]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/rcu/tree.c
rcu: Shut up spurious gcc uninitialized-variable warning
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #ifdef CONFIG_TRACING
83 # define DEFINE_RCU_TPS(sname) \
84 static char sname##_varname[] = #sname; \
85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86 # define RCU_STATE_NAME(sname) sname##_varname
87 #else
88 # define DEFINE_RCU_TPS(sname)
89 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #endif
91
92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93 DEFINE_RCU_TPS(sname) \
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95 struct rcu_state sname##_state = { \
96 .level = { &sname##_state.node[0] }, \
97 .rda = &sname##_data, \
98 .call = cr, \
99 .fqs_state = RCU_GP_IDLE, \
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106 .name = RCU_STATE_NAME(sname), \
107 .abbr = sabbr, \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118 module_param(rcu_fanout_leaf, int, 0444);
119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126 };
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_sched() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160
161 /* rcuc/rcub kthread realtime priority */
162 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
163 module_param(kthread_prio, int, 0644);
164
165 /* Delay in jiffies for grace-period initialization delays, debug only. */
166 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
167 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
168 module_param(gp_init_delay, int, 0644);
169 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
170 static const int gp_init_delay;
171 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
172
173 /*
174 * Number of grace periods between delays, normalized by the duration of
175 * the delay. The longer the the delay, the more the grace periods between
176 * each delay. The reason for this normalization is that it means that,
177 * for non-zero delays, the overall slowdown of grace periods is constant
178 * regardless of the duration of the delay. This arrangement balances
179 * the need for long delays to increase some race probabilities with the
180 * need for fast grace periods to increase other race probabilities.
181 */
182 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
183
184 /*
185 * Track the rcutorture test sequence number and the update version
186 * number within a given test. The rcutorture_testseq is incremented
187 * on every rcutorture module load and unload, so has an odd value
188 * when a test is running. The rcutorture_vernum is set to zero
189 * when rcutorture starts and is incremented on each rcutorture update.
190 * These variables enable correlating rcutorture output with the
191 * RCU tracing information.
192 */
193 unsigned long rcutorture_testseq;
194 unsigned long rcutorture_vernum;
195
196 /*
197 * Compute the mask of online CPUs for the specified rcu_node structure.
198 * This will not be stable unless the rcu_node structure's ->lock is
199 * held, but the bit corresponding to the current CPU will be stable
200 * in most contexts.
201 */
202 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
203 {
204 return READ_ONCE(rnp->qsmaskinitnext);
205 }
206
207 /*
208 * Return true if an RCU grace period is in progress. The READ_ONCE()s
209 * permit this function to be invoked without holding the root rcu_node
210 * structure's ->lock, but of course results can be subject to change.
211 */
212 static int rcu_gp_in_progress(struct rcu_state *rsp)
213 {
214 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
215 }
216
217 /*
218 * Note a quiescent state. Because we do not need to know
219 * how many quiescent states passed, just if there was at least
220 * one since the start of the grace period, this just sets a flag.
221 * The caller must have disabled preemption.
222 */
223 void rcu_sched_qs(void)
224 {
225 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
226 trace_rcu_grace_period(TPS("rcu_sched"),
227 __this_cpu_read(rcu_sched_data.gpnum),
228 TPS("cpuqs"));
229 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
230 }
231 }
232
233 void rcu_bh_qs(void)
234 {
235 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
236 trace_rcu_grace_period(TPS("rcu_bh"),
237 __this_cpu_read(rcu_bh_data.gpnum),
238 TPS("cpuqs"));
239 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
240 }
241 }
242
243 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
244
245 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
246 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
247 .dynticks = ATOMIC_INIT(1),
248 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
249 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
250 .dynticks_idle = ATOMIC_INIT(1),
251 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
252 };
253
254 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
255 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
256
257 /*
258 * Let the RCU core know that this CPU has gone through the scheduler,
259 * which is a quiescent state. This is called when the need for a
260 * quiescent state is urgent, so we burn an atomic operation and full
261 * memory barriers to let the RCU core know about it, regardless of what
262 * this CPU might (or might not) do in the near future.
263 *
264 * We inform the RCU core by emulating a zero-duration dyntick-idle
265 * period, which we in turn do by incrementing the ->dynticks counter
266 * by two.
267 */
268 static void rcu_momentary_dyntick_idle(void)
269 {
270 unsigned long flags;
271 struct rcu_data *rdp;
272 struct rcu_dynticks *rdtp;
273 int resched_mask;
274 struct rcu_state *rsp;
275
276 local_irq_save(flags);
277
278 /*
279 * Yes, we can lose flag-setting operations. This is OK, because
280 * the flag will be set again after some delay.
281 */
282 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
283 raw_cpu_write(rcu_sched_qs_mask, 0);
284
285 /* Find the flavor that needs a quiescent state. */
286 for_each_rcu_flavor(rsp) {
287 rdp = raw_cpu_ptr(rsp->rda);
288 if (!(resched_mask & rsp->flavor_mask))
289 continue;
290 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
291 if (READ_ONCE(rdp->mynode->completed) !=
292 READ_ONCE(rdp->cond_resched_completed))
293 continue;
294
295 /*
296 * Pretend to be momentarily idle for the quiescent state.
297 * This allows the grace-period kthread to record the
298 * quiescent state, with no need for this CPU to do anything
299 * further.
300 */
301 rdtp = this_cpu_ptr(&rcu_dynticks);
302 smp_mb__before_atomic(); /* Earlier stuff before QS. */
303 atomic_add(2, &rdtp->dynticks); /* QS. */
304 smp_mb__after_atomic(); /* Later stuff after QS. */
305 break;
306 }
307 local_irq_restore(flags);
308 }
309
310 /*
311 * Note a context switch. This is a quiescent state for RCU-sched,
312 * and requires special handling for preemptible RCU.
313 * The caller must have disabled preemption.
314 */
315 void rcu_note_context_switch(void)
316 {
317 trace_rcu_utilization(TPS("Start context switch"));
318 rcu_sched_qs();
319 rcu_preempt_note_context_switch();
320 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
321 rcu_momentary_dyntick_idle();
322 trace_rcu_utilization(TPS("End context switch"));
323 }
324 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
325
326 /*
327 * Register a quiescent state for all RCU flavors. If there is an
328 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
329 * dyntick-idle quiescent state visible to other CPUs (but only for those
330 * RCU flavors in desperate need of a quiescent state, which will normally
331 * be none of them). Either way, do a lightweight quiescent state for
332 * all RCU flavors.
333 */
334 void rcu_all_qs(void)
335 {
336 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
337 rcu_momentary_dyntick_idle();
338 this_cpu_inc(rcu_qs_ctr);
339 }
340 EXPORT_SYMBOL_GPL(rcu_all_qs);
341
342 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
343 static long qhimark = 10000; /* If this many pending, ignore blimit. */
344 static long qlowmark = 100; /* Once only this many pending, use blimit. */
345
346 module_param(blimit, long, 0444);
347 module_param(qhimark, long, 0444);
348 module_param(qlowmark, long, 0444);
349
350 static ulong jiffies_till_first_fqs = ULONG_MAX;
351 static ulong jiffies_till_next_fqs = ULONG_MAX;
352
353 module_param(jiffies_till_first_fqs, ulong, 0644);
354 module_param(jiffies_till_next_fqs, ulong, 0644);
355
356 /*
357 * How long the grace period must be before we start recruiting
358 * quiescent-state help from rcu_note_context_switch().
359 */
360 static ulong jiffies_till_sched_qs = HZ / 20;
361 module_param(jiffies_till_sched_qs, ulong, 0644);
362
363 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
364 struct rcu_data *rdp);
365 static void force_qs_rnp(struct rcu_state *rsp,
366 int (*f)(struct rcu_data *rsp, bool *isidle,
367 unsigned long *maxj),
368 bool *isidle, unsigned long *maxj);
369 static void force_quiescent_state(struct rcu_state *rsp);
370 static int rcu_pending(void);
371
372 /*
373 * Return the number of RCU batches started thus far for debug & stats.
374 */
375 unsigned long rcu_batches_started(void)
376 {
377 return rcu_state_p->gpnum;
378 }
379 EXPORT_SYMBOL_GPL(rcu_batches_started);
380
381 /*
382 * Return the number of RCU-sched batches started thus far for debug & stats.
383 */
384 unsigned long rcu_batches_started_sched(void)
385 {
386 return rcu_sched_state.gpnum;
387 }
388 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
389
390 /*
391 * Return the number of RCU BH batches started thus far for debug & stats.
392 */
393 unsigned long rcu_batches_started_bh(void)
394 {
395 return rcu_bh_state.gpnum;
396 }
397 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
398
399 /*
400 * Return the number of RCU batches completed thus far for debug & stats.
401 */
402 unsigned long rcu_batches_completed(void)
403 {
404 return rcu_state_p->completed;
405 }
406 EXPORT_SYMBOL_GPL(rcu_batches_completed);
407
408 /*
409 * Return the number of RCU-sched batches completed thus far for debug & stats.
410 */
411 unsigned long rcu_batches_completed_sched(void)
412 {
413 return rcu_sched_state.completed;
414 }
415 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
416
417 /*
418 * Return the number of RCU BH batches completed thus far for debug & stats.
419 */
420 unsigned long rcu_batches_completed_bh(void)
421 {
422 return rcu_bh_state.completed;
423 }
424 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
425
426 /*
427 * Force a quiescent state.
428 */
429 void rcu_force_quiescent_state(void)
430 {
431 force_quiescent_state(rcu_state_p);
432 }
433 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
434
435 /*
436 * Force a quiescent state for RCU BH.
437 */
438 void rcu_bh_force_quiescent_state(void)
439 {
440 force_quiescent_state(&rcu_bh_state);
441 }
442 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
443
444 /*
445 * Force a quiescent state for RCU-sched.
446 */
447 void rcu_sched_force_quiescent_state(void)
448 {
449 force_quiescent_state(&rcu_sched_state);
450 }
451 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
452
453 /*
454 * Show the state of the grace-period kthreads.
455 */
456 void show_rcu_gp_kthreads(void)
457 {
458 struct rcu_state *rsp;
459
460 for_each_rcu_flavor(rsp) {
461 pr_info("%s: wait state: %d ->state: %#lx\n",
462 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
463 /* sched_show_task(rsp->gp_kthread); */
464 }
465 }
466 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
467
468 /*
469 * Record the number of times rcutorture tests have been initiated and
470 * terminated. This information allows the debugfs tracing stats to be
471 * correlated to the rcutorture messages, even when the rcutorture module
472 * is being repeatedly loaded and unloaded. In other words, we cannot
473 * store this state in rcutorture itself.
474 */
475 void rcutorture_record_test_transition(void)
476 {
477 rcutorture_testseq++;
478 rcutorture_vernum = 0;
479 }
480 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
481
482 /*
483 * Send along grace-period-related data for rcutorture diagnostics.
484 */
485 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
486 unsigned long *gpnum, unsigned long *completed)
487 {
488 struct rcu_state *rsp = NULL;
489
490 switch (test_type) {
491 case RCU_FLAVOR:
492 rsp = rcu_state_p;
493 break;
494 case RCU_BH_FLAVOR:
495 rsp = &rcu_bh_state;
496 break;
497 case RCU_SCHED_FLAVOR:
498 rsp = &rcu_sched_state;
499 break;
500 default:
501 break;
502 }
503 if (rsp != NULL) {
504 *flags = READ_ONCE(rsp->gp_flags);
505 *gpnum = READ_ONCE(rsp->gpnum);
506 *completed = READ_ONCE(rsp->completed);
507 return;
508 }
509 *flags = 0;
510 *gpnum = 0;
511 *completed = 0;
512 }
513 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
514
515 /*
516 * Record the number of writer passes through the current rcutorture test.
517 * This is also used to correlate debugfs tracing stats with the rcutorture
518 * messages.
519 */
520 void rcutorture_record_progress(unsigned long vernum)
521 {
522 rcutorture_vernum++;
523 }
524 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
525
526 /*
527 * Does the CPU have callbacks ready to be invoked?
528 */
529 static int
530 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
531 {
532 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
533 rdp->nxttail[RCU_DONE_TAIL] != NULL;
534 }
535
536 /*
537 * Return the root node of the specified rcu_state structure.
538 */
539 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
540 {
541 return &rsp->node[0];
542 }
543
544 /*
545 * Is there any need for future grace periods?
546 * Interrupts must be disabled. If the caller does not hold the root
547 * rnp_node structure's ->lock, the results are advisory only.
548 */
549 static int rcu_future_needs_gp(struct rcu_state *rsp)
550 {
551 struct rcu_node *rnp = rcu_get_root(rsp);
552 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
553 int *fp = &rnp->need_future_gp[idx];
554
555 return READ_ONCE(*fp);
556 }
557
558 /*
559 * Does the current CPU require a not-yet-started grace period?
560 * The caller must have disabled interrupts to prevent races with
561 * normal callback registry.
562 */
563 static int
564 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
565 {
566 int i;
567
568 if (rcu_gp_in_progress(rsp))
569 return 0; /* No, a grace period is already in progress. */
570 if (rcu_future_needs_gp(rsp))
571 return 1; /* Yes, a no-CBs CPU needs one. */
572 if (!rdp->nxttail[RCU_NEXT_TAIL])
573 return 0; /* No, this is a no-CBs (or offline) CPU. */
574 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
575 return 1; /* Yes, this CPU has newly registered callbacks. */
576 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
577 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
578 ULONG_CMP_LT(READ_ONCE(rsp->completed),
579 rdp->nxtcompleted[i]))
580 return 1; /* Yes, CBs for future grace period. */
581 return 0; /* No grace period needed. */
582 }
583
584 /*
585 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
586 *
587 * If the new value of the ->dynticks_nesting counter now is zero,
588 * we really have entered idle, and must do the appropriate accounting.
589 * The caller must have disabled interrupts.
590 */
591 static void rcu_eqs_enter_common(long long oldval, bool user)
592 {
593 struct rcu_state *rsp;
594 struct rcu_data *rdp;
595 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
596
597 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
598 if (!user && !is_idle_task(current)) {
599 struct task_struct *idle __maybe_unused =
600 idle_task(smp_processor_id());
601
602 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
603 ftrace_dump(DUMP_ORIG);
604 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
605 current->pid, current->comm,
606 idle->pid, idle->comm); /* must be idle task! */
607 }
608 for_each_rcu_flavor(rsp) {
609 rdp = this_cpu_ptr(rsp->rda);
610 do_nocb_deferred_wakeup(rdp);
611 }
612 rcu_prepare_for_idle();
613 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
614 smp_mb__before_atomic(); /* See above. */
615 atomic_inc(&rdtp->dynticks);
616 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
617 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
618 rcu_dynticks_task_enter();
619
620 /*
621 * It is illegal to enter an extended quiescent state while
622 * in an RCU read-side critical section.
623 */
624 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
625 "Illegal idle entry in RCU read-side critical section.");
626 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
627 "Illegal idle entry in RCU-bh read-side critical section.");
628 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
629 "Illegal idle entry in RCU-sched read-side critical section.");
630 }
631
632 /*
633 * Enter an RCU extended quiescent state, which can be either the
634 * idle loop or adaptive-tickless usermode execution.
635 */
636 static void rcu_eqs_enter(bool user)
637 {
638 long long oldval;
639 struct rcu_dynticks *rdtp;
640
641 rdtp = this_cpu_ptr(&rcu_dynticks);
642 oldval = rdtp->dynticks_nesting;
643 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
644 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
645 rdtp->dynticks_nesting = 0;
646 rcu_eqs_enter_common(oldval, user);
647 } else {
648 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
649 }
650 }
651
652 /**
653 * rcu_idle_enter - inform RCU that current CPU is entering idle
654 *
655 * Enter idle mode, in other words, -leave- the mode in which RCU
656 * read-side critical sections can occur. (Though RCU read-side
657 * critical sections can occur in irq handlers in idle, a possibility
658 * handled by irq_enter() and irq_exit().)
659 *
660 * We crowbar the ->dynticks_nesting field to zero to allow for
661 * the possibility of usermode upcalls having messed up our count
662 * of interrupt nesting level during the prior busy period.
