]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/rcu/tree.c
rcu: Provide diagnostic option to slow down grace-period initialization
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 struct rcu_state sname##_state = { \
95 .level = { &sname##_state.node[0] }, \
96 .call = cr, \
97 .fqs_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105 .name = RCU_STATE_NAME(sname), \
106 .abbr = sabbr, \
107 }; \
108 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158
159 /* rcuc/rcub kthread realtime priority */
160 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
161 module_param(kthread_prio, int, 0644);
162
163 /* Delay in jiffies for grace-period initialization delays. */
164 static int gp_init_delay = IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT)
165 ? CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
166 : 0;
167 module_param(gp_init_delay, int, 0644);
168
169 /*
170 * Track the rcutorture test sequence number and the update version
171 * number within a given test. The rcutorture_testseq is incremented
172 * on every rcutorture module load and unload, so has an odd value
173 * when a test is running. The rcutorture_vernum is set to zero
174 * when rcutorture starts and is incremented on each rcutorture update.
175 * These variables enable correlating rcutorture output with the
176 * RCU tracing information.
177 */
178 unsigned long rcutorture_testseq;
179 unsigned long rcutorture_vernum;
180
181 /*
182 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
183 * permit this function to be invoked without holding the root rcu_node
184 * structure's ->lock, but of course results can be subject to change.
185 */
186 static int rcu_gp_in_progress(struct rcu_state *rsp)
187 {
188 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
189 }
190
191 /*
192 * Note a quiescent state. Because we do not need to know
193 * how many quiescent states passed, just if there was at least
194 * one since the start of the grace period, this just sets a flag.
195 * The caller must have disabled preemption.
196 */
197 void rcu_sched_qs(void)
198 {
199 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
200 trace_rcu_grace_period(TPS("rcu_sched"),
201 __this_cpu_read(rcu_sched_data.gpnum),
202 TPS("cpuqs"));
203 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
204 }
205 }
206
207 void rcu_bh_qs(void)
208 {
209 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
210 trace_rcu_grace_period(TPS("rcu_bh"),
211 __this_cpu_read(rcu_bh_data.gpnum),
212 TPS("cpuqs"));
213 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
214 }
215 }
216
217 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
218
219 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
220 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
221 .dynticks = ATOMIC_INIT(1),
222 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
223 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
224 .dynticks_idle = ATOMIC_INIT(1),
225 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
226 };
227
228 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
229 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
230
231 /*
232 * Let the RCU core know that this CPU has gone through the scheduler,
233 * which is a quiescent state. This is called when the need for a
234 * quiescent state is urgent, so we burn an atomic operation and full
235 * memory barriers to let the RCU core know about it, regardless of what
236 * this CPU might (or might not) do in the near future.
237 *
238 * We inform the RCU core by emulating a zero-duration dyntick-idle
239 * period, which we in turn do by incrementing the ->dynticks counter
240 * by two.
241 */
242 static void rcu_momentary_dyntick_idle(void)
243 {
244 unsigned long flags;
245 struct rcu_data *rdp;
246 struct rcu_dynticks *rdtp;
247 int resched_mask;
248 struct rcu_state *rsp;
249
250 local_irq_save(flags);
251
252 /*
253 * Yes, we can lose flag-setting operations. This is OK, because
254 * the flag will be set again after some delay.
255 */
256 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
257 raw_cpu_write(rcu_sched_qs_mask, 0);
258
259 /* Find the flavor that needs a quiescent state. */
260 for_each_rcu_flavor(rsp) {
261 rdp = raw_cpu_ptr(rsp->rda);
262 if (!(resched_mask & rsp->flavor_mask))
263 continue;
264 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
265 if (ACCESS_ONCE(rdp->mynode->completed) !=
266 ACCESS_ONCE(rdp->cond_resched_completed))
267 continue;
268
269 /*
270 * Pretend to be momentarily idle for the quiescent state.
271 * This allows the grace-period kthread to record the
272 * quiescent state, with no need for this CPU to do anything
273 * further.
274 */
275 rdtp = this_cpu_ptr(&rcu_dynticks);
276 smp_mb__before_atomic(); /* Earlier stuff before QS. */
277 atomic_add(2, &rdtp->dynticks); /* QS. */
278 smp_mb__after_atomic(); /* Later stuff after QS. */
279 break;
280 }
281 local_irq_restore(flags);
282 }
283
284 /*
285 * Note a context switch. This is a quiescent state for RCU-sched,
286 * and requires special handling for preemptible RCU.
287 * The caller must have disabled preemption.
288 */
289 void rcu_note_context_switch(void)
290 {
291 trace_rcu_utilization(TPS("Start context switch"));
292 rcu_sched_qs();
293 rcu_preempt_note_context_switch();
294 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
295 rcu_momentary_dyntick_idle();
296 trace_rcu_utilization(TPS("End context switch"));
297 }
298 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
299
300 /*
301 * Register a quiesecent state for all RCU flavors. If there is an
302 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
303 * dyntick-idle quiescent state visible to other CPUs (but only for those
304 * RCU flavors in desparate need of a quiescent state, which will normally
305 * be none of them). Either way, do a lightweight quiescent state for
306 * all RCU flavors.
307 */
308 void rcu_all_qs(void)
309 {
310 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
311 rcu_momentary_dyntick_idle();
312 this_cpu_inc(rcu_qs_ctr);
313 }
314 EXPORT_SYMBOL_GPL(rcu_all_qs);
315
316 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
317 static long qhimark = 10000; /* If this many pending, ignore blimit. */
318 static long qlowmark = 100; /* Once only this many pending, use blimit. */
319
320 module_param(blimit, long, 0444);
321 module_param(qhimark, long, 0444);
322 module_param(qlowmark, long, 0444);
323
324 static ulong jiffies_till_first_fqs = ULONG_MAX;
325 static ulong jiffies_till_next_fqs = ULONG_MAX;
326
327 module_param(jiffies_till_first_fqs, ulong, 0644);
328 module_param(jiffies_till_next_fqs, ulong, 0644);
329
330 /*
331 * How long the grace period must be before we start recruiting
332 * quiescent-state help from rcu_note_context_switch().
333 */
334 static ulong jiffies_till_sched_qs = HZ / 20;
335 module_param(jiffies_till_sched_qs, ulong, 0644);
336
337 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
338 struct rcu_data *rdp);
339 static void force_qs_rnp(struct rcu_state *rsp,
340 int (*f)(struct rcu_data *rsp, bool *isidle,
341 unsigned long *maxj),
342 bool *isidle, unsigned long *maxj);
343 static void force_quiescent_state(struct rcu_state *rsp);
344 static int rcu_pending(void);
345
346 /*
347 * Return the number of RCU batches started thus far for debug & stats.
348 */
349 unsigned long rcu_batches_started(void)
350 {
351 return rcu_state_p->gpnum;
352 }
353 EXPORT_SYMBOL_GPL(rcu_batches_started);
354
355 /*
356 * Return the number of RCU-sched batches started thus far for debug & stats.
357 */
358 unsigned long rcu_batches_started_sched(void)
359 {
360 return rcu_sched_state.gpnum;
361 }
362 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
363
364 /*
365 * Return the number of RCU BH batches started thus far for debug & stats.
366 */
367 unsigned long rcu_batches_started_bh(void)
368 {
369 return rcu_bh_state.gpnum;
370 }
371 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
372
373 /*
374 * Return the number of RCU batches completed thus far for debug & stats.
375 */
376 unsigned long rcu_batches_completed(void)
377 {
378 return rcu_state_p->completed;
379 }
380 EXPORT_SYMBOL_GPL(rcu_batches_completed);
381
382 /*
383 * Return the number of RCU-sched batches completed thus far for debug & stats.
384 */
385 unsigned long rcu_batches_completed_sched(void)
386 {
387 return rcu_sched_state.completed;
388 }
389 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
390
391 /*
392 * Return the number of RCU BH batches completed thus far for debug & stats.
393 */
394 unsigned long rcu_batches_completed_bh(void)
395 {
396 return rcu_bh_state.completed;
397 }
398 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
399
400 /*
401 * Force a quiescent state.
402 */
403 void rcu_force_quiescent_state(void)
404 {
405 force_quiescent_state(rcu_state_p);
406 }
407 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
408
409 /*
410 * Force a quiescent state for RCU BH.
411 */
412 void rcu_bh_force_quiescent_state(void)
413 {
414 force_quiescent_state(&rcu_bh_state);
415 }
416 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
417
418 /*
419 * Show the state of the grace-period kthreads.
420 */
421 void show_rcu_gp_kthreads(void)
422 {
423 struct rcu_state *rsp;
424
425 for_each_rcu_flavor(rsp) {
426 pr_info("%s: wait state: %d ->state: %#lx\n",
427 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
428 /* sched_show_task(rsp->gp_kthread); */
429 }
430 }
431 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
432
433 /*
434 * Record the number of times rcutorture tests have been initiated and
435 * terminated. This information allows the debugfs tracing stats to be
436 * correlated to the rcutorture messages, even when the rcutorture module
437 * is being repeatedly loaded and unloaded. In other words, we cannot
438 * store this state in rcutorture itself.
439 */
440 void rcutorture_record_test_transition(void)
441 {
442 rcutorture_testseq++;
443 rcutorture_vernum = 0;
444 }
445 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
446
447 /*
448 * Send along grace-period-related data for rcutorture diagnostics.
449 */
450 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
451 unsigned long *gpnum, unsigned long *completed)
452 {
453 struct rcu_state *rsp = NULL;
454
455 switch (test_type) {
456 case RCU_FLAVOR:
457 rsp = rcu_state_p;
458 break;
459 case RCU_BH_FLAVOR:
460 rsp = &rcu_bh_state;
461 break;
462 case RCU_SCHED_FLAVOR:
463 rsp = &rcu_sched_state;
464 break;
465 default:
466 break;
467 }
468 if (rsp != NULL) {
469 *flags = ACCESS_ONCE(rsp->gp_flags);
470 *gpnum = ACCESS_ONCE(rsp->gpnum);
471 *completed = ACCESS_ONCE(rsp->completed);
472 return;
473 }
474 *flags = 0;
475 *gpnum = 0;
476 *completed = 0;
477 }
478 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
479
480 /*
481 * Record the number of writer passes through the current rcutorture test.
482 * This is also used to correlate debugfs tracing stats with the rcutorture
483 * messages.
484 */
485 void rcutorture_record_progress(unsigned long vernum)
486 {
487 rcutorture_vernum++;
488 }
489 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
490
491 /*
492 * Force a quiescent state for RCU-sched.
493 */
494 void rcu_sched_force_quiescent_state(void)
495 {
496 force_quiescent_state(&rcu_sched_state);
497 }
498 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
499
500 /*
501 * Does the CPU have callbacks ready to be invoked?
502 */
503 static int
504 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
505 {
506 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
507 rdp->nxttail[RCU_DONE_TAIL] != NULL;
508 }
509
510 /*
511 * Return the root node of the specified rcu_state structure.
512 */
513 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
514 {
515 return &rsp->node[0];
516 }
517
518 /*
519 * Is there any need for future grace periods?
520 * Interrupts must be disabled. If the caller does not hold the root
521 * rnp_node structure's ->lock, the results are advisory only.
522 */
523 static int rcu_future_needs_gp(struct rcu_state *rsp)
524 {
525 struct rcu_node *rnp = rcu_get_root(rsp);
526 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
527 int *fp = &rnp->need_future_gp[idx];
528
529 return ACCESS_ONCE(*fp);
530 }
531
532 /*
533 * Does the current CPU require a not-yet-started grace period?
534 * The caller must have disabled interrupts to prevent races with
535 * normal callback registry.
536 */
537 static int
538 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
539 {
540 int i;
541
542 if (rcu_gp_in_progress(rsp))
543 return 0; /* No, a grace period is already in progress. */
544 if (rcu_future_needs_gp(rsp))
545 return 1; /* Yes, a no-CBs CPU needs one. */
546 if (!rdp->nxttail[RCU_NEXT_TAIL])
547 return 0; /* No, this is a no-CBs (or offline) CPU. */
548 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
549 return 1; /* Yes, this CPU has newly registered callbacks. */
550 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
551 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
552 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
553 rdp->nxtcompleted[i]))
554 return 1; /* Yes, CBs for future grace period. */
555 return 0; /* No grace period needed. */
556 }
557
558 /*
559 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
560 *
561 * If the new value of the ->dynticks_nesting counter now is zero,
562 * we really have entered idle, and must do the appropriate accounting.
563 * The caller must have disabled interrupts.
564 */
565 static void rcu_eqs_enter_common(long long oldval, bool user)
566 {
567 struct rcu_state *rsp;
568 struct rcu_data *rdp;
569 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
570
571 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
572 if (!user && !is_idle_task(current)) {
573 struct task_struct *idle __maybe_unused =
574 idle_task(smp_processor_id());
575
576 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
577 ftrace_dump(DUMP_ORIG);
578 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
579 current->pid, current->comm,
580 idle->pid, idle->comm); /* must be idle task! */
581 }
582 for_each_rcu_flavor(rsp) {
583 rdp = this_cpu_ptr(rsp->rda);
584 do_nocb_deferred_wakeup(rdp);
585 }
586 rcu_prepare_for_idle();
587 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
588 smp_mb__before_atomic(); /* See above. */
589 atomic_inc(&rdtp->dynticks);
590 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
591 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
592 rcu_dynticks_task_enter();
593
594 /*
595 * It is illegal to enter an extended quiescent state while
596 * in an RCU read-side critical section.
597 */
598 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
599 "Illegal idle entry in RCU read-side critical section.");
600 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
601 "Illegal idle entry in RCU-bh read-side critical section.");
602 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
603 "Illegal idle entry in RCU-sched read-side critical section.");
604 }
605
606 /*
607 * Enter an RCU extended quiescent state, which can be either the
608 * idle loop or adaptive-tickless usermode execution.
609 */
610 static void rcu_eqs_enter(bool user)
611 {
612 long long oldval;
613 struct rcu_dynticks *rdtp;
614
615 rdtp = this_cpu_ptr(&rcu_dynticks);
616 oldval = rdtp->dynticks_nesting;
617 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
618 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
619 rdtp->dynticks_nesting = 0;
620 rcu_eqs_enter_common(oldval, user);
621 } else {
622 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
623 }
624 }
625
626 /**
627 * rcu_idle_enter - inform RCU that current CPU is entering idle
628 *
629 * Enter idle mode, in other words, -leave- the mode in which RCU
630 * read-side critical sections can occur. (Though RCU read-side
631 * critical sections can occur in irq handlers in idle, a possibility
632 * handled by irq_enter() and irq_exit().)
633 *
634 * We crowbar the ->dynticks_nesting field to zero to allow for
635 * the possibility of usermode upcalls having messed up our count
636 * of interrupt nesting level during the prior busy period.
637 */
638 void rcu_idle_enter(void)
639 {
640 unsigned long flags;
641
642 local_irq_save(flags);
643 rcu_eqs_enter(false);
644 rcu_sysidle_enter(0);
645 local_irq_restore(flags);
646 }
647 EXPORT_SYMBOL_GPL(rcu_idle_enter);
648
649 #ifdef CONFIG_RCU_USER_QS
650 /**
651 * rcu_user_enter - inform RCU that we are resuming userspace.
