]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/tree.c
Merge tag 'rtc-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64
65 #include "tree.h"
66 #include "rcu.h"
67
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72
73 #ifndef data_race
74 #define data_race(expr) \
75 ({ \
76 expr; \
77 })
78 #endif
79 #ifndef ASSERT_EXCLUSIVE_WRITER
80 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
81 #endif
82 #ifndef ASSERT_EXCLUSIVE_ACCESS
83 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
84 #endif
85
86 /* Data structures. */
87
88 /*
89 * Steal a bit from the bottom of ->dynticks for idle entry/exit
90 * control. Initially this is for TLB flushing.
91 */
92 #define RCU_DYNTICK_CTRL_MASK 0x1
93 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
94
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
96 .dynticks_nesting = 1,
97 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
98 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
99 };
100 static struct rcu_state rcu_state = {
101 .level = { &rcu_state.node[0] },
102 .gp_state = RCU_GP_IDLE,
103 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
104 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
105 .name = RCU_NAME,
106 .abbr = RCU_ABBR,
107 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
108 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
109 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
110 };
111
112 /* Dump rcu_node combining tree at boot to verify correct setup. */
113 static bool dump_tree;
114 module_param(dump_tree, bool, 0444);
115 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
116 static bool use_softirq = true;
117 module_param(use_softirq, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144 /*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156 static int rcu_scheduler_fully_active __read_mostly;
157
158 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
159 unsigned long gps, unsigned long flags);
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 static void invoke_rcu_core(void);
164 static void rcu_report_exp_rdp(struct rcu_data *rdp);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
167
168 /* rcuc/rcub kthread realtime priority */
169 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170 module_param(kthread_prio, int, 0444);
171
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
173
174 static int gp_preinit_delay;
175 module_param(gp_preinit_delay, int, 0444);
176 static int gp_init_delay;
177 module_param(gp_init_delay, int, 0444);
178 static int gp_cleanup_delay;
179 module_param(gp_cleanup_delay, int, 0444);
180
181 /*
182 * This rcu parameter is runtime-read-only. It reflects
183 * a minimum allowed number of objects which can be cached
184 * per-CPU. Object size is equal to one page. This value
185 * can be changed at boot time.
186 */
187 static int rcu_min_cached_objs = 2;
188 module_param(rcu_min_cached_objs, int, 0444);
189
190 /* Retrieve RCU kthreads priority for rcutorture */
191 int rcu_get_gp_kthreads_prio(void)
192 {
193 return kthread_prio;
194 }
195 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
196
197 /*
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
205 */
206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
207
208 /*
209 * Compute the mask of online CPUs for the specified rcu_node structure.
210 * This will not be stable unless the rcu_node structure's ->lock is
211 * held, but the bit corresponding to the current CPU will be stable
212 * in most contexts.
213 */
214 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
215 {
216 return READ_ONCE(rnp->qsmaskinitnext);
217 }
218
219 /*
220 * Return true if an RCU grace period is in progress. The READ_ONCE()s
221 * permit this function to be invoked without holding the root rcu_node
222 * structure's ->lock, but of course results can be subject to change.
223 */
224 static int rcu_gp_in_progress(void)
225 {
226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
227 }
228
229 /*
230 * Return the number of callbacks queued on the specified CPU.
231 * Handles both the nocbs and normal cases.
232 */
233 static long rcu_get_n_cbs_cpu(int cpu)
234 {
235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
236
237 if (rcu_segcblist_is_enabled(&rdp->cblist))
238 return rcu_segcblist_n_cbs(&rdp->cblist);
239 return 0;
240 }
241
242 void rcu_softirq_qs(void)
243 {
244 rcu_qs();
245 rcu_preempt_deferred_qs(current);
246 }
247
248 /*
249 * Record entry into an extended quiescent state. This is only to be
250 * called when not already in an extended quiescent state, that is,
251 * RCU is watching prior to the call to this function and is no longer
252 * watching upon return.
253 */
254 static noinstr void rcu_dynticks_eqs_enter(void)
255 {
256 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
257 int seq;
258
259 /*
260 * CPUs seeing atomic_add_return() must see prior RCU read-side
261 * critical sections, and we also must force ordering with the
262 * next idle sojourn.
263 */
264 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
265 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
266 // RCU is no longer watching. Better be in extended quiescent state!
267 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
268 (seq & RCU_DYNTICK_CTRL_CTR));
269 /* Better not have special action (TLB flush) pending! */
270 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
271 (seq & RCU_DYNTICK_CTRL_MASK));
272 }
273
274 /*
275 * Record exit from an extended quiescent state. This is only to be
276 * called from an extended quiescent state, that is, RCU is not watching
277 * prior to the call to this function and is watching upon return.
278 */
279 static noinstr void rcu_dynticks_eqs_exit(void)
280 {
281 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
282 int seq;
283
284 /*
285 * CPUs seeing atomic_add_return() must see prior idle sojourns,
286 * and we also must force ordering with the next RCU read-side
287 * critical section.
288 */
289 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 // RCU is now watching. Better not be in an extended quiescent state!
291 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 !(seq & RCU_DYNTICK_CTRL_CTR));
294 if (seq & RCU_DYNTICK_CTRL_MASK) {
295 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
296 smp_mb__after_atomic(); /* _exit after clearing mask. */
297 }
298 }
299
300 /*
301 * Reset the current CPU's ->dynticks counter to indicate that the
302 * newly onlined CPU is no longer in an extended quiescent state.
303 * This will either leave the counter unchanged, or increment it
304 * to the next non-quiescent value.
305 *
306 * The non-atomic test/increment sequence works because the upper bits
307 * of the ->dynticks counter are manipulated only by the corresponding CPU,
308 * or when the corresponding CPU is offline.
309 */
310 static void rcu_dynticks_eqs_online(void)
311 {
312 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
313
314 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
315 return;
316 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
317 }
318
319 /*
320 * Is the current CPU in an extended quiescent state?
321 *
322 * No ordering, as we are sampling CPU-local information.
323 */
324 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
325 {
326 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327
328 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
329 }
330
331 /*
332 * Snapshot the ->dynticks counter with full ordering so as to allow
333 * stable comparison of this counter with past and future snapshots.
334 */
335 static int rcu_dynticks_snap(struct rcu_data *rdp)
336 {
337 int snap = atomic_add_return(0, &rdp->dynticks);
338
339 return snap & ~RCU_DYNTICK_CTRL_MASK;
340 }
341
342 /*
343 * Return true if the snapshot returned from rcu_dynticks_snap()
344 * indicates that RCU is in an extended quiescent state.
345 */
346 static bool rcu_dynticks_in_eqs(int snap)
347 {
348 return !(snap & RCU_DYNTICK_CTRL_CTR);
349 }
350
351 /*
352 * Return true if the CPU corresponding to the specified rcu_data
353 * structure has spent some time in an extended quiescent state since
354 * rcu_dynticks_snap() returned the specified snapshot.
355 */
356 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
357 {
358 return snap != rcu_dynticks_snap(rdp);
359 }
360
361 /*
362 * Return true if the referenced integer is zero while the specified
363 * CPU remains within a single extended quiescent state.
364 */
365 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
366 {
367 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
368 int snap;
369
370 // If not quiescent, force back to earlier extended quiescent state.
371 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
372 RCU_DYNTICK_CTRL_CTR);
373
374 smp_rmb(); // Order ->dynticks and *vp reads.
375 if (READ_ONCE(*vp))
376 return false; // Non-zero, so report failure;
377 smp_rmb(); // Order *vp read and ->dynticks re-read.
378
379 // If still in the same extended quiescent state, we are good!
380 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
381 }
382
383 /*
384 * Set the special (bottom) bit of the specified CPU so that it
385 * will take special action (such as flushing its TLB) on the
386 * next exit from an extended quiescent state. Returns true if
387 * the bit was successfully set, or false if the CPU was not in
388 * an extended quiescent state.
389 */
390 bool rcu_eqs_special_set(int cpu)
391 {
392 int old;
393 int new;
394 int new_old;
395 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
396
397 new_old = atomic_read(&rdp->dynticks);
398 do {
399 old = new_old;
400 if (old & RCU_DYNTICK_CTRL_CTR)
401 return false;
402 new = old | RCU_DYNTICK_CTRL_MASK;
403 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
404 } while (new_old != old);
405 return true;
406 }
407
408 /*
409 * Let the RCU core know that this CPU has gone through the scheduler,
410 * which is a quiescent state. This is called when the need for a
411 * quiescent state is urgent, so we burn an atomic operation and full
412 * memory barriers to let the RCU core know about it, regardless of what
413 * this CPU might (or might not) do in the near future.
414 *
415 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
416 *
417 * The caller must have disabled interrupts and must not be idle.
418 */
419 void rcu_momentary_dyntick_idle(void)
420 {
421 int special;
422
423 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
424 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
425 &this_cpu_ptr(&rcu_data)->dynticks);
426 /* It is illegal to call this from idle state. */
427 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
428 rcu_preempt_deferred_qs(current);
429 }
430 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
431
432 /**
433 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
434 *
435 * If the current CPU is idle and running at a first-level (not nested)
436 * interrupt, or directly, from idle, return true.
437 *
438 * The caller must have at least disabled IRQs.
439 */
440 static int rcu_is_cpu_rrupt_from_idle(void)
441 {
442 long nesting;
443
444 /*
445 * Usually called from the tick; but also used from smp_function_call()
446 * for expedited grace periods. This latter can result in running from
447 * the idle task, instead of an actual IPI.
448 */
449 lockdep_assert_irqs_disabled();
450
451 /* Check for counter underflows */
452 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
453 "RCU dynticks_nesting counter underflow!");
454 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
455 "RCU dynticks_nmi_nesting counter underflow/zero!");
456
457 /* Are we at first interrupt nesting level? */
458 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
459 if (nesting > 1)
460 return false;
461
462 /*
463 * If we're not in an interrupt, we must be in the idle task!
464 */
465 WARN_ON_ONCE(!nesting && !is_idle_task(current));
466
467 /* Does CPU appear to be idle from an RCU standpoint? */
468 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
469 }
470
471 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
472 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
473 static long blimit = DEFAULT_RCU_BLIMIT;
474 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
475 static long qhimark = DEFAULT_RCU_QHIMARK;
476 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
477 static long qlowmark = DEFAULT_RCU_QLOMARK;
478 #define DEFAULT_RCU_QOVLD_MULT 2
479 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
480 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
481 static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */
482
483 module_param(blimit, long, 0444);
484 module_param(qhimark, long, 0444);
485 module_param(qlowmark, long, 0444);
486 module_param(qovld, long, 0444);
487
488 static ulong jiffies_till_first_fqs = ULONG_MAX;
489 static ulong jiffies_till_next_fqs = ULONG_MAX;
490 static bool rcu_kick_kthreads;
491 static int rcu_divisor = 7;
492 module_param(rcu_divisor, int, 0644);
493
494 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
495 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
496 module_param(rcu_resched_ns, long, 0644);
497
498 /*
499 * How long the grace period must be before we start recruiting
500 * quiescent-state help from rcu_note_context_switch().
501 */
502 static ulong jiffies_till_sched_qs = ULONG_MAX;
503 module_param(jiffies_till_sched_qs, ulong, 0444);
504 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
505 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
506
507 /*
508 * Make sure that we give the grace-period kthread time to detect any
509 * idle CPUs before taking active measures to force quiescent states.
510 * However, don't go below 100 milliseconds, adjusted upwards for really
511 * large systems.
512 */
513 static void adjust_jiffies_till_sched_qs(void)
514 {
515 unsigned long j;
516
517 /* If jiffies_till_sched_qs was specified, respect the request. */
518 if (jiffies_till_sched_qs != ULONG_MAX) {
519 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
520 return;
521 }
522 /* Otherwise, set to third fqs scan, but bound below on large system. */
523 j = READ_ONCE(jiffies_till_first_fqs) +
524 2 * READ_ONCE(jiffies_till_next_fqs);
525 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
526 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
527 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
528 WRITE_ONCE(jiffies_to_sched_qs, j);
529 }
530
531 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
532 {
533 ulong j;
534 int ret = kstrtoul(val, 0, &j);
535
536 if (!ret) {
537 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
538 adjust_jiffies_till_sched_qs();
539 }
540 return ret;
541 }
542
543 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
544 {
545 ulong j;
546 int ret = kstrtoul(val, 0, &j);
547
548 if (!ret) {
549 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
550 adjust_jiffies_till_sched_qs();
551 }
552 return ret;
553 }
554
555 static struct kernel_param_ops first_fqs_jiffies_ops = {
556 .set = param_set_first_fqs_jiffies,
557 .get = param_get_ulong,
558 };
559
560 static struct kernel_param_ops next_fqs_jiffies_ops = {
561 .set = param_set_next_fqs_jiffies,
562 .get = param_get_ulong,
563 };
564
565 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
566 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
567 module_param(rcu_kick_kthreads, bool, 0644);
568
569 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
570 static int rcu_pending(int user);
571
572 /*
573 * Return the number of RCU GPs completed thus far for debug & stats.
574 */
575 unsigned long rcu_get_gp_seq(void)
576 {
577 return READ_ONCE(rcu_state.gp_seq);
578 }
579 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
580
581 /*
582 * Return the number of RCU expedited batches completed thus far for
583 * debug & stats. Odd numbers mean that a batch is in progress, even
584 * numbers mean idle. The value returned will thus be roughly double
585 * the cumulative batches since boot.
586 */
587 unsigned long rcu_exp_batches_completed(void)
588 {
589 return rcu_state.expedited_sequence;
590 }
591 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
592
593 /*
594 * Return the root node of the rcu_state structure.
595 */
596 static struct rcu_node *rcu_get_root(void)
597 {
598 return &rcu_state.node[0];
599 }
600
601 /*
602 * Send along grace-period-related data for rcutorture diagnostics.
603 */
604 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
605 unsigned long *gp_seq)
606 {
607 switch (test_type) {
608 case RCU_FLAVOR:
609 *flags = READ_ONCE(rcu_state.gp_flags);
610 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
611 break;
612 default:
613 break;
614 }
615 }
616 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
617
618 /*
619 * Enter an RCU extended quiescent state, which can be either the
620 * idle loop or adaptive-tickless usermode execution.
621 *
622 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
623 * the possibility of usermode upcalls having messed up our count
624 * of interrupt nesting level during the prior busy period.
625 */
626 static noinstr void rcu_eqs_enter(bool user)
627 {
628 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
629
630 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
631 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
632 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
633 rdp->dynticks_nesting == 0);
634 if (rdp->dynticks_nesting != 1) {
635 // RCU will still be watching, so just do accounting and leave.
636 rdp->dynticks_nesting--;
637 return;
638 }
639
640 lockdep_assert_irqs_disabled();
641 instrumentation_begin();
642 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
643 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
644 rdp = this_cpu_ptr(&rcu_data);
645 do_nocb_deferred_wakeup(rdp);
646 rcu_prepare_for_idle();
647 rcu_preempt_deferred_qs(current);
648
649 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
650 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
651
652 instrumentation_end();
653 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
654 // RCU is watching here ...
655 rcu_dynticks_eqs_enter();
656 // ... but is no longer watching here.
657 rcu_dynticks_task_enter();
658 }
659
660 /**
661 * rcu_idle_enter - inform RCU that current CPU is entering idle
662 *
663 * Enter idle mode, in other words, -leave- the mode in which RCU
664 * read-side critical sections can occur. (Though RCU read-side
665 * critical sections can occur in irq handlers in idle, a possibility
666 * handled by irq_enter() and irq_exit().)
667 *
668 * If you add or remove a call to rcu_idle_enter(), be sure to test with
669 * CONFIG_RCU_EQS_DEBUG=y.
670 */
671 void rcu_idle_enter(void)
672 {
673 lockdep_assert_irqs_disabled();
674 rcu_eqs_enter(false);
675 }
676
677 #ifdef CONFIG_NO_HZ_FULL
678 /**
679 * rcu_user_enter - inform RCU that we are resuming userspace.
680 *
681 * Enter RCU idle mode right before resuming userspace. No use of RCU
682 * is permitted between this call and rcu_user_exit(). This way the
683 * CPU doesn't need to maintain the tick for RCU maintenance purposes
684 * when the CPU runs in userspace.
685 *
686 * If you add or remove a call to rcu_user_enter(), be sure to test with
687 * CONFIG_RCU_EQS_DEBUG=y.
688 */
689 noinstr void rcu_user_enter(void)
690 {
691 lockdep_assert_irqs_disabled();
692 rcu_eqs_enter(true);
693 }
694 #endif /* CONFIG_NO_HZ_FULL */
695
696 /**
697 * rcu_nmi_exit - inform RCU of exit from NMI context
698 *
699 * If we are returning from the outermost NMI handler that interrupted an
700 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
701 * to let the RCU grace-period handling know that the CPU is back to
702 * being RCU-idle.