663 */
664 void rcu_idle_enter(void)
665 {
666 unsigned long flags;
667
668 local_irq_save(flags);
669 rcu_eqs_enter(false);
670 rcu_sysidle_enter(0);
671 local_irq_restore(flags);
672 }
673 EXPORT_SYMBOL_GPL(rcu_idle_enter);
674
675 #ifdef CONFIG_RCU_USER_QS
676 /**
677 * rcu_user_enter - inform RCU that we are resuming userspace.
678 *
679 * Enter RCU idle mode right before resuming userspace. No use of RCU
680 * is permitted between this call and rcu_user_exit(). This way the
681 * CPU doesn't need to maintain the tick for RCU maintenance purposes
682 * when the CPU runs in userspace.
683 */
684 void rcu_user_enter(void)
685 {
686 rcu_eqs_enter(1);
687 }
688 #endif /* CONFIG_RCU_USER_QS */
689
690 /**
691 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
692 *
693 * Exit from an interrupt handler, which might possibly result in entering
694 * idle mode, in other words, leaving the mode in which read-side critical
695 * sections can occur.
696 *
697 * This code assumes that the idle loop never does anything that might
698 * result in unbalanced calls to irq_enter() and irq_exit(). If your
699 * architecture violates this assumption, RCU will give you what you
700 * deserve, good and hard. But very infrequently and irreproducibly.
701 *
702 * Use things like work queues to work around this limitation.
703 *
704 * You have been warned.
705 */
706 void rcu_irq_exit(void)
707 {
708 unsigned long flags;
709 long long oldval;
710 struct rcu_dynticks *rdtp;
711
712 local_irq_save(flags);
713 rdtp = this_cpu_ptr(&rcu_dynticks);
714 oldval = rdtp->dynticks_nesting;
715 rdtp->dynticks_nesting--;
716 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
717 if (rdtp->dynticks_nesting)
718 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
719 else
720 rcu_eqs_enter_common(oldval, true);
721 rcu_sysidle_enter(1);
722 local_irq_restore(flags);
723 }
724
725 /*
726 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
727 *
728 * If the new value of the ->dynticks_nesting counter was previously zero,
729 * we really have exited idle, and must do the appropriate accounting.
730 * The caller must have disabled interrupts.
731 */
732 static void rcu_eqs_exit_common(long long oldval, int user)
733 {
734 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
735
736 rcu_dynticks_task_exit();
737 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
738 atomic_inc(&rdtp->dynticks);
739 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
740 smp_mb__after_atomic(); /* See above. */
741 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
742 rcu_cleanup_after_idle();
743 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
744 if (!user && !is_idle_task(current)) {
745 struct task_struct *idle __maybe_unused =
746 idle_task(smp_processor_id());
747
748 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
749 oldval, rdtp->dynticks_nesting);
750 ftrace_dump(DUMP_ORIG);
751 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
752 current->pid, current->comm,
753 idle->pid, idle->comm); /* must be idle task! */
754 }
755 }
756
757 /*
758 * Exit an RCU extended quiescent state, which can be either the
759 * idle loop or adaptive-tickless usermode execution.
760 */
761 static void rcu_eqs_exit(bool user)
762 {
763 struct rcu_dynticks *rdtp;
764 long long oldval;
765
766 rdtp = this_cpu_ptr(&rcu_dynticks);
767 oldval = rdtp->dynticks_nesting;
768 WARN_ON_ONCE(oldval < 0);
769 if (oldval & DYNTICK_TASK_NEST_MASK) {
770 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
771 } else {
772 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
773 rcu_eqs_exit_common(oldval, user);
774 }
775 }
776
777 /**
778 * rcu_idle_exit - inform RCU that current CPU is leaving idle
779 *
780 * Exit idle mode, in other words, -enter- the mode in which RCU
781 * read-side critical sections can occur.
782 *
783 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
784 * allow for the possibility of usermode upcalls messing up our count
785 * of interrupt nesting level during the busy period that is just
786 * now starting.
787 */
788 void rcu_idle_exit(void)
789 {
790 unsigned long flags;
791
792 local_irq_save(flags);
793 rcu_eqs_exit(false);
794 rcu_sysidle_exit(0);
795 local_irq_restore(flags);
796 }
797 EXPORT_SYMBOL_GPL(rcu_idle_exit);
798
799 #ifdef CONFIG_RCU_USER_QS
800 /**
801 * rcu_user_exit - inform RCU that we are exiting userspace.
802 *
803 * Exit RCU idle mode while entering the kernel because it can
804 * run a RCU read side critical section anytime.
805 */
806 void rcu_user_exit(void)
807 {
808 rcu_eqs_exit(1);
809 }
810 #endif /* CONFIG_RCU_USER_QS */
811
812 /**
813 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
814 *
815 * Enter an interrupt handler, which might possibly result in exiting
816 * idle mode, in other words, entering the mode in which read-side critical
817 * sections can occur.
818 *
819 * Note that the Linux kernel is fully capable of entering an interrupt
820 * handler that it never exits, for example when doing upcalls to
821 * user mode! This code assumes that the idle loop never does upcalls to
822 * user mode. If your architecture does do upcalls from the idle loop (or
823 * does anything else that results in unbalanced calls to the irq_enter()
824 * and irq_exit() functions), RCU will give you what you deserve, good
825 * and hard. But very infrequently and irreproducibly.
826 *
827 * Use things like work queues to work around this limitation.
828 *
829 * You have been warned.
830 */
831 void rcu_irq_enter(void)
832 {
833 unsigned long flags;
834 struct rcu_dynticks *rdtp;
835 long long oldval;
836
837 local_irq_save(flags);
838 rdtp = this_cpu_ptr(&rcu_dynticks);
839 oldval = rdtp->dynticks_nesting;
840 rdtp->dynticks_nesting++;
841 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
842 if (oldval)
843 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
844 else
845 rcu_eqs_exit_common(oldval, true);
846 rcu_sysidle_exit(1);
847 local_irq_restore(flags);
848 }
849
850 /**
851 * rcu_nmi_enter - inform RCU of entry to NMI context
852 *
853 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
854 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
855 * that the CPU is active. This implementation permits nested NMIs, as
856 * long as the nesting level does not overflow an int. (You will probably
857 * run out of stack space first.)
858 */
859 void rcu_nmi_enter(void)
860 {
861 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
862 int incby = 2;
863
864 /* Complain about underflow. */
865 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
866
867 /*
868 * If idle from RCU viewpoint, atomically increment ->dynticks
869 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
870 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
871 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
872 * to be in the outermost NMI handler that interrupted an RCU-idle
873 * period (observation due to Andy Lutomirski).
874 */
875 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
876 smp_mb__before_atomic(); /* Force delay from prior write. */
877 atomic_inc(&rdtp->dynticks);
878 /* atomic_inc() before later RCU read-side crit sects */
879 smp_mb__after_atomic(); /* See above. */
880 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
881 incby = 1;
882 }
883 rdtp->dynticks_nmi_nesting += incby;
884 barrier();
885 }
886
887 /**
888 * rcu_nmi_exit - inform RCU of exit from NMI context
889 *
890 * If we are returning from the outermost NMI handler that interrupted an
891 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
892 * to let the RCU grace-period handling know that the CPU is back to
893 * being RCU-idle.
894 */
895 void rcu_nmi_exit(void)
896 {
897 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
898
899 /*
900 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
901 * (We are exiting an NMI handler, so RCU better be paying attention
902 * to us!)
903 */
904 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
905 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
906
907 /*
908 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
909 * leave it in non-RCU-idle state.
910 */
911 if (rdtp->dynticks_nmi_nesting != 1) {
912 rdtp->dynticks_nmi_nesting -= 2;
913 return;
914 }
915
916 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
917 rdtp->dynticks_nmi_nesting = 0;
918 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
919 smp_mb__before_atomic(); /* See above. */
920 atomic_inc(&rdtp->dynticks);
921 smp_mb__after_atomic(); /* Force delay to next write. */
922 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
923 }
924
925 /**
926 * __rcu_is_watching - are RCU read-side critical sections safe?
927 *
928 * Return true if RCU is watching the running CPU, which means that
929 * this CPU can safely enter RCU read-side critical sections. Unlike
930 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
931 * least disabled preemption.
932 */
933 bool notrace __rcu_is_watching(void)
934 {
935 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
936 }
937
938 /**
939 * rcu_is_watching - see if RCU thinks that the current CPU is idle
940 *
941 * If the current CPU is in its idle loop and is neither in an interrupt
942 * or NMI handler, return true.
943 */
944 bool notrace rcu_is_watching(void)
945 {
946 bool ret;
947
948 preempt_disable();
949 ret = __rcu_is_watching();
950 preempt_enable();
951 return ret;
952 }
953 EXPORT_SYMBOL_GPL(rcu_is_watching);
954
955 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
956
957 /*
958 * Is the current CPU online? Disable preemption to avoid false positives
959 * that could otherwise happen due to the current CPU number being sampled,
960 * this task being preempted, its old CPU being taken offline, resuming
961 * on some other CPU, then determining that its old CPU is now offline.
962 * It is OK to use RCU on an offline processor during initial boot, hence
963 * the check for rcu_scheduler_fully_active. Note also that it is OK
964 * for a CPU coming online to use RCU for one jiffy prior to marking itself
965 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
966 * offline to continue to use RCU for one jiffy after marking itself
967 * offline in the cpu_online_mask. This leniency is necessary given the
968 * non-atomic nature of the online and offline processing, for example,
969 * the fact that a CPU enters the scheduler after completing the CPU_DYING
970 * notifiers.
971 *
972 * This is also why RCU internally marks CPUs online during the
973 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
974 *
975 * Disable checking if in an NMI handler because we cannot safely report
976 * errors from NMI handlers anyway.
977 */
978 bool rcu_lockdep_current_cpu_online(void)
979 {
980 struct rcu_data *rdp;
981 struct rcu_node *rnp;
982 bool ret;
983
984 if (in_nmi())
985 return true;
986 preempt_disable();
987 rdp = this_cpu_ptr(&rcu_sched_data);
988 rnp = rdp->mynode;
989 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
990 !rcu_scheduler_fully_active;
991 preempt_enable();
992 return ret;
993 }
994 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
995
996 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
997
998 /**
999 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1000 *
1001 * If the current CPU is idle or running at a first-level (not nested)
1002 * interrupt from idle, return true. The caller must have at least
1003 * disabled preemption.
1004 */
1005 static int rcu_is_cpu_rrupt_from_idle(void)
1006 {
1007 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1008 }
1009
1010 /*
1011 * Snapshot the specified CPU's dynticks counter so that we can later
1012 * credit them with an implicit quiescent state. Return 1 if this CPU
1013 * is in dynticks idle mode, which is an extended quiescent state.
1014 */
1015 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1016 bool *isidle, unsigned long *maxj)
1017 {
1018 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1019 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1020 if ((rdp->dynticks_snap & 0x1) == 0) {
1021 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1022 return 1;
1023 } else {
1024 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1025 rdp->mynode->gpnum))
1026 WRITE_ONCE(rdp->gpwrap, true);
1027 return 0;
1028 }
1029 }
1030
1031 /*
1032 * Return true if the specified CPU has passed through a quiescent
1033 * state by virtue of being in or having passed through an dynticks
1034 * idle state since the last call to dyntick_save_progress_counter()
1035 * for this same CPU, or by virtue of having been offline.
1036 */
1037 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1038 bool *isidle, unsigned long *maxj)
1039 {
1040 unsigned int curr;
1041 int *rcrmp;
1042 unsigned int snap;
1043
1044 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1045 snap = (unsigned int)rdp->dynticks_snap;
1046
1047 /*
1048 * If the CPU passed through or entered a dynticks idle phase with
1049 * no active irq/NMI handlers, then we can safely pretend that the CPU
1050 * already acknowledged the request to pass through a quiescent
1051 * state. Either way, that CPU cannot possibly be in an RCU
1052 * read-side critical section that started before the beginning
1053 * of the current RCU grace period.
1054 */
1055 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1056 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1057 rdp->dynticks_fqs++;
1058 return 1;
1059 }
1060
1061 /*
1062 * Check for the CPU being offline, but only if the grace period
1063 * is old enough. We don't need to worry about the CPU changing
1064 * state: If we see it offline even once, it has been through a
1065 * quiescent state.
1066 *
1067 * The reason for insisting that the grace period be at least
1068 * one jiffy old is that CPUs that are not quite online and that
1069 * have just gone offline can still execute RCU read-side critical
1070 * sections.
1071 */
1072 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1073 return 0; /* Grace period is not old enough. */
1074 barrier();
1075 if (cpu_is_offline(rdp->cpu)) {
1076 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1077 rdp->offline_fqs++;
1078 return 1;
1079 }
1080
1081 /*
1082 * A CPU running for an extended time within the kernel can
1083 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1084 * even context-switching back and forth between a pair of
1085 * in-kernel CPU-bound tasks cannot advance grace periods.
1086 * So if the grace period is old enough, make the CPU pay attention.
1087 * Note that the unsynchronized assignments to the per-CPU
1088 * rcu_sched_qs_mask variable are safe. Yes, setting of
1089 * bits can be lost, but they will be set again on the next
1090 * force-quiescent-state pass. So lost bit sets do not result
1091 * in incorrect behavior, merely in a grace period lasting
1092 * a few jiffies longer than it might otherwise. Because
1093 * there are at most four threads involved, and because the
1094 * updates are only once every few jiffies, the probability of
1095 * lossage (and thus of slight grace-period extension) is
1096 * quite low.
1097 *
1098 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1099 * is set too high, we override with half of the RCU CPU stall
1100 * warning delay.
1101 */
1102 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1103 if (ULONG_CMP_GE(jiffies,
1104 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1105 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1106 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1107 WRITE_ONCE(rdp->cond_resched_completed,
1108 READ_ONCE(rdp->mynode->completed));
1109 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1110 WRITE_ONCE(*rcrmp,
1111 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1112 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1113 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1114 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1115 /* Time to beat on that CPU again! */
1116 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1117 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1118 }
1119 }
1120
1121 return 0;
1122 }
1123
1124 static void record_gp_stall_check_time(struct rcu_state *rsp)
1125 {
1126 unsigned long j = jiffies;
1127 unsigned long j1;
1128
1129 rsp->gp_start = j;
1130 smp_wmb(); /* Record start time before stall time. */
1131 j1 = rcu_jiffies_till_stall_check();
1132 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1133 rsp->jiffies_resched = j + j1 / 2;
1134 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1135 }
1136
1137 /*
1138 * Complain about starvation of grace-period kthread.
1139 */
1140 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1141 {
1142 unsigned long gpa;
1143 unsigned long j;
1144
1145 j = jiffies;
1146 gpa = READ_ONCE(rsp->gp_activity);
1147 if (j - gpa > 2 * HZ)
1148 pr_err("%s kthread starved for %ld jiffies!\n",
1149 rsp->name, j - gpa);
1150 }
1151
1152 /*
1153 * Dump stacks of all tasks running on stalled CPUs.
1154 */
1155 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1156 {
1157 int cpu;
1158 unsigned long flags;
1159 struct rcu_node *rnp;
1160
1161 rcu_for_each_leaf_node(rsp, rnp) {
1162 raw_spin_lock_irqsave(&rnp->lock, flags);
1163 if (rnp->qsmask != 0) {
1164 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1165 if (rnp->qsmask & (1UL << cpu))
1166 dump_cpu_task(rnp->grplo + cpu);
1167 }
1168 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1169 }
1170 }
1171
1172 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1173 {
1174 int cpu;
1175 long delta;
1176 unsigned long flags;
1177 unsigned long gpa;
1178 unsigned long j;
1179 int ndetected = 0;
1180 struct rcu_node *rnp = rcu_get_root(rsp);
1181 long totqlen = 0;
1182
1183 /* Only let one CPU complain about others per time interval. */
1184
1185 raw_spin_lock_irqsave(&rnp->lock, flags);
1186 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1187 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1188 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1189 return;
1190 }
1191 WRITE_ONCE(rsp->jiffies_stall,
1192 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1194
1195 /*
1196 * OK, time to rat on our buddy...