652 *
653 * Enter RCU idle mode right before resuming userspace. No use of RCU
654 * is permitted between this call and rcu_user_exit(). This way the
655 * CPU doesn't need to maintain the tick for RCU maintenance purposes
656 * when the CPU runs in userspace.
657 */
658 void rcu_user_enter(void)
659 {
660 rcu_eqs_enter(1);
661 }
662 #endif /* CONFIG_RCU_USER_QS */
663
664 /**
665 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
666 *
667 * Exit from an interrupt handler, which might possibly result in entering
668 * idle mode, in other words, leaving the mode in which read-side critical
669 * sections can occur.
670 *
671 * This code assumes that the idle loop never does anything that might
672 * result in unbalanced calls to irq_enter() and irq_exit(). If your
673 * architecture violates this assumption, RCU will give you what you
674 * deserve, good and hard. But very infrequently and irreproducibly.
675 *
676 * Use things like work queues to work around this limitation.
677 *
678 * You have been warned.
679 */
680 void rcu_irq_exit(void)
681 {
682 unsigned long flags;
683 long long oldval;
684 struct rcu_dynticks *rdtp;
685
686 local_irq_save(flags);
687 rdtp = this_cpu_ptr(&rcu_dynticks);
688 oldval = rdtp->dynticks_nesting;
689 rdtp->dynticks_nesting--;
690 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
691 if (rdtp->dynticks_nesting)
692 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
693 else
694 rcu_eqs_enter_common(oldval, true);
695 rcu_sysidle_enter(1);
696 local_irq_restore(flags);
697 }
698
699 /*
700 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
701 *
702 * If the new value of the ->dynticks_nesting counter was previously zero,
703 * we really have exited idle, and must do the appropriate accounting.
704 * The caller must have disabled interrupts.
705 */
706 static void rcu_eqs_exit_common(long long oldval, int user)
707 {
708 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
709
710 rcu_dynticks_task_exit();
711 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
712 atomic_inc(&rdtp->dynticks);
713 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
714 smp_mb__after_atomic(); /* See above. */
715 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
716 rcu_cleanup_after_idle();
717 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
718 if (!user && !is_idle_task(current)) {
719 struct task_struct *idle __maybe_unused =
720 idle_task(smp_processor_id());
721
722 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
723 oldval, rdtp->dynticks_nesting);
724 ftrace_dump(DUMP_ORIG);
725 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
726 current->pid, current->comm,
727 idle->pid, idle->comm); /* must be idle task! */
728 }
729 }
730
731 /*
732 * Exit an RCU extended quiescent state, which can be either the
733 * idle loop or adaptive-tickless usermode execution.
734 */
735 static void rcu_eqs_exit(bool user)
736 {
737 struct rcu_dynticks *rdtp;
738 long long oldval;
739
740 rdtp = this_cpu_ptr(&rcu_dynticks);
741 oldval = rdtp->dynticks_nesting;
742 WARN_ON_ONCE(oldval < 0);
743 if (oldval & DYNTICK_TASK_NEST_MASK) {
744 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
745 } else {
746 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
747 rcu_eqs_exit_common(oldval, user);
748 }
749 }
750
751 /**
752 * rcu_idle_exit - inform RCU that current CPU is leaving idle
753 *
754 * Exit idle mode, in other words, -enter- the mode in which RCU
755 * read-side critical sections can occur.
756 *
757 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
758 * allow for the possibility of usermode upcalls messing up our count
759 * of interrupt nesting level during the busy period that is just
760 * now starting.
761 */
762 void rcu_idle_exit(void)
763 {
764 unsigned long flags;
765
766 local_irq_save(flags);
767 rcu_eqs_exit(false);
768 rcu_sysidle_exit(0);
769 local_irq_restore(flags);
770 }
771 EXPORT_SYMBOL_GPL(rcu_idle_exit);
772
773 #ifdef CONFIG_RCU_USER_QS
774 /**
775 * rcu_user_exit - inform RCU that we are exiting userspace.
776 *
777 * Exit RCU idle mode while entering the kernel because it can
778 * run a RCU read side critical section anytime.
779 */
780 void rcu_user_exit(void)
781 {
782 rcu_eqs_exit(1);
783 }
784 #endif /* CONFIG_RCU_USER_QS */
785
786 /**
787 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
788 *
789 * Enter an interrupt handler, which might possibly result in exiting
790 * idle mode, in other words, entering the mode in which read-side critical
791 * sections can occur.
792 *
793 * Note that the Linux kernel is fully capable of entering an interrupt
794 * handler that it never exits, for example when doing upcalls to
795 * user mode! This code assumes that the idle loop never does upcalls to
796 * user mode. If your architecture does do upcalls from the idle loop (or
797 * does anything else that results in unbalanced calls to the irq_enter()
798 * and irq_exit() functions), RCU will give you what you deserve, good
799 * and hard. But very infrequently and irreproducibly.
800 *
801 * Use things like work queues to work around this limitation.
802 *
803 * You have been warned.
804 */
805 void rcu_irq_enter(void)
806 {
807 unsigned long flags;
808 struct rcu_dynticks *rdtp;
809 long long oldval;
810
811 local_irq_save(flags);
812 rdtp = this_cpu_ptr(&rcu_dynticks);
813 oldval = rdtp->dynticks_nesting;
814 rdtp->dynticks_nesting++;
815 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
816 if (oldval)
817 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
818 else
819 rcu_eqs_exit_common(oldval, true);
820 rcu_sysidle_exit(1);
821 local_irq_restore(flags);
822 }
823
824 /**
825 * rcu_nmi_enter - inform RCU of entry to NMI context
826 *
827 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
828 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
829 * that the CPU is active. This implementation permits nested NMIs, as
830 * long as the nesting level does not overflow an int. (You will probably
831 * run out of stack space first.)
832 */
833 void rcu_nmi_enter(void)
834 {
835 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
836 int incby = 2;
837
838 /* Complain about underflow. */
839 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
840
841 /*
842 * If idle from RCU viewpoint, atomically increment ->dynticks
843 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
844 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
845 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
846 * to be in the outermost NMI handler that interrupted an RCU-idle
847 * period (observation due to Andy Lutomirski).
848 */
849 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
850 smp_mb__before_atomic(); /* Force delay from prior write. */
851 atomic_inc(&rdtp->dynticks);
852 /* atomic_inc() before later RCU read-side crit sects */
853 smp_mb__after_atomic(); /* See above. */
854 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
855 incby = 1;
856 }
857 rdtp->dynticks_nmi_nesting += incby;
858 barrier();
859 }
860
861 /**
862 * rcu_nmi_exit - inform RCU of exit from NMI context
863 *
864 * If we are returning from the outermost NMI handler that interrupted an
865 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
866 * to let the RCU grace-period handling know that the CPU is back to
867 * being RCU-idle.
868 */
869 void rcu_nmi_exit(void)
870 {
871 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
872
873 /*
874 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
875 * (We are exiting an NMI handler, so RCU better be paying attention
876 * to us!)
877 */
878 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
879 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
880
881 /*
882 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
883 * leave it in non-RCU-idle state.
884 */
885 if (rdtp->dynticks_nmi_nesting != 1) {
886 rdtp->dynticks_nmi_nesting -= 2;
887 return;
888 }
889
890 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
891 rdtp->dynticks_nmi_nesting = 0;
892 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
893 smp_mb__before_atomic(); /* See above. */
894 atomic_inc(&rdtp->dynticks);
895 smp_mb__after_atomic(); /* Force delay to next write. */
896 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
897 }
898
899 /**
900 * __rcu_is_watching - are RCU read-side critical sections safe?
901 *
902 * Return true if RCU is watching the running CPU, which means that
903 * this CPU can safely enter RCU read-side critical sections. Unlike
904 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
905 * least disabled preemption.
906 */
907 bool notrace __rcu_is_watching(void)
908 {
909 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
910 }
911
912 /**
913 * rcu_is_watching - see if RCU thinks that the current CPU is idle
914 *
915 * If the current CPU is in its idle loop and is neither in an interrupt
916 * or NMI handler, return true.
917 */
918 bool notrace rcu_is_watching(void)
919 {
920 bool ret;
921
922 preempt_disable();
923 ret = __rcu_is_watching();
924 preempt_enable();
925 return ret;
926 }
927 EXPORT_SYMBOL_GPL(rcu_is_watching);
928
929 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
930
931 /*
932 * Is the current CPU online? Disable preemption to avoid false positives
933 * that could otherwise happen due to the current CPU number being sampled,
934 * this task being preempted, its old CPU being taken offline, resuming
935 * on some other CPU, then determining that its old CPU is now offline.
936 * It is OK to use RCU on an offline processor during initial boot, hence
937 * the check for rcu_scheduler_fully_active. Note also that it is OK
938 * for a CPU coming online to use RCU for one jiffy prior to marking itself
939 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
940 * offline to continue to use RCU for one jiffy after marking itself
941 * offline in the cpu_online_mask. This leniency is necessary given the
942 * non-atomic nature of the online and offline processing, for example,
943 * the fact that a CPU enters the scheduler after completing the CPU_DYING
944 * notifiers.
945 *
946 * This is also why RCU internally marks CPUs online during the
947 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
948 *
949 * Disable checking if in an NMI handler because we cannot safely report
950 * errors from NMI handlers anyway.
951 */
952 bool rcu_lockdep_current_cpu_online(void)
953 {
954 struct rcu_data *rdp;
955 struct rcu_node *rnp;
956 bool ret;
957
958 if (in_nmi())
959 return true;
960 preempt_disable();
961 rdp = this_cpu_ptr(&rcu_sched_data);
962 rnp = rdp->mynode;
963 ret = (rdp->grpmask & rnp->qsmaskinit) ||
964 !rcu_scheduler_fully_active;
965 preempt_enable();
966 return ret;
967 }
968 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
969
970 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
971
972 /**
973 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
974 *
975 * If the current CPU is idle or running at a first-level (not nested)
976 * interrupt from idle, return true. The caller must have at least
977 * disabled preemption.
978 */
979 static int rcu_is_cpu_rrupt_from_idle(void)
980 {
981 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
982 }
983
984 /*
985 * Snapshot the specified CPU's dynticks counter so that we can later
986 * credit them with an implicit quiescent state. Return 1 if this CPU
987 * is in dynticks idle mode, which is an extended quiescent state.
988 */
989 static int dyntick_save_progress_counter(struct rcu_data *rdp,
990 bool *isidle, unsigned long *maxj)
991 {
992 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
993 rcu_sysidle_check_cpu(rdp, isidle, maxj);
994 if ((rdp->dynticks_snap & 0x1) == 0) {
995 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
996 return 1;
997 } else {
998 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
999 rdp->mynode->gpnum))
1000 ACCESS_ONCE(rdp->gpwrap) = true;
1001 return 0;
1002 }
1003 }
1004
1005 /*
1006 * Return true if the specified CPU has passed through a quiescent
1007 * state by virtue of being in or having passed through an dynticks
1008 * idle state since the last call to dyntick_save_progress_counter()
1009 * for this same CPU, or by virtue of having been offline.
1010 */
1011 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1012 bool *isidle, unsigned long *maxj)
1013 {
1014 unsigned int curr;
1015 int *rcrmp;
1016 unsigned int snap;
1017
1018 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1019 snap = (unsigned int)rdp->dynticks_snap;
1020
1021 /*
1022 * If the CPU passed through or entered a dynticks idle phase with
1023 * no active irq/NMI handlers, then we can safely pretend that the CPU
1024 * already acknowledged the request to pass through a quiescent
1025 * state. Either way, that CPU cannot possibly be in an RCU
1026 * read-side critical section that started before the beginning
1027 * of the current RCU grace period.
1028 */
1029 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1030 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1031 rdp->dynticks_fqs++;
1032 return 1;
1033 }
1034
1035 /*
1036 * Check for the CPU being offline, but only if the grace period
1037 * is old enough. We don't need to worry about the CPU changing
1038 * state: If we see it offline even once, it has been through a
1039 * quiescent state.
1040 *
1041 * The reason for insisting that the grace period be at least
1042 * one jiffy old is that CPUs that are not quite online and that
1043 * have just gone offline can still execute RCU read-side critical
1044 * sections.
1045 */
1046 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1047 return 0; /* Grace period is not old enough. */
1048 barrier();
1049 if (cpu_is_offline(rdp->cpu)) {
1050 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1051 rdp->offline_fqs++;
1052 return 1;
1053 }
1054
1055 /*
1056 * A CPU running for an extended time within the kernel can
1057 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1058 * even context-switching back and forth between a pair of
1059 * in-kernel CPU-bound tasks cannot advance grace periods.
1060 * So if the grace period is old enough, make the CPU pay attention.
1061 * Note that the unsynchronized assignments to the per-CPU
1062 * rcu_sched_qs_mask variable are safe. Yes, setting of
1063 * bits can be lost, but they will be set again on the next
1064 * force-quiescent-state pass. So lost bit sets do not result
1065 * in incorrect behavior, merely in a grace period lasting
1066 * a few jiffies longer than it might otherwise. Because
1067 * there are at most four threads involved, and because the
1068 * updates are only once every few jiffies, the probability of
1069 * lossage (and thus of slight grace-period extension) is
1070 * quite low.
1071 *
1072 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1073 * is set too high, we override with half of the RCU CPU stall
1074 * warning delay.
1075 */
1076 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1077 if (ULONG_CMP_GE(jiffies,
1078 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1079 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1080 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1081 ACCESS_ONCE(rdp->cond_resched_completed) =
1082 ACCESS_ONCE(rdp->mynode->completed);
1083 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1084 ACCESS_ONCE(*rcrmp) =
1085 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1086 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1087 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1088 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1089 /* Time to beat on that CPU again! */
1090 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1091 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1092 }
1093 }
1094
1095 return 0;
1096 }
1097
1098 static void record_gp_stall_check_time(struct rcu_state *rsp)
1099 {
1100 unsigned long j = jiffies;
1101 unsigned long j1;
1102
1103 rsp->gp_start = j;
1104 smp_wmb(); /* Record start time before stall time. */
1105 j1 = rcu_jiffies_till_stall_check();
1106 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1107 rsp->jiffies_resched = j + j1 / 2;
1108 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1109 }
1110
1111 /*
1112 * Complain about starvation of grace-period kthread.
1113 */
1114 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1115 {
1116 unsigned long gpa;
1117 unsigned long j;
1118
1119 j = jiffies;
1120 gpa = ACCESS_ONCE(rsp->gp_activity);
1121 if (j - gpa > 2 * HZ)
1122 pr_err("%s kthread starved for %ld jiffies!\n",
1123 rsp->name, j - gpa);
1124 }
1125
1126 /*
1127 * Dump stacks of all tasks running on stalled CPUs.
1128 */
1129 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1130 {
1131 int cpu;
1132 unsigned long flags;
1133 struct rcu_node *rnp;
1134
1135 rcu_for_each_leaf_node(rsp, rnp) {
1136 raw_spin_lock_irqsave(&rnp->lock, flags);
1137 if (rnp->qsmask != 0) {
1138 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1139 if (rnp->qsmask & (1UL << cpu))
1140 dump_cpu_task(rnp->grplo + cpu);
1141 }
1142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1143 }
1144 }
1145
1146 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1147 {
1148 int cpu;
1149 long delta;
1150 unsigned long flags;
1151 unsigned long gpa;
1152 unsigned long j;
1153 int ndetected = 0;
1154 struct rcu_node *rnp = rcu_get_root(rsp);
1155 long totqlen = 0;
1156
1157 /* Only let one CPU complain about others per time interval. */
1158
1159 raw_spin_lock_irqsave(&rnp->lock, flags);
1160 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1161 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1162 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1163 return;
1164 }
1165 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1166 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1167
1168 /*
1169 * OK, time to rat on our buddy...