703 *
704 * If you add or remove a call to rcu_nmi_exit(), be sure to test
705 * with CONFIG_RCU_EQS_DEBUG=y.
706 */
707 noinstr void rcu_nmi_exit(void)
708 {
709 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
710
711 instrumentation_begin();
712 /*
713 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
714 * (We are exiting an NMI handler, so RCU better be paying attention
715 * to us!)
716 */
717 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
718 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
719
720 /*
721 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
722 * leave it in non-RCU-idle state.
723 */
724 if (rdp->dynticks_nmi_nesting != 1) {
725 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
726 atomic_read(&rdp->dynticks));
727 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
728 rdp->dynticks_nmi_nesting - 2);
729 instrumentation_end();
730 return;
731 }
732
733 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
734 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
735 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
736
737 if (!in_nmi())
738 rcu_prepare_for_idle();
739
740 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
741 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
742 instrumentation_end();
743
744 // RCU is watching here ...
745 rcu_dynticks_eqs_enter();
746 // ... but is no longer watching here.
747
748 if (!in_nmi())
749 rcu_dynticks_task_enter();
750 }
751
752 /**
753 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
754 *
755 * Exit from an interrupt handler, which might possibly result in entering
756 * idle mode, in other words, leaving the mode in which read-side critical
757 * sections can occur. The caller must have disabled interrupts.
758 *
759 * This code assumes that the idle loop never does anything that might
760 * result in unbalanced calls to irq_enter() and irq_exit(). If your
761 * architecture's idle loop violates this assumption, RCU will give you what
762 * you deserve, good and hard. But very infrequently and irreproducibly.
763 *
764 * Use things like work queues to work around this limitation.
765 *
766 * You have been warned.
767 *
768 * If you add or remove a call to rcu_irq_exit(), be sure to test with
769 * CONFIG_RCU_EQS_DEBUG=y.
770 */
771 void noinstr rcu_irq_exit(void)
772 {
773 lockdep_assert_irqs_disabled();
774 rcu_nmi_exit();
775 }
776
777 /**
778 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
779 * towards in kernel preemption
780 *
781 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
782 * from RCU point of view. Invoked from return from interrupt before kernel
783 * preemption.
784 */
785 void rcu_irq_exit_preempt(void)
786 {
787 lockdep_assert_irqs_disabled();
788 rcu_nmi_exit();
789
790 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
791 "RCU dynticks_nesting counter underflow/zero!");
792 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
793 DYNTICK_IRQ_NONIDLE,
794 "Bad RCU dynticks_nmi_nesting counter\n");
795 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
796 "RCU in extended quiescent state!");
797 }
798
799 #ifdef CONFIG_PROVE_RCU
800 /**
801 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
802 */
803 void rcu_irq_exit_check_preempt(void)
804 {
805 lockdep_assert_irqs_disabled();
806
807 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
808 "RCU dynticks_nesting counter underflow/zero!");
809 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
810 DYNTICK_IRQ_NONIDLE,
811 "Bad RCU dynticks_nmi_nesting counter\n");
812 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
813 "RCU in extended quiescent state!");
814 }
815 #endif /* #ifdef CONFIG_PROVE_RCU */
816
817 /*
818 * Wrapper for rcu_irq_exit() where interrupts are enabled.
819 *
820 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
821 * with CONFIG_RCU_EQS_DEBUG=y.
822 */
823 void rcu_irq_exit_irqson(void)
824 {
825 unsigned long flags;
826
827 local_irq_save(flags);
828 rcu_irq_exit();
829 local_irq_restore(flags);
830 }
831
832 /*
833 * Exit an RCU extended quiescent state, which can be either the
834 * idle loop or adaptive-tickless usermode execution.
835 *
836 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
837 * allow for the possibility of usermode upcalls messing up our count of
838 * interrupt nesting level during the busy period that is just now starting.
839 */
840 static void noinstr rcu_eqs_exit(bool user)
841 {
842 struct rcu_data *rdp;
843 long oldval;
844
845 lockdep_assert_irqs_disabled();
846 rdp = this_cpu_ptr(&rcu_data);
847 oldval = rdp->dynticks_nesting;
848 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
849 if (oldval) {
850 // RCU was already watching, so just do accounting and leave.
851 rdp->dynticks_nesting++;
852 return;
853 }
854 rcu_dynticks_task_exit();
855 // RCU is not watching here ...
856 rcu_dynticks_eqs_exit();
857 // ... but is watching here.
858 instrumentation_begin();
859
860 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
861 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
862
863 rcu_cleanup_after_idle();
864 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
866 WRITE_ONCE(rdp->dynticks_nesting, 1);
867 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
868 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
869 instrumentation_end();
870 }
871
872 /**
873 * rcu_idle_exit - inform RCU that current CPU is leaving idle
874 *
875 * Exit idle mode, in other words, -enter- the mode in which RCU
876 * read-side critical sections can occur.
877 *
878 * If you add or remove a call to rcu_idle_exit(), be sure to test with
879 * CONFIG_RCU_EQS_DEBUG=y.
880 */
881 void rcu_idle_exit(void)
882 {
883 unsigned long flags;
884
885 local_irq_save(flags);
886 rcu_eqs_exit(false);
887 local_irq_restore(flags);
888 }
889
890 #ifdef CONFIG_NO_HZ_FULL
891 /**
892 * rcu_user_exit - inform RCU that we are exiting userspace.
893 *
894 * Exit RCU idle mode while entering the kernel because it can
895 * run a RCU read side critical section anytime.
896 *
897 * If you add or remove a call to rcu_user_exit(), be sure to test with
898 * CONFIG_RCU_EQS_DEBUG=y.
899 */
900 void noinstr rcu_user_exit(void)
901 {
902 rcu_eqs_exit(1);
903 }
904
905 /**
906 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
907 *
908 * The scheduler tick is not normally enabled when CPUs enter the kernel
909 * from nohz_full userspace execution. After all, nohz_full userspace
910 * execution is an RCU quiescent state and the time executing in the kernel
911 * is quite short. Except of course when it isn't. And it is not hard to
912 * cause a large system to spend tens of seconds or even minutes looping
913 * in the kernel, which can cause a number of problems, include RCU CPU
914 * stall warnings.
915 *
916 * Therefore, if a nohz_full CPU fails to report a quiescent state
917 * in a timely manner, the RCU grace-period kthread sets that CPU's
918 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
919 * exception will invoke this function, which will turn on the scheduler
920 * tick, which will enable RCU to detect that CPU's quiescent states,
921 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
922 * The tick will be disabled once a quiescent state is reported for
923 * this CPU.
924 *
925 * Of course, in carefully tuned systems, there might never be an
926 * interrupt or exception. In that case, the RCU grace-period kthread
927 * will eventually cause one to happen. However, in less carefully
928 * controlled environments, this function allows RCU to get what it
929 * needs without creating otherwise useless interruptions.
930 */
931 void __rcu_irq_enter_check_tick(void)
932 {
933 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
934
935 // Enabling the tick is unsafe in NMI handlers.
936 if (WARN_ON_ONCE(in_nmi()))
937 return;
938
939 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
940 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
941
942 if (!tick_nohz_full_cpu(rdp->cpu) ||
943 !READ_ONCE(rdp->rcu_urgent_qs) ||
944 READ_ONCE(rdp->rcu_forced_tick)) {
945 // RCU doesn't need nohz_full help from this CPU, or it is
946 // already getting that help.
947 return;
948 }
949
950 // We get here only when not in an extended quiescent state and
951 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
952 // already watching and (2) The fact that we are in an interrupt
953 // handler and that the rcu_node lock is an irq-disabled lock
954 // prevents self-deadlock. So we can safely recheck under the lock.
955 // Note that the nohz_full state currently cannot change.
956 raw_spin_lock_rcu_node(rdp->mynode);
957 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
958 // A nohz_full CPU is in the kernel and RCU needs a
959 // quiescent state. Turn on the tick!
960 WRITE_ONCE(rdp->rcu_forced_tick, true);
961 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
962 }
963 raw_spin_unlock_rcu_node(rdp->mynode);
964 }
965 #endif /* CONFIG_NO_HZ_FULL */
966
967 /**
968 * rcu_nmi_enter - inform RCU of entry to NMI context
969 *
970 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
971 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
972 * that the CPU is active. This implementation permits nested NMIs, as
973 * long as the nesting level does not overflow an int. (You will probably
974 * run out of stack space first.)
975 *
976 * If you add or remove a call to rcu_nmi_enter(), be sure to test
977 * with CONFIG_RCU_EQS_DEBUG=y.
978 */
979 noinstr void rcu_nmi_enter(void)
980 {
981 long incby = 2;
982 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
983
984 /* Complain about underflow. */
985 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
986
987 /*
988 * If idle from RCU viewpoint, atomically increment ->dynticks
989 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
990 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
991 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
992 * to be in the outermost NMI handler that interrupted an RCU-idle
993 * period (observation due to Andy Lutomirski).
994 */
995 if (rcu_dynticks_curr_cpu_in_eqs()) {
996
997 if (!in_nmi())
998 rcu_dynticks_task_exit();
999
1000 // RCU is not watching here ...
1001 rcu_dynticks_eqs_exit();
1002 // ... but is watching here.
1003
1004 if (!in_nmi()) {
1005 instrumentation_begin();
1006 rcu_cleanup_after_idle();
1007 instrumentation_end();
1008 }
1009
1010 instrumentation_begin();
1011 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1012 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1013 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1014 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1015
1016 incby = 1;
1017 } else if (!in_nmi()) {
1018 instrumentation_begin();
1019 rcu_irq_enter_check_tick();
1020 instrumentation_end();
1021 } else {
1022 instrumentation_begin();
1023 }
1024
1025 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1026 rdp->dynticks_nmi_nesting,
1027 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1028 instrumentation_end();
1029 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1030 rdp->dynticks_nmi_nesting + incby);
1031 barrier();
1032 }
1033
1034 /**
1035 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1036 *
1037 * Enter an interrupt handler, which might possibly result in exiting
1038 * idle mode, in other words, entering the mode in which read-side critical
1039 * sections can occur. The caller must have disabled interrupts.
1040 *
1041 * Note that the Linux kernel is fully capable of entering an interrupt
1042 * handler that it never exits, for example when doing upcalls to user mode!
1043 * This code assumes that the idle loop never does upcalls to user mode.
1044 * If your architecture's idle loop does do upcalls to user mode (or does
1045 * anything else that results in unbalanced calls to the irq_enter() and
1046 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1047 * But very infrequently and irreproducibly.
1048 *
1049 * Use things like work queues to work around this limitation.
1050 *
1051 * You have been warned.
1052 *
1053 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1054 * CONFIG_RCU_EQS_DEBUG=y.
1055 */
1056 noinstr void rcu_irq_enter(void)
1057 {
1058 lockdep_assert_irqs_disabled();
1059 rcu_nmi_enter();
1060 }
1061
1062 /*
1063 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1064 *
1065 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1066 * with CONFIG_RCU_EQS_DEBUG=y.
1067 */
1068 void rcu_irq_enter_irqson(void)
1069 {
1070 unsigned long flags;
1071
1072 local_irq_save(flags);
1073 rcu_irq_enter();
1074 local_irq_restore(flags);
1075 }
1076
1077 /*
1078 * If any sort of urgency was applied to the current CPU (for example,
1079 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1080 * to get to a quiescent state, disable it.
1081 */
1082 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1083 {
1084 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1085 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1086 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1087 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1088 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1089 WRITE_ONCE(rdp->rcu_forced_tick, false);
1090 }
1091 }
1092
1093 noinstr bool __rcu_is_watching(void)
1094 {
1095 return !rcu_dynticks_curr_cpu_in_eqs();
1096 }
1097
1098 /**
1099 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1100 *
1101 * Return true if RCU is watching the running CPU, which means that this
1102 * CPU can safely enter RCU read-side critical sections. In other words,
1103 * if the current CPU is not in its idle loop or is in an interrupt or
1104 * NMI handler, return true.
1105 */
1106 bool rcu_is_watching(void)
1107 {
1108 bool ret;
1109
1110 preempt_disable_notrace();
1111 ret = !rcu_dynticks_curr_cpu_in_eqs();
1112 preempt_enable_notrace();
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(rcu_is_watching);
1116
1117 /*
1118 * If a holdout task is actually running, request an urgent quiescent
1119 * state from its CPU. This is unsynchronized, so migrations can cause
1120 * the request to go to the wrong CPU. Which is OK, all that will happen
1121 * is that the CPU's next context switch will be a bit slower and next
1122 * time around this task will generate another request.
1123 */
1124 void rcu_request_urgent_qs_task(struct task_struct *t)
1125 {
1126 int cpu;
1127
1128 barrier();
1129 cpu = task_cpu(t);
1130 if (!task_curr(t))
1131 return; /* This task is not running on that CPU. */
1132 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1133 }
1134
1135 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1136
1137 /*
1138 * Is the current CPU online as far as RCU is concerned?
1139 *
1140 * Disable preemption to avoid false positives that could otherwise
1141 * happen due to the current CPU number being sampled, this task being
1142 * preempted, its old CPU being taken offline, resuming on some other CPU,
1143 * then determining that its old CPU is now offline.
1144 *
1145 * Disable checking if in an NMI handler because we cannot safely
1146 * report errors from NMI handlers anyway. In addition, it is OK to use
1147 * RCU on an offline processor during initial boot, hence the check for
1148 * rcu_scheduler_fully_active.
1149 */
1150 bool rcu_lockdep_current_cpu_online(void)
1151 {
1152 struct rcu_data *rdp;
1153 struct rcu_node *rnp;
1154 bool ret = false;
1155
1156 if (in_nmi() || !rcu_scheduler_fully_active)
1157 return true;
1158 preempt_disable_notrace();
1159 rdp = this_cpu_ptr(&rcu_data);
1160 rnp = rdp->mynode;
1161 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1162 ret = true;
1163 preempt_enable_notrace();
1164 return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1167
1168 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1169
1170 /*
1171 * We are reporting a quiescent state on behalf of some other CPU, so
1172 * it is our responsibility to check for and handle potential overflow
1173 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1174 * After all, the CPU might be in deep idle state, and thus executing no
1175 * code whatsoever.
1176 */
1177 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1178 {
1179 raw_lockdep_assert_held_rcu_node(rnp);
1180 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1181 rnp->gp_seq))
1182 WRITE_ONCE(rdp->gpwrap, true);
1183 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1184 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1185 }
1186
1187 /*
1188 * Snapshot the specified CPU's dynticks counter so that we can later
1189 * credit them with an implicit quiescent state. Return 1 if this CPU
1190 * is in dynticks idle mode, which is an extended quiescent state.
1191 */
1192 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1193 {
1194 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1195 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1196 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1197 rcu_gpnum_ovf(rdp->mynode, rdp);
1198 return 1;
1199 }
1200 return 0;
1201 }
1202
1203 /*
1204 * Return true if the specified CPU has passed through a quiescent
1205 * state by virtue of being in or having passed through an dynticks
1206 * idle state since the last call to dyntick_save_progress_counter()
1207 * for this same CPU, or by virtue of having been offline.
1208 */
1209 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1210 {
1211 unsigned long jtsq;
1212 bool *rnhqp;
1213 bool *ruqp;
1214 struct rcu_node *rnp = rdp->mynode;
1215
1216 /*
1217 * If the CPU passed through or entered a dynticks idle phase with
1218 * no active irq/NMI handlers, then we can safely pretend that the CPU
1219 * already acknowledged the request to pass through a quiescent
1220 * state. Either way, that CPU cannot possibly be in an RCU
1221 * read-side critical section that started before the beginning
1222 * of the current RCU grace period.
1223 */
1224 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1225 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1226 rcu_gpnum_ovf(rnp, rdp);
1227 return 1;
1228 }
1229
1230 /* If waiting too long on an offline CPU, complain. */
1231 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1232 time_after(jiffies, rcu_state.gp_start + HZ)) {
1233 bool onl;
1234 struct rcu_node *rnp1;
1235
1236 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1237 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1238 __func__, rnp->grplo, rnp->grphi, rnp->level,
1239 (long)rnp->gp_seq, (long)rnp->completedqs);
1240 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1241 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1242 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1243 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1244 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1245 __func__, rdp->cpu, ".o"[onl],
1246 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1247 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1248 return 1; /* Break things loose after complaining. */
1249 }
1250
1251 /*
1252 * A CPU running for an extended time within the kernel can
1253 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1254 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1255 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1256 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1257 * variable are safe because the assignments are repeated if this
1258 * CPU failed to pass through a quiescent state. This code
1259 * also checks .jiffies_resched in case jiffies_to_sched_qs
1260 * is set way high.
