]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/tree.c
Merge tag 'asoc-v3.16-rc1' into asoc-linus
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/suspend.h>
59
60 #include "tree.h"
61 #include "rcu.h"
62
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68
69 /* Data structures. */
70
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
74 /*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
82 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
83 static char sname##_varname[] = #sname; \
84 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
85 struct rcu_state sname##_state = { \
86 .level = { &sname##_state.node[0] }, \
87 .call = cr, \
88 .fqs_state = RCU_GP_IDLE, \
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
96 .name = sname##_varname, \
97 .abbr = sabbr, \
98 }; \
99 DEFINE_PER_CPU(struct rcu_data, sname##_data)
100
101 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
103
104 static struct rcu_state *rcu_state_p;
105 LIST_HEAD(rcu_struct_flavors);
106
107 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
109 module_param(rcu_fanout_leaf, int, 0444);
110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117 };
118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
120 /*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
124 * optimize synchronize_sched() to a simple barrier(). When this variable
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132 /*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144 static int rcu_scheduler_fully_active __read_mostly;
145
146 #ifdef CONFIG_RCU_BOOST
147
148 /*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
153 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
154 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
155 DEFINE_PER_CPU(char, rcu_cpu_has_work);
156
157 #endif /* #ifdef CONFIG_RCU_BOOST */
158
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
162
163 /*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172 unsigned long rcutorture_testseq;
173 unsigned long rcutorture_vernum;
174
175 /*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180 static int rcu_gp_in_progress(struct rcu_state *rsp)
181 {
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183 }
184
185 /*
186 * Note a quiescent state. Because we do not need to know
187 * how many quiescent states passed, just if there was at least
188 * one since the start of the grace period, this just sets a flag.
189 * The caller must have disabled preemption.
190 */
191 void rcu_sched_qs(int cpu)
192 {
193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
194
195 if (rdp->passed_quiesce == 0)
196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
197 rdp->passed_quiesce = 1;
198 }
199
200 void rcu_bh_qs(int cpu)
201 {
202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
203
204 if (rdp->passed_quiesce == 0)
205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
206 rdp->passed_quiesce = 1;
207 }
208
209 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
210
211 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
213 .dynticks = ATOMIC_INIT(1),
214 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
215 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
216 .dynticks_idle = ATOMIC_INIT(1),
217 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
218 };
219
220 /*
221 * Let the RCU core know that this CPU has gone through the scheduler,
222 * which is a quiescent state. This is called when the need for a
223 * quiescent state is urgent, so we burn an atomic operation and full
224 * memory barriers to let the RCU core know about it, regardless of what
225 * this CPU might (or might not) do in the near future.
226 *
227 * We inform the RCU core by emulating a zero-duration dyntick-idle
228 * period, which we in turn do by incrementing the ->dynticks counter
229 * by two.
230 */
231 static void rcu_momentary_dyntick_idle(void)
232 {
233 unsigned long flags;
234 struct rcu_data *rdp;
235 struct rcu_dynticks *rdtp;
236 int resched_mask;
237 struct rcu_state *rsp;
238
239 local_irq_save(flags);
240
241 /*
242 * Yes, we can lose flag-setting operations. This is OK, because
243 * the flag will be set again after some delay.
244 */
245 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
246 raw_cpu_write(rcu_sched_qs_mask, 0);
247
248 /* Find the flavor that needs a quiescent state. */
249 for_each_rcu_flavor(rsp) {
250 rdp = raw_cpu_ptr(rsp->rda);
251 if (!(resched_mask & rsp->flavor_mask))
252 continue;
253 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
254 if (ACCESS_ONCE(rdp->mynode->completed) !=
255 ACCESS_ONCE(rdp->cond_resched_completed))
256 continue;
257
258 /*
259 * Pretend to be momentarily idle for the quiescent state.
260 * This allows the grace-period kthread to record the
261 * quiescent state, with no need for this CPU to do anything
262 * further.
263 */
264 rdtp = this_cpu_ptr(&rcu_dynticks);
265 smp_mb__before_atomic(); /* Earlier stuff before QS. */
266 atomic_add(2, &rdtp->dynticks); /* QS. */
267 smp_mb__after_atomic(); /* Later stuff after QS. */
268 break;
269 }
270 local_irq_restore(flags);
271 }
272
273 /*
274 * Note a context switch. This is a quiescent state for RCU-sched,
275 * and requires special handling for preemptible RCU.
276 * The caller must have disabled preemption.
277 */
278 void rcu_note_context_switch(int cpu)
279 {
280 trace_rcu_utilization(TPS("Start context switch"));
281 rcu_sched_qs(cpu);
282 rcu_preempt_note_context_switch(cpu);
283 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
284 rcu_momentary_dyntick_idle();
285 trace_rcu_utilization(TPS("End context switch"));
286 }
287 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
288
289 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
290 static long qhimark = 10000; /* If this many pending, ignore blimit. */
291 static long qlowmark = 100; /* Once only this many pending, use blimit. */
292
293 module_param(blimit, long, 0444);
294 module_param(qhimark, long, 0444);
295 module_param(qlowmark, long, 0444);
296
297 static ulong jiffies_till_first_fqs = ULONG_MAX;
298 static ulong jiffies_till_next_fqs = ULONG_MAX;
299
300 module_param(jiffies_till_first_fqs, ulong, 0644);
301 module_param(jiffies_till_next_fqs, ulong, 0644);
302
303 /*
304 * How long the grace period must be before we start recruiting
305 * quiescent-state help from rcu_note_context_switch().
306 */
307 static ulong jiffies_till_sched_qs = HZ / 20;
308 module_param(jiffies_till_sched_qs, ulong, 0644);
309
310 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
311 struct rcu_data *rdp);
312 static void force_qs_rnp(struct rcu_state *rsp,
313 int (*f)(struct rcu_data *rsp, bool *isidle,
314 unsigned long *maxj),
315 bool *isidle, unsigned long *maxj);
316 static void force_quiescent_state(struct rcu_state *rsp);
317 static int rcu_pending(int cpu);
318
319 /*
320 * Return the number of RCU-sched batches processed thus far for debug & stats.
321 */
322 long rcu_batches_completed_sched(void)
323 {
324 return rcu_sched_state.completed;
325 }
326 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
327
328 /*
329 * Return the number of RCU BH batches processed thus far for debug & stats.
330 */
331 long rcu_batches_completed_bh(void)
332 {
333 return rcu_bh_state.completed;
334 }
335 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
336
337 /*
338 * Force a quiescent state.
339 */
340 void rcu_force_quiescent_state(void)
341 {
342 force_quiescent_state(rcu_state_p);
343 }
344 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
345
346 /*
347 * Force a quiescent state for RCU BH.
348 */
349 void rcu_bh_force_quiescent_state(void)
350 {
351 force_quiescent_state(&rcu_bh_state);
352 }
353 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
354
355 /*
356 * Show the state of the grace-period kthreads.
357 */
358 void show_rcu_gp_kthreads(void)
359 {
360 struct rcu_state *rsp;
361
362 for_each_rcu_flavor(rsp) {
363 pr_info("%s: wait state: %d ->state: %#lx\n",
364 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
365 /* sched_show_task(rsp->gp_kthread); */
366 }
367 }
368 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
369
370 /*
371 * Record the number of times rcutorture tests have been initiated and
372 * terminated. This information allows the debugfs tracing stats to be
373 * correlated to the rcutorture messages, even when the rcutorture module
374 * is being repeatedly loaded and unloaded. In other words, we cannot
375 * store this state in rcutorture itself.
376 */
377 void rcutorture_record_test_transition(void)
378 {
379 rcutorture_testseq++;
380 rcutorture_vernum = 0;
381 }
382 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
383
384 /*
385 * Send along grace-period-related data for rcutorture diagnostics.
386 */
387 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
388 unsigned long *gpnum, unsigned long *completed)
389 {
390 struct rcu_state *rsp = NULL;
391
392 switch (test_type) {
393 case RCU_FLAVOR:
394 rsp = rcu_state_p;
395 break;
396 case RCU_BH_FLAVOR:
397 rsp = &rcu_bh_state;
398 break;
399 case RCU_SCHED_FLAVOR:
400 rsp = &rcu_sched_state;
401 break;
402 default:
403 break;
404 }
405 if (rsp != NULL) {
406 *flags = ACCESS_ONCE(rsp->gp_flags);
407 *gpnum = ACCESS_ONCE(rsp->gpnum);
408 *completed = ACCESS_ONCE(rsp->completed);
409 return;
410 }
411 *flags = 0;
412 *gpnum = 0;
413 *completed = 0;
414 }
415 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
416
417 /*
418 * Record the number of writer passes through the current rcutorture test.
419 * This is also used to correlate debugfs tracing stats with the rcutorture
420 * messages.
421 */
422 void rcutorture_record_progress(unsigned long vernum)
423 {
424 rcutorture_vernum++;
425 }
426 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
427
428 /*
429 * Force a quiescent state for RCU-sched.
430 */
431 void rcu_sched_force_quiescent_state(void)
432 {
433 force_quiescent_state(&rcu_sched_state);
434 }
435 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
436
437 /*
438 * Does the CPU have callbacks ready to be invoked?
439 */
440 static int
441 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
442 {
443 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
444 rdp->nxttail[RCU_DONE_TAIL] != NULL;
445 }
446
447 /*
448 * Return the root node of the specified rcu_state structure.
449 */
450 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
451 {
452 return &rsp->node[0];
453 }
454
455 /*
456 * Is there any need for future grace periods?
457 * Interrupts must be disabled. If the caller does not hold the root
458 * rnp_node structure's ->lock, the results are advisory only.
459 */
460 static int rcu_future_needs_gp(struct rcu_state *rsp)
461 {
462 struct rcu_node *rnp = rcu_get_root(rsp);
463 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
464 int *fp = &rnp->need_future_gp[idx];
465
466 return ACCESS_ONCE(*fp);
467 }
468
469 /*
470 * Does the current CPU require a not-yet-started grace period?
471 * The caller must have disabled interrupts to prevent races with
472 * normal callback registry.
473 */
474 static int
475 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
476 {
477 int i;
478
479 if (rcu_gp_in_progress(rsp))
480 return 0; /* No, a grace period is already in progress. */
481 if (rcu_future_needs_gp(rsp))
482 return 1; /* Yes, a no-CBs CPU needs one. */
483 if (!rdp->nxttail[RCU_NEXT_TAIL])
484 return 0; /* No, this is a no-CBs (or offline) CPU. */
485 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
486 return 1; /* Yes, this CPU has newly registered callbacks. */
487 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
488 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
489 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
490 rdp->nxtcompleted[i]))
491 return 1; /* Yes, CBs for future grace period. */
492 return 0; /* No grace period needed. */
493 }
494
495 /*
496 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
497 *
498 * If the new value of the ->dynticks_nesting counter now is zero,
499 * we really have entered idle, and must do the appropriate accounting.
500 * The caller must have disabled interrupts.
501 */
502 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
503 bool user)
504 {
505 struct rcu_state *rsp;
506 struct rcu_data *rdp;
507
508 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
509 if (!user && !is_idle_task(current)) {
510 struct task_struct *idle __maybe_unused =
511 idle_task(smp_processor_id());
512
513 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
514 ftrace_dump(DUMP_ORIG);
515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
516 current->pid, current->comm,
517 idle->pid, idle->comm); /* must be idle task! */
518 }
519 for_each_rcu_flavor(rsp) {
520 rdp = this_cpu_ptr(rsp->rda);
521 do_nocb_deferred_wakeup(rdp);
522 }
523 rcu_prepare_for_idle(smp_processor_id());
524 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
525 smp_mb__before_atomic(); /* See above. */
526 atomic_inc(&rdtp->dynticks);
527 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
528 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
529
530 /*
531 * It is illegal to enter an extended quiescent state while
532 * in an RCU read-side critical section.
533 */
534 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
535 "Illegal idle entry in RCU read-side critical section.");
536 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
537 "Illegal idle entry in RCU-bh read-side critical section.");
538 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
539 "Illegal idle entry in RCU-sched read-side critical section.");
540 }
541
542 /*
543 * Enter an RCU extended quiescent state, which can be either the
544 * idle loop or adaptive-tickless usermode execution.
545 */
546 static void rcu_eqs_enter(bool user)
547 {
548 long long oldval;
549 struct rcu_dynticks *rdtp;
550
551 rdtp = this_cpu_ptr(&rcu_dynticks);
552 oldval = rdtp->dynticks_nesting;
553 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
554 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
555 rdtp->dynticks_nesting = 0;
556 rcu_eqs_enter_common(rdtp, oldval, user);
557 } else {
558 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
559 }
560 }
561
562 /**
563 * rcu_idle_enter - inform RCU that current CPU is entering idle
564 *
565 * Enter idle mode, in other words, -leave- the mode in which RCU
566 * read-side critical sections can occur. (Though RCU read-side
567 * critical sections can occur in irq handlers in idle, a possibility
568 * handled by irq_enter() and irq_exit().)
569 *
570 * We crowbar the ->dynticks_nesting field to zero to allow for
571 * the possibility of usermode upcalls having messed up our count
572 * of interrupt nesting level during the prior busy period.
573 */
574 void rcu_idle_enter(void)
575 {
576 unsigned long flags;
577
578 local_irq_save(flags);
579 rcu_eqs_enter(false);
580 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
581 local_irq_restore(flags);
582 }
583 EXPORT_SYMBOL_GPL(rcu_idle_enter);
584
585 #ifdef CONFIG_RCU_USER_QS
586 /**
587 * rcu_user_enter - inform RCU that we are resuming userspace.
588 *
589 * Enter RCU idle mode right before resuming userspace. No use of RCU
590 * is permitted between this call and rcu_user_exit(). This way the
591 * CPU doesn't need to maintain the tick for RCU maintenance purposes
592 * when the CPU runs in userspace.
593 */
594 void rcu_user_enter(void)
595 {
596 rcu_eqs_enter(1);
597 }
598 #endif /* CONFIG_RCU_USER_QS */
599
600 /**
601 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
602 *
603 * Exit from an interrupt handler, which might possibly result in entering
604 * idle mode, in other words, leaving the mode in which read-side critical
605 * sections can occur.
606 *
607 * This code assumes that the idle loop never does anything that might
608 * result in unbalanced calls to irq_enter() and irq_exit(). If your
609 * architecture violates this assumption, RCU will give you what you
610 * deserve, good and hard. But very infrequently and irreproducibly.
611 *
612 * Use things like work queues to work around this limitation.
613 *
614 * You have been warned.