1170 * See Documentation/RCU/stallwarn.txt for info on how to debug
1171 * RCU CPU stall warnings.
1172 */
1173 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1174 rsp->name);
1175 print_cpu_stall_info_begin();
1176 rcu_for_each_leaf_node(rsp, rnp) {
1177 raw_spin_lock_irqsave(&rnp->lock, flags);
1178 ndetected += rcu_print_task_stall(rnp);
1179 if (rnp->qsmask != 0) {
1180 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1181 if (rnp->qsmask & (1UL << cpu)) {
1182 print_cpu_stall_info(rsp,
1183 rnp->grplo + cpu);
1184 ndetected++;
1185 }
1186 }
1187 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1188 }
1189
1190 print_cpu_stall_info_end();
1191 for_each_possible_cpu(cpu)
1192 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1193 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1194 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1195 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1196 if (ndetected) {
1197 rcu_dump_cpu_stacks(rsp);
1198 } else {
1199 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1200 ACCESS_ONCE(rsp->completed) == gpnum) {
1201 pr_err("INFO: Stall ended before state dump start\n");
1202 } else {
1203 j = jiffies;
1204 gpa = ACCESS_ONCE(rsp->gp_activity);
1205 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1206 rsp->name, j - gpa, j, gpa,
1207 jiffies_till_next_fqs,
1208 rcu_get_root(rsp)->qsmask);
1209 /* In this case, the current CPU might be at fault. */
1210 sched_show_task(current);
1211 }
1212 }
1213
1214 /* Complain about tasks blocking the grace period. */
1215 rcu_print_detail_task_stall(rsp);
1216
1217 rcu_check_gp_kthread_starvation(rsp);
1218
1219 force_quiescent_state(rsp); /* Kick them all. */
1220 }
1221
1222 static void print_cpu_stall(struct rcu_state *rsp)
1223 {
1224 int cpu;
1225 unsigned long flags;
1226 struct rcu_node *rnp = rcu_get_root(rsp);
1227 long totqlen = 0;
1228
1229 /*
1230 * OK, time to rat on ourselves...
1231 * See Documentation/RCU/stallwarn.txt for info on how to debug
1232 * RCU CPU stall warnings.
1233 */
1234 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1235 print_cpu_stall_info_begin();
1236 print_cpu_stall_info(rsp, smp_processor_id());
1237 print_cpu_stall_info_end();
1238 for_each_possible_cpu(cpu)
1239 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1240 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1241 jiffies - rsp->gp_start,
1242 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1243
1244 rcu_check_gp_kthread_starvation(rsp);
1245
1246 rcu_dump_cpu_stacks(rsp);
1247
1248 raw_spin_lock_irqsave(&rnp->lock, flags);
1249 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1250 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1251 3 * rcu_jiffies_till_stall_check() + 3;
1252 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1253
1254 /*
1255 * Attempt to revive the RCU machinery by forcing a context switch.
1256 *
1257 * A context switch would normally allow the RCU state machine to make
1258 * progress and it could be we're stuck in kernel space without context
1259 * switches for an entirely unreasonable amount of time.
1260 */
1261 resched_cpu(smp_processor_id());
1262 }
1263
1264 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1265 {
1266 unsigned long completed;
1267 unsigned long gpnum;
1268 unsigned long gps;
1269 unsigned long j;
1270 unsigned long js;
1271 struct rcu_node *rnp;
1272
1273 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1274 return;
1275 j = jiffies;
1276
1277 /*
1278 * Lots of memory barriers to reject false positives.
1279 *
1280 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1281 * then rsp->gp_start, and finally rsp->completed. These values
1282 * are updated in the opposite order with memory barriers (or
1283 * equivalent) during grace-period initialization and cleanup.
1284 * Now, a false positive can occur if we get an new value of
1285 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1286 * the memory barriers, the only way that this can happen is if one
1287 * grace period ends and another starts between these two fetches.
1288 * Detect this by comparing rsp->completed with the previous fetch
1289 * from rsp->gpnum.
1290 *
1291 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1292 * and rsp->gp_start suffice to forestall false positives.
1293 */
1294 gpnum = ACCESS_ONCE(rsp->gpnum);
1295 smp_rmb(); /* Pick up ->gpnum first... */
1296 js = ACCESS_ONCE(rsp->jiffies_stall);
1297 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1298 gps = ACCESS_ONCE(rsp->gp_start);
1299 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1300 completed = ACCESS_ONCE(rsp->completed);
1301 if (ULONG_CMP_GE(completed, gpnum) ||
1302 ULONG_CMP_LT(j, js) ||
1303 ULONG_CMP_GE(gps, js))
1304 return; /* No stall or GP completed since entering function. */
1305 rnp = rdp->mynode;
1306 if (rcu_gp_in_progress(rsp) &&
1307 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1308
1309 /* We haven't checked in, so go dump stack. */
1310 print_cpu_stall(rsp);
1311
1312 } else if (rcu_gp_in_progress(rsp) &&
1313 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1314
1315 /* They had a few time units to dump stack, so complain. */
1316 print_other_cpu_stall(rsp, gpnum);
1317 }
1318 }
1319
1320 /**
1321 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1322 *
1323 * Set the stall-warning timeout way off into the future, thus preventing
1324 * any RCU CPU stall-warning messages from appearing in the current set of
1325 * RCU grace periods.
1326 *
1327 * The caller must disable hard irqs.
1328 */
1329 void rcu_cpu_stall_reset(void)
1330 {
1331 struct rcu_state *rsp;
1332
1333 for_each_rcu_flavor(rsp)
1334 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1335 }
1336
1337 /*
1338 * Initialize the specified rcu_data structure's callback list to empty.
1339 */
1340 static void init_callback_list(struct rcu_data *rdp)
1341 {
1342 int i;
1343
1344 if (init_nocb_callback_list(rdp))
1345 return;
1346 rdp->nxtlist = NULL;
1347 for (i = 0; i < RCU_NEXT_SIZE; i++)
1348 rdp->nxttail[i] = &rdp->nxtlist;
1349 }
1350
1351 /*
1352 * Determine the value that ->completed will have at the end of the
1353 * next subsequent grace period. This is used to tag callbacks so that
1354 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1355 * been dyntick-idle for an extended period with callbacks under the
1356 * influence of RCU_FAST_NO_HZ.
1357 *
1358 * The caller must hold rnp->lock with interrupts disabled.
1359 */
1360 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1361 struct rcu_node *rnp)
1362 {
1363 /*
1364 * If RCU is idle, we just wait for the next grace period.
1365 * But we can only be sure that RCU is idle if we are looking
1366 * at the root rcu_node structure -- otherwise, a new grace
1367 * period might have started, but just not yet gotten around
1368 * to initializing the current non-root rcu_node structure.
1369 */
1370 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1371 return rnp->completed + 1;
1372
1373 /*
1374 * Otherwise, wait for a possible partial grace period and
1375 * then the subsequent full grace period.
1376 */
1377 return rnp->completed + 2;
1378 }
1379
1380 /*
1381 * Trace-event helper function for rcu_start_future_gp() and
1382 * rcu_nocb_wait_gp().
1383 */
1384 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1385 unsigned long c, const char *s)
1386 {
1387 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1388 rnp->completed, c, rnp->level,
1389 rnp->grplo, rnp->grphi, s);
1390 }
1391
1392 /*
1393 * Start some future grace period, as needed to handle newly arrived
1394 * callbacks. The required future grace periods are recorded in each
1395 * rcu_node structure's ->need_future_gp field. Returns true if there
1396 * is reason to awaken the grace-period kthread.
1397 *
1398 * The caller must hold the specified rcu_node structure's ->lock.
1399 */
1400 static bool __maybe_unused
1401 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1402 unsigned long *c_out)
1403 {
1404 unsigned long c;
1405 int i;
1406 bool ret = false;
1407 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1408
1409 /*
1410 * Pick up grace-period number for new callbacks. If this
1411 * grace period is already marked as needed, return to the caller.
1412 */
1413 c = rcu_cbs_completed(rdp->rsp, rnp);
1414 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1415 if (rnp->need_future_gp[c & 0x1]) {
1416 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1417 goto out;
1418 }
1419
1420 /*
1421 * If either this rcu_node structure or the root rcu_node structure
1422 * believe that a grace period is in progress, then we must wait
1423 * for the one following, which is in "c". Because our request
1424 * will be noticed at the end of the current grace period, we don't
1425 * need to explicitly start one. We only do the lockless check
1426 * of rnp_root's fields if the current rcu_node structure thinks
1427 * there is no grace period in flight, and because we hold rnp->lock,
1428 * the only possible change is when rnp_root's two fields are
1429 * equal, in which case rnp_root->gpnum might be concurrently
1430 * incremented. But that is OK, as it will just result in our
1431 * doing some extra useless work.
1432 */
1433 if (rnp->gpnum != rnp->completed ||
1434 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1435 rnp->need_future_gp[c & 0x1]++;
1436 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1437 goto out;
1438 }
1439
1440 /*
1441 * There might be no grace period in progress. If we don't already
1442 * hold it, acquire the root rcu_node structure's lock in order to
1443 * start one (if needed).
1444 */
1445 if (rnp != rnp_root) {
1446 raw_spin_lock(&rnp_root->lock);
1447 smp_mb__after_unlock_lock();
1448 }
1449
1450 /*
1451 * Get a new grace-period number. If there really is no grace
1452 * period in progress, it will be smaller than the one we obtained
1453 * earlier. Adjust callbacks as needed. Note that even no-CBs
1454 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1455 */
1456 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1457 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1458 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1459 rdp->nxtcompleted[i] = c;
1460
1461 /*
1462 * If the needed for the required grace period is already
1463 * recorded, trace and leave.
1464 */
1465 if (rnp_root->need_future_gp[c & 0x1]) {
1466 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1467 goto unlock_out;
1468 }
1469
1470 /* Record the need for the future grace period. */
1471 rnp_root->need_future_gp[c & 0x1]++;
1472
1473 /* If a grace period is not already in progress, start one. */
1474 if (rnp_root->gpnum != rnp_root->completed) {
1475 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1476 } else {
1477 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1478 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1479 }
1480 unlock_out:
1481 if (rnp != rnp_root)
1482 raw_spin_unlock(&rnp_root->lock);
1483 out:
1484 if (c_out != NULL)
1485 *c_out = c;
1486 return ret;
1487 }
1488
1489 /*
1490 * Clean up any old requests for the just-ended grace period. Also return
1491 * whether any additional grace periods have been requested. Also invoke
1492 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1493 * waiting for this grace period to complete.
1494 */
1495 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1496 {
1497 int c = rnp->completed;
1498 int needmore;
1499 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1500
1501 rcu_nocb_gp_cleanup(rsp, rnp);
1502 rnp->need_future_gp[c & 0x1] = 0;
1503 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1504 trace_rcu_future_gp(rnp, rdp, c,
1505 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1506 return needmore;
1507 }
1508
1509 /*
1510 * Awaken the grace-period kthread for the specified flavor of RCU.
1511 * Don't do a self-awaken, and don't bother awakening when there is
1512 * nothing for the grace-period kthread to do (as in several CPUs
1513 * raced to awaken, and we lost), and finally don't try to awaken
1514 * a kthread that has not yet been created.
1515 */
1516 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1517 {
1518 if (current == rsp->gp_kthread ||
1519 !ACCESS_ONCE(rsp->gp_flags) ||
1520 !rsp->gp_kthread)
1521 return;
1522 wake_up(&rsp->gp_wq);
1523 }
1524
1525 /*
1526 * If there is room, assign a ->completed number to any callbacks on
1527 * this CPU that have not already been assigned. Also accelerate any
1528 * callbacks that were previously assigned a ->completed number that has
1529 * since proven to be too conservative, which can happen if callbacks get
1530 * assigned a ->completed number while RCU is idle, but with reference to
1531 * a non-root rcu_node structure. This function is idempotent, so it does
1532 * not hurt to call it repeatedly. Returns an flag saying that we should
1533 * awaken the RCU grace-period kthread.
1534 *
1535 * The caller must hold rnp->lock with interrupts disabled.
1536 */
1537 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1538 struct rcu_data *rdp)
1539 {
1540 unsigned long c;
1541 int i;
1542 bool ret;
1543
1544 /* If the CPU has no callbacks, nothing to do. */
1545 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1546 return false;
1547
1548 /*
1549 * Starting from the sublist containing the callbacks most
1550 * recently assigned a ->completed number and working down, find the
1551 * first sublist that is not assignable to an upcoming grace period.
1552 * Such a sublist has something in it (first two tests) and has
1553 * a ->completed number assigned that will complete sooner than
1554 * the ->completed number for newly arrived callbacks (last test).
1555 *
1556 * The key point is that any later sublist can be assigned the
1557 * same ->completed number as the newly arrived callbacks, which
1558 * means that the callbacks in any of these later sublist can be
1559 * grouped into a single sublist, whether or not they have already
1560 * been assigned a ->completed number.
1561 */
1562 c = rcu_cbs_completed(rsp, rnp);
1563 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1564 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1565 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1566 break;
1567
1568 /*
1569 * If there are no sublist for unassigned callbacks, leave.
1570 * At the same time, advance "i" one sublist, so that "i" will
1571 * index into the sublist where all the remaining callbacks should
1572 * be grouped into.
1573 */
1574 if (++i >= RCU_NEXT_TAIL)
1575 return false;
1576
1577 /*
1578 * Assign all subsequent callbacks' ->completed number to the next
1579 * full grace period and group them all in the sublist initially
1580 * indexed by "i".
1581 */
1582 for (; i <= RCU_NEXT_TAIL; i++) {
1583 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1584 rdp->nxtcompleted[i] = c;
1585 }
1586 /* Record any needed additional grace periods. */
1587 ret = rcu_start_future_gp(rnp, rdp, NULL);
1588
1589 /* Trace depending on how much we were able to accelerate. */
1590 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1591 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1592 else
1593 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1594 return ret;
1595 }
1596
1597 /*
1598 * Move any callbacks whose grace period has completed to the
1599 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1600 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1601 * sublist. This function is idempotent, so it does not hurt to
1602 * invoke it repeatedly. As long as it is not invoked -too- often...
1603 * Returns true if the RCU grace-period kthread needs to be awakened.
1604 *
1605 * The caller must hold rnp->lock with interrupts disabled.
1606 */
1607 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1608 struct rcu_data *rdp)
1609 {
1610 int i, j;
1611
1612 /* If the CPU has no callbacks, nothing to do. */
1613 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1614 return false;
1615
1616 /*
1617 * Find all callbacks whose ->completed numbers indicate that they
1618 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1619 */
1620 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1621 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1622 break;
1623 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1624 }
1625 /* Clean up any sublist tail pointers that were misordered above. */
1626 for (j = RCU_WAIT_TAIL; j < i; j++)
1627 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1628
1629 /* Copy down callbacks to fill in empty sublists. */
1630 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1631 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1632 break;
1633 rdp->nxttail[j] = rdp->nxttail[i];
1634 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1635 }
1636
1637 /* Classify any remaining callbacks. */
1638 return rcu_accelerate_cbs(rsp, rnp, rdp);
1639 }
1640
1641 /*
1642 * Update CPU-local rcu_data state to record the beginnings and ends of
1643 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1644 * structure corresponding to the current CPU, and must have irqs disabled.
