]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/tree.c
rcu: Make cond_resched_rcu_qs() apply to normal RCU flavors
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 struct rcu_state sname##_state = { \
95 .level = { &sname##_state.node[0] }, \
96 .call = cr, \
97 .fqs_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105 .name = RCU_STATE_NAME(sname), \
106 .abbr = sabbr, \
107 }; \
108 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158
159 /* rcuc/rcub kthread realtime priority */
160 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
161 module_param(kthread_prio, int, 0644);
162
163 /*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172 unsigned long rcutorture_testseq;
173 unsigned long rcutorture_vernum;
174
175 /*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180 static int rcu_gp_in_progress(struct rcu_state *rsp)
181 {
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183 }
184
185 /*
186 * Note a quiescent state. Because we do not need to know
187 * how many quiescent states passed, just if there was at least
188 * one since the start of the grace period, this just sets a flag.
189 * The caller must have disabled preemption.
190 */
191 void rcu_sched_qs(void)
192 {
193 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
194 trace_rcu_grace_period(TPS("rcu_sched"),
195 __this_cpu_read(rcu_sched_data.gpnum),
196 TPS("cpuqs"));
197 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
198 }
199 }
200
201 void rcu_bh_qs(void)
202 {
203 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
204 trace_rcu_grace_period(TPS("rcu_bh"),
205 __this_cpu_read(rcu_bh_data.gpnum),
206 TPS("cpuqs"));
207 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
208 }
209 }
210
211 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
212
213 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
214 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
215 .dynticks = ATOMIC_INIT(1),
216 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
217 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
218 .dynticks_idle = ATOMIC_INIT(1),
219 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
220 };
221
222 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
223 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
224
225 /*
226 * Let the RCU core know that this CPU has gone through the scheduler,
227 * which is a quiescent state. This is called when the need for a
228 * quiescent state is urgent, so we burn an atomic operation and full
229 * memory barriers to let the RCU core know about it, regardless of what
230 * this CPU might (or might not) do in the near future.
231 *
232 * We inform the RCU core by emulating a zero-duration dyntick-idle
233 * period, which we in turn do by incrementing the ->dynticks counter
234 * by two.
235 */
236 static void rcu_momentary_dyntick_idle(void)
237 {
238 unsigned long flags;
239 struct rcu_data *rdp;
240 struct rcu_dynticks *rdtp;
241 int resched_mask;
242 struct rcu_state *rsp;
243
244 local_irq_save(flags);
245
246 /*
247 * Yes, we can lose flag-setting operations. This is OK, because
248 * the flag will be set again after some delay.
249 */
250 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
251 raw_cpu_write(rcu_sched_qs_mask, 0);
252
253 /* Find the flavor that needs a quiescent state. */
254 for_each_rcu_flavor(rsp) {
255 rdp = raw_cpu_ptr(rsp->rda);
256 if (!(resched_mask & rsp->flavor_mask))
257 continue;
258 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
259 if (ACCESS_ONCE(rdp->mynode->completed) !=
260 ACCESS_ONCE(rdp->cond_resched_completed))
261 continue;
262
263 /*
264 * Pretend to be momentarily idle for the quiescent state.
265 * This allows the grace-period kthread to record the
266 * quiescent state, with no need for this CPU to do anything
267 * further.
268 */
269 rdtp = this_cpu_ptr(&rcu_dynticks);
270 smp_mb__before_atomic(); /* Earlier stuff before QS. */
271 atomic_add(2, &rdtp->dynticks); /* QS. */
272 smp_mb__after_atomic(); /* Later stuff after QS. */
273 break;
274 }
275 local_irq_restore(flags);
276 }
277
278 /*
279 * Note a context switch. This is a quiescent state for RCU-sched,
280 * and requires special handling for preemptible RCU.
281 * The caller must have disabled preemption.
282 */
283 void rcu_note_context_switch(void)
284 {
285 trace_rcu_utilization(TPS("Start context switch"));
286 rcu_sched_qs();
287 rcu_preempt_note_context_switch();
288 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
289 rcu_momentary_dyntick_idle();
290 trace_rcu_utilization(TPS("End context switch"));
291 }
292 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
293
294 /*
295 * Register a quiesecent state for all RCU flavors. If there is an
296 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
297 * dyntick-idle quiescent state visible to other CPUs (but only for those
298 * RCU flavors in desparate need of a quiescent state, which will normally
299 * be none of them). Either way, do a lightweight quiescent state for
300 * all RCU flavors.
301 */
302 void rcu_all_qs(void)
303 {
304 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
305 rcu_momentary_dyntick_idle();
306 this_cpu_inc(rcu_qs_ctr);
307 }
308 EXPORT_SYMBOL_GPL(rcu_all_qs);
309
310 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
311 static long qhimark = 10000; /* If this many pending, ignore blimit. */
312 static long qlowmark = 100; /* Once only this many pending, use blimit. */
313
314 module_param(blimit, long, 0444);
315 module_param(qhimark, long, 0444);
316 module_param(qlowmark, long, 0444);
317
318 static ulong jiffies_till_first_fqs = ULONG_MAX;
319 static ulong jiffies_till_next_fqs = ULONG_MAX;
320
321 module_param(jiffies_till_first_fqs, ulong, 0644);
322 module_param(jiffies_till_next_fqs, ulong, 0644);
323
324 /*
325 * How long the grace period must be before we start recruiting
326 * quiescent-state help from rcu_note_context_switch().
327 */
328 static ulong jiffies_till_sched_qs = HZ / 20;
329 module_param(jiffies_till_sched_qs, ulong, 0644);
330
331 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
332 struct rcu_data *rdp);
333 static void force_qs_rnp(struct rcu_state *rsp,
334 int (*f)(struct rcu_data *rsp, bool *isidle,
335 unsigned long *maxj),
336 bool *isidle, unsigned long *maxj);
337 static void force_quiescent_state(struct rcu_state *rsp);
338 static int rcu_pending(void);
339
340 /*
341 * Return the number of RCU-sched batches processed thus far for debug & stats.
342 */
343 long rcu_batches_completed_sched(void)
344 {
345 return rcu_sched_state.completed;
346 }
347 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
348
349 /*
350 * Return the number of RCU BH batches processed thus far for debug & stats.
351 */
352 long rcu_batches_completed_bh(void)
353 {
354 return rcu_bh_state.completed;
355 }
356 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
357
358 /*
359 * Force a quiescent state.
360 */
361 void rcu_force_quiescent_state(void)
362 {
363 force_quiescent_state(rcu_state_p);
364 }
365 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
366
367 /*
368 * Force a quiescent state for RCU BH.
369 */
370 void rcu_bh_force_quiescent_state(void)
371 {
372 force_quiescent_state(&rcu_bh_state);
373 }
374 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
375
376 /*
377 * Show the state of the grace-period kthreads.
378 */
379 void show_rcu_gp_kthreads(void)
380 {
381 struct rcu_state *rsp;
382
383 for_each_rcu_flavor(rsp) {
384 pr_info("%s: wait state: %d ->state: %#lx\n",
385 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
386 /* sched_show_task(rsp->gp_kthread); */
387 }
388 }
389 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
390
391 /*
392 * Record the number of times rcutorture tests have been initiated and
393 * terminated. This information allows the debugfs tracing stats to be
394 * correlated to the rcutorture messages, even when the rcutorture module
395 * is being repeatedly loaded and unloaded. In other words, we cannot
396 * store this state in rcutorture itself.
397 */
398 void rcutorture_record_test_transition(void)
399 {
400 rcutorture_testseq++;
401 rcutorture_vernum = 0;
402 }
403 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
404
405 /*
406 * Send along grace-period-related data for rcutorture diagnostics.
407 */
408 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
409 unsigned long *gpnum, unsigned long *completed)
410 {
411 struct rcu_state *rsp = NULL;
412
413 switch (test_type) {
414 case RCU_FLAVOR:
415 rsp = rcu_state_p;
416 break;
417 case RCU_BH_FLAVOR:
418 rsp = &rcu_bh_state;
419 break;
420 case RCU_SCHED_FLAVOR:
421 rsp = &rcu_sched_state;
422 break;
423 default:
424 break;
425 }
426 if (rsp != NULL) {
427 *flags = ACCESS_ONCE(rsp->gp_flags);
428 *gpnum = ACCESS_ONCE(rsp->gpnum);
429 *completed = ACCESS_ONCE(rsp->completed);
430 return;
431 }
432 *flags = 0;
433 *gpnum = 0;
434 *completed = 0;
435 }
436 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
437
438 /*
439 * Record the number of writer passes through the current rcutorture test.
440 * This is also used to correlate debugfs tracing stats with the rcutorture
441 * messages.
442 */
443 void rcutorture_record_progress(unsigned long vernum)
444 {
445 rcutorture_vernum++;
446 }
447 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
448
449 /*
450 * Force a quiescent state for RCU-sched.
451 */
452 void rcu_sched_force_quiescent_state(void)
453 {
454 force_quiescent_state(&rcu_sched_state);
455 }
456 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
457
458 /*
459 * Does the CPU have callbacks ready to be invoked?
460 */
461 static int
462 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
463 {
464 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
465 rdp->nxttail[RCU_DONE_TAIL] != NULL;
466 }
467
468 /*
469 * Return the root node of the specified rcu_state structure.
470 */
471 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
472 {
473 return &rsp->node[0];
474 }
475
476 /*
477 * Is there any need for future grace periods?
478 * Interrupts must be disabled. If the caller does not hold the root
479 * rnp_node structure's ->lock, the results are advisory only.
480 */
481 static int rcu_future_needs_gp(struct rcu_state *rsp)
482 {
483 struct rcu_node *rnp = rcu_get_root(rsp);
484 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
485 int *fp = &rnp->need_future_gp[idx];
486
487 return ACCESS_ONCE(*fp);
488 }
489
490 /*
491 * Does the current CPU require a not-yet-started grace period?
492 * The caller must have disabled interrupts to prevent races with
493 * normal callback registry.
494 */
495 static int
496 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
497 {
498 int i;
499
500 if (rcu_gp_in_progress(rsp))
501 return 0; /* No, a grace period is already in progress. */
502 if (rcu_future_needs_gp(rsp))
503 return 1; /* Yes, a no-CBs CPU needs one. */
504 if (!rdp->nxttail[RCU_NEXT_TAIL])
505 return 0; /* No, this is a no-CBs (or offline) CPU. */
506 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
507 return 1; /* Yes, this CPU has newly registered callbacks. */
508 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
509 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
510 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
511 rdp->nxtcompleted[i]))
512 return 1; /* Yes, CBs for future grace period. */
513 return 0; /* No grace period needed. */
514 }
515
516 /*
517 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
518 *
519 * If the new value of the ->dynticks_nesting counter now is zero,
520 * we really have entered idle, and must do the appropriate accounting.
521 * The caller must have disabled interrupts.
522 */
523 static void rcu_eqs_enter_common(long long oldval, bool user)
524 {
525 struct rcu_state *rsp;
526 struct rcu_data *rdp;
527 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
528
529 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
530 if (!user && !is_idle_task(current)) {
531 struct task_struct *idle __maybe_unused =
532 idle_task(smp_processor_id());
533
534 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
535 ftrace_dump(DUMP_ORIG);
536 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
537 current->pid, current->comm,
538 idle->pid, idle->comm); /* must be idle task! */
539 }
540 for_each_rcu_flavor(rsp) {
541 rdp = this_cpu_ptr(rsp->rda);
542 do_nocb_deferred_wakeup(rdp);
543 }
544 rcu_prepare_for_idle();
545 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
546 smp_mb__before_atomic(); /* See above. */
547 atomic_inc(&rdtp->dynticks);
548 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
549 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
550 rcu_dynticks_task_enter();
551
552 /*
553 * It is illegal to enter an extended quiescent state while
554 * in an RCU read-side critical section.
555 */
556 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
557 "Illegal idle entry in RCU read-side critical section.");
558 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
559 "Illegal idle entry in RCU-bh read-side critical section.");
560 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
561 "Illegal idle entry in RCU-sched read-side critical section.");
562 }
563
564 /*
565 * Enter an RCU extended quiescent state, which can be either the
566 * idle loop or adaptive-tickless usermode execution.
567 */
568 static void rcu_eqs_enter(bool user)
569 {
570 long long oldval;
571 struct rcu_dynticks *rdtp;
572
573 rdtp = this_cpu_ptr(&rcu_dynticks);
574 oldval = rdtp->dynticks_nesting;
575 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
576 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
577 rdtp->dynticks_nesting = 0;
578 rcu_eqs_enter_common(oldval, user);
579 } else {
580 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
581 }
582 }
583
584 /**
585 * rcu_idle_enter - inform RCU that current CPU is entering idle
586 *
587 * Enter idle mode, in other words, -leave- the mode in which RCU
588 * read-side critical sections can occur. (Though RCU read-side
589 * critical sections can occur in irq handlers in idle, a possibility
590 * handled by irq_enter() and irq_exit().)
591 *
592 * We crowbar the ->dynticks_nesting field to zero to allow for
593 * the possibility of usermode upcalls having messed up our count
594 * of interrupt nesting level during the prior busy period.
595 */
596 void rcu_idle_enter(void)
597 {
598 unsigned long flags;
599
600 local_irq_save(flags);
601 rcu_eqs_enter(false);
602 rcu_sysidle_enter(0);
603 local_irq_restore(flags);
604 }
605 EXPORT_SYMBOL_GPL(rcu_idle_enter);
606
607 #ifdef CONFIG_RCU_USER_QS
608 /**
609 * rcu_user_enter - inform RCU that we are resuming userspace.
610 *
611 * Enter RCU idle mode right before resuming userspace. No use of RCU
612 * is permitted between this call and rcu_user_exit(). This way the
613 * CPU doesn't need to maintain the tick for RCU maintenance purposes
614 * when the CPU runs in userspace.
615 */
616 void rcu_user_enter(void)
617 {
618 rcu_eqs_enter(1);
619 }
620 #endif /* CONFIG_RCU_USER_QS */
621
622 /**
623 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
624 *
625 * Exit from an interrupt handler, which might possibly result in entering
626 * idle mode, in other words, leaving the mode in which read-side critical
627 * sections can occur.
628 *
629 * This code assumes that the idle loop never does anything that might
630 * result in unbalanced calls to irq_enter() and irq_exit(). If your
631 * architecture violates this assumption, RCU will give you what you
632 * deserve, good and hard. But very infrequently and irreproducibly.
633 *
634 * Use things like work queues to work around this limitation.
635 *
636 * You have been warned.
637 */
638 void rcu_irq_exit(void)
639 {
640 unsigned long flags;
641 long long oldval;
642 struct rcu_dynticks *rdtp;
643
644 local_irq_save(flags);
645 rdtp = this_cpu_ptr(&rcu_dynticks);
646 oldval = rdtp->dynticks_nesting;
647 rdtp->dynticks_nesting--;
648 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
649 if (rdtp->dynticks_nesting)
650 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
651 else
652 rcu_eqs_enter_common(oldval, true);
653 rcu_sysidle_enter(1);
654 local_irq_restore(flags);
655 }
656
657 /*
658 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
659 *
660 * If the new value of the ->dynticks_nesting counter was previously zero,
661 * we really have exited idle, and must do the appropriate accounting.