615 */
616 void rcu_irq_exit(void)
617 {
618 unsigned long flags;
619 long long oldval;
620 struct rcu_dynticks *rdtp;
621
622 local_irq_save(flags);
623 rdtp = this_cpu_ptr(&rcu_dynticks);
624 oldval = rdtp->dynticks_nesting;
625 rdtp->dynticks_nesting--;
626 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
627 if (rdtp->dynticks_nesting)
628 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
629 else
630 rcu_eqs_enter_common(rdtp, oldval, true);
631 rcu_sysidle_enter(rdtp, 1);
632 local_irq_restore(flags);
633 }
634
635 /*
636 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
637 *
638 * If the new value of the ->dynticks_nesting counter was previously zero,
639 * we really have exited idle, and must do the appropriate accounting.
640 * The caller must have disabled interrupts.
641 */
642 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
643 int user)
644 {
645 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
646 atomic_inc(&rdtp->dynticks);
647 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
648 smp_mb__after_atomic(); /* See above. */
649 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
650 rcu_cleanup_after_idle(smp_processor_id());
651 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
652 if (!user && !is_idle_task(current)) {
653 struct task_struct *idle __maybe_unused =
654 idle_task(smp_processor_id());
655
656 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
657 oldval, rdtp->dynticks_nesting);
658 ftrace_dump(DUMP_ORIG);
659 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
660 current->pid, current->comm,
661 idle->pid, idle->comm); /* must be idle task! */
662 }
663 }
664
665 /*
666 * Exit an RCU extended quiescent state, which can be either the
667 * idle loop or adaptive-tickless usermode execution.
668 */
669 static void rcu_eqs_exit(bool user)
670 {
671 struct rcu_dynticks *rdtp;
672 long long oldval;
673
674 rdtp = this_cpu_ptr(&rcu_dynticks);
675 oldval = rdtp->dynticks_nesting;
676 WARN_ON_ONCE(oldval < 0);
677 if (oldval & DYNTICK_TASK_NEST_MASK) {
678 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
679 } else {
680 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
681 rcu_eqs_exit_common(rdtp, oldval, user);
682 }
683 }
684
685 /**
686 * rcu_idle_exit - inform RCU that current CPU is leaving idle
687 *
688 * Exit idle mode, in other words, -enter- the mode in which RCU
689 * read-side critical sections can occur.
690 *
691 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
692 * allow for the possibility of usermode upcalls messing up our count
693 * of interrupt nesting level during the busy period that is just
694 * now starting.
695 */
696 void rcu_idle_exit(void)
697 {
698 unsigned long flags;
699
700 local_irq_save(flags);
701 rcu_eqs_exit(false);
702 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
703 local_irq_restore(flags);
704 }
705 EXPORT_SYMBOL_GPL(rcu_idle_exit);
706
707 #ifdef CONFIG_RCU_USER_QS
708 /**
709 * rcu_user_exit - inform RCU that we are exiting userspace.
710 *
711 * Exit RCU idle mode while entering the kernel because it can
712 * run a RCU read side critical section anytime.
713 */
714 void rcu_user_exit(void)
715 {
716 rcu_eqs_exit(1);
717 }
718 #endif /* CONFIG_RCU_USER_QS */
719
720 /**
721 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
722 *
723 * Enter an interrupt handler, which might possibly result in exiting
724 * idle mode, in other words, entering the mode in which read-side critical
725 * sections can occur.
726 *
727 * Note that the Linux kernel is fully capable of entering an interrupt
728 * handler that it never exits, for example when doing upcalls to
729 * user mode! This code assumes that the idle loop never does upcalls to
730 * user mode. If your architecture does do upcalls from the idle loop (or
731 * does anything else that results in unbalanced calls to the irq_enter()
732 * and irq_exit() functions), RCU will give you what you deserve, good
733 * and hard. But very infrequently and irreproducibly.
734 *
735 * Use things like work queues to work around this limitation.
736 *
737 * You have been warned.
738 */
739 void rcu_irq_enter(void)
740 {
741 unsigned long flags;
742 struct rcu_dynticks *rdtp;
743 long long oldval;
744
745 local_irq_save(flags);
746 rdtp = this_cpu_ptr(&rcu_dynticks);
747 oldval = rdtp->dynticks_nesting;
748 rdtp->dynticks_nesting++;
749 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
750 if (oldval)
751 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
752 else
753 rcu_eqs_exit_common(rdtp, oldval, true);
754 rcu_sysidle_exit(rdtp, 1);
755 local_irq_restore(flags);
756 }
757
758 /**
759 * rcu_nmi_enter - inform RCU of entry to NMI context
760 *
761 * If the CPU was idle with dynamic ticks active, and there is no
762 * irq handler running, this updates rdtp->dynticks_nmi to let the
763 * RCU grace-period handling know that the CPU is active.
764 */
765 void rcu_nmi_enter(void)
766 {
767 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
768
769 if (rdtp->dynticks_nmi_nesting == 0 &&
770 (atomic_read(&rdtp->dynticks) & 0x1))
771 return;
772 rdtp->dynticks_nmi_nesting++;
773 smp_mb__before_atomic(); /* Force delay from prior write. */
774 atomic_inc(&rdtp->dynticks);
775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
776 smp_mb__after_atomic(); /* See above. */
777 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
778 }
779
780 /**
781 * rcu_nmi_exit - inform RCU of exit from NMI context
782 *
783 * If the CPU was idle with dynamic ticks active, and there is no
784 * irq handler running, this updates rdtp->dynticks_nmi to let the
785 * RCU grace-period handling know that the CPU is no longer active.
786 */
787 void rcu_nmi_exit(void)
788 {
789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
790
791 if (rdtp->dynticks_nmi_nesting == 0 ||
792 --rdtp->dynticks_nmi_nesting != 0)
793 return;
794 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
795 smp_mb__before_atomic(); /* See above. */
796 atomic_inc(&rdtp->dynticks);
797 smp_mb__after_atomic(); /* Force delay to next write. */
798 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
799 }
800
801 /**
802 * __rcu_is_watching - are RCU read-side critical sections safe?
803 *
804 * Return true if RCU is watching the running CPU, which means that
805 * this CPU can safely enter RCU read-side critical sections. Unlike
806 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
807 * least disabled preemption.
808 */
809 bool notrace __rcu_is_watching(void)
810 {
811 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
812 }
813
814 /**
815 * rcu_is_watching - see if RCU thinks that the current CPU is idle
816 *
817 * If the current CPU is in its idle loop and is neither in an interrupt
818 * or NMI handler, return true.
819 */
820 bool notrace rcu_is_watching(void)
821 {
822 int ret;
823
824 preempt_disable();
825 ret = __rcu_is_watching();
826 preempt_enable();
827 return ret;
828 }
829 EXPORT_SYMBOL_GPL(rcu_is_watching);
830
831 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
832
833 /*
834 * Is the current CPU online? Disable preemption to avoid false positives
835 * that could otherwise happen due to the current CPU number being sampled,
836 * this task being preempted, its old CPU being taken offline, resuming
837 * on some other CPU, then determining that its old CPU is now offline.
838 * It is OK to use RCU on an offline processor during initial boot, hence
839 * the check for rcu_scheduler_fully_active. Note also that it is OK
840 * for a CPU coming online to use RCU for one jiffy prior to marking itself
841 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
842 * offline to continue to use RCU for one jiffy after marking itself
843 * offline in the cpu_online_mask. This leniency is necessary given the
844 * non-atomic nature of the online and offline processing, for example,
845 * the fact that a CPU enters the scheduler after completing the CPU_DYING
846 * notifiers.
847 *
848 * This is also why RCU internally marks CPUs online during the
849 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
850 *
851 * Disable checking if in an NMI handler because we cannot safely report
852 * errors from NMI handlers anyway.
853 */
854 bool rcu_lockdep_current_cpu_online(void)
855 {
856 struct rcu_data *rdp;
857 struct rcu_node *rnp;
858 bool ret;
859
860 if (in_nmi())
861 return true;
862 preempt_disable();
863 rdp = this_cpu_ptr(&rcu_sched_data);
864 rnp = rdp->mynode;
865 ret = (rdp->grpmask & rnp->qsmaskinit) ||
866 !rcu_scheduler_fully_active;
867 preempt_enable();
868 return ret;
869 }
870 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
871
872 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
873
874 /**
875 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
876 *
877 * If the current CPU is idle or running at a first-level (not nested)
878 * interrupt from idle, return true. The caller must have at least
879 * disabled preemption.
880 */
881 static int rcu_is_cpu_rrupt_from_idle(void)
882 {
883 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
884 }
885
886 /*
887 * Snapshot the specified CPU's dynticks counter so that we can later
888 * credit them with an implicit quiescent state. Return 1 if this CPU
889 * is in dynticks idle mode, which is an extended quiescent state.
890 */
891 static int dyntick_save_progress_counter(struct rcu_data *rdp,
892 bool *isidle, unsigned long *maxj)
893 {
894 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
895 rcu_sysidle_check_cpu(rdp, isidle, maxj);
896 if ((rdp->dynticks_snap & 0x1) == 0) {
897 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
898 return 1;
899 } else {
900 return 0;
901 }
902 }
903
904 /*
905 * This function really isn't for public consumption, but RCU is special in
906 * that context switches can allow the state machine to make progress.
907 */
908 extern void resched_cpu(int cpu);
909
910 /*
911 * Return true if the specified CPU has passed through a quiescent
912 * state by virtue of being in or having passed through an dynticks
913 * idle state since the last call to dyntick_save_progress_counter()
914 * for this same CPU, or by virtue of having been offline.
915 */
916 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
917 bool *isidle, unsigned long *maxj)
918 {
919 unsigned int curr;
920 int *rcrmp;
921 unsigned int snap;
922
923 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
924 snap = (unsigned int)rdp->dynticks_snap;
925
926 /*
927 * If the CPU passed through or entered a dynticks idle phase with
928 * no active irq/NMI handlers, then we can safely pretend that the CPU
929 * already acknowledged the request to pass through a quiescent
930 * state. Either way, that CPU cannot possibly be in an RCU
931 * read-side critical section that started before the beginning
932 * of the current RCU grace period.
933 */
934 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
935 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
936 rdp->dynticks_fqs++;
937 return 1;
938 }
939
940 /*
941 * Check for the CPU being offline, but only if the grace period
942 * is old enough. We don't need to worry about the CPU changing
943 * state: If we see it offline even once, it has been through a
944 * quiescent state.
945 *
946 * The reason for insisting that the grace period be at least
947 * one jiffy old is that CPUs that are not quite online and that
948 * have just gone offline can still execute RCU read-side critical
949 * sections.
950 */
951 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
952 return 0; /* Grace period is not old enough. */
953 barrier();
954 if (cpu_is_offline(rdp->cpu)) {
955 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
956 rdp->offline_fqs++;
957 return 1;
958 }
959
960 /*
961 * A CPU running for an extended time within the kernel can
962 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
963 * even context-switching back and forth between a pair of
964 * in-kernel CPU-bound tasks cannot advance grace periods.
965 * So if the grace period is old enough, make the CPU pay attention.
966 * Note that the unsynchronized assignments to the per-CPU
967 * rcu_sched_qs_mask variable are safe. Yes, setting of
968 * bits can be lost, but they will be set again on the next
969 * force-quiescent-state pass. So lost bit sets do not result
970 * in incorrect behavior, merely in a grace period lasting
971 * a few jiffies longer than it might otherwise. Because
972 * there are at most four threads involved, and because the
973 * updates are only once every few jiffies, the probability of
974 * lossage (and thus of slight grace-period extension) is
975 * quite low.
976 *
977 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
978 * is set too high, we override with half of the RCU CPU stall
979 * warning delay.
980 */
981 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
982 if (ULONG_CMP_GE(jiffies,
983 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
984 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
985 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
986 ACCESS_ONCE(rdp->cond_resched_completed) =
987 ACCESS_ONCE(rdp->mynode->completed);
988 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
989 ACCESS_ONCE(*rcrmp) =
990 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
991 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
992 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
993 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
994 /* Time to beat on that CPU again! */
995 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
996 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
997 }
998 }
999
1000 return 0;
1001 }
1002
1003 static void record_gp_stall_check_time(struct rcu_state *rsp)
1004 {
1005 unsigned long j = jiffies;
1006 unsigned long j1;
1007
1008 rsp->gp_start = j;
1009 smp_wmb(); /* Record start time before stall time. */
1010 j1 = rcu_jiffies_till_stall_check();
1011 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1012 rsp->jiffies_resched = j + j1 / 2;
1013 }
1014
1015 /*
1016 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
1017 * for architectures that do not implement trigger_all_cpu_backtrace().
1018 * The NMI-triggered stack traces are more accurate because they are
1019 * printed by the target CPU.
1020 */
1021 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1022 {
1023 int cpu;
1024 unsigned long flags;
1025 struct rcu_node *rnp;
1026
1027 rcu_for_each_leaf_node(rsp, rnp) {
1028 raw_spin_lock_irqsave(&rnp->lock, flags);
1029 if (rnp->qsmask != 0) {
1030 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1031 if (rnp->qsmask & (1UL << cpu))
1032 dump_cpu_task(rnp->grplo + cpu);
1033 }
1034 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1035 }
1036 }
1037
1038 static void print_other_cpu_stall(struct rcu_state *rsp)
1039 {
1040 int cpu;
1041 long delta;
1042 unsigned long flags;
1043 int ndetected = 0;
1044 struct rcu_node *rnp = rcu_get_root(rsp);
1045 long totqlen = 0;
1046
1047 /* Only let one CPU complain about others per time interval. */
1048
1049 raw_spin_lock_irqsave(&rnp->lock, flags);
1050 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1051 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1052 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1053 return;
1054 }
1055 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057
1058 /*
1059 * OK, time to rat on our buddy...
1060 * See Documentation/RCU/stallwarn.txt for info on how to debug
1061 * RCU CPU stall warnings.
1062 */
1063 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1064 rsp->name);
1065 print_cpu_stall_info_begin();
1066 rcu_for_each_leaf_node(rsp, rnp) {
1067 raw_spin_lock_irqsave(&rnp->lock, flags);
1068 ndetected += rcu_print_task_stall(rnp);
1069 if (rnp->qsmask != 0) {
1070 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1071 if (rnp->qsmask & (1UL << cpu)) {
1072 print_cpu_stall_info(rsp,
1073 rnp->grplo + cpu);
1074 ndetected++;
1075 }
1076 }
1077 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1078 }
1079
1080 /*
1081 * Now rat on any tasks that got kicked up to the root rcu_node
1082 * due to CPU offlining.