1645 * Returns true if the grace-period kthread needs to be awakened.
1646 */
1647 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1648 struct rcu_data *rdp)
1649 {
1650 bool ret;
1651
1652 /* Handle the ends of any preceding grace periods first. */
1653 if (rdp->completed == rnp->completed &&
1654 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1655
1656 /* No grace period end, so just accelerate recent callbacks. */
1657 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1658
1659 } else {
1660
1661 /* Advance callbacks. */
1662 ret = rcu_advance_cbs(rsp, rnp, rdp);
1663
1664 /* Remember that we saw this grace-period completion. */
1665 rdp->completed = rnp->completed;
1666 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1667 }
1668
1669 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1670 /*
1671 * If the current grace period is waiting for this CPU,
1672 * set up to detect a quiescent state, otherwise don't
1673 * go looking for one.
1674 */
1675 rdp->gpnum = rnp->gpnum;
1676 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1677 rdp->passed_quiesce = 0;
1678 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1679 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1680 zero_cpu_stall_ticks(rdp);
1681 ACCESS_ONCE(rdp->gpwrap) = false;
1682 }
1683 return ret;
1684 }
1685
1686 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1687 {
1688 unsigned long flags;
1689 bool needwake;
1690 struct rcu_node *rnp;
1691
1692 local_irq_save(flags);
1693 rnp = rdp->mynode;
1694 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1695 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1696 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1697 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1698 local_irq_restore(flags);
1699 return;
1700 }
1701 smp_mb__after_unlock_lock();
1702 needwake = __note_gp_changes(rsp, rnp, rdp);
1703 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1704 if (needwake)
1705 rcu_gp_kthread_wake(rsp);
1706 }
1707
1708 /*
1709 * Initialize a new grace period. Return 0 if no grace period required.
1710 */
1711 static int rcu_gp_init(struct rcu_state *rsp)
1712 {
1713 struct rcu_data *rdp;
1714 struct rcu_node *rnp = rcu_get_root(rsp);
1715
1716 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1717 rcu_bind_gp_kthread();
1718 raw_spin_lock_irq(&rnp->lock);
1719 smp_mb__after_unlock_lock();
1720 if (!ACCESS_ONCE(rsp->gp_flags)) {
1721 /* Spurious wakeup, tell caller to go back to sleep. */
1722 raw_spin_unlock_irq(&rnp->lock);
1723 return 0;
1724 }
1725 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1726
1727 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1728 /*
1729 * Grace period already in progress, don't start another.
1730 * Not supposed to be able to happen.
1731 */
1732 raw_spin_unlock_irq(&rnp->lock);
1733 return 0;
1734 }
1735
1736 /* Advance to a new grace period and initialize state. */
1737 record_gp_stall_check_time(rsp);
1738 /* Record GP times before starting GP, hence smp_store_release(). */
1739 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1740 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1741 raw_spin_unlock_irq(&rnp->lock);
1742
1743 /* Exclude any concurrent CPU-hotplug operations. */
1744 mutex_lock(&rsp->onoff_mutex);
1745 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1746
1747 /*
1748 * Set the quiescent-state-needed bits in all the rcu_node
1749 * structures for all currently online CPUs in breadth-first order,
1750 * starting from the root rcu_node structure, relying on the layout
1751 * of the tree within the rsp->node[] array. Note that other CPUs
1752 * will access only the leaves of the hierarchy, thus seeing that no
1753 * grace period is in progress, at least until the corresponding
1754 * leaf node has been initialized. In addition, we have excluded
1755 * CPU-hotplug operations.
1756 *
1757 * The grace period cannot complete until the initialization
1758 * process finishes, because this kthread handles both.
1759 */
1760 rcu_for_each_node_breadth_first(rsp, rnp) {
1761 raw_spin_lock_irq(&rnp->lock);
1762 smp_mb__after_unlock_lock();
1763 rdp = this_cpu_ptr(rsp->rda);
1764 rcu_preempt_check_blocked_tasks(rnp);
1765 rnp->qsmask = rnp->qsmaskinit;
1766 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1767 WARN_ON_ONCE(rnp->completed != rsp->completed);
1768 ACCESS_ONCE(rnp->completed) = rsp->completed;
1769 if (rnp == rdp->mynode)
1770 (void)__note_gp_changes(rsp, rnp, rdp);
1771 rcu_preempt_boost_start_gp(rnp);
1772 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1773 rnp->level, rnp->grplo,
1774 rnp->grphi, rnp->qsmask);
1775 raw_spin_unlock_irq(&rnp->lock);
1776 cond_resched_rcu_qs();
1777 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1778 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) &&
1779 gp_init_delay > 0 &&
1780 !(rsp->gpnum % (rcu_num_nodes * 10)))
1781 schedule_timeout_uninterruptible(gp_init_delay);
1782 }
1783
1784 mutex_unlock(&rsp->onoff_mutex);
1785 return 1;
1786 }
1787
1788 /*
1789 * Do one round of quiescent-state forcing.
1790 */
1791 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1792 {
1793 int fqs_state = fqs_state_in;
1794 bool isidle = false;
1795 unsigned long maxj;
1796 struct rcu_node *rnp = rcu_get_root(rsp);
1797
1798 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1799 rsp->n_force_qs++;
1800 if (fqs_state == RCU_SAVE_DYNTICK) {
1801 /* Collect dyntick-idle snapshots. */
1802 if (is_sysidle_rcu_state(rsp)) {
1803 isidle = true;
1804 maxj = jiffies - ULONG_MAX / 4;
1805 }
1806 force_qs_rnp(rsp, dyntick_save_progress_counter,
1807 &isidle, &maxj);
1808 rcu_sysidle_report_gp(rsp, isidle, maxj);
1809 fqs_state = RCU_FORCE_QS;
1810 } else {
1811 /* Handle dyntick-idle and offline CPUs. */
1812 isidle = false;
1813 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1814 }
1815 /* Clear flag to prevent immediate re-entry. */
1816 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1817 raw_spin_lock_irq(&rnp->lock);
1818 smp_mb__after_unlock_lock();
1819 ACCESS_ONCE(rsp->gp_flags) =
1820 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1821 raw_spin_unlock_irq(&rnp->lock);
1822 }
1823 return fqs_state;
1824 }
1825
1826 /*
1827 * Clean up after the old grace period.
1828 */
1829 static void rcu_gp_cleanup(struct rcu_state *rsp)
1830 {
1831 unsigned long gp_duration;
1832 bool needgp = false;
1833 int nocb = 0;
1834 struct rcu_data *rdp;
1835 struct rcu_node *rnp = rcu_get_root(rsp);
1836
1837 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1838 raw_spin_lock_irq(&rnp->lock);
1839 smp_mb__after_unlock_lock();
1840 gp_duration = jiffies - rsp->gp_start;
1841 if (gp_duration > rsp->gp_max)
1842 rsp->gp_max = gp_duration;
1843
1844 /*
1845 * We know the grace period is complete, but to everyone else
1846 * it appears to still be ongoing. But it is also the case
1847 * that to everyone else it looks like there is nothing that
1848 * they can do to advance the grace period. It is therefore
1849 * safe for us to drop the lock in order to mark the grace
1850 * period as completed in all of the rcu_node structures.
1851 */
1852 raw_spin_unlock_irq(&rnp->lock);
1853
1854 /*
1855 * Propagate new ->completed value to rcu_node structures so
1856 * that other CPUs don't have to wait until the start of the next
1857 * grace period to process their callbacks. This also avoids
1858 * some nasty RCU grace-period initialization races by forcing
1859 * the end of the current grace period to be completely recorded in
1860 * all of the rcu_node structures before the beginning of the next
1861 * grace period is recorded in any of the rcu_node structures.
1862 */
1863 rcu_for_each_node_breadth_first(rsp, rnp) {
1864 raw_spin_lock_irq(&rnp->lock);
1865 smp_mb__after_unlock_lock();
1866 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1867 rdp = this_cpu_ptr(rsp->rda);
1868 if (rnp == rdp->mynode)
1869 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1870 /* smp_mb() provided by prior unlock-lock pair. */
1871 nocb += rcu_future_gp_cleanup(rsp, rnp);
1872 raw_spin_unlock_irq(&rnp->lock);
1873 cond_resched_rcu_qs();
1874 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1875 }
1876 rnp = rcu_get_root(rsp);
1877 raw_spin_lock_irq(&rnp->lock);
1878 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1879 rcu_nocb_gp_set(rnp, nocb);
1880
1881 /* Declare grace period done. */
1882 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1883 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1884 rsp->fqs_state = RCU_GP_IDLE;
1885 rdp = this_cpu_ptr(rsp->rda);
1886 /* Advance CBs to reduce false positives below. */
1887 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1888 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1889 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1890 trace_rcu_grace_period(rsp->name,
1891 ACCESS_ONCE(rsp->gpnum),
1892 TPS("newreq"));
1893 }
1894 raw_spin_unlock_irq(&rnp->lock);
1895 }
1896
1897 /*
1898 * Body of kthread that handles grace periods.
1899 */
1900 static int __noreturn rcu_gp_kthread(void *arg)
1901 {
1902 int fqs_state;
1903 int gf;
1904 unsigned long j;
1905 int ret;
1906 struct rcu_state *rsp = arg;
1907 struct rcu_node *rnp = rcu_get_root(rsp);
1908
1909 for (;;) {
1910
1911 /* Handle grace-period start. */
1912 for (;;) {
1913 trace_rcu_grace_period(rsp->name,
1914 ACCESS_ONCE(rsp->gpnum),
1915 TPS("reqwait"));
1916 rsp->gp_state = RCU_GP_WAIT_GPS;
1917 wait_event_interruptible(rsp->gp_wq,
1918 ACCESS_ONCE(rsp->gp_flags) &
1919 RCU_GP_FLAG_INIT);
1920 /* Locking provides needed memory barrier. */
1921 if (rcu_gp_init(rsp))
1922 break;
1923 cond_resched_rcu_qs();
1924 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1925 WARN_ON(signal_pending(current));
1926 trace_rcu_grace_period(rsp->name,
1927 ACCESS_ONCE(rsp->gpnum),
1928 TPS("reqwaitsig"));
1929 }
1930
1931 /* Handle quiescent-state forcing. */
1932 fqs_state = RCU_SAVE_DYNTICK;
1933 j = jiffies_till_first_fqs;
1934 if (j > HZ) {
1935 j = HZ;
1936 jiffies_till_first_fqs = HZ;
1937 }
1938 ret = 0;
1939 for (;;) {
1940 if (!ret)
1941 rsp->jiffies_force_qs = jiffies + j;
1942 trace_rcu_grace_period(rsp->name,
1943 ACCESS_ONCE(rsp->gpnum),
1944 TPS("fqswait"));
1945 rsp->gp_state = RCU_GP_WAIT_FQS;
1946 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1947 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1948 RCU_GP_FLAG_FQS) ||
1949 (!ACCESS_ONCE(rnp->qsmask) &&
1950 !rcu_preempt_blocked_readers_cgp(rnp)),
1951 j);
1952 /* Locking provides needed memory barriers. */
1953 /* If grace period done, leave loop. */
1954 if (!ACCESS_ONCE(rnp->qsmask) &&
1955 !rcu_preempt_blocked_readers_cgp(rnp))
1956 break;
1957 /* If time for quiescent-state forcing, do it. */
1958 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1959 (gf & RCU_GP_FLAG_FQS)) {
1960 trace_rcu_grace_period(rsp->name,
1961 ACCESS_ONCE(rsp->gpnum),
1962 TPS("fqsstart"));
1963 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1964 trace_rcu_grace_period(rsp->name,
1965 ACCESS_ONCE(rsp->gpnum),
1966 TPS("fqsend"));
1967 cond_resched_rcu_qs();
1968 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1969 } else {
1970 /* Deal with stray signal. */
1971 cond_resched_rcu_qs();
1972 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1973 WARN_ON(signal_pending(current));
1974 trace_rcu_grace_period(rsp->name,
1975 ACCESS_ONCE(rsp->gpnum),
1976 TPS("fqswaitsig"));
1977 }
1978 j = jiffies_till_next_fqs;
1979 if (j > HZ) {
1980 j = HZ;
1981 jiffies_till_next_fqs = HZ;
1982 } else if (j < 1) {
1983 j = 1;
1984 jiffies_till_next_fqs = 1;
1985 }
1986 }
1987
1988 /* Handle grace-period end. */
1989 rcu_gp_cleanup(rsp);
1990 }
1991 }
1992
1993 /*
1994 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1995 * in preparation for detecting the next grace period. The caller must hold
1996 * the root node's ->lock and hard irqs must be disabled.
1997 *
1998 * Note that it is legal for a dying CPU (which is marked as offline) to
1999 * invoke this function. This can happen when the dying CPU reports its
2000 * quiescent state.
2001 *
2002 * Returns true if the grace-period kthread must be awakened.
2003 */
2004 static bool
2005 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2006 struct rcu_data *rdp)
2007 {
2008 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2009 /*
2010 * Either we have not yet spawned the grace-period
2011 * task, this CPU does not need another grace period,
2012 * or a grace period is already in progress.
2013 * Either way, don't start a new grace period.
2014 */
2015 return false;
2016 }
2017 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2018 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2019 TPS("newreq"));
2020
2021 /*
2022 * We can't do wakeups while holding the rnp->lock, as that
2023 * could cause possible deadlocks with the rq->lock. Defer
2024 * the wakeup to our caller.
2025 */
2026 return true;
2027 }
2028
2029 /*
2030 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2031 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2032 * is invoked indirectly from rcu_advance_cbs(), which would result in
2033 * endless recursion -- or would do so if it wasn't for the self-deadlock
2034 * that is encountered beforehand.
2035 *
2036 * Returns true if the grace-period kthread needs to be awakened.
2037 */
2038 static bool rcu_start_gp(struct rcu_state *rsp)
2039 {
2040 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2041 struct rcu_node *rnp = rcu_get_root(rsp);
2042 bool ret = false;
2043
2044 /*
2045 * If there is no grace period in progress right now, any
2046 * callbacks we have up to this point will be satisfied by the
2047 * next grace period. Also, advancing the callbacks reduces the
2048 * probability of false positives from cpu_needs_another_gp()
2049 * resulting in pointless grace periods. So, advance callbacks
2050 * then start the grace period!
2051 */
2052 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2053 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2054 return ret;
2055 }
2056
2057 /*
2058 * Report a full set of quiescent states to the specified rcu_state
2059 * data structure. This involves cleaning up after the prior grace
2060 * period and letting rcu_start_gp() start up the next grace period
2061 * if one is needed. Note that the caller must hold rnp->lock, which
2062 * is released before return.