1197 * See Documentation/RCU/stallwarn.txt for info on how to debug
1198 * RCU CPU stall warnings.
1199 */
1200 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1201 rsp->name);
1202 print_cpu_stall_info_begin();
1203 rcu_for_each_leaf_node(rsp, rnp) {
1204 raw_spin_lock_irqsave(&rnp->lock, flags);
1205 ndetected += rcu_print_task_stall(rnp);
1206 if (rnp->qsmask != 0) {
1207 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1208 if (rnp->qsmask & (1UL << cpu)) {
1209 print_cpu_stall_info(rsp,
1210 rnp->grplo + cpu);
1211 ndetected++;
1212 }
1213 }
1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215 }
1216
1217 print_cpu_stall_info_end();
1218 for_each_possible_cpu(cpu)
1219 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1220 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1221 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1222 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1223 if (ndetected) {
1224 rcu_dump_cpu_stacks(rsp);
1225 } else {
1226 if (READ_ONCE(rsp->gpnum) != gpnum ||
1227 READ_ONCE(rsp->completed) == gpnum) {
1228 pr_err("INFO: Stall ended before state dump start\n");
1229 } else {
1230 j = jiffies;
1231 gpa = READ_ONCE(rsp->gp_activity);
1232 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1233 rsp->name, j - gpa, j, gpa,
1234 jiffies_till_next_fqs,
1235 rcu_get_root(rsp)->qsmask);
1236 /* In this case, the current CPU might be at fault. */
1237 sched_show_task(current);
1238 }
1239 }
1240
1241 /* Complain about tasks blocking the grace period. */
1242 rcu_print_detail_task_stall(rsp);
1243
1244 rcu_check_gp_kthread_starvation(rsp);
1245
1246 force_quiescent_state(rsp); /* Kick them all. */
1247 }
1248
1249 static void print_cpu_stall(struct rcu_state *rsp)
1250 {
1251 int cpu;
1252 unsigned long flags;
1253 struct rcu_node *rnp = rcu_get_root(rsp);
1254 long totqlen = 0;
1255
1256 /*
1257 * OK, time to rat on ourselves...
1258 * See Documentation/RCU/stallwarn.txt for info on how to debug
1259 * RCU CPU stall warnings.
1260 */
1261 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1262 print_cpu_stall_info_begin();
1263 print_cpu_stall_info(rsp, smp_processor_id());
1264 print_cpu_stall_info_end();
1265 for_each_possible_cpu(cpu)
1266 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1267 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1268 jiffies - rsp->gp_start,
1269 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1270
1271 rcu_check_gp_kthread_starvation(rsp);
1272
1273 rcu_dump_cpu_stacks(rsp);
1274
1275 raw_spin_lock_irqsave(&rnp->lock, flags);
1276 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1277 WRITE_ONCE(rsp->jiffies_stall,
1278 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1280
1281 /*
1282 * Attempt to revive the RCU machinery by forcing a context switch.
1283 *
1284 * A context switch would normally allow the RCU state machine to make
1285 * progress and it could be we're stuck in kernel space without context
1286 * switches for an entirely unreasonable amount of time.
1287 */
1288 resched_cpu(smp_processor_id());
1289 }
1290
1291 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1292 {
1293 unsigned long completed;
1294 unsigned long gpnum;
1295 unsigned long gps;
1296 unsigned long j;
1297 unsigned long js;
1298 struct rcu_node *rnp;
1299
1300 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1301 return;
1302 j = jiffies;
1303
1304 /*
1305 * Lots of memory barriers to reject false positives.
1306 *
1307 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1308 * then rsp->gp_start, and finally rsp->completed. These values
1309 * are updated in the opposite order with memory barriers (or
1310 * equivalent) during grace-period initialization and cleanup.
1311 * Now, a false positive can occur if we get an new value of
1312 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1313 * the memory barriers, the only way that this can happen is if one
1314 * grace period ends and another starts between these two fetches.
1315 * Detect this by comparing rsp->completed with the previous fetch
1316 * from rsp->gpnum.
1317 *
1318 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1319 * and rsp->gp_start suffice to forestall false positives.
1320 */
1321 gpnum = READ_ONCE(rsp->gpnum);
1322 smp_rmb(); /* Pick up ->gpnum first... */
1323 js = READ_ONCE(rsp->jiffies_stall);
1324 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1325 gps = READ_ONCE(rsp->gp_start);
1326 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1327 completed = READ_ONCE(rsp->completed);
1328 if (ULONG_CMP_GE(completed, gpnum) ||
1329 ULONG_CMP_LT(j, js) ||
1330 ULONG_CMP_GE(gps, js))
1331 return; /* No stall or GP completed since entering function. */
1332 rnp = rdp->mynode;
1333 if (rcu_gp_in_progress(rsp) &&
1334 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1335
1336 /* We haven't checked in, so go dump stack. */
1337 print_cpu_stall(rsp);
1338
1339 } else if (rcu_gp_in_progress(rsp) &&
1340 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1341
1342 /* They had a few time units to dump stack, so complain. */
1343 print_other_cpu_stall(rsp, gpnum);
1344 }
1345 }
1346
1347 /**
1348 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1349 *
1350 * Set the stall-warning timeout way off into the future, thus preventing
1351 * any RCU CPU stall-warning messages from appearing in the current set of
1352 * RCU grace periods.
1353 *
1354 * The caller must disable hard irqs.
1355 */
1356 void rcu_cpu_stall_reset(void)
1357 {
1358 struct rcu_state *rsp;
1359
1360 for_each_rcu_flavor(rsp)
1361 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1362 }
1363
1364 /*
1365 * Initialize the specified rcu_data structure's default callback list
1366 * to empty. The default callback list is the one that is not used by
1367 * no-callbacks CPUs.
1368 */
1369 static void init_default_callback_list(struct rcu_data *rdp)
1370 {
1371 int i;
1372
1373 rdp->nxtlist = NULL;
1374 for (i = 0; i < RCU_NEXT_SIZE; i++)
1375 rdp->nxttail[i] = &rdp->nxtlist;
1376 }
1377
1378 /*
1379 * Initialize the specified rcu_data structure's callback list to empty.
1380 */
1381 static void init_callback_list(struct rcu_data *rdp)
1382 {
1383 if (init_nocb_callback_list(rdp))
1384 return;
1385 init_default_callback_list(rdp);
1386 }
1387
1388 /*
1389 * Determine the value that ->completed will have at the end of the
1390 * next subsequent grace period. This is used to tag callbacks so that
1391 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1392 * been dyntick-idle for an extended period with callbacks under the
1393 * influence of RCU_FAST_NO_HZ.
1394 *
1395 * The caller must hold rnp->lock with interrupts disabled.
1396 */
1397 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1398 struct rcu_node *rnp)
1399 {
1400 /*
1401 * If RCU is idle, we just wait for the next grace period.
1402 * But we can only be sure that RCU is idle if we are looking
1403 * at the root rcu_node structure -- otherwise, a new grace
1404 * period might have started, but just not yet gotten around
1405 * to initializing the current non-root rcu_node structure.
1406 */
1407 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1408 return rnp->completed + 1;
1409
1410 /*
1411 * Otherwise, wait for a possible partial grace period and
1412 * then the subsequent full grace period.
1413 */
1414 return rnp->completed + 2;
1415 }
1416
1417 /*
1418 * Trace-event helper function for rcu_start_future_gp() and
1419 * rcu_nocb_wait_gp().
1420 */
1421 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1422 unsigned long c, const char *s)
1423 {
1424 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1425 rnp->completed, c, rnp->level,
1426 rnp->grplo, rnp->grphi, s);
1427 }
1428
1429 /*
1430 * Start some future grace period, as needed to handle newly arrived
1431 * callbacks. The required future grace periods are recorded in each
1432 * rcu_node structure's ->need_future_gp field. Returns true if there
1433 * is reason to awaken the grace-period kthread.
1434 *
1435 * The caller must hold the specified rcu_node structure's ->lock.
1436 */
1437 static bool __maybe_unused
1438 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1439 unsigned long *c_out)
1440 {
1441 unsigned long c;
1442 int i;
1443 bool ret = false;
1444 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1445
1446 /*
1447 * Pick up grace-period number for new callbacks. If this
1448 * grace period is already marked as needed, return to the caller.
1449 */
1450 c = rcu_cbs_completed(rdp->rsp, rnp);
1451 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1452 if (rnp->need_future_gp[c & 0x1]) {
1453 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1454 goto out;
1455 }
1456
1457 /*
1458 * If either this rcu_node structure or the root rcu_node structure
1459 * believe that a grace period is in progress, then we must wait
1460 * for the one following, which is in "c". Because our request
1461 * will be noticed at the end of the current grace period, we don't
1462 * need to explicitly start one. We only do the lockless check
1463 * of rnp_root's fields if the current rcu_node structure thinks
1464 * there is no grace period in flight, and because we hold rnp->lock,
1465 * the only possible change is when rnp_root's two fields are
1466 * equal, in which case rnp_root->gpnum might be concurrently
1467 * incremented. But that is OK, as it will just result in our
1468 * doing some extra useless work.
1469 */
1470 if (rnp->gpnum != rnp->completed ||
1471 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1472 rnp->need_future_gp[c & 0x1]++;
1473 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1474 goto out;
1475 }
1476
1477 /*
1478 * There might be no grace period in progress. If we don't already
1479 * hold it, acquire the root rcu_node structure's lock in order to
1480 * start one (if needed).
1481 */
1482 if (rnp != rnp_root) {
1483 raw_spin_lock(&rnp_root->lock);
1484 smp_mb__after_unlock_lock();
1485 }
1486
1487 /*
1488 * Get a new grace-period number. If there really is no grace
1489 * period in progress, it will be smaller than the one we obtained
1490 * earlier. Adjust callbacks as needed. Note that even no-CBs
1491 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1492 */
1493 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1494 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1495 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1496 rdp->nxtcompleted[i] = c;
1497
1498 /*
1499 * If the needed for the required grace period is already
1500 * recorded, trace and leave.
1501 */
1502 if (rnp_root->need_future_gp[c & 0x1]) {
1503 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1504 goto unlock_out;
1505 }
1506
1507 /* Record the need for the future grace period. */
1508 rnp_root->need_future_gp[c & 0x1]++;
1509
1510 /* If a grace period is not already in progress, start one. */
1511 if (rnp_root->gpnum != rnp_root->completed) {
1512 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1513 } else {
1514 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1515 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1516 }
1517 unlock_out:
1518 if (rnp != rnp_root)
1519 raw_spin_unlock(&rnp_root->lock);
1520 out:
1521 if (c_out != NULL)
1522 *c_out = c;
1523 return ret;
1524 }
1525
1526 /*
1527 * Clean up any old requests for the just-ended grace period. Also return
1528 * whether any additional grace periods have been requested. Also invoke
1529 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1530 * waiting for this grace period to complete.
1531 */
1532 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1533 {
1534 int c = rnp->completed;
1535 int needmore;
1536 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1537
1538 rcu_nocb_gp_cleanup(rsp, rnp);
1539 rnp->need_future_gp[c & 0x1] = 0;
1540 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1541 trace_rcu_future_gp(rnp, rdp, c,
1542 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1543 return needmore;
1544 }
1545
1546 /*
1547 * Awaken the grace-period kthread for the specified flavor of RCU.
1548 * Don't do a self-awaken, and don't bother awakening when there is
1549 * nothing for the grace-period kthread to do (as in several CPUs
1550 * raced to awaken, and we lost), and finally don't try to awaken
1551 * a kthread that has not yet been created.
1552 */
1553 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1554 {
1555 if (current == rsp->gp_kthread ||
1556 !READ_ONCE(rsp->gp_flags) ||
1557 !rsp->gp_kthread)
1558 return;
1559 wake_up(&rsp->gp_wq);
1560 }
1561
1562 /*
1563 * If there is room, assign a ->completed number to any callbacks on
1564 * this CPU that have not already been assigned. Also accelerate any
1565 * callbacks that were previously assigned a ->completed number that has
1566 * since proven to be too conservative, which can happen if callbacks get
1567 * assigned a ->completed number while RCU is idle, but with reference to
1568 * a non-root rcu_node structure. This function is idempotent, so it does
1569 * not hurt to call it repeatedly. Returns an flag saying that we should
1570 * awaken the RCU grace-period kthread.
1571 *
1572 * The caller must hold rnp->lock with interrupts disabled.
1573 */
1574 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1575 struct rcu_data *rdp)
1576 {
1577 unsigned long c;
1578 int i;
1579 bool ret;
1580
1581 /* If the CPU has no callbacks, nothing to do. */
1582 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1583 return false;
1584
1585 /*
1586 * Starting from the sublist containing the callbacks most
1587 * recently assigned a ->completed number and working down, find the
1588 * first sublist that is not assignable to an upcoming grace period.
1589 * Such a sublist has something in it (first two tests) and has
1590 * a ->completed number assigned that will complete sooner than
1591 * the ->completed number for newly arrived callbacks (last test).
1592 *
1593 * The key point is that any later sublist can be assigned the
1594 * same ->completed number as the newly arrived callbacks, which
1595 * means that the callbacks in any of these later sublist can be
1596 * grouped into a single sublist, whether or not they have already
1597 * been assigned a ->completed number.
1598 */
1599 c = rcu_cbs_completed(rsp, rnp);
1600 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1601 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1602 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1603 break;
1604
1605 /*
1606 * If there are no sublist for unassigned callbacks, leave.
1607 * At the same time, advance "i" one sublist, so that "i" will
1608 * index into the sublist where all the remaining callbacks should
1609 * be grouped into.
1610 */
1611 if (++i >= RCU_NEXT_TAIL)
1612 return false;
1613
1614 /*
1615 * Assign all subsequent callbacks' ->completed number to the next
1616 * full grace period and group them all in the sublist initially
1617 * indexed by "i".
1618 */
1619 for (; i <= RCU_NEXT_TAIL; i++) {
1620 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1621 rdp->nxtcompleted[i] = c;
1622 }
1623 /* Record any needed additional grace periods. */
1624 ret = rcu_start_future_gp(rnp, rdp, NULL);
1625
1626 /* Trace depending on how much we were able to accelerate. */
1627 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1628 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1629 else
1630 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1631 return ret;
1632 }
1633
1634 /*
1635 * Move any callbacks whose grace period has completed to the
1636 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1637 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1638 * sublist. This function is idempotent, so it does not hurt to
1639 * invoke it repeatedly. As long as it is not invoked -too- often...
1640 * Returns true if the RCU grace-period kthread needs to be awakened.
1641 *
1642 * The caller must hold rnp->lock with interrupts disabled.
1643 */
1644 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1645 struct rcu_data *rdp)
1646 {
1647 int i, j;
1648
1649 /* If the CPU has no callbacks, nothing to do. */
1650 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1651 return false;
1652
1653 /*
1654 * Find all callbacks whose ->completed numbers indicate that they
1655 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1656 */
1657 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1658 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1659 break;
1660 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1661 }
1662 /* Clean up any sublist tail pointers that were misordered above. */
1663 for (j = RCU_WAIT_TAIL; j < i; j++)
1664 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1665
1666 /* Copy down callbacks to fill in empty sublists. */
1667 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1668 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1669 break;
1670 rdp->nxttail[j] = rdp->nxttail[i];
1671 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1672 }
1673
1674 /* Classify any remaining callbacks. */
1675 return rcu_accelerate_cbs(rsp, rnp, rdp);
1676 }
1677
1678 /*
1679 * Update CPU-local rcu_data state to record the beginnings and ends of
1680 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1681 * structure corresponding to the current CPU, and must have irqs disabled.
1682 * Returns true if the grace-period kthread needs to be awakened.
