&rsp->barrier_cpu_count);
3608 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3609 }
3610
3611 /*
3612 * Orchestrate the specified type of RCU barrier, waiting for all
3613 * RCU callbacks of the specified type to complete.
3614 */
3615 static void _rcu_barrier(struct rcu_state *rsp)
3616 {
3617 int cpu;
3618 struct rcu_data *rdp;
3619 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3620
3621 _rcu_barrier_trace(rsp, "Begin", -1, s);
3622
3623 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3624 mutex_lock(&rsp->barrier_mutex);
3625
3626 /* Did someone else do our work for us? */
3627 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3628 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3629 smp_mb(); /* caller's subsequent code after above check. */
3630 mutex_unlock(&rsp->barrier_mutex);
3631 return;
3632 }
3633
3634 /* Mark the start of the barrier operation. */
3635 rcu_seq_start(&rsp->barrier_sequence);
3636 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3637
3638 /*
3639 * Initialize the count to one rather than to zero in order to
3640 * avoid a too-soon return to zero in case of a short grace period
3641 * (or preemption of this task). Exclude CPU-hotplug operations
3642 * to ensure that no offline CPU has callbacks queued.
3643 */
3644 init_completion(&rsp->barrier_completion);
3645 atomic_set(&rsp->barrier_cpu_count, 1);
3646 get_online_cpus();
3647
3648 /*
3649 * Force each CPU with callbacks to register a new callback.
3650 * When that callback is invoked, we will know that all of the
3651 * corresponding CPU's preceding callbacks have been invoked.
3652 */
3653 for_each_possible_cpu(cpu) {
3654 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3655 continue;
3656 rdp = per_cpu_ptr(rsp->rda, cpu);
3657 if (rcu_is_nocb_cpu(cpu)) {
3658 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3659 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3660 rsp->barrier_sequence);
3661 } else {
3662 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3663 rsp->barrier_sequence);
3664 smp_mb__before_atomic();
3665 atomic_inc(&rsp->barrier_cpu_count);
3666 __call_rcu(&rdp->barrier_head,
3667 rcu_barrier_callback, rsp, cpu, 0);
3668 }
3669 } else if (READ_ONCE(rdp->qlen)) {
3670 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3671 rsp->barrier_sequence);
3672 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3673 } else {
3674 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3675 rsp->barrier_sequence);
3676 }
3677 }
3678 put_online_cpus();
3679
3680 /*
3681 * Now that we have an rcu_barrier_callback() callback on each
3682 * CPU, and thus each counted, remove the initial count.
3683 */
3684 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3685 complete(&rsp->barrier_completion);
3686
3687 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3688 wait_for_completion(&rsp->barrier_completion);
3689
3690 /* Mark the end of the barrier operation. */
3691 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3692 rcu_seq_end(&rsp->barrier_sequence);
3693
3694 /* Other rcu_barrier() invocations can now safely proceed. */
3695 mutex_unlock(&rsp->barrier_mutex);
3696 }
3697
3698 /**
3699 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3700 */
3701 void rcu_barrier_bh(void)
3702 {
3703 _rcu_barrier(&rcu_bh_state);
3704 }
3705 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3706
3707 /**
3708 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3709 */
3710 void rcu_barrier_sched(void)
3711 {
3712 _rcu_barrier(&rcu_sched_state);
3713 }
3714 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3715
3716 /*
3717 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3718 * first CPU in a given leaf rcu_node structure coming online. The caller
3719 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3720 * disabled.
3721 */
3722 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3723 {
3724 long mask;
3725 struct rcu_node *rnp = rnp_leaf;
3726
3727 for (;;) {
3728 mask = rnp->grpmask;
3729 rnp = rnp->parent;
3730 if (rnp == NULL)
3731 return;
3732 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3733 rnp->qsmaskinit |= mask;
3734 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3735 }
3736 }
3737
3738 /*
3739 * Do boot-time initialization of a CPU's per-CPU RCU data.
