]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 RCU_FANOUT);
77 if (rcu_fanout_exact)
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
85 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
86 pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 if (NUM_RCU_LVL_4 != 0)
88 pr_info("\tFour-level hierarchy is enabled.\n");
89 if (RCU_FANOUT_LEAF != 16)
90 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
91 RCU_FANOUT_LEAF);
92 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
93 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
94 if (nr_cpu_ids != NR_CPUS)
95 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
96 if (IS_ENABLED(CONFIG_RCU_BOOST))
97 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
98 }
99
100 #ifdef CONFIG_PREEMPT_RCU
101
102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
104 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
105
106 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
107 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
108 bool wake);
109
110 /*
111 * Tell them what RCU they are running.
112 */
113 static void __init rcu_bootup_announce(void)
114 {
115 pr_info("Preemptible hierarchical RCU implementation.\n");
116 rcu_bootup_announce_oddness();
117 }
118
119 /*
120 * Record a preemptible-RCU quiescent state for the specified CPU. Note
121 * that this just means that the task currently running on the CPU is
122 * not in a quiescent state. There might be any number of tasks blocked
123 * while in an RCU read-side critical section.
124 *
125 * As with the other rcu_*_qs() functions, callers to this function
126 * must disable preemption.
127 */
128 static void rcu_preempt_qs(void)
129 {
130 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
131 trace_rcu_grace_period(TPS("rcu_preempt"),
132 __this_cpu_read(rcu_data_p->gpnum),
133 TPS("cpuqs"));
134 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
135 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
136 current->rcu_read_unlock_special.b.need_qs = false;
137 }
138 }
139
140 /*
141 * We have entered the scheduler, and the current task might soon be
142 * context-switched away from. If this task is in an RCU read-side
143 * critical section, we will no longer be able to rely on the CPU to
144 * record that fact, so we enqueue the task on the blkd_tasks list.
145 * The task will dequeue itself when it exits the outermost enclosing
146 * RCU read-side critical section. Therefore, the current grace period
147 * cannot be permitted to complete until the blkd_tasks list entries
148 * predating the current grace period drain, in other words, until
149 * rnp->gp_tasks becomes NULL.
150 *
151 * Caller must disable preemption.
152 */
153 static void rcu_preempt_note_context_switch(void)
154 {
155 struct task_struct *t = current;
156 unsigned long flags;
157 struct rcu_data *rdp;
158 struct rcu_node *rnp;
159
160 if (t->rcu_read_lock_nesting > 0 &&
161 !t->rcu_read_unlock_special.b.blocked) {
162
163 /* Possibly blocking in an RCU read-side critical section. */
164 rdp = this_cpu_ptr(rcu_state_p->rda);
165 rnp = rdp->mynode;
166 raw_spin_lock_irqsave(&rnp->lock, flags);
167 smp_mb__after_unlock_lock();
168 t->rcu_read_unlock_special.b.blocked = true;
169 t->rcu_blocked_node = rnp;
170
171 /*
172 * If this CPU has already checked in, then this task
173 * will hold up the next grace period rather than the
174 * current grace period. Queue the task accordingly.
175 * If the task is queued for the current grace period
176 * (i.e., this CPU has not yet passed through a quiescent
177 * state for the current grace period), then as long
178 * as that task remains queued, the current grace period
179 * cannot end. Note that there is some uncertainty as
180 * to exactly when the current grace period started.
181 * We take a conservative approach, which can result
182 * in unnecessarily waiting on tasks that started very
183 * slightly after the current grace period began. C'est
184 * la vie!!!
185 *
186 * But first, note that the current CPU must still be
187 * on line!
188 */
189 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
190 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
191 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
192 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
193 rnp->gp_tasks = &t->rcu_node_entry;
194 if (IS_ENABLED(CONFIG_RCU_BOOST) &&
195 rnp->boost_tasks != NULL)
196 rnp->boost_tasks = rnp->gp_tasks;
197 } else {
198 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
199 if (rnp->qsmask & rdp->grpmask)
200 rnp->gp_tasks = &t->rcu_node_entry;
201 }
202 trace_rcu_preempt_task(rdp->rsp->name,
203 t->pid,
204 (rnp->qsmask & rdp->grpmask)
205 ? rnp->gpnum
206 : rnp->gpnum + 1);
207 raw_spin_unlock_irqrestore(&rnp->lock, flags);
208 } else if (t->rcu_read_lock_nesting < 0 &&
209 t->rcu_read_unlock_special.s) {
210
211 /*
212 * Complete exit from RCU read-side critical section on
213 * behalf of preempted instance of __rcu_read_unlock().
214 */
215 rcu_read_unlock_special(t);
216 }
217
218 /*
219 * Either we were not in an RCU read-side critical section to
220 * begin with, or we have now recorded that critical section
221 * globally. Either way, we can now note a quiescent state
222 * for this CPU. Again, if we were in an RCU read-side critical
223 * section, and if that critical section was blocking the current
224 * grace period, then the fact that the task has been enqueued
225 * means that we continue to block the current grace period.
226 */
227 rcu_preempt_qs();
228 }
229
230 /*
231 * Check for preempted RCU readers blocking the current grace period
232 * for the specified rcu_node structure. If the caller needs a reliable
233 * answer, it must hold the rcu_node's ->lock.
234 */
235 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
236 {
237 return rnp->gp_tasks != NULL;
238 }
239
240 /*
241 * Advance a ->blkd_tasks-list pointer to the next entry, instead
242 * returning NULL if at the end of the list.
243 */
244 static struct list_head *rcu_next_node_entry(struct task_struct *t,
245 struct rcu_node *rnp)
246 {
247 struct list_head *np;
248
249 np = t->rcu_node_entry.next;
250 if (np == &rnp->blkd_tasks)
251 np = NULL;
252 return np;
253 }
254
255 /*
256 * Return true if the specified rcu_node structure has tasks that were
257 * preempted within an RCU read-side critical section.
258 */
259 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
260 {
261 return !list_empty(&rnp->blkd_tasks);
262 }
263
264 /*
265 * Handle special cases during rcu_read_unlock(), such as needing to
266 * notify RCU core processing or task having blocked during the RCU
267 * read-side critical section.
268 */
269 void rcu_read_unlock_special(struct task_struct *t)
270 {
271 bool empty_exp;
272 bool empty_norm;
273 bool empty_exp_now;
274 unsigned long flags;
275 struct list_head *np;
276 bool drop_boost_mutex = false;
277 struct rcu_node *rnp;
278 union rcu_special special;
279
280 /* NMI handlers cannot block and cannot safely manipulate state. */
281 if (in_nmi())
282 return;
283
284 local_irq_save(flags);
285
286 /*
287 * If RCU core is waiting for this CPU to exit critical section,
288 * let it know that we have done so. Because irqs are disabled,
289 * t->rcu_read_unlock_special cannot change.
290 */
291 special = t->rcu_read_unlock_special;
292 if (special.b.need_qs) {
293 rcu_preempt_qs();
294 t->rcu_read_unlock_special.b.need_qs = false;
295 if (!t->rcu_read_unlock_special.s) {
296 local_irq_restore(flags);
297 return;
298 }
299 }
300
301 /* Hardware IRQ handlers cannot block, complain if they get here. */
302 if (in_irq() || in_serving_softirq()) {
303 lockdep_rcu_suspicious(__FILE__, __LINE__,
304 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
305 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
306 t->rcu_read_unlock_special.s,
307 t->rcu_read_unlock_special.b.blocked,
308 t->rcu_read_unlock_special.b.need_qs);
309 local_irq_restore(flags);
310 return;
311 }
312
313 /* Clean up if blocked during RCU read-side critical section. */
314 if (special.b.blocked) {
315 t->rcu_read_unlock_special.b.blocked = false;
316
317 /*
318 * Remove this task from the list it blocked on. The task
319 * now remains queued on the rcu_node corresponding to
320 * the CPU it first blocked on, so the first attempt to
321 * acquire the task's rcu_node's ->lock will succeed.
322 * Keep the loop and add a WARN_ON() out of sheer paranoia.
323 */
324 for (;;) {
325 rnp = t->rcu_blocked_node;
326 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
327 smp_mb__after_unlock_lock();
328 if (rnp == t->rcu_blocked_node)
329 break;
330 WARN_ON_ONCE(1);
331 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
332 }
333 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
334 empty_exp = !rcu_preempted_readers_exp(rnp);
335 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
336 np = rcu_next_node_entry(t, rnp);
337 list_del_init(&t->rcu_node_entry);
338 t->rcu_blocked_node = NULL;
339 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
340 rnp->gpnum, t->pid);
341 if (&t->rcu_node_entry == rnp->gp_tasks)
342 rnp->gp_tasks = np;
343 if (&t->rcu_node_entry == rnp->exp_tasks)
344 rnp->exp_tasks = np;
345 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
346 if (&t->rcu_node_entry == rnp->boost_tasks)
347 rnp->boost_tasks = np;
348 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
349 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
350 }
351
352 /*
353 * If this was the last task on the current list, and if
354 * we aren't waiting on any CPUs, report the quiescent state.
355 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
356 * so we must take a snapshot of the expedited state.
357 */
358 empty_exp_now = !rcu_preempted_readers_exp(rnp);
359 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
360 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
361 rnp->gpnum,
362 0, rnp->qsmask,
363 rnp->level,
364 rnp->grplo,
365 rnp->grphi,
366 !!rnp->gp_tasks);
367 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
368 } else {
369 raw_spin_unlock_irqrestore(&rnp->lock, flags);
370 }
371
372 /* Unboost if we were boosted. */
373 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
374 rt_mutex_unlock(&rnp->boost_mtx);
375
376 /*
377 * If this was the last task on the expedited lists,
378 * then we need to report up the rcu_node hierarchy.
379 */
380 if (!empty_exp && empty_exp_now)
381 rcu_report_exp_rnp(rcu_state_p, rnp, true);
382 } else {
383 local_irq_restore(flags);
384 }
385 }
386
387 /*
388 * Dump detailed information for all tasks blocking the current RCU
389 * grace period on the specified rcu_node structure.