1683 */
1684 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1685 struct rcu_data *rdp)
1686 {
1687 bool ret;
1688
1689 /* Handle the ends of any preceding grace periods first. */
1690 if (rdp->completed == rnp->completed &&
1691 !unlikely(READ_ONCE(rdp->gpwrap))) {
1692
1693 /* No grace period end, so just accelerate recent callbacks. */
1694 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1695
1696 } else {
1697
1698 /* Advance callbacks. */
1699 ret = rcu_advance_cbs(rsp, rnp, rdp);
1700
1701 /* Remember that we saw this grace-period completion. */
1702 rdp->completed = rnp->completed;
1703 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1704 }
1705
1706 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1707 /*
1708 * If the current grace period is waiting for this CPU,
1709 * set up to detect a quiescent state, otherwise don't
1710 * go looking for one.
1711 */
1712 rdp->gpnum = rnp->gpnum;
1713 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1714 rdp->passed_quiesce = 0;
1715 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1716 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1717 zero_cpu_stall_ticks(rdp);
1718 WRITE_ONCE(rdp->gpwrap, false);
1719 }
1720 return ret;
1721 }
1722
1723 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1724 {
1725 unsigned long flags;
1726 bool needwake;
1727 struct rcu_node *rnp;
1728
1729 local_irq_save(flags);
1730 rnp = rdp->mynode;
1731 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1732 rdp->completed == READ_ONCE(rnp->completed) &&
1733 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1734 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1735 local_irq_restore(flags);
1736 return;
1737 }
1738 smp_mb__after_unlock_lock();
1739 needwake = __note_gp_changes(rsp, rnp, rdp);
1740 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1741 if (needwake)
1742 rcu_gp_kthread_wake(rsp);
1743 }
1744
1745 /*
1746 * Initialize a new grace period. Return 0 if no grace period required.
1747 */
1748 static int rcu_gp_init(struct rcu_state *rsp)
1749 {
1750 unsigned long oldmask;
1751 struct rcu_data *rdp;
1752 struct rcu_node *rnp = rcu_get_root(rsp);
1753
1754 WRITE_ONCE(rsp->gp_activity, jiffies);
1755 raw_spin_lock_irq(&rnp->lock);
1756 smp_mb__after_unlock_lock();
1757 if (!READ_ONCE(rsp->gp_flags)) {
1758 /* Spurious wakeup, tell caller to go back to sleep. */
1759 raw_spin_unlock_irq(&rnp->lock);
1760 return 0;
1761 }
1762 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1763
1764 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1765 /*
1766 * Grace period already in progress, don't start another.
1767 * Not supposed to be able to happen.
1768 */
1769 raw_spin_unlock_irq(&rnp->lock);
1770 return 0;
1771 }
1772
1773 /* Advance to a new grace period and initialize state. */
1774 record_gp_stall_check_time(rsp);
1775 /* Record GP times before starting GP, hence smp_store_release(). */
1776 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1777 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1778 raw_spin_unlock_irq(&rnp->lock);
1779
1780 /*
1781 * Apply per-leaf buffered online and offline operations to the
1782 * rcu_node tree. Note that this new grace period need not wait
1783 * for subsequent online CPUs, and that quiescent-state forcing
1784 * will handle subsequent offline CPUs.
1785 */
1786 rcu_for_each_leaf_node(rsp, rnp) {
1787 raw_spin_lock_irq(&rnp->lock);
1788 smp_mb__after_unlock_lock();
1789 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1790 !rnp->wait_blkd_tasks) {
1791 /* Nothing to do on this leaf rcu_node structure. */
1792 raw_spin_unlock_irq(&rnp->lock);
1793 continue;
1794 }
1795
1796 /* Record old state, apply changes to ->qsmaskinit field. */
1797 oldmask = rnp->qsmaskinit;
1798 rnp->qsmaskinit = rnp->qsmaskinitnext;
1799
1800 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1801 if (!oldmask != !rnp->qsmaskinit) {
1802 if (!oldmask) /* First online CPU for this rcu_node. */
1803 rcu_init_new_rnp(rnp);
1804 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1805 rnp->wait_blkd_tasks = true;
1806 else /* Last offline CPU and can propagate. */
1807 rcu_cleanup_dead_rnp(rnp);
1808 }
1809
1810 /*
1811 * If all waited-on tasks from prior grace period are
1812 * done, and if all this rcu_node structure's CPUs are
1813 * still offline, propagate up the rcu_node tree and
1814 * clear ->wait_blkd_tasks. Otherwise, if one of this
1815 * rcu_node structure's CPUs has since come back online,
1816 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1817 * checks for this, so just call it unconditionally).
1818 */
1819 if (rnp->wait_blkd_tasks &&
1820 (!rcu_preempt_has_tasks(rnp) ||
1821 rnp->qsmaskinit)) {
1822 rnp->wait_blkd_tasks = false;
1823 rcu_cleanup_dead_rnp(rnp);
1824 }
1825
1826 raw_spin_unlock_irq(&rnp->lock);
1827 }
1828
1829 /*
1830 * Set the quiescent-state-needed bits in all the rcu_node
1831 * structures for all currently online CPUs in breadth-first order,
1832 * starting from the root rcu_node structure, relying on the layout
1833 * of the tree within the rsp->node[] array. Note that other CPUs
1834 * will access only the leaves of the hierarchy, thus seeing that no
1835 * grace period is in progress, at least until the corresponding
1836 * leaf node has been initialized. In addition, we have excluded
1837 * CPU-hotplug operations.
1838 *
1839 * The grace period cannot complete until the initialization
1840 * process finishes, because this kthread handles both.
1841 */
1842 rcu_for_each_node_breadth_first(rsp, rnp) {
1843 raw_spin_lock_irq(&rnp->lock);
1844 smp_mb__after_unlock_lock();
1845 rdp = this_cpu_ptr(rsp->rda);
1846 rcu_preempt_check_blocked_tasks(rnp);
1847 rnp->qsmask = rnp->qsmaskinit;
1848 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1849 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1850 WRITE_ONCE(rnp->completed, rsp->completed);
1851 if (rnp == rdp->mynode)
1852 (void)__note_gp_changes(rsp, rnp, rdp);
1853 rcu_preempt_boost_start_gp(rnp);
1854 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1855 rnp->level, rnp->grplo,
1856 rnp->grphi, rnp->qsmask);
1857 raw_spin_unlock_irq(&rnp->lock);
1858 cond_resched_rcu_qs();
1859 WRITE_ONCE(rsp->gp_activity, jiffies);
1860 if (gp_init_delay > 0 &&
1861 !(rsp->gpnum %
1862 (rcu_num_nodes * PER_RCU_NODE_PERIOD * gp_init_delay)))
1863 schedule_timeout_uninterruptible(gp_init_delay);
1864 }
1865
1866 return 1;
1867 }
1868
1869 /*
1870 * Do one round of quiescent-state forcing.
1871 */
1872 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1873 {
1874 int fqs_state = fqs_state_in;
1875 bool isidle = false;
1876 unsigned long maxj;
1877 struct rcu_node *rnp = rcu_get_root(rsp);
1878
1879 WRITE_ONCE(rsp->gp_activity, jiffies);
1880 rsp->n_force_qs++;
1881 if (fqs_state == RCU_SAVE_DYNTICK) {
1882 /* Collect dyntick-idle snapshots. */
1883 if (is_sysidle_rcu_state(rsp)) {
1884 isidle = true;
1885 maxj = jiffies - ULONG_MAX / 4;
1886 }
1887 force_qs_rnp(rsp, dyntick_save_progress_counter,
1888 &isidle, &maxj);
1889 rcu_sysidle_report_gp(rsp, isidle, maxj);
1890 fqs_state = RCU_FORCE_QS;
1891 } else {
1892 /* Handle dyntick-idle and offline CPUs. */
1893 isidle = true;
1894 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1895 }
1896 /* Clear flag to prevent immediate re-entry. */
1897 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1898 raw_spin_lock_irq(&rnp->lock);
1899 smp_mb__after_unlock_lock();
1900 WRITE_ONCE(rsp->gp_flags,
1901 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1902 raw_spin_unlock_irq(&rnp->lock);
1903 }
1904 return fqs_state;
1905 }
1906
1907 /*
1908 * Clean up after the old grace period.
1909 */
1910 static void rcu_gp_cleanup(struct rcu_state *rsp)
1911 {
1912 unsigned long gp_duration;
1913 bool needgp = false;
1914 int nocb = 0;
1915 struct rcu_data *rdp;
1916 struct rcu_node *rnp = rcu_get_root(rsp);
1917
1918 WRITE_ONCE(rsp->gp_activity, jiffies);
1919 raw_spin_lock_irq(&rnp->lock);
1920 smp_mb__after_unlock_lock();
1921 gp_duration = jiffies - rsp->gp_start;
1922 if (gp_duration > rsp->gp_max)
1923 rsp->gp_max = gp_duration;
1924
1925 /*
1926 * We know the grace period is complete, but to everyone else
1927 * it appears to still be ongoing. But it is also the case
1928 * that to everyone else it looks like there is nothing that
1929 * they can do to advance the grace period. It is therefore
1930 * safe for us to drop the lock in order to mark the grace
1931 * period as completed in all of the rcu_node structures.
1932 */
1933 raw_spin_unlock_irq(&rnp->lock);
1934
1935 /*
1936 * Propagate new ->completed value to rcu_node structures so
1937 * that other CPUs don't have to wait until the start of the next
1938 * grace period to process their callbacks. This also avoids
1939 * some nasty RCU grace-period initialization races by forcing
1940 * the end of the current grace period to be completely recorded in
1941 * all of the rcu_node structures before the beginning of the next
1942 * grace period is recorded in any of the rcu_node structures.
1943 */
1944 rcu_for_each_node_breadth_first(rsp, rnp) {
1945 raw_spin_lock_irq(&rnp->lock);
1946 smp_mb__after_unlock_lock();
1947 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1948 WARN_ON_ONCE(rnp->qsmask);
1949 WRITE_ONCE(rnp->completed, rsp->gpnum);
1950 rdp = this_cpu_ptr(rsp->rda);
1951 if (rnp == rdp->mynode)
1952 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1953 /* smp_mb() provided by prior unlock-lock pair. */
1954 nocb += rcu_future_gp_cleanup(rsp, rnp);
1955 raw_spin_unlock_irq(&rnp->lock);
1956 cond_resched_rcu_qs();
1957 WRITE_ONCE(rsp->gp_activity, jiffies);
1958 }
1959 rnp = rcu_get_root(rsp);
1960 raw_spin_lock_irq(&rnp->lock);
1961 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1962 rcu_nocb_gp_set(rnp, nocb);
1963
1964 /* Declare grace period done. */
1965 WRITE_ONCE(rsp->completed, rsp->gpnum);
1966 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1967 rsp->fqs_state = RCU_GP_IDLE;
1968 rdp = this_cpu_ptr(rsp->rda);
1969 /* Advance CBs to reduce false positives below. */
1970 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1971 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1972 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
1973 trace_rcu_grace_period(rsp->name,
1974 READ_ONCE(rsp->gpnum),
1975 TPS("newreq"));
1976 }
1977 raw_spin_unlock_irq(&rnp->lock);
1978 }
1979
1980 /*
1981 * Body of kthread that handles grace periods.
1982 */
1983 static int __noreturn rcu_gp_kthread(void *arg)
1984 {
1985 int fqs_state;
1986 int gf;
1987 unsigned long j;
1988 int ret;
1989 struct rcu_state *rsp = arg;
1990 struct rcu_node *rnp = rcu_get_root(rsp);
1991
1992 rcu_bind_gp_kthread();
1993 for (;;) {
1994
1995 /* Handle grace-period start. */
1996 for (;;) {
1997 trace_rcu_grace_period(rsp->name,
1998 READ_ONCE(rsp->gpnum),
1999 TPS("reqwait"));
2000 rsp->gp_state = RCU_GP_WAIT_GPS;
2001 wait_event_interruptible(rsp->gp_wq,
2002 READ_ONCE(rsp->gp_flags) &
2003 RCU_GP_FLAG_INIT);
2004 /* Locking provides needed memory barrier. */
2005 if (rcu_gp_init(rsp))
2006 break;
2007 cond_resched_rcu_qs();
2008 WRITE_ONCE(rsp->gp_activity, jiffies);
2009 WARN_ON(signal_pending(current));
2010 trace_rcu_grace_period(rsp->name,
2011 READ_ONCE(rsp->gpnum),
2012 TPS("reqwaitsig"));
2013 }
2014
2015 /* Handle quiescent-state forcing. */
2016 fqs_state = RCU_SAVE_DYNTICK;
2017 j = jiffies_till_first_fqs;
2018 if (j > HZ) {
2019 j = HZ;
2020 jiffies_till_first_fqs = HZ;
2021 }
2022 ret = 0;
2023 for (;;) {
2024 if (!ret)
2025 rsp->jiffies_force_qs = jiffies + j;
2026 trace_rcu_grace_period(rsp->name,
2027 READ_ONCE(rsp->gpnum),
2028 TPS("fqswait"));
2029 rsp->gp_state = RCU_GP_WAIT_FQS;
2030 ret = wait_event_interruptible_timeout(rsp->gp_wq,
2031 ((gf = READ_ONCE(rsp->gp_flags)) &
2032 RCU_GP_FLAG_FQS) ||
2033 (!READ_ONCE(rnp->qsmask) &&
2034 !rcu_preempt_blocked_readers_cgp(rnp)),
2035 j);
2036 /* Locking provides needed memory barriers. */
2037 /* If grace period done, leave loop. */
2038 if (!READ_ONCE(rnp->qsmask) &&
2039 !rcu_preempt_blocked_readers_cgp(rnp))
2040 break;
2041 /* If time for quiescent-state forcing, do it. */
2042 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2043 (gf & RCU_GP_FLAG_FQS)) {
2044 trace_rcu_grace_period(rsp->name,
2045 READ_ONCE(rsp->gpnum),
2046 TPS("fqsstart"));
2047 fqs_state = rcu_gp_fqs(rsp, fqs_state);
2048 trace_rcu_grace_period(rsp->name,
2049 READ_ONCE(rsp->gpnum),
2050 TPS("fqsend"));
2051 cond_resched_rcu_qs();
2052 WRITE_ONCE(rsp->gp_activity, jiffies);
2053 } else {
2054 /* Deal with stray signal. */
2055 cond_resched_rcu_qs();
2056 WRITE_ONCE(rsp->gp_activity, jiffies);
2057 WARN_ON(signal_pending(current));
2058 trace_rcu_grace_period(rsp->name,
2059 READ_ONCE(rsp->gpnum),
2060 TPS("fqswaitsig"));
2061 }
2062 j = jiffies_till_next_fqs;
2063 if (j > HZ) {
2064 j = HZ;
2065 jiffies_till_next_fqs = HZ;
2066 } else if (j < 1) {
2067 j = 1;
2068 jiffies_till_next_fqs = 1;
2069 }
2070 }
2071
2072 /* Handle grace-period end. */
2073 rcu_gp_cleanup(rsp);
2074 }
2075 }
2076
2077 /*
2078 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2079 * in preparation for detecting the next grace period. The caller must hold
2080 * the root node's ->lock and hard irqs must be disabled.
2081 *
2082 * Note that it is legal for a dying CPU (which is marked as offline) to
2083 * invoke this function. This can happen when the dying CPU reports its
2084 * quiescent state.
2085 *
2086 * Returns true if the grace-period kthread must be awakened.
2087 */
2088 static bool
2089 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2090 struct rcu_data *rdp)
2091 {
2092 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2093 /*
2094 * Either we have not yet spawned the grace-period
2095 * task, this CPU does not need another grace period,
2096 * or a grace period is already in progress.
2097 * Either way, don't start a new grace period.
2098 */
2099 return false;
2100 }
2101 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2102 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2103 TPS("newreq"));
2104
2105 /*
2106 * We can't do wakeups while holding the rnp->lock, as that
2107 * could cause possible deadlocks with the rq->lock. Defer
2108 * the wakeup to our caller.
2109 */
2110 return true;
2111 }
2112
2113 /*
2114 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2115 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2116 * is invoked indirectly from rcu_advance_cbs(), which would result in
2117 * endless recursion -- or would do so if it wasn't for the self-deadlock
2118 * that is encountered beforehand.
2119 *
2120 * Returns true if the grace-period kthread needs to be awakened.