1261 */
1262 jtsq = READ_ONCE(jiffies_to_sched_qs);
1263 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1264 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1265 if (!READ_ONCE(*rnhqp) &&
1266 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1267 time_after(jiffies, rcu_state.jiffies_resched) ||
1268 rcu_state.cbovld)) {
1269 WRITE_ONCE(*rnhqp, true);
1270 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1271 smp_store_release(ruqp, true);
1272 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1273 WRITE_ONCE(*ruqp, true);
1274 }
1275
1276 /*
1277 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1278 * The above code handles this, but only for straight cond_resched().
1279 * And some in-kernel loops check need_resched() before calling
1280 * cond_resched(), which defeats the above code for CPUs that are
1281 * running in-kernel with scheduling-clock interrupts disabled.
1282 * So hit them over the head with the resched_cpu() hammer!
1283 */
1284 if (tick_nohz_full_cpu(rdp->cpu) &&
1285 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1286 rcu_state.cbovld)) {
1287 WRITE_ONCE(*ruqp, true);
1288 resched_cpu(rdp->cpu);
1289 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1290 }
1291
1292 /*
1293 * If more than halfway to RCU CPU stall-warning time, invoke
1294 * resched_cpu() more frequently to try to loosen things up a bit.
1295 * Also check to see if the CPU is getting hammered with interrupts,
1296 * but only once per grace period, just to keep the IPIs down to
1297 * a dull roar.
1298 */
1299 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1300 if (time_after(jiffies,
1301 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1302 resched_cpu(rdp->cpu);
1303 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1304 }
1305 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1306 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1307 (rnp->ffmask & rdp->grpmask)) {
1308 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1309 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1310 rdp->rcu_iw_pending = true;
1311 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1312 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1313 }
1314 }
1315
1316 return 0;
1317 }
1318
1319 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1320 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1321 unsigned long gp_seq_req, const char *s)
1322 {
1323 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1324 gp_seq_req, rnp->level,
1325 rnp->grplo, rnp->grphi, s);
1326 }
1327
1328 /*
1329 * rcu_start_this_gp - Request the start of a particular grace period
1330 * @rnp_start: The leaf node of the CPU from which to start.
1331 * @rdp: The rcu_data corresponding to the CPU from which to start.
1332 * @gp_seq_req: The gp_seq of the grace period to start.
1333 *
1334 * Start the specified grace period, as needed to handle newly arrived
1335 * callbacks. The required future grace periods are recorded in each
1336 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1337 * is reason to awaken the grace-period kthread.
1338 *
1339 * The caller must hold the specified rcu_node structure's ->lock, which
1340 * is why the caller is responsible for waking the grace-period kthread.
1341 *
1342 * Returns true if the GP thread needs to be awakened else false.
1343 */
1344 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1345 unsigned long gp_seq_req)
1346 {
1347 bool ret = false;
1348 struct rcu_node *rnp;
1349
1350 /*
1351 * Use funnel locking to either acquire the root rcu_node
1352 * structure's lock or bail out if the need for this grace period
1353 * has already been recorded -- or if that grace period has in
1354 * fact already started. If there is already a grace period in
1355 * progress in a non-leaf node, no recording is needed because the
1356 * end of the grace period will scan the leaf rcu_node structures.
1357 * Note that rnp_start->lock must not be released.
1358 */
1359 raw_lockdep_assert_held_rcu_node(rnp_start);
1360 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1361 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1362 if (rnp != rnp_start)
1363 raw_spin_lock_rcu_node(rnp);
1364 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1365 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1366 (rnp != rnp_start &&
1367 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1368 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1369 TPS("Prestarted"));
1370 goto unlock_out;
1371 }
1372 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1373 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1374 /*
1375 * We just marked the leaf or internal node, and a
1376 * grace period is in progress, which means that
1377 * rcu_gp_cleanup() will see the marking. Bail to
1378 * reduce contention.
1379 */
1380 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1381 TPS("Startedleaf"));
1382 goto unlock_out;
1383 }
1384 if (rnp != rnp_start && rnp->parent != NULL)
1385 raw_spin_unlock_rcu_node(rnp);
1386 if (!rnp->parent)
1387 break; /* At root, and perhaps also leaf. */
1388 }
1389
1390 /* If GP already in progress, just leave, otherwise start one. */
1391 if (rcu_gp_in_progress()) {
1392 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1393 goto unlock_out;
1394 }
1395 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1396 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1397 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1398 if (!READ_ONCE(rcu_state.gp_kthread)) {
1399 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1400 goto unlock_out;
1401 }
1402 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1403 ret = true; /* Caller must wake GP kthread. */
1404 unlock_out:
1405 /* Push furthest requested GP to leaf node and rcu_data structure. */
1406 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1407 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1408 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1409 }
1410 if (rnp != rnp_start)
1411 raw_spin_unlock_rcu_node(rnp);
1412 return ret;
1413 }
1414
1415 /*
1416 * Clean up any old requests for the just-ended grace period. Also return
1417 * whether any additional grace periods have been requested.
1418 */
1419 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1420 {
1421 bool needmore;
1422 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1423
1424 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1425 if (!needmore)
1426 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1427 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1428 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1429 return needmore;
1430 }
1431
1432 /*
1433 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1434 * interrupt or softirq handler, in which case we just might immediately
1435 * sleep upon return, resulting in a grace-period hang), and don't bother
1436 * awakening when there is nothing for the grace-period kthread to do
1437 * (as in several CPUs raced to awaken, we lost), and finally don't try
1438 * to awaken a kthread that has not yet been created. If all those checks
1439 * are passed, track some debug information and awaken.
1440 *
1441 * So why do the self-wakeup when in an interrupt or softirq handler
1442 * in the grace-period kthread's context? Because the kthread might have
1443 * been interrupted just as it was going to sleep, and just after the final
1444 * pre-sleep check of the awaken condition. In this case, a wakeup really
1445 * is required, and is therefore supplied.
1446 */
1447 static void rcu_gp_kthread_wake(void)
1448 {
1449 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1450
1451 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1452 !READ_ONCE(rcu_state.gp_flags) || !t)
1453 return;
1454 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1455 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1456 swake_up_one(&rcu_state.gp_wq);
1457 }
1458
1459 /*
1460 * If there is room, assign a ->gp_seq number to any callbacks on this
1461 * CPU that have not already been assigned. Also accelerate any callbacks
1462 * that were previously assigned a ->gp_seq number that has since proven
1463 * to be too conservative, which can happen if callbacks get assigned a
1464 * ->gp_seq number while RCU is idle, but with reference to a non-root
1465 * rcu_node structure. This function is idempotent, so it does not hurt
1466 * to call it repeatedly. Returns an flag saying that we should awaken
1467 * the RCU grace-period kthread.
1468 *
1469 * The caller must hold rnp->lock with interrupts disabled.
1470 */
1471 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1472 {
1473 unsigned long gp_seq_req;
1474 bool ret = false;
1475
1476 rcu_lockdep_assert_cblist_protected(rdp);
1477 raw_lockdep_assert_held_rcu_node(rnp);
1478
1479 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1480 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1481 return false;
1482
1483 /*
1484 * Callbacks are often registered with incomplete grace-period
1485 * information. Something about the fact that getting exact
1486 * information requires acquiring a global lock... RCU therefore
1487 * makes a conservative estimate of the grace period number at which
1488 * a given callback will become ready to invoke. The following
1489 * code checks this estimate and improves it when possible, thus
1490 * accelerating callback invocation to an earlier grace-period
1491 * number.
1492 */
1493 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1494 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1495 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1496
1497 /* Trace depending on how much we were able to accelerate. */
1498 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1499 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1500 else
1501 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1502 return ret;
1503 }
1504
1505 /*
1506 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1507 * rcu_node structure's ->lock be held. It consults the cached value
1508 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1509 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1510 * while holding the leaf rcu_node structure's ->lock.
1511 */
1512 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1513 struct rcu_data *rdp)
1514 {
1515 unsigned long c;
1516 bool needwake;
1517
1518 rcu_lockdep_assert_cblist_protected(rdp);
1519 c = rcu_seq_snap(&rcu_state.gp_seq);
1520 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1521 /* Old request still live, so mark recent callbacks. */
1522 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1523 return;
1524 }
1525 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1526 needwake = rcu_accelerate_cbs(rnp, rdp);
1527 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1528 if (needwake)
1529 rcu_gp_kthread_wake();
1530 }
1531
1532 /*
1533 * Move any callbacks whose grace period has completed to the
1534 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1535 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1536 * sublist. This function is idempotent, so it does not hurt to
1537 * invoke it repeatedly. As long as it is not invoked -too- often...
1538 * Returns true if the RCU grace-period kthread needs to be awakened.
1539 *
1540 * The caller must hold rnp->lock with interrupts disabled.
1541 */
1542 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1543 {
1544 rcu_lockdep_assert_cblist_protected(rdp);
1545 raw_lockdep_assert_held_rcu_node(rnp);
1546
1547 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1548 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1549 return false;
1550
1551 /*
1552 * Find all callbacks whose ->gp_seq numbers indicate that they
1553 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1554 */
1555 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1556
1557 /* Classify any remaining callbacks. */
1558 return rcu_accelerate_cbs(rnp, rdp);
1559 }
1560
1561 /*
1562 * Move and classify callbacks, but only if doing so won't require
1563 * that the RCU grace-period kthread be awakened.
1564 */
1565 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1566 struct rcu_data *rdp)
1567 {
1568 rcu_lockdep_assert_cblist_protected(rdp);
1569 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1570 !raw_spin_trylock_rcu_node(rnp))
1571 return;
1572 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1573 raw_spin_unlock_rcu_node(rnp);
1574 }
1575
1576 /*
1577 * Update CPU-local rcu_data state to record the beginnings and ends of
1578 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1579 * structure corresponding to the current CPU, and must have irqs disabled.
1580 * Returns true if the grace-period kthread needs to be awakened.
1581 */
1582 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1583 {
1584 bool ret = false;
1585 bool need_qs;
1586 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1587 rcu_segcblist_is_offloaded(&rdp->cblist);
1588
1589 raw_lockdep_assert_held_rcu_node(rnp);
1590
1591 if (rdp->gp_seq == rnp->gp_seq)
1592 return false; /* Nothing to do. */
1593
1594 /* Handle the ends of any preceding grace periods first. */
1595 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1596 unlikely(READ_ONCE(rdp->gpwrap))) {
1597 if (!offloaded)
1598 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1599 rdp->core_needs_qs = false;
1600 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1601 } else {
1602 if (!offloaded)
1603 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1604 if (rdp->core_needs_qs)
1605 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1606 }
1607
1608 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1609 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1610 unlikely(READ_ONCE(rdp->gpwrap))) {
1611 /*
1612 * If the current grace period is waiting for this CPU,
1613 * set up to detect a quiescent state, otherwise don't
1614 * go looking for one.
1615 */
1616 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1617 need_qs = !!(rnp->qsmask & rdp->grpmask);
1618 rdp->cpu_no_qs.b.norm = need_qs;
1619 rdp->core_needs_qs = need_qs;
1620 zero_cpu_stall_ticks(rdp);
1621 }
1622 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1623 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1624 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1625 WRITE_ONCE(rdp->gpwrap, false);
1626 rcu_gpnum_ovf(rnp, rdp);
1627 return ret;
1628 }
1629
1630 static void note_gp_changes(struct rcu_data *rdp)
1631 {
1632 unsigned long flags;
1633 bool needwake;
1634 struct rcu_node *rnp;
1635
1636 local_irq_save(flags);
1637 rnp = rdp->mynode;
1638 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1639 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1640 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1641 local_irq_restore(flags);
1642 return;
1643 }
1644 needwake = __note_gp_changes(rnp, rdp);
1645 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1646 if (needwake)
1647 rcu_gp_kthread_wake();
1648 }
1649
1650 static void rcu_gp_slow(int delay)
1651 {
1652 if (delay > 0 &&
1653 !(rcu_seq_ctr(rcu_state.gp_seq) %
1654 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1655 schedule_timeout_idle(delay);
1656 }
1657
1658 static unsigned long sleep_duration;
1659
1660 /* Allow rcutorture to stall the grace-period kthread. */
1661 void rcu_gp_set_torture_wait(int duration)
1662 {
1663 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1664 WRITE_ONCE(sleep_duration, duration);
1665 }
1666 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1667
1668 /* Actually implement the aforementioned wait. */
1669 static void rcu_gp_torture_wait(void)
1670 {
1671 unsigned long duration;
1672
1673 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1674 return;
1675 duration = xchg(&sleep_duration, 0UL);
1676 if (duration > 0) {
1677 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1678 schedule_timeout_idle(duration);
1679 pr_alert("%s: Wait complete\n", __func__);
1680 }
1681 }
1682
1683 /*
1684 * Initialize a new grace period. Return false if no grace period required.
1685 */
1686 static bool rcu_gp_init(void)
1687 {
1688 unsigned long flags;
1689 unsigned long oldmask;
1690 unsigned long mask;
1691 struct rcu_data *rdp;
1692 struct rcu_node *rnp = rcu_get_root();
1693
1694 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 raw_spin_lock_irq_rcu_node(rnp);
1696 if (!READ_ONCE(rcu_state.gp_flags)) {
1697 /* Spurious wakeup, tell caller to go back to sleep. */
1698 raw_spin_unlock_irq_rcu_node(rnp);
1699 return false;
1700 }
1701 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1702
1703 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1704 /*
1705 * Grace period already in progress, don't start another.
1706 * Not supposed to be able to happen.
1707 */
1708 raw_spin_unlock_irq_rcu_node(rnp);
1709 return false;
1710 }
1711
1712 /* Advance to a new grace period and initialize state. */
1713 record_gp_stall_check_time();
1714 /* Record GP times before starting GP, hence rcu_seq_start(). */
1715 rcu_seq_start(&rcu_state.gp_seq);
1716 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1717 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1718 raw_spin_unlock_irq_rcu_node(rnp);
1719
1720 /*
1721 * Apply per-leaf buffered online and offline operations to the
1722 * rcu_node tree. Note that this new grace period need not wait
1723 * for subsequent online CPUs, and that quiescent-state forcing
1724 * will handle subsequent offline CPUs.
1725 */
1726 rcu_state.gp_state = RCU_GP_ONOFF;
1727 rcu_for_each_leaf_node(rnp) {
1728 raw_spin_lock(&rcu_state.ofl_lock);
1729 raw_spin_lock_irq_rcu_node(rnp);
1730 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1731 !rnp->wait_blkd_tasks) {
1732 /* Nothing to do on this leaf rcu_node structure. */
1733 raw_spin_unlock_irq_rcu_node(rnp);
1734 raw_spin_unlock(&rcu_state.ofl_lock);
1735 continue;
1736 }
1737
1738 /* Record old state, apply changes to ->qsmaskinit field. */
1739 oldmask = rnp->qsmaskinit;
1740 rnp->qsmaskinit = rnp->qsmaskinitnext;
1741
1742 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1743 if (!oldmask != !rnp->qsmaskinit) {
1744 if (!oldmask) { /* First online CPU for rcu_node. */
1745 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1746 rcu_init_new_rnp(rnp);
1747 } else if (rcu_preempt_has_tasks(rnp)) {
1748 rnp->wait_blkd_tasks = true; /* blocked tasks */
1749 } else { /* Last offline CPU and can propagate. */
1750 rcu_cleanup_dead_rnp(rnp);
1751 }
1752 }
1753
1754 /*
1755 * If all waited-on tasks from prior grace period are
1756 * done, and if all this rcu_node structure's CPUs are
1757 * still offline, propagate up the rcu_node tree and
1758 * clear ->wait_blkd_tasks. Otherwise, if one of this
1759 * rcu_node structure's CPUs has since come back online,
1760 * simply clear ->wait_blkd_tasks.
1761 */
1762 if (rnp->wait_blkd_tasks &&
1763 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1764 rnp->wait_blkd_tasks = false;
1765 if (!rnp->qsmaskinit)
1766 rcu_cleanup_dead_rnp(rnp);
1767 }
1768
1769 raw_spin_unlock_irq_rcu_node(rnp);
1770 raw_spin_unlock(&rcu_state.ofl_lock);
1771 }
1772 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1773
1774 /*
1775 * Set the quiescent-state-needed bits in all the rcu_node
1776 * structures for all currently online CPUs in breadth-first
1777 * order, starting from the root rcu_node structure, relying on the
1778 * layout of the tree within the rcu_state.node[] array. Note that
1779 * other CPUs will access only the leaves of the hierarchy, thus
1780 * seeing that no grace period is in progress, at least until the
1781 * corresponding leaf node has been initialized.
1782 *
1783 * The grace period cannot complete until the initialization
1784 * process finishes, because this kthread handles both.