1083 */
1084 rnp = rcu_get_root(rsp);
1085 raw_spin_lock_irqsave(&rnp->lock, flags);
1086 ndetected += rcu_print_task_stall(rnp);
1087 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1088
1089 print_cpu_stall_info_end();
1090 for_each_possible_cpu(cpu)
1091 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1092 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1093 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1094 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1095 if (ndetected == 0)
1096 pr_err("INFO: Stall ended before state dump start\n");
1097 else if (!trigger_all_cpu_backtrace())
1098 rcu_dump_cpu_stacks(rsp);
1099
1100 /* Complain about tasks blocking the grace period. */
1101
1102 rcu_print_detail_task_stall(rsp);
1103
1104 force_quiescent_state(rsp); /* Kick them all. */
1105 }
1106
1107 static void print_cpu_stall(struct rcu_state *rsp)
1108 {
1109 int cpu;
1110 unsigned long flags;
1111 struct rcu_node *rnp = rcu_get_root(rsp);
1112 long totqlen = 0;
1113
1114 /*
1115 * OK, time to rat on ourselves...
1116 * See Documentation/RCU/stallwarn.txt for info on how to debug
1117 * RCU CPU stall warnings.
1118 */
1119 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1120 print_cpu_stall_info_begin();
1121 print_cpu_stall_info(rsp, smp_processor_id());
1122 print_cpu_stall_info_end();
1123 for_each_possible_cpu(cpu)
1124 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1125 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1126 jiffies - rsp->gp_start,
1127 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1128 if (!trigger_all_cpu_backtrace())
1129 dump_stack();
1130
1131 raw_spin_lock_irqsave(&rnp->lock, flags);
1132 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1133 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1134 3 * rcu_jiffies_till_stall_check() + 3;
1135 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1136
1137 /*
1138 * Attempt to revive the RCU machinery by forcing a context switch.
1139 *
1140 * A context switch would normally allow the RCU state machine to make
1141 * progress and it could be we're stuck in kernel space without context
1142 * switches for an entirely unreasonable amount of time.
1143 */
1144 resched_cpu(smp_processor_id());
1145 }
1146
1147 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1148 {
1149 unsigned long completed;
1150 unsigned long gpnum;
1151 unsigned long gps;
1152 unsigned long j;
1153 unsigned long js;
1154 struct rcu_node *rnp;
1155
1156 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1157 return;
1158 j = jiffies;
1159
1160 /*
1161 * Lots of memory barriers to reject false positives.
1162 *
1163 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1164 * then rsp->gp_start, and finally rsp->completed. These values
1165 * are updated in the opposite order with memory barriers (or
1166 * equivalent) during grace-period initialization and cleanup.
1167 * Now, a false positive can occur if we get an new value of
1168 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1169 * the memory barriers, the only way that this can happen is if one
1170 * grace period ends and another starts between these two fetches.
1171 * Detect this by comparing rsp->completed with the previous fetch
1172 * from rsp->gpnum.
1173 *
1174 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1175 * and rsp->gp_start suffice to forestall false positives.
1176 */
1177 gpnum = ACCESS_ONCE(rsp->gpnum);
1178 smp_rmb(); /* Pick up ->gpnum first... */
1179 js = ACCESS_ONCE(rsp->jiffies_stall);
1180 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1181 gps = ACCESS_ONCE(rsp->gp_start);
1182 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1183 completed = ACCESS_ONCE(rsp->completed);
1184 if (ULONG_CMP_GE(completed, gpnum) ||
1185 ULONG_CMP_LT(j, js) ||
1186 ULONG_CMP_GE(gps, js))
1187 return; /* No stall or GP completed since entering function. */
1188 rnp = rdp->mynode;
1189 if (rcu_gp_in_progress(rsp) &&
1190 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1191
1192 /* We haven't checked in, so go dump stack. */
1193 print_cpu_stall(rsp);
1194
1195 } else if (rcu_gp_in_progress(rsp) &&
1196 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1197
1198 /* They had a few time units to dump stack, so complain. */
1199 print_other_cpu_stall(rsp);
1200 }
1201 }
1202
1203 /**
1204 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1205 *
1206 * Set the stall-warning timeout way off into the future, thus preventing
1207 * any RCU CPU stall-warning messages from appearing in the current set of
1208 * RCU grace periods.
1209 *
1210 * The caller must disable hard irqs.
1211 */
1212 void rcu_cpu_stall_reset(void)
1213 {
1214 struct rcu_state *rsp;
1215
1216 for_each_rcu_flavor(rsp)
1217 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1218 }
1219
1220 /*
1221 * Initialize the specified rcu_data structure's callback list to empty.
1222 */
1223 static void init_callback_list(struct rcu_data *rdp)
1224 {
1225 int i;
1226
1227 if (init_nocb_callback_list(rdp))
1228 return;
1229 rdp->nxtlist = NULL;
1230 for (i = 0; i < RCU_NEXT_SIZE; i++)
1231 rdp->nxttail[i] = &rdp->nxtlist;
1232 }
1233
1234 /*
1235 * Determine the value that ->completed will have at the end of the
1236 * next subsequent grace period. This is used to tag callbacks so that
1237 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1238 * been dyntick-idle for an extended period with callbacks under the
1239 * influence of RCU_FAST_NO_HZ.
1240 *
1241 * The caller must hold rnp->lock with interrupts disabled.
1242 */
1243 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1244 struct rcu_node *rnp)
1245 {
1246 /*
1247 * If RCU is idle, we just wait for the next grace period.
1248 * But we can only be sure that RCU is idle if we are looking
1249 * at the root rcu_node structure -- otherwise, a new grace
1250 * period might have started, but just not yet gotten around
1251 * to initializing the current non-root rcu_node structure.
1252 */
1253 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1254 return rnp->completed + 1;
1255
1256 /*
1257 * Otherwise, wait for a possible partial grace period and
1258 * then the subsequent full grace period.
1259 */
1260 return rnp->completed + 2;
1261 }
1262
1263 /*
1264 * Trace-event helper function for rcu_start_future_gp() and
1265 * rcu_nocb_wait_gp().
1266 */
1267 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1268 unsigned long c, const char *s)
1269 {
1270 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1271 rnp->completed, c, rnp->level,
1272 rnp->grplo, rnp->grphi, s);
1273 }
1274
1275 /*
1276 * Start some future grace period, as needed to handle newly arrived
1277 * callbacks. The required future grace periods are recorded in each
1278 * rcu_node structure's ->need_future_gp field. Returns true if there
1279 * is reason to awaken the grace-period kthread.
1280 *
1281 * The caller must hold the specified rcu_node structure's ->lock.
1282 */
1283 static bool __maybe_unused
1284 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1285 unsigned long *c_out)
1286 {
1287 unsigned long c;
1288 int i;
1289 bool ret = false;
1290 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1291
1292 /*
1293 * Pick up grace-period number for new callbacks. If this
1294 * grace period is already marked as needed, return to the caller.
1295 */
1296 c = rcu_cbs_completed(rdp->rsp, rnp);
1297 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1298 if (rnp->need_future_gp[c & 0x1]) {
1299 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1300 goto out;
1301 }
1302
1303 /*
1304 * If either this rcu_node structure or the root rcu_node structure
1305 * believe that a grace period is in progress, then we must wait
1306 * for the one following, which is in "c". Because our request
1307 * will be noticed at the end of the current grace period, we don't
1308 * need to explicitly start one.
1309 */
1310 if (rnp->gpnum != rnp->completed ||
1311 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1312 rnp->need_future_gp[c & 0x1]++;
1313 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1314 goto out;
1315 }
1316
1317 /*
1318 * There might be no grace period in progress. If we don't already
1319 * hold it, acquire the root rcu_node structure's lock in order to
1320 * start one (if needed).
1321 */
1322 if (rnp != rnp_root) {
1323 raw_spin_lock(&rnp_root->lock);
1324 smp_mb__after_unlock_lock();
1325 }
1326
1327 /*
1328 * Get a new grace-period number. If there really is no grace
1329 * period in progress, it will be smaller than the one we obtained
1330 * earlier. Adjust callbacks as needed. Note that even no-CBs
1331 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1332 */
1333 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1334 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1335 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1336 rdp->nxtcompleted[i] = c;
1337
1338 /*
1339 * If the needed for the required grace period is already
1340 * recorded, trace and leave.
1341 */
1342 if (rnp_root->need_future_gp[c & 0x1]) {
1343 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1344 goto unlock_out;
1345 }
1346
1347 /* Record the need for the future grace period. */
1348 rnp_root->need_future_gp[c & 0x1]++;
1349
1350 /* If a grace period is not already in progress, start one. */
1351 if (rnp_root->gpnum != rnp_root->completed) {
1352 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1353 } else {
1354 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1355 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1356 }
1357 unlock_out:
1358 if (rnp != rnp_root)
1359 raw_spin_unlock(&rnp_root->lock);
1360 out:
1361 if (c_out != NULL)
1362 *c_out = c;
1363 return ret;
1364 }
1365
1366 /*
1367 * Clean up any old requests for the just-ended grace period. Also return
1368 * whether any additional grace periods have been requested. Also invoke
1369 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1370 * waiting for this grace period to complete.
1371 */
1372 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1373 {
1374 int c = rnp->completed;
1375 int needmore;
1376 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1377
1378 rcu_nocb_gp_cleanup(rsp, rnp);
1379 rnp->need_future_gp[c & 0x1] = 0;
1380 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1381 trace_rcu_future_gp(rnp, rdp, c,
1382 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1383 return needmore;
1384 }
1385
1386 /*
1387 * Awaken the grace-period kthread for the specified flavor of RCU.
1388 * Don't do a self-awaken, and don't bother awakening when there is
1389 * nothing for the grace-period kthread to do (as in several CPUs
1390 * raced to awaken, and we lost), and finally don't try to awaken
1391 * a kthread that has not yet been created.
1392 */
1393 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1394 {
1395 if (current == rsp->gp_kthread ||
1396 !ACCESS_ONCE(rsp->gp_flags) ||
1397 !rsp->gp_kthread)
1398 return;
1399 wake_up(&rsp->gp_wq);
1400 }
1401
1402 /*
1403 * If there is room, assign a ->completed number to any callbacks on
1404 * this CPU that have not already been assigned. Also accelerate any
1405 * callbacks that were previously assigned a ->completed number that has
1406 * since proven to be too conservative, which can happen if callbacks get
1407 * assigned a ->completed number while RCU is idle, but with reference to
1408 * a non-root rcu_node structure. This function is idempotent, so it does
1409 * not hurt to call it repeatedly. Returns an flag saying that we should
1410 * awaken the RCU grace-period kthread.
1411 *
1412 * The caller must hold rnp->lock with interrupts disabled.
1413 */
1414 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1415 struct rcu_data *rdp)
1416 {
1417 unsigned long c;
1418 int i;
1419 bool ret;
1420
1421 /* If the CPU has no callbacks, nothing to do. */
1422 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1423 return false;
1424
1425 /*
1426 * Starting from the sublist containing the callbacks most
1427 * recently assigned a ->completed number and working down, find the
1428 * first sublist that is not assignable to an upcoming grace period.
1429 * Such a sublist has something in it (first two tests) and has
1430 * a ->completed number assigned that will complete sooner than
1431 * the ->completed number for newly arrived callbacks (last test).
1432 *
1433 * The key point is that any later sublist can be assigned the
1434 * same ->completed number as the newly arrived callbacks, which
1435 * means that the callbacks in any of these later sublist can be
1436 * grouped into a single sublist, whether or not they have already
1437 * been assigned a ->completed number.
1438 */
1439 c = rcu_cbs_completed(rsp, rnp);
1440 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1441 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1442 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1443 break;
1444
1445 /*
1446 * If there are no sublist for unassigned callbacks, leave.
1447 * At the same time, advance "i" one sublist, so that "i" will
1448 * index into the sublist where all the remaining callbacks should
1449 * be grouped into.
1450 */
1451 if (++i >= RCU_NEXT_TAIL)
1452 return false;
1453
1454 /*
1455 * Assign all subsequent callbacks' ->completed number to the next
1456 * full grace period and group them all in the sublist initially
1457 * indexed by "i".
1458 */
1459 for (; i <= RCU_NEXT_TAIL; i++) {
1460 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1461 rdp->nxtcompleted[i] = c;
1462 }
1463 /* Record any needed additional grace periods. */
1464 ret = rcu_start_future_gp(rnp, rdp, NULL);
1465
1466 /* Trace depending on how much we were able to accelerate. */
1467 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1468 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1469 else
1470 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1471 return ret;
1472 }
1473
1474 /*
1475 * Move any callbacks whose grace period has completed to the
1476 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1477 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1478 * sublist. This function is idempotent, so it does not hurt to
1479 * invoke it repeatedly. As long as it is not invoked -too- often...
1480 * Returns true if the RCU grace-period kthread needs to be awakened.
1481 *
1482 * The caller must hold rnp->lock with interrupts disabled.
1483 */
1484 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1485 struct rcu_data *rdp)
1486 {
1487 int i, j;
1488
1489 /* If the CPU has no callbacks, nothing to do. */
1490 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1491 return false;
1492
1493 /*
1494 * Find all callbacks whose ->completed numbers indicate that they
1495 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1496 */
1497 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1498 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1499 break;
1500 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1501 }
1502 /* Clean up any sublist tail pointers that were misordered above. */
1503 for (j = RCU_WAIT_TAIL; j < i; j++)
1504 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1505
1506 /* Copy down callbacks to fill in empty sublists. */
1507 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1508 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1509 break;
1510 rdp->nxttail[j] = rdp->nxttail[i];
1511 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1512 }
1513
1514 /* Classify any remaining callbacks. */
1515 return rcu_accelerate_cbs(rsp, rnp, rdp);
1516 }
1517
1518 /*
1519 * Update CPU-local rcu_data state to record the beginnings and ends of
1520 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1521 * structure corresponding to the current CPU, and must have irqs disabled.
1522 * Returns true if the grace-period kthread needs to be awakened.
1523 */
1524 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1525 struct rcu_data *rdp)
1526 {
1527 bool ret;
1528
1529 /* Handle the ends of any preceding grace periods first. */
1530 if (rdp->completed == rnp->completed) {
1531
1532 /* No grace period end, so just accelerate recent callbacks. */
1533 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1534
1535 } else {
1536
1537 /* Advance callbacks. */
1538 ret = rcu_advance_cbs(rsp, rnp, rdp);
1539
1540 /* Remember that we saw this grace-period completion. */
1541 rdp->completed = rnp->completed;
1542 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1543 }
1544
1545 if (rdp->gpnum != rnp->gpnum) {
1546 /*
1547 * If the current grace period is waiting for this CPU,
1548 * set up to detect a quiescent state, otherwise don't
1549 * go looking for one.