2121 */
2122 static bool rcu_start_gp(struct rcu_state *rsp)
2123 {
2124 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2125 struct rcu_node *rnp = rcu_get_root(rsp);
2126 bool ret = false;
2127
2128 /*
2129 * If there is no grace period in progress right now, any
2130 * callbacks we have up to this point will be satisfied by the
2131 * next grace period. Also, advancing the callbacks reduces the
2132 * probability of false positives from cpu_needs_another_gp()
2133 * resulting in pointless grace periods. So, advance callbacks
2134 * then start the grace period!
2135 */
2136 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2137 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2138 return ret;
2139 }
2140
2141 /*
2142 * Report a full set of quiescent states to the specified rcu_state
2143 * data structure. This involves cleaning up after the prior grace
2144 * period and letting rcu_start_gp() start up the next grace period
2145 * if one is needed. Note that the caller must hold rnp->lock, which
2146 * is released before return.
2147 */
2148 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2149 __releases(rcu_get_root(rsp)->lock)
2150 {
2151 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2152 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2153 rcu_gp_kthread_wake(rsp);
2154 }
2155
2156 /*
2157 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2158 * Allows quiescent states for a group of CPUs to be reported at one go
2159 * to the specified rcu_node structure, though all the CPUs in the group
2160 * must be represented by the same rcu_node structure (which need not be a
2161 * leaf rcu_node structure, though it often will be). The gps parameter
2162 * is the grace-period snapshot, which means that the quiescent states
2163 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2164 * must be held upon entry, and it is released before return.
2165 */
2166 static void
2167 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2168 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2169 __releases(rnp->lock)
2170 {
2171 unsigned long oldmask = 0;
2172 struct rcu_node *rnp_c;
2173
2174 /* Walk up the rcu_node hierarchy. */
2175 for (;;) {
2176 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2177
2178 /*
2179 * Our bit has already been cleared, or the
2180 * relevant grace period is already over, so done.
2181 */
2182 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2183 return;
2184 }
2185 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2186 rnp->qsmask &= ~mask;
2187 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2188 mask, rnp->qsmask, rnp->level,
2189 rnp->grplo, rnp->grphi,
2190 !!rnp->gp_tasks);
2191 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2192
2193 /* Other bits still set at this level, so done. */
2194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2195 return;
2196 }
2197 mask = rnp->grpmask;
2198 if (rnp->parent == NULL) {
2199
2200 /* No more levels. Exit loop holding root lock. */
2201
2202 break;
2203 }
2204 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2205 rnp_c = rnp;
2206 rnp = rnp->parent;
2207 raw_spin_lock_irqsave(&rnp->lock, flags);
2208 smp_mb__after_unlock_lock();
2209 oldmask = rnp_c->qsmask;
2210 }
2211
2212 /*
2213 * Get here if we are the last CPU to pass through a quiescent
2214 * state for this grace period. Invoke rcu_report_qs_rsp()
2215 * to clean up and start the next grace period if one is needed.
2216 */
2217 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2218 }
2219
2220 /*
2221 * Record a quiescent state for all tasks that were previously queued
2222 * on the specified rcu_node structure and that were blocking the current
2223 * RCU grace period. The caller must hold the specified rnp->lock with
2224 * irqs disabled, and this lock is released upon return, but irqs remain
2225 * disabled.
2226 */
2227 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2228 struct rcu_node *rnp, unsigned long flags)
2229 __releases(rnp->lock)
2230 {
2231 unsigned long gps;
2232 unsigned long mask;
2233 struct rcu_node *rnp_p;
2234
2235 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2236 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2237 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2238 return; /* Still need more quiescent states! */
2239 }
2240
2241 rnp_p = rnp->parent;
2242 if (rnp_p == NULL) {
2243 /*
2244 * Only one rcu_node structure in the tree, so don't
2245 * try to report up to its nonexistent parent!
2246 */
2247 rcu_report_qs_rsp(rsp, flags);
2248 return;
2249 }
2250
2251 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2252 gps = rnp->gpnum;
2253 mask = rnp->grpmask;
2254 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2255 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2256 smp_mb__after_unlock_lock();
2257 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2258 }
2259
2260 /*
2261 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2262 * structure. This must be either called from the specified CPU, or
2263 * called when the specified CPU is known to be offline (and when it is
2264 * also known that no other CPU is concurrently trying to help the offline
2265 * CPU). The lastcomp argument is used to make sure we are still in the
2266 * grace period of interest. We don't want to end the current grace period
2267 * based on quiescent states detected in an earlier grace period!
2268 */
2269 static void
2270 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2271 {
2272 unsigned long flags;
2273 unsigned long mask;
2274 bool needwake;
2275 struct rcu_node *rnp;
2276
2277 rnp = rdp->mynode;
2278 raw_spin_lock_irqsave(&rnp->lock, flags);
2279 smp_mb__after_unlock_lock();
2280 if ((rdp->passed_quiesce == 0 &&
2281 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2282 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2283 rdp->gpwrap) {
2284
2285 /*
2286 * The grace period in which this quiescent state was
2287 * recorded has ended, so don't report it upwards.
2288 * We will instead need a new quiescent state that lies
2289 * within the current grace period.
2290 */
2291 rdp->passed_quiesce = 0; /* need qs for new gp. */
2292 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2293 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2294 return;
2295 }
2296 mask = rdp->grpmask;
2297 if ((rnp->qsmask & mask) == 0) {
2298 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2299 } else {
2300 rdp->qs_pending = 0;
2301
2302 /*
2303 * This GP can't end until cpu checks in, so all of our
2304 * callbacks can be processed during the next GP.
2305 */
2306 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2307
2308 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2309 /* ^^^ Released rnp->lock */
2310 if (needwake)
2311 rcu_gp_kthread_wake(rsp);
2312 }
2313 }
2314
2315 /*
2316 * Check to see if there is a new grace period of which this CPU
2317 * is not yet aware, and if so, set up local rcu_data state for it.
2318 * Otherwise, see if this CPU has just passed through its first
2319 * quiescent state for this grace period, and record that fact if so.
2320 */
2321 static void
2322 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2323 {
2324 /* Check for grace-period ends and beginnings. */
2325 note_gp_changes(rsp, rdp);
2326
2327 /*
2328 * Does this CPU still need to do its part for current grace period?
2329 * If no, return and let the other CPUs do their part as well.
2330 */
2331 if (!rdp->qs_pending)
2332 return;
2333
2334 /*
2335 * Was there a quiescent state since the beginning of the grace
2336 * period? If no, then exit and wait for the next call.
2337 */
2338 if (!rdp->passed_quiesce &&
2339 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2340 return;
2341
2342 /*
2343 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2344 * judge of that).
2345 */
2346 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2347 }
2348
2349 #ifdef CONFIG_HOTPLUG_CPU
2350
2351 /*
2352 * Send the specified CPU's RCU callbacks to the orphanage. The
2353 * specified CPU must be offline, and the caller must hold the
2354 * ->orphan_lock.
2355 */
2356 static void
2357 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2358 struct rcu_node *rnp, struct rcu_data *rdp)
2359 {
2360 /* No-CBs CPUs do not have orphanable callbacks. */
2361 if (rcu_is_nocb_cpu(rdp->cpu))
2362 return;
2363
2364 /*
2365 * Orphan the callbacks. First adjust the counts. This is safe
2366 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2367 * cannot be running now. Thus no memory barrier is required.
2368 */
2369 if (rdp->nxtlist != NULL) {
2370 rsp->qlen_lazy += rdp->qlen_lazy;
2371 rsp->qlen += rdp->qlen;
2372 rdp->n_cbs_orphaned += rdp->qlen;
2373 rdp->qlen_lazy = 0;
2374 WRITE_ONCE(rdp->qlen, 0);
2375 }
2376
2377 /*
2378 * Next, move those callbacks still needing a grace period to
2379 * the orphanage, where some other CPU will pick them up.
2380 * Some of the callbacks might have gone partway through a grace
2381 * period, but that is too bad. They get to start over because we
2382 * cannot assume that grace periods are synchronized across CPUs.
2383 * We don't bother updating the ->nxttail[] array yet, instead
2384 * we just reset the whole thing later on.
2385 */
2386 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2387 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2388 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2389 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2390 }
2391
2392 /*
2393 * Then move the ready-to-invoke callbacks to the orphanage,
2394 * where some other CPU will pick them up. These will not be
2395 * required to pass though another grace period: They are done.
2396 */
2397 if (rdp->nxtlist != NULL) {
2398 *rsp->orphan_donetail = rdp->nxtlist;
2399 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2400 }
2401
2402 /*
2403 * Finally, initialize the rcu_data structure's list to empty and
2404 * disallow further callbacks on this CPU.
2405 */
2406 init_callback_list(rdp);
2407 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2408 }
2409
2410 /*
2411 * Adopt the RCU callbacks from the specified rcu_state structure's
2412 * orphanage. The caller must hold the ->orphan_lock.
2413 */
2414 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2415 {
2416 int i;
2417 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2418
2419 /* No-CBs CPUs are handled specially. */
2420 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2421 return;
2422
2423 /* Do the accounting first. */
2424 rdp->qlen_lazy += rsp->qlen_lazy;
2425 rdp->qlen += rsp->qlen;
2426 rdp->n_cbs_adopted += rsp->qlen;
2427 if (rsp->qlen_lazy != rsp->qlen)
2428 rcu_idle_count_callbacks_posted();
2429 rsp->qlen_lazy = 0;
2430 rsp->qlen = 0;
2431
2432 /*
2433 * We do not need a memory barrier here because the only way we
2434 * can get here if there is an rcu_barrier() in flight is if
2435 * we are the task doing the rcu_barrier().
2436 */
2437
2438 /* First adopt the ready-to-invoke callbacks. */
2439 if (rsp->orphan_donelist != NULL) {
2440 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2441 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2442 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2443 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2444 rdp->nxttail[i] = rsp->orphan_donetail;
2445 rsp->orphan_donelist = NULL;
2446 rsp->orphan_donetail = &rsp->orphan_donelist;
2447 }
2448
2449 /* And then adopt the callbacks that still need a grace period. */
2450 if (rsp->orphan_nxtlist != NULL) {
2451 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2452 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2453 rsp->orphan_nxtlist = NULL;
2454 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2455 }
2456 }
2457
2458 /*
2459 * Trace the fact that this CPU is going offline.
2460 */
2461 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2462 {
2463 RCU_TRACE(unsigned long mask);
2464 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2465 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2466
2467 RCU_TRACE(mask = rdp->grpmask);
2468 trace_rcu_grace_period(rsp->name,
2469 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2470 TPS("cpuofl"));
2471 }
2472
2473 /*
2474 * All CPUs for the specified rcu_node structure have gone offline,
2475 * and all tasks that were preempted within an RCU read-side critical
2476 * section while running on one of those CPUs have since exited their RCU
2477 * read-side critical section. Some other CPU is reporting this fact with
2478 * the specified rcu_node structure's ->lock held and interrupts disabled.
2479 * This function therefore goes up the tree of rcu_node structures,
2480 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2481 * the leaf rcu_node structure's ->qsmaskinit field has already been
2482 * updated
2483 *
2484 * This function does check that the specified rcu_node structure has
2485 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2486 * prematurely. That said, invoking it after the fact will cost you
2487 * a needless lock acquisition. So once it has done its work, don't
2488 * invoke it again.
2489 */
2490 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2491 {
2492 long mask;
2493 struct rcu_node *rnp = rnp_leaf;
2494
2495 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2496 return;
2497 for (;;) {
2498 mask = rnp->grpmask;
2499 rnp = rnp->parent;
2500 if (!rnp)
2501 break;
2502 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2503 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2504 rnp->qsmaskinit &= ~mask;
2505 rnp->qsmask &= ~mask;
2506 if (rnp->qsmaskinit) {
2507 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2508 return;
2509 }
2510 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2511 }
2512 }
2513
2514 /*
2515 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2516 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2517 * bit masks.
2518 */
2519 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2520 {
2521 unsigned long flags;
2522 unsigned long mask;
2523 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2524 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2525
2526 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2527 mask = rdp->grpmask;
2528 raw_spin_lock_irqsave(&rnp->lock, flags);
2529 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2530 rnp->qsmaskinitnext &= ~mask;
2531 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2532 }
2533
2534 /*
2535 * The CPU has been completely removed, and some other CPU is reporting
2536 * this fact from process context. Do the remainder of the cleanup,
2537 * including orphaning the outgoing CPU's RCU callbacks, and also
2538 * adopting them. There can only be one CPU hotplug operation at a time,
2539 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2540 */
2541 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2542 {
2543 unsigned long flags;
2544 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2545 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2546
2547 /* Adjust any no-longer-needed kthreads. */
2548 rcu_boost_kthread_setaffinity(rnp, -1);
2549
2550 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2551 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2552 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2553 rcu_adopt_orphan_cbs(rsp, flags);
2554 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2555
2556 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2557 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2558 cpu, rdp->qlen, rdp->nxtlist);
2559 }
2560
2561 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2562
2563 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2564 {
2565 }
2566
2567 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2568 {
2569 }
2570
2571 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2572 {
2573 }
2574
2575 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2576 {
2577 }
2578
2579 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2580
2581 /*
2582 * Invoke any RCU callbacks that have made it to the end of their grace
2583 * period. Thottle as specified by rdp->blimit.
2584 */
2585 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2586 {
2587 unsigned long flags;
2588 struct rcu_head *next, *list, **tail;
2589 long bl, count, count_lazy;
2590 int i;
2591
2592 /* If no callbacks are ready, just return. */
2593 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2594 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2595 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2596 need_resched(), is_idle_task(current),
2597 rcu_is_callbacks_kthread());
2598 return;
2599 }
2600
2601 /*
2602 * Extract the list of ready callbacks, disabling to prevent
2603 * races with call_rcu() from interrupt handlers.
2604 */
2605 local_irq_save(flags);
2606 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2607 bl = rdp->blimit;
2608 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2609 list = rdp->nxtlist;
2610 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2611 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2612 tail = rdp->nxttail[RCU_DONE_TAIL];
2613 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2614 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2615 rdp->nxttail[i] = &rdp->nxtlist;
2616 local_irq_restore(flags);
2617
2618 /* Invoke callbacks. */
2619 count = count_lazy = 0;
2620 while (list) {
2621 next = list->next;
2622 prefetch(next);
2623 debug_rcu_head_unqueue(list);
2624 if (__rcu_reclaim(rsp->name, list))
2625 count_lazy++;
2626 list = next;
2627 /* Stop only if limit reached and CPU has something to do. */
2628 if (++count >= bl &&
2629 (need_resched() ||
2630 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2631 break;
2632 }
2633
2634 local_irq_save(flags);
2635 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2636 is_idle_task(current),
2637 rcu_is_callbacks_kthread());
2638
2639 /* Update count, and requeue any remaining callbacks. */
2640 if (list != NULL) {
2641 *tail = rdp->nxtlist;
2642 rdp->nxtlist = list;
2643 for (i = 0; i < RCU_NEXT_SIZE; i++)
2644 if (&rdp->nxtlist == rdp->nxttail[i])
2645 rdp->nxttail[i] = tail;
2646 else
2647 break;
2648 }
2649 smp_mb(); /* List handling before counting for rcu_barrier(). */
2650 rdp->qlen_lazy -= count_lazy;
2651 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2652 rdp->n_cbs_invoked += count;
2653
2654 /* Reinstate batch limit if we have worked down the excess. */
2655 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2656 rdp->blimit = blimit;
2657
2658 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2659 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2660 rdp->qlen_last_fqs_check = 0;
2661 rdp->n_force_qs_snap = rsp->n_force_qs;
2662 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2663 rdp->qlen_last_fqs_check = rdp->qlen;
2664 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2665
2666 local_irq_restore(flags);
2667
2668 /* Re-invoke RCU core processing if there are callbacks remaining. */
2669 if (cpu_has_callbacks_ready_to_invoke(rdp))
2670 invoke_rcu_core();
2671 }
2672
2673 /*
2674 * Check to see if this CPU is in a non-context-switch quiescent state
2675 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2676 * Also schedule RCU core processing.