1785 */
1786 rcu_state.gp_state = RCU_GP_INIT;
1787 rcu_for_each_node_breadth_first(rnp) {
1788 rcu_gp_slow(gp_init_delay);
1789 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1790 rdp = this_cpu_ptr(&rcu_data);
1791 rcu_preempt_check_blocked_tasks(rnp);
1792 rnp->qsmask = rnp->qsmaskinit;
1793 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1794 if (rnp == rdp->mynode)
1795 (void)__note_gp_changes(rnp, rdp);
1796 rcu_preempt_boost_start_gp(rnp);
1797 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1798 rnp->level, rnp->grplo,
1799 rnp->grphi, rnp->qsmask);
1800 /* Quiescent states for tasks on any now-offline CPUs. */
1801 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1802 rnp->rcu_gp_init_mask = mask;
1803 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1804 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1805 else
1806 raw_spin_unlock_irq_rcu_node(rnp);
1807 cond_resched_tasks_rcu_qs();
1808 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1809 }
1810
1811 return true;
1812 }
1813
1814 /*
1815 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1816 * time.
1817 */
1818 static bool rcu_gp_fqs_check_wake(int *gfp)
1819 {
1820 struct rcu_node *rnp = rcu_get_root();
1821
1822 // If under overload conditions, force an immediate FQS scan.
1823 if (*gfp & RCU_GP_FLAG_OVLD)
1824 return true;
1825
1826 // Someone like call_rcu() requested a force-quiescent-state scan.
1827 *gfp = READ_ONCE(rcu_state.gp_flags);
1828 if (*gfp & RCU_GP_FLAG_FQS)
1829 return true;
1830
1831 // The current grace period has completed.
1832 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1833 return true;
1834
1835 return false;
1836 }
1837
1838 /*
1839 * Do one round of quiescent-state forcing.
1840 */
1841 static void rcu_gp_fqs(bool first_time)
1842 {
1843 struct rcu_node *rnp = rcu_get_root();
1844
1845 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1846 rcu_state.n_force_qs++;
1847 if (first_time) {
1848 /* Collect dyntick-idle snapshots. */
1849 force_qs_rnp(dyntick_save_progress_counter);
1850 } else {
1851 /* Handle dyntick-idle and offline CPUs. */
1852 force_qs_rnp(rcu_implicit_dynticks_qs);
1853 }
1854 /* Clear flag to prevent immediate re-entry. */
1855 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1856 raw_spin_lock_irq_rcu_node(rnp);
1857 WRITE_ONCE(rcu_state.gp_flags,
1858 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1859 raw_spin_unlock_irq_rcu_node(rnp);
1860 }
1861 }
1862
1863 /*
1864 * Loop doing repeated quiescent-state forcing until the grace period ends.
1865 */
1866 static void rcu_gp_fqs_loop(void)
1867 {
1868 bool first_gp_fqs;
1869 int gf = 0;
1870 unsigned long j;
1871 int ret;
1872 struct rcu_node *rnp = rcu_get_root();
1873
1874 first_gp_fqs = true;
1875 j = READ_ONCE(jiffies_till_first_fqs);
1876 if (rcu_state.cbovld)
1877 gf = RCU_GP_FLAG_OVLD;
1878 ret = 0;
1879 for (;;) {
1880 if (!ret) {
1881 rcu_state.jiffies_force_qs = jiffies + j;
1882 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1883 jiffies + (j ? 3 * j : 2));
1884 }
1885 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1886 TPS("fqswait"));
1887 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1888 ret = swait_event_idle_timeout_exclusive(
1889 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1890 rcu_gp_torture_wait();
1891 rcu_state.gp_state = RCU_GP_DOING_FQS;
1892 /* Locking provides needed memory barriers. */
1893 /* If grace period done, leave loop. */
1894 if (!READ_ONCE(rnp->qsmask) &&
1895 !rcu_preempt_blocked_readers_cgp(rnp))
1896 break;
1897 /* If time for quiescent-state forcing, do it. */
1898 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1899 (gf & RCU_GP_FLAG_FQS)) {
1900 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1901 TPS("fqsstart"));
1902 rcu_gp_fqs(first_gp_fqs);
1903 gf = 0;
1904 if (first_gp_fqs) {
1905 first_gp_fqs = false;
1906 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1907 }
1908 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1909 TPS("fqsend"));
1910 cond_resched_tasks_rcu_qs();
1911 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1912 ret = 0; /* Force full wait till next FQS. */
1913 j = READ_ONCE(jiffies_till_next_fqs);
1914 } else {
1915 /* Deal with stray signal. */
1916 cond_resched_tasks_rcu_qs();
1917 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1918 WARN_ON(signal_pending(current));
1919 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1920 TPS("fqswaitsig"));
1921 ret = 1; /* Keep old FQS timing. */
1922 j = jiffies;
1923 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1924 j = 1;
1925 else
1926 j = rcu_state.jiffies_force_qs - j;
1927 gf = 0;
1928 }
1929 }
1930 }
1931
1932 /*
1933 * Clean up after the old grace period.
1934 */
1935 static void rcu_gp_cleanup(void)
1936 {
1937 int cpu;
1938 bool needgp = false;
1939 unsigned long gp_duration;
1940 unsigned long new_gp_seq;
1941 bool offloaded;
1942 struct rcu_data *rdp;
1943 struct rcu_node *rnp = rcu_get_root();
1944 struct swait_queue_head *sq;
1945
1946 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1947 raw_spin_lock_irq_rcu_node(rnp);
1948 rcu_state.gp_end = jiffies;
1949 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1950 if (gp_duration > rcu_state.gp_max)
1951 rcu_state.gp_max = gp_duration;
1952
1953 /*
1954 * We know the grace period is complete, but to everyone else
1955 * it appears to still be ongoing. But it is also the case
1956 * that to everyone else it looks like there is nothing that
1957 * they can do to advance the grace period. It is therefore
1958 * safe for us to drop the lock in order to mark the grace
1959 * period as completed in all of the rcu_node structures.
1960 */
1961 raw_spin_unlock_irq_rcu_node(rnp);
1962
1963 /*
1964 * Propagate new ->gp_seq value to rcu_node structures so that
1965 * other CPUs don't have to wait until the start of the next grace
1966 * period to process their callbacks. This also avoids some nasty
1967 * RCU grace-period initialization races by forcing the end of
1968 * the current grace period to be completely recorded in all of
1969 * the rcu_node structures before the beginning of the next grace
1970 * period is recorded in any of the rcu_node structures.
1971 */
1972 new_gp_seq = rcu_state.gp_seq;
1973 rcu_seq_end(&new_gp_seq);
1974 rcu_for_each_node_breadth_first(rnp) {
1975 raw_spin_lock_irq_rcu_node(rnp);
1976 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1977 dump_blkd_tasks(rnp, 10);
1978 WARN_ON_ONCE(rnp->qsmask);
1979 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1980 rdp = this_cpu_ptr(&rcu_data);
1981 if (rnp == rdp->mynode)
1982 needgp = __note_gp_changes(rnp, rdp) || needgp;
1983 /* smp_mb() provided by prior unlock-lock pair. */
1984 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1985 // Reset overload indication for CPUs no longer overloaded
1986 if (rcu_is_leaf_node(rnp))
1987 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1988 rdp = per_cpu_ptr(&rcu_data, cpu);
1989 check_cb_ovld_locked(rdp, rnp);
1990 }
1991 sq = rcu_nocb_gp_get(rnp);
1992 raw_spin_unlock_irq_rcu_node(rnp);
1993 rcu_nocb_gp_cleanup(sq);
1994 cond_resched_tasks_rcu_qs();
1995 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1996 rcu_gp_slow(gp_cleanup_delay);
1997 }
1998 rnp = rcu_get_root();
1999 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2000
2001 /* Declare grace period done, trace first to use old GP number. */
2002 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2003 rcu_seq_end(&rcu_state.gp_seq);
2004 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2005 rcu_state.gp_state = RCU_GP_IDLE;
2006 /* Check for GP requests since above loop. */
2007 rdp = this_cpu_ptr(&rcu_data);
2008 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2009 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2010 TPS("CleanupMore"));
2011 needgp = true;
2012 }
2013 /* Advance CBs to reduce false positives below. */
2014 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2015 rcu_segcblist_is_offloaded(&rdp->cblist);
2016 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2017 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2018 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2019 trace_rcu_grace_period(rcu_state.name,
2020 rcu_state.gp_seq,
2021 TPS("newreq"));
2022 } else {
2023 WRITE_ONCE(rcu_state.gp_flags,
2024 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2025 }
2026 raw_spin_unlock_irq_rcu_node(rnp);
2027 }
2028
2029 /*
2030 * Body of kthread that handles grace periods.
2031 */
2032 static int __noreturn rcu_gp_kthread(void *unused)
2033 {
2034 rcu_bind_gp_kthread();
2035 for (;;) {
2036
2037 /* Handle grace-period start. */
2038 for (;;) {
2039 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2040 TPS("reqwait"));
2041 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2042 swait_event_idle_exclusive(rcu_state.gp_wq,
2043 READ_ONCE(rcu_state.gp_flags) &
2044 RCU_GP_FLAG_INIT);
2045 rcu_gp_torture_wait();
2046 rcu_state.gp_state = RCU_GP_DONE_GPS;
2047 /* Locking provides needed memory barrier. */
2048 if (rcu_gp_init())
2049 break;
2050 cond_resched_tasks_rcu_qs();
2051 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2052 WARN_ON(signal_pending(current));
2053 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2054 TPS("reqwaitsig"));
2055 }
2056
2057 /* Handle quiescent-state forcing. */
2058 rcu_gp_fqs_loop();
2059
2060 /* Handle grace-period end. */
2061 rcu_state.gp_state = RCU_GP_CLEANUP;
2062 rcu_gp_cleanup();
2063 rcu_state.gp_state = RCU_GP_CLEANED;
2064 }
2065 }
2066
2067 /*
2068 * Report a full set of quiescent states to the rcu_state data structure.
2069 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2070 * another grace period is required. Whether we wake the grace-period
2071 * kthread or it awakens itself for the next round of quiescent-state
2072 * forcing, that kthread will clean up after the just-completed grace
2073 * period. Note that the caller must hold rnp->lock, which is released
2074 * before return.
2075 */
2076 static void rcu_report_qs_rsp(unsigned long flags)
2077 __releases(rcu_get_root()->lock)
2078 {
2079 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2080 WARN_ON_ONCE(!rcu_gp_in_progress());
2081 WRITE_ONCE(rcu_state.gp_flags,
2082 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2083 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2084 rcu_gp_kthread_wake();
2085 }
2086
2087 /*
2088 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2089 * Allows quiescent states for a group of CPUs to be reported at one go
2090 * to the specified rcu_node structure, though all the CPUs in the group
2091 * must be represented by the same rcu_node structure (which need not be a
2092 * leaf rcu_node structure, though it often will be). The gps parameter
2093 * is the grace-period snapshot, which means that the quiescent states
2094 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2095 * must be held upon entry, and it is released before return.
2096 *
2097 * As a special case, if mask is zero, the bit-already-cleared check is
2098 * disabled. This allows propagating quiescent state due to resumed tasks
2099 * during grace-period initialization.
2100 */
2101 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2102 unsigned long gps, unsigned long flags)
2103 __releases(rnp->lock)
2104 {
2105 unsigned long oldmask = 0;
2106 struct rcu_node *rnp_c;
2107
2108 raw_lockdep_assert_held_rcu_node(rnp);
2109
2110 /* Walk up the rcu_node hierarchy. */
2111 for (;;) {
2112 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2113
2114 /*
2115 * Our bit has already been cleared, or the
2116 * relevant grace period is already over, so done.
2117 */
2118 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2119 return;
2120 }
2121 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2122 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2123 rcu_preempt_blocked_readers_cgp(rnp));
2124 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2125 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2126 mask, rnp->qsmask, rnp->level,
2127 rnp->grplo, rnp->grphi,
2128 !!rnp->gp_tasks);
2129 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2130
2131 /* Other bits still set at this level, so done. */
2132 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2133 return;
2134 }
2135 rnp->completedqs = rnp->gp_seq;
2136 mask = rnp->grpmask;
2137 if (rnp->parent == NULL) {
2138
2139 /* No more levels. Exit loop holding root lock. */
2140
2141 break;
2142 }
2143 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2144 rnp_c = rnp;
2145 rnp = rnp->parent;
2146 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2147 oldmask = READ_ONCE(rnp_c->qsmask);
2148 }
2149
2150 /*
2151 * Get here if we are the last CPU to pass through a quiescent
2152 * state for this grace period. Invoke rcu_report_qs_rsp()
2153 * to clean up and start the next grace period if one is needed.
2154 */
2155 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2156 }
2157
2158 /*
2159 * Record a quiescent state for all tasks that were previously queued
2160 * on the specified rcu_node structure and that were blocking the current
2161 * RCU grace period. The caller must hold the corresponding rnp->lock with
2162 * irqs disabled, and this lock is released upon return, but irqs remain
2163 * disabled.
2164 */
2165 static void __maybe_unused
2166 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2167 __releases(rnp->lock)
2168 {
2169 unsigned long gps;
2170 unsigned long mask;
2171 struct rcu_node *rnp_p;
2172
2173 raw_lockdep_assert_held_rcu_node(rnp);
2174 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2175 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2176 rnp->qsmask != 0) {
2177 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2178 return; /* Still need more quiescent states! */
2179 }
2180
2181 rnp->completedqs = rnp->gp_seq;
2182 rnp_p = rnp->parent;
2183 if (rnp_p == NULL) {
2184 /*
2185 * Only one rcu_node structure in the tree, so don't
2186 * try to report up to its nonexistent parent!
2187 */
2188 rcu_report_qs_rsp(flags);
2189 return;
2190 }
2191
2192 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2193 gps = rnp->gp_seq;
2194 mask = rnp->grpmask;
2195 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2196 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2197 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2198 }
2199
2200 /*
2201 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2202 * structure. This must be called from the specified CPU.
2203 */
2204 static void
2205 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2206 {
2207 unsigned long flags;
2208 unsigned long mask;
2209 bool needwake = false;
2210 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2211 rcu_segcblist_is_offloaded(&rdp->cblist);
2212 struct rcu_node *rnp;
2213
2214 rnp = rdp->mynode;
2215 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2216 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2217 rdp->gpwrap) {
2218
2219 /*
2220 * The grace period in which this quiescent state was
2221 * recorded has ended, so don't report it upwards.
2222 * We will instead need a new quiescent state that lies
2223 * within the current grace period.
2224 */
2225 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2226 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2227 return;
2228 }
2229 mask = rdp->grpmask;
2230 if (rdp->cpu == smp_processor_id())
2231 rdp->core_needs_qs = false;
2232 if ((rnp->qsmask & mask) == 0) {
2233 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2234 } else {
2235 /*
2236 * This GP can't end until cpu checks in, so all of our
2237 * callbacks can be processed during the next GP.
2238 */
2239 if (!offloaded)
2240 needwake = rcu_accelerate_cbs(rnp, rdp);
2241
2242 rcu_disable_urgency_upon_qs(rdp);
2243 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2244 /* ^^^ Released rnp->lock */
2245 if (needwake)
2246 rcu_gp_kthread_wake();
2247 }
2248 }
2249
2250 /*
2251 * Check to see if there is a new grace period of which this CPU
2252 * is not yet aware, and if so, set up local rcu_data state for it.
2253 * Otherwise, see if this CPU has just passed through its first
2254 * quiescent state for this grace period, and record that fact if so.
2255 */
2256 static void
2257 rcu_check_quiescent_state(struct rcu_data *rdp)
2258 {
2259 /* Check for grace-period ends and beginnings. */
2260 note_gp_changes(rdp);
2261
2262 /*
2263 * Does this CPU still need to do its part for current grace period?
2264 * If no, return and let the other CPUs do their part as well.
2265 */
2266 if (!rdp->core_needs_qs)
2267 return;
2268
2269 /*
2270 * Was there a quiescent state since the beginning of the grace
2271 * period? If no, then exit and wait for the next call.
2272 */
2273 if (rdp->cpu_no_qs.b.norm)
2274 return;
2275
2276 /*
2277 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2278 * judge of that).
2279 */
2280 rcu_report_qs_rdp(rdp->cpu, rdp);
2281 }
2282
2283 /*
2284 * Near the end of the offline process. Trace the fact that this CPU
2285 * is going offline.
2286 */
2287 int rcutree_dying_cpu(unsigned int cpu)
2288 {
2289 bool blkd;
2290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2291 struct rcu_node *rnp = rdp->mynode;
2292
2293 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2294 return 0;
2295
2296 blkd = !!(rnp->qsmask & rdp->grpmask);
2297 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2298 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2299 return 0;
2300 }
2301
2302 /*
2303 * All CPUs for the specified rcu_node structure have gone offline,
2304 * and all tasks that were preempted within an RCU read-side critical
2305 * section while running on one of those CPUs have since exited their RCU
2306 * read-side critical section. Some other CPU is reporting this fact with
2307 * the specified rcu_node structure's ->lock held and interrupts disabled.