390 */
391 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
392 {
393 unsigned long flags;
394 struct task_struct *t;
395
396 raw_spin_lock_irqsave(&rnp->lock, flags);
397 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
398 raw_spin_unlock_irqrestore(&rnp->lock, flags);
399 return;
400 }
401 t = list_entry(rnp->gp_tasks->prev,
402 struct task_struct, rcu_node_entry);
403 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
404 sched_show_task(t);
405 raw_spin_unlock_irqrestore(&rnp->lock, flags);
406 }
407
408 /*
409 * Dump detailed information for all tasks blocking the current RCU
410 * grace period.
411 */
412 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
413 {
414 struct rcu_node *rnp = rcu_get_root(rsp);
415
416 rcu_print_detail_task_stall_rnp(rnp);
417 rcu_for_each_leaf_node(rsp, rnp)
418 rcu_print_detail_task_stall_rnp(rnp);
419 }
420
421 #ifdef CONFIG_RCU_CPU_STALL_INFO
422
423 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
424 {
425 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
426 rnp->level, rnp->grplo, rnp->grphi);
427 }
428
429 static void rcu_print_task_stall_end(void)
430 {
431 pr_cont("\n");
432 }
433
434 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
435
436 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
437 {
438 }
439
440 static void rcu_print_task_stall_end(void)
441 {
442 }
443
444 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
445
446 /*
447 * Scan the current list of tasks blocked within RCU read-side critical
448 * sections, printing out the tid of each.
449 */
450 static int rcu_print_task_stall(struct rcu_node *rnp)
451 {
452 struct task_struct *t;
453 int ndetected = 0;
454
455 if (!rcu_preempt_blocked_readers_cgp(rnp))
456 return 0;
457 rcu_print_task_stall_begin(rnp);
458 t = list_entry(rnp->gp_tasks->prev,
459 struct task_struct, rcu_node_entry);
460 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
461 pr_cont(" P%d", t->pid);
462 ndetected++;
463 }
464 rcu_print_task_stall_end();
465 return ndetected;
466 }
467
468 /*
469 * Check that the list of blocked tasks for the newly completed grace
470 * period is in fact empty. It is a serious bug to complete a grace
471 * period that still has RCU readers blocked! This function must be
472 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
473 * must be held by the caller.
474 *
475 * Also, if there are blocked tasks on the list, they automatically
476 * block the newly created grace period, so set up ->gp_tasks accordingly.
477 */
478 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
479 {
480 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
481 if (rcu_preempt_has_tasks(rnp))
482 rnp->gp_tasks = rnp->blkd_tasks.next;
483 WARN_ON_ONCE(rnp->qsmask);
484 }
485
486 /*
487 * Check for a quiescent state from the current CPU. When a task blocks,
488 * the task is recorded in the corresponding CPU's rcu_node structure,
489 * which is checked elsewhere.
490 *
491 * Caller must disable hard irqs.
492 */
493 static void rcu_preempt_check_callbacks(void)
494 {
495 struct task_struct *t = current;
496
497 if (t->rcu_read_lock_nesting == 0) {
498 rcu_preempt_qs();
499 return;
500 }
501 if (t->rcu_read_lock_nesting > 0 &&
502 __this_cpu_read(rcu_data_p->qs_pending) &&
503 !__this_cpu_read(rcu_data_p->passed_quiesce))
504 t->rcu_read_unlock_special.b.need_qs = true;
505 }
506
507 #ifdef CONFIG_RCU_BOOST
508
509 static void rcu_preempt_do_callbacks(void)
510 {
511 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
512 }
513
514 #endif /* #ifdef CONFIG_RCU_BOOST */
515
516 /*
517 * Queue a preemptible-RCU callback for invocation after a grace period.
518 */
519 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
520 {
521 __call_rcu(head, func, rcu_state_p, -1, 0);
522 }
523 EXPORT_SYMBOL_GPL(call_rcu);
524
525 /**
526 * synchronize_rcu - wait until a grace period has elapsed.
527 *
528 * Control will return to the caller some time after a full grace
529 * period has elapsed, in other words after all currently executing RCU
530 * read-side critical sections have completed. Note, however, that
531 * upon return from synchronize_rcu(), the caller might well be executing
532 * concurrently with new RCU read-side critical sections that began while
533 * synchronize_rcu() was waiting. RCU read-side critical sections are
534 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
535 *
536 * See the description of synchronize_sched() for more detailed information
537 * on memory ordering guarantees.
538 */
539 void synchronize_rcu(void)
540 {
541 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
542 !lock_is_held(&rcu_lock_map) &&
543 !lock_is_held(&rcu_sched_lock_map),
544 "Illegal synchronize_rcu() in RCU read-side critical section");
545 if (!rcu_scheduler_active)
546 return;
547 if (rcu_gp_is_expedited())
548 synchronize_rcu_expedited();
549 else
550 wait_rcu_gp(call_rcu);
551 }
552 EXPORT_SYMBOL_GPL(synchronize_rcu);
553
554 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
555 static unsigned long sync_rcu_preempt_exp_count;
556 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
557
558 /*
559 * Return non-zero if there are any tasks in RCU read-side critical
560 * sections blocking the current preemptible-RCU expedited grace period.
561 * If there is no preemptible-RCU expedited grace period currently in
562 * progress, returns zero unconditionally.
563 */
564 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
565 {
566 return rnp->exp_tasks != NULL;
567 }
568
569 /*
570 * return non-zero if there is no RCU expedited grace period in progress
571 * for the specified rcu_node structure, in other words, if all CPUs and
572 * tasks covered by the specified rcu_node structure have done their bit
573 * for the current expedited grace period. Works only for preemptible
574 * RCU -- other RCU implementation use other means.
575 *
576 * Caller must hold sync_rcu_preempt_exp_mutex.
577 */
578 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
579 {
580 return !rcu_preempted_readers_exp(rnp) &&
581 READ_ONCE(rnp->expmask) == 0;
582 }
583
584 /*
585 * Report the exit from RCU read-side critical section for the last task
586 * that queued itself during or before the current expedited preemptible-RCU
587 * grace period. This event is reported either to the rcu_node structure on
588 * which the task was queued or to one of that rcu_node structure's ancestors,
589 * recursively up the tree. (Calm down, calm down, we do the recursion
590 * iteratively!)
591 *
592 * Caller must hold sync_rcu_preempt_exp_mutex.
593 */
594 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
595 bool wake)
596 {
597 unsigned long flags;
598 unsigned long mask;
599
600 raw_spin_lock_irqsave(&rnp->lock, flags);
601 smp_mb__after_unlock_lock();
602 for (;;) {
603 if (!sync_rcu_preempt_exp_done(rnp)) {
604 raw_spin_unlock_irqrestore(&rnp->lock, flags);
605 break;
606 }
607 if (rnp->parent == NULL) {
608 raw_spin_unlock_irqrestore(&rnp->lock, flags);
609 if (wake) {
610 smp_mb(); /* EGP done before wake_up(). */
611 wake_up(&sync_rcu_preempt_exp_wq);
612 }
613 break;
614 }
615 mask = rnp->grpmask;
616 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
617 rnp = rnp->parent;
618 raw_spin_lock(&rnp->lock); /* irqs already disabled */
619 smp_mb__after_unlock_lock();
620 rnp->expmask &= ~mask;
621 }
622 }
623
624 /*
625 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
626 * grace period for the specified rcu_node structure, phase 1. If there
627 * are such tasks, set the ->expmask bits up the rcu_node tree and also
628 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
629 * that work is needed here.
630 *
631 * Caller must hold sync_rcu_preempt_exp_mutex.
632 */
633 static void
634 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
635 {
636 unsigned long flags;
637 unsigned long mask;
638 struct rcu_node *rnp_up;
639
640 raw_spin_lock_irqsave(&rnp->lock, flags);
641 smp_mb__after_unlock_lock();
642 WARN_ON_ONCE(rnp->expmask);
643 WARN_ON_ONCE(rnp->exp_tasks);
644 if (!rcu_preempt_has_tasks(rnp)) {
645 /* No blocked tasks, nothing to do. */
646 raw_spin_unlock_irqrestore(&rnp->lock, flags);
647 return;
648 }
649 /* Call for Phase 2 and propagate ->expmask bits up the tree. */
650 rnp->expmask = 1;
651 rnp_up = rnp;
652 while (rnp_up->parent) {
653 mask = rnp_up->grpmask;
654 rnp_up = rnp_up->parent;
655 if (rnp_up->expmask & mask)
656 break;
657 raw_spin_lock(&rnp_up->lock); /* irqs already off */
658 smp_mb__after_unlock_lock();
659 rnp_up->expmask |= mask;
660 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
661 }
662 raw_spin_unlock_irqrestore(&rnp->lock, flags);
663 }
664
665 /*
666 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
667 * grace period for the specified rcu_node structure, phase 2. If the
668 * leaf rcu_node structure has its ->expmask field set, check for tasks.
669 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
670 * then initiate RCU priority boosting. Otherwise, clear ->expmask and
671 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
672 * enabling rcu_read_unlock_special() to do the bit-clearing.
673 *
674 * Caller must hold sync_rcu_preempt_exp_mutex.
675 */
676 static void
677 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
678 {
679 unsigned long flags;
680
681 raw_spin_lock_irqsave(&rnp->lock, flags);
682 smp_mb__after_unlock_lock();
683 if (!rnp->expmask) {
684 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
686 return;
687 }
688
689 /* Phase 1 is over. */
690 rnp->expmask = 0;
691
692 /*
693 * If there are still blocked tasks, set up ->exp_tasks so that
694 * rcu_read_unlock_special() will wake us and then boost them.
695 */
696 if (rcu_preempt_has_tasks(rnp)) {
697 rnp->exp_tasks = rnp->blkd_tasks.next;
698 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
699 return;
700 }
701
702 /* No longer any blocked tasks, so undo bit setting. */
703 raw_spin_unlock_irqrestore(&rnp->lock, flags);
704 rcu_report_exp_rnp(rsp, rnp, false);
705 }
706
707 /**
708 * synchronize_rcu_expedited - Brute-force RCU grace period
709 *
710 * Wait for an RCU-preempt grace period, but expedite it. The basic
711 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
712 * the ->blkd_tasks lists and wait for this list to drain. This consumes
713 * significant time on all CPUs and is unfriendly to real-time workloads,
714 * so is thus not recommended for any sort of common-case code.
715 * In fact, if you are using synchronize_rcu_expedited() in a loop,
716 * please restructure your code to batch your updates, and then Use a
717 * single synchronize_rcu() instead.