2677 *
2678 * This function must be called from hardirq context. It is normally
2679 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2680 * false, there is no point in invoking rcu_check_callbacks().
2681 */
2682 void rcu_check_callbacks(int user)
2683 {
2684 trace_rcu_utilization(TPS("Start scheduler-tick"));
2685 increment_cpu_stall_ticks();
2686 if (user || rcu_is_cpu_rrupt_from_idle()) {
2687
2688 /*
2689 * Get here if this CPU took its interrupt from user
2690 * mode or from the idle loop, and if this is not a
2691 * nested interrupt. In this case, the CPU is in
2692 * a quiescent state, so note it.
2693 *
2694 * No memory barrier is required here because both
2695 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2696 * variables that other CPUs neither access nor modify,
2697 * at least not while the corresponding CPU is online.
2698 */
2699
2700 rcu_sched_qs();
2701 rcu_bh_qs();
2702
2703 } else if (!in_softirq()) {
2704
2705 /*
2706 * Get here if this CPU did not take its interrupt from
2707 * softirq, in other words, if it is not interrupting
2708 * a rcu_bh read-side critical section. This is an _bh
2709 * critical section, so note it.
2710 */
2711
2712 rcu_bh_qs();
2713 }
2714 rcu_preempt_check_callbacks();
2715 if (rcu_pending())
2716 invoke_rcu_core();
2717 if (user)
2718 rcu_note_voluntary_context_switch(current);
2719 trace_rcu_utilization(TPS("End scheduler-tick"));
2720 }
2721
2722 /*
2723 * Scan the leaf rcu_node structures, processing dyntick state for any that
2724 * have not yet encountered a quiescent state, using the function specified.
2725 * Also initiate boosting for any threads blocked on the root rcu_node.
2726 *
2727 * The caller must have suppressed start of new grace periods.
2728 */
2729 static void force_qs_rnp(struct rcu_state *rsp,
2730 int (*f)(struct rcu_data *rsp, bool *isidle,
2731 unsigned long *maxj),
2732 bool *isidle, unsigned long *maxj)
2733 {
2734 unsigned long bit;
2735 int cpu;
2736 unsigned long flags;
2737 unsigned long mask;
2738 struct rcu_node *rnp;
2739
2740 rcu_for_each_leaf_node(rsp, rnp) {
2741 cond_resched_rcu_qs();
2742 mask = 0;
2743 raw_spin_lock_irqsave(&rnp->lock, flags);
2744 smp_mb__after_unlock_lock();
2745 if (!rcu_gp_in_progress(rsp)) {
2746 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2747 return;
2748 }
2749 if (rnp->qsmask == 0) {
2750 if (rcu_state_p == &rcu_sched_state ||
2751 rsp != rcu_state_p ||
2752 rcu_preempt_blocked_readers_cgp(rnp)) {
2753 /*
2754 * No point in scanning bits because they
2755 * are all zero. But we might need to
2756 * priority-boost blocked readers.
2757 */
2758 rcu_initiate_boost(rnp, flags);
2759 /* rcu_initiate_boost() releases rnp->lock */
2760 continue;
2761 }
2762 if (rnp->parent &&
2763 (rnp->parent->qsmask & rnp->grpmask)) {
2764 /*
2765 * Race between grace-period
2766 * initialization and task exiting RCU
2767 * read-side critical section: Report.
2768 */
2769 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2770 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2771 continue;
2772 }
2773 }
2774 cpu = rnp->grplo;
2775 bit = 1;
2776 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2777 if ((rnp->qsmask & bit) != 0) {
2778 if ((rnp->qsmaskinit & bit) == 0)
2779 *isidle = false; /* Pending hotplug. */
2780 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2781 mask |= bit;
2782 }
2783 }
2784 if (mask != 0) {
2785 /* Idle/offline CPUs, report (releases rnp->lock. */
2786 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2787 } else {
2788 /* Nothing to do here, so just drop the lock. */
2789 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2790 }
2791 }
2792 }
2793
2794 /*
2795 * Force quiescent states on reluctant CPUs, and also detect which
2796 * CPUs are in dyntick-idle mode.
2797 */
2798 static void force_quiescent_state(struct rcu_state *rsp)
2799 {
2800 unsigned long flags;
2801 bool ret;
2802 struct rcu_node *rnp;
2803 struct rcu_node *rnp_old = NULL;
2804
2805 /* Funnel through hierarchy to reduce memory contention. */
2806 rnp = __this_cpu_read(rsp->rda->mynode);
2807 for (; rnp != NULL; rnp = rnp->parent) {
2808 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2809 !raw_spin_trylock(&rnp->fqslock);
2810 if (rnp_old != NULL)
2811 raw_spin_unlock(&rnp_old->fqslock);
2812 if (ret) {
2813 rsp->n_force_qs_lh++;
2814 return;
2815 }
2816 rnp_old = rnp;
2817 }
2818 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2819
2820 /* Reached the root of the rcu_node tree, acquire lock. */
2821 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2822 smp_mb__after_unlock_lock();
2823 raw_spin_unlock(&rnp_old->fqslock);
2824 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2825 rsp->n_force_qs_lh++;
2826 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2827 return; /* Someone beat us to it. */
2828 }
2829 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2830 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2831 rcu_gp_kthread_wake(rsp);
2832 }
2833
2834 /*
2835 * This does the RCU core processing work for the specified rcu_state
2836 * and rcu_data structures. This may be called only from the CPU to
2837 * whom the rdp belongs.
2838 */
2839 static void
2840 __rcu_process_callbacks(struct rcu_state *rsp)
2841 {
2842 unsigned long flags;
2843 bool needwake;
2844 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2845
2846 WARN_ON_ONCE(rdp->beenonline == 0);
2847
2848 /* Update RCU state based on any recent quiescent states. */
2849 rcu_check_quiescent_state(rsp, rdp);
2850
2851 /* Does this CPU require a not-yet-started grace period? */
2852 local_irq_save(flags);
2853 if (cpu_needs_another_gp(rsp, rdp)) {
2854 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2855 needwake = rcu_start_gp(rsp);
2856 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2857 if (needwake)
2858 rcu_gp_kthread_wake(rsp);
2859 } else {
2860 local_irq_restore(flags);
2861 }
2862
2863 /* If there are callbacks ready, invoke them. */
2864 if (cpu_has_callbacks_ready_to_invoke(rdp))
2865 invoke_rcu_callbacks(rsp, rdp);
2866
2867 /* Do any needed deferred wakeups of rcuo kthreads. */
2868 do_nocb_deferred_wakeup(rdp);
2869 }
2870
2871 /*
2872 * Do RCU core processing for the current CPU.
2873 */
2874 static void rcu_process_callbacks(struct softirq_action *unused)
2875 {
2876 struct rcu_state *rsp;
2877
2878 if (cpu_is_offline(smp_processor_id()))
2879 return;
2880 trace_rcu_utilization(TPS("Start RCU core"));
2881 for_each_rcu_flavor(rsp)
2882 __rcu_process_callbacks(rsp);
2883 trace_rcu_utilization(TPS("End RCU core"));
2884 }
2885
2886 /*
2887 * Schedule RCU callback invocation. If the specified type of RCU
2888 * does not support RCU priority boosting, just do a direct call,
2889 * otherwise wake up the per-CPU kernel kthread. Note that because we
2890 * are running on the current CPU with softirqs disabled, the
2891 * rcu_cpu_kthread_task cannot disappear out from under us.
2892 */
2893 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2894 {
2895 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2896 return;
2897 if (likely(!rsp->boost)) {
2898 rcu_do_batch(rsp, rdp);
2899 return;
2900 }
2901 invoke_rcu_callbacks_kthread();
2902 }
2903
2904 static void invoke_rcu_core(void)
2905 {
2906 if (cpu_online(smp_processor_id()))
2907 raise_softirq(RCU_SOFTIRQ);
2908 }
2909
2910 /*
2911 * Handle any core-RCU processing required by a call_rcu() invocation.
2912 */
2913 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2914 struct rcu_head *head, unsigned long flags)
2915 {
2916 bool needwake;
2917
2918 /*
2919 * If called from an extended quiescent state, invoke the RCU
2920 * core in order to force a re-evaluation of RCU's idleness.
2921 */
2922 if (!rcu_is_watching())
2923 invoke_rcu_core();
2924
2925 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2926 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2927 return;
2928
2929 /*
2930 * Force the grace period if too many callbacks or too long waiting.
2931 * Enforce hysteresis, and don't invoke force_quiescent_state()
2932 * if some other CPU has recently done so. Also, don't bother
2933 * invoking force_quiescent_state() if the newly enqueued callback
2934 * is the only one waiting for a grace period to complete.
2935 */
2936 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2937
2938 /* Are we ignoring a completed grace period? */
2939 note_gp_changes(rsp, rdp);
2940
2941 /* Start a new grace period if one not already started. */
2942 if (!rcu_gp_in_progress(rsp)) {
2943 struct rcu_node *rnp_root = rcu_get_root(rsp);
2944
2945 raw_spin_lock(&rnp_root->lock);
2946 smp_mb__after_unlock_lock();
2947 needwake = rcu_start_gp(rsp);
2948 raw_spin_unlock(&rnp_root->lock);
2949 if (needwake)
2950 rcu_gp_kthread_wake(rsp);
2951 } else {
2952 /* Give the grace period a kick. */
2953 rdp->blimit = LONG_MAX;
2954 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2955 *rdp->nxttail[RCU_DONE_TAIL] != head)
2956 force_quiescent_state(rsp);
2957 rdp->n_force_qs_snap = rsp->n_force_qs;
2958 rdp->qlen_last_fqs_check = rdp->qlen;
2959 }
2960 }
2961 }
2962
2963 /*
2964 * RCU callback function to leak a callback.
2965 */
2966 static void rcu_leak_callback(struct rcu_head *rhp)
2967 {
2968 }
2969
2970 /*
2971 * Helper function for call_rcu() and friends. The cpu argument will
2972 * normally be -1, indicating "currently running CPU". It may specify
2973 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2974 * is expected to specify a CPU.
2975 */
2976 static void
2977 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2978 struct rcu_state *rsp, int cpu, bool lazy)
2979 {
2980 unsigned long flags;
2981 struct rcu_data *rdp;
2982
2983 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2984 if (debug_rcu_head_queue(head)) {
2985 /* Probable double call_rcu(), so leak the callback. */
2986 WRITE_ONCE(head->func, rcu_leak_callback);
2987 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2988 return;
2989 }
2990 head->func = func;
2991 head->next = NULL;
2992
2993 /*
2994 * Opportunistically note grace-period endings and beginnings.
2995 * Note that we might see a beginning right after we see an
2996 * end, but never vice versa, since this CPU has to pass through
2997 * a quiescent state betweentimes.
2998 */
2999 local_irq_save(flags);
3000 rdp = this_cpu_ptr(rsp->rda);
3001
3002 /* Add the callback to our list. */
3003 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3004 int offline;
3005
3006 if (cpu != -1)
3007 rdp = per_cpu_ptr(rsp->rda, cpu);
3008 if (likely(rdp->mynode)) {
3009 /* Post-boot, so this should be for a no-CBs CPU. */
3010 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3011 WARN_ON_ONCE(offline);
3012 /* Offline CPU, _call_rcu() illegal, leak callback. */
3013 local_irq_restore(flags);
3014 return;
3015 }
3016 /*
3017 * Very early boot, before rcu_init(). Initialize if needed
3018 * and then drop through to queue the callback.
3019 */
3020 BUG_ON(cpu != -1);
3021 WARN_ON_ONCE(!rcu_is_watching());
3022 if (!likely(rdp->nxtlist))
3023 init_default_callback_list(rdp);
3024 }
3025 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3026 if (lazy)
3027 rdp->qlen_lazy++;
3028 else
3029 rcu_idle_count_callbacks_posted();
3030 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3031 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3032 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3033
3034 if (__is_kfree_rcu_offset((unsigned long)func))
3035 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3036 rdp->qlen_lazy, rdp->qlen);
3037 else
3038 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3039
3040 /* Go handle any RCU core processing required. */
3041 __call_rcu_core(rsp, rdp, head, flags);
3042 local_irq_restore(flags);
3043 }
3044
3045 /*
3046 * Queue an RCU-sched callback for invocation after a grace period.
3047 */
3048 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3049 {
3050 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3051 }
3052 EXPORT_SYMBOL_GPL(call_rcu_sched);
3053
3054 /*
3055 * Queue an RCU callback for invocation after a quicker grace period.
3056 */
3057 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3058 {
3059 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3060 }
3061 EXPORT_SYMBOL_GPL(call_rcu_bh);
3062
3063 /*
3064 * Queue an RCU callback for lazy invocation after a grace period.
3065 * This will likely be later named something like "call_rcu_lazy()",
3066 * but this change will require some way of tagging the lazy RCU
3067 * callbacks in the list of pending callbacks. Until then, this
3068 * function may only be called from __kfree_rcu().
3069 */
3070 void kfree_call_rcu(struct rcu_head *head,
3071 void (*func)(struct rcu_head *rcu))
3072 {
3073 __call_rcu(head, func, rcu_state_p, -1, 1);
3074 }
3075 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3076
3077 /*
3078 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3079 * any blocking grace-period wait automatically implies a grace period
3080 * if there is only one CPU online at any point time during execution
3081 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3082 * occasionally incorrectly indicate that there are multiple CPUs online
3083 * when there was in fact only one the whole time, as this just adds
3084 * some overhead: RCU still operates correctly.
3085 */
3086 static inline int rcu_blocking_is_gp(void)
3087 {
3088 int ret;
3089
3090 might_sleep(); /* Check for RCU read-side critical section. */
3091 preempt_disable();
3092 ret = num_online_cpus() <= 1;
3093 preempt_enable();
3094 return ret;
3095 }
3096
3097 /**
3098 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3099 *
3100 * Control will return to the caller some time after a full rcu-sched
3101 * grace period has elapsed, in other words after all currently executing
3102 * rcu-sched read-side critical sections have completed. These read-side
3103 * critical sections are delimited by rcu_read_lock_sched() and
3104 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3105 * local_irq_disable(), and so on may be used in place of
3106 * rcu_read_lock_sched().
3107 *
3108 * This means that all preempt_disable code sequences, including NMI and
3109 * non-threaded hardware-interrupt handlers, in progress on entry will
3110 * have completed before this primitive returns. However, this does not
3111 * guarantee that softirq handlers will have completed, since in some
3112 * kernels, these handlers can run in process context, and can block.
3113 *
3114 * Note that this guarantee implies further memory-ordering guarantees.
3115 * On systems with more than one CPU, when synchronize_sched() returns,
3116 * each CPU is guaranteed to have executed a full memory barrier since the
3117 * end of its last RCU-sched read-side critical section whose beginning
3118 * preceded the call to synchronize_sched(). In addition, each CPU having
3119 * an RCU read-side critical section that extends beyond the return from
3120 * synchronize_sched() is guaranteed to have executed a full memory barrier
3121 * after the beginning of synchronize_sched() and before the beginning of
3122 * that RCU read-side critical section. Note that these guarantees include
3123 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3124 * that are executing in the kernel.
3125 *
3126 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3127 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3128 * to have executed a full memory barrier during the execution of
3129 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3130 * again only if the system has more than one CPU).
3131 *
3132 * This primitive provides the guarantees made by the (now removed)
3133 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3134 * guarantees that rcu_read_lock() sections will have completed.
3135 * In "classic RCU", these two guarantees happen to be one and
3136 * the same, but can differ in realtime RCU implementations.
3137 */
3138 void synchronize_sched(void)
3139 {
3140 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3141 !lock_is_held(&rcu_lock_map) &&
3142 !lock_is_held(&rcu_sched_lock_map),
3143 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3144 if (rcu_blocking_is_gp())
3145 return;
3146 if (rcu_gp_is_expedited())
3147 synchronize_sched_expedited();
3148 else
3149 wait_rcu_gp(call_rcu_sched);
3150 }
3151 EXPORT_SYMBOL_GPL(synchronize_sched);
3152
3153 /**
3154 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3155 *
3156 * Control will return to the caller some time after a full rcu_bh grace
3157 * period has elapsed, in other words after all currently executing rcu_bh
3158 * read-side critical sections have completed. RCU read-side critical
3159 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3160 * and may be nested.