1550 */
1551 rdp->gpnum = rnp->gpnum;
1552 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1553 rdp->passed_quiesce = 0;
1554 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1555 zero_cpu_stall_ticks(rdp);
1556 }
1557 return ret;
1558 }
1559
1560 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1561 {
1562 unsigned long flags;
1563 bool needwake;
1564 struct rcu_node *rnp;
1565
1566 local_irq_save(flags);
1567 rnp = rdp->mynode;
1568 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1569 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1570 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1571 local_irq_restore(flags);
1572 return;
1573 }
1574 smp_mb__after_unlock_lock();
1575 needwake = __note_gp_changes(rsp, rnp, rdp);
1576 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1577 if (needwake)
1578 rcu_gp_kthread_wake(rsp);
1579 }
1580
1581 /*
1582 * Initialize a new grace period. Return 0 if no grace period required.
1583 */
1584 static int rcu_gp_init(struct rcu_state *rsp)
1585 {
1586 struct rcu_data *rdp;
1587 struct rcu_node *rnp = rcu_get_root(rsp);
1588
1589 rcu_bind_gp_kthread();
1590 raw_spin_lock_irq(&rnp->lock);
1591 smp_mb__after_unlock_lock();
1592 if (!ACCESS_ONCE(rsp->gp_flags)) {
1593 /* Spurious wakeup, tell caller to go back to sleep. */
1594 raw_spin_unlock_irq(&rnp->lock);
1595 return 0;
1596 }
1597 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1598
1599 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1600 /*
1601 * Grace period already in progress, don't start another.
1602 * Not supposed to be able to happen.
1603 */
1604 raw_spin_unlock_irq(&rnp->lock);
1605 return 0;
1606 }
1607
1608 /* Advance to a new grace period and initialize state. */
1609 record_gp_stall_check_time(rsp);
1610 /* Record GP times before starting GP, hence smp_store_release(). */
1611 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1612 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1613 raw_spin_unlock_irq(&rnp->lock);
1614
1615 /* Exclude any concurrent CPU-hotplug operations. */
1616 mutex_lock(&rsp->onoff_mutex);
1617 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1618
1619 /*
1620 * Set the quiescent-state-needed bits in all the rcu_node
1621 * structures for all currently online CPUs in breadth-first order,
1622 * starting from the root rcu_node structure, relying on the layout
1623 * of the tree within the rsp->node[] array. Note that other CPUs
1624 * will access only the leaves of the hierarchy, thus seeing that no
1625 * grace period is in progress, at least until the corresponding
1626 * leaf node has been initialized. In addition, we have excluded
1627 * CPU-hotplug operations.
1628 *
1629 * The grace period cannot complete until the initialization
1630 * process finishes, because this kthread handles both.
1631 */
1632 rcu_for_each_node_breadth_first(rsp, rnp) {
1633 raw_spin_lock_irq(&rnp->lock);
1634 smp_mb__after_unlock_lock();
1635 rdp = this_cpu_ptr(rsp->rda);
1636 rcu_preempt_check_blocked_tasks(rnp);
1637 rnp->qsmask = rnp->qsmaskinit;
1638 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1639 WARN_ON_ONCE(rnp->completed != rsp->completed);
1640 ACCESS_ONCE(rnp->completed) = rsp->completed;
1641 if (rnp == rdp->mynode)
1642 (void)__note_gp_changes(rsp, rnp, rdp);
1643 rcu_preempt_boost_start_gp(rnp);
1644 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1645 rnp->level, rnp->grplo,
1646 rnp->grphi, rnp->qsmask);
1647 raw_spin_unlock_irq(&rnp->lock);
1648 #ifdef CONFIG_PROVE_RCU_DELAY
1649 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1650 system_state == SYSTEM_RUNNING)
1651 udelay(200);
1652 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1653 cond_resched();
1654 }
1655
1656 mutex_unlock(&rsp->onoff_mutex);
1657 return 1;
1658 }
1659
1660 /*
1661 * Do one round of quiescent-state forcing.
1662 */
1663 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1664 {
1665 int fqs_state = fqs_state_in;
1666 bool isidle = false;
1667 unsigned long maxj;
1668 struct rcu_node *rnp = rcu_get_root(rsp);
1669
1670 rsp->n_force_qs++;
1671 if (fqs_state == RCU_SAVE_DYNTICK) {
1672 /* Collect dyntick-idle snapshots. */
1673 if (is_sysidle_rcu_state(rsp)) {
1674 isidle = 1;
1675 maxj = jiffies - ULONG_MAX / 4;
1676 }
1677 force_qs_rnp(rsp, dyntick_save_progress_counter,
1678 &isidle, &maxj);
1679 rcu_sysidle_report_gp(rsp, isidle, maxj);
1680 fqs_state = RCU_FORCE_QS;
1681 } else {
1682 /* Handle dyntick-idle and offline CPUs. */
1683 isidle = 0;
1684 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1685 }
1686 /* Clear flag to prevent immediate re-entry. */
1687 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1688 raw_spin_lock_irq(&rnp->lock);
1689 smp_mb__after_unlock_lock();
1690 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
1691 raw_spin_unlock_irq(&rnp->lock);
1692 }
1693 return fqs_state;
1694 }
1695
1696 /*
1697 * Clean up after the old grace period.
1698 */
1699 static void rcu_gp_cleanup(struct rcu_state *rsp)
1700 {
1701 unsigned long gp_duration;
1702 bool needgp = false;
1703 int nocb = 0;
1704 struct rcu_data *rdp;
1705 struct rcu_node *rnp = rcu_get_root(rsp);
1706
1707 raw_spin_lock_irq(&rnp->lock);
1708 smp_mb__after_unlock_lock();
1709 gp_duration = jiffies - rsp->gp_start;
1710 if (gp_duration > rsp->gp_max)
1711 rsp->gp_max = gp_duration;
1712
1713 /*
1714 * We know the grace period is complete, but to everyone else
1715 * it appears to still be ongoing. But it is also the case
1716 * that to everyone else it looks like there is nothing that
1717 * they can do to advance the grace period. It is therefore
1718 * safe for us to drop the lock in order to mark the grace
1719 * period as completed in all of the rcu_node structures.
1720 */
1721 raw_spin_unlock_irq(&rnp->lock);
1722
1723 /*
1724 * Propagate new ->completed value to rcu_node structures so
1725 * that other CPUs don't have to wait until the start of the next
1726 * grace period to process their callbacks. This also avoids
1727 * some nasty RCU grace-period initialization races by forcing
1728 * the end of the current grace period to be completely recorded in
1729 * all of the rcu_node structures before the beginning of the next
1730 * grace period is recorded in any of the rcu_node structures.
1731 */
1732 rcu_for_each_node_breadth_first(rsp, rnp) {
1733 raw_spin_lock_irq(&rnp->lock);
1734 smp_mb__after_unlock_lock();
1735 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1736 rdp = this_cpu_ptr(rsp->rda);
1737 if (rnp == rdp->mynode)
1738 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1739 /* smp_mb() provided by prior unlock-lock pair. */
1740 nocb += rcu_future_gp_cleanup(rsp, rnp);
1741 raw_spin_unlock_irq(&rnp->lock);
1742 cond_resched();
1743 }
1744 rnp = rcu_get_root(rsp);
1745 raw_spin_lock_irq(&rnp->lock);
1746 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1747 rcu_nocb_gp_set(rnp, nocb);
1748
1749 /* Declare grace period done. */
1750 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1751 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1752 rsp->fqs_state = RCU_GP_IDLE;
1753 rdp = this_cpu_ptr(rsp->rda);
1754 /* Advance CBs to reduce false positives below. */
1755 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1756 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1757 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1758 trace_rcu_grace_period(rsp->name,
1759 ACCESS_ONCE(rsp->gpnum),
1760 TPS("newreq"));
1761 }
1762 raw_spin_unlock_irq(&rnp->lock);
1763 }
1764
1765 /*
1766 * Body of kthread that handles grace periods.
1767 */
1768 static int __noreturn rcu_gp_kthread(void *arg)
1769 {
1770 int fqs_state;
1771 int gf;
1772 unsigned long j;
1773 int ret;
1774 struct rcu_state *rsp = arg;
1775 struct rcu_node *rnp = rcu_get_root(rsp);
1776
1777 for (;;) {
1778
1779 /* Handle grace-period start. */
1780 for (;;) {
1781 trace_rcu_grace_period(rsp->name,
1782 ACCESS_ONCE(rsp->gpnum),
1783 TPS("reqwait"));
1784 rsp->gp_state = RCU_GP_WAIT_GPS;
1785 wait_event_interruptible(rsp->gp_wq,
1786 ACCESS_ONCE(rsp->gp_flags) &
1787 RCU_GP_FLAG_INIT);
1788 /* Locking provides needed memory barrier. */
1789 if (rcu_gp_init(rsp))
1790 break;
1791 cond_resched();
1792 flush_signals(current);
1793 trace_rcu_grace_period(rsp->name,
1794 ACCESS_ONCE(rsp->gpnum),
1795 TPS("reqwaitsig"));
1796 }
1797
1798 /* Handle quiescent-state forcing. */
1799 fqs_state = RCU_SAVE_DYNTICK;
1800 j = jiffies_till_first_fqs;
1801 if (j > HZ) {
1802 j = HZ;
1803 jiffies_till_first_fqs = HZ;
1804 }
1805 ret = 0;
1806 for (;;) {
1807 if (!ret)
1808 rsp->jiffies_force_qs = jiffies + j;
1809 trace_rcu_grace_period(rsp->name,
1810 ACCESS_ONCE(rsp->gpnum),
1811 TPS("fqswait"));
1812 rsp->gp_state = RCU_GP_WAIT_FQS;
1813 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1814 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1815 RCU_GP_FLAG_FQS) ||
1816 (!ACCESS_ONCE(rnp->qsmask) &&
1817 !rcu_preempt_blocked_readers_cgp(rnp)),
1818 j);
1819 /* Locking provides needed memory barriers. */
1820 /* If grace period done, leave loop. */
1821 if (!ACCESS_ONCE(rnp->qsmask) &&
1822 !rcu_preempt_blocked_readers_cgp(rnp))
1823 break;
1824 /* If time for quiescent-state forcing, do it. */
1825 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1826 (gf & RCU_GP_FLAG_FQS)) {
1827 trace_rcu_grace_period(rsp->name,
1828 ACCESS_ONCE(rsp->gpnum),
1829 TPS("fqsstart"));
1830 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1831 trace_rcu_grace_period(rsp->name,
1832 ACCESS_ONCE(rsp->gpnum),
1833 TPS("fqsend"));
1834 cond_resched();
1835 } else {
1836 /* Deal with stray signal. */
1837 cond_resched();
1838 flush_signals(current);
1839 trace_rcu_grace_period(rsp->name,
1840 ACCESS_ONCE(rsp->gpnum),
1841 TPS("fqswaitsig"));
1842 }
1843 j = jiffies_till_next_fqs;
1844 if (j > HZ) {
1845 j = HZ;
1846 jiffies_till_next_fqs = HZ;
1847 } else if (j < 1) {
1848 j = 1;
1849 jiffies_till_next_fqs = 1;
1850 }
1851 }
1852
1853 /* Handle grace-period end. */
1854 rcu_gp_cleanup(rsp);
1855 }
1856 }
1857
1858 /*
1859 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1860 * in preparation for detecting the next grace period. The caller must hold
1861 * the root node's ->lock and hard irqs must be disabled.
1862 *
1863 * Note that it is legal for a dying CPU (which is marked as offline) to
1864 * invoke this function. This can happen when the dying CPU reports its
1865 * quiescent state.
1866 *
1867 * Returns true if the grace-period kthread must be awakened.
1868 */
1869 static bool
1870 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1871 struct rcu_data *rdp)
1872 {
1873 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1874 /*
1875 * Either we have not yet spawned the grace-period
1876 * task, this CPU does not need another grace period,
1877 * or a grace period is already in progress.
1878 * Either way, don't start a new grace period.
1879 */
1880 return false;
1881 }
1882 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1883 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1884 TPS("newreq"));
1885
1886 /*
1887 * We can't do wakeups while holding the rnp->lock, as that
1888 * could cause possible deadlocks with the rq->lock. Defer
1889 * the wakeup to our caller.
1890 */
1891 return true;
1892 }
1893
1894 /*
1895 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1896 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1897 * is invoked indirectly from rcu_advance_cbs(), which would result in
1898 * endless recursion -- or would do so if it wasn't for the self-deadlock
1899 * that is encountered beforehand.
1900 *
1901 * Returns true if the grace-period kthread needs to be awakened.
1902 */
1903 static bool rcu_start_gp(struct rcu_state *rsp)
1904 {
1905 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1906 struct rcu_node *rnp = rcu_get_root(rsp);
1907 bool ret = false;
1908
1909 /*
1910 * If there is no grace period in progress right now, any
1911 * callbacks we have up to this point will be satisfied by the
1912 * next grace period. Also, advancing the callbacks reduces the
1913 * probability of false positives from cpu_needs_another_gp()
1914 * resulting in pointless grace periods. So, advance callbacks
1915 * then start the grace period!
1916 */
1917 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1918 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1919 return ret;
1920 }
1921
1922 /*
1923 * Report a full set of quiescent states to the specified rcu_state
1924 * data structure. This involves cleaning up after the prior grace
1925 * period and letting rcu_start_gp() start up the next grace period
1926 * if one is needed. Note that the caller must hold rnp->lock, which
1927 * is released before return.
1928 */
1929 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1930 __releases(rcu_get_root(rsp)->lock)
1931 {
1932 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1933 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1934 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1935 }
1936
1937 /*
1938 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1939 * Allows quiescent states for a group of CPUs to be reported at one go
1940 * to the specified rcu_node structure, though all the CPUs in the group
1941 * must be represented by the same rcu_node structure (which need not be
1942 * a leaf rcu_node structure, though it often will be). That structure's
1943 * lock must be held upon entry, and it is released before return.