662 * The caller must have disabled interrupts.
663 */
664 static void rcu_eqs_exit_common(long long oldval, int user)
665 {
666 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
667
668 rcu_dynticks_task_exit();
669 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
670 atomic_inc(&rdtp->dynticks);
671 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
672 smp_mb__after_atomic(); /* See above. */
673 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
674 rcu_cleanup_after_idle();
675 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
676 if (!user && !is_idle_task(current)) {
677 struct task_struct *idle __maybe_unused =
678 idle_task(smp_processor_id());
679
680 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
681 oldval, rdtp->dynticks_nesting);
682 ftrace_dump(DUMP_ORIG);
683 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
684 current->pid, current->comm,
685 idle->pid, idle->comm); /* must be idle task! */
686 }
687 }
688
689 /*
690 * Exit an RCU extended quiescent state, which can be either the
691 * idle loop or adaptive-tickless usermode execution.
692 */
693 static void rcu_eqs_exit(bool user)
694 {
695 struct rcu_dynticks *rdtp;
696 long long oldval;
697
698 rdtp = this_cpu_ptr(&rcu_dynticks);
699 oldval = rdtp->dynticks_nesting;
700 WARN_ON_ONCE(oldval < 0);
701 if (oldval & DYNTICK_TASK_NEST_MASK) {
702 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
703 } else {
704 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
705 rcu_eqs_exit_common(oldval, user);
706 }
707 }
708
709 /**
710 * rcu_idle_exit - inform RCU that current CPU is leaving idle
711 *
712 * Exit idle mode, in other words, -enter- the mode in which RCU
713 * read-side critical sections can occur.
714 *
715 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
716 * allow for the possibility of usermode upcalls messing up our count
717 * of interrupt nesting level during the busy period that is just
718 * now starting.
719 */
720 void rcu_idle_exit(void)
721 {
722 unsigned long flags;
723
724 local_irq_save(flags);
725 rcu_eqs_exit(false);
726 rcu_sysidle_exit(0);
727 local_irq_restore(flags);
728 }
729 EXPORT_SYMBOL_GPL(rcu_idle_exit);
730
731 #ifdef CONFIG_RCU_USER_QS
732 /**
733 * rcu_user_exit - inform RCU that we are exiting userspace.
734 *
735 * Exit RCU idle mode while entering the kernel because it can
736 * run a RCU read side critical section anytime.
737 */
738 void rcu_user_exit(void)
739 {
740 rcu_eqs_exit(1);
741 }
742 #endif /* CONFIG_RCU_USER_QS */
743
744 /**
745 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
746 *
747 * Enter an interrupt handler, which might possibly result in exiting
748 * idle mode, in other words, entering the mode in which read-side critical
749 * sections can occur.
750 *
751 * Note that the Linux kernel is fully capable of entering an interrupt
752 * handler that it never exits, for example when doing upcalls to
753 * user mode! This code assumes that the idle loop never does upcalls to
754 * user mode. If your architecture does do upcalls from the idle loop (or
755 * does anything else that results in unbalanced calls to the irq_enter()
756 * and irq_exit() functions), RCU will give you what you deserve, good
757 * and hard. But very infrequently and irreproducibly.
758 *
759 * Use things like work queues to work around this limitation.
760 *
761 * You have been warned.
762 */
763 void rcu_irq_enter(void)
764 {
765 unsigned long flags;
766 struct rcu_dynticks *rdtp;
767 long long oldval;
768
769 local_irq_save(flags);
770 rdtp = this_cpu_ptr(&rcu_dynticks);
771 oldval = rdtp->dynticks_nesting;
772 rdtp->dynticks_nesting++;
773 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
774 if (oldval)
775 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
776 else
777 rcu_eqs_exit_common(oldval, true);
778 rcu_sysidle_exit(1);
779 local_irq_restore(flags);
780 }
781
782 /**
783 * rcu_nmi_enter - inform RCU of entry to NMI context
784 *
785 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
786 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
787 * that the CPU is active. This implementation permits nested NMIs, as
788 * long as the nesting level does not overflow an int. (You will probably
789 * run out of stack space first.)
790 */
791 void rcu_nmi_enter(void)
792 {
793 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
794 int incby = 2;
795
796 /* Complain about underflow. */
797 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
798
799 /*
800 * If idle from RCU viewpoint, atomically increment ->dynticks
801 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
802 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
803 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
804 * to be in the outermost NMI handler that interrupted an RCU-idle
805 * period (observation due to Andy Lutomirski).
806 */
807 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
808 smp_mb__before_atomic(); /* Force delay from prior write. */
809 atomic_inc(&rdtp->dynticks);
810 /* atomic_inc() before later RCU read-side crit sects */
811 smp_mb__after_atomic(); /* See above. */
812 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
813 incby = 1;
814 }
815 rdtp->dynticks_nmi_nesting += incby;
816 barrier();
817 }
818
819 /**
820 * rcu_nmi_exit - inform RCU of exit from NMI context
821 *
822 * If we are returning from the outermost NMI handler that interrupted an
823 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
824 * to let the RCU grace-period handling know that the CPU is back to
825 * being RCU-idle.
826 */
827 void rcu_nmi_exit(void)
828 {
829 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
830
831 /*
832 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
833 * (We are exiting an NMI handler, so RCU better be paying attention
834 * to us!)
835 */
836 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
837 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
838
839 /*
840 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
841 * leave it in non-RCU-idle state.
842 */
843 if (rdtp->dynticks_nmi_nesting != 1) {
844 rdtp->dynticks_nmi_nesting -= 2;
845 return;
846 }
847
848 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
849 rdtp->dynticks_nmi_nesting = 0;
850 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
851 smp_mb__before_atomic(); /* See above. */
852 atomic_inc(&rdtp->dynticks);
853 smp_mb__after_atomic(); /* Force delay to next write. */
854 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
855 }
856
857 /**
858 * __rcu_is_watching - are RCU read-side critical sections safe?
859 *
860 * Return true if RCU is watching the running CPU, which means that
861 * this CPU can safely enter RCU read-side critical sections. Unlike
862 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
863 * least disabled preemption.
864 */
865 bool notrace __rcu_is_watching(void)
866 {
867 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
868 }
869
870 /**
871 * rcu_is_watching - see if RCU thinks that the current CPU is idle
872 *
873 * If the current CPU is in its idle loop and is neither in an interrupt
874 * or NMI handler, return true.
875 */
876 bool notrace rcu_is_watching(void)
877 {
878 bool ret;
879
880 preempt_disable();
881 ret = __rcu_is_watching();
882 preempt_enable();
883 return ret;
884 }
885 EXPORT_SYMBOL_GPL(rcu_is_watching);
886
887 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
888
889 /*
890 * Is the current CPU online? Disable preemption to avoid false positives
891 * that could otherwise happen due to the current CPU number being sampled,
892 * this task being preempted, its old CPU being taken offline, resuming
893 * on some other CPU, then determining that its old CPU is now offline.
894 * It is OK to use RCU on an offline processor during initial boot, hence
895 * the check for rcu_scheduler_fully_active. Note also that it is OK
896 * for a CPU coming online to use RCU for one jiffy prior to marking itself
897 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
898 * offline to continue to use RCU for one jiffy after marking itself
899 * offline in the cpu_online_mask. This leniency is necessary given the
900 * non-atomic nature of the online and offline processing, for example,
901 * the fact that a CPU enters the scheduler after completing the CPU_DYING
902 * notifiers.
903 *
904 * This is also why RCU internally marks CPUs online during the
905 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
906 *
907 * Disable checking if in an NMI handler because we cannot safely report
908 * errors from NMI handlers anyway.
909 */
910 bool rcu_lockdep_current_cpu_online(void)
911 {
912 struct rcu_data *rdp;
913 struct rcu_node *rnp;
914 bool ret;
915
916 if (in_nmi())
917 return true;
918 preempt_disable();
919 rdp = this_cpu_ptr(&rcu_sched_data);
920 rnp = rdp->mynode;
921 ret = (rdp->grpmask & rnp->qsmaskinit) ||
922 !rcu_scheduler_fully_active;
923 preempt_enable();
924 return ret;
925 }
926 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
927
928 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
929
930 /**
931 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
932 *
933 * If the current CPU is idle or running at a first-level (not nested)
934 * interrupt from idle, return true. The caller must have at least
935 * disabled preemption.
936 */
937 static int rcu_is_cpu_rrupt_from_idle(void)
938 {
939 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
940 }
941
942 /*
943 * Snapshot the specified CPU's dynticks counter so that we can later
944 * credit them with an implicit quiescent state. Return 1 if this CPU
945 * is in dynticks idle mode, which is an extended quiescent state.
946 */
947 static int dyntick_save_progress_counter(struct rcu_data *rdp,
948 bool *isidle, unsigned long *maxj)
949 {
950 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
951 rcu_sysidle_check_cpu(rdp, isidle, maxj);
952 if ((rdp->dynticks_snap & 0x1) == 0) {
953 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
954 return 1;
955 } else {
956 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
957 rdp->mynode->gpnum))
958 ACCESS_ONCE(rdp->gpwrap) = true;
959 return 0;
960 }
961 }
962
963 /*
964 * This function really isn't for public consumption, but RCU is special in
965 * that context switches can allow the state machine to make progress.
966 */
967 extern void resched_cpu(int cpu);
968
969 /*
970 * Return true if the specified CPU has passed through a quiescent
971 * state by virtue of being in or having passed through an dynticks
972 * idle state since the last call to dyntick_save_progress_counter()
973 * for this same CPU, or by virtue of having been offline.
974 */
975 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
976 bool *isidle, unsigned long *maxj)
977 {
978 unsigned int curr;
979 int *rcrmp;
980 unsigned int snap;
981
982 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
983 snap = (unsigned int)rdp->dynticks_snap;
984
985 /*
986 * If the CPU passed through or entered a dynticks idle phase with
987 * no active irq/NMI handlers, then we can safely pretend that the CPU
988 * already acknowledged the request to pass through a quiescent
989 * state. Either way, that CPU cannot possibly be in an RCU
990 * read-side critical section that started before the beginning
991 * of the current RCU grace period.
992 */
993 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
994 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
995 rdp->dynticks_fqs++;
996 return 1;
997 }
998
999 /*
1000 * Check for the CPU being offline, but only if the grace period
1001 * is old enough. We don't need to worry about the CPU changing
1002 * state: If we see it offline even once, it has been through a
1003 * quiescent state.
1004 *
1005 * The reason for insisting that the grace period be at least
1006 * one jiffy old is that CPUs that are not quite online and that
1007 * have just gone offline can still execute RCU read-side critical
1008 * sections.
1009 */
1010 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1011 return 0; /* Grace period is not old enough. */
1012 barrier();
1013 if (cpu_is_offline(rdp->cpu)) {
1014 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1015 rdp->offline_fqs++;
1016 return 1;
1017 }
1018
1019 /*
1020 * A CPU running for an extended time within the kernel can
1021 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1022 * even context-switching back and forth between a pair of
1023 * in-kernel CPU-bound tasks cannot advance grace periods.
1024 * So if the grace period is old enough, make the CPU pay attention.
1025 * Note that the unsynchronized assignments to the per-CPU
1026 * rcu_sched_qs_mask variable are safe. Yes, setting of
1027 * bits can be lost, but they will be set again on the next
1028 * force-quiescent-state pass. So lost bit sets do not result
1029 * in incorrect behavior, merely in a grace period lasting
1030 * a few jiffies longer than it might otherwise. Because
1031 * there are at most four threads involved, and because the
1032 * updates are only once every few jiffies, the probability of
1033 * lossage (and thus of slight grace-period extension) is
1034 * quite low.
1035 *
1036 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1037 * is set too high, we override with half of the RCU CPU stall
1038 * warning delay.
1039 */
1040 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1041 if (ULONG_CMP_GE(jiffies,
1042 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1043 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1044 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1045 ACCESS_ONCE(rdp->cond_resched_completed) =
1046 ACCESS_ONCE(rdp->mynode->completed);
1047 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1048 ACCESS_ONCE(*rcrmp) =
1049 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1050 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1051 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1052 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1053 /* Time to beat on that CPU again! */
1054 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1055 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1056 }
1057 }
1058
1059 return 0;
1060 }
1061
1062 static void record_gp_stall_check_time(struct rcu_state *rsp)
1063 {
1064 unsigned long j = jiffies;
1065 unsigned long j1;
1066
1067 rsp->gp_start = j;
1068 smp_wmb(); /* Record start time before stall time. */
1069 j1 = rcu_jiffies_till_stall_check();
1070 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1071 rsp->jiffies_resched = j + j1 / 2;
1072 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1073 }
1074
1075 /*
1076 * Dump stacks of all tasks running on stalled CPUs.
1077 */
1078 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1079 {
1080 int cpu;
1081 unsigned long flags;
1082 struct rcu_node *rnp;
1083
1084 rcu_for_each_leaf_node(rsp, rnp) {
1085 raw_spin_lock_irqsave(&rnp->lock, flags);
1086 if (rnp->qsmask != 0) {
1087 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1088 if (rnp->qsmask & (1UL << cpu))
1089 dump_cpu_task(rnp->grplo + cpu);
1090 }
1091 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1092 }
1093 }
1094
1095 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1096 {
1097 int cpu;
1098 long delta;
1099 unsigned long flags;
1100 unsigned long gpa;
1101 unsigned long j;
1102 int ndetected = 0;
1103 struct rcu_node *rnp = rcu_get_root(rsp);
1104 long totqlen = 0;
1105
1106 /* Only let one CPU complain about others per time interval. */
1107
1108 raw_spin_lock_irqsave(&rnp->lock, flags);
1109 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1110 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1111 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1112 return;
1113 }
1114 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1115 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1116
1117 /*
1118 * OK, time to rat on our buddy...
1119 * See Documentation/RCU/stallwarn.txt for info on how to debug
1120 * RCU CPU stall warnings.
1121 */
1122 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1123 rsp->name);
1124 print_cpu_stall_info_begin();
1125 rcu_for_each_leaf_node(rsp, rnp) {
1126 raw_spin_lock_irqsave(&rnp->lock, flags);
1127 ndetected += rcu_print_task_stall(rnp);
1128 if (rnp->qsmask != 0) {
1129 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1130 if (rnp->qsmask & (1UL << cpu)) {
1131 print_cpu_stall_info(rsp,
1132 rnp->grplo + cpu);
1133 ndetected++;
1134 }
1135 }
1136 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1137 }
1138
1139 /*
1140 * Now rat on any tasks that got kicked up to the root rcu_node
1141 * due to CPU offlining.