2063 */
2064 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2065 __releases(rcu_get_root(rsp)->lock)
2066 {
2067 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2068 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2069 rcu_gp_kthread_wake(rsp);
2070 }
2071
2072 /*
2073 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2074 * Allows quiescent states for a group of CPUs to be reported at one go
2075 * to the specified rcu_node structure, though all the CPUs in the group
2076 * must be represented by the same rcu_node structure (which need not be
2077 * a leaf rcu_node structure, though it often will be). That structure's
2078 * lock must be held upon entry, and it is released before return.
2079 */
2080 static void
2081 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2082 struct rcu_node *rnp, unsigned long flags)
2083 __releases(rnp->lock)
2084 {
2085 struct rcu_node *rnp_c;
2086
2087 /* Walk up the rcu_node hierarchy. */
2088 for (;;) {
2089 if (!(rnp->qsmask & mask)) {
2090
2091 /* Our bit has already been cleared, so done. */
2092 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2093 return;
2094 }
2095 rnp->qsmask &= ~mask;
2096 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2097 mask, rnp->qsmask, rnp->level,
2098 rnp->grplo, rnp->grphi,
2099 !!rnp->gp_tasks);
2100 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2101
2102 /* Other bits still set at this level, so done. */
2103 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2104 return;
2105 }
2106 mask = rnp->grpmask;
2107 if (rnp->parent == NULL) {
2108
2109 /* No more levels. Exit loop holding root lock. */
2110
2111 break;
2112 }
2113 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2114 rnp_c = rnp;
2115 rnp = rnp->parent;
2116 raw_spin_lock_irqsave(&rnp->lock, flags);
2117 smp_mb__after_unlock_lock();
2118 WARN_ON_ONCE(rnp_c->qsmask);
2119 }
2120
2121 /*
2122 * Get here if we are the last CPU to pass through a quiescent
2123 * state for this grace period. Invoke rcu_report_qs_rsp()
2124 * to clean up and start the next grace period if one is needed.
2125 */
2126 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2127 }
2128
2129 /*
2130 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2131 * structure. This must be either called from the specified CPU, or
2132 * called when the specified CPU is known to be offline (and when it is
2133 * also known that no other CPU is concurrently trying to help the offline
2134 * CPU). The lastcomp argument is used to make sure we are still in the
2135 * grace period of interest. We don't want to end the current grace period
2136 * based on quiescent states detected in an earlier grace period!
2137 */
2138 static void
2139 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2140 {
2141 unsigned long flags;
2142 unsigned long mask;
2143 bool needwake;
2144 struct rcu_node *rnp;
2145
2146 rnp = rdp->mynode;
2147 raw_spin_lock_irqsave(&rnp->lock, flags);
2148 smp_mb__after_unlock_lock();
2149 if ((rdp->passed_quiesce == 0 &&
2150 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2151 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2152 rdp->gpwrap) {
2153
2154 /*
2155 * The grace period in which this quiescent state was
2156 * recorded has ended, so don't report it upwards.
2157 * We will instead need a new quiescent state that lies
2158 * within the current grace period.
2159 */
2160 rdp->passed_quiesce = 0; /* need qs for new gp. */
2161 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2162 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2163 return;
2164 }
2165 mask = rdp->grpmask;
2166 if ((rnp->qsmask & mask) == 0) {
2167 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2168 } else {
2169 rdp->qs_pending = 0;
2170
2171 /*
2172 * This GP can't end until cpu checks in, so all of our
2173 * callbacks can be processed during the next GP.
2174 */
2175 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2176
2177 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2178 if (needwake)
2179 rcu_gp_kthread_wake(rsp);
2180 }
2181 }
2182
2183 /*
2184 * Check to see if there is a new grace period of which this CPU
2185 * is not yet aware, and if so, set up local rcu_data state for it.
2186 * Otherwise, see if this CPU has just passed through its first
2187 * quiescent state for this grace period, and record that fact if so.
2188 */
2189 static void
2190 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2191 {
2192 /* Check for grace-period ends and beginnings. */
2193 note_gp_changes(rsp, rdp);
2194
2195 /*
2196 * Does this CPU still need to do its part for current grace period?
2197 * If no, return and let the other CPUs do their part as well.
2198 */
2199 if (!rdp->qs_pending)
2200 return;
2201
2202 /*
2203 * Was there a quiescent state since the beginning of the grace
2204 * period? If no, then exit and wait for the next call.
2205 */
2206 if (!rdp->passed_quiesce &&
2207 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2208 return;
2209
2210 /*
2211 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2212 * judge of that).
2213 */
2214 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2215 }
2216
2217 #ifdef CONFIG_HOTPLUG_CPU
2218
2219 /*
2220 * Send the specified CPU's RCU callbacks to the orphanage. The
2221 * specified CPU must be offline, and the caller must hold the
2222 * ->orphan_lock.
2223 */
2224 static void
2225 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2226 struct rcu_node *rnp, struct rcu_data *rdp)
2227 {
2228 /* No-CBs CPUs do not have orphanable callbacks. */
2229 if (rcu_is_nocb_cpu(rdp->cpu))
2230 return;
2231
2232 /*
2233 * Orphan the callbacks. First adjust the counts. This is safe
2234 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2235 * cannot be running now. Thus no memory barrier is required.
2236 */
2237 if (rdp->nxtlist != NULL) {
2238 rsp->qlen_lazy += rdp->qlen_lazy;
2239 rsp->qlen += rdp->qlen;
2240 rdp->n_cbs_orphaned += rdp->qlen;
2241 rdp->qlen_lazy = 0;
2242 ACCESS_ONCE(rdp->qlen) = 0;
2243 }
2244
2245 /*
2246 * Next, move those callbacks still needing a grace period to
2247 * the orphanage, where some other CPU will pick them up.
2248 * Some of the callbacks might have gone partway through a grace
2249 * period, but that is too bad. They get to start over because we
2250 * cannot assume that grace periods are synchronized across CPUs.
2251 * We don't bother updating the ->nxttail[] array yet, instead
2252 * we just reset the whole thing later on.
2253 */
2254 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2255 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2256 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2257 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2258 }
2259
2260 /*
2261 * Then move the ready-to-invoke callbacks to the orphanage,
2262 * where some other CPU will pick them up. These will not be
2263 * required to pass though another grace period: They are done.
2264 */
2265 if (rdp->nxtlist != NULL) {
2266 *rsp->orphan_donetail = rdp->nxtlist;
2267 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2268 }
2269
2270 /*
2271 * Finally, initialize the rcu_data structure's list to empty and
2272 * disallow further callbacks on this CPU.
2273 */
2274 init_callback_list(rdp);
2275 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2276 }
2277
2278 /*
2279 * Adopt the RCU callbacks from the specified rcu_state structure's
2280 * orphanage. The caller must hold the ->orphan_lock.
2281 */
2282 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2283 {
2284 int i;
2285 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2286
2287 /* No-CBs CPUs are handled specially. */
2288 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2289 return;
2290
2291 /* Do the accounting first. */
2292 rdp->qlen_lazy += rsp->qlen_lazy;
2293 rdp->qlen += rsp->qlen;
2294 rdp->n_cbs_adopted += rsp->qlen;
2295 if (rsp->qlen_lazy != rsp->qlen)
2296 rcu_idle_count_callbacks_posted();
2297 rsp->qlen_lazy = 0;
2298 rsp->qlen = 0;
2299
2300 /*
2301 * We do not need a memory barrier here because the only way we
2302 * can get here if there is an rcu_barrier() in flight is if
2303 * we are the task doing the rcu_barrier().
2304 */
2305
2306 /* First adopt the ready-to-invoke callbacks. */
2307 if (rsp->orphan_donelist != NULL) {
2308 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2309 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2310 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2311 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2312 rdp->nxttail[i] = rsp->orphan_donetail;
2313 rsp->orphan_donelist = NULL;
2314 rsp->orphan_donetail = &rsp->orphan_donelist;
2315 }
2316
2317 /* And then adopt the callbacks that still need a grace period. */
2318 if (rsp->orphan_nxtlist != NULL) {
2319 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2320 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2321 rsp->orphan_nxtlist = NULL;
2322 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2323 }
2324 }
2325
2326 /*
2327 * Trace the fact that this CPU is going offline.
2328 */
2329 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2330 {
2331 RCU_TRACE(unsigned long mask);
2332 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2333 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2334
2335 RCU_TRACE(mask = rdp->grpmask);
2336 trace_rcu_grace_period(rsp->name,
2337 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2338 TPS("cpuofl"));
2339 }
2340
2341 /*
2342 * All CPUs for the specified rcu_node structure have gone offline,
2343 * and all tasks that were preempted within an RCU read-side critical
2344 * section while running on one of those CPUs have since exited their RCU
2345 * read-side critical section. Some other CPU is reporting this fact with
2346 * the specified rcu_node structure's ->lock held and interrupts disabled.
2347 * This function therefore goes up the tree of rcu_node structures,
2348 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2349 * the leaf rcu_node structure's ->qsmaskinit field has already been
2350 * updated
2351 *
2352 * This function does check that the specified rcu_node structure has
2353 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2354 * prematurely. That said, invoking it after the fact will cost you
2355 * a needless lock acquisition. So once it has done its work, don't
2356 * invoke it again.
2357 */
2358 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2359 {
2360 long mask;
2361 struct rcu_node *rnp = rnp_leaf;
2362
2363 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2364 return;
2365 for (;;) {
2366 mask = rnp->grpmask;
2367 rnp = rnp->parent;
2368 if (!rnp)
2369 break;
2370 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2371 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2372 rnp->qsmaskinit &= ~mask;
2373 if (rnp->qsmaskinit) {
2374 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2375 return;
2376 }
2377 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2378 }
2379 }
2380
2381 /*
2382 * The CPU has been completely removed, and some other CPU is reporting
2383 * this fact from process context. Do the remainder of the cleanup,
2384 * including orphaning the outgoing CPU's RCU callbacks, and also
2385 * adopting them. There can only be one CPU hotplug operation at a time,
2386 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2387 */
2388 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2389 {
2390 unsigned long flags;
2391 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2392 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2393
2394 /* Adjust any no-longer-needed kthreads. */
2395 rcu_boost_kthread_setaffinity(rnp, -1);
2396
2397 /* Exclude any attempts to start a new grace period. */
2398 mutex_lock(&rsp->onoff_mutex);
2399
2400 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2401 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2402 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2403 rcu_adopt_orphan_cbs(rsp, flags);
2404 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2405
2406 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2407 raw_spin_lock_irqsave(&rnp->lock, flags);
2408 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2409 rnp->qsmaskinit &= ~rdp->grpmask;
2410 if (rnp->qsmaskinit == 0 && !rcu_preempt_has_tasks(rnp))
2411 rcu_cleanup_dead_rnp(rnp);
2412 rcu_report_qs_rnp(rdp->grpmask, rsp, rnp, flags); /* Rlses rnp->lock. */
2413 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2414 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2415 cpu, rdp->qlen, rdp->nxtlist);
2416 mutex_unlock(&rsp->onoff_mutex);
2417 }
2418
2419 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2420
2421 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2422 {
2423 }
2424
2425 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2426 {
2427 }
2428
2429 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2430 {
2431 }
2432
2433 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2434
2435 /*
2436 * Invoke any RCU callbacks that have made it to the end of their grace
2437 * period. Thottle as specified by rdp->blimit.
2438 */
2439 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2440 {
2441 unsigned long flags;
2442 struct rcu_head *next, *list, **tail;
2443 long bl, count, count_lazy;
2444 int i;
2445
2446 /* If no callbacks are ready, just return. */
2447 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2448 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2449 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2450 need_resched(), is_idle_task(current),
2451 rcu_is_callbacks_kthread());
2452 return;
2453 }
2454
2455 /*
2456 * Extract the list of ready callbacks, disabling to prevent
2457 * races with call_rcu() from interrupt handlers.
2458 */
2459 local_irq_save(flags);
2460 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2461 bl = rdp->blimit;
2462 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2463 list = rdp->nxtlist;
2464 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2465 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2466 tail = rdp->nxttail[RCU_DONE_TAIL];
2467 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2468 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2469 rdp->nxttail[i] = &rdp->nxtlist;
2470 local_irq_restore(flags);
2471
2472 /* Invoke callbacks. */
2473 count = count_lazy = 0;
2474 while (list) {
2475 next = list->next;
2476 prefetch(next);
2477 debug_rcu_head_unqueue(list);
2478 if (__rcu_reclaim(rsp->name, list))
2479 count_lazy++;
2480 list = next;
2481 /* Stop only if limit reached and CPU has something to do. */
2482 if (++count >= bl &&
2483 (need_resched() ||
2484 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2485 break;
2486 }
2487
2488 local_irq_save(flags);
2489 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2490 is_idle_task(current),
2491 rcu_is_callbacks_kthread());
2492
2493 /* Update count, and requeue any remaining callbacks. */
2494 if (list != NULL) {
2495 *tail = rdp->nxtlist;
2496 rdp->nxtlist = list;
2497 for (i = 0; i < RCU_NEXT_SIZE; i++)
2498 if (&rdp->nxtlist == rdp->nxttail[i])
2499 rdp->nxttail[i] = tail;
2500 else
2501 break;
2502 }
2503 smp_mb(); /* List handling before counting for rcu_barrier(). */
2504 rdp->qlen_lazy -= count_lazy;
2505 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2506 rdp->n_cbs_invoked += count;
2507
2508 /* Reinstate batch limit if we have worked down the excess. */
2509 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2510 rdp->blimit = blimit;
2511
2512 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2513 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2514 rdp->qlen_last_fqs_check = 0;
2515 rdp->n_force_qs_snap = rsp->n_force_qs;
2516 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2517 rdp->qlen_last_fqs_check = rdp->qlen;
2518 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2519
2520 local_irq_restore(flags);
2521
2522 /* Re-invoke RCU core processing if there are callbacks remaining. */
2523 if (cpu_has_callbacks_ready_to_invoke(rdp))
2524 invoke_rcu_core();
2525 }
2526
2527 /*
2528 * Check to see if this CPU is in a non-context-switch quiescent state
2529 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2530 * Also schedule RCU core processing.
2531 *
2532 * This function must be called from hardirq context. It is normally
2533 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2534 * false, there is no point in invoking rcu_check_callbacks().
2535 */
2536 void rcu_check_callbacks(int user)
2537 {
2538 trace_rcu_utilization(TPS("Start scheduler-tick"));
2539 increment_cpu_stall_ticks();
2540 if (user || rcu_is_cpu_rrupt_from_idle()) {
2541
2542 /*
2543 * Get here if this CPU took its interrupt from user
2544 * mode or from the idle loop, and if this is not a
2545 * nested interrupt. In this case, the CPU is in
2546 * a quiescent state, so note it.
2547 *
2548 * No memory barrier is required here because both
2549 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2550 * variables that other CPUs neither access nor modify,
2551 * at least not while the corresponding CPU is online.
2552 */
2553
2554 rcu_sched_qs();
2555 rcu_bh_qs();
2556
2557 } else if (!in_softirq()) {
2558
2559 /*
2560 * Get here if this CPU did not take its interrupt from
2561 * softirq, in other words, if it is not interrupting
2562 * a rcu_bh read-side critical section. This is an _bh
2563 * critical section, so note it.