718 */
719 void synchronize_rcu_expedited(void)
720 {
721 struct rcu_node *rnp;
722 struct rcu_state *rsp = rcu_state_p;
723 unsigned long snap;
724 int trycount = 0;
725
726 smp_mb(); /* Caller's modifications seen first by other CPUs. */
727 snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
728 smp_mb(); /* Above access cannot bleed into critical section. */
729
730 /*
731 * Block CPU-hotplug operations. This means that any CPU-hotplug
732 * operation that finds an rcu_node structure with tasks in the
733 * process of being boosted will know that all tasks blocking
734 * this expedited grace period will already be in the process of
735 * being boosted. This simplifies the process of moving tasks
736 * from leaf to root rcu_node structures.
737 */
738 if (!try_get_online_cpus()) {
739 /* CPU-hotplug operation in flight, fall back to normal GP. */
740 wait_rcu_gp(call_rcu);
741 return;
742 }
743
744 /*
745 * Acquire lock, falling back to synchronize_rcu() if too many
746 * lock-acquisition failures. Of course, if someone does the
747 * expedited grace period for us, just leave.
748 */
749 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
750 if (ULONG_CMP_LT(snap,
751 READ_ONCE(sync_rcu_preempt_exp_count))) {
752 put_online_cpus();
753 goto mb_ret; /* Others did our work for us. */
754 }
755 if (trycount++ < 10) {
756 udelay(trycount * num_online_cpus());
757 } else {
758 put_online_cpus();
759 wait_rcu_gp(call_rcu);
760 return;
761 }
762 }
763 if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) {
764 put_online_cpus();
765 goto unlock_mb_ret; /* Others did our work for us. */
766 }
767
768 /* force all RCU readers onto ->blkd_tasks lists. */
769 synchronize_sched_expedited();
770
771 /*
772 * Snapshot current state of ->blkd_tasks lists into ->expmask.
773 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
774 * to start clearing them. Doing this in one phase leads to
775 * strange races between setting and clearing bits, so just say "no"!
776 */
777 rcu_for_each_leaf_node(rsp, rnp)
778 sync_rcu_preempt_exp_init1(rsp, rnp);
779 rcu_for_each_leaf_node(rsp, rnp)
780 sync_rcu_preempt_exp_init2(rsp, rnp);
781
782 put_online_cpus();
783
784 /* Wait for snapshotted ->blkd_tasks lists to drain. */
785 rnp = rcu_get_root(rsp);
786 wait_event(sync_rcu_preempt_exp_wq,
787 sync_rcu_preempt_exp_done(rnp));
788
789 /* Clean up and exit. */
790 smp_mb(); /* ensure expedited GP seen before counter increment. */
791 WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
792 unlock_mb_ret:
793 mutex_unlock(&sync_rcu_preempt_exp_mutex);
794 mb_ret:
795 smp_mb(); /* ensure subsequent action seen after grace period. */
796 }
797 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
798
799 /**
800 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
801 *
802 * Note that this primitive does not necessarily wait for an RCU grace period
803 * to complete. For example, if there are no RCU callbacks queued anywhere
804 * in the system, then rcu_barrier() is within its rights to return
805 * immediately, without waiting for anything, much less an RCU grace period.
806 */
807 void rcu_barrier(void)
808 {
809 _rcu_barrier(rcu_state_p);
810 }
811 EXPORT_SYMBOL_GPL(rcu_barrier);
812
813 /*
814 * Initialize preemptible RCU's state structures.
815 */
816 static void __init __rcu_init_preempt(void)
817 {
818 rcu_init_one(rcu_state_p, rcu_data_p);
819 }
820
821 /*
822 * Check for a task exiting while in a preemptible-RCU read-side
823 * critical section, clean up if so. No need to issue warnings,
824 * as debug_check_no_locks_held() already does this if lockdep
825 * is enabled.
826 */
827 void exit_rcu(void)
828 {
829 struct task_struct *t = current;
830
831 if (likely(list_empty(&current->rcu_node_entry)))
832 return;
833 t->rcu_read_lock_nesting = 1;
834 barrier();
835 t->rcu_read_unlock_special.b.blocked = true;
836 __rcu_read_unlock();
837 }
838
839 #else /* #ifdef CONFIG_PREEMPT_RCU */
840
841 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
842 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
843
844 /*
845 * Tell them what RCU they are running.
846 */
847 static void __init rcu_bootup_announce(void)
848 {
849 pr_info("Hierarchical RCU implementation.\n");
850 rcu_bootup_announce_oddness();
851 }
852
853 /*
854 * Because preemptible RCU does not exist, we never have to check for
855 * CPUs being in quiescent states.
856 */
857 static void rcu_preempt_note_context_switch(void)
858 {
859 }
860
861 /*
862 * Because preemptible RCU does not exist, there are never any preempted
863 * RCU readers.
864 */
865 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
866 {
867 return 0;
868 }
869
870 /*
871 * Because there is no preemptible RCU, there can be no readers blocked.
872 */
873 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
874 {
875 return false;
876 }
877
878 /*
879 * Because preemptible RCU does not exist, we never have to check for
880 * tasks blocked within RCU read-side critical sections.
881 */
882 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
883 {
884 }
885
886 /*
887 * Because preemptible RCU does not exist, we never have to check for
888 * tasks blocked within RCU read-side critical sections.
889 */
890 static int rcu_print_task_stall(struct rcu_node *rnp)
891 {
892 return 0;
893 }
894
895 /*
896 * Because there is no preemptible RCU, there can be no readers blocked,
897 * so there is no need to check for blocked tasks. So check only for
898 * bogus qsmask values.
899 */
900 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
901 {
902 WARN_ON_ONCE(rnp->qsmask);
903 }
904
905 /*
906 * Because preemptible RCU does not exist, it never has any callbacks
907 * to check.
908 */
909 static void rcu_preempt_check_callbacks(void)
910 {
911 }
912
913 /*
914 * Wait for an rcu-preempt grace period, but make it happen quickly.
915 * But because preemptible RCU does not exist, map to rcu-sched.
916 */
917 void synchronize_rcu_expedited(void)
918 {
919 synchronize_sched_expedited();
920 }
921 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
922
923 /*
924 * Because preemptible RCU does not exist, rcu_barrier() is just
925 * another name for rcu_barrier_sched().
926 */
927 void rcu_barrier(void)
928 {
929 rcu_barrier_sched();
930 }
931 EXPORT_SYMBOL_GPL(rcu_barrier);
932
933 /*
934 * Because preemptible RCU does not exist, it need not be initialized.
935 */
936 static void __init __rcu_init_preempt(void)
937 {
938 }
939
940 /*
941 * Because preemptible RCU does not exist, tasks cannot possibly exit
942 * while in preemptible RCU read-side critical sections.
943 */
944 void exit_rcu(void)
945 {
946 }
947
948 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
949
950 #ifdef CONFIG_RCU_BOOST
951
952 #include "../locking/rtmutex_common.h"
953
954 #ifdef CONFIG_RCU_TRACE
955
956 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
957 {
958 if (!rcu_preempt_has_tasks(rnp))
959 rnp->n_balk_blkd_tasks++;
960 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
961 rnp->n_balk_exp_gp_tasks++;
962 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
963 rnp->n_balk_boost_tasks++;
964 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
965 rnp->n_balk_notblocked++;
966 else if (rnp->gp_tasks != NULL &&
967 ULONG_CMP_LT(jiffies, rnp->boost_time))
968 rnp->n_balk_notyet++;
969 else
970 rnp->n_balk_nos++;
971 }
972
973 #else /* #ifdef CONFIG_RCU_TRACE */
974
975 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
976 {
977 }
978
979 #endif /* #else #ifdef CONFIG_RCU_TRACE */
980
981 static void rcu_wake_cond(struct task_struct *t, int status)
982 {
983 /*
984 * If the thread is yielding, only wake it when this
985 * is invoked from idle
986 */
987 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
988 wake_up_process(t);
989 }
990
991 /*
992 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
993 * or ->boost_tasks, advancing the pointer to the next task in the
994 * ->blkd_tasks list.
995 *
996 * Note that irqs must be enabled: boosting the task can block.
997 * Returns 1 if there are more tasks needing to be boosted.
998 */
999 static int rcu_boost(struct rcu_node *rnp)
1000 {
1001 unsigned long flags;
1002 struct task_struct *t;
1003 struct list_head *tb;
1004
1005 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1006 READ_ONCE(rnp->boost_tasks) == NULL)
1007 return 0; /* Nothing left to boost. */
1008
1009 raw_spin_lock_irqsave(&rnp->lock, flags);
1010 smp_mb__after_unlock_lock();
1011
1012 /*
1013 * Recheck under the lock: all tasks in need of boosting
1014 * might exit their RCU read-side critical sections on their own.
1015 */
1016 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1017 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1018 return 0;
1019 }
1020
1021 /*
1022 * Preferentially boost tasks blocking expedited grace periods.
1023 * This cannot starve the normal grace periods because a second
1024 * expedited grace period must boost all blocked tasks, including
1025 * those blocking the pre-existing normal grace period.
1026 */
1027 if (rnp->exp_tasks != NULL) {
1028 tb = rnp->exp_tasks;
1029 rnp->n_exp_boosts++;
1030 } else {
1031 tb = rnp->boost_tasks;
1032 rnp->n_normal_boosts++;
1033 }
1034 rnp->n_tasks_boosted++;
1035
1036 /*
1037 * We boost task t by manufacturing an rt_mutex that appears to
1038 * be held by task t. We leave a pointer to that rt_mutex where
1039 * task t can find it, and task t will release the mutex when it
1040 * exits its outermost RCU read-side critical section. Then
1041 * simply acquiring this artificial rt_mutex will boost task
1042 * t's priority. (Thanks to tglx for suggesting this approach!)
1043 *
1044 * Note that task t must acquire rnp->lock to remove itself from
1045 * the ->blkd_tasks list, which it will do from exit() if from
1046 * nowhere else. We therefore are guaranteed that task t will
1047 * stay around at least until we drop rnp->lock. Note that
1048 * rnp->lock also resolves races between our priority boosting
1049 * and task t's exiting its outermost RCU read-side critical
1050 * section.