1142 */
1143 rnp = rcu_get_root(rsp);
1144 raw_spin_lock_irqsave(&rnp->lock, flags);
1145 ndetected += rcu_print_task_stall(rnp);
1146 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1147
1148 print_cpu_stall_info_end();
1149 for_each_possible_cpu(cpu)
1150 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1151 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1152 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1153 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1154 if (ndetected) {
1155 rcu_dump_cpu_stacks(rsp);
1156 } else {
1157 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1158 ACCESS_ONCE(rsp->completed) == gpnum) {
1159 pr_err("INFO: Stall ended before state dump start\n");
1160 } else {
1161 j = jiffies;
1162 gpa = ACCESS_ONCE(rsp->gp_activity);
1163 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n",
1164 rsp->name, j - gpa, j, gpa,
1165 jiffies_till_next_fqs);
1166 /* In this case, the current CPU might be at fault. */
1167 sched_show_task(current);
1168 }
1169 }
1170
1171 /* Complain about tasks blocking the grace period. */
1172
1173 rcu_print_detail_task_stall(rsp);
1174
1175 force_quiescent_state(rsp); /* Kick them all. */
1176 }
1177
1178 static void print_cpu_stall(struct rcu_state *rsp)
1179 {
1180 int cpu;
1181 unsigned long flags;
1182 struct rcu_node *rnp = rcu_get_root(rsp);
1183 long totqlen = 0;
1184
1185 /*
1186 * OK, time to rat on ourselves...
1187 * See Documentation/RCU/stallwarn.txt for info on how to debug
1188 * RCU CPU stall warnings.
1189 */
1190 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1191 print_cpu_stall_info_begin();
1192 print_cpu_stall_info(rsp, smp_processor_id());
1193 print_cpu_stall_info_end();
1194 for_each_possible_cpu(cpu)
1195 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1196 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1197 jiffies - rsp->gp_start,
1198 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1199 rcu_dump_cpu_stacks(rsp);
1200
1201 raw_spin_lock_irqsave(&rnp->lock, flags);
1202 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1203 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1204 3 * rcu_jiffies_till_stall_check() + 3;
1205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206
1207 /*
1208 * Attempt to revive the RCU machinery by forcing a context switch.
1209 *
1210 * A context switch would normally allow the RCU state machine to make
1211 * progress and it could be we're stuck in kernel space without context
1212 * switches for an entirely unreasonable amount of time.
1213 */
1214 resched_cpu(smp_processor_id());
1215 }
1216
1217 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1218 {
1219 unsigned long completed;
1220 unsigned long gpnum;
1221 unsigned long gps;
1222 unsigned long j;
1223 unsigned long js;
1224 struct rcu_node *rnp;
1225
1226 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1227 return;
1228 j = jiffies;
1229
1230 /*
1231 * Lots of memory barriers to reject false positives.
1232 *
1233 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1234 * then rsp->gp_start, and finally rsp->completed. These values
1235 * are updated in the opposite order with memory barriers (or
1236 * equivalent) during grace-period initialization and cleanup.
1237 * Now, a false positive can occur if we get an new value of
1238 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1239 * the memory barriers, the only way that this can happen is if one
1240 * grace period ends and another starts between these two fetches.
1241 * Detect this by comparing rsp->completed with the previous fetch
1242 * from rsp->gpnum.
1243 *
1244 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1245 * and rsp->gp_start suffice to forestall false positives.
1246 */
1247 gpnum = ACCESS_ONCE(rsp->gpnum);
1248 smp_rmb(); /* Pick up ->gpnum first... */
1249 js = ACCESS_ONCE(rsp->jiffies_stall);
1250 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1251 gps = ACCESS_ONCE(rsp->gp_start);
1252 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1253 completed = ACCESS_ONCE(rsp->completed);
1254 if (ULONG_CMP_GE(completed, gpnum) ||
1255 ULONG_CMP_LT(j, js) ||
1256 ULONG_CMP_GE(gps, js))
1257 return; /* No stall or GP completed since entering function. */
1258 rnp = rdp->mynode;
1259 if (rcu_gp_in_progress(rsp) &&
1260 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1261
1262 /* We haven't checked in, so go dump stack. */
1263 print_cpu_stall(rsp);
1264
1265 } else if (rcu_gp_in_progress(rsp) &&
1266 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1267
1268 /* They had a few time units to dump stack, so complain. */
1269 print_other_cpu_stall(rsp, gpnum);
1270 }
1271 }
1272
1273 /**
1274 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1275 *
1276 * Set the stall-warning timeout way off into the future, thus preventing
1277 * any RCU CPU stall-warning messages from appearing in the current set of
1278 * RCU grace periods.
1279 *
1280 * The caller must disable hard irqs.
1281 */
1282 void rcu_cpu_stall_reset(void)
1283 {
1284 struct rcu_state *rsp;
1285
1286 for_each_rcu_flavor(rsp)
1287 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1288 }
1289
1290 /*
1291 * Initialize the specified rcu_data structure's callback list to empty.
1292 */
1293 static void init_callback_list(struct rcu_data *rdp)
1294 {
1295 int i;
1296
1297 if (init_nocb_callback_list(rdp))
1298 return;
1299 rdp->nxtlist = NULL;
1300 for (i = 0; i < RCU_NEXT_SIZE; i++)
1301 rdp->nxttail[i] = &rdp->nxtlist;
1302 }
1303
1304 /*
1305 * Determine the value that ->completed will have at the end of the
1306 * next subsequent grace period. This is used to tag callbacks so that
1307 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1308 * been dyntick-idle for an extended period with callbacks under the
1309 * influence of RCU_FAST_NO_HZ.
1310 *
1311 * The caller must hold rnp->lock with interrupts disabled.
1312 */
1313 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1314 struct rcu_node *rnp)
1315 {
1316 /*
1317 * If RCU is idle, we just wait for the next grace period.
1318 * But we can only be sure that RCU is idle if we are looking
1319 * at the root rcu_node structure -- otherwise, a new grace
1320 * period might have started, but just not yet gotten around
1321 * to initializing the current non-root rcu_node structure.
1322 */
1323 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1324 return rnp->completed + 1;
1325
1326 /*
1327 * Otherwise, wait for a possible partial grace period and
1328 * then the subsequent full grace period.
1329 */
1330 return rnp->completed + 2;
1331 }
1332
1333 /*
1334 * Trace-event helper function for rcu_start_future_gp() and
1335 * rcu_nocb_wait_gp().
1336 */
1337 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1338 unsigned long c, const char *s)
1339 {
1340 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1341 rnp->completed, c, rnp->level,
1342 rnp->grplo, rnp->grphi, s);
1343 }
1344
1345 /*
1346 * Start some future grace period, as needed to handle newly arrived
1347 * callbacks. The required future grace periods are recorded in each
1348 * rcu_node structure's ->need_future_gp field. Returns true if there
1349 * is reason to awaken the grace-period kthread.
1350 *
1351 * The caller must hold the specified rcu_node structure's ->lock.
1352 */
1353 static bool __maybe_unused
1354 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1355 unsigned long *c_out)
1356 {
1357 unsigned long c;
1358 int i;
1359 bool ret = false;
1360 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1361
1362 /*
1363 * Pick up grace-period number for new callbacks. If this
1364 * grace period is already marked as needed, return to the caller.
1365 */
1366 c = rcu_cbs_completed(rdp->rsp, rnp);
1367 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1368 if (rnp->need_future_gp[c & 0x1]) {
1369 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1370 goto out;
1371 }
1372
1373 /*
1374 * If either this rcu_node structure or the root rcu_node structure
1375 * believe that a grace period is in progress, then we must wait
1376 * for the one following, which is in "c". Because our request
1377 * will be noticed at the end of the current grace period, we don't
1378 * need to explicitly start one. We only do the lockless check
1379 * of rnp_root's fields if the current rcu_node structure thinks
1380 * there is no grace period in flight, and because we hold rnp->lock,
1381 * the only possible change is when rnp_root's two fields are
1382 * equal, in which case rnp_root->gpnum might be concurrently
1383 * incremented. But that is OK, as it will just result in our
1384 * doing some extra useless work.
1385 */
1386 if (rnp->gpnum != rnp->completed ||
1387 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1388 rnp->need_future_gp[c & 0x1]++;
1389 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1390 goto out;
1391 }
1392
1393 /*
1394 * There might be no grace period in progress. If we don't already
1395 * hold it, acquire the root rcu_node structure's lock in order to
1396 * start one (if needed).
1397 */
1398 if (rnp != rnp_root) {
1399 raw_spin_lock(&rnp_root->lock);
1400 smp_mb__after_unlock_lock();
1401 }
1402
1403 /*
1404 * Get a new grace-period number. If there really is no grace
1405 * period in progress, it will be smaller than the one we obtained
1406 * earlier. Adjust callbacks as needed. Note that even no-CBs
1407 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1408 */
1409 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1410 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1411 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1412 rdp->nxtcompleted[i] = c;
1413
1414 /*
1415 * If the needed for the required grace period is already
1416 * recorded, trace and leave.
1417 */
1418 if (rnp_root->need_future_gp[c & 0x1]) {
1419 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1420 goto unlock_out;
1421 }
1422
1423 /* Record the need for the future grace period. */
1424 rnp_root->need_future_gp[c & 0x1]++;
1425
1426 /* If a grace period is not already in progress, start one. */
1427 if (rnp_root->gpnum != rnp_root->completed) {
1428 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1429 } else {
1430 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1431 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1432 }
1433 unlock_out:
1434 if (rnp != rnp_root)
1435 raw_spin_unlock(&rnp_root->lock);
1436 out:
1437 if (c_out != NULL)
1438 *c_out = c;
1439 return ret;
1440 }
1441
1442 /*
1443 * Clean up any old requests for the just-ended grace period. Also return
1444 * whether any additional grace periods have been requested. Also invoke
1445 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1446 * waiting for this grace period to complete.
1447 */
1448 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1449 {
1450 int c = rnp->completed;
1451 int needmore;
1452 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1453
1454 rcu_nocb_gp_cleanup(rsp, rnp);
1455 rnp->need_future_gp[c & 0x1] = 0;
1456 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1457 trace_rcu_future_gp(rnp, rdp, c,
1458 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1459 return needmore;
1460 }
1461
1462 /*
1463 * Awaken the grace-period kthread for the specified flavor of RCU.
1464 * Don't do a self-awaken, and don't bother awakening when there is
1465 * nothing for the grace-period kthread to do (as in several CPUs
1466 * raced to awaken, and we lost), and finally don't try to awaken
1467 * a kthread that has not yet been created.
1468 */
1469 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1470 {
1471 if (current == rsp->gp_kthread ||
1472 !ACCESS_ONCE(rsp->gp_flags) ||
1473 !rsp->gp_kthread)
1474 return;
1475 wake_up(&rsp->gp_wq);
1476 }
1477
1478 /*
1479 * If there is room, assign a ->completed number to any callbacks on
1480 * this CPU that have not already been assigned. Also accelerate any
1481 * callbacks that were previously assigned a ->completed number that has
1482 * since proven to be too conservative, which can happen if callbacks get
1483 * assigned a ->completed number while RCU is idle, but with reference to
1484 * a non-root rcu_node structure. This function is idempotent, so it does
1485 * not hurt to call it repeatedly. Returns an flag saying that we should
1486 * awaken the RCU grace-period kthread.
1487 *
1488 * The caller must hold rnp->lock with interrupts disabled.
1489 */
1490 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1491 struct rcu_data *rdp)
1492 {
1493 unsigned long c;
1494 int i;
1495 bool ret;
1496
1497 /* If the CPU has no callbacks, nothing to do. */
1498 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1499 return false;
1500
1501 /*
1502 * Starting from the sublist containing the callbacks most
1503 * recently assigned a ->completed number and working down, find the
1504 * first sublist that is not assignable to an upcoming grace period.
1505 * Such a sublist has something in it (first two tests) and has
1506 * a ->completed number assigned that will complete sooner than
1507 * the ->completed number for newly arrived callbacks (last test).
1508 *
1509 * The key point is that any later sublist can be assigned the
1510 * same ->completed number as the newly arrived callbacks, which
1511 * means that the callbacks in any of these later sublist can be
1512 * grouped into a single sublist, whether or not they have already
1513 * been assigned a ->completed number.
1514 */
1515 c = rcu_cbs_completed(rsp, rnp);
1516 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1517 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1518 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1519 break;
1520
1521 /*
1522 * If there are no sublist for unassigned callbacks, leave.
1523 * At the same time, advance "i" one sublist, so that "i" will
1524 * index into the sublist where all the remaining callbacks should
1525 * be grouped into.
1526 */
1527 if (++i >= RCU_NEXT_TAIL)
1528 return false;
1529
1530 /*
1531 * Assign all subsequent callbacks' ->completed number to the next
1532 * full grace period and group them all in the sublist initially
1533 * indexed by "i".
1534 */
1535 for (; i <= RCU_NEXT_TAIL; i++) {
1536 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1537 rdp->nxtcompleted[i] = c;
1538 }
1539 /* Record any needed additional grace periods. */
1540 ret = rcu_start_future_gp(rnp, rdp, NULL);
1541
1542 /* Trace depending on how much we were able to accelerate. */
1543 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1544 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1545 else
1546 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1547 return ret;
1548 }
1549
1550 /*
1551 * Move any callbacks whose grace period has completed to the
1552 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1553 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1554 * sublist. This function is idempotent, so it does not hurt to
1555 * invoke it repeatedly. As long as it is not invoked -too- often...
1556 * Returns true if the RCU grace-period kthread needs to be awakened.
1557 *
1558 * The caller must hold rnp->lock with interrupts disabled.
1559 */
1560 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1561 struct rcu_data *rdp)
1562 {
1563 int i, j;
1564
1565 /* If the CPU has no callbacks, nothing to do. */
1566 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1567 return false;
1568
1569 /*
1570 * Find all callbacks whose ->completed numbers indicate that they
1571 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1572 */
1573 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1574 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1575 break;
1576 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1577 }
1578 /* Clean up any sublist tail pointers that were misordered above. */
1579 for (j = RCU_WAIT_TAIL; j < i; j++)
1580 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1581
1582 /* Copy down callbacks to fill in empty sublists. */
1583 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1584 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1585 break;
1586 rdp->nxttail[j] = rdp->nxttail[i];
1587 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1588 }
1589
1590 /* Classify any remaining callbacks. */
1591 return rcu_accelerate_cbs(rsp, rnp, rdp);
1592 }
1593
1594 /*
1595 * Update CPU-local rcu_data state to record the beginnings and ends of
1596 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1597 * structure corresponding to the current CPU, and must have irqs disabled.
1598 * Returns true if the grace-period kthread needs to be awakened.
1599 */
1600 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1601 struct rcu_data *rdp)
1602 {
1603 bool ret;
1604
1605 /* Handle the ends of any preceding grace periods first. */
1606 if (rdp->completed == rnp->completed &&
1607 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1608
1609 /* No grace period end, so just accelerate recent callbacks. */
1610 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1611
1612 } else {
1613
1614 /* Advance callbacks. */
1615 ret = rcu_advance_cbs(rsp, rnp, rdp);
1616
1617 /* Remember that we saw this grace-period completion. */
1618 rdp->completed = rnp->completed;
1619 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1620 }
1621
1622 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1623 /*
1624 * If the current grace period is waiting for this CPU,
1625 * set up to detect a quiescent state, otherwise don't
1626 * go looking for one.