1944 */
1945 static void
1946 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1947 struct rcu_node *rnp, unsigned long flags)
1948 __releases(rnp->lock)
1949 {
1950 struct rcu_node *rnp_c;
1951
1952 /* Walk up the rcu_node hierarchy. */
1953 for (;;) {
1954 if (!(rnp->qsmask & mask)) {
1955
1956 /* Our bit has already been cleared, so done. */
1957 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1958 return;
1959 }
1960 rnp->qsmask &= ~mask;
1961 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1962 mask, rnp->qsmask, rnp->level,
1963 rnp->grplo, rnp->grphi,
1964 !!rnp->gp_tasks);
1965 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1966
1967 /* Other bits still set at this level, so done. */
1968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1969 return;
1970 }
1971 mask = rnp->grpmask;
1972 if (rnp->parent == NULL) {
1973
1974 /* No more levels. Exit loop holding root lock. */
1975
1976 break;
1977 }
1978 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1979 rnp_c = rnp;
1980 rnp = rnp->parent;
1981 raw_spin_lock_irqsave(&rnp->lock, flags);
1982 smp_mb__after_unlock_lock();
1983 WARN_ON_ONCE(rnp_c->qsmask);
1984 }
1985
1986 /*
1987 * Get here if we are the last CPU to pass through a quiescent
1988 * state for this grace period. Invoke rcu_report_qs_rsp()
1989 * to clean up and start the next grace period if one is needed.
1990 */
1991 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1992 }
1993
1994 /*
1995 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1996 * structure. This must be either called from the specified CPU, or
1997 * called when the specified CPU is known to be offline (and when it is
1998 * also known that no other CPU is concurrently trying to help the offline
1999 * CPU). The lastcomp argument is used to make sure we are still in the
2000 * grace period of interest. We don't want to end the current grace period
2001 * based on quiescent states detected in an earlier grace period!
2002 */
2003 static void
2004 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2005 {
2006 unsigned long flags;
2007 unsigned long mask;
2008 bool needwake;
2009 struct rcu_node *rnp;
2010
2011 rnp = rdp->mynode;
2012 raw_spin_lock_irqsave(&rnp->lock, flags);
2013 smp_mb__after_unlock_lock();
2014 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2015 rnp->completed == rnp->gpnum) {
2016
2017 /*
2018 * The grace period in which this quiescent state was
2019 * recorded has ended, so don't report it upwards.
2020 * We will instead need a new quiescent state that lies
2021 * within the current grace period.
2022 */
2023 rdp->passed_quiesce = 0; /* need qs for new gp. */
2024 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2025 return;
2026 }
2027 mask = rdp->grpmask;
2028 if ((rnp->qsmask & mask) == 0) {
2029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2030 } else {
2031 rdp->qs_pending = 0;
2032
2033 /*
2034 * This GP can't end until cpu checks in, so all of our
2035 * callbacks can be processed during the next GP.
2036 */
2037 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2038
2039 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2040 if (needwake)
2041 rcu_gp_kthread_wake(rsp);
2042 }
2043 }
2044
2045 /*
2046 * Check to see if there is a new grace period of which this CPU
2047 * is not yet aware, and if so, set up local rcu_data state for it.
2048 * Otherwise, see if this CPU has just passed through its first
2049 * quiescent state for this grace period, and record that fact if so.
2050 */
2051 static void
2052 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2053 {
2054 /* Check for grace-period ends and beginnings. */
2055 note_gp_changes(rsp, rdp);
2056
2057 /*
2058 * Does this CPU still need to do its part for current grace period?
2059 * If no, return and let the other CPUs do their part as well.
2060 */
2061 if (!rdp->qs_pending)
2062 return;
2063
2064 /*
2065 * Was there a quiescent state since the beginning of the grace
2066 * period? If no, then exit and wait for the next call.
2067 */
2068 if (!rdp->passed_quiesce)
2069 return;
2070
2071 /*
2072 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2073 * judge of that).
2074 */
2075 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2076 }
2077
2078 #ifdef CONFIG_HOTPLUG_CPU
2079
2080 /*
2081 * Send the specified CPU's RCU callbacks to the orphanage. The
2082 * specified CPU must be offline, and the caller must hold the
2083 * ->orphan_lock.
2084 */
2085 static void
2086 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2087 struct rcu_node *rnp, struct rcu_data *rdp)
2088 {
2089 /* No-CBs CPUs do not have orphanable callbacks. */
2090 if (rcu_is_nocb_cpu(rdp->cpu))
2091 return;
2092
2093 /*
2094 * Orphan the callbacks. First adjust the counts. This is safe
2095 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2096 * cannot be running now. Thus no memory barrier is required.
2097 */
2098 if (rdp->nxtlist != NULL) {
2099 rsp->qlen_lazy += rdp->qlen_lazy;
2100 rsp->qlen += rdp->qlen;
2101 rdp->n_cbs_orphaned += rdp->qlen;
2102 rdp->qlen_lazy = 0;
2103 ACCESS_ONCE(rdp->qlen) = 0;
2104 }
2105
2106 /*
2107 * Next, move those callbacks still needing a grace period to
2108 * the orphanage, where some other CPU will pick them up.
2109 * Some of the callbacks might have gone partway through a grace
2110 * period, but that is too bad. They get to start over because we
2111 * cannot assume that grace periods are synchronized across CPUs.
2112 * We don't bother updating the ->nxttail[] array yet, instead
2113 * we just reset the whole thing later on.
2114 */
2115 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2116 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2117 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2118 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2119 }
2120
2121 /*
2122 * Then move the ready-to-invoke callbacks to the orphanage,
2123 * where some other CPU will pick them up. These will not be
2124 * required to pass though another grace period: They are done.
2125 */
2126 if (rdp->nxtlist != NULL) {
2127 *rsp->orphan_donetail = rdp->nxtlist;
2128 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2129 }
2130
2131 /* Finally, initialize the rcu_data structure's list to empty. */
2132 init_callback_list(rdp);
2133 }
2134
2135 /*
2136 * Adopt the RCU callbacks from the specified rcu_state structure's
2137 * orphanage. The caller must hold the ->orphan_lock.
2138 */
2139 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2140 {
2141 int i;
2142 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2143
2144 /* No-CBs CPUs are handled specially. */
2145 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2146 return;
2147
2148 /* Do the accounting first. */
2149 rdp->qlen_lazy += rsp->qlen_lazy;
2150 rdp->qlen += rsp->qlen;
2151 rdp->n_cbs_adopted += rsp->qlen;
2152 if (rsp->qlen_lazy != rsp->qlen)
2153 rcu_idle_count_callbacks_posted();
2154 rsp->qlen_lazy = 0;
2155 rsp->qlen = 0;
2156
2157 /*
2158 * We do not need a memory barrier here because the only way we
2159 * can get here if there is an rcu_barrier() in flight is if
2160 * we are the task doing the rcu_barrier().
2161 */
2162
2163 /* First adopt the ready-to-invoke callbacks. */
2164 if (rsp->orphan_donelist != NULL) {
2165 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2166 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2167 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2168 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2169 rdp->nxttail[i] = rsp->orphan_donetail;
2170 rsp->orphan_donelist = NULL;
2171 rsp->orphan_donetail = &rsp->orphan_donelist;
2172 }
2173
2174 /* And then adopt the callbacks that still need a grace period. */
2175 if (rsp->orphan_nxtlist != NULL) {
2176 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2177 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2178 rsp->orphan_nxtlist = NULL;
2179 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2180 }
2181 }
2182
2183 /*
2184 * Trace the fact that this CPU is going offline.
2185 */
2186 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2187 {
2188 RCU_TRACE(unsigned long mask);
2189 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2190 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2191
2192 RCU_TRACE(mask = rdp->grpmask);
2193 trace_rcu_grace_period(rsp->name,
2194 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2195 TPS("cpuofl"));
2196 }
2197
2198 /*
2199 * The CPU has been completely removed, and some other CPU is reporting
2200 * this fact from process context. Do the remainder of the cleanup,
2201 * including orphaning the outgoing CPU's RCU callbacks, and also
2202 * adopting them. There can only be one CPU hotplug operation at a time,
2203 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2204 */
2205 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2206 {
2207 unsigned long flags;
2208 unsigned long mask;
2209 int need_report = 0;
2210 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2211 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2212
2213 /* Adjust any no-longer-needed kthreads. */
2214 rcu_boost_kthread_setaffinity(rnp, -1);
2215
2216 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2217
2218 /* Exclude any attempts to start a new grace period. */
2219 mutex_lock(&rsp->onoff_mutex);
2220 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2221
2222 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2223 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2224 rcu_adopt_orphan_cbs(rsp, flags);
2225
2226 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2227 mask = rdp->grpmask; /* rnp->grplo is constant. */
2228 do {
2229 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2230 smp_mb__after_unlock_lock();
2231 rnp->qsmaskinit &= ~mask;
2232 if (rnp->qsmaskinit != 0) {
2233 if (rnp != rdp->mynode)
2234 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2235 break;
2236 }
2237 if (rnp == rdp->mynode)
2238 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2239 else
2240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2241 mask = rnp->grpmask;
2242 rnp = rnp->parent;
2243 } while (rnp != NULL);
2244
2245 /*
2246 * We still hold the leaf rcu_node structure lock here, and
2247 * irqs are still disabled. The reason for this subterfuge is
2248 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2249 * held leads to deadlock.
2250 */
2251 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2252 rnp = rdp->mynode;
2253 if (need_report & RCU_OFL_TASKS_NORM_GP)
2254 rcu_report_unblock_qs_rnp(rnp, flags);
2255 else
2256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2257 if (need_report & RCU_OFL_TASKS_EXP_GP)
2258 rcu_report_exp_rnp(rsp, rnp, true);
2259 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2260 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2261 cpu, rdp->qlen, rdp->nxtlist);
2262 init_callback_list(rdp);
2263 /* Disallow further callbacks on this CPU. */
2264 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2265 mutex_unlock(&rsp->onoff_mutex);
2266 }
2267
2268 #else /* #ifdef CONFIG_HOTPLUG_CPU */
2269
2270 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2271 {
2272 }
2273
2274 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2275 {
2276 }
2277
2278 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2279
2280 /*
2281 * Invoke any RCU callbacks that have made it to the end of their grace
2282 * period. Thottle as specified by rdp->blimit.
2283 */
2284 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2285 {
2286 unsigned long flags;
2287 struct rcu_head *next, *list, **tail;
2288 long bl, count, count_lazy;
2289 int i;
2290
2291 /* If no callbacks are ready, just return. */
2292 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2293 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2294 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2295 need_resched(), is_idle_task(current),
2296 rcu_is_callbacks_kthread());
2297 return;
2298 }
2299
2300 /*
2301 * Extract the list of ready callbacks, disabling to prevent
2302 * races with call_rcu() from interrupt handlers.
2303 */
2304 local_irq_save(flags);
2305 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2306 bl = rdp->blimit;
2307 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2308 list = rdp->nxtlist;
2309 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2310 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2311 tail = rdp->nxttail[RCU_DONE_TAIL];
2312 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2313 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2314 rdp->nxttail[i] = &rdp->nxtlist;
2315 local_irq_restore(flags);
2316
2317 /* Invoke callbacks. */
2318 count = count_lazy = 0;
2319 while (list) {
2320 next = list->next;
2321 prefetch(next);
2322 debug_rcu_head_unqueue(list);
2323 if (__rcu_reclaim(rsp->name, list))
2324 count_lazy++;
2325 list = next;
2326 /* Stop only if limit reached and CPU has something to do. */
2327 if (++count >= bl &&
2328 (need_resched() ||
2329 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2330 break;
2331 }
2332
2333 local_irq_save(flags);
2334 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2335 is_idle_task(current),
2336 rcu_is_callbacks_kthread());
2337
2338 /* Update count, and requeue any remaining callbacks. */
2339 if (list != NULL) {
2340 *tail = rdp->nxtlist;
2341 rdp->nxtlist = list;
2342 for (i = 0; i < RCU_NEXT_SIZE; i++)
2343 if (&rdp->nxtlist == rdp->nxttail[i])
2344 rdp->nxttail[i] = tail;
2345 else
2346 break;
2347 }
2348 smp_mb(); /* List handling before counting for rcu_barrier(). */
2349 rdp->qlen_lazy -= count_lazy;
2350 ACCESS_ONCE(rdp->qlen) -= count;
2351 rdp->n_cbs_invoked += count;
2352
2353 /* Reinstate batch limit if we have worked down the excess. */
2354 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2355 rdp->blimit = blimit;
2356
2357 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2358 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2359 rdp->qlen_last_fqs_check = 0;
2360 rdp->n_force_qs_snap = rsp->n_force_qs;
2361 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2362 rdp->qlen_last_fqs_check = rdp->qlen;
2363 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2364
2365 local_irq_restore(flags);
2366
2367 /* Re-invoke RCU core processing if there are callbacks remaining. */
2368 if (cpu_has_callbacks_ready_to_invoke(rdp))
2369 invoke_rcu_core();
2370 }
2371
2372 /*
2373 * Check to see if this CPU is in a non-context-switch quiescent state
2374 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2375 * Also schedule RCU core processing.
2376 *
2377 * This function must be called from hardirq context. It is normally
2378 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2379 * false, there is no point in invoking rcu_check_callbacks().
2380 */
2381 void rcu_check_callbacks(int cpu, int user)
2382 {
2383 trace_rcu_utilization(TPS("Start scheduler-tick"));
2384 increment_cpu_stall_ticks();
2385 if (user || rcu_is_cpu_rrupt_from_idle()) {
2386
2387 /*
2388 * Get here if this CPU took its interrupt from user
2389 * mode or from the idle loop, and if this is not a
2390 * nested interrupt. In this case, the CPU is in
2391 * a quiescent state, so note it.
2392 *
2393 * No memory barrier is required here because both
2394 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2395 * variables that other CPUs neither access nor modify,
2396 * at least not while the corresponding CPU is online.
2397 */
2398
2399 rcu_sched_qs(cpu);
2400 rcu_bh_qs(cpu);
2401
2402 } else if (!in_softirq()) {
2403
2404 /*
2405 * Get here if this CPU did not take its interrupt from
2406 * softirq, in other words, if it is not interrupting
2407 * a rcu_bh read-side critical section. This is an _bh
2408 * critical section, so note it.
2409 */
2410
2411 rcu_bh_qs(cpu);
2412 }
2413 rcu_preempt_check_callbacks(cpu);
2414 if (rcu_pending(cpu))
2415 invoke_rcu_core();
2416 trace_rcu_utilization(TPS("End scheduler-tick"));
2417 }
2418
2419 /*
2420 * Scan the leaf rcu_node structures, processing dyntick state for any that
2421 * have not yet encountered a quiescent state, using the function specified.
2422 * Also initiate boosting for any threads blocked on the root rcu_node.
2423 *
2424 * The caller must have suppressed start of new grace periods.