1051 */
1052 t = container_of(tb, struct task_struct, rcu_node_entry);
1053 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1054 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1055 /* Lock only for side effect: boosts task t's priority. */
1056 rt_mutex_lock(&rnp->boost_mtx);
1057 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1058
1059 return READ_ONCE(rnp->exp_tasks) != NULL ||
1060 READ_ONCE(rnp->boost_tasks) != NULL;
1061 }
1062
1063 /*
1064 * Priority-boosting kthread. One per leaf rcu_node and one for the
1065 * root rcu_node.
1066 */
1067 static int rcu_boost_kthread(void *arg)
1068 {
1069 struct rcu_node *rnp = (struct rcu_node *)arg;
1070 int spincnt = 0;
1071 int more2boost;
1072
1073 trace_rcu_utilization(TPS("Start boost kthread@init"));
1074 for (;;) {
1075 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1076 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1077 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1078 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1079 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1080 more2boost = rcu_boost(rnp);
1081 if (more2boost)
1082 spincnt++;
1083 else
1084 spincnt = 0;
1085 if (spincnt > 10) {
1086 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1087 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1088 schedule_timeout_interruptible(2);
1089 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1090 spincnt = 0;
1091 }
1092 }
1093 /* NOTREACHED */
1094 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1095 return 0;
1096 }
1097
1098 /*
1099 * Check to see if it is time to start boosting RCU readers that are
1100 * blocking the current grace period, and, if so, tell the per-rcu_node
1101 * kthread to start boosting them. If there is an expedited grace
1102 * period in progress, it is always time to boost.
1103 *
1104 * The caller must hold rnp->lock, which this function releases.
1105 * The ->boost_kthread_task is immortal, so we don't need to worry
1106 * about it going away.
1107 */
1108 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1109 __releases(rnp->lock)
1110 {
1111 struct task_struct *t;
1112
1113 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1114 rnp->n_balk_exp_gp_tasks++;
1115 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1116 return;
1117 }
1118 if (rnp->exp_tasks != NULL ||
1119 (rnp->gp_tasks != NULL &&
1120 rnp->boost_tasks == NULL &&
1121 rnp->qsmask == 0 &&
1122 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1123 if (rnp->exp_tasks == NULL)
1124 rnp->boost_tasks = rnp->gp_tasks;
1125 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1126 t = rnp->boost_kthread_task;
1127 if (t)
1128 rcu_wake_cond(t, rnp->boost_kthread_status);
1129 } else {
1130 rcu_initiate_boost_trace(rnp);
1131 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1132 }
1133 }
1134
1135 /*
1136 * Wake up the per-CPU kthread to invoke RCU callbacks.
1137 */
1138 static void invoke_rcu_callbacks_kthread(void)
1139 {
1140 unsigned long flags;
1141
1142 local_irq_save(flags);
1143 __this_cpu_write(rcu_cpu_has_work, 1);
1144 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1145 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1146 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1147 __this_cpu_read(rcu_cpu_kthread_status));
1148 }
1149 local_irq_restore(flags);
1150 }
1151
1152 /*
1153 * Is the current CPU running the RCU-callbacks kthread?
1154 * Caller must have preemption disabled.
1155 */
1156 static bool rcu_is_callbacks_kthread(void)
1157 {
1158 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1159 }
1160
1161 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1162
1163 /*
1164 * Do priority-boost accounting for the start of a new grace period.
1165 */
1166 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1167 {
1168 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1169 }
1170
1171 /*
1172 * Create an RCU-boost kthread for the specified node if one does not
1173 * already exist. We only create this kthread for preemptible RCU.
1174 * Returns zero if all is well, a negated errno otherwise.
1175 */
1176 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1177 struct rcu_node *rnp)
1178 {
1179 int rnp_index = rnp - &rsp->node[0];
1180 unsigned long flags;
1181 struct sched_param sp;
1182 struct task_struct *t;
1183
1184 if (rcu_state_p != rsp)
1185 return 0;
1186
1187 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1188 return 0;
1189
1190 rsp->boost = 1;
1191 if (rnp->boost_kthread_task != NULL)
1192 return 0;
1193 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1194 "rcub/%d", rnp_index);
1195 if (IS_ERR(t))
1196 return PTR_ERR(t);
1197 raw_spin_lock_irqsave(&rnp->lock, flags);
1198 smp_mb__after_unlock_lock();
1199 rnp->boost_kthread_task = t;
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 sp.sched_priority = kthread_prio;
1202 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1203 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1204 return 0;
1205 }
1206
1207 static void rcu_kthread_do_work(void)
1208 {
1209 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1210 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1211 rcu_preempt_do_callbacks();
1212 }
1213
1214 static void rcu_cpu_kthread_setup(unsigned int cpu)
1215 {
1216 struct sched_param sp;
1217
1218 sp.sched_priority = kthread_prio;
1219 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1220 }
1221
1222 static void rcu_cpu_kthread_park(unsigned int cpu)
1223 {
1224 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1225 }
1226
1227 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1228 {
1229 return __this_cpu_read(rcu_cpu_has_work);
1230 }
1231
1232 /*
1233 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1234 * RCU softirq used in flavors and configurations of RCU that do not
1235 * support RCU priority boosting.
1236 */
1237 static void rcu_cpu_kthread(unsigned int cpu)
1238 {
1239 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1240 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1241 int spincnt;
1242
1243 for (spincnt = 0; spincnt < 10; spincnt++) {
1244 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1245 local_bh_disable();
1246 *statusp = RCU_KTHREAD_RUNNING;
1247 this_cpu_inc(rcu_cpu_kthread_loops);
1248 local_irq_disable();
1249 work = *workp;
1250 *workp = 0;
1251 local_irq_enable();
1252 if (work)
1253 rcu_kthread_do_work();
1254 local_bh_enable();
1255 if (*workp == 0) {
1256 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1257 *statusp = RCU_KTHREAD_WAITING;
1258 return;
1259 }
1260 }
1261 *statusp = RCU_KTHREAD_YIELDING;
1262 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1263 schedule_timeout_interruptible(2);
1264 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1265 *statusp = RCU_KTHREAD_WAITING;
1266 }
1267
1268 /*
1269 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1270 * served by the rcu_node in question. The CPU hotplug lock is still
1271 * held, so the value of rnp->qsmaskinit will be stable.
1272 *
1273 * We don't include outgoingcpu in the affinity set, use -1 if there is
1274 * no outgoing CPU. If there are no CPUs left in the affinity set,
1275 * this function allows the kthread to execute on any CPU.
1276 */
1277 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1278 {
1279 struct task_struct *t = rnp->boost_kthread_task;
1280 unsigned long mask = rcu_rnp_online_cpus(rnp);
1281 cpumask_var_t cm;
1282 int cpu;
1283
1284 if (!t)
1285 return;
1286 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1287 return;
1288 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1289 if ((mask & 0x1) && cpu != outgoingcpu)
1290 cpumask_set_cpu(cpu, cm);
1291 if (cpumask_weight(cm) == 0)
1292 cpumask_setall(cm);
1293 set_cpus_allowed_ptr(t, cm);
1294 free_cpumask_var(cm);
1295 }
1296
1297 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1298 .store = &rcu_cpu_kthread_task,
1299 .thread_should_run = rcu_cpu_kthread_should_run,
1300 .thread_fn = rcu_cpu_kthread,
1301 .thread_comm = "rcuc/%u",
1302 .setup = rcu_cpu_kthread_setup,
1303 .park = rcu_cpu_kthread_park,
1304 };
1305
1306 /*
1307 * Spawn boost kthreads -- called as soon as the scheduler is running.
1308 */
1309 static void __init rcu_spawn_boost_kthreads(void)
1310 {
1311 struct rcu_node *rnp;
1312 int cpu;
1313
1314 for_each_possible_cpu(cpu)
1315 per_cpu(rcu_cpu_has_work, cpu) = 0;
1316 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1317 rcu_for_each_leaf_node(rcu_state_p, rnp)
1318 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1319 }
1320
1321 static void rcu_prepare_kthreads(int cpu)
1322 {
1323 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1324 struct rcu_node *rnp = rdp->mynode;
1325
1326 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1327 if (rcu_scheduler_fully_active)
1328 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1329 }
1330
1331 #else /* #ifdef CONFIG_RCU_BOOST */
1332
1333 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1334 __releases(rnp->lock)
1335 {
1336 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1337 }
1338
1339 static void invoke_rcu_callbacks_kthread(void)
1340 {
1341 WARN_ON_ONCE(1);
1342 }
1343
1344 static bool rcu_is_callbacks_kthread(void)
1345 {
1346 return false;
1347 }
1348
1349 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1350 {
1351 }
1352
1353 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1354 {
1355 }
1356
1357 static void __init rcu_spawn_boost_kthreads(void)
1358 {
1359 }
1360
1361 static void rcu_prepare_kthreads(int cpu)
1362 {
1363 }
1364
1365 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1366
1367 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1368
1369 /*
1370 * Check to see if any future RCU-related work will need to be done
1371 * by the current CPU, even if none need be done immediately, returning
1372 * 1 if so. This function is part of the RCU implementation; it is -not-
1373 * an exported member of the RCU API.
1374 *
1375 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1376 * any flavor of RCU.
1377 */
1378 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1379 {
1380 *nextevt = KTIME_MAX;
1381 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1382 ? 0 : rcu_cpu_has_callbacks(NULL);
1383 }
1384
1385 /*
1386 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1387 * after it.
1388 */
1389 static void rcu_cleanup_after_idle(void)
1390 {
1391 }
1392
1393 /*
1394 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1395 * is nothing.
1396 */
1397 static void rcu_prepare_for_idle(void)
1398 {
1399 }
1400
1401 /*
1402 * Don't bother keeping a running count of the number of RCU callbacks
1403 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1404 */
1405 static void rcu_idle_count_callbacks_posted(void)
1406 {
1407 }
1408
1409 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1410
1411 /*
1412 * This code is invoked when a CPU goes idle, at which point we want
1413 * to have the CPU do everything required for RCU so that it can enter
1414 * the energy-efficient dyntick-idle mode. This is handled by a
1415 * state machine implemented by rcu_prepare_for_idle() below.
1416 *
1417 * The following three proprocessor symbols control this state machine:
1418 *
1419 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1420 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1421 * is sized to be roughly one RCU grace period. Those energy-efficiency
1422 * benchmarkers who might otherwise be tempted to set this to a large
1423 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1424 * system. And if you are -that- concerned about energy efficiency,
1425 * just power the system down and be done with it!