1627 */
1628 rdp->gpnum = rnp->gpnum;
1629 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1630 rdp->passed_quiesce = 0;
1631 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1632 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1633 zero_cpu_stall_ticks(rdp);
1634 ACCESS_ONCE(rdp->gpwrap) = false;
1635 }
1636 return ret;
1637 }
1638
1639 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1640 {
1641 unsigned long flags;
1642 bool needwake;
1643 struct rcu_node *rnp;
1644
1645 local_irq_save(flags);
1646 rnp = rdp->mynode;
1647 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1648 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1649 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1650 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1651 local_irq_restore(flags);
1652 return;
1653 }
1654 smp_mb__after_unlock_lock();
1655 needwake = __note_gp_changes(rsp, rnp, rdp);
1656 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1657 if (needwake)
1658 rcu_gp_kthread_wake(rsp);
1659 }
1660
1661 /*
1662 * Initialize a new grace period. Return 0 if no grace period required.
1663 */
1664 static int rcu_gp_init(struct rcu_state *rsp)
1665 {
1666 struct rcu_data *rdp;
1667 struct rcu_node *rnp = rcu_get_root(rsp);
1668
1669 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1670 rcu_bind_gp_kthread();
1671 raw_spin_lock_irq(&rnp->lock);
1672 smp_mb__after_unlock_lock();
1673 if (!ACCESS_ONCE(rsp->gp_flags)) {
1674 /* Spurious wakeup, tell caller to go back to sleep. */
1675 raw_spin_unlock_irq(&rnp->lock);
1676 return 0;
1677 }
1678 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1679
1680 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1681 /*
1682 * Grace period already in progress, don't start another.
1683 * Not supposed to be able to happen.
1684 */
1685 raw_spin_unlock_irq(&rnp->lock);
1686 return 0;
1687 }
1688
1689 /* Advance to a new grace period and initialize state. */
1690 record_gp_stall_check_time(rsp);
1691 /* Record GP times before starting GP, hence smp_store_release(). */
1692 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1693 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1694 raw_spin_unlock_irq(&rnp->lock);
1695
1696 /* Exclude any concurrent CPU-hotplug operations. */
1697 mutex_lock(&rsp->onoff_mutex);
1698 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1699
1700 /*
1701 * Set the quiescent-state-needed bits in all the rcu_node
1702 * structures for all currently online CPUs in breadth-first order,
1703 * starting from the root rcu_node structure, relying on the layout
1704 * of the tree within the rsp->node[] array. Note that other CPUs
1705 * will access only the leaves of the hierarchy, thus seeing that no
1706 * grace period is in progress, at least until the corresponding
1707 * leaf node has been initialized. In addition, we have excluded
1708 * CPU-hotplug operations.
1709 *
1710 * The grace period cannot complete until the initialization
1711 * process finishes, because this kthread handles both.
1712 */
1713 rcu_for_each_node_breadth_first(rsp, rnp) {
1714 raw_spin_lock_irq(&rnp->lock);
1715 smp_mb__after_unlock_lock();
1716 rdp = this_cpu_ptr(rsp->rda);
1717 rcu_preempt_check_blocked_tasks(rnp);
1718 rnp->qsmask = rnp->qsmaskinit;
1719 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1720 WARN_ON_ONCE(rnp->completed != rsp->completed);
1721 ACCESS_ONCE(rnp->completed) = rsp->completed;
1722 if (rnp == rdp->mynode)
1723 (void)__note_gp_changes(rsp, rnp, rdp);
1724 rcu_preempt_boost_start_gp(rnp);
1725 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1726 rnp->level, rnp->grplo,
1727 rnp->grphi, rnp->qsmask);
1728 raw_spin_unlock_irq(&rnp->lock);
1729 cond_resched_rcu_qs();
1730 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1731 }
1732
1733 mutex_unlock(&rsp->onoff_mutex);
1734 return 1;
1735 }
1736
1737 /*
1738 * Do one round of quiescent-state forcing.
1739 */
1740 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1741 {
1742 int fqs_state = fqs_state_in;
1743 bool isidle = false;
1744 unsigned long maxj;
1745 struct rcu_node *rnp = rcu_get_root(rsp);
1746
1747 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1748 rsp->n_force_qs++;
1749 if (fqs_state == RCU_SAVE_DYNTICK) {
1750 /* Collect dyntick-idle snapshots. */
1751 if (is_sysidle_rcu_state(rsp)) {
1752 isidle = true;
1753 maxj = jiffies - ULONG_MAX / 4;
1754 }
1755 force_qs_rnp(rsp, dyntick_save_progress_counter,
1756 &isidle, &maxj);
1757 rcu_sysidle_report_gp(rsp, isidle, maxj);
1758 fqs_state = RCU_FORCE_QS;
1759 } else {
1760 /* Handle dyntick-idle and offline CPUs. */
1761 isidle = false;
1762 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1763 }
1764 /* Clear flag to prevent immediate re-entry. */
1765 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1766 raw_spin_lock_irq(&rnp->lock);
1767 smp_mb__after_unlock_lock();
1768 ACCESS_ONCE(rsp->gp_flags) =
1769 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1770 raw_spin_unlock_irq(&rnp->lock);
1771 }
1772 return fqs_state;
1773 }
1774
1775 /*
1776 * Clean up after the old grace period.
1777 */
1778 static void rcu_gp_cleanup(struct rcu_state *rsp)
1779 {
1780 unsigned long gp_duration;
1781 bool needgp = false;
1782 int nocb = 0;
1783 struct rcu_data *rdp;
1784 struct rcu_node *rnp = rcu_get_root(rsp);
1785
1786 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1787 raw_spin_lock_irq(&rnp->lock);
1788 smp_mb__after_unlock_lock();
1789 gp_duration = jiffies - rsp->gp_start;
1790 if (gp_duration > rsp->gp_max)
1791 rsp->gp_max = gp_duration;
1792
1793 /*
1794 * We know the grace period is complete, but to everyone else
1795 * it appears to still be ongoing. But it is also the case
1796 * that to everyone else it looks like there is nothing that
1797 * they can do to advance the grace period. It is therefore
1798 * safe for us to drop the lock in order to mark the grace
1799 * period as completed in all of the rcu_node structures.
1800 */
1801 raw_spin_unlock_irq(&rnp->lock);
1802
1803 /*
1804 * Propagate new ->completed value to rcu_node structures so
1805 * that other CPUs don't have to wait until the start of the next
1806 * grace period to process their callbacks. This also avoids
1807 * some nasty RCU grace-period initialization races by forcing
1808 * the end of the current grace period to be completely recorded in
1809 * all of the rcu_node structures before the beginning of the next
1810 * grace period is recorded in any of the rcu_node structures.
1811 */
1812 rcu_for_each_node_breadth_first(rsp, rnp) {
1813 raw_spin_lock_irq(&rnp->lock);
1814 smp_mb__after_unlock_lock();
1815 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1816 rdp = this_cpu_ptr(rsp->rda);
1817 if (rnp == rdp->mynode)
1818 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1819 /* smp_mb() provided by prior unlock-lock pair. */
1820 nocb += rcu_future_gp_cleanup(rsp, rnp);
1821 raw_spin_unlock_irq(&rnp->lock);
1822 cond_resched_rcu_qs();
1823 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1824 }
1825 rnp = rcu_get_root(rsp);
1826 raw_spin_lock_irq(&rnp->lock);
1827 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1828 rcu_nocb_gp_set(rnp, nocb);
1829
1830 /* Declare grace period done. */
1831 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1832 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1833 rsp->fqs_state = RCU_GP_IDLE;
1834 rdp = this_cpu_ptr(rsp->rda);
1835 /* Advance CBs to reduce false positives below. */
1836 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1837 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1838 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1839 trace_rcu_grace_period(rsp->name,
1840 ACCESS_ONCE(rsp->gpnum),
1841 TPS("newreq"));
1842 }
1843 raw_spin_unlock_irq(&rnp->lock);
1844 }
1845
1846 /*
1847 * Body of kthread that handles grace periods.
1848 */
1849 static int __noreturn rcu_gp_kthread(void *arg)
1850 {
1851 int fqs_state;
1852 int gf;
1853 unsigned long j;
1854 int ret;
1855 struct rcu_state *rsp = arg;
1856 struct rcu_node *rnp = rcu_get_root(rsp);
1857
1858 for (;;) {
1859
1860 /* Handle grace-period start. */
1861 for (;;) {
1862 trace_rcu_grace_period(rsp->name,
1863 ACCESS_ONCE(rsp->gpnum),
1864 TPS("reqwait"));
1865 rsp->gp_state = RCU_GP_WAIT_GPS;
1866 wait_event_interruptible(rsp->gp_wq,
1867 ACCESS_ONCE(rsp->gp_flags) &
1868 RCU_GP_FLAG_INIT);
1869 /* Locking provides needed memory barrier. */
1870 if (rcu_gp_init(rsp))
1871 break;
1872 cond_resched_rcu_qs();
1873 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1874 WARN_ON(signal_pending(current));
1875 trace_rcu_grace_period(rsp->name,
1876 ACCESS_ONCE(rsp->gpnum),
1877 TPS("reqwaitsig"));
1878 }
1879
1880 /* Handle quiescent-state forcing. */
1881 fqs_state = RCU_SAVE_DYNTICK;
1882 j = jiffies_till_first_fqs;
1883 if (j > HZ) {
1884 j = HZ;
1885 jiffies_till_first_fqs = HZ;
1886 }
1887 ret = 0;
1888 for (;;) {
1889 if (!ret)
1890 rsp->jiffies_force_qs = jiffies + j;
1891 trace_rcu_grace_period(rsp->name,
1892 ACCESS_ONCE(rsp->gpnum),
1893 TPS("fqswait"));
1894 rsp->gp_state = RCU_GP_WAIT_FQS;
1895 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1896 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1897 RCU_GP_FLAG_FQS) ||
1898 (!ACCESS_ONCE(rnp->qsmask) &&
1899 !rcu_preempt_blocked_readers_cgp(rnp)),
1900 j);
1901 /* Locking provides needed memory barriers. */
1902 /* If grace period done, leave loop. */
1903 if (!ACCESS_ONCE(rnp->qsmask) &&
1904 !rcu_preempt_blocked_readers_cgp(rnp))
1905 break;
1906 /* If time for quiescent-state forcing, do it. */
1907 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1908 (gf & RCU_GP_FLAG_FQS)) {
1909 trace_rcu_grace_period(rsp->name,
1910 ACCESS_ONCE(rsp->gpnum),
1911 TPS("fqsstart"));
1912 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1913 trace_rcu_grace_period(rsp->name,
1914 ACCESS_ONCE(rsp->gpnum),
1915 TPS("fqsend"));
1916 cond_resched_rcu_qs();
1917 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1918 } else {
1919 /* Deal with stray signal. */
1920 cond_resched_rcu_qs();
1921 ACCESS_ONCE(rsp->gp_activity) = jiffies;
1922 WARN_ON(signal_pending(current));
1923 trace_rcu_grace_period(rsp->name,
1924 ACCESS_ONCE(rsp->gpnum),
1925 TPS("fqswaitsig"));
1926 }
1927 j = jiffies_till_next_fqs;
1928 if (j > HZ) {
1929 j = HZ;
1930 jiffies_till_next_fqs = HZ;
1931 } else if (j < 1) {
1932 j = 1;
1933 jiffies_till_next_fqs = 1;
1934 }
1935 }
1936
1937 /* Handle grace-period end. */
1938 rcu_gp_cleanup(rsp);
1939 }
1940 }
1941
1942 /*
1943 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1944 * in preparation for detecting the next grace period. The caller must hold
1945 * the root node's ->lock and hard irqs must be disabled.
1946 *
1947 * Note that it is legal for a dying CPU (which is marked as offline) to
1948 * invoke this function. This can happen when the dying CPU reports its
1949 * quiescent state.
1950 *
1951 * Returns true if the grace-period kthread must be awakened.
1952 */
1953 static bool
1954 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1955 struct rcu_data *rdp)
1956 {
1957 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1958 /*
1959 * Either we have not yet spawned the grace-period
1960 * task, this CPU does not need another grace period,
1961 * or a grace period is already in progress.
1962 * Either way, don't start a new grace period.
1963 */
1964 return false;
1965 }
1966 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1967 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1968 TPS("newreq"));
1969
1970 /*
1971 * We can't do wakeups while holding the rnp->lock, as that
1972 * could cause possible deadlocks with the rq->lock. Defer
1973 * the wakeup to our caller.
1974 */
1975 return true;
1976 }
1977
1978 /*
1979 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1980 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1981 * is invoked indirectly from rcu_advance_cbs(), which would result in
1982 * endless recursion -- or would do so if it wasn't for the self-deadlock
1983 * that is encountered beforehand.
1984 *
1985 * Returns true if the grace-period kthread needs to be awakened.
1986 */
1987 static bool rcu_start_gp(struct rcu_state *rsp)
1988 {
1989 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1990 struct rcu_node *rnp = rcu_get_root(rsp);
1991 bool ret = false;
1992
1993 /*
1994 * If there is no grace period in progress right now, any
1995 * callbacks we have up to this point will be satisfied by the
1996 * next grace period. Also, advancing the callbacks reduces the
1997 * probability of false positives from cpu_needs_another_gp()
1998 * resulting in pointless grace periods. So, advance callbacks
1999 * then start the grace period!
2000 */
2001 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2002 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2003 return ret;
2004 }
2005
2006 /*
2007 * Report a full set of quiescent states to the specified rcu_state
2008 * data structure. This involves cleaning up after the prior grace
2009 * period and letting rcu_start_gp() start up the next grace period
2010 * if one is needed. Note that the caller must hold rnp->lock, which
2011 * is released before return.
2012 */
2013 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2014 __releases(rcu_get_root(rsp)->lock)
2015 {
2016 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2017 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2018 rcu_gp_kthread_wake(rsp);
2019 }
2020
2021 /*
2022 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2023 * Allows quiescent states for a group of CPUs to be reported at one go
2024 * to the specified rcu_node structure, though all the CPUs in the group
2025 * must be represented by the same rcu_node structure (which need not be
2026 * a leaf rcu_node structure, though it often will be). That structure's
2027 * lock must be held upon entry, and it is released before return.