2564 */
2565
2566 rcu_bh_qs();
2567 }
2568 rcu_preempt_check_callbacks();
2569 if (rcu_pending())
2570 invoke_rcu_core();
2571 if (user)
2572 rcu_note_voluntary_context_switch(current);
2573 trace_rcu_utilization(TPS("End scheduler-tick"));
2574 }
2575
2576 /*
2577 * Scan the leaf rcu_node structures, processing dyntick state for any that
2578 * have not yet encountered a quiescent state, using the function specified.
2579 * Also initiate boosting for any threads blocked on the root rcu_node.
2580 *
2581 * The caller must have suppressed start of new grace periods.
2582 */
2583 static void force_qs_rnp(struct rcu_state *rsp,
2584 int (*f)(struct rcu_data *rsp, bool *isidle,
2585 unsigned long *maxj),
2586 bool *isidle, unsigned long *maxj)
2587 {
2588 unsigned long bit;
2589 int cpu;
2590 unsigned long flags;
2591 unsigned long mask;
2592 struct rcu_node *rnp;
2593
2594 rcu_for_each_leaf_node(rsp, rnp) {
2595 cond_resched_rcu_qs();
2596 mask = 0;
2597 raw_spin_lock_irqsave(&rnp->lock, flags);
2598 smp_mb__after_unlock_lock();
2599 if (!rcu_gp_in_progress(rsp)) {
2600 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2601 return;
2602 }
2603 if (rnp->qsmask == 0) {
2604 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2605 continue;
2606 }
2607 cpu = rnp->grplo;
2608 bit = 1;
2609 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2610 if ((rnp->qsmask & bit) != 0) {
2611 if ((rnp->qsmaskinit & bit) != 0)
2612 *isidle = false;
2613 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2614 mask |= bit;
2615 }
2616 }
2617 if (mask != 0) {
2618
2619 /* rcu_report_qs_rnp() releases rnp->lock. */
2620 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2621 continue;
2622 }
2623 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2624 }
2625 }
2626
2627 /*
2628 * Force quiescent states on reluctant CPUs, and also detect which
2629 * CPUs are in dyntick-idle mode.
2630 */
2631 static void force_quiescent_state(struct rcu_state *rsp)
2632 {
2633 unsigned long flags;
2634 bool ret;
2635 struct rcu_node *rnp;
2636 struct rcu_node *rnp_old = NULL;
2637
2638 /* Funnel through hierarchy to reduce memory contention. */
2639 rnp = __this_cpu_read(rsp->rda->mynode);
2640 for (; rnp != NULL; rnp = rnp->parent) {
2641 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2642 !raw_spin_trylock(&rnp->fqslock);
2643 if (rnp_old != NULL)
2644 raw_spin_unlock(&rnp_old->fqslock);
2645 if (ret) {
2646 rsp->n_force_qs_lh++;
2647 return;
2648 }
2649 rnp_old = rnp;
2650 }
2651 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2652
2653 /* Reached the root of the rcu_node tree, acquire lock. */
2654 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2655 smp_mb__after_unlock_lock();
2656 raw_spin_unlock(&rnp_old->fqslock);
2657 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2658 rsp->n_force_qs_lh++;
2659 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2660 return; /* Someone beat us to it. */
2661 }
2662 ACCESS_ONCE(rsp->gp_flags) =
2663 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2664 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2665 rcu_gp_kthread_wake(rsp);
2666 }
2667
2668 /*
2669 * This does the RCU core processing work for the specified rcu_state
2670 * and rcu_data structures. This may be called only from the CPU to
2671 * whom the rdp belongs.
2672 */
2673 static void
2674 __rcu_process_callbacks(struct rcu_state *rsp)
2675 {
2676 unsigned long flags;
2677 bool needwake;
2678 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2679
2680 WARN_ON_ONCE(rdp->beenonline == 0);
2681
2682 /* Update RCU state based on any recent quiescent states. */
2683 rcu_check_quiescent_state(rsp, rdp);
2684
2685 /* Does this CPU require a not-yet-started grace period? */
2686 local_irq_save(flags);
2687 if (cpu_needs_another_gp(rsp, rdp)) {
2688 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2689 needwake = rcu_start_gp(rsp);
2690 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2691 if (needwake)
2692 rcu_gp_kthread_wake(rsp);
2693 } else {
2694 local_irq_restore(flags);
2695 }
2696
2697 /* If there are callbacks ready, invoke them. */
2698 if (cpu_has_callbacks_ready_to_invoke(rdp))
2699 invoke_rcu_callbacks(rsp, rdp);
2700
2701 /* Do any needed deferred wakeups of rcuo kthreads. */
2702 do_nocb_deferred_wakeup(rdp);
2703 }
2704
2705 /*
2706 * Do RCU core processing for the current CPU.
2707 */
2708 static void rcu_process_callbacks(struct softirq_action *unused)
2709 {
2710 struct rcu_state *rsp;
2711
2712 if (cpu_is_offline(smp_processor_id()))
2713 return;
2714 trace_rcu_utilization(TPS("Start RCU core"));
2715 for_each_rcu_flavor(rsp)
2716 __rcu_process_callbacks(rsp);
2717 trace_rcu_utilization(TPS("End RCU core"));
2718 }
2719
2720 /*
2721 * Schedule RCU callback invocation. If the specified type of RCU
2722 * does not support RCU priority boosting, just do a direct call,
2723 * otherwise wake up the per-CPU kernel kthread. Note that because we
2724 * are running on the current CPU with softirqs disabled, the
2725 * rcu_cpu_kthread_task cannot disappear out from under us.
2726 */
2727 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2728 {
2729 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2730 return;
2731 if (likely(!rsp->boost)) {
2732 rcu_do_batch(rsp, rdp);
2733 return;
2734 }
2735 invoke_rcu_callbacks_kthread();
2736 }
2737
2738 static void invoke_rcu_core(void)
2739 {
2740 if (cpu_online(smp_processor_id()))
2741 raise_softirq(RCU_SOFTIRQ);
2742 }
2743
2744 /*
2745 * Handle any core-RCU processing required by a call_rcu() invocation.
2746 */
2747 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2748 struct rcu_head *head, unsigned long flags)
2749 {
2750 bool needwake;
2751
2752 /*
2753 * If called from an extended quiescent state, invoke the RCU
2754 * core in order to force a re-evaluation of RCU's idleness.
2755 */
2756 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2757 invoke_rcu_core();
2758
2759 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2760 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2761 return;
2762
2763 /*
2764 * Force the grace period if too many callbacks or too long waiting.
2765 * Enforce hysteresis, and don't invoke force_quiescent_state()
2766 * if some other CPU has recently done so. Also, don't bother
2767 * invoking force_quiescent_state() if the newly enqueued callback
2768 * is the only one waiting for a grace period to complete.
2769 */
2770 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2771
2772 /* Are we ignoring a completed grace period? */
2773 note_gp_changes(rsp, rdp);
2774
2775 /* Start a new grace period if one not already started. */
2776 if (!rcu_gp_in_progress(rsp)) {
2777 struct rcu_node *rnp_root = rcu_get_root(rsp);
2778
2779 raw_spin_lock(&rnp_root->lock);
2780 smp_mb__after_unlock_lock();
2781 needwake = rcu_start_gp(rsp);
2782 raw_spin_unlock(&rnp_root->lock);
2783 if (needwake)
2784 rcu_gp_kthread_wake(rsp);
2785 } else {
2786 /* Give the grace period a kick. */
2787 rdp->blimit = LONG_MAX;
2788 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2789 *rdp->nxttail[RCU_DONE_TAIL] != head)
2790 force_quiescent_state(rsp);
2791 rdp->n_force_qs_snap = rsp->n_force_qs;
2792 rdp->qlen_last_fqs_check = rdp->qlen;
2793 }
2794 }
2795 }
2796
2797 /*
2798 * RCU callback function to leak a callback.
2799 */
2800 static void rcu_leak_callback(struct rcu_head *rhp)
2801 {
2802 }
2803
2804 /*
2805 * Helper function for call_rcu() and friends. The cpu argument will
2806 * normally be -1, indicating "currently running CPU". It may specify
2807 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2808 * is expected to specify a CPU.
2809 */
2810 static void
2811 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2812 struct rcu_state *rsp, int cpu, bool lazy)
2813 {
2814 unsigned long flags;
2815 struct rcu_data *rdp;
2816
2817 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2818 if (debug_rcu_head_queue(head)) {
2819 /* Probable double call_rcu(), so leak the callback. */
2820 ACCESS_ONCE(head->func) = rcu_leak_callback;
2821 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2822 return;
2823 }
2824 head->func = func;
2825 head->next = NULL;
2826
2827 /*
2828 * Opportunistically note grace-period endings and beginnings.
2829 * Note that we might see a beginning right after we see an
2830 * end, but never vice versa, since this CPU has to pass through
2831 * a quiescent state betweentimes.
2832 */
2833 local_irq_save(flags);
2834 rdp = this_cpu_ptr(rsp->rda);
2835
2836 /* Add the callback to our list. */
2837 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2838 int offline;
2839
2840 if (cpu != -1)
2841 rdp = per_cpu_ptr(rsp->rda, cpu);
2842 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2843 WARN_ON_ONCE(offline);
2844 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2845 local_irq_restore(flags);
2846 return;
2847 }
2848 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2849 if (lazy)
2850 rdp->qlen_lazy++;
2851 else
2852 rcu_idle_count_callbacks_posted();
2853 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2854 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2855 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2856
2857 if (__is_kfree_rcu_offset((unsigned long)func))
2858 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2859 rdp->qlen_lazy, rdp->qlen);
2860 else
2861 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2862
2863 /* Go handle any RCU core processing required. */
2864 __call_rcu_core(rsp, rdp, head, flags);
2865 local_irq_restore(flags);
2866 }
2867
2868 /*
2869 * Queue an RCU-sched callback for invocation after a grace period.
2870 */
2871 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2872 {
2873 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2874 }
2875 EXPORT_SYMBOL_GPL(call_rcu_sched);
2876
2877 /*
2878 * Queue an RCU callback for invocation after a quicker grace period.
2879 */
2880 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2881 {
2882 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2883 }
2884 EXPORT_SYMBOL_GPL(call_rcu_bh);
2885
2886 /*
2887 * Queue an RCU callback for lazy invocation after a grace period.
2888 * This will likely be later named something like "call_rcu_lazy()",
2889 * but this change will require some way of tagging the lazy RCU
2890 * callbacks in the list of pending callbacks. Until then, this
2891 * function may only be called from __kfree_rcu().
2892 */
2893 void kfree_call_rcu(struct rcu_head *head,
2894 void (*func)(struct rcu_head *rcu))
2895 {
2896 __call_rcu(head, func, rcu_state_p, -1, 1);
2897 }
2898 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2899
2900 /*
2901 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2902 * any blocking grace-period wait automatically implies a grace period
2903 * if there is only one CPU online at any point time during execution
2904 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2905 * occasionally incorrectly indicate that there are multiple CPUs online
2906 * when there was in fact only one the whole time, as this just adds
2907 * some overhead: RCU still operates correctly.
2908 */
2909 static inline int rcu_blocking_is_gp(void)
2910 {
2911 int ret;
2912
2913 might_sleep(); /* Check for RCU read-side critical section. */
2914 preempt_disable();
2915 ret = num_online_cpus() <= 1;
2916 preempt_enable();
2917 return ret;
2918 }
2919
2920 /**
2921 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2922 *
2923 * Control will return to the caller some time after a full rcu-sched
2924 * grace period has elapsed, in other words after all currently executing
2925 * rcu-sched read-side critical sections have completed. These read-side
2926 * critical sections are delimited by rcu_read_lock_sched() and
2927 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2928 * local_irq_disable(), and so on may be used in place of
2929 * rcu_read_lock_sched().
2930 *
2931 * This means that all preempt_disable code sequences, including NMI and
2932 * non-threaded hardware-interrupt handlers, in progress on entry will
2933 * have completed before this primitive returns. However, this does not
2934 * guarantee that softirq handlers will have completed, since in some
2935 * kernels, these handlers can run in process context, and can block.
2936 *
2937 * Note that this guarantee implies further memory-ordering guarantees.
2938 * On systems with more than one CPU, when synchronize_sched() returns,
2939 * each CPU is guaranteed to have executed a full memory barrier since the
2940 * end of its last RCU-sched read-side critical section whose beginning
2941 * preceded the call to synchronize_sched(). In addition, each CPU having
2942 * an RCU read-side critical section that extends beyond the return from
2943 * synchronize_sched() is guaranteed to have executed a full memory barrier
2944 * after the beginning of synchronize_sched() and before the beginning of
2945 * that RCU read-side critical section. Note that these guarantees include
2946 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2947 * that are executing in the kernel.
2948 *
2949 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2950 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2951 * to have executed a full memory barrier during the execution of
2952 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2953 * again only if the system has more than one CPU).
2954 *
2955 * This primitive provides the guarantees made by the (now removed)
2956 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2957 * guarantees that rcu_read_lock() sections will have completed.
2958 * In "classic RCU", these two guarantees happen to be one and
2959 * the same, but can differ in realtime RCU implementations.
2960 */
2961 void synchronize_sched(void)
2962 {
2963 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2964 !lock_is_held(&rcu_lock_map) &&
2965 !lock_is_held(&rcu_sched_lock_map),
2966 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2967 if (rcu_blocking_is_gp())
2968 return;
2969 if (rcu_expedited)
2970 synchronize_sched_expedited();
2971 else
2972 wait_rcu_gp(call_rcu_sched);
2973 }
2974 EXPORT_SYMBOL_GPL(synchronize_sched);
2975
2976 /**
2977 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2978 *
2979 * Control will return to the caller some time after a full rcu_bh grace
2980 * period has elapsed, in other words after all currently executing rcu_bh
2981 * read-side critical sections have completed. RCU read-side critical
2982 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2983 * and may be nested.
2984 *
2985 * See the description of synchronize_sched() for more detailed information
2986 * on memory ordering guarantees.
2987 */
2988 void synchronize_rcu_bh(void)
2989 {
2990 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2991 !lock_is_held(&rcu_lock_map) &&
2992 !lock_is_held(&rcu_sched_lock_map),
2993 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2994 if (rcu_blocking_is_gp())
2995 return;
2996 if (rcu_expedited)
2997 synchronize_rcu_bh_expedited();
2998 else
2999 wait_rcu_gp(call_rcu_bh);
3000 }
3001 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3002
3003 /**
3004 * get_state_synchronize_rcu - Snapshot current RCU state
3005 *
3006 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3007 * to determine whether or not a full grace period has elapsed in the
3008 * meantime.
3009 */
3010 unsigned long get_state_synchronize_rcu(void)
3011 {
3012 /*
3013 * Any prior manipulation of RCU-protected data must happen
3014 * before the load from ->gpnum.
3015 */
3016 smp_mb(); /* ^^^ */
3017
3018 /*
3019 * Make sure this load happens before the purportedly
3020 * time-consuming work between get_state_synchronize_rcu()
3021 * and cond_synchronize_rcu().
3022 */
3023 return smp_load_acquire(&rcu_state_p->gpnum);
3024 }
3025 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3026
3027 /**
3028 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3029 *
3030 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3031 *
3032 * If a full RCU grace period has elapsed since the earlier call to
3033 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3034 * synchronize_rcu() to wait for a full grace period.