2308 * This function therefore goes up the tree of rcu_node structures,
2309 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2310 * the leaf rcu_node structure's ->qsmaskinit field has already been
2311 * updated.
2312 *
2313 * This function does check that the specified rcu_node structure has
2314 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2315 * prematurely. That said, invoking it after the fact will cost you
2316 * a needless lock acquisition. So once it has done its work, don't
2317 * invoke it again.
2318 */
2319 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2320 {
2321 long mask;
2322 struct rcu_node *rnp = rnp_leaf;
2323
2324 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2325 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2326 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2327 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2328 return;
2329 for (;;) {
2330 mask = rnp->grpmask;
2331 rnp = rnp->parent;
2332 if (!rnp)
2333 break;
2334 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2335 rnp->qsmaskinit &= ~mask;
2336 /* Between grace periods, so better already be zero! */
2337 WARN_ON_ONCE(rnp->qsmask);
2338 if (rnp->qsmaskinit) {
2339 raw_spin_unlock_rcu_node(rnp);
2340 /* irqs remain disabled. */
2341 return;
2342 }
2343 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2344 }
2345 }
2346
2347 /*
2348 * The CPU has been completely removed, and some other CPU is reporting
2349 * this fact from process context. Do the remainder of the cleanup.
2350 * There can only be one CPU hotplug operation at a time, so no need for
2351 * explicit locking.
2352 */
2353 int rcutree_dead_cpu(unsigned int cpu)
2354 {
2355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2356 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2357
2358 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2359 return 0;
2360
2361 /* Adjust any no-longer-needed kthreads. */
2362 rcu_boost_kthread_setaffinity(rnp, -1);
2363 /* Do any needed no-CB deferred wakeups from this CPU. */
2364 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2365
2366 // Stop-machine done, so allow nohz_full to disable tick.
2367 tick_dep_clear(TICK_DEP_BIT_RCU);
2368 return 0;
2369 }
2370
2371 /*
2372 * Invoke any RCU callbacks that have made it to the end of their grace
2373 * period. Thottle as specified by rdp->blimit.
2374 */
2375 static void rcu_do_batch(struct rcu_data *rdp)
2376 {
2377 unsigned long flags;
2378 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2379 rcu_segcblist_is_offloaded(&rdp->cblist);
2380 struct rcu_head *rhp;
2381 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2382 long bl, count;
2383 long pending, tlimit = 0;
2384
2385 /* If no callbacks are ready, just return. */
2386 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2387 trace_rcu_batch_start(rcu_state.name,
2388 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2389 trace_rcu_batch_end(rcu_state.name, 0,
2390 !rcu_segcblist_empty(&rdp->cblist),
2391 need_resched(), is_idle_task(current),
2392 rcu_is_callbacks_kthread());
2393 return;
2394 }
2395
2396 /*
2397 * Extract the list of ready callbacks, disabling to prevent
2398 * races with call_rcu() from interrupt handlers. Leave the
2399 * callback counts, as rcu_barrier() needs to be conservative.
2400 */
2401 local_irq_save(flags);
2402 rcu_nocb_lock(rdp);
2403 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2404 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2405 bl = max(rdp->blimit, pending >> rcu_divisor);
2406 if (unlikely(bl > 100))
2407 tlimit = local_clock() + rcu_resched_ns;
2408 trace_rcu_batch_start(rcu_state.name,
2409 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2410 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2411 if (offloaded)
2412 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2413 rcu_nocb_unlock_irqrestore(rdp, flags);
2414
2415 /* Invoke callbacks. */
2416 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2417 rhp = rcu_cblist_dequeue(&rcl);
2418 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2419 rcu_callback_t f;
2420
2421 debug_rcu_head_unqueue(rhp);
2422
2423 rcu_lock_acquire(&rcu_callback_map);
2424 trace_rcu_invoke_callback(rcu_state.name, rhp);
2425
2426 f = rhp->func;
2427 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2428 f(rhp);
2429
2430 rcu_lock_release(&rcu_callback_map);
2431
2432 /*
2433 * Stop only if limit reached and CPU has something to do.
2434 * Note: The rcl structure counts down from zero.
2435 */
2436 if (-rcl.len >= bl && !offloaded &&
2437 (need_resched() ||
2438 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2439 break;
2440 if (unlikely(tlimit)) {
2441 /* only call local_clock() every 32 callbacks */
2442 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2443 continue;
2444 /* Exceeded the time limit, so leave. */
2445 break;
2446 }
2447 if (offloaded) {
2448 WARN_ON_ONCE(in_serving_softirq());
2449 local_bh_enable();
2450 lockdep_assert_irqs_enabled();
2451 cond_resched_tasks_rcu_qs();
2452 lockdep_assert_irqs_enabled();
2453 local_bh_disable();
2454 }
2455 }
2456
2457 local_irq_save(flags);
2458 rcu_nocb_lock(rdp);
2459 count = -rcl.len;
2460 rdp->n_cbs_invoked += count;
2461 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2462 is_idle_task(current), rcu_is_callbacks_kthread());
2463
2464 /* Update counts and requeue any remaining callbacks. */
2465 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2466 smp_mb(); /* List handling before counting for rcu_barrier(). */
2467 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2468
2469 /* Reinstate batch limit if we have worked down the excess. */
2470 count = rcu_segcblist_n_cbs(&rdp->cblist);
2471 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2472 rdp->blimit = blimit;
2473
2474 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2475 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2476 rdp->qlen_last_fqs_check = 0;
2477 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2478 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2479 rdp->qlen_last_fqs_check = count;
2480
2481 /*
2482 * The following usually indicates a double call_rcu(). To track
2483 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2484 */
2485 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2486 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2487 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2488
2489 rcu_nocb_unlock_irqrestore(rdp, flags);
2490
2491 /* Re-invoke RCU core processing if there are callbacks remaining. */
2492 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2493 invoke_rcu_core();
2494 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2495 }
2496
2497 /*
2498 * This function is invoked from each scheduling-clock interrupt,
2499 * and checks to see if this CPU is in a non-context-switch quiescent
2500 * state, for example, user mode or idle loop. It also schedules RCU
2501 * core processing. If the current grace period has gone on too long,
2502 * it will ask the scheduler to manufacture a context switch for the sole
2503 * purpose of providing a providing the needed quiescent state.
2504 */
2505 void rcu_sched_clock_irq(int user)
2506 {
2507 trace_rcu_utilization(TPS("Start scheduler-tick"));
2508 raw_cpu_inc(rcu_data.ticks_this_gp);
2509 /* The load-acquire pairs with the store-release setting to true. */
2510 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2511 /* Idle and userspace execution already are quiescent states. */
2512 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2513 set_tsk_need_resched(current);
2514 set_preempt_need_resched();
2515 }
2516 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2517 }
2518 rcu_flavor_sched_clock_irq(user);
2519 if (rcu_pending(user))
2520 invoke_rcu_core();
2521
2522 trace_rcu_utilization(TPS("End scheduler-tick"));
2523 }
2524
2525 /*
2526 * Scan the leaf rcu_node structures. For each structure on which all
2527 * CPUs have reported a quiescent state and on which there are tasks
2528 * blocking the current grace period, initiate RCU priority boosting.
2529 * Otherwise, invoke the specified function to check dyntick state for
2530 * each CPU that has not yet reported a quiescent state.
2531 */
2532 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2533 {
2534 int cpu;
2535 unsigned long flags;
2536 unsigned long mask;
2537 struct rcu_data *rdp;
2538 struct rcu_node *rnp;
2539
2540 rcu_state.cbovld = rcu_state.cbovldnext;
2541 rcu_state.cbovldnext = false;
2542 rcu_for_each_leaf_node(rnp) {
2543 cond_resched_tasks_rcu_qs();
2544 mask = 0;
2545 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2546 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2547 if (rnp->qsmask == 0) {
2548 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2549 rcu_preempt_blocked_readers_cgp(rnp)) {
2550 /*
2551 * No point in scanning bits because they
2552 * are all zero. But we might need to
2553 * priority-boost blocked readers.
2554 */
2555 rcu_initiate_boost(rnp, flags);
2556 /* rcu_initiate_boost() releases rnp->lock */
2557 continue;
2558 }
2559 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2560 continue;
2561 }
2562 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2563 rdp = per_cpu_ptr(&rcu_data, cpu);
2564 if (f(rdp)) {
2565 mask |= rdp->grpmask;
2566 rcu_disable_urgency_upon_qs(rdp);
2567 }
2568 }
2569 if (mask != 0) {
2570 /* Idle/offline CPUs, report (releases rnp->lock). */
2571 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2572 } else {
2573 /* Nothing to do here, so just drop the lock. */
2574 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2575 }
2576 }
2577 }
2578
2579 /*
2580 * Force quiescent states on reluctant CPUs, and also detect which
2581 * CPUs are in dyntick-idle mode.
2582 */
2583 void rcu_force_quiescent_state(void)
2584 {
2585 unsigned long flags;
2586 bool ret;
2587 struct rcu_node *rnp;
2588 struct rcu_node *rnp_old = NULL;
2589
2590 /* Funnel through hierarchy to reduce memory contention. */
2591 rnp = __this_cpu_read(rcu_data.mynode);
2592 for (; rnp != NULL; rnp = rnp->parent) {
2593 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2594 !raw_spin_trylock(&rnp->fqslock);
2595 if (rnp_old != NULL)
2596 raw_spin_unlock(&rnp_old->fqslock);
2597 if (ret)
2598 return;
2599 rnp_old = rnp;
2600 }
2601 /* rnp_old == rcu_get_root(), rnp == NULL. */
2602
2603 /* Reached the root of the rcu_node tree, acquire lock. */
2604 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2605 raw_spin_unlock(&rnp_old->fqslock);
2606 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2607 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2608 return; /* Someone beat us to it. */
2609 }
2610 WRITE_ONCE(rcu_state.gp_flags,
2611 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2612 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2613 rcu_gp_kthread_wake();
2614 }
2615 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2616
2617 /* Perform RCU core processing work for the current CPU. */
2618 static __latent_entropy void rcu_core(void)
2619 {
2620 unsigned long flags;
2621 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2622 struct rcu_node *rnp = rdp->mynode;
2623 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2624 rcu_segcblist_is_offloaded(&rdp->cblist);
2625
2626 if (cpu_is_offline(smp_processor_id()))
2627 return;
2628 trace_rcu_utilization(TPS("Start RCU core"));
2629 WARN_ON_ONCE(!rdp->beenonline);
2630
2631 /* Report any deferred quiescent states if preemption enabled. */
2632 if (!(preempt_count() & PREEMPT_MASK)) {
2633 rcu_preempt_deferred_qs(current);
2634 } else if (rcu_preempt_need_deferred_qs(current)) {
2635 set_tsk_need_resched(current);
2636 set_preempt_need_resched();
2637 }
2638
2639 /* Update RCU state based on any recent quiescent states. */
2640 rcu_check_quiescent_state(rdp);
2641
2642 /* No grace period and unregistered callbacks? */
2643 if (!rcu_gp_in_progress() &&
2644 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2645 local_irq_save(flags);
2646 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2647 rcu_accelerate_cbs_unlocked(rnp, rdp);
2648 local_irq_restore(flags);
2649 }
2650
2651 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2652
2653 /* If there are callbacks ready, invoke them. */
2654 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2655 likely(READ_ONCE(rcu_scheduler_fully_active)))
2656 rcu_do_batch(rdp);
2657
2658 /* Do any needed deferred wakeups of rcuo kthreads. */
2659 do_nocb_deferred_wakeup(rdp);
2660 trace_rcu_utilization(TPS("End RCU core"));
2661 }
2662
2663 static void rcu_core_si(struct softirq_action *h)
2664 {
2665 rcu_core();
2666 }
2667
2668 static void rcu_wake_cond(struct task_struct *t, int status)
2669 {
2670 /*
2671 * If the thread is yielding, only wake it when this
2672 * is invoked from idle
2673 */
2674 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2675 wake_up_process(t);
2676 }
2677
2678 static void invoke_rcu_core_kthread(void)
2679 {
2680 struct task_struct *t;
2681 unsigned long flags;
2682
2683 local_irq_save(flags);
2684 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2685 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2686 if (t != NULL && t != current)
2687 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2688 local_irq_restore(flags);
2689 }
2690
2691 /*
2692 * Wake up this CPU's rcuc kthread to do RCU core processing.
2693 */
2694 static void invoke_rcu_core(void)
2695 {
2696 if (!cpu_online(smp_processor_id()))
2697 return;
2698 if (use_softirq)
2699 raise_softirq(RCU_SOFTIRQ);
2700 else
2701 invoke_rcu_core_kthread();
2702 }
2703
2704 static void rcu_cpu_kthread_park(unsigned int cpu)
2705 {
2706 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2707 }
2708
2709 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2710 {
2711 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2712 }
2713
2714 /*
2715 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2716 * the RCU softirq used in configurations of RCU that do not support RCU
2717 * priority boosting.
2718 */
2719 static void rcu_cpu_kthread(unsigned int cpu)
2720 {
2721 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2722 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2723 int spincnt;
2724
2725 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2726 for (spincnt = 0; spincnt < 10; spincnt++) {
2727 local_bh_disable();
2728 *statusp = RCU_KTHREAD_RUNNING;
2729 local_irq_disable();
2730 work = *workp;
2731 *workp = 0;
2732 local_irq_enable();
2733 if (work)
2734 rcu_core();
2735 local_bh_enable();
2736 if (*workp == 0) {
2737 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2738 *statusp = RCU_KTHREAD_WAITING;
2739 return;
2740 }
2741 }
2742 *statusp = RCU_KTHREAD_YIELDING;
2743 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2744 schedule_timeout_idle(2);
2745 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2746 *statusp = RCU_KTHREAD_WAITING;
2747 }
2748
2749 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2750 .store = &rcu_data.rcu_cpu_kthread_task,
2751 .thread_should_run = rcu_cpu_kthread_should_run,
2752 .thread_fn = rcu_cpu_kthread,
2753 .thread_comm = "rcuc/%u",
2754 .setup = rcu_cpu_kthread_setup,
2755 .park = rcu_cpu_kthread_park,
2756 };
2757
2758 /*
2759 * Spawn per-CPU RCU core processing kthreads.
2760 */
2761 static int __init rcu_spawn_core_kthreads(void)
2762 {
2763 int cpu;
2764
2765 for_each_possible_cpu(cpu)
2766 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2767 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2768 return 0;
2769 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2770 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2771 return 0;
2772 }
2773 early_initcall(rcu_spawn_core_kthreads);
2774
2775 /*
2776 * Handle any core-RCU processing required by a call_rcu() invocation.
2777 */
2778 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2779 unsigned long flags)
2780 {
2781 /*
2782 * If called from an extended quiescent state, invoke the RCU
2783 * core in order to force a re-evaluation of RCU's idleness.
2784 */
2785 if (!rcu_is_watching())
2786 invoke_rcu_core();
2787
2788 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2789 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2790 return;
2791
2792 /*
2793 * Force the grace period if too many callbacks or too long waiting.
2794 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2795 * if some other CPU has recently done so. Also, don't bother
2796 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2797 * is the only one waiting for a grace period to complete.
2798 */
2799 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2800 rdp->qlen_last_fqs_check + qhimark)) {
2801
2802 /* Are we ignoring a completed grace period? */
2803 note_gp_changes(rdp);
2804
2805 /* Start a new grace period if one not already started. */
2806 if (!rcu_gp_in_progress()) {
2807 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2808 } else {
2809 /* Give the grace period a kick. */
2810 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2811 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2812 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2813 rcu_force_quiescent_state();
2814 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2815 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2816 }
2817 }
2818 }
2819
2820 /*
2821 * RCU callback function to leak a callback.
2822 */
2823 static void rcu_leak_callback(struct rcu_head *rhp)
2824 {
2825 }
2826
2827 /*
2828 * Check and if necessary update the leaf rcu_node structure's
2829 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2830 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2831 * structure's ->lock.
2832 */
2833 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2834 {
2835 raw_lockdep_assert_held_rcu_node(rnp);
2836 if (qovld_calc <= 0)
2837 return; // Early boot and wildcard value set.
2838 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2839 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2840 else
2841 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2842 }
2843
2844 /*
2845 * Check and if necessary update the leaf rcu_node structure's
2846 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2847 * number of queued RCU callbacks. No locks need be held, but the
2848 * caller must have disabled interrupts.
2849 *
2850 * Note that this function ignores the possibility that there are a lot
2851 * of callbacks all of which have already seen the end of their respective
2852 * grace periods. This omission is due to the need for no-CBs CPUs to
2853 * be holding ->nocb_lock to do this check, which is too heavy for a
2854 * common-case operation.