2028 */
2029 static void
2030 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2031 struct rcu_node *rnp, unsigned long flags)
2032 __releases(rnp->lock)
2033 {
2034 struct rcu_node *rnp_c;
2035
2036 /* Walk up the rcu_node hierarchy. */
2037 for (;;) {
2038 if (!(rnp->qsmask & mask)) {
2039
2040 /* Our bit has already been cleared, so done. */
2041 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2042 return;
2043 }
2044 rnp->qsmask &= ~mask;
2045 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2046 mask, rnp->qsmask, rnp->level,
2047 rnp->grplo, rnp->grphi,
2048 !!rnp->gp_tasks);
2049 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2050
2051 /* Other bits still set at this level, so done. */
2052 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2053 return;
2054 }
2055 mask = rnp->grpmask;
2056 if (rnp->parent == NULL) {
2057
2058 /* No more levels. Exit loop holding root lock. */
2059
2060 break;
2061 }
2062 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2063 rnp_c = rnp;
2064 rnp = rnp->parent;
2065 raw_spin_lock_irqsave(&rnp->lock, flags);
2066 smp_mb__after_unlock_lock();
2067 WARN_ON_ONCE(rnp_c->qsmask);
2068 }
2069
2070 /*
2071 * Get here if we are the last CPU to pass through a quiescent
2072 * state for this grace period. Invoke rcu_report_qs_rsp()
2073 * to clean up and start the next grace period if one is needed.
2074 */
2075 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2076 }
2077
2078 /*
2079 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2080 * structure. This must be either called from the specified CPU, or
2081 * called when the specified CPU is known to be offline (and when it is
2082 * also known that no other CPU is concurrently trying to help the offline
2083 * CPU). The lastcomp argument is used to make sure we are still in the
2084 * grace period of interest. We don't want to end the current grace period
2085 * based on quiescent states detected in an earlier grace period!
2086 */
2087 static void
2088 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2089 {
2090 unsigned long flags;
2091 unsigned long mask;
2092 bool needwake;
2093 struct rcu_node *rnp;
2094
2095 rnp = rdp->mynode;
2096 raw_spin_lock_irqsave(&rnp->lock, flags);
2097 smp_mb__after_unlock_lock();
2098 if ((rdp->passed_quiesce == 0 &&
2099 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2100 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2101 rdp->gpwrap) {
2102
2103 /*
2104 * The grace period in which this quiescent state was
2105 * recorded has ended, so don't report it upwards.
2106 * We will instead need a new quiescent state that lies
2107 * within the current grace period.
2108 */
2109 rdp->passed_quiesce = 0; /* need qs for new gp. */
2110 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2111 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2112 return;
2113 }
2114 mask = rdp->grpmask;
2115 if ((rnp->qsmask & mask) == 0) {
2116 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2117 } else {
2118 rdp->qs_pending = 0;
2119
2120 /*
2121 * This GP can't end until cpu checks in, so all of our
2122 * callbacks can be processed during the next GP.
2123 */
2124 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2125
2126 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2127 if (needwake)
2128 rcu_gp_kthread_wake(rsp);
2129 }
2130 }
2131
2132 /*
2133 * Check to see if there is a new grace period of which this CPU
2134 * is not yet aware, and if so, set up local rcu_data state for it.
2135 * Otherwise, see if this CPU has just passed through its first
2136 * quiescent state for this grace period, and record that fact if so.
2137 */
2138 static void
2139 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2140 {
2141 /* Check for grace-period ends and beginnings. */
2142 note_gp_changes(rsp, rdp);
2143
2144 /*
2145 * Does this CPU still need to do its part for current grace period?
2146 * If no, return and let the other CPUs do their part as well.
2147 */
2148 if (!rdp->qs_pending)
2149 return;
2150
2151 /*
2152 * Was there a quiescent state since the beginning of the grace
2153 * period? If no, then exit and wait for the next call.
2154 */
2155 if (!rdp->passed_quiesce &&
2156 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2157 return;
2158
2159 /*
2160 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2161 * judge of that).
2162 */
2163 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2164 }
2165
2166 #ifdef CONFIG_HOTPLUG_CPU
2167
2168 /*
2169 * Send the specified CPU's RCU callbacks to the orphanage. The
2170 * specified CPU must be offline, and the caller must hold the
2171 * ->orphan_lock.
2172 */
2173 static void
2174 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2175 struct rcu_node *rnp, struct rcu_data *rdp)
2176 {
2177 /* No-CBs CPUs do not have orphanable callbacks. */
2178 if (rcu_is_nocb_cpu(rdp->cpu))
2179 return;
2180
2181 /*
2182 * Orphan the callbacks. First adjust the counts. This is safe
2183 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2184 * cannot be running now. Thus no memory barrier is required.
2185 */
2186 if (rdp->nxtlist != NULL) {
2187 rsp->qlen_lazy += rdp->qlen_lazy;
2188 rsp->qlen += rdp->qlen;
2189 rdp->n_cbs_orphaned += rdp->qlen;
2190 rdp->qlen_lazy = 0;
2191 ACCESS_ONCE(rdp->qlen) = 0;
2192 }
2193
2194 /*
2195 * Next, move those callbacks still needing a grace period to
2196 * the orphanage, where some other CPU will pick them up.
2197 * Some of the callbacks might have gone partway through a grace
2198 * period, but that is too bad. They get to start over because we
2199 * cannot assume that grace periods are synchronized across CPUs.
2200 * We don't bother updating the ->nxttail[] array yet, instead
2201 * we just reset the whole thing later on.
2202 */
2203 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2204 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2205 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2206 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2207 }
2208
2209 /*
2210 * Then move the ready-to-invoke callbacks to the orphanage,
2211 * where some other CPU will pick them up. These will not be
2212 * required to pass though another grace period: They are done.
2213 */
2214 if (rdp->nxtlist != NULL) {
2215 *rsp->orphan_donetail = rdp->nxtlist;
2216 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2217 }
2218
2219 /* Finally, initialize the rcu_data structure's list to empty. */
2220 init_callback_list(rdp);
2221 }
2222
2223 /*
2224 * Adopt the RCU callbacks from the specified rcu_state structure's
2225 * orphanage. The caller must hold the ->orphan_lock.
2226 */
2227 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2228 {
2229 int i;
2230 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2231
2232 /* No-CBs CPUs are handled specially. */
2233 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2234 return;
2235
2236 /* Do the accounting first. */
2237 rdp->qlen_lazy += rsp->qlen_lazy;
2238 rdp->qlen += rsp->qlen;
2239 rdp->n_cbs_adopted += rsp->qlen;
2240 if (rsp->qlen_lazy != rsp->qlen)
2241 rcu_idle_count_callbacks_posted();
2242 rsp->qlen_lazy = 0;
2243 rsp->qlen = 0;
2244
2245 /*
2246 * We do not need a memory barrier here because the only way we
2247 * can get here if there is an rcu_barrier() in flight is if
2248 * we are the task doing the rcu_barrier().
2249 */
2250
2251 /* First adopt the ready-to-invoke callbacks. */
2252 if (rsp->orphan_donelist != NULL) {
2253 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2254 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2255 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2256 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2257 rdp->nxttail[i] = rsp->orphan_donetail;
2258 rsp->orphan_donelist = NULL;
2259 rsp->orphan_donetail = &rsp->orphan_donelist;
2260 }
2261
2262 /* And then adopt the callbacks that still need a grace period. */
2263 if (rsp->orphan_nxtlist != NULL) {
2264 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2265 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2266 rsp->orphan_nxtlist = NULL;
2267 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2268 }
2269 }
2270
2271 /*
2272 * Trace the fact that this CPU is going offline.
2273 */
2274 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2275 {
2276 RCU_TRACE(unsigned long mask);
2277 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2278 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2279
2280 RCU_TRACE(mask = rdp->grpmask);
2281 trace_rcu_grace_period(rsp->name,
2282 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2283 TPS("cpuofl"));
2284 }
2285
2286 /*
2287 * The CPU has been completely removed, and some other CPU is reporting
2288 * this fact from process context. Do the remainder of the cleanup,
2289 * including orphaning the outgoing CPU's RCU callbacks, and also
2290 * adopting them. There can only be one CPU hotplug operation at a time,
2291 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2292 */
2293 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2294 {
2295 unsigned long flags;
2296 unsigned long mask;
2297 int need_report = 0;
2298 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2299 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2300
2301 /* Adjust any no-longer-needed kthreads. */
2302 rcu_boost_kthread_setaffinity(rnp, -1);
2303
2304 /* Exclude any attempts to start a new grace period. */
2305 mutex_lock(&rsp->onoff_mutex);
2306 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2307
2308 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2309 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2310 rcu_adopt_orphan_cbs(rsp, flags);
2311
2312 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2313 mask = rdp->grpmask; /* rnp->grplo is constant. */
2314 do {
2315 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2316 smp_mb__after_unlock_lock();
2317 rnp->qsmaskinit &= ~mask;
2318 if (rnp->qsmaskinit != 0) {
2319 if (rnp != rdp->mynode)
2320 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2321 break;
2322 }
2323 if (rnp == rdp->mynode)
2324 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2325 else
2326 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2327 mask = rnp->grpmask;
2328 rnp = rnp->parent;
2329 } while (rnp != NULL);
2330
2331 /*
2332 * We still hold the leaf rcu_node structure lock here, and
2333 * irqs are still disabled. The reason for this subterfuge is
2334 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2335 * held leads to deadlock.
2336 */
2337 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2338 rnp = rdp->mynode;
2339 if (need_report & RCU_OFL_TASKS_NORM_GP)
2340 rcu_report_unblock_qs_rnp(rnp, flags);
2341 else
2342 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2343 if (need_report & RCU_OFL_TASKS_EXP_GP)
2344 rcu_report_exp_rnp(rsp, rnp, true);
2345 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2346 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2347 cpu, rdp->qlen, rdp->nxtlist);
2348 init_callback_list(rdp);
2349 /* Disallow further callbacks on this CPU. */
2350 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2351 mutex_unlock(&rsp->onoff_mutex);
2352 }
2353
2354 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2355
2356 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2357 {
2358 }
2359
2360 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2361 {
2362 }
2363
2364 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2365
2366 /*
2367 * Invoke any RCU callbacks that have made it to the end of their grace
2368 * period. Thottle as specified by rdp->blimit.
2369 */
2370 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2371 {
2372 unsigned long flags;
2373 struct rcu_head *next, *list, **tail;
2374 long bl, count, count_lazy;
2375 int i;
2376
2377 /* If no callbacks are ready, just return. */
2378 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2379 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2380 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2381 need_resched(), is_idle_task(current),
2382 rcu_is_callbacks_kthread());
2383 return;
2384 }
2385
2386 /*
2387 * Extract the list of ready callbacks, disabling to prevent
2388 * races with call_rcu() from interrupt handlers.
2389 */
2390 local_irq_save(flags);
2391 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2392 bl = rdp->blimit;
2393 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2394 list = rdp->nxtlist;
2395 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2396 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2397 tail = rdp->nxttail[RCU_DONE_TAIL];
2398 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2399 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2400 rdp->nxttail[i] = &rdp->nxtlist;
2401 local_irq_restore(flags);
2402
2403 /* Invoke callbacks. */
2404 count = count_lazy = 0;
2405 while (list) {
2406 next = list->next;
2407 prefetch(next);
2408 debug_rcu_head_unqueue(list);
2409 if (__rcu_reclaim(rsp->name, list))
2410 count_lazy++;
2411 list = next;
2412 /* Stop only if limit reached and CPU has something to do. */
2413 if (++count >= bl &&
2414 (need_resched() ||
2415 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2416 break;
2417 }
2418
2419 local_irq_save(flags);
2420 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2421 is_idle_task(current),
2422 rcu_is_callbacks_kthread());
2423
2424 /* Update count, and requeue any remaining callbacks. */
2425 if (list != NULL) {
2426 *tail = rdp->nxtlist;
2427 rdp->nxtlist = list;
2428 for (i = 0; i < RCU_NEXT_SIZE; i++)
2429 if (&rdp->nxtlist == rdp->nxttail[i])
2430 rdp->nxttail[i] = tail;
2431 else
2432 break;
2433 }
2434 smp_mb(); /* List handling before counting for rcu_barrier(). */
2435 rdp->qlen_lazy -= count_lazy;
2436 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2437 rdp->n_cbs_invoked += count;
2438
2439 /* Reinstate batch limit if we have worked down the excess. */
2440 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2441 rdp->blimit = blimit;
2442
2443 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2444 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2445 rdp->qlen_last_fqs_check = 0;
2446 rdp->n_force_qs_snap = rsp->n_force_qs;
2447 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2448 rdp->qlen_last_fqs_check = rdp->qlen;
2449 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2450
2451 local_irq_restore(flags);
2452
2453 /* Re-invoke RCU core processing if there are callbacks remaining. */
2454 if (cpu_has_callbacks_ready_to_invoke(rdp))
2455 invoke_rcu_core();
2456 }
2457
2458 /*
2459 * Check to see if this CPU is in a non-context-switch quiescent state
2460 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2461 * Also schedule RCU core processing.
2462 *
2463 * This function must be called from hardirq context. It is normally
2464 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2465 * false, there is no point in invoking rcu_check_callbacks().
2466 */
2467 void rcu_check_callbacks(int user)
2468 {
2469 trace_rcu_utilization(TPS("Start scheduler-tick"));
2470 increment_cpu_stall_ticks();
2471 if (user || rcu_is_cpu_rrupt_from_idle()) {
2472
2473 /*
2474 * Get here if this CPU took its interrupt from user
2475 * mode or from the idle loop, and if this is not a
2476 * nested interrupt. In this case, the CPU is in
2477 * a quiescent state, so note it.
2478 *
2479 * No memory barrier is required here because both
2480 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2481 * variables that other CPUs neither access nor modify,
2482 * at least not while the corresponding CPU is online.
2483 */
2484
2485 rcu_sched_qs();
2486 rcu_bh_qs();
2487
2488 } else if (!in_softirq()) {
2489
2490 /*
2491 * Get here if this CPU did not take its interrupt from
2492 * softirq, in other words, if it is not interrupting
2493 * a rcu_bh read-side critical section. This is an _bh
2494 * critical section, so note it.
2495 */
2496
2497 rcu_bh_qs();
2498 }
2499 rcu_preempt_check_callbacks();
2500 if (rcu_pending())
2501 invoke_rcu_core();
2502 if (user)
2503 rcu_note_voluntary_context_switch(current);
2504 trace_rcu_utilization(TPS("End scheduler-tick"));
2505 }
2506
2507 /*
2508 * Scan the leaf rcu_node structures, processing dyntick state for any that
2509 * have not yet encountered a quiescent state, using the function specified.
2510 * Also initiate boosting for any threads blocked on the root rcu_node.
2511 *
2512 * The caller must have suppressed start of new grace periods.