3035 *
3036 * Yes, this function does not take counter wrap into account. But
3037 * counter wrap is harmless. If the counter wraps, we have waited for
3038 * more than 2 billion grace periods (and way more on a 64-bit system!),
3039 * so waiting for one additional grace period should be just fine.
3040 */
3041 void cond_synchronize_rcu(unsigned long oldstate)
3042 {
3043 unsigned long newstate;
3044
3045 /*
3046 * Ensure that this load happens before any RCU-destructive
3047 * actions the caller might carry out after we return.
3048 */
3049 newstate = smp_load_acquire(&rcu_state_p->completed);
3050 if (ULONG_CMP_GE(oldstate, newstate))
3051 synchronize_rcu();
3052 }
3053 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3054
3055 static int synchronize_sched_expedited_cpu_stop(void *data)
3056 {
3057 /*
3058 * There must be a full memory barrier on each affected CPU
3059 * between the time that try_stop_cpus() is called and the
3060 * time that it returns.
3061 *
3062 * In the current initial implementation of cpu_stop, the
3063 * above condition is already met when the control reaches
3064 * this point and the following smp_mb() is not strictly
3065 * necessary. Do smp_mb() anyway for documentation and
3066 * robustness against future implementation changes.
3067 */
3068 smp_mb(); /* See above comment block. */
3069 return 0;
3070 }
3071
3072 /**
3073 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3074 *
3075 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3076 * approach to force the grace period to end quickly. This consumes
3077 * significant time on all CPUs and is unfriendly to real-time workloads,
3078 * so is thus not recommended for any sort of common-case code. In fact,
3079 * if you are using synchronize_sched_expedited() in a loop, please
3080 * restructure your code to batch your updates, and then use a single
3081 * synchronize_sched() instead.
3082 *
3083 * This implementation can be thought of as an application of ticket
3084 * locking to RCU, with sync_sched_expedited_started and
3085 * sync_sched_expedited_done taking on the roles of the halves
3086 * of the ticket-lock word. Each task atomically increments
3087 * sync_sched_expedited_started upon entry, snapshotting the old value,
3088 * then attempts to stop all the CPUs. If this succeeds, then each
3089 * CPU will have executed a context switch, resulting in an RCU-sched
3090 * grace period. We are then done, so we use atomic_cmpxchg() to
3091 * update sync_sched_expedited_done to match our snapshot -- but
3092 * only if someone else has not already advanced past our snapshot.
3093 *
3094 * On the other hand, if try_stop_cpus() fails, we check the value
3095 * of sync_sched_expedited_done. If it has advanced past our
3096 * initial snapshot, then someone else must have forced a grace period
3097 * some time after we took our snapshot. In this case, our work is
3098 * done for us, and we can simply return. Otherwise, we try again,
3099 * but keep our initial snapshot for purposes of checking for someone
3100 * doing our work for us.
3101 *
3102 * If we fail too many times in a row, we fall back to synchronize_sched().
3103 */
3104 void synchronize_sched_expedited(void)
3105 {
3106 cpumask_var_t cm;
3107 bool cma = false;
3108 int cpu;
3109 long firstsnap, s, snap;
3110 int trycount = 0;
3111 struct rcu_state *rsp = &rcu_sched_state;
3112
3113 /*
3114 * If we are in danger of counter wrap, just do synchronize_sched().
3115 * By allowing sync_sched_expedited_started to advance no more than
3116 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3117 * that more than 3.5 billion CPUs would be required to force a
3118 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3119 * course be required on a 64-bit system.
3120 */
3121 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3122 (ulong)atomic_long_read(&rsp->expedited_done) +
3123 ULONG_MAX / 8)) {
3124 synchronize_sched();
3125 atomic_long_inc(&rsp->expedited_wrap);
3126 return;
3127 }
3128
3129 /*
3130 * Take a ticket. Note that atomic_inc_return() implies a
3131 * full memory barrier.
3132 */
3133 snap = atomic_long_inc_return(&rsp->expedited_start);
3134 firstsnap = snap;
3135 if (!try_get_online_cpus()) {
3136 /* CPU hotplug operation in flight, fall back to normal GP. */
3137 wait_rcu_gp(call_rcu_sched);
3138 atomic_long_inc(&rsp->expedited_normal);
3139 return;
3140 }
3141 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3142
3143 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3144 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3145 if (cma) {
3146 cpumask_copy(cm, cpu_online_mask);
3147 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3148 for_each_cpu(cpu, cm) {
3149 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3150
3151 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3152 cpumask_clear_cpu(cpu, cm);
3153 }
3154 if (cpumask_weight(cm) == 0)
3155 goto all_cpus_idle;
3156 }
3157
3158 /*
3159 * Each pass through the following loop attempts to force a
3160 * context switch on each CPU.
3161 */
3162 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3163 synchronize_sched_expedited_cpu_stop,
3164 NULL) == -EAGAIN) {
3165 put_online_cpus();
3166 atomic_long_inc(&rsp->expedited_tryfail);
3167
3168 /* Check to see if someone else did our work for us. */
3169 s = atomic_long_read(&rsp->expedited_done);
3170 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3171 /* ensure test happens before caller kfree */
3172 smp_mb__before_atomic(); /* ^^^ */
3173 atomic_long_inc(&rsp->expedited_workdone1);
3174 free_cpumask_var(cm);
3175 return;
3176 }
3177
3178 /* No joy, try again later. Or just synchronize_sched(). */
3179 if (trycount++ < 10) {
3180 udelay(trycount * num_online_cpus());
3181 } else {
3182 wait_rcu_gp(call_rcu_sched);
3183 atomic_long_inc(&rsp->expedited_normal);
3184 free_cpumask_var(cm);
3185 return;
3186 }
3187
3188 /* Recheck to see if someone else did our work for us. */
3189 s = atomic_long_read(&rsp->expedited_done);
3190 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3191 /* ensure test happens before caller kfree */
3192 smp_mb__before_atomic(); /* ^^^ */
3193 atomic_long_inc(&rsp->expedited_workdone2);
3194 free_cpumask_var(cm);
3195 return;
3196 }
3197
3198 /*
3199 * Refetching sync_sched_expedited_started allows later
3200 * callers to piggyback on our grace period. We retry
3201 * after they started, so our grace period works for them,
3202 * and they started after our first try, so their grace
3203 * period works for us.
3204 */
3205 if (!try_get_online_cpus()) {
3206 /* CPU hotplug operation in flight, use normal GP. */
3207 wait_rcu_gp(call_rcu_sched);
3208 atomic_long_inc(&rsp->expedited_normal);
3209 free_cpumask_var(cm);
3210 return;
3211 }
3212 snap = atomic_long_read(&rsp->expedited_start);
3213 smp_mb(); /* ensure read is before try_stop_cpus(). */
3214 }
3215 atomic_long_inc(&rsp->expedited_stoppedcpus);
3216
3217 all_cpus_idle:
3218 free_cpumask_var(cm);
3219
3220 /*
3221 * Everyone up to our most recent fetch is covered by our grace
3222 * period. Update the counter, but only if our work is still
3223 * relevant -- which it won't be if someone who started later
3224 * than we did already did their update.
3225 */
3226 do {
3227 atomic_long_inc(&rsp->expedited_done_tries);
3228 s = atomic_long_read(&rsp->expedited_done);
3229 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3230 /* ensure test happens before caller kfree */
3231 smp_mb__before_atomic(); /* ^^^ */
3232 atomic_long_inc(&rsp->expedited_done_lost);
3233 break;
3234 }
3235 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3236 atomic_long_inc(&rsp->expedited_done_exit);
3237
3238 put_online_cpus();
3239 }
3240 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3241
3242 /*
3243 * Check to see if there is any immediate RCU-related work to be done
3244 * by the current CPU, for the specified type of RCU, returning 1 if so.
3245 * The checks are in order of increasing expense: checks that can be
3246 * carried out against CPU-local state are performed first. However,
3247 * we must check for CPU stalls first, else we might not get a chance.
3248 */
3249 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3250 {
3251 struct rcu_node *rnp = rdp->mynode;
3252
3253 rdp->n_rcu_pending++;
3254
3255 /* Check for CPU stalls, if enabled. */
3256 check_cpu_stall(rsp, rdp);
3257
3258 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3259 if (rcu_nohz_full_cpu(rsp))
3260 return 0;
3261
3262 /* Is the RCU core waiting for a quiescent state from this CPU? */
3263 if (rcu_scheduler_fully_active &&
3264 rdp->qs_pending && !rdp->passed_quiesce &&
3265 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3266 rdp->n_rp_qs_pending++;
3267 } else if (rdp->qs_pending &&
3268 (rdp->passed_quiesce ||
3269 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3270 rdp->n_rp_report_qs++;
3271 return 1;
3272 }
3273
3274 /* Does this CPU have callbacks ready to invoke? */
3275 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3276 rdp->n_rp_cb_ready++;
3277 return 1;
3278 }
3279
3280 /* Has RCU gone idle with this CPU needing another grace period? */
3281 if (cpu_needs_another_gp(rsp, rdp)) {
3282 rdp->n_rp_cpu_needs_gp++;
3283 return 1;
3284 }
3285
3286 /* Has another RCU grace period completed? */
3287 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3288 rdp->n_rp_gp_completed++;
3289 return 1;
3290 }
3291
3292 /* Has a new RCU grace period started? */
3293 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3294 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3295 rdp->n_rp_gp_started++;
3296 return 1;
3297 }
3298
3299 /* Does this CPU need a deferred NOCB wakeup? */
3300 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3301 rdp->n_rp_nocb_defer_wakeup++;
3302 return 1;
3303 }
3304
3305 /* nothing to do */
3306 rdp->n_rp_need_nothing++;
3307 return 0;
3308 }
3309
3310 /*
3311 * Check to see if there is any immediate RCU-related work to be done
3312 * by the current CPU, returning 1 if so. This function is part of the
3313 * RCU implementation; it is -not- an exported member of the RCU API.
3314 */
3315 static int rcu_pending(void)
3316 {
3317 struct rcu_state *rsp;
3318
3319 for_each_rcu_flavor(rsp)
3320 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3321 return 1;
3322 return 0;
3323 }
3324
3325 /*
3326 * Return true if the specified CPU has any callback. If all_lazy is
3327 * non-NULL, store an indication of whether all callbacks are lazy.
3328 * (If there are no callbacks, all of them are deemed to be lazy.)
3329 */
3330 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3331 {
3332 bool al = true;
3333 bool hc = false;
3334 struct rcu_data *rdp;
3335 struct rcu_state *rsp;
3336
3337 for_each_rcu_flavor(rsp) {
3338 rdp = this_cpu_ptr(rsp->rda);
3339 if (!rdp->nxtlist)
3340 continue;
3341 hc = true;
3342 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3343 al = false;
3344 break;
3345 }
3346 }
3347 if (all_lazy)
3348 *all_lazy = al;
3349 return hc;
3350 }
3351
3352 /*
3353 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3354 * the compiler is expected to optimize this away.
3355 */
3356 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3357 int cpu, unsigned long done)
3358 {
3359 trace_rcu_barrier(rsp->name, s, cpu,
3360 atomic_read(&rsp->barrier_cpu_count), done);
3361 }
3362
3363 /*
3364 * RCU callback function for _rcu_barrier(). If we are last, wake
3365 * up the task executing _rcu_barrier().
3366 */
3367 static void rcu_barrier_callback(struct rcu_head *rhp)
3368 {
3369 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3370 struct rcu_state *rsp = rdp->rsp;
3371
3372 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3373 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3374 complete(&rsp->barrier_completion);
3375 } else {
3376 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3377 }
3378 }
3379
3380 /*
3381 * Called with preemption disabled, and from cross-cpu IRQ context.
3382 */
3383 static void rcu_barrier_func(void *type)
3384 {
3385 struct rcu_state *rsp = type;
3386 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3387
3388 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3389 atomic_inc(&rsp->barrier_cpu_count);
3390 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3391 }
3392
3393 /*
3394 * Orchestrate the specified type of RCU barrier, waiting for all
3395 * RCU callbacks of the specified type to complete.
3396 */
3397 static void _rcu_barrier(struct rcu_state *rsp)
3398 {
3399 int cpu;
3400 struct rcu_data *rdp;
3401 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3402 unsigned long snap_done;
3403
3404 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3405
3406 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3407 mutex_lock(&rsp->barrier_mutex);
3408
3409 /*
3410 * Ensure that all prior references, including to ->n_barrier_done,
3411 * are ordered before the _rcu_barrier() machinery.
3412 */
3413 smp_mb(); /* See above block comment. */
3414
3415 /*
3416 * Recheck ->n_barrier_done to see if others did our work for us.
3417 * This means checking ->n_barrier_done for an even-to-odd-to-even
3418 * transition. The "if" expression below therefore rounds the old
3419 * value up to the next even number and adds two before comparing.
3420 */
3421 snap_done = rsp->n_barrier_done;
3422 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3423
3424 /*
3425 * If the value in snap is odd, we needed to wait for the current
3426 * rcu_barrier() to complete, then wait for the next one, in other
3427 * words, we need the value of snap_done to be three larger than
3428 * the value of snap. On the other hand, if the value in snap is
3429 * even, we only had to wait for the next rcu_barrier() to complete,
3430 * in other words, we need the value of snap_done to be only two
3431 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3432 * this for us (thank you, Linus!).
3433 */
3434 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3435 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3436 smp_mb(); /* caller's subsequent code after above check. */
3437 mutex_unlock(&rsp->barrier_mutex);
3438 return;
3439 }
3440
3441 /*
3442 * Increment ->n_barrier_done to avoid duplicate work. Use
3443 * ACCESS_ONCE() to prevent the compiler from speculating
3444 * the increment to precede the early-exit check.
3445 */
3446 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3447 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3448 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3449 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3450
3451 /*
3452 * Initialize the count to one rather than to zero in order to
3453 * avoid a too-soon return to zero in case of a short grace period
3454 * (or preemption of this task). Exclude CPU-hotplug operations
3455 * to ensure that no offline CPU has callbacks queued.
3456 */
3457 init_completion(&rsp->barrier_completion);
3458 atomic_set(&rsp->barrier_cpu_count, 1);
3459 get_online_cpus();
3460
3461 /*
3462 * Force each CPU with callbacks to register a new callback.
3463 * When that callback is invoked, we will know that all of the
3464 * corresponding CPU's preceding callbacks have been invoked.
3465 */
3466 for_each_possible_cpu(cpu) {
3467 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3468 continue;
3469 rdp = per_cpu_ptr(rsp->rda, cpu);
3470 if (rcu_is_nocb_cpu(cpu)) {
3471 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3472 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3473 rsp->n_barrier_done);
3474 } else {
3475 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3476 rsp->n_barrier_done);
3477 smp_mb__before_atomic();
3478 atomic_inc(&rsp->barrier_cpu_count);
3479 __call_rcu(&rdp->barrier_head,
3480 rcu_barrier_callback, rsp, cpu, 0);
3481 }
3482 } else if (ACCESS_ONCE(rdp->qlen)) {
3483 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3484 rsp->n_barrier_done);
3485 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3486 } else {
3487 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3488 rsp->n_barrier_done);
3489 }
3490 }
3491 put_online_cpus();
3492
3493 /*
3494 * Now that we have an rcu_barrier_callback() callback on each
3495 * CPU, and thus each counted, remove the initial count.