2855 */
2856 static void check_cb_ovld(struct rcu_data *rdp)
2857 {
2858 struct rcu_node *const rnp = rdp->mynode;
2859
2860 if (qovld_calc <= 0 ||
2861 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2862 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2863 return; // Early boot wildcard value or already set correctly.
2864 raw_spin_lock_rcu_node(rnp);
2865 check_cb_ovld_locked(rdp, rnp);
2866 raw_spin_unlock_rcu_node(rnp);
2867 }
2868
2869 /* Helper function for call_rcu() and friends. */
2870 static void
2871 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2872 {
2873 unsigned long flags;
2874 struct rcu_data *rdp;
2875 bool was_alldone;
2876
2877 /* Misaligned rcu_head! */
2878 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2879
2880 if (debug_rcu_head_queue(head)) {
2881 /*
2882 * Probable double call_rcu(), so leak the callback.
2883 * Use rcu:rcu_callback trace event to find the previous
2884 * time callback was passed to __call_rcu().
2885 */
2886 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2887 head, head->func);
2888 WRITE_ONCE(head->func, rcu_leak_callback);
2889 return;
2890 }
2891 head->func = func;
2892 head->next = NULL;
2893 local_irq_save(flags);
2894 kasan_record_aux_stack(head);
2895 rdp = this_cpu_ptr(&rcu_data);
2896
2897 /* Add the callback to our list. */
2898 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2899 // This can trigger due to call_rcu() from offline CPU:
2900 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2901 WARN_ON_ONCE(!rcu_is_watching());
2902 // Very early boot, before rcu_init(). Initialize if needed
2903 // and then drop through to queue the callback.
2904 if (rcu_segcblist_empty(&rdp->cblist))
2905 rcu_segcblist_init(&rdp->cblist);
2906 }
2907
2908 check_cb_ovld(rdp);
2909 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2910 return; // Enqueued onto ->nocb_bypass, so just leave.
2911 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2912 rcu_segcblist_enqueue(&rdp->cblist, head);
2913 if (__is_kvfree_rcu_offset((unsigned long)func))
2914 trace_rcu_kvfree_callback(rcu_state.name, head,
2915 (unsigned long)func,
2916 rcu_segcblist_n_cbs(&rdp->cblist));
2917 else
2918 trace_rcu_callback(rcu_state.name, head,
2919 rcu_segcblist_n_cbs(&rdp->cblist));
2920
2921 /* Go handle any RCU core processing required. */
2922 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2923 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2924 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2925 } else {
2926 __call_rcu_core(rdp, head, flags);
2927 local_irq_restore(flags);
2928 }
2929 }
2930
2931 /**
2932 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2933 * @head: structure to be used for queueing the RCU updates.
2934 * @func: actual callback function to be invoked after the grace period
2935 *
2936 * The callback function will be invoked some time after a full grace
2937 * period elapses, in other words after all pre-existing RCU read-side
2938 * critical sections have completed. However, the callback function
2939 * might well execute concurrently with RCU read-side critical sections
2940 * that started after call_rcu() was invoked. RCU read-side critical
2941 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2942 * may be nested. In addition, regions of code across which interrupts,
2943 * preemption, or softirqs have been disabled also serve as RCU read-side
2944 * critical sections. This includes hardware interrupt handlers, softirq
2945 * handlers, and NMI handlers.
2946 *
2947 * Note that all CPUs must agree that the grace period extended beyond
2948 * all pre-existing RCU read-side critical section. On systems with more
2949 * than one CPU, this means that when "func()" is invoked, each CPU is
2950 * guaranteed to have executed a full memory barrier since the end of its
2951 * last RCU read-side critical section whose beginning preceded the call
2952 * to call_rcu(). It also means that each CPU executing an RCU read-side
2953 * critical section that continues beyond the start of "func()" must have
2954 * executed a memory barrier after the call_rcu() but before the beginning
2955 * of that RCU read-side critical section. Note that these guarantees
2956 * include CPUs that are offline, idle, or executing in user mode, as
2957 * well as CPUs that are executing in the kernel.
2958 *
2959 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2960 * resulting RCU callback function "func()", then both CPU A and CPU B are
2961 * guaranteed to execute a full memory barrier during the time interval
2962 * between the call to call_rcu() and the invocation of "func()" -- even
2963 * if CPU A and CPU B are the same CPU (but again only if the system has
2964 * more than one CPU).
2965 */
2966 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2967 {
2968 __call_rcu(head, func);
2969 }
2970 EXPORT_SYMBOL_GPL(call_rcu);
2971
2972
2973 /* Maximum number of jiffies to wait before draining a batch. */
2974 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2975 #define KFREE_N_BATCHES 2
2976 #define FREE_N_CHANNELS 2
2977
2978 /**
2979 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2980 * @nr_records: Number of active pointers in the array
2981 * @next: Next bulk object in the block chain
2982 * @records: Array of the kvfree_rcu() pointers
2983 */
2984 struct kvfree_rcu_bulk_data {
2985 unsigned long nr_records;
2986 struct kvfree_rcu_bulk_data *next;
2987 void *records[];
2988 };
2989
2990 /*
2991 * This macro defines how many entries the "records" array
2992 * will contain. It is based on the fact that the size of
2993 * kvfree_rcu_bulk_data structure becomes exactly one page.
2994 */
2995 #define KVFREE_BULK_MAX_ENTR \
2996 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2997
2998 /**
2999 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3000 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3001 * @head_free: List of kfree_rcu() objects waiting for a grace period
3002 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3003 * @krcp: Pointer to @kfree_rcu_cpu structure
3004 */
3005
3006 struct kfree_rcu_cpu_work {
3007 struct rcu_work rcu_work;
3008 struct rcu_head *head_free;
3009 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3010 struct kfree_rcu_cpu *krcp;
3011 };
3012
3013 /**
3014 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3015 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3016 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3017 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3018 * @lock: Synchronize access to this structure
3019 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3020 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3021 * @initialized: The @rcu_work fields have been initialized
3022 * @count: Number of objects for which GP not started
3023 *
3024 * This is a per-CPU structure. The reason that it is not included in
3025 * the rcu_data structure is to permit this code to be extracted from
3026 * the RCU files. Such extraction could allow further optimization of
3027 * the interactions with the slab allocators.
3028 */
3029 struct kfree_rcu_cpu {
3030 struct rcu_head *head;
3031 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3032 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3033 raw_spinlock_t lock;
3034 struct delayed_work monitor_work;
3035 bool monitor_todo;
3036 bool initialized;
3037 int count;
3038
3039 /*
3040 * A simple cache list that contains objects for
3041 * reuse purpose. In order to save some per-cpu
3042 * space the list is singular. Even though it is
3043 * lockless an access has to be protected by the
3044 * per-cpu lock.
3045 */
3046 struct llist_head bkvcache;
3047 int nr_bkv_objs;
3048 };
3049
3050 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3051 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3052 };
3053
3054 static __always_inline void
3055 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3056 {
3057 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3058 int i;
3059
3060 for (i = 0; i < bhead->nr_records; i++)
3061 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3062 #endif
3063 }
3064
3065 static inline struct kfree_rcu_cpu *
3066 krc_this_cpu_lock(unsigned long *flags)
3067 {
3068 struct kfree_rcu_cpu *krcp;
3069
3070 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3071 krcp = this_cpu_ptr(&krc);
3072 raw_spin_lock(&krcp->lock);
3073
3074 return krcp;
3075 }
3076
3077 static inline void
3078 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3079 {
3080 raw_spin_unlock(&krcp->lock);
3081 local_irq_restore(flags);
3082 }
3083
3084 static inline struct kvfree_rcu_bulk_data *
3085 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3086 {
3087 if (!krcp->nr_bkv_objs)
3088 return NULL;
3089
3090 krcp->nr_bkv_objs--;
3091 return (struct kvfree_rcu_bulk_data *)
3092 llist_del_first(&krcp->bkvcache);
3093 }
3094
3095 static inline bool
3096 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3097 struct kvfree_rcu_bulk_data *bnode)
3098 {
3099 // Check the limit.
3100 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3101 return false;
3102
3103 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3104 krcp->nr_bkv_objs++;
3105 return true;
3106
3107 }
3108
3109 /*
3110 * This function is invoked in workqueue context after a grace period.
3111 * It frees all the objects queued on ->bhead_free or ->head_free.
3112 */
3113 static void kfree_rcu_work(struct work_struct *work)
3114 {
3115 unsigned long flags;
3116 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3117 struct rcu_head *head, *next;
3118 struct kfree_rcu_cpu *krcp;
3119 struct kfree_rcu_cpu_work *krwp;
3120 int i, j;
3121
3122 krwp = container_of(to_rcu_work(work),
3123 struct kfree_rcu_cpu_work, rcu_work);
3124 krcp = krwp->krcp;
3125
3126 raw_spin_lock_irqsave(&krcp->lock, flags);
3127 // Channels 1 and 2.
3128 for (i = 0; i < FREE_N_CHANNELS; i++) {
3129 bkvhead[i] = krwp->bkvhead_free[i];
3130 krwp->bkvhead_free[i] = NULL;
3131 }
3132
3133 // Channel 3.
3134 head = krwp->head_free;
3135 krwp->head_free = NULL;
3136 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3137
3138 // Handle two first channels.
3139 for (i = 0; i < FREE_N_CHANNELS; i++) {
3140 for (; bkvhead[i]; bkvhead[i] = bnext) {
3141 bnext = bkvhead[i]->next;
3142 debug_rcu_bhead_unqueue(bkvhead[i]);
3143
3144 rcu_lock_acquire(&rcu_callback_map);
3145 if (i == 0) { // kmalloc() / kfree().
3146 trace_rcu_invoke_kfree_bulk_callback(
3147 rcu_state.name, bkvhead[i]->nr_records,
3148 bkvhead[i]->records);
3149
3150 kfree_bulk(bkvhead[i]->nr_records,
3151 bkvhead[i]->records);
3152 } else { // vmalloc() / vfree().
3153 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3154 trace_rcu_invoke_kvfree_callback(
3155 rcu_state.name,
3156 bkvhead[i]->records[j], 0);
3157
3158 vfree(bkvhead[i]->records[j]);
3159 }
3160 }
3161 rcu_lock_release(&rcu_callback_map);
3162
3163 krcp = krc_this_cpu_lock(&flags);
3164 if (put_cached_bnode(krcp, bkvhead[i]))
3165 bkvhead[i] = NULL;
3166 krc_this_cpu_unlock(krcp, flags);
3167
3168 if (bkvhead[i])
3169 free_page((unsigned long) bkvhead[i]);
3170
3171 cond_resched_tasks_rcu_qs();
3172 }
3173 }
3174
3175 /*
3176 * Emergency case only. It can happen under low memory
3177 * condition when an allocation gets failed, so the "bulk"
3178 * path can not be temporary maintained.
3179 */
3180 for (; head; head = next) {
3181 unsigned long offset = (unsigned long)head->func;
3182 void *ptr = (void *)head - offset;
3183
3184 next = head->next;
3185 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3186 rcu_lock_acquire(&rcu_callback_map);
3187 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3188
3189 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3190 kvfree(ptr);
3191
3192 rcu_lock_release(&rcu_callback_map);
3193 cond_resched_tasks_rcu_qs();
3194 }
3195 }
3196
3197 /*
3198 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3199 *
3200 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3201 * timeout has been reached.
3202 */
3203 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3204 {
3205 struct kfree_rcu_cpu_work *krwp;
3206 bool repeat = false;
3207 int i, j;
3208
3209 lockdep_assert_held(&krcp->lock);
3210
3211 for (i = 0; i < KFREE_N_BATCHES; i++) {
3212 krwp = &(krcp->krw_arr[i]);
3213
3214 /*
3215 * Try to detach bkvhead or head and attach it over any
3216 * available corresponding free channel. It can be that
3217 * a previous RCU batch is in progress, it means that
3218 * immediately to queue another one is not possible so
3219 * return false to tell caller to retry.
3220 */
3221 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3222 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3223 (krcp->head && !krwp->head_free)) {
3224 // Channel 1 corresponds to SLAB ptrs.
3225 // Channel 2 corresponds to vmalloc ptrs.
3226 for (j = 0; j < FREE_N_CHANNELS; j++) {
3227 if (!krwp->bkvhead_free[j]) {
3228 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3229 krcp->bkvhead[j] = NULL;
3230 }
3231 }
3232
3233 // Channel 3 corresponds to emergency path.
3234 if (!krwp->head_free) {
3235 krwp->head_free = krcp->head;
3236 krcp->head = NULL;
3237 }
3238
3239 WRITE_ONCE(krcp->count, 0);
3240
3241 /*
3242 * One work is per one batch, so there are three
3243 * "free channels", the batch can handle. It can
3244 * be that the work is in the pending state when
3245 * channels have been detached following by each
3246 * other.
3247 */
3248 queue_rcu_work(system_wq, &krwp->rcu_work);
3249 }
3250
3251 // Repeat if any "free" corresponding channel is still busy.
3252 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3253 repeat = true;
3254 }
3255
3256 return !repeat;
3257 }
3258
3259 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3260 unsigned long flags)
3261 {
3262 // Attempt to start a new batch.
3263 krcp->monitor_todo = false;
3264 if (queue_kfree_rcu_work(krcp)) {
3265 // Success! Our job is done here.
3266 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3267 return;
3268 }
3269
3270 // Previous RCU batch still in progress, try again later.
3271 krcp->monitor_todo = true;
3272 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3273 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3274 }
3275
3276 /*
3277 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3278 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3279 */
3280 static void kfree_rcu_monitor(struct work_struct *work)
3281 {
3282 unsigned long flags;
3283 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3284 monitor_work.work);
3285
3286 raw_spin_lock_irqsave(&krcp->lock, flags);
3287 if (krcp->monitor_todo)
3288 kfree_rcu_drain_unlock(krcp, flags);
3289 else
3290 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3291 }
3292
3293 static inline bool
3294 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3295 {
3296 struct kvfree_rcu_bulk_data *bnode;
3297 int idx;
3298
3299 if (unlikely(!krcp->initialized))
3300 return false;
3301
3302 lockdep_assert_held(&krcp->lock);
3303 idx = !!is_vmalloc_addr(ptr);
3304
3305 /* Check if a new block is required. */
3306 if (!krcp->bkvhead[idx] ||
3307 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3308 bnode = get_cached_bnode(krcp);
3309 if (!bnode) {
3310 /*
3311 * To keep this path working on raw non-preemptible
3312 * sections, prevent the optional entry into the
3313 * allocator as it uses sleeping locks. In fact, even
3314 * if the caller of kfree_rcu() is preemptible, this
3315 * path still is not, as krcp->lock is a raw spinlock.
3316 * With additional page pre-allocation in the works,
3317 * hitting this return is going to be much less likely.
3318 */
3319 if (IS_ENABLED(CONFIG_PREEMPT_RT))
3320 return false;
3321
3322 /*
3323 * NOTE: For one argument of kvfree_rcu() we can
3324 * drop the lock and get the page in sleepable
3325 * context. That would allow to maintain an array
3326 * for the CONFIG_PREEMPT_RT as well if no cached
3327 * pages are available.
3328 */
3329 bnode = (struct kvfree_rcu_bulk_data *)
3330 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3331 }
3332
3333 /* Switch to emergency path. */
3334 if (unlikely(!bnode))
3335 return false;
3336
3337 /* Initialize the new block. */
3338 bnode->nr_records = 0;
3339 bnode->next = krcp->bkvhead[idx];
3340
3341 /* Attach it to the head. */
3342 krcp->bkvhead[idx] = bnode;
3343 }
3344
3345 /* Finally insert. */
3346 krcp->bkvhead[idx]->records
3347 [krcp->bkvhead[idx]->nr_records++] = ptr;
3348
3349 return true;
3350 }
3351
3352 /*
3353 * Queue a request for lazy invocation of appropriate free routine after a
3354 * grace period. Please note there are three paths are maintained, two are the
3355 * main ones that use array of pointers interface and third one is emergency
3356 * one, that is used only when the main path can not be maintained temporary,
3357 * due to memory pressure.
3358 *
3359 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3360 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3361 * be free'd in workqueue context. This allows us to: batch requests together to
3362 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3363 */
3364 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3365 {
3366 unsigned long flags;
3367 struct kfree_rcu_cpu *krcp;
3368 bool success;
3369 void *ptr;
3370
3371 if (head) {
3372 ptr = (void *) head - (unsigned long) func;
3373 } else {
3374 /*
3375 * Please note there is a limitation for the head-less
3376 * variant, that is why there is a clear rule for such
3377 * objects: it can be used from might_sleep() context
3378 * only. For other places please embed an rcu_head to
3379 * your data.