1426 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1427 * permitted to sleep in dyntick-idle mode with only lazy RCU
1428 * callbacks pending. Setting this too high can OOM your system.
1429 *
1430 * The values below work well in practice. If future workloads require
1431 * adjustment, they can be converted into kernel config parameters, though
1432 * making the state machine smarter might be a better option.
1433 */
1434 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1435 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1436
1437 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1438 module_param(rcu_idle_gp_delay, int, 0644);
1439 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1440 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1441
1442 /*
1443 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1444 * only if it has been awhile since the last time we did so. Afterwards,
1445 * if there are any callbacks ready for immediate invocation, return true.
1446 */
1447 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1448 {
1449 bool cbs_ready = false;
1450 struct rcu_data *rdp;
1451 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1452 struct rcu_node *rnp;
1453 struct rcu_state *rsp;
1454
1455 /* Exit early if we advanced recently. */
1456 if (jiffies == rdtp->last_advance_all)
1457 return false;
1458 rdtp->last_advance_all = jiffies;
1459
1460 for_each_rcu_flavor(rsp) {
1461 rdp = this_cpu_ptr(rsp->rda);
1462 rnp = rdp->mynode;
1463
1464 /*
1465 * Don't bother checking unless a grace period has
1466 * completed since we last checked and there are
1467 * callbacks not yet ready to invoke.
1468 */
1469 if ((rdp->completed != rnp->completed ||
1470 unlikely(READ_ONCE(rdp->gpwrap))) &&
1471 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1472 note_gp_changes(rsp, rdp);
1473
1474 if (cpu_has_callbacks_ready_to_invoke(rdp))
1475 cbs_ready = true;
1476 }
1477 return cbs_ready;
1478 }
1479
1480 /*
1481 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1482 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1483 * caller to set the timeout based on whether or not there are non-lazy
1484 * callbacks.
1485 *
1486 * The caller must have disabled interrupts.
1487 */
1488 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1489 {
1490 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1491 unsigned long dj;
1492
1493 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1494 *nextevt = KTIME_MAX;
1495 return 0;
1496 }
1497
1498 /* Snapshot to detect later posting of non-lazy callback. */
1499 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1500
1501 /* If no callbacks, RCU doesn't need the CPU. */
1502 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1503 *nextevt = KTIME_MAX;
1504 return 0;
1505 }
1506
1507 /* Attempt to advance callbacks. */
1508 if (rcu_try_advance_all_cbs()) {
1509 /* Some ready to invoke, so initiate later invocation. */
1510 invoke_rcu_core();
1511 return 1;
1512 }
1513 rdtp->last_accelerate = jiffies;
1514
1515 /* Request timer delay depending on laziness, and round. */
1516 if (!rdtp->all_lazy) {
1517 dj = round_up(rcu_idle_gp_delay + jiffies,
1518 rcu_idle_gp_delay) - jiffies;
1519 } else {
1520 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1521 }
1522 *nextevt = basemono + dj * TICK_NSEC;
1523 return 0;
1524 }
1525
1526 /*
1527 * Prepare a CPU for idle from an RCU perspective. The first major task
1528 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1529 * The second major task is to check to see if a non-lazy callback has
1530 * arrived at a CPU that previously had only lazy callbacks. The third
1531 * major task is to accelerate (that is, assign grace-period numbers to)
1532 * any recently arrived callbacks.
1533 *
1534 * The caller must have disabled interrupts.
1535 */
1536 static void rcu_prepare_for_idle(void)
1537 {
1538 bool needwake;
1539 struct rcu_data *rdp;
1540 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1541 struct rcu_node *rnp;
1542 struct rcu_state *rsp;
1543 int tne;
1544
1545 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1546 return;
1547
1548 /* Handle nohz enablement switches conservatively. */
1549 tne = READ_ONCE(tick_nohz_active);
1550 if (tne != rdtp->tick_nohz_enabled_snap) {
1551 if (rcu_cpu_has_callbacks(NULL))
1552 invoke_rcu_core(); /* force nohz to see update. */
1553 rdtp->tick_nohz_enabled_snap = tne;
1554 return;
1555 }
1556 if (!tne)
1557 return;
1558
1559 /* If this is a no-CBs CPU, no callbacks, just return. */
1560 if (rcu_is_nocb_cpu(smp_processor_id()))
1561 return;
1562
1563 /*
1564 * If a non-lazy callback arrived at a CPU having only lazy
1565 * callbacks, invoke RCU core for the side-effect of recalculating
1566 * idle duration on re-entry to idle.
1567 */
1568 if (rdtp->all_lazy &&
1569 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1570 rdtp->all_lazy = false;
1571 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1572 invoke_rcu_core();
1573 return;
1574 }
1575
1576 /*
1577 * If we have not yet accelerated this jiffy, accelerate all
1578 * callbacks on this CPU.
1579 */
1580 if (rdtp->last_accelerate == jiffies)
1581 return;
1582 rdtp->last_accelerate = jiffies;
1583 for_each_rcu_flavor(rsp) {
1584 rdp = this_cpu_ptr(rsp->rda);
1585 if (!*rdp->nxttail[RCU_DONE_TAIL])
1586 continue;
1587 rnp = rdp->mynode;
1588 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1589 smp_mb__after_unlock_lock();
1590 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1591 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1592 if (needwake)
1593 rcu_gp_kthread_wake(rsp);
1594 }
1595 }
1596
1597 /*
1598 * Clean up for exit from idle. Attempt to advance callbacks based on
1599 * any grace periods that elapsed while the CPU was idle, and if any
1600 * callbacks are now ready to invoke, initiate invocation.
1601 */
1602 static void rcu_cleanup_after_idle(void)
1603 {
1604 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1605 rcu_is_nocb_cpu(smp_processor_id()))
1606 return;
1607 if (rcu_try_advance_all_cbs())
1608 invoke_rcu_core();
1609 }
1610
1611 /*
1612 * Keep a running count of the number of non-lazy callbacks posted
1613 * on this CPU. This running counter (which is never decremented) allows
1614 * rcu_prepare_for_idle() to detect when something out of the idle loop
1615 * posts a callback, even if an equal number of callbacks are invoked.
1616 * Of course, callbacks should only be posted from within a trace event
1617 * designed to be called from idle or from within RCU_NONIDLE().
1618 */
1619 static void rcu_idle_count_callbacks_posted(void)
1620 {
1621 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1622 }
1623
1624 /*
1625 * Data for flushing lazy RCU callbacks at OOM time.
1626 */
1627 static atomic_t oom_callback_count;
1628 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1629
1630 /*
1631 * RCU OOM callback -- decrement the outstanding count and deliver the
1632 * wake-up if we are the last one.
1633 */
1634 static void rcu_oom_callback(struct rcu_head *rhp)
1635 {
1636 if (atomic_dec_and_test(&oom_callback_count))
1637 wake_up(&oom_callback_wq);
1638 }
1639
1640 /*
1641 * Post an rcu_oom_notify callback on the current CPU if it has at
1642 * least one lazy callback. This will unnecessarily post callbacks
1643 * to CPUs that already have a non-lazy callback at the end of their
1644 * callback list, but this is an infrequent operation, so accept some
1645 * extra overhead to keep things simple.
1646 */
1647 static void rcu_oom_notify_cpu(void *unused)
1648 {
1649 struct rcu_state *rsp;
1650 struct rcu_data *rdp;
1651
1652 for_each_rcu_flavor(rsp) {
1653 rdp = raw_cpu_ptr(rsp->rda);
1654 if (rdp->qlen_lazy != 0) {
1655 atomic_inc(&oom_callback_count);
1656 rsp->call(&rdp->oom_head, rcu_oom_callback);
1657 }
1658 }
1659 }
1660
1661 /*
1662 * If low on memory, ensure that each CPU has a non-lazy callback.
1663 * This will wake up CPUs that have only lazy callbacks, in turn
1664 * ensuring that they free up the corresponding memory in a timely manner.
1665 * Because an uncertain amount of memory will be freed in some uncertain
1666 * timeframe, we do not claim to have freed anything.
1667 */
1668 static int rcu_oom_notify(struct notifier_block *self,
1669 unsigned long notused, void *nfreed)
1670 {
1671 int cpu;
1672
1673 /* Wait for callbacks from earlier instance to complete. */
1674 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1675 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1676
1677 /*
1678 * Prevent premature wakeup: ensure that all increments happen
1679 * before there is a chance of the counter reaching zero.
1680 */
1681 atomic_set(&oom_callback_count, 1);
1682
1683 get_online_cpus();
1684 for_each_online_cpu(cpu) {
1685 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1686 cond_resched_rcu_qs();
1687 }
1688 put_online_cpus();
1689
1690 /* Unconditionally decrement: no need to wake ourselves up. */
1691 atomic_dec(&oom_callback_count);
1692
1693 return NOTIFY_OK;
1694 }
1695
1696 static struct notifier_block rcu_oom_nb = {
1697 .notifier_call = rcu_oom_notify
1698 };
1699
1700 static int __init rcu_register_oom_notifier(void)
1701 {
1702 register_oom_notifier(&rcu_oom_nb);
1703 return 0;
1704 }
1705 early_initcall(rcu_register_oom_notifier);
1706
1707 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1708
1709 #ifdef CONFIG_RCU_CPU_STALL_INFO
1710
1711 #ifdef CONFIG_RCU_FAST_NO_HZ
1712
1713 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1714 {
1715 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1716 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1717
1718 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1719 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1720 ulong2long(nlpd),
1721 rdtp->all_lazy ? 'L' : '.',
1722 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1723 }
1724
1725 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1726
1727 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1728 {
1729 *cp = '\0';
1730 }
1731
1732 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1733
1734 /* Initiate the stall-info list. */
1735 static void print_cpu_stall_info_begin(void)
1736 {
1737 pr_cont("\n");
1738 }
1739
1740 /*
1741 * Print out diagnostic information for the specified stalled CPU.
1742 *
1743 * If the specified CPU is aware of the current RCU grace period
1744 * (flavor specified by rsp), then print the number of scheduling
1745 * clock interrupts the CPU has taken during the time that it has
1746 * been aware. Otherwise, print the number of RCU grace periods
1747 * that this CPU is ignorant of, for example, "1" if the CPU was
1748 * aware of the previous grace period.