2425 */
2426 static void force_qs_rnp(struct rcu_state *rsp,
2427 int (*f)(struct rcu_data *rsp, bool *isidle,
2428 unsigned long *maxj),
2429 bool *isidle, unsigned long *maxj)
2430 {
2431 unsigned long bit;
2432 int cpu;
2433 unsigned long flags;
2434 unsigned long mask;
2435 struct rcu_node *rnp;
2436
2437 rcu_for_each_leaf_node(rsp, rnp) {
2438 cond_resched();
2439 mask = 0;
2440 raw_spin_lock_irqsave(&rnp->lock, flags);
2441 smp_mb__after_unlock_lock();
2442 if (!rcu_gp_in_progress(rsp)) {
2443 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2444 return;
2445 }
2446 if (rnp->qsmask == 0) {
2447 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2448 continue;
2449 }
2450 cpu = rnp->grplo;
2451 bit = 1;
2452 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2453 if ((rnp->qsmask & bit) != 0) {
2454 if ((rnp->qsmaskinit & bit) != 0)
2455 *isidle = 0;
2456 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2457 mask |= bit;
2458 }
2459 }
2460 if (mask != 0) {
2461
2462 /* rcu_report_qs_rnp() releases rnp->lock. */
2463 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2464 continue;
2465 }
2466 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2467 }
2468 rnp = rcu_get_root(rsp);
2469 if (rnp->qsmask == 0) {
2470 raw_spin_lock_irqsave(&rnp->lock, flags);
2471 smp_mb__after_unlock_lock();
2472 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2473 }
2474 }
2475
2476 /*
2477 * Force quiescent states on reluctant CPUs, and also detect which
2478 * CPUs are in dyntick-idle mode.
2479 */
2480 static void force_quiescent_state(struct rcu_state *rsp)
2481 {
2482 unsigned long flags;
2483 bool ret;
2484 struct rcu_node *rnp;
2485 struct rcu_node *rnp_old = NULL;
2486
2487 /* Funnel through hierarchy to reduce memory contention. */
2488 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2489 for (; rnp != NULL; rnp = rnp->parent) {
2490 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2491 !raw_spin_trylock(&rnp->fqslock);
2492 if (rnp_old != NULL)
2493 raw_spin_unlock(&rnp_old->fqslock);
2494 if (ret) {
2495 ACCESS_ONCE(rsp->n_force_qs_lh)++;
2496 return;
2497 }
2498 rnp_old = rnp;
2499 }
2500 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2501
2502 /* Reached the root of the rcu_node tree, acquire lock. */
2503 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2504 smp_mb__after_unlock_lock();
2505 raw_spin_unlock(&rnp_old->fqslock);
2506 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2507 ACCESS_ONCE(rsp->n_force_qs_lh)++;
2508 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2509 return; /* Someone beat us to it. */
2510 }
2511 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
2512 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2513 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2514 }
2515
2516 /*
2517 * This does the RCU core processing work for the specified rcu_state
2518 * and rcu_data structures. This may be called only from the CPU to
2519 * whom the rdp belongs.
2520 */
2521 static void
2522 __rcu_process_callbacks(struct rcu_state *rsp)
2523 {
2524 unsigned long flags;
2525 bool needwake;
2526 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2527
2528 WARN_ON_ONCE(rdp->beenonline == 0);
2529
2530 /* Update RCU state based on any recent quiescent states. */
2531 rcu_check_quiescent_state(rsp, rdp);
2532
2533 /* Does this CPU require a not-yet-started grace period? */
2534 local_irq_save(flags);
2535 if (cpu_needs_another_gp(rsp, rdp)) {
2536 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2537 needwake = rcu_start_gp(rsp);
2538 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2539 if (needwake)
2540 rcu_gp_kthread_wake(rsp);
2541 } else {
2542 local_irq_restore(flags);
2543 }
2544
2545 /* If there are callbacks ready, invoke them. */
2546 if (cpu_has_callbacks_ready_to_invoke(rdp))
2547 invoke_rcu_callbacks(rsp, rdp);
2548
2549 /* Do any needed deferred wakeups of rcuo kthreads. */
2550 do_nocb_deferred_wakeup(rdp);
2551 }
2552
2553 /*
2554 * Do RCU core processing for the current CPU.
2555 */
2556 static void rcu_process_callbacks(struct softirq_action *unused)
2557 {
2558 struct rcu_state *rsp;
2559
2560 if (cpu_is_offline(smp_processor_id()))
2561 return;
2562 trace_rcu_utilization(TPS("Start RCU core"));
2563 for_each_rcu_flavor(rsp)
2564 __rcu_process_callbacks(rsp);
2565 trace_rcu_utilization(TPS("End RCU core"));
2566 }
2567
2568 /*
2569 * Schedule RCU callback invocation. If the specified type of RCU
2570 * does not support RCU priority boosting, just do a direct call,
2571 * otherwise wake up the per-CPU kernel kthread. Note that because we
2572 * are running on the current CPU with interrupts disabled, the
2573 * rcu_cpu_kthread_task cannot disappear out from under us.
2574 */
2575 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2576 {
2577 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2578 return;
2579 if (likely(!rsp->boost)) {
2580 rcu_do_batch(rsp, rdp);
2581 return;
2582 }
2583 invoke_rcu_callbacks_kthread();
2584 }
2585
2586 static void invoke_rcu_core(void)
2587 {
2588 if (cpu_online(smp_processor_id()))
2589 raise_softirq(RCU_SOFTIRQ);
2590 }
2591
2592 /*
2593 * Handle any core-RCU processing required by a call_rcu() invocation.
2594 */
2595 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2596 struct rcu_head *head, unsigned long flags)
2597 {
2598 bool needwake;
2599
2600 /*
2601 * If called from an extended quiescent state, invoke the RCU
2602 * core in order to force a re-evaluation of RCU's idleness.
2603 */
2604 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2605 invoke_rcu_core();
2606
2607 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2608 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2609 return;
2610
2611 /*
2612 * Force the grace period if too many callbacks or too long waiting.
2613 * Enforce hysteresis, and don't invoke force_quiescent_state()
2614 * if some other CPU has recently done so. Also, don't bother
2615 * invoking force_quiescent_state() if the newly enqueued callback
2616 * is the only one waiting for a grace period to complete.
2617 */
2618 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2619
2620 /* Are we ignoring a completed grace period? */
2621 note_gp_changes(rsp, rdp);
2622
2623 /* Start a new grace period if one not already started. */
2624 if (!rcu_gp_in_progress(rsp)) {
2625 struct rcu_node *rnp_root = rcu_get_root(rsp);
2626
2627 raw_spin_lock(&rnp_root->lock);
2628 smp_mb__after_unlock_lock();
2629 needwake = rcu_start_gp(rsp);
2630 raw_spin_unlock(&rnp_root->lock);
2631 if (needwake)
2632 rcu_gp_kthread_wake(rsp);
2633 } else {
2634 /* Give the grace period a kick. */
2635 rdp->blimit = LONG_MAX;
2636 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2637 *rdp->nxttail[RCU_DONE_TAIL] != head)
2638 force_quiescent_state(rsp);
2639 rdp->n_force_qs_snap = rsp->n_force_qs;
2640 rdp->qlen_last_fqs_check = rdp->qlen;
2641 }
2642 }
2643 }
2644
2645 /*
2646 * RCU callback function to leak a callback.
2647 */
2648 static void rcu_leak_callback(struct rcu_head *rhp)
2649 {
2650 }
2651
2652 /*
2653 * Helper function for call_rcu() and friends. The cpu argument will
2654 * normally be -1, indicating "currently running CPU". It may specify
2655 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2656 * is expected to specify a CPU.
2657 */
2658 static void
2659 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2660 struct rcu_state *rsp, int cpu, bool lazy)
2661 {
2662 unsigned long flags;
2663 struct rcu_data *rdp;
2664
2665 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2666 if (debug_rcu_head_queue(head)) {
2667 /* Probable double call_rcu(), so leak the callback. */
2668 ACCESS_ONCE(head->func) = rcu_leak_callback;
2669 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2670 return;
2671 }
2672 head->func = func;
2673 head->next = NULL;
2674
2675 /*
2676 * Opportunistically note grace-period endings and beginnings.
2677 * Note that we might see a beginning right after we see an
2678 * end, but never vice versa, since this CPU has to pass through
2679 * a quiescent state betweentimes.
2680 */
2681 local_irq_save(flags);
2682 rdp = this_cpu_ptr(rsp->rda);
2683
2684 /* Add the callback to our list. */
2685 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2686 int offline;
2687
2688 if (cpu != -1)
2689 rdp = per_cpu_ptr(rsp->rda, cpu);
2690 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2691 WARN_ON_ONCE(offline);
2692 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2693 local_irq_restore(flags);
2694 return;
2695 }
2696 ACCESS_ONCE(rdp->qlen)++;
2697 if (lazy)
2698 rdp->qlen_lazy++;
2699 else
2700 rcu_idle_count_callbacks_posted();
2701 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2702 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2703 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2704
2705 if (__is_kfree_rcu_offset((unsigned long)func))
2706 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2707 rdp->qlen_lazy, rdp->qlen);
2708 else
2709 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2710
2711 /* Go handle any RCU core processing required. */
2712 __call_rcu_core(rsp, rdp, head, flags);
2713 local_irq_restore(flags);
2714 }
2715
2716 /*
2717 * Queue an RCU-sched callback for invocation after a grace period.
2718 */
2719 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2720 {
2721 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2722 }
2723 EXPORT_SYMBOL_GPL(call_rcu_sched);
2724
2725 /*
2726 * Queue an RCU callback for invocation after a quicker grace period.
2727 */
2728 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2729 {
2730 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2731 }
2732 EXPORT_SYMBOL_GPL(call_rcu_bh);
2733
2734 /*
2735 * Queue an RCU callback for lazy invocation after a grace period.
2736 * This will likely be later named something like "call_rcu_lazy()",
2737 * but this change will require some way of tagging the lazy RCU
2738 * callbacks in the list of pending callbacks. Until then, this
2739 * function may only be called from __kfree_rcu().
2740 */
2741 void kfree_call_rcu(struct rcu_head *head,
2742 void (*func)(struct rcu_head *rcu))
2743 {
2744 __call_rcu(head, func, rcu_state_p, -1, 1);
2745 }
2746 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2747
2748 /*
2749 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2750 * any blocking grace-period wait automatically implies a grace period
2751 * if there is only one CPU online at any point time during execution
2752 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2753 * occasionally incorrectly indicate that there are multiple CPUs online
2754 * when there was in fact only one the whole time, as this just adds
2755 * some overhead: RCU still operates correctly.
2756 */
2757 static inline int rcu_blocking_is_gp(void)
2758 {
2759 int ret;
2760
2761 might_sleep(); /* Check for RCU read-side critical section. */
2762 preempt_disable();
2763 ret = num_online_cpus() <= 1;
2764 preempt_enable();
2765 return ret;
2766 }
2767
2768 /**
2769 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2770 *
2771 * Control will return to the caller some time after a full rcu-sched
2772 * grace period has elapsed, in other words after all currently executing
2773 * rcu-sched read-side critical sections have completed. These read-side
2774 * critical sections are delimited by rcu_read_lock_sched() and
2775 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2776 * local_irq_disable(), and so on may be used in place of
2777 * rcu_read_lock_sched().
2778 *
2779 * This means that all preempt_disable code sequences, including NMI and
2780 * non-threaded hardware-interrupt handlers, in progress on entry will
2781 * have completed before this primitive returns. However, this does not
2782 * guarantee that softirq handlers will have completed, since in some
2783 * kernels, these handlers can run in process context, and can block.
2784 *
2785 * Note that this guarantee implies further memory-ordering guarantees.
2786 * On systems with more than one CPU, when synchronize_sched() returns,
2787 * each CPU is guaranteed to have executed a full memory barrier since the
2788 * end of its last RCU-sched read-side critical section whose beginning
2789 * preceded the call to synchronize_sched(). In addition, each CPU having
2790 * an RCU read-side critical section that extends beyond the return from
2791 * synchronize_sched() is guaranteed to have executed a full memory barrier
2792 * after the beginning of synchronize_sched() and before the beginning of
2793 * that RCU read-side critical section. Note that these guarantees include
2794 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2795 * that are executing in the kernel.
2796 *
2797 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2798 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2799 * to have executed a full memory barrier during the execution of
2800 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2801 * again only if the system has more than one CPU).
2802 *
2803 * This primitive provides the guarantees made by the (now removed)
2804 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2805 * guarantees that rcu_read_lock() sections will have completed.
2806 * In "classic RCU", these two guarantees happen to be one and
2807 * the same, but can differ in realtime RCU implementations.
2808 */
2809 void synchronize_sched(void)
2810 {
2811 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2812 !lock_is_held(&rcu_lock_map) &&
2813 !lock_is_held(&rcu_sched_lock_map),
2814 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2815 if (rcu_blocking_is_gp())
2816 return;
2817 if (rcu_expedited)
2818 synchronize_sched_expedited();
2819 else
2820 wait_rcu_gp(call_rcu_sched);
2821 }
2822 EXPORT_SYMBOL_GPL(synchronize_sched);
2823
2824 /**
2825 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2826 *
2827 * Control will return to the caller some time after a full rcu_bh grace
2828 * period has elapsed, in other words after all currently executing rcu_bh
2829 * read-side critical sections have completed. RCU read-side critical
2830 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2831 * and may be nested.
2832 *
2833 * See the description of synchronize_sched() for more detailed information
2834 * on memory ordering guarantees.
2835 */
2836 void synchronize_rcu_bh(void)
2837 {
2838 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2839 !lock_is_held(&rcu_lock_map) &&
2840 !lock_is_held(&rcu_sched_lock_map),
2841 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2842 if (rcu_blocking_is_gp())
2843 return;
2844 if (rcu_expedited)
2845 synchronize_rcu_bh_expedited();
2846 else
2847 wait_rcu_gp(call_rcu_bh);
2848 }
2849 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2850
2851 /**
2852 * get_state_synchronize_rcu - Snapshot current RCU state
2853 *
2854 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2855 * to determine whether or not a full grace period has elapsed in the
2856 * meantime.
2857 */
2858 unsigned long get_state_synchronize_rcu(void)
2859 {
2860 /*
2861 * Any prior manipulation of RCU-protected data must happen
2862 * before the load from ->gpnum.
2863 */
2864 smp_mb(); /* ^^^ */
2865
2866 /*
2867 * Make sure this load happens before the purportedly
2868 * time-consuming work between get_state_synchronize_rcu()
2869 * and cond_synchronize_rcu().
2870 */
2871 return smp_load_acquire(&rcu_state_p->gpnum);
2872 }
2873 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2874
2875 /**
2876 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2877 *
2878 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2879 *
2880 * If a full RCU grace period has elapsed since the earlier call to
2881 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2882 * synchronize_rcu() to wait for a full grace period.