3380 */
3381 might_sleep();
3382 ptr = (unsigned long *) func;
3383 }
3384
3385 krcp = krc_this_cpu_lock(&flags);
3386
3387 // Queue the object but don't yet schedule the batch.
3388 if (debug_rcu_head_queue(ptr)) {
3389 // Probable double kfree_rcu(), just leak.
3390 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3391 __func__, head);
3392
3393 // Mark as success and leave.
3394 success = true;
3395 goto unlock_return;
3396 }
3397
3398 /*
3399 * Under high memory pressure GFP_NOWAIT can fail,
3400 * in that case the emergency path is maintained.
3401 */
3402 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3403 if (!success) {
3404 if (head == NULL)
3405 // Inline if kvfree_rcu(one_arg) call.
3406 goto unlock_return;
3407
3408 head->func = func;
3409 head->next = krcp->head;
3410 krcp->head = head;
3411 success = true;
3412 }
3413
3414 WRITE_ONCE(krcp->count, krcp->count + 1);
3415
3416 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3417 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3418 !krcp->monitor_todo) {
3419 krcp->monitor_todo = true;
3420 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3421 }
3422
3423 unlock_return:
3424 krc_this_cpu_unlock(krcp, flags);
3425
3426 /*
3427 * Inline kvfree() after synchronize_rcu(). We can do
3428 * it from might_sleep() context only, so the current
3429 * CPU can pass the QS state.
3430 */
3431 if (!success) {
3432 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3433 synchronize_rcu();
3434 kvfree(ptr);
3435 }
3436 }
3437 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3438
3439 static unsigned long
3440 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3441 {
3442 int cpu;
3443 unsigned long count = 0;
3444
3445 /* Snapshot count of all CPUs */
3446 for_each_online_cpu(cpu) {
3447 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3448
3449 count += READ_ONCE(krcp->count);
3450 }
3451
3452 return count;
3453 }
3454
3455 static unsigned long
3456 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3457 {
3458 int cpu, freed = 0;
3459 unsigned long flags;
3460
3461 for_each_online_cpu(cpu) {
3462 int count;
3463 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3464
3465 count = krcp->count;
3466 raw_spin_lock_irqsave(&krcp->lock, flags);
3467 if (krcp->monitor_todo)
3468 kfree_rcu_drain_unlock(krcp, flags);
3469 else
3470 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3471
3472 sc->nr_to_scan -= count;
3473 freed += count;
3474
3475 if (sc->nr_to_scan <= 0)
3476 break;
3477 }
3478
3479 return freed == 0 ? SHRINK_STOP : freed;
3480 }
3481
3482 static struct shrinker kfree_rcu_shrinker = {
3483 .count_objects = kfree_rcu_shrink_count,
3484 .scan_objects = kfree_rcu_shrink_scan,
3485 .batch = 0,
3486 .seeks = DEFAULT_SEEKS,
3487 };
3488
3489 void __init kfree_rcu_scheduler_running(void)
3490 {
3491 int cpu;
3492 unsigned long flags;
3493
3494 for_each_online_cpu(cpu) {
3495 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3496
3497 raw_spin_lock_irqsave(&krcp->lock, flags);
3498 if (!krcp->head || krcp->monitor_todo) {
3499 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3500 continue;
3501 }
3502 krcp->monitor_todo = true;
3503 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3504 KFREE_DRAIN_JIFFIES);
3505 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3506 }
3507 }
3508
3509 /*
3510 * During early boot, any blocking grace-period wait automatically
3511 * implies a grace period. Later on, this is never the case for PREEMPTION.
3512 *
3513 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3514 * blocking grace-period wait automatically implies a grace period if
3515 * there is only one CPU online at any point time during execution of
3516 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3517 * occasionally incorrectly indicate that there are multiple CPUs online
3518 * when there was in fact only one the whole time, as this just adds some
3519 * overhead: RCU still operates correctly.
3520 */
3521 static int rcu_blocking_is_gp(void)
3522 {
3523 int ret;
3524
3525 if (IS_ENABLED(CONFIG_PREEMPTION))
3526 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3527 might_sleep(); /* Check for RCU read-side critical section. */
3528 preempt_disable();
3529 ret = num_online_cpus() <= 1;
3530 preempt_enable();
3531 return ret;
3532 }
3533
3534 /**
3535 * synchronize_rcu - wait until a grace period has elapsed.
3536 *
3537 * Control will return to the caller some time after a full grace
3538 * period has elapsed, in other words after all currently executing RCU
3539 * read-side critical sections have completed. Note, however, that
3540 * upon return from synchronize_rcu(), the caller might well be executing
3541 * concurrently with new RCU read-side critical sections that began while
3542 * synchronize_rcu() was waiting. RCU read-side critical sections are
3543 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3544 * In addition, regions of code across which interrupts, preemption, or
3545 * softirqs have been disabled also serve as RCU read-side critical
3546 * sections. This includes hardware interrupt handlers, softirq handlers,
3547 * and NMI handlers.
3548 *
3549 * Note that this guarantee implies further memory-ordering guarantees.
3550 * On systems with more than one CPU, when synchronize_rcu() returns,
3551 * each CPU is guaranteed to have executed a full memory barrier since
3552 * the end of its last RCU read-side critical section whose beginning
3553 * preceded the call to synchronize_rcu(). In addition, each CPU having
3554 * an RCU read-side critical section that extends beyond the return from
3555 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3556 * after the beginning of synchronize_rcu() and before the beginning of
3557 * that RCU read-side critical section. Note that these guarantees include
3558 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3559 * that are executing in the kernel.
3560 *
3561 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3562 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3563 * to have executed a full memory barrier during the execution of
3564 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3565 * again only if the system has more than one CPU).
3566 */
3567 void synchronize_rcu(void)
3568 {
3569 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3570 lock_is_held(&rcu_lock_map) ||
3571 lock_is_held(&rcu_sched_lock_map),
3572 "Illegal synchronize_rcu() in RCU read-side critical section");
3573 if (rcu_blocking_is_gp())
3574 return;
3575 if (rcu_gp_is_expedited())
3576 synchronize_rcu_expedited();
3577 else
3578 wait_rcu_gp(call_rcu);
3579 }
3580 EXPORT_SYMBOL_GPL(synchronize_rcu);
3581
3582 /**
3583 * get_state_synchronize_rcu - Snapshot current RCU state
3584 *
3585 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3586 * to determine whether or not a full grace period has elapsed in the
3587 * meantime.
3588 */
3589 unsigned long get_state_synchronize_rcu(void)
3590 {
3591 /*
3592 * Any prior manipulation of RCU-protected data must happen
3593 * before the load from ->gp_seq.
3594 */
3595 smp_mb(); /* ^^^ */
3596 return rcu_seq_snap(&rcu_state.gp_seq);
3597 }
3598 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3599
3600 /**
3601 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3602 *
3603 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3604 *
3605 * If a full RCU grace period has elapsed since the earlier call to
3606 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3607 * synchronize_rcu() to wait for a full grace period.
3608 *
3609 * Yes, this function does not take counter wrap into account. But
3610 * counter wrap is harmless. If the counter wraps, we have waited for
3611 * more than 2 billion grace periods (and way more on a 64-bit system!),
3612 * so waiting for one additional grace period should be just fine.
3613 */
3614 void cond_synchronize_rcu(unsigned long oldstate)
3615 {
3616 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3617 synchronize_rcu();
3618 else
3619 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3620 }
3621 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3622
3623 /*
3624 * Check to see if there is any immediate RCU-related work to be done by
3625 * the current CPU, returning 1 if so and zero otherwise. The checks are
3626 * in order of increasing expense: checks that can be carried out against
3627 * CPU-local state are performed first. However, we must check for CPU
3628 * stalls first, else we might not get a chance.
3629 */
3630 static int rcu_pending(int user)
3631 {
3632 bool gp_in_progress;
3633 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3634 struct rcu_node *rnp = rdp->mynode;
3635
3636 /* Check for CPU stalls, if enabled. */
3637 check_cpu_stall(rdp);
3638
3639 /* Does this CPU need a deferred NOCB wakeup? */
3640 if (rcu_nocb_need_deferred_wakeup(rdp))
3641 return 1;
3642
3643 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3644 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3645 return 0;
3646
3647 /* Is the RCU core waiting for a quiescent state from this CPU? */
3648 gp_in_progress = rcu_gp_in_progress();
3649 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3650 return 1;
3651
3652 /* Does this CPU have callbacks ready to invoke? */
3653 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3654 return 1;
3655
3656 /* Has RCU gone idle with this CPU needing another grace period? */
3657 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3658 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3659 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3660 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3661 return 1;
3662
3663 /* Have RCU grace period completed or started? */
3664 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3665 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3666 return 1;
3667
3668 /* nothing to do */
3669 return 0;
3670 }
3671
3672 /*
3673 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3674 * the compiler is expected to optimize this away.
3675 */
3676 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3677 {
3678 trace_rcu_barrier(rcu_state.name, s, cpu,
3679 atomic_read(&rcu_state.barrier_cpu_count), done);
3680 }
3681
3682 /*
3683 * RCU callback function for rcu_barrier(). If we are last, wake
3684 * up the task executing rcu_barrier().
3685 *
3686 * Note that the value of rcu_state.barrier_sequence must be captured
3687 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3688 * other CPUs might count the value down to zero before this CPU gets
3689 * around to invoking rcu_barrier_trace(), which might result in bogus
3690 * data from the next instance of rcu_barrier().
3691 */
3692 static void rcu_barrier_callback(struct rcu_head *rhp)
3693 {
3694 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3695
3696 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3697 rcu_barrier_trace(TPS("LastCB"), -1, s);
3698 complete(&rcu_state.barrier_completion);
3699 } else {
3700 rcu_barrier_trace(TPS("CB"), -1, s);
3701 }
3702 }
3703
3704 /*
3705 * Called with preemption disabled, and from cross-cpu IRQ context.
3706 */
3707 static void rcu_barrier_func(void *cpu_in)
3708 {
3709 uintptr_t cpu = (uintptr_t)cpu_in;
3710 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3711
3712 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3713 rdp->barrier_head.func = rcu_barrier_callback;
3714 debug_rcu_head_queue(&rdp->barrier_head);
3715 rcu_nocb_lock(rdp);
3716 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3717 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3718 atomic_inc(&rcu_state.barrier_cpu_count);
3719 } else {
3720 debug_rcu_head_unqueue(&rdp->barrier_head);
3721 rcu_barrier_trace(TPS("IRQNQ"), -1,
3722 rcu_state.barrier_sequence);
3723 }
3724 rcu_nocb_unlock(rdp);
3725 }
3726
3727 /**
3728 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3729 *
3730 * Note that this primitive does not necessarily wait for an RCU grace period
3731 * to complete. For example, if there are no RCU callbacks queued anywhere
3732 * in the system, then rcu_barrier() is within its rights to return
3733 * immediately, without waiting for anything, much less an RCU grace period.
3734 */
3735 void rcu_barrier(void)
3736 {
3737 uintptr_t cpu;
3738 struct rcu_data *rdp;
3739 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3740
3741 rcu_barrier_trace(TPS("Begin"), -1, s);
3742
3743 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3744 mutex_lock(&rcu_state.barrier_mutex);
3745
3746 /* Did someone else do our work for us? */
3747 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3748 rcu_barrier_trace(TPS("EarlyExit"), -1,
3749 rcu_state.barrier_sequence);
3750 smp_mb(); /* caller's subsequent code after above check. */
3751 mutex_unlock(&rcu_state.barrier_mutex);
3752 return;
3753 }
3754
3755 /* Mark the start of the barrier operation. */
3756 rcu_seq_start(&rcu_state.barrier_sequence);
3757 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3758
3759 /*
3760 * Initialize the count to two rather than to zero in order
3761 * to avoid a too-soon return to zero in case of an immediate
3762 * invocation of the just-enqueued callback (or preemption of
3763 * this task). Exclude CPU-hotplug operations to ensure that no
3764 * offline non-offloaded CPU has callbacks queued.
3765 */
3766 init_completion(&rcu_state.barrier_completion);
3767 atomic_set(&rcu_state.barrier_cpu_count, 2);
3768 get_online_cpus();
3769
3770 /*
3771 * Force each CPU with callbacks to register a new callback.
3772 * When that callback is invoked, we will know that all of the
3773 * corresponding CPU's preceding callbacks have been invoked.
3774 */
3775 for_each_possible_cpu(cpu) {
3776 rdp = per_cpu_ptr(&rcu_data, cpu);
3777 if (cpu_is_offline(cpu) &&
3778 !rcu_segcblist_is_offloaded(&rdp->cblist))
3779 continue;
3780 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3781 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3782 rcu_state.barrier_sequence);
3783 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3784 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3785 cpu_is_offline(cpu)) {
3786 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3787 rcu_state.barrier_sequence);
3788 local_irq_disable();
3789 rcu_barrier_func((void *)cpu);
3790 local_irq_enable();
3791 } else if (cpu_is_offline(cpu)) {
3792 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3793 rcu_state.barrier_sequence);
3794 } else {
3795 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3796 rcu_state.barrier_sequence);
3797 }
3798 }
3799 put_online_cpus();
3800
3801 /*
3802 * Now that we have an rcu_barrier_callback() callback on each
3803 * CPU, and thus each counted, remove the initial count.
3804 */
3805 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3806 complete(&rcu_state.barrier_completion);
3807
3808 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3809 wait_for_completion(&rcu_state.barrier_completion);
3810
3811 /* Mark the end of the barrier operation. */
3812 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3813 rcu_seq_end(&rcu_state.barrier_sequence);
3814
3815 /* Other rcu_barrier() invocations can now safely proceed. */
3816 mutex_unlock(&rcu_state.barrier_mutex);
3817 }
3818 EXPORT_SYMBOL_GPL(rcu_barrier);
3819
3820 /*
3821 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3822 * first CPU in a given leaf rcu_node structure coming online. The caller
3823 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3824 * disabled.
3825 */
3826 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3827 {
3828 long mask;
3829 long oldmask;
3830 struct rcu_node *rnp = rnp_leaf;
3831
3832 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3833 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3834 for (;;) {
3835 mask = rnp->grpmask;
3836 rnp = rnp->parent;
3837 if (rnp == NULL)
3838 return;
3839 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3840 oldmask = rnp->qsmaskinit;
3841 rnp->qsmaskinit |= mask;
3842 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3843 if (oldmask)
3844 return;
3845 }
3846 }
3847
3848 /*
3849 * Do boot-time initialization of a CPU's per-CPU RCU data.
3850 */
3851 static void __init
3852 rcu_boot_init_percpu_data(int cpu)
3853 {
3854 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3855
3856 /* Set up local state, ensuring consistent view of global state. */
3857 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3858 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3859 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3860 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3861 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3862 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3863 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3864 rdp->cpu = cpu;
3865 rcu_boot_init_nocb_percpu_data(rdp);
3866 }
3867
3868 /*
3869 * Invoked early in the CPU-online process, when pretty much all services
3870 * are available. The incoming CPU is not present.
3871 *
3872 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3873 * offline event can be happening at a given time. Note also that we can
3874 * accept some slop in the rsp->gp_seq access due to the fact that this
3875 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3876 * And any offloaded callbacks are being numbered elsewhere.
3877 */
3878 int rcutree_prepare_cpu(unsigned int cpu)
3879 {
3880 unsigned long flags;
3881 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3882 struct rcu_node *rnp = rcu_get_root();
3883
3884 /* Set up local state, ensuring consistent view of global state. */
3885 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3886 rdp->qlen_last_fqs_check = 0;
3887 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3888 rdp->blimit = blimit;
3889 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3890 !rcu_segcblist_is_offloaded(&rdp->cblist))
3891 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3892 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3893 rcu_dynticks_eqs_online();
3894 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3895
3896 /*
3897 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3898 * propagation up the rcu_node tree will happen at the beginning
3899 * of the next grace period.
3900 */
3901 rnp = rdp->mynode;
3902 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3903 rdp->beenonline = true; /* We have now been online. */
3904 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3905 rdp->gp_seq_needed = rdp->gp_seq;
3906 rdp->cpu_no_qs.b.norm = true;
3907 rdp->core_needs_qs = false;
3908 rdp->rcu_iw_pending = false;
3909 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3910 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3911 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3912 rcu_prepare_kthreads(cpu);
3913 rcu_spawn_cpu_nocb_kthread(cpu);
3914
3915 return 0;
3916 }
3917
3918 /*
3919 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3920 */
3921 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3922 {
3923 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3924
3925 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3926 }
3927
3928 /*
3929 * Near the end of the CPU-online process. Pretty much all services
3930 * enabled, and the CPU is now very much alive.