1749 *
1750 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1751 */
1752 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1753 {
1754 char fast_no_hz[72];
1755 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1756 struct rcu_dynticks *rdtp = rdp->dynticks;
1757 char *ticks_title;
1758 unsigned long ticks_value;
1759
1760 if (rsp->gpnum == rdp->gpnum) {
1761 ticks_title = "ticks this GP";
1762 ticks_value = rdp->ticks_this_gp;
1763 } else {
1764 ticks_title = "GPs behind";
1765 ticks_value = rsp->gpnum - rdp->gpnum;
1766 }
1767 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1768 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1769 cpu, ticks_value, ticks_title,
1770 atomic_read(&rdtp->dynticks) & 0xfff,
1771 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1772 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1773 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1774 fast_no_hz);
1775 }
1776
1777 /* Terminate the stall-info list. */
1778 static void print_cpu_stall_info_end(void)
1779 {
1780 pr_err("\t");
1781 }
1782
1783 /* Zero ->ticks_this_gp for all flavors of RCU. */
1784 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1785 {
1786 rdp->ticks_this_gp = 0;
1787 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1788 }
1789
1790 /* Increment ->ticks_this_gp for all flavors of RCU. */
1791 static void increment_cpu_stall_ticks(void)
1792 {
1793 struct rcu_state *rsp;
1794
1795 for_each_rcu_flavor(rsp)
1796 raw_cpu_inc(rsp->rda->ticks_this_gp);
1797 }
1798
1799 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1800
1801 static void print_cpu_stall_info_begin(void)
1802 {
1803 pr_cont(" {");
1804 }
1805
1806 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1807 {
1808 pr_cont(" %d", cpu);
1809 }
1810
1811 static void print_cpu_stall_info_end(void)
1812 {
1813 pr_cont("} ");
1814 }
1815
1816 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1817 {
1818 }
1819
1820 static void increment_cpu_stall_ticks(void)
1821 {
1822 }
1823
1824 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1825
1826 #ifdef CONFIG_RCU_NOCB_CPU
1827
1828 /*
1829 * Offload callback processing from the boot-time-specified set of CPUs
1830 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1831 * kthread created that pulls the callbacks from the corresponding CPU,
1832 * waits for a grace period to elapse, and invokes the callbacks.
1833 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1834 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1835 * has been specified, in which case each kthread actively polls its
1836 * CPU. (Which isn't so great for energy efficiency, but which does
1837 * reduce RCU's overhead on that CPU.)
1838 *
1839 * This is intended to be used in conjunction with Frederic Weisbecker's
1840 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1841 * running CPU-bound user-mode computations.
1842 *
1843 * Offloading of callback processing could also in theory be used as
1844 * an energy-efficiency measure because CPUs with no RCU callbacks
1845 * queued are more aggressive about entering dyntick-idle mode.
1846 */
1847
1848
1849 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1850 static int __init rcu_nocb_setup(char *str)
1851 {
1852 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1853 have_rcu_nocb_mask = true;
1854 cpulist_parse(str, rcu_nocb_mask);
1855 return 1;
1856 }
1857 __setup("rcu_nocbs=", rcu_nocb_setup);
1858
1859 static int __init parse_rcu_nocb_poll(char *arg)
1860 {
1861 rcu_nocb_poll = 1;
1862 return 0;
1863 }
1864 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1865
1866 /*
1867 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1868 * grace period.
1869 */
1870 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1871 {
1872 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1873 }
1874
1875 /*
1876 * Set the root rcu_node structure's ->need_future_gp field
1877 * based on the sum of those of all rcu_node structures. This does
1878 * double-count the root rcu_node structure's requests, but this
1879 * is necessary to handle the possibility of a rcu_nocb_kthread()
1880 * having awakened during the time that the rcu_node structures
1881 * were being updated for the end of the previous grace period.
1882 */
1883 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1884 {
1885 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1886 }
1887
1888 static void rcu_init_one_nocb(struct rcu_node *rnp)
1889 {
1890 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1891 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1892 }
1893
1894 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1895 /* Is the specified CPU a no-CBs CPU? */
1896 bool rcu_is_nocb_cpu(int cpu)
1897 {
1898 if (have_rcu_nocb_mask)
1899 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1900 return false;
1901 }
1902 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1903
1904 /*
1905 * Kick the leader kthread for this NOCB group.
1906 */
1907 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1908 {
1909 struct rcu_data *rdp_leader = rdp->nocb_leader;
1910
1911 if (!READ_ONCE(rdp_leader->nocb_kthread))
1912 return;
1913 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1914 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1915 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1916 wake_up(&rdp_leader->nocb_wq);
1917 }
1918 }
1919
1920 /*
1921 * Does the specified CPU need an RCU callback for the specified flavor
1922 * of rcu_barrier()?
1923 */
1924 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1925 {
1926 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1927 unsigned long ret;
1928 #ifdef CONFIG_PROVE_RCU
1929 struct rcu_head *rhp;
1930 #endif /* #ifdef CONFIG_PROVE_RCU */
1931
1932 /*
1933 * Check count of all no-CBs callbacks awaiting invocation.
1934 * There needs to be a barrier before this function is called,
1935 * but associated with a prior determination that no more
1936 * callbacks would be posted. In the worst case, the first
1937 * barrier in _rcu_barrier() suffices (but the caller cannot
1938 * necessarily rely on this, not a substitute for the caller
1939 * getting the concurrency design right!). There must also be
1940 * a barrier between the following load an posting of a callback
1941 * (if a callback is in fact needed). This is associated with an
1942 * atomic_inc() in the caller.
1943 */
1944 ret = atomic_long_read(&rdp->nocb_q_count);
1945
1946 #ifdef CONFIG_PROVE_RCU
1947 rhp = READ_ONCE(rdp->nocb_head);
1948 if (!rhp)
1949 rhp = READ_ONCE(rdp->nocb_gp_head);
1950 if (!rhp)
1951 rhp = READ_ONCE(rdp->nocb_follower_head);
1952
1953 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1954 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1955 rcu_scheduler_fully_active) {
1956 /* RCU callback enqueued before CPU first came online??? */
1957 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1958 cpu, rhp->func);
1959 WARN_ON_ONCE(1);
1960 }
1961 #endif /* #ifdef CONFIG_PROVE_RCU */
1962
1963 return !!ret;
1964 }
1965
1966 /*
1967 * Enqueue the specified string of rcu_head structures onto the specified
1968 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1969 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1970 * counts are supplied by rhcount and rhcount_lazy.
1971 *
1972 * If warranted, also wake up the kthread servicing this CPUs queues.
1973 */
1974 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1975 struct rcu_head *rhp,
1976 struct rcu_head **rhtp,
1977 int rhcount, int rhcount_lazy,
1978 unsigned long flags)
1979 {
1980 int len;
1981 struct rcu_head **old_rhpp;
1982 struct task_struct *t;
1983
1984 /* Enqueue the callback on the nocb list and update counts. */
1985 atomic_long_add(rhcount, &rdp->nocb_q_count);
1986 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1987 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1988 WRITE_ONCE(*old_rhpp, rhp);
1989 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1990 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1991
1992 /* If we are not being polled and there is a kthread, awaken it ... */
1993 t = READ_ONCE(rdp->nocb_kthread);
1994 if (rcu_nocb_poll || !t) {
1995 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1996 TPS("WakeNotPoll"));
1997 return;
1998 }
1999 len = atomic_long_read(&rdp->nocb_q_count);
2000 if (old_rhpp == &rdp->nocb_head) {
2001 if (!irqs_disabled_flags(flags)) {
2002 /* ... if queue was empty ... */
2003 wake_nocb_leader(rdp, false);
2004 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2005 TPS("WakeEmpty"));
2006 } else {
2007 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2008 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2009 TPS("WakeEmptyIsDeferred"));
2010 }
2011 rdp->qlen_last_fqs_check = 0;
2012 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2013 /* ... or if many callbacks queued. */
2014 if (!irqs_disabled_flags(flags)) {
2015 wake_nocb_leader(rdp, true);
2016 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2017 TPS("WakeOvf"));
2018 } else {
2019 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2020 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2021 TPS("WakeOvfIsDeferred"));
2022 }
2023 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2024 } else {
2025 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2026 }
2027 return;
2028 }
2029
2030 /*
2031 * This is a helper for __call_rcu(), which invokes this when the normal
2032 * callback queue is inoperable. If this is not a no-CBs CPU, this
2033 * function returns failure back to __call_rcu(), which can complain
2034 * appropriately.
2035 *
2036 * Otherwise, this function queues the callback where the corresponding
2037 * "rcuo" kthread can find it.
2038 */
2039 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2040 bool lazy, unsigned long flags)
2041 {
2042
2043 if (!rcu_is_nocb_cpu(rdp->cpu))
2044 return false;
2045 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2046 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2047 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2048 (unsigned long)rhp->func,
2049 -atomic_long_read(&rdp->nocb_q_count_lazy),
2050 -atomic_long_read(&rdp->nocb_q_count));
2051 else
2052 trace_rcu_callback(rdp->rsp->name, rhp,
2053 -atomic_long_read(&rdp->nocb_q_count_lazy),
2054 -atomic_long_read(&rdp->nocb_q_count));
2055
2056 /*
2057 * If called from an extended quiescent state with interrupts
2058 * disabled, invoke the RCU core in order to allow the idle-entry
2059 * deferred-wakeup check to function.
2060 */
2061 if (irqs_disabled_flags(flags) &&
2062 !rcu_is_watching() &&
2063 cpu_online(smp_processor_id()))
2064 invoke_rcu_core();
2065
2066 return true;
2067 }
2068
2069 /*
2070 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2071 * not a no-CBs CPU.