2513 */
2514 static void force_qs_rnp(struct rcu_state *rsp,
2515 int (*f)(struct rcu_data *rsp, bool *isidle,
2516 unsigned long *maxj),
2517 bool *isidle, unsigned long *maxj)
2518 {
2519 unsigned long bit;
2520 int cpu;
2521 unsigned long flags;
2522 unsigned long mask;
2523 struct rcu_node *rnp;
2524
2525 rcu_for_each_leaf_node(rsp, rnp) {
2526 cond_resched_rcu_qs();
2527 mask = 0;
2528 raw_spin_lock_irqsave(&rnp->lock, flags);
2529 smp_mb__after_unlock_lock();
2530 if (!rcu_gp_in_progress(rsp)) {
2531 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2532 return;
2533 }
2534 if (rnp->qsmask == 0) {
2535 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2536 continue;
2537 }
2538 cpu = rnp->grplo;
2539 bit = 1;
2540 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2541 if ((rnp->qsmask & bit) != 0) {
2542 if ((rnp->qsmaskinit & bit) != 0)
2543 *isidle = false;
2544 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2545 mask |= bit;
2546 }
2547 }
2548 if (mask != 0) {
2549
2550 /* rcu_report_qs_rnp() releases rnp->lock. */
2551 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2552 continue;
2553 }
2554 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2555 }
2556 rnp = rcu_get_root(rsp);
2557 if (rnp->qsmask == 0) {
2558 raw_spin_lock_irqsave(&rnp->lock, flags);
2559 smp_mb__after_unlock_lock();
2560 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2561 }
2562 }
2563
2564 /*
2565 * Force quiescent states on reluctant CPUs, and also detect which
2566 * CPUs are in dyntick-idle mode.
2567 */
2568 static void force_quiescent_state(struct rcu_state *rsp)
2569 {
2570 unsigned long flags;
2571 bool ret;
2572 struct rcu_node *rnp;
2573 struct rcu_node *rnp_old = NULL;
2574
2575 /* Funnel through hierarchy to reduce memory contention. */
2576 rnp = __this_cpu_read(rsp->rda->mynode);
2577 for (; rnp != NULL; rnp = rnp->parent) {
2578 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2579 !raw_spin_trylock(&rnp->fqslock);
2580 if (rnp_old != NULL)
2581 raw_spin_unlock(&rnp_old->fqslock);
2582 if (ret) {
2583 rsp->n_force_qs_lh++;
2584 return;
2585 }
2586 rnp_old = rnp;
2587 }
2588 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2589
2590 /* Reached the root of the rcu_node tree, acquire lock. */
2591 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2592 smp_mb__after_unlock_lock();
2593 raw_spin_unlock(&rnp_old->fqslock);
2594 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2595 rsp->n_force_qs_lh++;
2596 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2597 return; /* Someone beat us to it. */
2598 }
2599 ACCESS_ONCE(rsp->gp_flags) =
2600 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2601 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2602 rcu_gp_kthread_wake(rsp);
2603 }
2604
2605 /*
2606 * This does the RCU core processing work for the specified rcu_state
2607 * and rcu_data structures. This may be called only from the CPU to
2608 * whom the rdp belongs.
2609 */
2610 static void
2611 __rcu_process_callbacks(struct rcu_state *rsp)
2612 {
2613 unsigned long flags;
2614 bool needwake;
2615 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2616
2617 WARN_ON_ONCE(rdp->beenonline == 0);
2618
2619 /* Update RCU state based on any recent quiescent states. */
2620 rcu_check_quiescent_state(rsp, rdp);
2621
2622 /* Does this CPU require a not-yet-started grace period? */
2623 local_irq_save(flags);
2624 if (cpu_needs_another_gp(rsp, rdp)) {
2625 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2626 needwake = rcu_start_gp(rsp);
2627 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2628 if (needwake)
2629 rcu_gp_kthread_wake(rsp);
2630 } else {
2631 local_irq_restore(flags);
2632 }
2633
2634 /* If there are callbacks ready, invoke them. */
2635 if (cpu_has_callbacks_ready_to_invoke(rdp))
2636 invoke_rcu_callbacks(rsp, rdp);
2637
2638 /* Do any needed deferred wakeups of rcuo kthreads. */
2639 do_nocb_deferred_wakeup(rdp);
2640 }
2641
2642 /*
2643 * Do RCU core processing for the current CPU.
2644 */
2645 static void rcu_process_callbacks(struct softirq_action *unused)
2646 {
2647 struct rcu_state *rsp;
2648
2649 if (cpu_is_offline(smp_processor_id()))
2650 return;
2651 trace_rcu_utilization(TPS("Start RCU core"));
2652 for_each_rcu_flavor(rsp)
2653 __rcu_process_callbacks(rsp);
2654 trace_rcu_utilization(TPS("End RCU core"));
2655 }
2656
2657 /*
2658 * Schedule RCU callback invocation. If the specified type of RCU
2659 * does not support RCU priority boosting, just do a direct call,
2660 * otherwise wake up the per-CPU kernel kthread. Note that because we
2661 * are running on the current CPU with interrupts disabled, the
2662 * rcu_cpu_kthread_task cannot disappear out from under us.
2663 */
2664 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2665 {
2666 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2667 return;
2668 if (likely(!rsp->boost)) {
2669 rcu_do_batch(rsp, rdp);
2670 return;
2671 }
2672 invoke_rcu_callbacks_kthread();
2673 }
2674
2675 static void invoke_rcu_core(void)
2676 {
2677 if (cpu_online(smp_processor_id()))
2678 raise_softirq(RCU_SOFTIRQ);
2679 }
2680
2681 /*
2682 * Handle any core-RCU processing required by a call_rcu() invocation.
2683 */
2684 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2685 struct rcu_head *head, unsigned long flags)
2686 {
2687 bool needwake;
2688
2689 /*
2690 * If called from an extended quiescent state, invoke the RCU
2691 * core in order to force a re-evaluation of RCU's idleness.
2692 */
2693 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2694 invoke_rcu_core();
2695
2696 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2697 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2698 return;
2699
2700 /*
2701 * Force the grace period if too many callbacks or too long waiting.
2702 * Enforce hysteresis, and don't invoke force_quiescent_state()
2703 * if some other CPU has recently done so. Also, don't bother
2704 * invoking force_quiescent_state() if the newly enqueued callback
2705 * is the only one waiting for a grace period to complete.
2706 */
2707 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2708
2709 /* Are we ignoring a completed grace period? */
2710 note_gp_changes(rsp, rdp);
2711
2712 /* Start a new grace period if one not already started. */
2713 if (!rcu_gp_in_progress(rsp)) {
2714 struct rcu_node *rnp_root = rcu_get_root(rsp);
2715
2716 raw_spin_lock(&rnp_root->lock);
2717 smp_mb__after_unlock_lock();
2718 needwake = rcu_start_gp(rsp);
2719 raw_spin_unlock(&rnp_root->lock);
2720 if (needwake)
2721 rcu_gp_kthread_wake(rsp);
2722 } else {
2723 /* Give the grace period a kick. */
2724 rdp->blimit = LONG_MAX;
2725 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2726 *rdp->nxttail[RCU_DONE_TAIL] != head)
2727 force_quiescent_state(rsp);
2728 rdp->n_force_qs_snap = rsp->n_force_qs;
2729 rdp->qlen_last_fqs_check = rdp->qlen;
2730 }
2731 }
2732 }
2733
2734 /*
2735 * RCU callback function to leak a callback.
2736 */
2737 static void rcu_leak_callback(struct rcu_head *rhp)
2738 {
2739 }
2740
2741 /*
2742 * Helper function for call_rcu() and friends. The cpu argument will
2743 * normally be -1, indicating "currently running CPU". It may specify
2744 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2745 * is expected to specify a CPU.
2746 */
2747 static void
2748 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2749 struct rcu_state *rsp, int cpu, bool lazy)
2750 {
2751 unsigned long flags;
2752 struct rcu_data *rdp;
2753
2754 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2755 if (debug_rcu_head_queue(head)) {
2756 /* Probable double call_rcu(), so leak the callback. */
2757 ACCESS_ONCE(head->func) = rcu_leak_callback;
2758 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2759 return;
2760 }
2761 head->func = func;
2762 head->next = NULL;
2763
2764 /*
2765 * Opportunistically note grace-period endings and beginnings.
2766 * Note that we might see a beginning right after we see an
2767 * end, but never vice versa, since this CPU has to pass through
2768 * a quiescent state betweentimes.
2769 */
2770 local_irq_save(flags);
2771 rdp = this_cpu_ptr(rsp->rda);
2772
2773 /* Add the callback to our list. */
2774 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2775 int offline;
2776
2777 if (cpu != -1)
2778 rdp = per_cpu_ptr(rsp->rda, cpu);
2779 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2780 WARN_ON_ONCE(offline);
2781 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2782 local_irq_restore(flags);
2783 return;
2784 }
2785 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2786 if (lazy)
2787 rdp->qlen_lazy++;
2788 else
2789 rcu_idle_count_callbacks_posted();
2790 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2791 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2792 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2793
2794 if (__is_kfree_rcu_offset((unsigned long)func))
2795 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2796 rdp->qlen_lazy, rdp->qlen);
2797 else
2798 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2799
2800 /* Go handle any RCU core processing required. */
2801 __call_rcu_core(rsp, rdp, head, flags);
2802 local_irq_restore(flags);
2803 }
2804
2805 /*
2806 * Queue an RCU-sched callback for invocation after a grace period.
2807 */
2808 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2809 {
2810 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2811 }
2812 EXPORT_SYMBOL_GPL(call_rcu_sched);
2813
2814 /*
2815 * Queue an RCU callback for invocation after a quicker grace period.
2816 */
2817 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2818 {
2819 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2820 }
2821 EXPORT_SYMBOL_GPL(call_rcu_bh);
2822
2823 /*
2824 * Queue an RCU callback for lazy invocation after a grace period.
2825 * This will likely be later named something like "call_rcu_lazy()",
2826 * but this change will require some way of tagging the lazy RCU
2827 * callbacks in the list of pending callbacks. Until then, this
2828 * function may only be called from __kfree_rcu().
2829 */
2830 void kfree_call_rcu(struct rcu_head *head,
2831 void (*func)(struct rcu_head *rcu))
2832 {
2833 __call_rcu(head, func, rcu_state_p, -1, 1);
2834 }
2835 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2836
2837 /*
2838 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2839 * any blocking grace-period wait automatically implies a grace period
2840 * if there is only one CPU online at any point time during execution
2841 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2842 * occasionally incorrectly indicate that there are multiple CPUs online
2843 * when there was in fact only one the whole time, as this just adds
2844 * some overhead: RCU still operates correctly.
2845 */
2846 static inline int rcu_blocking_is_gp(void)
2847 {
2848 int ret;
2849
2850 might_sleep(); /* Check for RCU read-side critical section. */
2851 preempt_disable();
2852 ret = num_online_cpus() <= 1;
2853 preempt_enable();
2854 return ret;
2855 }
2856
2857 /**
2858 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2859 *
2860 * Control will return to the caller some time after a full rcu-sched
2861 * grace period has elapsed, in other words after all currently executing
2862 * rcu-sched read-side critical sections have completed. These read-side
2863 * critical sections are delimited by rcu_read_lock_sched() and
2864 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2865 * local_irq_disable(), and so on may be used in place of
2866 * rcu_read_lock_sched().
2867 *
2868 * This means that all preempt_disable code sequences, including NMI and
2869 * non-threaded hardware-interrupt handlers, in progress on entry will
2870 * have completed before this primitive returns. However, this does not
2871 * guarantee that softirq handlers will have completed, since in some
2872 * kernels, these handlers can run in process context, and can block.
2873 *
2874 * Note that this guarantee implies further memory-ordering guarantees.
2875 * On systems with more than one CPU, when synchronize_sched() returns,
2876 * each CPU is guaranteed to have executed a full memory barrier since the
2877 * end of its last RCU-sched read-side critical section whose beginning
2878 * preceded the call to synchronize_sched(). In addition, each CPU having
2879 * an RCU read-side critical section that extends beyond the return from
2880 * synchronize_sched() is guaranteed to have executed a full memory barrier
2881 * after the beginning of synchronize_sched() and before the beginning of
2882 * that RCU read-side critical section. Note that these guarantees include
2883 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2884 * that are executing in the kernel.
2885 *
2886 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2887 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2888 * to have executed a full memory barrier during the execution of
2889 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2890 * again only if the system has more than one CPU).
2891 *
2892 * This primitive provides the guarantees made by the (now removed)
2893 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2894 * guarantees that rcu_read_lock() sections will have completed.
2895 * In "classic RCU", these two guarantees happen to be one and
2896 * the same, but can differ in realtime RCU implementations.
2897 */
2898 void synchronize_sched(void)
2899 {
2900 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2901 !lock_is_held(&rcu_lock_map) &&
2902 !lock_is_held(&rcu_sched_lock_map),
2903 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2904 if (rcu_blocking_is_gp())
2905 return;
2906 if (rcu_expedited)
2907 synchronize_sched_expedited();
2908 else
2909 wait_rcu_gp(call_rcu_sched);
2910 }
2911 EXPORT_SYMBOL_GPL(synchronize_sched);
2912
2913 /**
2914 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2915 *
2916 * Control will return to the caller some time after a full rcu_bh grace
2917 * period has elapsed, in other words after all currently executing rcu_bh
2918 * read-side critical sections have completed. RCU read-side critical
2919 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2920 * and may be nested.
2921 *
2922 * See the description of synchronize_sched() for more detailed information
2923 * on memory ordering guarantees.
2924 */
2925 void synchronize_rcu_bh(void)
2926 {
2927 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2928 !lock_is_held(&rcu_lock_map) &&
2929 !lock_is_held(&rcu_sched_lock_map),
2930 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2931 if (rcu_blocking_is_gp())
2932 return;
2933 if (rcu_expedited)
2934 synchronize_rcu_bh_expedited();
2935 else
2936 wait_rcu_gp(call_rcu_bh);
2937 }
2938 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2939
2940 /**
2941 * get_state_synchronize_rcu - Snapshot current RCU state
2942 *
2943 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2944 * to determine whether or not a full grace period has elapsed in the
2945 * meantime.
2946 */
2947 unsigned long get_state_synchronize_rcu(void)
2948 {
2949 /*
2950 * Any prior manipulation of RCU-protected data must happen
2951 * before the load from ->gpnum.
2952 */
2953 smp_mb(); /* ^^^ */
2954
2955 /*
2956 * Make sure this load happens before the purportedly
2957 * time-consuming work between get_state_synchronize_rcu()
2958 * and cond_synchronize_rcu().
2959 */
2960 return smp_load_acquire(&rcu_state_p->gpnum);
2961 }
2962 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2963
2964 /**
2965 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2966 *
2967 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2968 *
2969 * If a full RCU grace period has elapsed since the earlier call to
2970 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2971 * synchronize_rcu() to wait for a full grace period.
2972 *
2973 * Yes, this function does not take counter wrap into account. But
2974 * counter wrap is harmless. If the counter wraps, we have waited for
2975 * more than 2 billion grace periods (and way more on a 64-bit system!),
2976 * so waiting for one additional grace period should be just fine.
2977 */
2978 void cond_synchronize_rcu(unsigned long oldstate)
2979 {
2980 unsigned long newstate;
2981
2982 /*
2983 * Ensure that this load happens before any RCU-destructive
2984 * actions the caller might carry out after we return.
2985 */
2986 newstate = smp_load_acquire(&rcu_state_p->completed);
2987 if (ULONG_CMP_GE(oldstate, newstate))
2988 synchronize_rcu();
2989 }
2990 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2991
2992 static int synchronize_sched_expedited_cpu_stop(void *data)
2993 {
2994 /*
2995 * There must be a full memory barrier on each affected CPU
2996 * between the time that try_stop_cpus() is called and the
2997 * time that it returns.