3740 */
3741 static void __init
3742 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3743 {
3744 unsigned long flags;
3745 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3746 struct rcu_node *rnp = rcu_get_root(rsp);
3747
3748 /* Set up local state, ensuring consistent view of global state. */
3749 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3750 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3751 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3752 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3753 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3754 rdp->cpu = cpu;
3755 rdp->rsp = rsp;
3756 rcu_boot_init_nocb_percpu_data(rdp);
3757 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3758 }
3759
3760 /*
3761 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3762 * offline event can be happening at a given time. Note also that we
3763 * can accept some slop in the rsp->completed access due to the fact
3764 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3765 */
3766 static void
3767 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3768 {
3769 unsigned long flags;
3770 unsigned long mask;
3771 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3772 struct rcu_node *rnp = rcu_get_root(rsp);
3773
3774 /* Set up local state, ensuring consistent view of global state. */
3775 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3776 rdp->qlen_last_fqs_check = 0;
3777 rdp->n_force_qs_snap = rsp->n_force_qs;
3778 rdp->blimit = blimit;
3779 if (!rdp->nxtlist)
3780 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3781 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3782 rcu_sysidle_init_percpu_data(rdp->dynticks);
3783 atomic_set(&rdp->dynticks->dynticks,
3784 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3785 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3786
3787 /*
3788 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3789 * propagation up the rcu_node tree will happen at the beginning
3790 * of the next grace period.
3791 */
3792 rnp = rdp->mynode;
3793 mask = rdp->grpmask;
3794 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3795 if (!rdp->beenonline)
3796 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3797 rdp->beenonline = true; /* We have now been online. */
3798 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3799 rdp->completed = rnp->completed;
3800 rdp->cpu_no_qs.b.norm = true;
3801 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3802 rdp->core_needs_qs = false;
3803 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3804 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3805 }
3806
3807 int rcutree_prepare_cpu(unsigned int cpu)
3808 {
3809 struct rcu_state *rsp;
3810
3811 for_each_rcu_flavor(rsp)
3812 rcu_init_percpu_data(cpu, rsp);
3813
3814 rcu_prepare_kthreads(cpu);
3815 rcu_spawn_all_nocb_kthreads(cpu);
3816
3817 return 0;
3818 }
3819
3820 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3821 {
3822 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3823
3824 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3825 }
3826
3827 int rcutree_online_cpu(unsigned int cpu)
3828 {
3829 sync_sched_exp_online_cleanup(cpu);
3830 rcutree_affinity_setting(cpu, -1);
3831 return 0;
3832 }
3833
3834 int rcutree_offline_cpu(unsigned int cpu)
3835 {
3836 rcutree_affinity_setting(cpu, cpu);
3837 return 0;
3838 }
3839
3840
3841 int rcutree_dying_cpu(unsigned int cpu)
3842 {
3843 struct rcu_state *rsp;
3844
3845 for_each_rcu_flavor(rsp)
3846 rcu_cleanup_dying_cpu(rsp);
3847 return 0;
3848 }
3849
3850 int rcutree_dead_cpu(unsigned int cpu)
3851 {
3852 struct rcu_state *rsp;
3853
3854 for_each_rcu_flavor(rsp) {
3855 rcu_cleanup_dead_cpu(cpu, rsp);
3856 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3857 }
3858 return 0;
3859 }
3860
3861 /*
3862 * Mark the specified CPU as being online so that subsequent grace periods
3863 * (both expedited and normal) will wait on it. Note that this means that
3864 * incoming CPUs are not allowed to use RCU read-side critical sections
3865 * until this function is called. Failing to observe this restriction
3866 * will result in lockdep splats.