3161 *
3162 * See the description of synchronize_sched() for more detailed information
3163 * on memory ordering guarantees.
3164 */
3165 void synchronize_rcu_bh(void)
3166 {
3167 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3168 !lock_is_held(&rcu_lock_map) &&
3169 !lock_is_held(&rcu_sched_lock_map),
3170 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3171 if (rcu_blocking_is_gp())
3172 return;
3173 if (rcu_gp_is_expedited())
3174 synchronize_rcu_bh_expedited();
3175 else
3176 wait_rcu_gp(call_rcu_bh);
3177 }
3178 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3179
3180 /**
3181 * get_state_synchronize_rcu - Snapshot current RCU state
3182 *
3183 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3184 * to determine whether or not a full grace period has elapsed in the
3185 * meantime.
3186 */
3187 unsigned long get_state_synchronize_rcu(void)
3188 {
3189 /*
3190 * Any prior manipulation of RCU-protected data must happen
3191 * before the load from ->gpnum.
3192 */
3193 smp_mb(); /* ^^^ */
3194
3195 /*
3196 * Make sure this load happens before the purportedly
3197 * time-consuming work between get_state_synchronize_rcu()
3198 * and cond_synchronize_rcu().
3199 */
3200 return smp_load_acquire(&rcu_state_p->gpnum);
3201 }
3202 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3203
3204 /**
3205 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3206 *
3207 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3208 *
3209 * If a full RCU grace period has elapsed since the earlier call to
3210 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3211 * synchronize_rcu() to wait for a full grace period.
3212 *
3213 * Yes, this function does not take counter wrap into account. But
3214 * counter wrap is harmless. If the counter wraps, we have waited for
3215 * more than 2 billion grace periods (and way more on a 64-bit system!),
3216 * so waiting for one additional grace period should be just fine.
3217 */
3218 void cond_synchronize_rcu(unsigned long oldstate)
3219 {
3220 unsigned long newstate;
3221
3222 /*
3223 * Ensure that this load happens before any RCU-destructive
3224 * actions the caller might carry out after we return.
3225 */
3226 newstate = smp_load_acquire(&rcu_state_p->completed);
3227 if (ULONG_CMP_GE(oldstate, newstate))
3228 synchronize_rcu();
3229 }
3230 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3231
3232 static int synchronize_sched_expedited_cpu_stop(void *data)
3233 {
3234 /*
3235 * There must be a full memory barrier on each affected CPU
3236 * between the time that try_stop_cpus() is called and the
3237 * time that it returns.
3238 *
3239 * In the current initial implementation of cpu_stop, the
3240 * above condition is already met when the control reaches
3241 * this point and the following smp_mb() is not strictly
3242 * necessary. Do smp_mb() anyway for documentation and
3243 * robustness against future implementation changes.
3244 */
3245 smp_mb(); /* See above comment block. */
3246 return 0;
3247 }
3248
3249 /**
3250 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3251 *
3252 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3253 * approach to force the grace period to end quickly. This consumes
3254 * significant time on all CPUs and is unfriendly to real-time workloads,
3255 * so is thus not recommended for any sort of common-case code. In fact,
3256 * if you are using synchronize_sched_expedited() in a loop, please
3257 * restructure your code to batch your updates, and then use a single
3258 * synchronize_sched() instead.
3259 *
3260 * This implementation can be thought of as an application of ticket
3261 * locking to RCU, with sync_sched_expedited_started and
3262 * sync_sched_expedited_done taking on the roles of the halves
3263 * of the ticket-lock word. Each task atomically increments
3264 * sync_sched_expedited_started upon entry, snapshotting the old value,
3265 * then attempts to stop all the CPUs. If this succeeds, then each
3266 * CPU will have executed a context switch, resulting in an RCU-sched
3267 * grace period. We are then done, so we use atomic_cmpxchg() to
3268 * update sync_sched_expedited_done to match our snapshot -- but
3269 * only if someone else has not already advanced past our snapshot.
3270 *
3271 * On the other hand, if try_stop_cpus() fails, we check the value
3272 * of sync_sched_expedited_done. If it has advanced past our
3273 * initial snapshot, then someone else must have forced a grace period
3274 * some time after we took our snapshot. In this case, our work is
3275 * done for us, and we can simply return. Otherwise, we try again,
3276 * but keep our initial snapshot for purposes of checking for someone
3277 * doing our work for us.
3278 *
3279 * If we fail too many times in a row, we fall back to synchronize_sched().
3280 */
3281 void synchronize_sched_expedited(void)
3282 {
3283 cpumask_var_t cm;
3284 bool cma = false;
3285 int cpu;
3286 long firstsnap, s, snap;
3287 int trycount = 0;
3288 struct rcu_state *rsp = &rcu_sched_state;
3289
3290 /*
3291 * If we are in danger of counter wrap, just do synchronize_sched().
3292 * By allowing sync_sched_expedited_started to advance no more than
3293 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3294 * that more than 3.5 billion CPUs would be required to force a
3295 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3296 * course be required on a 64-bit system.
3297 */
3298 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3299 (ulong)atomic_long_read(&rsp->expedited_done) +
3300 ULONG_MAX / 8)) {
3301 synchronize_sched();
3302 atomic_long_inc(&rsp->expedited_wrap);
3303 return;
3304 }
3305
3306 /*
3307 * Take a ticket. Note that atomic_inc_return() implies a
3308 * full memory barrier.
3309 */
3310 snap = atomic_long_inc_return(&rsp->expedited_start);
3311 firstsnap = snap;
3312 if (!try_get_online_cpus()) {
3313 /* CPU hotplug operation in flight, fall back to normal GP. */
3314 wait_rcu_gp(call_rcu_sched);
3315 atomic_long_inc(&rsp->expedited_normal);
3316 return;
3317 }
3318 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3319
3320 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3321 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3322 if (cma) {
3323 cpumask_copy(cm, cpu_online_mask);
3324 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3325 for_each_cpu(cpu, cm) {
3326 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3327
3328 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3329 cpumask_clear_cpu(cpu, cm);
3330 }
3331 if (cpumask_weight(cm) == 0)
3332 goto all_cpus_idle;
3333 }
3334
3335 /*
3336 * Each pass through the following loop attempts to force a
3337 * context switch on each CPU.
3338 */
3339 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3340 synchronize_sched_expedited_cpu_stop,
3341 NULL) == -EAGAIN) {
3342 put_online_cpus();
3343 atomic_long_inc(&rsp->expedited_tryfail);
3344
3345 /* Check to see if someone else did our work for us. */
3346 s = atomic_long_read(&rsp->expedited_done);
3347 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3348 /* ensure test happens before caller kfree */
3349 smp_mb__before_atomic(); /* ^^^ */
3350 atomic_long_inc(&rsp->expedited_workdone1);
3351 free_cpumask_var(cm);
3352 return;
3353 }
3354
3355 /* No joy, try again later. Or just synchronize_sched(). */
3356 if (trycount++ < 10) {
3357 udelay(trycount * num_online_cpus());
3358 } else {
3359 wait_rcu_gp(call_rcu_sched);
3360 atomic_long_inc(&rsp->expedited_normal);
3361 free_cpumask_var(cm);
3362 return;
3363 }
3364
3365 /* Recheck to see if someone else did our work for us. */
3366 s = atomic_long_read(&rsp->expedited_done);
3367 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3368 /* ensure test happens before caller kfree */
3369 smp_mb__before_atomic(); /* ^^^ */
3370 atomic_long_inc(&rsp->expedited_workdone2);
3371 free_cpumask_var(cm);
3372 return;
3373 }
3374
3375 /*
3376 * Refetching sync_sched_expedited_started allows later
3377 * callers to piggyback on our grace period. We retry
3378 * after they started, so our grace period works for them,
3379 * and they started after our first try, so their grace
3380 * period works for us.
3381 */
3382 if (!try_get_online_cpus()) {
3383 /* CPU hotplug operation in flight, use normal GP. */
3384 wait_rcu_gp(call_rcu_sched);
3385 atomic_long_inc(&rsp->expedited_normal);
3386 free_cpumask_var(cm);
3387 return;
3388 }
3389 snap = atomic_long_read(&rsp->expedited_start);
3390 smp_mb(); /* ensure read is before try_stop_cpus(). */
3391 }
3392 atomic_long_inc(&rsp->expedited_stoppedcpus);
3393
3394 all_cpus_idle:
3395 free_cpumask_var(cm);
3396
3397 /*
3398 * Everyone up to our most recent fetch is covered by our grace
3399 * period. Update the counter, but only if our work is still
3400 * relevant -- which it won't be if someone who started later
3401 * than we did already did their update.
3402 */
3403 do {
3404 atomic_long_inc(&rsp->expedited_done_tries);
3405 s = atomic_long_read(&rsp->expedited_done);
3406 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3407 /* ensure test happens before caller kfree */
3408 smp_mb__before_atomic(); /* ^^^ */
3409 atomic_long_inc(&rsp->expedited_done_lost);
3410 break;
3411 }
3412 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3413 atomic_long_inc(&rsp->expedited_done_exit);
3414
3415 put_online_cpus();
3416 }
3417 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3418
3419 /*
3420 * Check to see if there is any immediate RCU-related work to be done
3421 * by the current CPU, for the specified type of RCU, returning 1 if so.
3422 * The checks are in order of increasing expense: checks that can be
3423 * carried out against CPU-local state are performed first. However,
3424 * we must check for CPU stalls first, else we might not get a chance.
3425 */
3426 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3427 {
3428 struct rcu_node *rnp = rdp->mynode;
3429
3430 rdp->n_rcu_pending++;
3431
3432 /* Check for CPU stalls, if enabled. */
3433 check_cpu_stall(rsp, rdp);
3434
3435 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3436 if (rcu_nohz_full_cpu(rsp))
3437 return 0;
3438
3439 /* Is the RCU core waiting for a quiescent state from this CPU? */
3440 if (rcu_scheduler_fully_active &&
3441 rdp->qs_pending && !rdp->passed_quiesce &&
3442 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3443 rdp->n_rp_qs_pending++;
3444 } else if (rdp->qs_pending &&
3445 (rdp->passed_quiesce ||
3446 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3447 rdp->n_rp_report_qs++;
3448 return 1;
3449 }
3450
3451 /* Does this CPU have callbacks ready to invoke? */
3452 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3453 rdp->n_rp_cb_ready++;
3454 return 1;
3455 }
3456
3457 /* Has RCU gone idle with this CPU needing another grace period? */
3458 if (cpu_needs_another_gp(rsp, rdp)) {
3459 rdp->n_rp_cpu_needs_gp++;
3460 return 1;
3461 }
3462
3463 /* Has another RCU grace period completed? */
3464 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3465 rdp->n_rp_gp_completed++;
3466 return 1;
3467 }
3468
3469 /* Has a new RCU grace period started? */
3470 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3471 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3472 rdp->n_rp_gp_started++;
3473 return 1;
3474 }
3475
3476 /* Does this CPU need a deferred NOCB wakeup? */
3477 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3478 rdp->n_rp_nocb_defer_wakeup++;
3479 return 1;
3480 }
3481
3482 /* nothing to do */
3483 rdp->n_rp_need_nothing++;
3484 return 0;
3485 }
3486
3487 /*
3488 * Check to see if there is any immediate RCU-related work to be done
3489 * by the current CPU, returning 1 if so. This function is part of the
3490 * RCU implementation; it is -not- an exported member of the RCU API.
3491 */
3492 static int rcu_pending(void)
3493 {
3494 struct rcu_state *rsp;
3495
3496 for_each_rcu_flavor(rsp)
3497 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3498 return 1;
3499 return 0;
3500 }
3501
3502 /*
3503 * Return true if the specified CPU has any callback. If all_lazy is
3504 * non-NULL, store an indication of whether all callbacks are lazy.
3505 * (If there are no callbacks, all of them are deemed to be lazy.)
3506 */
3507 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3508 {
3509 bool al = true;
3510 bool hc = false;
3511 struct rcu_data *rdp;
3512 struct rcu_state *rsp;
3513
3514 for_each_rcu_flavor(rsp) {
3515 rdp = this_cpu_ptr(rsp->rda);
3516 if (!rdp->nxtlist)
3517 continue;
3518 hc = true;
3519 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3520 al = false;
3521 break;
3522 }
3523 }
3524 if (all_lazy)
3525 *all_lazy = al;
3526 return hc;
3527 }
3528
3529 /*
3530 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3531 * the compiler is expected to optimize this away.
3532 */
3533 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3534 int cpu, unsigned long done)
3535 {
3536 trace_rcu_barrier(rsp->name, s, cpu,
3537 atomic_read(&rsp->barrier_cpu_count), done);
3538 }
3539
3540 /*
3541 * RCU callback function for _rcu_barrier(). If we are last, wake
3542 * up the task executing _rcu_barrier().
3543 */
3544 static void rcu_barrier_callback(struct rcu_head *rhp)
3545 {
3546 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3547 struct rcu_state *rsp = rdp->rsp;
3548
3549 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3550 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3551 complete(&rsp->barrier_completion);
3552 } else {
3553 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3554 }
3555 }
3556
3557 /*
3558 * Called with preemption disabled, and from cross-cpu IRQ context.
3559 */
3560 static void rcu_barrier_func(void *type)
3561 {
3562 struct rcu_state *rsp = type;
3563 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3564
3565 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3566 atomic_inc(&rsp->barrier_cpu_count);
3567 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3568 }
3569
3570 /*
3571 * Orchestrate the specified type of RCU barrier, waiting for all
3572 * RCU callbacks of the specified type to complete.
3573 */
3574 static void _rcu_barrier(struct rcu_state *rsp)
3575 {
3576 int cpu;
3577 struct rcu_data *rdp;
3578 unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3579 unsigned long snap_done;
3580
3581 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3582
3583 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3584 mutex_lock(&rsp->barrier_mutex);
3585
3586 /*
3587 * Ensure that all prior references, including to ->n_barrier_done,
3588 * are ordered before the _rcu_barrier() machinery.
3589 */
3590 smp_mb(); /* See above block comment. */
3591
3592 /*
3593 * Recheck ->n_barrier_done to see if others did our work for us.
3594 * This means checking ->n_barrier_done for an even-to-odd-to-even
3595 * transition. The "if" expression below therefore rounds the old
3596 * value up to the next even number and adds two before comparing.
3597 */
3598 snap_done = rsp->n_barrier_done;
3599 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3600
3601 /*
3602 * If the value in snap is odd, we needed to wait for the current
3603 * rcu_barrier() to complete, then wait for the next one, in other
3604 * words, we need the value of snap_done to be three larger than
3605 * the value of snap. On the other hand, if the value in snap is
3606 * even, we only had to wait for the next rcu_barrier() to complete,
3607 * in other words, we need the value of snap_done to be only two
3608 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3609 * this for us (thank you, Linus!).
3610 */
3611 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3612 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3613 smp_mb(); /* caller's subsequent code after above check. */
3614 mutex_unlock(&rsp->barrier_mutex);
3615 return;
3616 }
3617
3618 /*
3619 * Increment ->n_barrier_done to avoid duplicate work. Use
3620 * WRITE_ONCE() to prevent the compiler from speculating
3621 * the increment to precede the early-exit check.
3622 */
3623 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3624 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3625 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3626 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3627
3628 /*
3629 * Initialize the count to one rather than to zero in order to
3630 * avoid a too-soon return to zero in case of a short grace period
3631 * (or preemption of this task). Exclude CPU-hotplug operations
3632 * to ensure that no offline CPU has callbacks queued.
3633 */
3634 init_completion(&rsp->barrier_completion);
3635 atomic_set(&rsp->barrier_cpu_count, 1);
3636 get_online_cpus();
3637
3638 /*
3639 * Force each CPU with callbacks to register a new callback.
3640 * When that callback is invoked, we will know that all of the
3641 * corresponding CPU's preceding callbacks have been invoked.