2998 *
2999 * In the current initial implementation of cpu_stop, the
3000 * above condition is already met when the control reaches
3001 * this point and the following smp_mb() is not strictly
3002 * necessary. Do smp_mb() anyway for documentation and
3003 * robustness against future implementation changes.
3004 */
3005 smp_mb(); /* See above comment block. */
3006 return 0;
3007 }
3008
3009 /**
3010 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3011 *
3012 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3013 * approach to force the grace period to end quickly. This consumes
3014 * significant time on all CPUs and is unfriendly to real-time workloads,
3015 * so is thus not recommended for any sort of common-case code. In fact,
3016 * if you are using synchronize_sched_expedited() in a loop, please
3017 * restructure your code to batch your updates, and then use a single
3018 * synchronize_sched() instead.
3019 *
3020 * This implementation can be thought of as an application of ticket
3021 * locking to RCU, with sync_sched_expedited_started and
3022 * sync_sched_expedited_done taking on the roles of the halves
3023 * of the ticket-lock word. Each task atomically increments
3024 * sync_sched_expedited_started upon entry, snapshotting the old value,
3025 * then attempts to stop all the CPUs. If this succeeds, then each
3026 * CPU will have executed a context switch, resulting in an RCU-sched
3027 * grace period. We are then done, so we use atomic_cmpxchg() to
3028 * update sync_sched_expedited_done to match our snapshot -- but
3029 * only if someone else has not already advanced past our snapshot.
3030 *
3031 * On the other hand, if try_stop_cpus() fails, we check the value
3032 * of sync_sched_expedited_done. If it has advanced past our
3033 * initial snapshot, then someone else must have forced a grace period
3034 * some time after we took our snapshot. In this case, our work is
3035 * done for us, and we can simply return. Otherwise, we try again,
3036 * but keep our initial snapshot for purposes of checking for someone
3037 * doing our work for us.
3038 *
3039 * If we fail too many times in a row, we fall back to synchronize_sched().
3040 */
3041 void synchronize_sched_expedited(void)
3042 {
3043 cpumask_var_t cm;
3044 bool cma = false;
3045 int cpu;
3046 long firstsnap, s, snap;
3047 int trycount = 0;
3048 struct rcu_state *rsp = &rcu_sched_state;
3049
3050 /*
3051 * If we are in danger of counter wrap, just do synchronize_sched().
3052 * By allowing sync_sched_expedited_started to advance no more than
3053 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3054 * that more than 3.5 billion CPUs would be required to force a
3055 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3056 * course be required on a 64-bit system.
3057 */
3058 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3059 (ulong)atomic_long_read(&rsp->expedited_done) +
3060 ULONG_MAX / 8)) {
3061 synchronize_sched();
3062 atomic_long_inc(&rsp->expedited_wrap);
3063 return;
3064 }
3065
3066 /*
3067 * Take a ticket. Note that atomic_inc_return() implies a
3068 * full memory barrier.
3069 */
3070 snap = atomic_long_inc_return(&rsp->expedited_start);
3071 firstsnap = snap;
3072 if (!try_get_online_cpus()) {
3073 /* CPU hotplug operation in flight, fall back to normal GP. */
3074 wait_rcu_gp(call_rcu_sched);
3075 atomic_long_inc(&rsp->expedited_normal);
3076 return;
3077 }
3078 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3079
3080 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3081 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3082 if (cma) {
3083 cpumask_copy(cm, cpu_online_mask);
3084 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3085 for_each_cpu(cpu, cm) {
3086 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3087
3088 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3089 cpumask_clear_cpu(cpu, cm);
3090 }
3091 if (cpumask_weight(cm) == 0)
3092 goto all_cpus_idle;
3093 }
3094
3095 /*
3096 * Each pass through the following loop attempts to force a
3097 * context switch on each CPU.
3098 */
3099 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3100 synchronize_sched_expedited_cpu_stop,
3101 NULL) == -EAGAIN) {
3102 put_online_cpus();
3103 atomic_long_inc(&rsp->expedited_tryfail);
3104
3105 /* Check to see if someone else did our work for us. */
3106 s = atomic_long_read(&rsp->expedited_done);
3107 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3108 /* ensure test happens before caller kfree */
3109 smp_mb__before_atomic(); /* ^^^ */
3110 atomic_long_inc(&rsp->expedited_workdone1);
3111 free_cpumask_var(cm);
3112 return;
3113 }
3114
3115 /* No joy, try again later. Or just synchronize_sched(). */
3116 if (trycount++ < 10) {
3117 udelay(trycount * num_online_cpus());
3118 } else {
3119 wait_rcu_gp(call_rcu_sched);
3120 atomic_long_inc(&rsp->expedited_normal);
3121 free_cpumask_var(cm);
3122 return;
3123 }
3124
3125 /* Recheck to see if someone else did our work for us. */
3126 s = atomic_long_read(&rsp->expedited_done);
3127 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3128 /* ensure test happens before caller kfree */
3129 smp_mb__before_atomic(); /* ^^^ */
3130 atomic_long_inc(&rsp->expedited_workdone2);
3131 free_cpumask_var(cm);
3132 return;
3133 }
3134
3135 /*
3136 * Refetching sync_sched_expedited_started allows later
3137 * callers to piggyback on our grace period. We retry
3138 * after they started, so our grace period works for them,
3139 * and they started after our first try, so their grace
3140 * period works for us.
3141 */
3142 if (!try_get_online_cpus()) {
3143 /* CPU hotplug operation in flight, use normal GP. */
3144 wait_rcu_gp(call_rcu_sched);
3145 atomic_long_inc(&rsp->expedited_normal);
3146 free_cpumask_var(cm);
3147 return;
3148 }
3149 snap = atomic_long_read(&rsp->expedited_start);
3150 smp_mb(); /* ensure read is before try_stop_cpus(). */
3151 }
3152 atomic_long_inc(&rsp->expedited_stoppedcpus);
3153
3154 all_cpus_idle:
3155 free_cpumask_var(cm);
3156
3157 /*
3158 * Everyone up to our most recent fetch is covered by our grace
3159 * period. Update the counter, but only if our work is still
3160 * relevant -- which it won't be if someone who started later
3161 * than we did already did their update.
3162 */
3163 do {
3164 atomic_long_inc(&rsp->expedited_done_tries);
3165 s = atomic_long_read(&rsp->expedited_done);
3166 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3167 /* ensure test happens before caller kfree */
3168 smp_mb__before_atomic(); /* ^^^ */
3169 atomic_long_inc(&rsp->expedited_done_lost);
3170 break;
3171 }
3172 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3173 atomic_long_inc(&rsp->expedited_done_exit);
3174
3175 put_online_cpus();
3176 }
3177 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3178
3179 /*
3180 * Check to see if there is any immediate RCU-related work to be done
3181 * by the current CPU, for the specified type of RCU, returning 1 if so.
3182 * The checks are in order of increasing expense: checks that can be
3183 * carried out against CPU-local state are performed first. However,
3184 * we must check for CPU stalls first, else we might not get a chance.
3185 */
3186 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3187 {
3188 struct rcu_node *rnp = rdp->mynode;
3189
3190 rdp->n_rcu_pending++;
3191
3192 /* Check for CPU stalls, if enabled. */
3193 check_cpu_stall(rsp, rdp);
3194
3195 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3196 if (rcu_nohz_full_cpu(rsp))
3197 return 0;
3198
3199 /* Is the RCU core waiting for a quiescent state from this CPU? */
3200 if (rcu_scheduler_fully_active &&
3201 rdp->qs_pending && !rdp->passed_quiesce &&
3202 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3203 rdp->n_rp_qs_pending++;
3204 } else if (rdp->qs_pending &&
3205 (rdp->passed_quiesce ||
3206 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3207 rdp->n_rp_report_qs++;
3208 return 1;
3209 }
3210
3211 /* Does this CPU have callbacks ready to invoke? */
3212 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3213 rdp->n_rp_cb_ready++;
3214 return 1;
3215 }
3216
3217 /* Has RCU gone idle with this CPU needing another grace period? */
3218 if (cpu_needs_another_gp(rsp, rdp)) {
3219 rdp->n_rp_cpu_needs_gp++;
3220 return 1;
3221 }
3222
3223 /* Has another RCU grace period completed? */
3224 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3225 rdp->n_rp_gp_completed++;
3226 return 1;
3227 }
3228
3229 /* Has a new RCU grace period started? */
3230 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3231 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3232 rdp->n_rp_gp_started++;
3233 return 1;
3234 }
3235
3236 /* Does this CPU need a deferred NOCB wakeup? */
3237 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3238 rdp->n_rp_nocb_defer_wakeup++;
3239 return 1;
3240 }
3241
3242 /* nothing to do */
3243 rdp->n_rp_need_nothing++;
3244 return 0;
3245 }
3246
3247 /*
3248 * Check to see if there is any immediate RCU-related work to be done
3249 * by the current CPU, returning 1 if so. This function is part of the
3250 * RCU implementation; it is -not- an exported member of the RCU API.
3251 */
3252 static int rcu_pending(void)
3253 {
3254 struct rcu_state *rsp;
3255
3256 for_each_rcu_flavor(rsp)
3257 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3258 return 1;
3259 return 0;
3260 }
3261
3262 /*
3263 * Return true if the specified CPU has any callback. If all_lazy is
3264 * non-NULL, store an indication of whether all callbacks are lazy.
3265 * (If there are no callbacks, all of them are deemed to be lazy.)
3266 */
3267 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3268 {
3269 bool al = true;
3270 bool hc = false;
3271 struct rcu_data *rdp;
3272 struct rcu_state *rsp;
3273
3274 for_each_rcu_flavor(rsp) {
3275 rdp = this_cpu_ptr(rsp->rda);
3276 if (!rdp->nxtlist)
3277 continue;
3278 hc = true;
3279 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3280 al = false;
3281 break;
3282 }
3283 }
3284 if (all_lazy)
3285 *all_lazy = al;
3286 return hc;
3287 }
3288
3289 /*
3290 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3291 * the compiler is expected to optimize this away.
3292 */
3293 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3294 int cpu, unsigned long done)
3295 {
3296 trace_rcu_barrier(rsp->name, s, cpu,
3297 atomic_read(&rsp->barrier_cpu_count), done);
3298 }
3299
3300 /*
3301 * RCU callback function for _rcu_barrier(). If we are last, wake
3302 * up the task executing _rcu_barrier().
3303 */
3304 static void rcu_barrier_callback(struct rcu_head *rhp)
3305 {
3306 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3307 struct rcu_state *rsp = rdp->rsp;
3308
3309 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3310 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3311 complete(&rsp->barrier_completion);
3312 } else {
3313 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3314 }
3315 }
3316
3317 /*
3318 * Called with preemption disabled, and from cross-cpu IRQ context.
3319 */
3320 static void rcu_barrier_func(void *type)
3321 {
3322 struct rcu_state *rsp = type;
3323 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3324
3325 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3326 atomic_inc(&rsp->barrier_cpu_count);
3327 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3328 }
3329
3330 /*
3331 * Orchestrate the specified type of RCU barrier, waiting for all
3332 * RCU callbacks of the specified type to complete.
3333 */
3334 static void _rcu_barrier(struct rcu_state *rsp)
3335 {
3336 int cpu;
3337 struct rcu_data *rdp;
3338 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3339 unsigned long snap_done;
3340
3341 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3342
3343 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3344 mutex_lock(&rsp->barrier_mutex);
3345
3346 /*
3347 * Ensure that all prior references, including to ->n_barrier_done,
3348 * are ordered before the _rcu_barrier() machinery.
3349 */
3350 smp_mb(); /* See above block comment. */
3351
3352 /*
3353 * Recheck ->n_barrier_done to see if others did our work for us.
3354 * This means checking ->n_barrier_done for an even-to-odd-to-even
3355 * transition. The "if" expression below therefore rounds the old
3356 * value up to the next even number and adds two before comparing.
3357 */
3358 snap_done = rsp->n_barrier_done;
3359 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3360
3361 /*
3362 * If the value in snap is odd, we needed to wait for the current
3363 * rcu_barrier() to complete, then wait for the next one, in other
3364 * words, we need the value of snap_done to be three larger than
3365 * the value of snap. On the other hand, if the value in snap is
3366 * even, we only had to wait for the next rcu_barrier() to complete,
3367 * in other words, we need the value of snap_done to be only two
3368 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3369 * this for us (thank you, Linus!).
3370 */
3371 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3372 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3373 smp_mb(); /* caller's subsequent code after above check. */
3374 mutex_unlock(&rsp->barrier_mutex);
3375 return;
3376 }
3377
3378 /*
3379 * Increment ->n_barrier_done to avoid duplicate work. Use
3380 * ACCESS_ONCE() to prevent the compiler from speculating
3381 * the increment to precede the early-exit check.
3382 */
3383 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3384 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3385 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3386 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3387
3388 /*
3389 * Initialize the count to one rather than to zero in order to
3390 * avoid a too-soon return to zero in case of a short grace period
3391 * (or preemption of this task). Exclude CPU-hotplug operations
3392 * to ensure that no offline CPU has callbacks queued.
3393 */
3394 init_completion(&rsp->barrier_completion);
3395 atomic_set(&rsp->barrier_cpu_count, 1);
3396 get_online_cpus();
3397
3398 /*
3399 * Force each CPU with callbacks to register a new callback.
3400 * When that callback is invoked, we will know that all of the
3401 * corresponding CPU's preceding callbacks have been invoked.
3402 */
3403 for_each_possible_cpu(cpu) {
3404 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3405 continue;
3406 rdp = per_cpu_ptr(rsp->rda, cpu);
3407 if (rcu_is_nocb_cpu(cpu)) {
3408 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3409 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3410 rsp->n_barrier_done);
3411 } else {
3412 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3413 rsp->n_barrier_done);
3414 atomic_inc(&rsp->barrier_cpu_count);
3415 __call_rcu(&rdp->barrier_head,
3416 rcu_barrier_callback, rsp, cpu, 0);
3417 }
3418 } else if (ACCESS_ONCE(rdp->qlen)) {
3419 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3420 rsp->n_barrier_done);
3421 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3422 } else {
3423 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3424 rsp->n_barrier_done);
3425 }
3426 }
3427 put_online_cpus();
3428
3429 /*
3430 * Now that we have an rcu_barrier_callback() callback on each
3431 * CPU, and thus each counted, remove the initial count.