3867 */
3868 void rcu_cpu_starting(unsigned int cpu)
3869 {
3870 unsigned long flags;
3871 unsigned long mask;
3872 struct rcu_data *rdp;
3873 struct rcu_node *rnp;
3874 struct rcu_state *rsp;
3875
3876 for_each_rcu_flavor(rsp) {
3877 rdp = this_cpu_ptr(rsp->rda);
3878 rnp = rdp->mynode;
3879 mask = rdp->grpmask;
3880 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3881 rnp->qsmaskinitnext |= mask;
3882 rnp->expmaskinitnext |= mask;
3883 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3884 }
3885 }
3886
3887 #ifdef CONFIG_HOTPLUG_CPU
3888 /*
3889 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3890 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3891 * bit masks.
3892 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3893 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3894 * bit masks.
3895 */
3896 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3897 {
3898 unsigned long flags;
3899 unsigned long mask;
3900 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3901 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3902
3903 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3904 mask = rdp->grpmask;
3905 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3906 rnp->qsmaskinitnext &= ~mask;
3907 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3908 }
3909
3910 void rcu_report_dead(unsigned int cpu)
3911 {
3912 struct rcu_state *rsp;
3913
3914 /* QS for any half-done expedited RCU-sched GP. */
3915 preempt_disable();
3916 rcu_report_exp_rdp(&rcu_sched_state,
3917 this_cpu_ptr(rcu_sched_state.rda), true);
3918 preempt_enable();
3919 for_each_rcu_flavor(rsp)
3920 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3921 }
3922 #endif
3923
3924 static int rcu_pm_notify(struct notifier_block *self,
3925 unsigned long action, void *hcpu)
3926 {
3927 switch (action) {
3928 case PM_HIBERNATION_PREPARE:
3929 case PM_SUSPEND_PREPARE:
3930 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3931 rcu_expedite_gp();
3932 break;
3933 case PM_POST_HIBERNATION:
3934 case PM_POST_SUSPEND:
3935 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3936 rcu_unexpedite_gp();
3937 break;
3938 default:
3939 break;
3940 }
3941 return NOTIFY_OK;
3942 }
3943
3944 /*
3945 * Spawn the kthreads that handle each RCU flavor's grace periods.
3946 */
3947 static int __init rcu_spawn_gp_kthread(void)
3948 {
3949 unsigned long flags;
3950 int kthread_prio_in = kthread_prio;
3951 struct rcu_node *rnp;
3952 struct rcu_state *rsp;
3953 struct sched_param sp;
3954 struct task_struct *t;
3955
3956 /* Force priority into range. */
3957 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3958 kthread_prio = 1;
3959 else if (kthread_prio < 0)
3960 kthread_prio = 0;
3961 else if (kthread_prio > 99)
3962 kthread_prio = 99;
3963 if (kthread_prio != kthread_prio_in)
3964 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3965 kthread_prio, kthread_prio_in);
3966
3967 rcu_scheduler_fully_active = 1;
3968 for_each_rcu_flavor(rsp) {
3969 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3970 BUG_ON(IS_ERR(t));
3971 rnp = rcu_get_root(rsp);
3972 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3973 rsp->gp_kthread = t;
3974 if (kthread_prio) {
3975 sp.sched_priority = kthread_prio;
3976 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3977 }
3978 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3979 wake_up_process(t);
3980 }
3981 rcu_spawn_nocb_kthreads();
3982 rcu_spawn_boost_kthreads();
3983 return 0;
3984 }
3985 early_initcall(rcu_spawn_gp_kthread);
3986
3987 /*
3988 * This function is invoked towards the end of the scheduler's initialization
3989 * process. Before this is called, the idle task might contain
3990 * RCU read-side critical sections (during which time, this idle
3991 * task is booting the system). After this function is called, the
3992 * idle tasks are prohibited from containing RCU read-side critical
3993 * sections. This function also enables RCU lockdep checking.