2072 */
2073 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2074 struct rcu_data *rdp,
2075 unsigned long flags)
2076 {
2077 long ql = rsp->qlen;
2078 long qll = rsp->qlen_lazy;
2079
2080 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2081 if (!rcu_is_nocb_cpu(smp_processor_id()))
2082 return false;
2083 rsp->qlen = 0;
2084 rsp->qlen_lazy = 0;
2085
2086 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2087 if (rsp->orphan_donelist != NULL) {
2088 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2089 rsp->orphan_donetail, ql, qll, flags);
2090 ql = qll = 0;
2091 rsp->orphan_donelist = NULL;
2092 rsp->orphan_donetail = &rsp->orphan_donelist;
2093 }
2094 if (rsp->orphan_nxtlist != NULL) {
2095 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2096 rsp->orphan_nxttail, ql, qll, flags);
2097 ql = qll = 0;
2098 rsp->orphan_nxtlist = NULL;
2099 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2100 }
2101 return true;
2102 }
2103
2104 /*
2105 * If necessary, kick off a new grace period, and either way wait
2106 * for a subsequent grace period to complete.
2107 */
2108 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2109 {
2110 unsigned long c;
2111 bool d;
2112 unsigned long flags;
2113 bool needwake;
2114 struct rcu_node *rnp = rdp->mynode;
2115
2116 raw_spin_lock_irqsave(&rnp->lock, flags);
2117 smp_mb__after_unlock_lock();
2118 needwake = rcu_start_future_gp(rnp, rdp, &c);
2119 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2120 if (needwake)
2121 rcu_gp_kthread_wake(rdp->rsp);
2122
2123 /*
2124 * Wait for the grace period. Do so interruptibly to avoid messing
2125 * up the load average.
2126 */
2127 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2128 for (;;) {
2129 wait_event_interruptible(
2130 rnp->nocb_gp_wq[c & 0x1],
2131 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2132 if (likely(d))
2133 break;
2134 WARN_ON(signal_pending(current));
2135 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2136 }
2137 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2138 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2139 }
2140
2141 /*
2142 * Leaders come here to wait for additional callbacks to show up.
2143 * This function does not return until callbacks appear.
2144 */
2145 static void nocb_leader_wait(struct rcu_data *my_rdp)
2146 {
2147 bool firsttime = true;
2148 bool gotcbs;
2149 struct rcu_data *rdp;
2150 struct rcu_head **tail;
2151
2152 wait_again:
2153
2154 /* Wait for callbacks to appear. */
2155 if (!rcu_nocb_poll) {
2156 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2157 wait_event_interruptible(my_rdp->nocb_wq,
2158 !READ_ONCE(my_rdp->nocb_leader_sleep));
2159 /* Memory barrier handled by smp_mb() calls below and repoll. */
2160 } else if (firsttime) {
2161 firsttime = false; /* Don't drown trace log with "Poll"! */
2162 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2163 }
2164
2165 /*
2166 * Each pass through the following loop checks a follower for CBs.
2167 * We are our own first follower. Any CBs found are moved to
2168 * nocb_gp_head, where they await a grace period.
2169 */
2170 gotcbs = false;
2171 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2172 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2173 if (!rdp->nocb_gp_head)
2174 continue; /* No CBs here, try next follower. */
2175
2176 /* Move callbacks to wait-for-GP list, which is empty. */
2177 WRITE_ONCE(rdp->nocb_head, NULL);
2178 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2179 gotcbs = true;
2180 }
2181
2182 /*
2183 * If there were no callbacks, sleep a bit, rescan after a
2184 * memory barrier, and go retry.
2185 */
2186 if (unlikely(!gotcbs)) {
2187 if (!rcu_nocb_poll)
2188 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2189 "WokeEmpty");
2190 WARN_ON(signal_pending(current));
2191 schedule_timeout_interruptible(1);
2192
2193 /* Rescan in case we were a victim of memory ordering. */
2194 my_rdp->nocb_leader_sleep = true;
2195 smp_mb(); /* Ensure _sleep true before scan. */
2196 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2197 if (READ_ONCE(rdp->nocb_head)) {
2198 /* Found CB, so short-circuit next wait. */
2199 my_rdp->nocb_leader_sleep = false;
2200 break;
2201 }
2202 goto wait_again;
2203 }
2204
2205 /* Wait for one grace period. */
2206 rcu_nocb_wait_gp(my_rdp);
2207
2208 /*
2209 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2210 * We set it now, but recheck for new callbacks while
2211 * traversing our follower list.
2212 */
2213 my_rdp->nocb_leader_sleep = true;
2214 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2215
2216 /* Each pass through the following loop wakes a follower, if needed. */
2217 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2218 if (READ_ONCE(rdp->nocb_head))
2219 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2220 if (!rdp->nocb_gp_head)
2221 continue; /* No CBs, so no need to wake follower. */
2222
2223 /* Append callbacks to follower's "done" list. */
2224 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2225 *tail = rdp->nocb_gp_head;
2226 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2227 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2228 /*
2229 * List was empty, wake up the follower.
2230 * Memory barriers supplied by atomic_long_add().
2231 */
2232 wake_up(&rdp->nocb_wq);
2233 }
2234 }
2235
2236 /* If we (the leader) don't have CBs, go wait some more. */
2237 if (!my_rdp->nocb_follower_head)
2238 goto wait_again;
2239 }
2240
2241 /*
2242 * Followers come here to wait for additional callbacks to show up.
2243 * This function does not return until callbacks appear.
2244 */
2245 static void nocb_follower_wait(struct rcu_data *rdp)
2246 {
2247 bool firsttime = true;
2248
2249 for (;;) {
2250 if (!rcu_nocb_poll) {
2251 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2252 "FollowerSleep");
2253 wait_event_interruptible(rdp->nocb_wq,
2254 READ_ONCE(rdp->nocb_follower_head));
2255 } else if (firsttime) {
2256 /* Don't drown trace log with "Poll"! */
2257 firsttime = false;
2258 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2259 }
2260 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2261 /* ^^^ Ensure CB invocation follows _head test. */
2262 return;
2263 }
2264 if (!rcu_nocb_poll)
2265 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2266 "WokeEmpty");
2267 WARN_ON(signal_pending(current));
2268 schedule_timeout_interruptible(1);
2269 }
2270 }
2271
2272 /*
2273 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2274 * callbacks queued by the corresponding no-CBs CPU, however, there is
2275 * an optional leader-follower relationship so that the grace-period
2276 * kthreads don't have to do quite so many wakeups.
2277 */
2278 static int rcu_nocb_kthread(void *arg)
2279 {
2280 int c, cl;
2281 struct rcu_head *list;
2282 struct rcu_head *next;
2283 struct rcu_head **tail;
2284 struct rcu_data *rdp = arg;
2285
2286 /* Each pass through this loop invokes one batch of callbacks */
2287 for (;;) {
2288 /* Wait for callbacks. */
2289 if (rdp->nocb_leader == rdp)
2290 nocb_leader_wait(rdp);
2291 else
2292 nocb_follower_wait(rdp);
2293
2294 /* Pull the ready-to-invoke callbacks onto local list. */
2295 list = READ_ONCE(rdp->nocb_follower_head);
2296 BUG_ON(!list);
2297 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2298 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2299 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2300
2301 /* Each pass through the following loop invokes a callback. */
2302 trace_rcu_batch_start(rdp->rsp->name,
2303 atomic_long_read(&rdp->nocb_q_count_lazy),
2304 atomic_long_read(&rdp->nocb_q_count), -1);
2305 c = cl = 0;
2306 while (list) {
2307 next = list->next;
2308 /* Wait for enqueuing to complete, if needed. */
2309 while (next == NULL && &list->next != tail) {
2310 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2311 TPS("WaitQueue"));
2312 schedule_timeout_interruptible(1);
2313 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2314 TPS("WokeQueue"));
2315 next = list->next;
2316 }
2317 debug_rcu_head_unqueue(list);
2318 local_bh_disable();
2319 if (__rcu_reclaim(rdp->rsp->name, list))
2320 cl++;
2321 c++;
2322 local_bh_enable();
2323 list = next;
2324 }
2325 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2326 smp_mb__before_atomic(); /* _add after CB invocation. */
2327 atomic_long_add(-c, &rdp->nocb_q_count);
2328 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2329 rdp->n_nocbs_invoked += c;
2330 }
2331 return 0;
2332 }
2333
2334 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2335 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2336 {
2337 return READ_ONCE(rdp->nocb_defer_wakeup);
2338 }
2339
2340 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2341 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2342 {
2343 int ndw;
2344
2345 if (!rcu_nocb_need_deferred_wakeup(rdp))
2346 return;
2347 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2348 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2349 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2350 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2351 }
2352
2353 void __init rcu_init_nohz(void)
2354 {
2355 int cpu;
2356 bool need_rcu_nocb_mask = true;
2357 struct rcu_state *rsp;
2358
2359 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2360 need_rcu_nocb_mask = false;
2361 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2362
2363 #if defined(CONFIG_NO_HZ_FULL)
2364 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2365 need_rcu_nocb_mask = true;
2366 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2367
2368 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2369 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2370 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2371 return;
2372 }
2373 have_rcu_nocb_mask = true;
2374 }
2375 if (!have_rcu_nocb_mask)
2376 return;
2377
2378 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2379 pr_info("\tOffload RCU callbacks from CPU 0\n");
2380 cpumask_set_cpu(0, rcu_nocb_mask);
2381 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2382 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2383 pr_info("\tOffload RCU callbacks from all CPUs\n");
2384 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2385 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2386 #if defined(CONFIG_NO_HZ_FULL)
2387 if (tick_nohz_full_running)
2388 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2389 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2390
2391 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2392 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2393 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2394 rcu_nocb_mask);
2395 }
2396 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2397 cpumask_pr_args(rcu_nocb_mask));
2398 if (rcu_nocb_poll)
2399 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2400
2401 for_each_rcu_flavor(rsp) {
2402 for_each_cpu(cpu, rcu_nocb_mask)
2403 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2404 rcu_organize_nocb_kthreads(rsp);
2405 }
2406 }
2407
2408 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2409 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2410 {
2411 rdp->nocb_tail = &rdp->nocb_head;
2412 init_waitqueue_head(&rdp->nocb_wq);
2413 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2414 }
2415
2416 /*
2417 * If the specified CPU is a no-CBs CPU that does not already have its
2418 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2419 * brought online out of order, this can require re-organizing the
2420 * leader-follower relationships.
2421 */
2422 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2423 {
2424 struct rcu_data *rdp;
2425 struct rcu_data *rdp_last;
2426 struct rcu_data *rdp_old_leader;
2427 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2428 struct task_struct *t;
2429
2430 /*
2431 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2432 * then nothing to do.