3432 */
3433 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3434 complete(&rsp->barrier_completion);
3435
3436 /* Increment ->n_barrier_done to prevent duplicate work. */
3437 smp_mb(); /* Keep increment after above mechanism. */
3438 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3439 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3440 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3441 smp_mb(); /* Keep increment before caller's subsequent code. */
3442
3443 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3444 wait_for_completion(&rsp->barrier_completion);
3445
3446 /* Other rcu_barrier() invocations can now safely proceed. */
3447 mutex_unlock(&rsp->barrier_mutex);
3448 }
3449
3450 /**
3451 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3452 */
3453 void rcu_barrier_bh(void)
3454 {
3455 _rcu_barrier(&rcu_bh_state);
3456 }
3457 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3458
3459 /**
3460 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3461 */
3462 void rcu_barrier_sched(void)
3463 {
3464 _rcu_barrier(&rcu_sched_state);
3465 }
3466 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3467
3468 /*
3469 * Do boot-time initialization of a CPU's per-CPU RCU data.
3470 */
3471 static void __init
3472 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3473 {
3474 unsigned long flags;
3475 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3476 struct rcu_node *rnp = rcu_get_root(rsp);
3477
3478 /* Set up local state, ensuring consistent view of global state. */
3479 raw_spin_lock_irqsave(&rnp->lock, flags);
3480 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3481 init_callback_list(rdp);
3482 rdp->qlen_lazy = 0;
3483 ACCESS_ONCE(rdp->qlen) = 0;
3484 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3485 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3486 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3487 rdp->cpu = cpu;
3488 rdp->rsp = rsp;
3489 rcu_boot_init_nocb_percpu_data(rdp);
3490 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3491 }
3492
3493 /*
3494 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3495 * offline event can be happening at a given time. Note also that we
3496 * can accept some slop in the rsp->completed access due to the fact
3497 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3498 */
3499 static void
3500 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3501 {
3502 unsigned long flags;
3503 unsigned long mask;
3504 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3505 struct rcu_node *rnp = rcu_get_root(rsp);
3506
3507 /* Exclude new grace periods. */
3508 mutex_lock(&rsp->onoff_mutex);
3509
3510 /* Set up local state, ensuring consistent view of global state. */
3511 raw_spin_lock_irqsave(&rnp->lock, flags);
3512 rdp->beenonline = 1; /* We have now been online. */
3513 rdp->qlen_last_fqs_check = 0;
3514 rdp->n_force_qs_snap = rsp->n_force_qs;
3515 rdp->blimit = blimit;
3516 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3517 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3518 rcu_sysidle_init_percpu_data(rdp->dynticks);
3519 atomic_set(&rdp->dynticks->dynticks,
3520 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3521 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3522
3523 /* Add CPU to rcu_node bitmasks. */
3524 rnp = rdp->mynode;
3525 mask = rdp->grpmask;
3526 do {
3527 /* Exclude any attempts to start a new GP on small systems. */
3528 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3529 rnp->qsmaskinit |= mask;
3530 mask = rnp->grpmask;
3531 if (rnp == rdp->mynode) {
3532 /*
3533 * If there is a grace period in progress, we will
3534 * set up to wait for it next time we run the
3535 * RCU core code.
3536 */
3537 rdp->gpnum = rnp->completed;
3538 rdp->completed = rnp->completed;
3539 rdp->passed_quiesce = 0;
3540 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3541 rdp->qs_pending = 0;
3542 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3543 }
3544 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3545 rnp = rnp->parent;
3546 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3547 local_irq_restore(flags);
3548
3549 mutex_unlock(&rsp->onoff_mutex);
3550 }
3551
3552 static void rcu_prepare_cpu(int cpu)
3553 {
3554 struct rcu_state *rsp;
3555
3556 for_each_rcu_flavor(rsp)
3557 rcu_init_percpu_data(cpu, rsp);
3558 }
3559
3560 /*
3561 * Handle CPU online/offline notification events.
3562 */
3563 static int rcu_cpu_notify(struct notifier_block *self,
3564 unsigned long action, void *hcpu)
3565 {
3566 long cpu = (long)hcpu;
3567 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3568 struct rcu_node *rnp = rdp->mynode;
3569 struct rcu_state *rsp;
3570
3571 trace_rcu_utilization(TPS("Start CPU hotplug"));
3572 switch (action) {
3573 case CPU_UP_PREPARE:
3574 case CPU_UP_PREPARE_FROZEN:
3575 rcu_prepare_cpu(cpu);
3576 rcu_prepare_kthreads(cpu);
3577 rcu_spawn_all_nocb_kthreads(cpu);
3578 break;
3579 case CPU_ONLINE:
3580 case CPU_DOWN_FAILED:
3581 rcu_boost_kthread_setaffinity(rnp, -1);
3582 break;
3583 case CPU_DOWN_PREPARE:
3584 rcu_boost_kthread_setaffinity(rnp, cpu);
3585 break;
3586 case CPU_DYING:
3587 case CPU_DYING_FROZEN:
3588 for_each_rcu_flavor(rsp)
3589 rcu_cleanup_dying_cpu(rsp);
3590 break;
3591 case CPU_DEAD:
3592 case CPU_DEAD_FROZEN:
3593 case CPU_UP_CANCELED:
3594 case CPU_UP_CANCELED_FROZEN:
3595 for_each_rcu_flavor(rsp) {
3596 rcu_cleanup_dead_cpu(cpu, rsp);
3597 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3598 }
3599 break;
3600 default:
3601 break;
3602 }
3603 trace_rcu_utilization(TPS("End CPU hotplug"));
3604 return NOTIFY_OK;
3605 }
3606
3607 static int rcu_pm_notify(struct notifier_block *self,
3608 unsigned long action, void *hcpu)
3609 {
3610 switch (action) {
3611 case PM_HIBERNATION_PREPARE:
3612 case PM_SUSPEND_PREPARE:
3613 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3614 rcu_expedited = 1;
3615 break;
3616 case PM_POST_HIBERNATION:
3617 case PM_POST_SUSPEND:
3618 rcu_expedited = 0;
3619 break;
3620 default:
3621 break;
3622 }
3623 return NOTIFY_OK;
3624 }
3625
3626 /*
3627 * Spawn the kthreads that handle each RCU flavor's grace periods.
3628 */
3629 static int __init rcu_spawn_gp_kthread(void)
3630 {
3631 unsigned long flags;
3632 int kthread_prio_in = kthread_prio;
3633 struct rcu_node *rnp;
3634 struct rcu_state *rsp;
3635 struct sched_param sp;
3636 struct task_struct *t;
3637
3638 /* Force priority into range. */
3639 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3640 kthread_prio = 1;
3641 else if (kthread_prio < 0)
3642 kthread_prio = 0;
3643 else if (kthread_prio > 99)
3644 kthread_prio = 99;
3645 if (kthread_prio != kthread_prio_in)
3646 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3647 kthread_prio, kthread_prio_in);
3648
3649 rcu_scheduler_fully_active = 1;
3650 for_each_rcu_flavor(rsp) {
3651 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3652 BUG_ON(IS_ERR(t));
3653 rnp = rcu_get_root(rsp);
3654 raw_spin_lock_irqsave(&rnp->lock, flags);
3655 rsp->gp_kthread = t;
3656 if (kthread_prio) {
3657 sp.sched_priority = kthread_prio;
3658 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3659 }
3660 wake_up_process(t);
3661 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3662 }
3663 rcu_spawn_nocb_kthreads();
3664 rcu_spawn_boost_kthreads();
3665 return 0;
3666 }
3667 early_initcall(rcu_spawn_gp_kthread);
3668
3669 /*
3670 * This function is invoked towards the end of the scheduler's initialization
3671 * process. Before this is called, the idle task might contain
3672 * RCU read-side critical sections (during which time, this idle
3673 * task is booting the system). After this function is called, the
3674 * idle tasks are prohibited from containing RCU read-side critical
3675 * sections. This function also enables RCU lockdep checking.
3676 */
3677 void rcu_scheduler_starting(void)
3678 {
3679 WARN_ON(num_online_cpus() != 1);
3680 WARN_ON(nr_context_switches() > 0);
3681 rcu_scheduler_active = 1;
3682 }
3683
3684 /*
3685 * Compute the per-level fanout, either using the exact fanout specified
3686 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3687 */
3688 #ifdef CONFIG_RCU_FANOUT_EXACT
3689 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3690 {
3691 int i;
3692
3693 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3694 for (i = rcu_num_lvls - 2; i >= 0; i--)
3695 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3696 }
3697 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3698 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3699 {
3700 int ccur;
3701 int cprv;
3702 int i;
3703
3704 cprv = nr_cpu_ids;
3705 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3706 ccur = rsp->levelcnt[i];
3707 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3708 cprv = ccur;
3709 }
3710 }
3711 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3712
3713 /*
3714 * Helper function for rcu_init() that initializes one rcu_state structure.
3715 */
3716 static void __init rcu_init_one(struct rcu_state *rsp,
3717 struct rcu_data __percpu *rda)
3718 {
3719 static const char * const buf[] = {
3720 "rcu_node_0",
3721 "rcu_node_1",
3722 "rcu_node_2",
3723 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3724 static const char * const fqs[] = {
3725 "rcu_node_fqs_0",
3726 "rcu_node_fqs_1",
3727 "rcu_node_fqs_2",
3728 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3729 static u8 fl_mask = 0x1;
3730 int cpustride = 1;
3731 int i;
3732 int j;
3733 struct rcu_node *rnp;
3734
3735 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3736
3737 /* Silence gcc 4.8 warning about array index out of range. */
3738 if (rcu_num_lvls > RCU_NUM_LVLS)
3739 panic("rcu_init_one: rcu_num_lvls overflow");
3740
3741 /* Initialize the level-tracking arrays. */
3742
3743 for (i = 0; i < rcu_num_lvls; i++)
3744 rsp->levelcnt[i] = num_rcu_lvl[i];
3745 for (i = 1; i < rcu_num_lvls; i++)
3746 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3747 rcu_init_levelspread(rsp);
3748 rsp->flavor_mask = fl_mask;
3749 fl_mask <<= 1;
3750
3751 /* Initialize the elements themselves, starting from the leaves. */
3752
3753 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3754 cpustride *= rsp->levelspread[i];
3755 rnp = rsp->level[i];
3756 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3757 raw_spin_lock_init(&rnp->lock);
3758 lockdep_set_class_and_name(&rnp->lock,
3759 &rcu_node_class[i], buf[i]);
3760 raw_spin_lock_init(&rnp->fqslock);
3761 lockdep_set_class_and_name(&rnp->fqslock,
3762 &rcu_fqs_class[i], fqs[i]);
3763 rnp->gpnum = rsp->gpnum;
3764 rnp->completed = rsp->completed;
3765 rnp->qsmask = 0;
3766 rnp->qsmaskinit = 0;
3767 rnp->grplo = j * cpustride;
3768 rnp->grphi = (j + 1) * cpustride - 1;
3769 if (rnp->grphi >= nr_cpu_ids)
3770 rnp->grphi = nr_cpu_ids - 1;
3771 if (i == 0) {
3772 rnp->grpnum = 0;
3773 rnp->grpmask = 0;
3774 rnp->parent = NULL;
3775 } else {
3776 rnp->grpnum = j % rsp->levelspread[i - 1];
3777 rnp->grpmask = 1UL << rnp->grpnum;
3778 rnp->parent = rsp->level[i - 1] +
3779 j / rsp->levelspread[i - 1];
3780 }
3781 rnp->level = i;
3782 INIT_LIST_HEAD(&rnp->blkd_tasks);
3783 rcu_init_one_nocb(rnp);
3784 }
3785 }
3786
3787 rsp->rda = rda;
3788 init_waitqueue_head(&rsp->gp_wq);
3789 rnp = rsp->level[rcu_num_lvls - 1];
3790 for_each_possible_cpu(i) {
3791 while (i > rnp->grphi)
3792 rnp++;
3793 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3794 rcu_boot_init_percpu_data(i, rsp);
3795 }
3796 list_add(&rsp->flavors, &rcu_struct_flavors);
3797 }
3798
3799 /*
3800 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3801 * replace the definitions in tree.h because those are needed to size
3802 * the ->node array in the rcu_state structure.
3803 */
3804 static void __init rcu_init_geometry(void)
3805 {
3806 ulong d;
3807 int i;
3808 int j;
3809 int n = nr_cpu_ids;
3810 int rcu_capacity[MAX_RCU_LVLS + 1];
3811
3812 /*
3813 * Initialize any unspecified boot parameters.
3814 * The default values of jiffies_till_first_fqs and
3815 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3816 * value, which is a function of HZ, then adding one for each
3817 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3818 */
3819 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3820 if (jiffies_till_first_fqs == ULONG_MAX)
3821 jiffies_till_first_fqs = d;
3822 if (jiffies_till_next_fqs == ULONG_MAX)
3823 jiffies_till_next_fqs = d;
3824
3825 /* If the compile-time values are accurate, just leave. */
3826 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3827 nr_cpu_ids == NR_CPUS)
3828 return;
3829 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3830 rcu_fanout_leaf, nr_cpu_ids);
3831
3832 /*
3833 * Compute number of nodes that can be handled an rcu_node tree
3834 * with the given number of levels. Setting rcu_capacity[0] makes
3835 * some of the arithmetic easier.
3836 */
3837 rcu_capacity[0] = 1;
3838 rcu_capacity[1] = rcu_fanout_leaf;
3839 for (i = 2; i <= MAX_RCU_LVLS; i++)
3840 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3841
3842 /*
3843 * The boot-time rcu_fanout_leaf parameter is only permitted
3844 * to increase the leaf-level fanout, not decrease it. Of course,
3845 * the leaf-level fanout cannot exceed the number of bits in
3846 * the rcu_node masks. Finally, the tree must be able to accommodate
3847 * the configured number of CPUs. Complain and fall back to the
3848 * compile-time values if these limits are exceeded.
3849 */
3850 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3851 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3852 n > rcu_capacity[MAX_RCU_LVLS]) {
3853 WARN_ON(1);
3854 return;
3855 }
3856
3857 /* Calculate the number of rcu_nodes at each level of the tree. */
3858 for (i = 1; i <= MAX_RCU_LVLS; i++)
3859 if (n <= rcu_capacity[i]) {
3860 for (j = 0; j <= i; j++)
3861 num_rcu_lvl[j] =
3862 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3863 rcu_num_lvls = i;
3864 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3865 num_rcu_lvl[j] = 0;
3866 break;
3867 }
3868
3869 /* Calculate the total number of rcu_node structures. */
3870 rcu_num_nodes = 0;
3871 for (i = 0; i <= MAX_RCU_LVLS; i++)
3872 rcu_num_nodes += num_rcu_lvl[i];
3873 rcu_num_nodes -= n;
3874 }
3875
3876 void __init rcu_init(void)
3877 {
3878 int cpu;
3879
3880 rcu_bootup_announce();
3881 rcu_init_geometry();
3882 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3883 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3884 __rcu_init_preempt();
3885 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3886
3887 /*
3888 * We don't need protection against CPU-hotplug here because
3889 * this is called early in boot, before either interrupts
3890 * or the scheduler are operational.
3891 */
3892 cpu_notifier(rcu_cpu_notify, 0);
3893 pm_notifier(rcu_pm_notify, 0);
3894 for_each_online_cpu(cpu)
3895 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3896
3897 rcu_early_boot_tests();
3898 }
3899
3900 #include "tree_plugin.h"