3994 */
3995 void rcu_scheduler_starting(void)
3996 {
3997 WARN_ON(num_online_cpus() != 1);
3998 WARN_ON(nr_context_switches() > 0);
3999 rcu_scheduler_active = 1;
4000 }
4001
4002 /*
4003 * Compute the per-level fanout, either using the exact fanout specified
4004 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4005 */
4006 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4007 {
4008 int i;
4009
4010 if (rcu_fanout_exact) {
4011 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4012 for (i = rcu_num_lvls - 2; i >= 0; i--)
4013 levelspread[i] = RCU_FANOUT;
4014 } else {
4015 int ccur;
4016 int cprv;
4017
4018 cprv = nr_cpu_ids;
4019 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4020 ccur = levelcnt[i];
4021 levelspread[i] = (cprv + ccur - 1) / ccur;
4022 cprv = ccur;
4023 }
4024 }
4025 }
4026
4027 /*
4028 * Helper function for rcu_init() that initializes one rcu_state structure.
4029 */
4030 static void __init rcu_init_one(struct rcu_state *rsp)
4031 {
4032 static const char * const buf[] = RCU_NODE_NAME_INIT;
4033 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4034 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4035 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4036 static u8 fl_mask = 0x1;
4037
4038 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4039 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4040 int cpustride = 1;
4041 int i;
4042 int j;
4043 struct rcu_node *rnp;
4044
4045 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4046
4047 /* Silence gcc 4.8 false positive about array index out of range. */
4048 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4049 panic("rcu_init_one: rcu_num_lvls out of range");
4050
4051 /* Initialize the level-tracking arrays. */
4052
4053 for (i = 0; i < rcu_num_lvls; i++)
4054 levelcnt[i] = num_rcu_lvl[i];
4055 for (i = 1; i < rcu_num_lvls; i++)
4056 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4057 rcu_init_levelspread(levelspread, levelcnt);
4058 rsp->flavor_mask = fl_mask;
4059 fl_mask <<= 1;
4060
4061 /* Initialize the elements themselves, starting from the leaves. */
4062
4063 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4064 cpustride *= levelspread[i];
4065 rnp = rsp->level[i];
4066 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4067 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4068 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4069 &rcu_node_class[i], buf[i]);
4070 raw_spin_lock_init(&rnp->fqslock);
4071 lockdep_set_class_and_name(&rnp->fqslock,
4072 &rcu_fqs_class[i], fqs[i]);
4073 rnp->gpnum = rsp->gpnum;
4074 rnp->completed = rsp->completed;
4075 rnp->qsmask = 0;
4076 rnp->qsmaskinit = 0;
4077 rnp->grplo = j * cpustride;
4078 rnp->grphi = (j + 1) * cpustride - 1;
4079 if (rnp->grphi >= nr_cpu_ids)
4080 rnp->grphi = nr_cpu_ids - 1;
4081 if (i == 0) {
4082 rnp->grpnum = 0;
4083 rnp->grpmask = 0;
4084 rnp->parent = NULL;
4085 } else {
4086 rnp->grpnum = j % levelspread[i - 1];
4087 rnp->grpmask = 1UL << rnp->grpnum;
4088 rnp->parent = rsp->level[i - 1] +
4089 j / levelspread[i - 1];
4090 }
4091 rnp->level = i;
4092 INIT_LIST_HEAD(&rnp->blkd_tasks);
4093 rcu_init_one_nocb(rnp);
4094 init_waitqueue_head(&rnp->exp_wq[0]);
4095 init_waitqueue_head(&rnp->exp_wq[1]);
4096 init_waitqueue_head(&rnp->exp_wq[2]);
4097 init_waitqueue_head(&rnp->exp_wq[3]);
4098 spin_lock_init(&rnp->exp_lock);
4099 }
4100 }
4101
4102 init_swait_queue_head(&rsp->gp_wq);
4103 init_swait_queue_head(&rsp->expedited_wq);
4104 rnp = rsp->level[rcu_num_lvls - 1];
4105 for_each_possible_cpu(i) {
4106 while (i > rnp->grphi)
4107 rnp++;
4108 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4109 rcu_boot_init_percpu_data(i, rsp);
4110 }
4111 list_add(&rsp->flavors, &rcu_struct_flavors);
4112 }
4113
4114 /*
4115 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4116 * replace the definitions in tree.h because those are needed to size
4117 * the ->node array in the rcu_state structure.