2883 *
2884 * Yes, this function does not take counter wrap into account. But
2885 * counter wrap is harmless. If the counter wraps, we have waited for
2886 * more than 2 billion grace periods (and way more on a 64-bit system!),
2887 * so waiting for one additional grace period should be just fine.
2888 */
2889 void cond_synchronize_rcu(unsigned long oldstate)
2890 {
2891 unsigned long newstate;
2892
2893 /*
2894 * Ensure that this load happens before any RCU-destructive
2895 * actions the caller might carry out after we return.
2896 */
2897 newstate = smp_load_acquire(&rcu_state_p->completed);
2898 if (ULONG_CMP_GE(oldstate, newstate))
2899 synchronize_rcu();
2900 }
2901 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2902
2903 static int synchronize_sched_expedited_cpu_stop(void *data)
2904 {
2905 /*
2906 * There must be a full memory barrier on each affected CPU
2907 * between the time that try_stop_cpus() is called and the
2908 * time that it returns.
2909 *
2910 * In the current initial implementation of cpu_stop, the
2911 * above condition is already met when the control reaches
2912 * this point and the following smp_mb() is not strictly
2913 * necessary. Do smp_mb() anyway for documentation and
2914 * robustness against future implementation changes.
2915 */
2916 smp_mb(); /* See above comment block. */
2917 return 0;
2918 }
2919
2920 /**
2921 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2922 *
2923 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2924 * approach to force the grace period to end quickly. This consumes
2925 * significant time on all CPUs and is unfriendly to real-time workloads,
2926 * so is thus not recommended for any sort of common-case code. In fact,
2927 * if you are using synchronize_sched_expedited() in a loop, please
2928 * restructure your code to batch your updates, and then use a single
2929 * synchronize_sched() instead.
2930 *
2931 * Note that it is illegal to call this function while holding any lock
2932 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2933 * to call this function from a CPU-hotplug notifier. Failing to observe
2934 * these restriction will result in deadlock.
2935 *
2936 * This implementation can be thought of as an application of ticket
2937 * locking to RCU, with sync_sched_expedited_started and
2938 * sync_sched_expedited_done taking on the roles of the halves
2939 * of the ticket-lock word. Each task atomically increments
2940 * sync_sched_expedited_started upon entry, snapshotting the old value,
2941 * then attempts to stop all the CPUs. If this succeeds, then each
2942 * CPU will have executed a context switch, resulting in an RCU-sched
2943 * grace period. We are then done, so we use atomic_cmpxchg() to
2944 * update sync_sched_expedited_done to match our snapshot -- but
2945 * only if someone else has not already advanced past our snapshot.
2946 *
2947 * On the other hand, if try_stop_cpus() fails, we check the value
2948 * of sync_sched_expedited_done. If it has advanced past our
2949 * initial snapshot, then someone else must have forced a grace period
2950 * some time after we took our snapshot. In this case, our work is
2951 * done for us, and we can simply return. Otherwise, we try again,
2952 * but keep our initial snapshot for purposes of checking for someone
2953 * doing our work for us.
2954 *
2955 * If we fail too many times in a row, we fall back to synchronize_sched().
2956 */
2957 void synchronize_sched_expedited(void)
2958 {
2959 long firstsnap, s, snap;
2960 int trycount = 0;
2961 struct rcu_state *rsp = &rcu_sched_state;
2962
2963 /*
2964 * If we are in danger of counter wrap, just do synchronize_sched().
2965 * By allowing sync_sched_expedited_started to advance no more than
2966 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2967 * that more than 3.5 billion CPUs would be required to force a
2968 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2969 * course be required on a 64-bit system.
2970 */
2971 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2972 (ulong)atomic_long_read(&rsp->expedited_done) +
2973 ULONG_MAX / 8)) {
2974 synchronize_sched();
2975 atomic_long_inc(&rsp->expedited_wrap);
2976 return;
2977 }
2978
2979 /*
2980 * Take a ticket. Note that atomic_inc_return() implies a
2981 * full memory barrier.
2982 */
2983 snap = atomic_long_inc_return(&rsp->expedited_start);
2984 firstsnap = snap;
2985 get_online_cpus();
2986 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2987
2988 /*
2989 * Each pass through the following loop attempts to force a
2990 * context switch on each CPU.
2991 */
2992 while (try_stop_cpus(cpu_online_mask,
2993 synchronize_sched_expedited_cpu_stop,
2994 NULL) == -EAGAIN) {
2995 put_online_cpus();
2996 atomic_long_inc(&rsp->expedited_tryfail);
2997
2998 /* Check to see if someone else did our work for us. */
2999 s = atomic_long_read(&rsp->expedited_done);
3000 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3001 /* ensure test happens before caller kfree */
3002 smp_mb__before_atomic(); /* ^^^ */
3003 atomic_long_inc(&rsp->expedited_workdone1);
3004 return;
3005 }
3006
3007 /* No joy, try again later. Or just synchronize_sched(). */
3008 if (trycount++ < 10) {
3009 udelay(trycount * num_online_cpus());
3010 } else {
3011 wait_rcu_gp(call_rcu_sched);
3012 atomic_long_inc(&rsp->expedited_normal);
3013 return;
3014 }
3015
3016 /* Recheck to see if someone else did our work for us. */
3017 s = atomic_long_read(&rsp->expedited_done);
3018 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3019 /* ensure test happens before caller kfree */
3020 smp_mb__before_atomic(); /* ^^^ */
3021 atomic_long_inc(&rsp->expedited_workdone2);
3022 return;
3023 }
3024
3025 /*
3026 * Refetching sync_sched_expedited_started allows later
3027 * callers to piggyback on our grace period. We retry
3028 * after they started, so our grace period works for them,
3029 * and they started after our first try, so their grace
3030 * period works for us.
3031 */
3032 get_online_cpus();
3033 snap = atomic_long_read(&rsp->expedited_start);
3034 smp_mb(); /* ensure read is before try_stop_cpus(). */
3035 }
3036 atomic_long_inc(&rsp->expedited_stoppedcpus);
3037
3038 /*
3039 * Everyone up to our most recent fetch is covered by our grace
3040 * period. Update the counter, but only if our work is still
3041 * relevant -- which it won't be if someone who started later
3042 * than we did already did their update.
3043 */
3044 do {
3045 atomic_long_inc(&rsp->expedited_done_tries);
3046 s = atomic_long_read(&rsp->expedited_done);
3047 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3048 /* ensure test happens before caller kfree */
3049 smp_mb__before_atomic(); /* ^^^ */
3050 atomic_long_inc(&rsp->expedited_done_lost);
3051 break;
3052 }
3053 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3054 atomic_long_inc(&rsp->expedited_done_exit);
3055
3056 put_online_cpus();
3057 }
3058 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3059
3060 /*
3061 * Check to see if there is any immediate RCU-related work to be done
3062 * by the current CPU, for the specified type of RCU, returning 1 if so.
3063 * The checks are in order of increasing expense: checks that can be
3064 * carried out against CPU-local state are performed first. However,
3065 * we must check for CPU stalls first, else we might not get a chance.
3066 */
3067 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3068 {
3069 struct rcu_node *rnp = rdp->mynode;
3070
3071 rdp->n_rcu_pending++;
3072
3073 /* Check for CPU stalls, if enabled. */
3074 check_cpu_stall(rsp, rdp);
3075
3076 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3077 if (rcu_nohz_full_cpu(rsp))
3078 return 0;
3079
3080 /* Is the RCU core waiting for a quiescent state from this CPU? */
3081 if (rcu_scheduler_fully_active &&
3082 rdp->qs_pending && !rdp->passed_quiesce) {
3083 rdp->n_rp_qs_pending++;
3084 } else if (rdp->qs_pending && rdp->passed_quiesce) {
3085 rdp->n_rp_report_qs++;
3086 return 1;
3087 }
3088
3089 /* Does this CPU have callbacks ready to invoke? */
3090 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3091 rdp->n_rp_cb_ready++;
3092 return 1;
3093 }
3094
3095 /* Has RCU gone idle with this CPU needing another grace period? */
3096 if (cpu_needs_another_gp(rsp, rdp)) {
3097 rdp->n_rp_cpu_needs_gp++;
3098 return 1;
3099 }
3100
3101 /* Has another RCU grace period completed? */
3102 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3103 rdp->n_rp_gp_completed++;
3104 return 1;
3105 }
3106
3107 /* Has a new RCU grace period started? */
3108 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3109 rdp->n_rp_gp_started++;
3110 return 1;
3111 }
3112
3113 /* Does this CPU need a deferred NOCB wakeup? */
3114 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3115 rdp->n_rp_nocb_defer_wakeup++;
3116 return 1;
3117 }
3118
3119 /* nothing to do */
3120 rdp->n_rp_need_nothing++;
3121 return 0;
3122 }
3123
3124 /*
3125 * Check to see if there is any immediate RCU-related work to be done
3126 * by the current CPU, returning 1 if so. This function is part of the
3127 * RCU implementation; it is -not- an exported member of the RCU API.
3128 */
3129 static int rcu_pending(int cpu)
3130 {
3131 struct rcu_state *rsp;
3132
3133 for_each_rcu_flavor(rsp)
3134 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3135 return 1;
3136 return 0;
3137 }
3138
3139 /*
3140 * Return true if the specified CPU has any callback. If all_lazy is
3141 * non-NULL, store an indication of whether all callbacks are lazy.
3142 * (If there are no callbacks, all of them are deemed to be lazy.)
3143 */
3144 static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3145 {
3146 bool al = true;
3147 bool hc = false;
3148 struct rcu_data *rdp;
3149 struct rcu_state *rsp;
3150
3151 for_each_rcu_flavor(rsp) {
3152 rdp = per_cpu_ptr(rsp->rda, cpu);
3153 if (!rdp->nxtlist)
3154 continue;
3155 hc = true;
3156 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3157 al = false;
3158 break;
3159 }
3160 }
3161 if (all_lazy)
3162 *all_lazy = al;
3163 return hc;
3164 }
3165
3166 /*
3167 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3168 * the compiler is expected to optimize this away.
3169 */
3170 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3171 int cpu, unsigned long done)
3172 {
3173 trace_rcu_barrier(rsp->name, s, cpu,
3174 atomic_read(&rsp->barrier_cpu_count), done);
3175 }
3176
3177 /*
3178 * RCU callback function for _rcu_barrier(). If we are last, wake
3179 * up the task executing _rcu_barrier().
3180 */
3181 static void rcu_barrier_callback(struct rcu_head *rhp)
3182 {
3183 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3184 struct rcu_state *rsp = rdp->rsp;
3185
3186 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3187 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3188 complete(&rsp->barrier_completion);
3189 } else {
3190 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3191 }
3192 }
3193
3194 /*
3195 * Called with preemption disabled, and from cross-cpu IRQ context.
3196 */
3197 static void rcu_barrier_func(void *type)
3198 {
3199 struct rcu_state *rsp = type;
3200 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3201
3202 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3203 atomic_inc(&rsp->barrier_cpu_count);
3204 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3205 }
3206
3207 /*
3208 * Orchestrate the specified type of RCU barrier, waiting for all
3209 * RCU callbacks of the specified type to complete.
3210 */
3211 static void _rcu_barrier(struct rcu_state *rsp)
3212 {
3213 int cpu;
3214 struct rcu_data *rdp;
3215 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3216 unsigned long snap_done;
3217
3218 _rcu_barrier_trace(rsp, "Begin", -1, snap);
3219
3220 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3221 mutex_lock(&rsp->barrier_mutex);
3222
3223 /*
3224 * Ensure that all prior references, including to ->n_barrier_done,
3225 * are ordered before the _rcu_barrier() machinery.
3226 */
3227 smp_mb(); /* See above block comment. */
3228
3229 /*
3230 * Recheck ->n_barrier_done to see if others did our work for us.
3231 * This means checking ->n_barrier_done for an even-to-odd-to-even
3232 * transition. The "if" expression below therefore rounds the old
3233 * value up to the next even number and adds two before comparing.
3234 */
3235 snap_done = rsp->n_barrier_done;
3236 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
3237
3238 /*
3239 * If the value in snap is odd, we needed to wait for the current
3240 * rcu_barrier() to complete, then wait for the next one, in other
3241 * words, we need the value of snap_done to be three larger than
3242 * the value of snap. On the other hand, if the value in snap is
3243 * even, we only had to wait for the next rcu_barrier() to complete,
3244 * in other words, we need the value of snap_done to be only two
3245 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3246 * this for us (thank you, Linus!).
3247 */
3248 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3249 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3250 smp_mb(); /* caller's subsequent code after above check. */
3251 mutex_unlock(&rsp->barrier_mutex);
3252 return;
3253 }
3254
3255 /*
3256 * Increment ->n_barrier_done to avoid duplicate work. Use
3257 * ACCESS_ONCE() to prevent the compiler from speculating
3258 * the increment to precede the early-exit check.
3259 */
3260 ACCESS_ONCE(rsp->n_barrier_done)++;
3261 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3262 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3263 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3264
3265 /*
3266 * Initialize the count to one rather than to zero in order to
3267 * avoid a too-soon return to zero in case of a short grace period
3268 * (or preemption of this task). Exclude CPU-hotplug operations
3269 * to ensure that no offline CPU has callbacks queued.
3270 */
3271 init_completion(&rsp->barrier_completion);
3272 atomic_set(&rsp->barrier_cpu_count, 1);
3273 get_online_cpus();
3274
3275 /*
3276 * Force each CPU with callbacks to register a new callback.
3277 * When that callback is invoked, we will know that all of the
3278 * corresponding CPU's preceding callbacks have been invoked.
3279 */
3280 for_each_possible_cpu(cpu) {
3281 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3282 continue;
3283 rdp = per_cpu_ptr(rsp->rda, cpu);
3284 if (rcu_is_nocb_cpu(cpu)) {
3285 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3286 rsp->n_barrier_done);
3287 atomic_inc(&rsp->barrier_cpu_count);
3288 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3289 rsp, cpu, 0);
3290 } else if (ACCESS_ONCE(rdp->qlen)) {
3291 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3292 rsp->n_barrier_done);
3293 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3294 } else {
3295 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3296 rsp->n_barrier_done);
3297 }
3298 }
3299 put_online_cpus();
3300
3301 /*
3302 * Now that we have an rcu_barrier_callback() callback on each
3303 * CPU, and thus each counted, remove the initial count.