3931 */
3932 int rcutree_online_cpu(unsigned int cpu)
3933 {
3934 unsigned long flags;
3935 struct rcu_data *rdp;
3936 struct rcu_node *rnp;
3937
3938 rdp = per_cpu_ptr(&rcu_data, cpu);
3939 rnp = rdp->mynode;
3940 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3941 rnp->ffmask |= rdp->grpmask;
3942 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3943 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3944 return 0; /* Too early in boot for scheduler work. */
3945 sync_sched_exp_online_cleanup(cpu);
3946 rcutree_affinity_setting(cpu, -1);
3947
3948 // Stop-machine done, so allow nohz_full to disable tick.
3949 tick_dep_clear(TICK_DEP_BIT_RCU);
3950 return 0;
3951 }
3952
3953 /*
3954 * Near the beginning of the process. The CPU is still very much alive
3955 * with pretty much all services enabled.
3956 */
3957 int rcutree_offline_cpu(unsigned int cpu)
3958 {
3959 unsigned long flags;
3960 struct rcu_data *rdp;
3961 struct rcu_node *rnp;
3962
3963 rdp = per_cpu_ptr(&rcu_data, cpu);
3964 rnp = rdp->mynode;
3965 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3966 rnp->ffmask &= ~rdp->grpmask;
3967 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3968
3969 rcutree_affinity_setting(cpu, cpu);
3970
3971 // nohz_full CPUs need the tick for stop-machine to work quickly
3972 tick_dep_set(TICK_DEP_BIT_RCU);
3973 return 0;
3974 }
3975
3976 static DEFINE_PER_CPU(int, rcu_cpu_started);
3977
3978 /*
3979 * Mark the specified CPU as being online so that subsequent grace periods
3980 * (both expedited and normal) will wait on it. Note that this means that
3981 * incoming CPUs are not allowed to use RCU read-side critical sections
3982 * until this function is called. Failing to observe this restriction
3983 * will result in lockdep splats.
3984 *
3985 * Note that this function is special in that it is invoked directly
3986 * from the incoming CPU rather than from the cpuhp_step mechanism.
3987 * This is because this function must be invoked at a precise location.
3988 */
3989 void rcu_cpu_starting(unsigned int cpu)
3990 {
3991 unsigned long flags;
3992 unsigned long mask;
3993 struct rcu_data *rdp;
3994 struct rcu_node *rnp;
3995 bool newcpu;
3996
3997 if (per_cpu(rcu_cpu_started, cpu))
3998 return;
3999
4000 per_cpu(rcu_cpu_started, cpu) = 1;
4001
4002 rdp = per_cpu_ptr(&rcu_data, cpu);
4003 rnp = rdp->mynode;
4004 mask = rdp->grpmask;
4005 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4006 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4007 newcpu = !(rnp->expmaskinitnext & mask);
4008 rnp->expmaskinitnext |= mask;
4009 /* Allow lockless access for expedited grace periods. */
4010 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4011 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4012 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4013 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4014 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4015 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4016 rcu_disable_urgency_upon_qs(rdp);
4017 /* Report QS -after- changing ->qsmaskinitnext! */
4018 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4019 } else {
4020 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4021 }
4022 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4023 }
4024
4025 #ifdef CONFIG_HOTPLUG_CPU
4026 /*
4027 * The outgoing function has no further need of RCU, so remove it from
4028 * the rcu_node tree's ->qsmaskinitnext bit masks.
4029 *
4030 * Note that this function is special in that it is invoked directly
4031 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4032 * This is because this function must be invoked at a precise location.
4033 */
4034 void rcu_report_dead(unsigned int cpu)
4035 {
4036 unsigned long flags;
4037 unsigned long mask;
4038 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4039 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4040
4041 /* QS for any half-done expedited grace period. */
4042 preempt_disable();
4043 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4044 preempt_enable();
4045 rcu_preempt_deferred_qs(current);
4046
4047 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4048 mask = rdp->grpmask;
4049 raw_spin_lock(&rcu_state.ofl_lock);
4050 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4051 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4052 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4053 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4054 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4055 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4056 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4057 }
4058 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4059 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4060 raw_spin_unlock(&rcu_state.ofl_lock);
4061
4062 per_cpu(rcu_cpu_started, cpu) = 0;
4063 }
4064
4065 /*
4066 * The outgoing CPU has just passed through the dying-idle state, and we
4067 * are being invoked from the CPU that was IPIed to continue the offline
4068 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4069 */
4070 void rcutree_migrate_callbacks(int cpu)
4071 {
4072 unsigned long flags;
4073 struct rcu_data *my_rdp;
4074 struct rcu_node *my_rnp;
4075 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4076 bool needwake;
4077
4078 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4079 rcu_segcblist_empty(&rdp->cblist))
4080 return; /* No callbacks to migrate. */
4081
4082 local_irq_save(flags);
4083 my_rdp = this_cpu_ptr(&rcu_data);
4084 my_rnp = my_rdp->mynode;
4085 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4086 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4087 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4088 /* Leverage recent GPs and set GP for new callbacks. */
4089 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4090 rcu_advance_cbs(my_rnp, my_rdp);
4091 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4092 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4093 rcu_segcblist_disable(&rdp->cblist);
4094 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4095 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4096 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4097 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4098 __call_rcu_nocb_wake(my_rdp, true, flags);
4099 } else {
4100 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4101 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4102 }
4103 if (needwake)
4104 rcu_gp_kthread_wake();
4105 lockdep_assert_irqs_enabled();
4106 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4107 !rcu_segcblist_empty(&rdp->cblist),
4108 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4109 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4110 rcu_segcblist_first_cb(&rdp->cblist));
4111 }
4112 #endif
4113
4114 /*
4115 * On non-huge systems, use expedited RCU grace periods to make suspend
4116 * and hibernation run faster.
4117 */
4118 static int rcu_pm_notify(struct notifier_block *self,
4119 unsigned long action, void *hcpu)
4120 {
4121 switch (action) {
4122 case PM_HIBERNATION_PREPARE:
4123 case PM_SUSPEND_PREPARE:
4124 rcu_expedite_gp();
4125 break;
4126 case PM_POST_HIBERNATION:
4127 case PM_POST_SUSPEND:
4128 rcu_unexpedite_gp();
4129 break;
4130 default:
4131 break;
4132 }
4133 return NOTIFY_OK;
4134 }
4135
4136 /*
4137 * Spawn the kthreads that handle RCU's grace periods.
4138 */
4139 static int __init rcu_spawn_gp_kthread(void)
4140 {
4141 unsigned long flags;
4142 int kthread_prio_in = kthread_prio;
4143 struct rcu_node *rnp;
4144 struct sched_param sp;
4145 struct task_struct *t;
4146
4147 /* Force priority into range. */
4148 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4149 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4150 kthread_prio = 2;
4151 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4152 kthread_prio = 1;
4153 else if (kthread_prio < 0)
4154 kthread_prio = 0;
4155 else if (kthread_prio > 99)
4156 kthread_prio = 99;
4157
4158 if (kthread_prio != kthread_prio_in)
4159 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4160 kthread_prio, kthread_prio_in);
4161
4162 rcu_scheduler_fully_active = 1;
4163 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4164 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4165 return 0;
4166 if (kthread_prio) {
4167 sp.sched_priority = kthread_prio;
4168 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4169 }
4170 rnp = rcu_get_root();
4171 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4172 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4173 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4174 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4175 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4176 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4177 wake_up_process(t);
4178 rcu_spawn_nocb_kthreads();
4179 rcu_spawn_boost_kthreads();
4180 return 0;
4181 }
4182 early_initcall(rcu_spawn_gp_kthread);
4183
4184 /*
4185 * This function is invoked towards the end of the scheduler's
4186 * initialization process. Before this is called, the idle task might
4187 * contain synchronous grace-period primitives (during which time, this idle
4188 * task is booting the system, and such primitives are no-ops). After this
4189 * function is called, any synchronous grace-period primitives are run as
4190 * expedited, with the requesting task driving the grace period forward.
4191 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4192 * runtime RCU functionality.
4193 */
4194 void rcu_scheduler_starting(void)
4195 {
4196 WARN_ON(num_online_cpus() != 1);
4197 WARN_ON(nr_context_switches() > 0);
4198 rcu_test_sync_prims();
4199 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4200 rcu_test_sync_prims();
4201 }
4202
4203 /*
4204 * Helper function for rcu_init() that initializes the rcu_state structure.
4205 */
4206 static void __init rcu_init_one(void)
4207 {
4208 static const char * const buf[] = RCU_NODE_NAME_INIT;
4209 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4210 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4211 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4212
4213 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4214 int cpustride = 1;
4215 int i;
4216 int j;
4217 struct rcu_node *rnp;
4218
4219 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4220
4221 /* Silence gcc 4.8 false positive about array index out of range. */
4222 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4223 panic("rcu_init_one: rcu_num_lvls out of range");
4224
4225 /* Initialize the level-tracking arrays. */
4226
4227 for (i = 1; i < rcu_num_lvls; i++)
4228 rcu_state.level[i] =
4229 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4230 rcu_init_levelspread(levelspread, num_rcu_lvl);
4231
4232 /* Initialize the elements themselves, starting from the leaves. */
4233
4234 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4235 cpustride *= levelspread[i];
4236 rnp = rcu_state.level[i];
4237 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4238 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4239 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4240 &rcu_node_class[i], buf[i]);
4241 raw_spin_lock_init(&rnp->fqslock);
4242 lockdep_set_class_and_name(&rnp->fqslock,
4243 &rcu_fqs_class[i], fqs[i]);
4244 rnp->gp_seq = rcu_state.gp_seq;
4245 rnp->gp_seq_needed = rcu_state.gp_seq;
4246 rnp->completedqs = rcu_state.gp_seq;
4247 rnp->qsmask = 0;
4248 rnp->qsmaskinit = 0;
4249 rnp->grplo = j * cpustride;
4250 rnp->grphi = (j + 1) * cpustride - 1;
4251 if (rnp->grphi >= nr_cpu_ids)
4252 rnp->grphi = nr_cpu_ids - 1;
4253 if (i == 0) {
4254 rnp->grpnum = 0;
4255 rnp->grpmask = 0;
4256 rnp->parent = NULL;
4257 } else {
4258 rnp->grpnum = j % levelspread[i - 1];
4259 rnp->grpmask = BIT(rnp->grpnum);
4260 rnp->parent = rcu_state.level[i - 1] +
4261 j / levelspread[i - 1];
4262 }
4263 rnp->level = i;
4264 INIT_LIST_HEAD(&rnp->blkd_tasks);
4265 rcu_init_one_nocb(rnp);
4266 init_waitqueue_head(&rnp->exp_wq[0]);
4267 init_waitqueue_head(&rnp->exp_wq[1]);
4268 init_waitqueue_head(&rnp->exp_wq[2]);
4269 init_waitqueue_head(&rnp->exp_wq[3]);
4270 spin_lock_init(&rnp->exp_lock);
4271 }
4272 }
4273
4274 init_swait_queue_head(&rcu_state.gp_wq);
4275 init_swait_queue_head(&rcu_state.expedited_wq);
4276 rnp = rcu_first_leaf_node();
4277 for_each_possible_cpu(i) {
4278 while (i > rnp->grphi)
4279 rnp++;
4280 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4281 rcu_boot_init_percpu_data(i);
4282 }
4283 }
4284
4285 /*
4286 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4287 * replace the definitions in tree.h because those are needed to size
4288 * the ->node array in the rcu_state structure.
4289 */
4290 static void __init rcu_init_geometry(void)
4291 {
4292 ulong d;
4293 int i;
4294 int rcu_capacity[RCU_NUM_LVLS];
4295
4296 /*
4297 * Initialize any unspecified boot parameters.
4298 * The default values of jiffies_till_first_fqs and
4299 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4300 * value, which is a function of HZ, then adding one for each
4301 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4302 */
4303 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4304 if (jiffies_till_first_fqs == ULONG_MAX)
4305 jiffies_till_first_fqs = d;
4306 if (jiffies_till_next_fqs == ULONG_MAX)
4307 jiffies_till_next_fqs = d;
4308 adjust_jiffies_till_sched_qs();
4309
4310 /* If the compile-time values are accurate, just leave. */
4311 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4312 nr_cpu_ids == NR_CPUS)
4313 return;
4314 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4315 rcu_fanout_leaf, nr_cpu_ids);
4316
4317 /*
4318 * The boot-time rcu_fanout_leaf parameter must be at least two
4319 * and cannot exceed the number of bits in the rcu_node masks.
4320 * Complain and fall back to the compile-time values if this
4321 * limit is exceeded.
4322 */
4323 if (rcu_fanout_leaf < 2 ||
4324 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4325 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4326 WARN_ON(1);
4327 return;
4328 }
4329
4330 /*
4331 * Compute number of nodes that can be handled an rcu_node tree
4332 * with the given number of levels.
4333 */
4334 rcu_capacity[0] = rcu_fanout_leaf;
4335 for (i = 1; i < RCU_NUM_LVLS; i++)
4336 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4337
4338 /*
4339 * The tree must be able to accommodate the configured number of CPUs.
4340 * If this limit is exceeded, fall back to the compile-time values.
4341 */
4342 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4343 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4344 WARN_ON(1);
4345 return;
4346 }
4347
4348 /* Calculate the number of levels in the tree. */
4349 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4350 }
4351 rcu_num_lvls = i + 1;
4352
4353 /* Calculate the number of rcu_nodes at each level of the tree. */
4354 for (i = 0; i < rcu_num_lvls; i++) {
4355 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4356 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4357 }
4358
4359 /* Calculate the total number of rcu_node structures. */
4360 rcu_num_nodes = 0;
4361 for (i = 0; i < rcu_num_lvls; i++)
4362 rcu_num_nodes += num_rcu_lvl[i];
4363 }
4364
4365 /*
4366 * Dump out the structure of the rcu_node combining tree associated
4367 * with the rcu_state structure.
4368 */
4369 static void __init rcu_dump_rcu_node_tree(void)
4370 {
4371 int level = 0;
4372 struct rcu_node *rnp;
4373
4374 pr_info("rcu_node tree layout dump\n");
4375 pr_info(" ");
4376 rcu_for_each_node_breadth_first(rnp) {
4377 if (rnp->level != level) {
4378 pr_cont("\n");
4379 pr_info(" ");
4380 level = rnp->level;
4381 }
4382 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4383 }
4384 pr_cont("\n");
4385 }
4386
4387 struct workqueue_struct *rcu_gp_wq;
4388 struct workqueue_struct *rcu_par_gp_wq;
4389
4390 static void __init kfree_rcu_batch_init(void)
4391 {
4392 int cpu;
4393 int i;
4394
4395 for_each_possible_cpu(cpu) {
4396 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4397 struct kvfree_rcu_bulk_data *bnode;
4398
4399 for (i = 0; i < KFREE_N_BATCHES; i++) {
4400 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4401 krcp->krw_arr[i].krcp = krcp;
4402 }
4403
4404 for (i = 0; i < rcu_min_cached_objs; i++) {
4405 bnode = (struct kvfree_rcu_bulk_data *)
4406 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
4407
4408 if (bnode)
4409 put_cached_bnode(krcp, bnode);
4410 else
4411 pr_err("Failed to preallocate for %d CPU!\n", cpu);
4412 }
4413
4414 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4415 krcp->initialized = true;
4416 }
4417 if (register_shrinker(&kfree_rcu_shrinker))
4418 pr_err("Failed to register kfree_rcu() shrinker!\n");
4419 }
4420
4421 void __init rcu_init(void)
4422 {
4423 int cpu;
4424
4425 rcu_early_boot_tests();
4426
4427 kfree_rcu_batch_init();
4428 rcu_bootup_announce();
4429 rcu_init_geometry();
4430 rcu_init_one();
4431 if (dump_tree)
4432 rcu_dump_rcu_node_tree();
4433 if (use_softirq)
4434 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4435
4436 /*
4437 * We don't need protection against CPU-hotplug here because
4438 * this is called early in boot, before either interrupts
4439 * or the scheduler are operational.
4440 */
4441 pm_notifier(rcu_pm_notify, 0);
4442 for_each_online_cpu(cpu) {
4443 rcutree_prepare_cpu(cpu);
4444 rcu_cpu_starting(cpu);
4445 rcutree_online_cpu(cpu);
4446 }
4447
4448 /* Create workqueue for expedited GPs and for Tree SRCU. */
4449 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4450 WARN_ON(!rcu_gp_wq);
4451 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4452 WARN_ON(!rcu_par_gp_wq);
4453 srcu_init();
4454
4455 /* Fill in default value for rcutree.qovld boot parameter. */
4456 /* -After- the rcu_node ->lock fields are initialized! */
4457 if (qovld < 0)
4458 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4459 else
4460 qovld_calc = qovld;
4461 }
4462
4463 #include "tree_stall.h"
4464 #include "tree_exp.h"
4465 #include "tree_plugin.h"