4118 */
4119 static void __init rcu_init_geometry(void)
4120 {
4121 ulong d;
4122 int i;
4123 int rcu_capacity[RCU_NUM_LVLS];
4124
4125 /*
4126 * Initialize any unspecified boot parameters.
4127 * The default values of jiffies_till_first_fqs and
4128 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4129 * value, which is a function of HZ, then adding one for each
4130 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4131 */
4132 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4133 if (jiffies_till_first_fqs == ULONG_MAX)
4134 jiffies_till_first_fqs = d;
4135 if (jiffies_till_next_fqs == ULONG_MAX)
4136 jiffies_till_next_fqs = d;
4137
4138 /* If the compile-time values are accurate, just leave. */
4139 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4140 nr_cpu_ids == NR_CPUS)
4141 return;
4142 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4143 rcu_fanout_leaf, nr_cpu_ids);
4144
4145 /*
4146 * The boot-time rcu_fanout_leaf parameter must be at least two
4147 * and cannot exceed the number of bits in the rcu_node masks.
4148 * Complain and fall back to the compile-time values if this
4149 * limit is exceeded.
4150 */
4151 if (rcu_fanout_leaf < 2 ||
4152 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4153 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4154 WARN_ON(1);
4155 return;
4156 }
4157
4158 /*
4159 * Compute number of nodes that can be handled an rcu_node tree
4160 * with the given number of levels.
4161 */
4162 rcu_capacity[0] = rcu_fanout_leaf;
4163 for (i = 1; i < RCU_NUM_LVLS; i++)
4164 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4165
4166 /*
4167 * The tree must be able to accommodate the configured number of CPUs.
4168 * If this limit is exceeded, fall back to the compile-time values.
4169 */
4170 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4171 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4172 WARN_ON(1);
4173 return;
4174 }
4175
4176 /* Calculate the number of levels in the tree. */
4177 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4178 }
4179 rcu_num_lvls = i + 1;
4180
4181 /* Calculate the number of rcu_nodes at each level of the tree. */
4182 for (i = 0; i < rcu_num_lvls; i++) {
4183 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4184 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4185 }
4186
4187 /* Calculate the total number of rcu_node structures. */
4188 rcu_num_nodes = 0;
4189 for (i = 0; i < rcu_num_lvls; i++)
4190 rcu_num_nodes += num_rcu_lvl[i];
4191 }
4192
4193 /*
4194 * Dump out the structure of the rcu_node combining tree associated
4195 * with the rcu_state structure referenced by rsp.
4196 */
4197 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4198 {
4199 int level = 0;
4200 struct rcu_node *rnp;
4201
4202 pr_info("rcu_node tree layout dump\n");
4203 pr_info(" ");
4204 rcu_for_each_node_breadth_first(rsp, rnp) {
4205 if (rnp->level != level) {
4206 pr_cont("\n");
4207 pr_info(" ");
4208 level = rnp->level;
4209 }
4210 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4211 }
4212 pr_cont("\n");
4213 }
4214
4215 void __init rcu_init(void)
4216 {
4217 int cpu;
4218
4219 rcu_early_boot_tests();
4220
4221 rcu_bootup_announce();
4222 rcu_init_geometry();
4223 rcu_init_one(&rcu_bh_state);
4224 rcu_init_one(&rcu_sched_state);
4225 if (dump_tree)
4226 rcu_dump_rcu_node_tree(&rcu_sched_state);
4227 __rcu_init_preempt();
4228 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4229
4230 /*
4231 * We don't need protection against CPU-hotplug here because
4232 * this is called early in boot, before either interrupts
4233 * or the scheduler are operational.
4234 */
4235 pm_notifier(rcu_pm_notify, 0);
4236 for_each_online_cpu(cpu) {
4237 rcutree_prepare_cpu(cpu);
4238 rcu_cpu_starting(cpu);
4239 }
4240 }
4241
4242 #include "tree_exp.h"
4243 #include "tree_plugin.h"