3304 */
3305 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3306 complete(&rsp->barrier_completion);
3307
3308 /* Increment ->n_barrier_done to prevent duplicate work. */
3309 smp_mb(); /* Keep increment after above mechanism. */
3310 ACCESS_ONCE(rsp->n_barrier_done)++;
3311 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3312 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3313 smp_mb(); /* Keep increment before caller's subsequent code. */
3314
3315 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3316 wait_for_completion(&rsp->barrier_completion);
3317
3318 /* Other rcu_barrier() invocations can now safely proceed. */
3319 mutex_unlock(&rsp->barrier_mutex);
3320 }
3321
3322 /**
3323 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3324 */
3325 void rcu_barrier_bh(void)
3326 {
3327 _rcu_barrier(&rcu_bh_state);
3328 }
3329 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3330
3331 /**
3332 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3333 */
3334 void rcu_barrier_sched(void)
3335 {
3336 _rcu_barrier(&rcu_sched_state);
3337 }
3338 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3339
3340 /*
3341 * Do boot-time initialization of a CPU's per-CPU RCU data.
3342 */
3343 static void __init
3344 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3345 {
3346 unsigned long flags;
3347 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3348 struct rcu_node *rnp = rcu_get_root(rsp);
3349
3350 /* Set up local state, ensuring consistent view of global state. */
3351 raw_spin_lock_irqsave(&rnp->lock, flags);
3352 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3353 init_callback_list(rdp);
3354 rdp->qlen_lazy = 0;
3355 ACCESS_ONCE(rdp->qlen) = 0;
3356 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3357 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3358 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3359 rdp->cpu = cpu;
3360 rdp->rsp = rsp;
3361 rcu_boot_init_nocb_percpu_data(rdp);
3362 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3363 }
3364
3365 /*
3366 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3367 * offline event can be happening at a given time. Note also that we
3368 * can accept some slop in the rsp->completed access due to the fact
3369 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3370 */
3371 static void
3372 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3373 {
3374 unsigned long flags;
3375 unsigned long mask;
3376 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3377 struct rcu_node *rnp = rcu_get_root(rsp);
3378
3379 /* Exclude new grace periods. */
3380 mutex_lock(&rsp->onoff_mutex);
3381
3382 /* Set up local state, ensuring consistent view of global state. */
3383 raw_spin_lock_irqsave(&rnp->lock, flags);
3384 rdp->beenonline = 1; /* We have now been online. */
3385 rdp->qlen_last_fqs_check = 0;
3386 rdp->n_force_qs_snap = rsp->n_force_qs;
3387 rdp->blimit = blimit;
3388 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3389 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3390 rcu_sysidle_init_percpu_data(rdp->dynticks);
3391 atomic_set(&rdp->dynticks->dynticks,
3392 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3393 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
3394
3395 /* Add CPU to rcu_node bitmasks. */
3396 rnp = rdp->mynode;
3397 mask = rdp->grpmask;
3398 do {
3399 /* Exclude any attempts to start a new GP on small systems. */
3400 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3401 rnp->qsmaskinit |= mask;
3402 mask = rnp->grpmask;
3403 if (rnp == rdp->mynode) {
3404 /*
3405 * If there is a grace period in progress, we will
3406 * set up to wait for it next time we run the
3407 * RCU core code.
3408 */
3409 rdp->gpnum = rnp->completed;
3410 rdp->completed = rnp->completed;
3411 rdp->passed_quiesce = 0;
3412 rdp->qs_pending = 0;
3413 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3414 }
3415 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3416 rnp = rnp->parent;
3417 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
3418 local_irq_restore(flags);
3419
3420 mutex_unlock(&rsp->onoff_mutex);
3421 }
3422
3423 static void rcu_prepare_cpu(int cpu)
3424 {
3425 struct rcu_state *rsp;
3426
3427 for_each_rcu_flavor(rsp)
3428 rcu_init_percpu_data(cpu, rsp);
3429 }
3430
3431 /*
3432 * Handle CPU online/offline notification events.
3433 */
3434 static int rcu_cpu_notify(struct notifier_block *self,
3435 unsigned long action, void *hcpu)
3436 {
3437 long cpu = (long)hcpu;
3438 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3439 struct rcu_node *rnp = rdp->mynode;
3440 struct rcu_state *rsp;
3441
3442 trace_rcu_utilization(TPS("Start CPU hotplug"));
3443 switch (action) {
3444 case CPU_UP_PREPARE:
3445 case CPU_UP_PREPARE_FROZEN:
3446 rcu_prepare_cpu(cpu);
3447 rcu_prepare_kthreads(cpu);
3448 break;
3449 case CPU_ONLINE:
3450 case CPU_DOWN_FAILED:
3451 rcu_boost_kthread_setaffinity(rnp, -1);
3452 break;
3453 case CPU_DOWN_PREPARE:
3454 rcu_boost_kthread_setaffinity(rnp, cpu);
3455 break;
3456 case CPU_DYING:
3457 case CPU_DYING_FROZEN:
3458 for_each_rcu_flavor(rsp)
3459 rcu_cleanup_dying_cpu(rsp);
3460 break;
3461 case CPU_DEAD:
3462 case CPU_DEAD_FROZEN:
3463 case CPU_UP_CANCELED:
3464 case CPU_UP_CANCELED_FROZEN:
3465 for_each_rcu_flavor(rsp)
3466 rcu_cleanup_dead_cpu(cpu, rsp);
3467 break;
3468 default:
3469 break;
3470 }
3471 trace_rcu_utilization(TPS("End CPU hotplug"));
3472 return NOTIFY_OK;
3473 }
3474
3475 static int rcu_pm_notify(struct notifier_block *self,
3476 unsigned long action, void *hcpu)
3477 {
3478 switch (action) {
3479 case PM_HIBERNATION_PREPARE:
3480 case PM_SUSPEND_PREPARE:
3481 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3482 rcu_expedited = 1;
3483 break;
3484 case PM_POST_HIBERNATION:
3485 case PM_POST_SUSPEND:
3486 rcu_expedited = 0;
3487 break;
3488 default:
3489 break;
3490 }
3491 return NOTIFY_OK;
3492 }
3493
3494 /*
3495 * Spawn the kthread that handles this RCU flavor's grace periods.
3496 */
3497 static int __init rcu_spawn_gp_kthread(void)
3498 {
3499 unsigned long flags;
3500 struct rcu_node *rnp;
3501 struct rcu_state *rsp;
3502 struct task_struct *t;
3503
3504 for_each_rcu_flavor(rsp) {
3505 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3506 BUG_ON(IS_ERR(t));
3507 rnp = rcu_get_root(rsp);
3508 raw_spin_lock_irqsave(&rnp->lock, flags);
3509 rsp->gp_kthread = t;
3510 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3511 rcu_spawn_nocb_kthreads(rsp);
3512 }
3513 return 0;
3514 }
3515 early_initcall(rcu_spawn_gp_kthread);
3516
3517 /*
3518 * This function is invoked towards the end of the scheduler's initialization
3519 * process. Before this is called, the idle task might contain
3520 * RCU read-side critical sections (during which time, this idle
3521 * task is booting the system). After this function is called, the
3522 * idle tasks are prohibited from containing RCU read-side critical
3523 * sections. This function also enables RCU lockdep checking.
3524 */
3525 void rcu_scheduler_starting(void)
3526 {
3527 WARN_ON(num_online_cpus() != 1);
3528 WARN_ON(nr_context_switches() > 0);
3529 rcu_scheduler_active = 1;
3530 }
3531
3532 /*
3533 * Compute the per-level fanout, either using the exact fanout specified
3534 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3535 */
3536 #ifdef CONFIG_RCU_FANOUT_EXACT
3537 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3538 {
3539 int i;
3540
3541 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3542 for (i = rcu_num_lvls - 2; i >= 0; i--)
3543 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3544 }
3545 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3546 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3547 {
3548 int ccur;
3549 int cprv;
3550 int i;
3551
3552 cprv = nr_cpu_ids;
3553 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3554 ccur = rsp->levelcnt[i];
3555 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3556 cprv = ccur;
3557 }
3558 }
3559 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3560
3561 /*
3562 * Helper function for rcu_init() that initializes one rcu_state structure.
3563 */
3564 static void __init rcu_init_one(struct rcu_state *rsp,
3565 struct rcu_data __percpu *rda)
3566 {
3567 static char *buf[] = { "rcu_node_0",
3568 "rcu_node_1",
3569 "rcu_node_2",
3570 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3571 static char *fqs[] = { "rcu_node_fqs_0",
3572 "rcu_node_fqs_1",
3573 "rcu_node_fqs_2",
3574 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3575 static u8 fl_mask = 0x1;
3576 int cpustride = 1;
3577 int i;
3578 int j;
3579 struct rcu_node *rnp;
3580
3581 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3582
3583 /* Silence gcc 4.8 warning about array index out of range. */
3584 if (rcu_num_lvls > RCU_NUM_LVLS)
3585 panic("rcu_init_one: rcu_num_lvls overflow");
3586
3587 /* Initialize the level-tracking arrays. */
3588
3589 for (i = 0; i < rcu_num_lvls; i++)
3590 rsp->levelcnt[i] = num_rcu_lvl[i];
3591 for (i = 1; i < rcu_num_lvls; i++)
3592 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3593 rcu_init_levelspread(rsp);
3594 rsp->flavor_mask = fl_mask;
3595 fl_mask <<= 1;
3596
3597 /* Initialize the elements themselves, starting from the leaves. */
3598
3599 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3600 cpustride *= rsp->levelspread[i];
3601 rnp = rsp->level[i];
3602 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3603 raw_spin_lock_init(&rnp->lock);
3604 lockdep_set_class_and_name(&rnp->lock,
3605 &rcu_node_class[i], buf[i]);
3606 raw_spin_lock_init(&rnp->fqslock);
3607 lockdep_set_class_and_name(&rnp->fqslock,
3608 &rcu_fqs_class[i], fqs[i]);
3609 rnp->gpnum = rsp->gpnum;
3610 rnp->completed = rsp->completed;
3611 rnp->qsmask = 0;
3612 rnp->qsmaskinit = 0;
3613 rnp->grplo = j * cpustride;
3614 rnp->grphi = (j + 1) * cpustride - 1;
3615 if (rnp->grphi >= nr_cpu_ids)
3616 rnp->grphi = nr_cpu_ids - 1;
3617 if (i == 0) {
3618 rnp->grpnum = 0;
3619 rnp->grpmask = 0;
3620 rnp->parent = NULL;
3621 } else {
3622 rnp->grpnum = j % rsp->levelspread[i - 1];
3623 rnp->grpmask = 1UL << rnp->grpnum;
3624 rnp->parent = rsp->level[i - 1] +
3625 j / rsp->levelspread[i - 1];
3626 }
3627 rnp->level = i;
3628 INIT_LIST_HEAD(&rnp->blkd_tasks);
3629 rcu_init_one_nocb(rnp);
3630 }
3631 }
3632
3633 rsp->rda = rda;
3634 init_waitqueue_head(&rsp->gp_wq);
3635 rnp = rsp->level[rcu_num_lvls - 1];
3636 for_each_possible_cpu(i) {
3637 while (i > rnp->grphi)
3638 rnp++;
3639 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3640 rcu_boot_init_percpu_data(i, rsp);
3641 }
3642 list_add(&rsp->flavors, &rcu_struct_flavors);
3643 }
3644
3645 /*
3646 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3647 * replace the definitions in tree.h because those are needed to size
3648 * the ->node array in the rcu_state structure.
3649 */
3650 static void __init rcu_init_geometry(void)
3651 {
3652 ulong d;
3653 int i;
3654 int j;
3655 int n = nr_cpu_ids;
3656 int rcu_capacity[MAX_RCU_LVLS + 1];
3657
3658 /*
3659 * Initialize any unspecified boot parameters.
3660 * The default values of jiffies_till_first_fqs and
3661 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3662 * value, which is a function of HZ, then adding one for each
3663 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3664 */
3665 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3666 if (jiffies_till_first_fqs == ULONG_MAX)
3667 jiffies_till_first_fqs = d;
3668 if (jiffies_till_next_fqs == ULONG_MAX)
3669 jiffies_till_next_fqs = d;
3670
3671 /* If the compile-time values are accurate, just leave. */
3672 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3673 nr_cpu_ids == NR_CPUS)
3674 return;
3675 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3676 rcu_fanout_leaf, nr_cpu_ids);
3677
3678 /*
3679 * Compute number of nodes that can be handled an rcu_node tree
3680 * with the given number of levels. Setting rcu_capacity[0] makes
3681 * some of the arithmetic easier.
3682 */
3683 rcu_capacity[0] = 1;
3684 rcu_capacity[1] = rcu_fanout_leaf;
3685 for (i = 2; i <= MAX_RCU_LVLS; i++)
3686 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3687
3688 /*
3689 * The boot-time rcu_fanout_leaf parameter is only permitted
3690 * to increase the leaf-level fanout, not decrease it. Of course,
3691 * the leaf-level fanout cannot exceed the number of bits in
3692 * the rcu_node masks. Finally, the tree must be able to accommodate
3693 * the configured number of CPUs. Complain and fall back to the
3694 * compile-time values if these limits are exceeded.
3695 */
3696 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3697 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3698 n > rcu_capacity[MAX_RCU_LVLS]) {
3699 WARN_ON(1);
3700 return;
3701 }
3702
3703 /* Calculate the number of rcu_nodes at each level of the tree. */
3704 for (i = 1; i <= MAX_RCU_LVLS; i++)
3705 if (n <= rcu_capacity[i]) {
3706 for (j = 0; j <= i; j++)
3707 num_rcu_lvl[j] =
3708 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3709 rcu_num_lvls = i;
3710 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3711 num_rcu_lvl[j] = 0;
3712 break;
3713 }
3714
3715 /* Calculate the total number of rcu_node structures. */
3716 rcu_num_nodes = 0;
3717 for (i = 0; i <= MAX_RCU_LVLS; i++)
3718 rcu_num_nodes += num_rcu_lvl[i];
3719 rcu_num_nodes -= n;
3720 }
3721
3722 void __init rcu_init(void)
3723 {
3724 int cpu;
3725
3726 rcu_bootup_announce();
3727 rcu_init_geometry();
3728 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3729 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3730 __rcu_init_preempt();
3731 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3732
3733 /*
3734 * We don't need protection against CPU-hotplug here because
3735 * this is called early in boot, before either interrupts
3736 * or the scheduler are operational.
3737 */
3738 cpu_notifier(rcu_cpu_notify, 0);
3739 pm_notifier(rcu_pm_notify, 0);
3740 for_each_online_cpu(cpu)
3741 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3742 }
3743
3744 #include "tree_plugin.h"