3642 */
3643 for_each_possible_cpu(cpu) {
3644 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3645 continue;
3646 rdp = per_cpu_ptr(rsp->rda, cpu);
3647 if (rcu_is_nocb_cpu(cpu)) {
3648 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3649 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3650 rsp->n_barrier_done);
3651 } else {
3652 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3653 rsp->n_barrier_done);
3654 smp_mb__before_atomic();
3655 atomic_inc(&rsp->barrier_cpu_count);
3656 __call_rcu(&rdp->barrier_head,
3657 rcu_barrier_callback, rsp, cpu, 0);
3658 }
3659 } else if (READ_ONCE(rdp->qlen)) {
3660 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3661 rsp->n_barrier_done);
3662 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3663 } else {
3664 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3665 rsp->n_barrier_done);
3666 }
3667 }
3668 put_online_cpus();
3669
3670 /*
3671 * Now that we have an rcu_barrier_callback() callback on each
3672 * CPU, and thus each counted, remove the initial count.
3673 */
3674 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3675 complete(&rsp->barrier_completion);
3676
3677 /* Increment ->n_barrier_done to prevent duplicate work. */
3678 smp_mb(); /* Keep increment after above mechanism. */
3679 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3680 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3681 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3682 smp_mb(); /* Keep increment before caller's subsequent code. */
3683
3684 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3685 wait_for_completion(&rsp->barrier_completion);
3686
3687 /* Other rcu_barrier() invocations can now safely proceed. */
3688 mutex_unlock(&rsp->barrier_mutex);
3689 }
3690
3691 /**
3692 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3693 */
3694 void rcu_barrier_bh(void)
3695 {
3696 _rcu_barrier(&rcu_bh_state);
3697 }
3698 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3699
3700 /**
3701 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3702 */
3703 void rcu_barrier_sched(void)
3704 {
3705 _rcu_barrier(&rcu_sched_state);
3706 }
3707 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3708
3709 /*
3710 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3711 * first CPU in a given leaf rcu_node structure coming online. The caller
3712 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3713 * disabled.
3714 */
3715 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3716 {
3717 long mask;
3718 struct rcu_node *rnp = rnp_leaf;
3719
3720 for (;;) {
3721 mask = rnp->grpmask;
3722 rnp = rnp->parent;
3723 if (rnp == NULL)
3724 return;
3725 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3726 rnp->qsmaskinit |= mask;
3727 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3728 }
3729 }
3730
3731 /*
3732 * Do boot-time initialization of a CPU's per-CPU RCU data.
3733 */
3734 static void __init
3735 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3736 {
3737 unsigned long flags;
3738 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3739 struct rcu_node *rnp = rcu_get_root(rsp);
3740
3741 /* Set up local state, ensuring consistent view of global state. */
3742 raw_spin_lock_irqsave(&rnp->lock, flags);
3743 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3744 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3745 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3746 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3747 rdp->cpu = cpu;
3748 rdp->rsp = rsp;
3749 rcu_boot_init_nocb_percpu_data(rdp);
3750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3751 }
3752
3753 /*
3754 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3755 * offline event can be happening at a given time. Note also that we
3756 * can accept some slop in the rsp->completed access due to the fact
3757 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3758 */
3759 static void
3760 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3761 {
3762 unsigned long flags;
3763 unsigned long mask;
3764 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3765 struct rcu_node *rnp = rcu_get_root(rsp);
3766
3767 /* Set up local state, ensuring consistent view of global state. */
3768 raw_spin_lock_irqsave(&rnp->lock, flags);
3769 rdp->beenonline = 1; /* We have now been online. */
3770 rdp->qlen_last_fqs_check = 0;
3771 rdp->n_force_qs_snap = rsp->n_force_qs;
3772 rdp->blimit = blimit;
3773 if (!rdp->nxtlist)
3774 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3775 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3776 rcu_sysidle_init_percpu_data(rdp->dynticks);
3777 atomic_set(&rdp->dynticks->dynticks,
3778 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3779 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3780
3781 /*
3782 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3783 * propagation up the rcu_node tree will happen at the beginning
3784 * of the next grace period.
3785 */
3786 rnp = rdp->mynode;
3787 mask = rdp->grpmask;
3788 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3789 smp_mb__after_unlock_lock();
3790 rnp->qsmaskinitnext |= mask;
3791 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3792 rdp->completed = rnp->completed;
3793 rdp->passed_quiesce = false;
3794 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3795 rdp->qs_pending = false;
3796 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3797 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3798 }
3799
3800 static void rcu_prepare_cpu(int cpu)
3801 {
3802 struct rcu_state *rsp;
3803
3804 for_each_rcu_flavor(rsp)
3805 rcu_init_percpu_data(cpu, rsp);
3806 }
3807
3808 /*
3809 * Handle CPU online/offline notification events.
3810 */
3811 int rcu_cpu_notify(struct notifier_block *self,
3812 unsigned long action, void *hcpu)
3813 {
3814 long cpu = (long)hcpu;
3815 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3816 struct rcu_node *rnp = rdp->mynode;
3817 struct rcu_state *rsp;
3818
3819 switch (action) {
3820 case CPU_UP_PREPARE:
3821 case CPU_UP_PREPARE_FROZEN:
3822 rcu_prepare_cpu(cpu);
3823 rcu_prepare_kthreads(cpu);
3824 rcu_spawn_all_nocb_kthreads(cpu);
3825 break;
3826 case CPU_ONLINE:
3827 case CPU_DOWN_FAILED:
3828 rcu_boost_kthread_setaffinity(rnp, -1);
3829 break;
3830 case CPU_DOWN_PREPARE:
3831 rcu_boost_kthread_setaffinity(rnp, cpu);
3832 break;
3833 case CPU_DYING:
3834 case CPU_DYING_FROZEN:
3835 for_each_rcu_flavor(rsp)
3836 rcu_cleanup_dying_cpu(rsp);
3837 break;
3838 case CPU_DYING_IDLE:
3839 for_each_rcu_flavor(rsp) {
3840 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3841 }
3842 break;
3843 case CPU_DEAD:
3844 case CPU_DEAD_FROZEN:
3845 case CPU_UP_CANCELED:
3846 case CPU_UP_CANCELED_FROZEN:
3847 for_each_rcu_flavor(rsp) {
3848 rcu_cleanup_dead_cpu(cpu, rsp);
3849 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3850 }
3851 break;
3852 default:
3853 break;
3854 }
3855 return NOTIFY_OK;
3856 }
3857
3858 static int rcu_pm_notify(struct notifier_block *self,
3859 unsigned long action, void *hcpu)
3860 {
3861 switch (action) {
3862 case PM_HIBERNATION_PREPARE:
3863 case PM_SUSPEND_PREPARE:
3864 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3865 rcu_expedite_gp();
3866 break;
3867 case PM_POST_HIBERNATION:
3868 case PM_POST_SUSPEND:
3869 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3870 rcu_unexpedite_gp();
3871 break;
3872 default:
3873 break;
3874 }
3875 return NOTIFY_OK;
3876 }
3877
3878 /*
3879 * Spawn the kthreads that handle each RCU flavor's grace periods.
3880 */
3881 static int __init rcu_spawn_gp_kthread(void)
3882 {
3883 unsigned long flags;
3884 int kthread_prio_in = kthread_prio;
3885 struct rcu_node *rnp;
3886 struct rcu_state *rsp;
3887 struct sched_param sp;
3888 struct task_struct *t;
3889
3890 /* Force priority into range. */
3891 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3892 kthread_prio = 1;
3893 else if (kthread_prio < 0)
3894 kthread_prio = 0;
3895 else if (kthread_prio > 99)
3896 kthread_prio = 99;
3897 if (kthread_prio != kthread_prio_in)
3898 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3899 kthread_prio, kthread_prio_in);
3900
3901 rcu_scheduler_fully_active = 1;
3902 for_each_rcu_flavor(rsp) {
3903 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3904 BUG_ON(IS_ERR(t));
3905 rnp = rcu_get_root(rsp);
3906 raw_spin_lock_irqsave(&rnp->lock, flags);
3907 rsp->gp_kthread = t;
3908 if (kthread_prio) {
3909 sp.sched_priority = kthread_prio;
3910 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3911 }
3912 wake_up_process(t);
3913 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3914 }
3915 rcu_spawn_nocb_kthreads();
3916 rcu_spawn_boost_kthreads();
3917 return 0;
3918 }
3919 early_initcall(rcu_spawn_gp_kthread);
3920
3921 /*
3922 * This function is invoked towards the end of the scheduler's initialization
3923 * process. Before this is called, the idle task might contain
3924 * RCU read-side critical sections (during which time, this idle
3925 * task is booting the system). After this function is called, the
3926 * idle tasks are prohibited from containing RCU read-side critical
3927 * sections. This function also enables RCU lockdep checking.
3928 */
3929 void rcu_scheduler_starting(void)
3930 {
3931 WARN_ON(num_online_cpus() != 1);
3932 WARN_ON(nr_context_switches() > 0);
3933 rcu_scheduler_active = 1;
3934 }
3935
3936 /*
3937 * Compute the per-level fanout, either using the exact fanout specified
3938 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3939 */
3940 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3941 {
3942 int i;
3943
3944 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3945 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3946 for (i = rcu_num_lvls - 2; i >= 0; i--)
3947 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3948 } else {
3949 int ccur;
3950 int cprv;
3951
3952 cprv = nr_cpu_ids;
3953 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3954 ccur = rsp->levelcnt[i];
3955 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3956 cprv = ccur;
3957 }
3958 }
3959 }
3960
3961 /*
3962 * Helper function for rcu_init() that initializes one rcu_state structure.
3963 */
3964 static void __init rcu_init_one(struct rcu_state *rsp,
3965 struct rcu_data __percpu *rda)
3966 {
3967 static const char * const buf[] = {
3968 "rcu_node_0",
3969 "rcu_node_1",
3970 "rcu_node_2",
3971 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3972 static const char * const fqs[] = {
3973 "rcu_node_fqs_0",
3974 "rcu_node_fqs_1",
3975 "rcu_node_fqs_2",
3976 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3977 static u8 fl_mask = 0x1;
3978 int cpustride = 1;
3979 int i;
3980 int j;
3981 struct rcu_node *rnp;
3982
3983 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3984
3985 /* Silence gcc 4.8 false positive about array index out of range. */
3986 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3987 panic("rcu_init_one: rcu_num_lvls out of range");
3988
3989 /* Initialize the level-tracking arrays. */
3990
3991 for (i = 0; i < rcu_num_lvls; i++)
3992 rsp->levelcnt[i] = num_rcu_lvl[i];
3993 for (i = 1; i < rcu_num_lvls; i++)
3994 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3995 rcu_init_levelspread(rsp);
3996 rsp->flavor_mask = fl_mask;
3997 fl_mask <<= 1;
3998
3999 /* Initialize the elements themselves, starting from the leaves. */
4000
4001 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4002 cpustride *= rsp->levelspread[i];
4003 rnp = rsp->level[i];
4004 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
4005 raw_spin_lock_init(&rnp->lock);
4006 lockdep_set_class_and_name(&rnp->lock,
4007 &rcu_node_class[i], buf[i]);
4008 raw_spin_lock_init(&rnp->fqslock);
4009 lockdep_set_class_and_name(&rnp->fqslock,
4010 &rcu_fqs_class[i], fqs[i]);
4011 rnp->gpnum = rsp->gpnum;
4012 rnp->completed = rsp->completed;
4013 rnp->qsmask = 0;
4014 rnp->qsmaskinit = 0;
4015 rnp->grplo = j * cpustride;
4016 rnp->grphi = (j + 1) * cpustride - 1;
4017 if (rnp->grphi >= nr_cpu_ids)
4018 rnp->grphi = nr_cpu_ids - 1;
4019 if (i == 0) {
4020 rnp->grpnum = 0;
4021 rnp->grpmask = 0;
4022 rnp->parent = NULL;
4023 } else {
4024 rnp->grpnum = j % rsp->levelspread[i - 1];
4025 rnp->grpmask = 1UL << rnp->grpnum;
4026 rnp->parent = rsp->level[i - 1] +
4027 j / rsp->levelspread[i - 1];
4028 }
4029 rnp->level = i;
4030 INIT_LIST_HEAD(&rnp->blkd_tasks);
4031 rcu_init_one_nocb(rnp);
4032 }
4033 }
4034
4035 init_waitqueue_head(&rsp->gp_wq);
4036 rnp = rsp->level[rcu_num_lvls - 1];
4037 for_each_possible_cpu(i) {
4038 while (i > rnp->grphi)
4039 rnp++;
4040 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4041 rcu_boot_init_percpu_data(i, rsp);
4042 }
4043 list_add(&rsp->flavors, &rcu_struct_flavors);
4044 }
4045
4046 /*
4047 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4048 * replace the definitions in tree.h because those are needed to size
4049 * the ->node array in the rcu_state structure.
4050 */
4051 static void __init rcu_init_geometry(void)
4052 {
4053 ulong d;
4054 int i;
4055 int j;
4056 int n = nr_cpu_ids;
4057 int rcu_capacity[MAX_RCU_LVLS + 1];
4058
4059 /*
4060 * Initialize any unspecified boot parameters.
4061 * The default values of jiffies_till_first_fqs and
4062 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4063 * value, which is a function of HZ, then adding one for each
4064 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4065 */
4066 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4067 if (jiffies_till_first_fqs == ULONG_MAX)
4068 jiffies_till_first_fqs = d;
4069 if (jiffies_till_next_fqs == ULONG_MAX)
4070 jiffies_till_next_fqs = d;
4071
4072 /* If the compile-time values are accurate, just leave. */
4073 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4074 nr_cpu_ids == NR_CPUS)
4075 return;
4076 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4077 rcu_fanout_leaf, nr_cpu_ids);
4078
4079 /*
4080 * Compute number of nodes that can be handled an rcu_node tree
4081 * with the given number of levels. Setting rcu_capacity[0] makes
4082 * some of the arithmetic easier.
4083 */
4084 rcu_capacity[0] = 1;
4085 rcu_capacity[1] = rcu_fanout_leaf;
4086 for (i = 2; i <= MAX_RCU_LVLS; i++)
4087 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4088
4089 /*
4090 * The boot-time rcu_fanout_leaf parameter is only permitted
4091 * to increase the leaf-level fanout, not decrease it. Of course,
4092 * the leaf-level fanout cannot exceed the number of bits in
4093 * the rcu_node masks. Finally, the tree must be able to accommodate
4094 * the configured number of CPUs. Complain and fall back to the
4095 * compile-time values if these limits are exceeded.
4096 */
4097 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4098 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4099 n > rcu_capacity[MAX_RCU_LVLS]) {
4100 WARN_ON(1);
4101 return;
4102 }
4103
4104 /* Calculate the number of rcu_nodes at each level of the tree. */
4105 for (i = 1; i <= MAX_RCU_LVLS; i++)
4106 if (n <= rcu_capacity[i]) {
4107 for (j = 0; j <= i; j++)
4108 num_rcu_lvl[j] =
4109 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4110 rcu_num_lvls = i;
4111 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4112 num_rcu_lvl[j] = 0;
4113 break;
4114 }
4115
4116 /* Calculate the total number of rcu_node structures. */
4117 rcu_num_nodes = 0;
4118 for (i = 0; i <= MAX_RCU_LVLS; i++)
4119 rcu_num_nodes += num_rcu_lvl[i];
4120 rcu_num_nodes -= n;
4121 }
4122
4123 void __init rcu_init(void)
4124 {
4125 int cpu;
4126
4127 rcu_early_boot_tests();
4128
4129 rcu_bootup_announce();
4130 rcu_init_geometry();
4131 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4132 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4133 __rcu_init_preempt();
4134 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4135
4136 /*
4137 * We don't need protection against CPU-hotplug here because
4138 * this is called early in boot, before either interrupts
4139 * or the scheduler are operational.
4140 */
4141 cpu_notifier(rcu_cpu_notify, 0);
4142 pm_notifier(rcu_pm_notify, 0);
4143 for_each_online_cpu(cpu)
4144 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4145 }
4146
4147 #include "tree_plugin.h"