3496 */
3497 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3498 complete(&rsp->barrier_completion);
3499
3500 /* Increment ->n_barrier_done to prevent duplicate work. */
3501 smp_mb(); /* Keep increment after above mechanism. */
3502 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3503 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3504 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3505 smp_mb(); /* Keep increment before caller's subsequent code. */
3506
3507 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3508 wait_for_completion(&rsp->barrier_completion);
3509
3510 /* Other rcu_barrier() invocations can now safely proceed. */
3511 mutex_unlock(&rsp->barrier_mutex);
3512 }
3513
3514 /**
3515 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3516 */
3517 void rcu_barrier_bh(void)
3518 {
3519 _rcu_barrier(&rcu_bh_state);
3520 }
3521 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3522
3523 /**
3524 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3525 */
3526 void rcu_barrier_sched(void)
3527 {
3528 _rcu_barrier(&rcu_sched_state);
3529 }
3530 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3531
3532 /*
3533 * Do boot-time initialization of a CPU's per-CPU RCU data.
3534 */
3535 static void __init
3536 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3537 {
3538 unsigned long flags;
3539 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3540 struct rcu_node *rnp = rcu_get_root(rsp);
3541
3542 /* Set up local state, ensuring consistent view of global state. */
3543 raw_spin_lock_irqsave(&rnp->lock, flags);
3544 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3545 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3546 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3547 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3548 rdp->cpu = cpu;
3549 rdp->rsp = rsp;
3550 rcu_boot_init_nocb_percpu_data(rdp);
3551 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3552 }
3553
3554 /*
3555 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3556 * offline event can be happening at a given time. Note also that we
3557 * can accept some slop in the rsp->completed access due to the fact
3558 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3559 */
3560 static void
3561 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3562 {
3563 unsigned long flags;
3564 unsigned long mask;
3565 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3566 struct rcu_node *rnp = rcu_get_root(rsp);
3567
3568 /* Exclude new grace periods. */
3569 mutex_lock(&rsp->onoff_mutex);
3570
3571 /* Set up local state, ensuring consistent view of global state. */
3572 raw_spin_lock_irqsave(&rnp->lock, flags);
3573 rdp->beenonline = 1; /* We have now been online. */
3574 rdp->qlen_last_fqs_check = 0;
3575 rdp->n_force_qs_snap = rsp->n_force_qs;
3576 rdp->blimit = blimit;
3577 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3578 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3579 rcu_sysidle_init_percpu_data(rdp->dynticks);
3580 atomic_set(&rdp->dynticks->dynticks,
3581 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3582 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3583
3584 /* Add CPU to rcu_node bitmasks. */
3585 rnp = rdp->mynode;
3586 mask = rdp->grpmask;
3587 do {
3588 /* Exclude any attempts to start a new GP on small systems. */
3589 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3590 rnp->qsmaskinit |= mask;
3591 mask = rnp->grpmask;
3592 if (rnp == rdp->mynode) {
3593 /*
3594 * If there is a grace period in progress, we will
3595 * set up to wait for it next time we run the
3596 * RCU core code.
3597 */
3598 rdp->gpnum = rnp->completed;
3599 rdp->completed = rnp->completed;
3600 rdp->passed_quiesce = 0;
3601 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3602 rdp->qs_pending = 0;
3603 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3604 }
3605 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3606 rnp = rnp->parent;
3607 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3608 local_irq_restore(flags);
3609
3610 mutex_unlock(&rsp->onoff_mutex);
3611 }
3612
3613 static void rcu_prepare_cpu(int cpu)
3614 {
3615 struct rcu_state *rsp;
3616
3617 for_each_rcu_flavor(rsp)
3618 rcu_init_percpu_data(cpu, rsp);
3619 }
3620
3621 /*
3622 * Handle CPU online/offline notification events.
3623 */
3624 static int rcu_cpu_notify(struct notifier_block *self,
3625 unsigned long action, void *hcpu)
3626 {
3627 long cpu = (long)hcpu;
3628 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3629 struct rcu_node *rnp = rdp->mynode;
3630 struct rcu_state *rsp;
3631
3632 trace_rcu_utilization(TPS("Start CPU hotplug"));
3633 switch (action) {
3634 case CPU_UP_PREPARE:
3635 case CPU_UP_PREPARE_FROZEN:
3636 rcu_prepare_cpu(cpu);
3637 rcu_prepare_kthreads(cpu);
3638 rcu_spawn_all_nocb_kthreads(cpu);
3639 break;
3640 case CPU_ONLINE:
3641 case CPU_DOWN_FAILED:
3642 rcu_boost_kthread_setaffinity(rnp, -1);
3643 break;
3644 case CPU_DOWN_PREPARE:
3645 rcu_boost_kthread_setaffinity(rnp, cpu);
3646 break;
3647 case CPU_DYING:
3648 case CPU_DYING_FROZEN:
3649 for_each_rcu_flavor(rsp)
3650 rcu_cleanup_dying_cpu(rsp);
3651 break;
3652 case CPU_DEAD:
3653 case CPU_DEAD_FROZEN:
3654 case CPU_UP_CANCELED:
3655 case CPU_UP_CANCELED_FROZEN:
3656 for_each_rcu_flavor(rsp) {
3657 rcu_cleanup_dead_cpu(cpu, rsp);
3658 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3659 }
3660 break;
3661 default:
3662 break;
3663 }
3664 trace_rcu_utilization(TPS("End CPU hotplug"));
3665 return NOTIFY_OK;
3666 }
3667
3668 static int rcu_pm_notify(struct notifier_block *self,
3669 unsigned long action, void *hcpu)
3670 {
3671 switch (action) {
3672 case PM_HIBERNATION_PREPARE:
3673 case PM_SUSPEND_PREPARE:
3674 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3675 rcu_expedited = 1;
3676 break;
3677 case PM_POST_HIBERNATION:
3678 case PM_POST_SUSPEND:
3679 rcu_expedited = 0;
3680 break;
3681 default:
3682 break;
3683 }
3684 return NOTIFY_OK;
3685 }
3686
3687 /*
3688 * Spawn the kthreads that handle each RCU flavor's grace periods.
3689 */
3690 static int __init rcu_spawn_gp_kthread(void)
3691 {
3692 unsigned long flags;
3693 int kthread_prio_in = kthread_prio;
3694 struct rcu_node *rnp;
3695 struct rcu_state *rsp;
3696 struct sched_param sp;
3697 struct task_struct *t;
3698
3699 /* Force priority into range. */
3700 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3701 kthread_prio = 1;
3702 else if (kthread_prio < 0)
3703 kthread_prio = 0;
3704 else if (kthread_prio > 99)
3705 kthread_prio = 99;
3706 if (kthread_prio != kthread_prio_in)
3707 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3708 kthread_prio, kthread_prio_in);
3709
3710 rcu_scheduler_fully_active = 1;
3711 for_each_rcu_flavor(rsp) {
3712 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3713 BUG_ON(IS_ERR(t));
3714 rnp = rcu_get_root(rsp);
3715 raw_spin_lock_irqsave(&rnp->lock, flags);
3716 rsp->gp_kthread = t;
3717 if (kthread_prio) {
3718 sp.sched_priority = kthread_prio;
3719 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3720 }
3721 wake_up_process(t);
3722 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3723 }
3724 rcu_spawn_nocb_kthreads();
3725 rcu_spawn_boost_kthreads();
3726 return 0;
3727 }
3728 early_initcall(rcu_spawn_gp_kthread);
3729
3730 /*
3731 * This function is invoked towards the end of the scheduler's initialization
3732 * process. Before this is called, the idle task might contain
3733 * RCU read-side critical sections (during which time, this idle
3734 * task is booting the system). After this function is called, the
3735 * idle tasks are prohibited from containing RCU read-side critical
3736 * sections. This function also enables RCU lockdep checking.
3737 */
3738 void rcu_scheduler_starting(void)
3739 {
3740 WARN_ON(num_online_cpus() != 1);
3741 WARN_ON(nr_context_switches() > 0);
3742 rcu_scheduler_active = 1;
3743 }
3744
3745 /*
3746 * Compute the per-level fanout, either using the exact fanout specified
3747 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3748 */
3749 #ifdef CONFIG_RCU_FANOUT_EXACT
3750 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3751 {
3752 int i;
3753
3754 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3755 for (i = rcu_num_lvls - 2; i >= 0; i--)
3756 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3757 }
3758 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3759 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3760 {
3761 int ccur;
3762 int cprv;
3763 int i;
3764
3765 cprv = nr_cpu_ids;
3766 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3767 ccur = rsp->levelcnt[i];
3768 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3769 cprv = ccur;
3770 }
3771 }
3772 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3773
3774 /*
3775 * Helper function for rcu_init() that initializes one rcu_state structure.
3776 */
3777 static void __init rcu_init_one(struct rcu_state *rsp,
3778 struct rcu_data __percpu *rda)
3779 {
3780 static const char * const buf[] = {
3781 "rcu_node_0",
3782 "rcu_node_1",
3783 "rcu_node_2",
3784 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3785 static const char * const fqs[] = {
3786 "rcu_node_fqs_0",
3787 "rcu_node_fqs_1",
3788 "rcu_node_fqs_2",
3789 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3790 static u8 fl_mask = 0x1;
3791 int cpustride = 1;
3792 int i;
3793 int j;
3794 struct rcu_node *rnp;
3795
3796 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3797
3798 /* Silence gcc 4.8 warning about array index out of range. */
3799 if (rcu_num_lvls > RCU_NUM_LVLS)
3800 panic("rcu_init_one: rcu_num_lvls overflow");
3801
3802 /* Initialize the level-tracking arrays. */
3803
3804 for (i = 0; i < rcu_num_lvls; i++)
3805 rsp->levelcnt[i] = num_rcu_lvl[i];
3806 for (i = 1; i < rcu_num_lvls; i++)
3807 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3808 rcu_init_levelspread(rsp);
3809 rsp->flavor_mask = fl_mask;
3810 fl_mask <<= 1;
3811
3812 /* Initialize the elements themselves, starting from the leaves. */
3813
3814 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3815 cpustride *= rsp->levelspread[i];
3816 rnp = rsp->level[i];
3817 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3818 raw_spin_lock_init(&rnp->lock);
3819 lockdep_set_class_and_name(&rnp->lock,
3820 &rcu_node_class[i], buf[i]);
3821 raw_spin_lock_init(&rnp->fqslock);
3822 lockdep_set_class_and_name(&rnp->fqslock,
3823 &rcu_fqs_class[i], fqs[i]);
3824 rnp->gpnum = rsp->gpnum;
3825 rnp->completed = rsp->completed;
3826 rnp->qsmask = 0;
3827 rnp->qsmaskinit = 0;
3828 rnp->grplo = j * cpustride;
3829 rnp->grphi = (j + 1) * cpustride - 1;
3830 if (rnp->grphi >= nr_cpu_ids)
3831 rnp->grphi = nr_cpu_ids - 1;
3832 if (i == 0) {
3833 rnp->grpnum = 0;
3834 rnp->grpmask = 0;
3835 rnp->parent = NULL;
3836 } else {
3837 rnp->grpnum = j % rsp->levelspread[i - 1];
3838 rnp->grpmask = 1UL << rnp->grpnum;
3839 rnp->parent = rsp->level[i - 1] +
3840 j / rsp->levelspread[i - 1];
3841 }
3842 rnp->level = i;
3843 INIT_LIST_HEAD(&rnp->blkd_tasks);
3844 rcu_init_one_nocb(rnp);
3845 }
3846 }
3847
3848 rsp->rda = rda;
3849 init_waitqueue_head(&rsp->gp_wq);
3850 rnp = rsp->level[rcu_num_lvls - 1];
3851 for_each_possible_cpu(i) {
3852 while (i > rnp->grphi)
3853 rnp++;
3854 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3855 rcu_boot_init_percpu_data(i, rsp);
3856 }
3857 list_add(&rsp->flavors, &rcu_struct_flavors);
3858 }
3859
3860 /*
3861 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3862 * replace the definitions in tree.h because those are needed to size
3863 * the ->node array in the rcu_state structure.
3864 */
3865 static void __init rcu_init_geometry(void)
3866 {
3867 ulong d;
3868 int i;
3869 int j;
3870 int n = nr_cpu_ids;
3871 int rcu_capacity[MAX_RCU_LVLS + 1];
3872
3873 /*
3874 * Initialize any unspecified boot parameters.
3875 * The default values of jiffies_till_first_fqs and
3876 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3877 * value, which is a function of HZ, then adding one for each
3878 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3879 */
3880 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3881 if (jiffies_till_first_fqs == ULONG_MAX)
3882 jiffies_till_first_fqs = d;
3883 if (jiffies_till_next_fqs == ULONG_MAX)
3884 jiffies_till_next_fqs = d;
3885
3886 /* If the compile-time values are accurate, just leave. */
3887 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3888 nr_cpu_ids == NR_CPUS)
3889 return;
3890 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3891 rcu_fanout_leaf, nr_cpu_ids);
3892
3893 /*
3894 * Compute number of nodes that can be handled an rcu_node tree
3895 * with the given number of levels. Setting rcu_capacity[0] makes
3896 * some of the arithmetic easier.
3897 */
3898 rcu_capacity[0] = 1;
3899 rcu_capacity[1] = rcu_fanout_leaf;
3900 for (i = 2; i <= MAX_RCU_LVLS; i++)
3901 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3902
3903 /*
3904 * The boot-time rcu_fanout_leaf parameter is only permitted
3905 * to increase the leaf-level fanout, not decrease it. Of course,
3906 * the leaf-level fanout cannot exceed the number of bits in
3907 * the rcu_node masks. Finally, the tree must be able to accommodate
3908 * the configured number of CPUs. Complain and fall back to the
3909 * compile-time values if these limits are exceeded.
3910 */
3911 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3912 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3913 n > rcu_capacity[MAX_RCU_LVLS]) {
3914 WARN_ON(1);
3915 return;
3916 }
3917
3918 /* Calculate the number of rcu_nodes at each level of the tree. */
3919 for (i = 1; i <= MAX_RCU_LVLS; i++)
3920 if (n <= rcu_capacity[i]) {
3921 for (j = 0; j <= i; j++)
3922 num_rcu_lvl[j] =
3923 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3924 rcu_num_lvls = i;
3925 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3926 num_rcu_lvl[j] = 0;
3927 break;
3928 }
3929
3930 /* Calculate the total number of rcu_node structures. */
3931 rcu_num_nodes = 0;
3932 for (i = 0; i <= MAX_RCU_LVLS; i++)
3933 rcu_num_nodes += num_rcu_lvl[i];
3934 rcu_num_nodes -= n;
3935 }
3936
3937 void __init rcu_init(void)
3938 {
3939 int cpu;
3940
3941 rcu_bootup_announce();
3942 rcu_init_geometry();
3943 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3944 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3945 __rcu_init_preempt();
3946 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3947
3948 /*
3949 * We don't need protection against CPU-hotplug here because
3950 * this is called early in boot, before either interrupts
3951 * or the scheduler are operational.
3952 */
3953 cpu_notifier(rcu_cpu_notify, 0);
3954 pm_notifier(rcu_pm_notify, 0);
3955 for_each_online_cpu(cpu)
3956 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3957
3958 rcu_early_boot_tests();
3959 }
3960
3961 #include "tree_plugin.h"