2433 */
2434 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2435 return;
2436
2437 /* If we didn't spawn the leader first, reorganize! */
2438 rdp_old_leader = rdp_spawn->nocb_leader;
2439 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2440 rdp_last = NULL;
2441 rdp = rdp_old_leader;
2442 do {
2443 rdp->nocb_leader = rdp_spawn;
2444 if (rdp_last && rdp != rdp_spawn)
2445 rdp_last->nocb_next_follower = rdp;
2446 if (rdp == rdp_spawn) {
2447 rdp = rdp->nocb_next_follower;
2448 } else {
2449 rdp_last = rdp;
2450 rdp = rdp->nocb_next_follower;
2451 rdp_last->nocb_next_follower = NULL;
2452 }
2453 } while (rdp);
2454 rdp_spawn->nocb_next_follower = rdp_old_leader;
2455 }
2456
2457 /* Spawn the kthread for this CPU and RCU flavor. */
2458 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2459 "rcuo%c/%d", rsp->abbr, cpu);
2460 BUG_ON(IS_ERR(t));
2461 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2462 }
2463
2464 /*
2465 * If the specified CPU is a no-CBs CPU that does not already have its
2466 * rcuo kthreads, spawn them.
2467 */
2468 static void rcu_spawn_all_nocb_kthreads(int cpu)
2469 {
2470 struct rcu_state *rsp;
2471
2472 if (rcu_scheduler_fully_active)
2473 for_each_rcu_flavor(rsp)
2474 rcu_spawn_one_nocb_kthread(rsp, cpu);
2475 }
2476
2477 /*
2478 * Once the scheduler is running, spawn rcuo kthreads for all online
2479 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2480 * non-boot CPUs come online -- if this changes, we will need to add
2481 * some mutual exclusion.
2482 */
2483 static void __init rcu_spawn_nocb_kthreads(void)
2484 {
2485 int cpu;
2486
2487 for_each_online_cpu(cpu)
2488 rcu_spawn_all_nocb_kthreads(cpu);
2489 }
2490
2491 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2492 static int rcu_nocb_leader_stride = -1;
2493 module_param(rcu_nocb_leader_stride, int, 0444);
2494
2495 /*
2496 * Initialize leader-follower relationships for all no-CBs CPU.
2497 */
2498 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2499 {
2500 int cpu;
2501 int ls = rcu_nocb_leader_stride;
2502 int nl = 0; /* Next leader. */
2503 struct rcu_data *rdp;
2504 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2505 struct rcu_data *rdp_prev = NULL;
2506
2507 if (!have_rcu_nocb_mask)
2508 return;
2509 if (ls == -1) {
2510 ls = int_sqrt(nr_cpu_ids);
2511 rcu_nocb_leader_stride = ls;
2512 }
2513
2514 /*
2515 * Each pass through this loop sets up one rcu_data structure and
2516 * spawns one rcu_nocb_kthread().
2517 */
2518 for_each_cpu(cpu, rcu_nocb_mask) {
2519 rdp = per_cpu_ptr(rsp->rda, cpu);
2520 if (rdp->cpu >= nl) {
2521 /* New leader, set up for followers & next leader. */
2522 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2523 rdp->nocb_leader = rdp;
2524 rdp_leader = rdp;
2525 } else {
2526 /* Another follower, link to previous leader. */
2527 rdp->nocb_leader = rdp_leader;
2528 rdp_prev->nocb_next_follower = rdp;
2529 }
2530 rdp_prev = rdp;
2531 }
2532 }
2533
2534 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2535 static bool init_nocb_callback_list(struct rcu_data *rdp)
2536 {
2537 if (!rcu_is_nocb_cpu(rdp->cpu))
2538 return false;
2539
2540 /* If there are early-boot callbacks, move them to nocb lists. */
2541 if (rdp->nxtlist) {
2542 rdp->nocb_head = rdp->nxtlist;
2543 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2544 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2545 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2546 rdp->nxtlist = NULL;
2547 rdp->qlen = 0;
2548 rdp->qlen_lazy = 0;
2549 }
2550 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2551 return true;
2552 }
2553
2554 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2555
2556 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2557 {
2558 WARN_ON_ONCE(1); /* Should be dead code. */
2559 return false;
2560 }
2561
2562 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2563 {
2564 }
2565
2566 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2567 {
2568 }
2569
2570 static void rcu_init_one_nocb(struct rcu_node *rnp)
2571 {
2572 }
2573
2574 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2575 bool lazy, unsigned long flags)
2576 {
2577 return false;
2578 }
2579
2580 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2581 struct rcu_data *rdp,
2582 unsigned long flags)
2583 {
2584 return false;
2585 }
2586
2587 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2588 {
2589 }
2590
2591 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2592 {
2593 return false;
2594 }
2595
2596 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2597 {
2598 }
2599
2600 static void rcu_spawn_all_nocb_kthreads(int cpu)
2601 {
2602 }
2603
2604 static void __init rcu_spawn_nocb_kthreads(void)
2605 {
2606 }
2607
2608 static bool init_nocb_callback_list(struct rcu_data *rdp)
2609 {
2610 return false;
2611 }
2612
2613 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2614
2615 /*
2616 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2617 * arbitrarily long period of time with the scheduling-clock tick turned
2618 * off. RCU will be paying attention to this CPU because it is in the
2619 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2620 * machine because the scheduling-clock tick has been disabled. Therefore,
2621 * if an adaptive-ticks CPU is failing to respond to the current grace
2622 * period and has not be idle from an RCU perspective, kick it.
2623 */
2624 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2625 {
2626 #ifdef CONFIG_NO_HZ_FULL
2627 if (tick_nohz_full_cpu(cpu))
2628 smp_send_reschedule(cpu);
2629 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2630 }
2631
2632
2633 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2634
2635 static int full_sysidle_state; /* Current system-idle state. */
2636 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2637 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2638 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2639 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2640 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2641
2642 /*
2643 * Invoked to note exit from irq or task transition to idle. Note that
2644 * usermode execution does -not- count as idle here! After all, we want
2645 * to detect full-system idle states, not RCU quiescent states and grace
2646 * periods. The caller must have disabled interrupts.
2647 */
2648 static void rcu_sysidle_enter(int irq)
2649 {
2650 unsigned long j;
2651 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2652
2653 /* If there are no nohz_full= CPUs, no need to track this. */
2654 if (!tick_nohz_full_enabled())
2655 return;
2656
2657 /* Adjust nesting, check for fully idle. */
2658 if (irq) {
2659 rdtp->dynticks_idle_nesting--;
2660 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2661 if (rdtp->dynticks_idle_nesting != 0)
2662 return; /* Still not fully idle. */
2663 } else {
2664 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2665 DYNTICK_TASK_NEST_VALUE) {
2666 rdtp->dynticks_idle_nesting = 0;
2667 } else {
2668 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2669 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2670 return; /* Still not fully idle. */
2671 }
2672 }
2673
2674 /* Record start of fully idle period. */
2675 j = jiffies;
2676 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2677 smp_mb__before_atomic();
2678 atomic_inc(&rdtp->dynticks_idle);
2679 smp_mb__after_atomic();
2680 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2681 }
2682
2683 /*
2684 * Unconditionally force exit from full system-idle state. This is
2685 * invoked when a normal CPU exits idle, but must be called separately
2686 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2687 * is that the timekeeping CPU is permitted to take scheduling-clock
2688 * interrupts while the system is in system-idle state, and of course
2689 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2690 * interrupt from any other type of interrupt.
2691 */
2692 void rcu_sysidle_force_exit(void)
2693 {
2694 int oldstate = READ_ONCE(full_sysidle_state);
2695 int newoldstate;
2696
2697 /*
2698 * Each pass through the following loop attempts to exit full
2699 * system-idle state. If contention proves to be a problem,
2700 * a trylock-based contention tree could be used here.
2701 */
2702 while (oldstate > RCU_SYSIDLE_SHORT) {
2703 newoldstate = cmpxchg(&full_sysidle_state,
2704 oldstate, RCU_SYSIDLE_NOT);
2705 if (oldstate == newoldstate &&
2706 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2707 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2708 return; /* We cleared it, done! */
2709 }
2710 oldstate = newoldstate;
2711 }
2712 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2713 }
2714
2715 /*
2716 * Invoked to note entry to irq or task transition from idle. Note that
2717 * usermode execution does -not- count as idle here! The caller must
2718 * have disabled interrupts.
2719 */
2720 static void rcu_sysidle_exit(int irq)
2721 {
2722 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2723
2724 /* If there are no nohz_full= CPUs, no need to track this. */
2725 if (!tick_nohz_full_enabled())
2726 return;
2727
2728 /* Adjust nesting, check for already non-idle. */
2729 if (irq) {
2730 rdtp->dynticks_idle_nesting++;
2731 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2732 if (rdtp->dynticks_idle_nesting != 1)
2733 return; /* Already non-idle. */
2734 } else {
2735 /*
2736 * Allow for irq misnesting. Yes, it really is possible
2737 * to enter an irq handler then never leave it, and maybe
2738 * also vice versa. Handle both possibilities.
2739 */
2740 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2741 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2742 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2743 return; /* Already non-idle. */
2744 } else {
2745 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2746 }
2747 }
2748
2749 /* Record end of idle period. */
2750 smp_mb__before_atomic();
2751 atomic_inc(&rdtp->dynticks_idle);
2752 smp_mb__after_atomic();
2753 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2754
2755 /*
2756 * If we are the timekeeping CPU, we are permitted to be non-idle
2757 * during a system-idle state. This must be the case, because
2758 * the timekeeping CPU has to take scheduling-clock interrupts
2759 * during the time that the system is transitioning to full
2760 * system-idle state. This means that the timekeeping CPU must
2761 * invoke rcu_sysidle_force_exit() directly if it does anything
2762 * more than take a scheduling-clock interrupt.
2763 */
2764 if (smp_processor_id() == tick_do_timer_cpu)
2765 return;
2766
2767 /* Update system-idle state: We are clearly no longer fully idle! */
2768 rcu_sysidle_force_exit();
2769 }
2770
2771 /*
2772 * Check to see if the current CPU is idle. Note that usermode execution
2773 * does not count as idle. The caller must have disabled interrupts,
2774 * and must be running on tick_do_timer_cpu.
2775 */
2776 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2777 unsigned long *maxj)
2778 {
2779 int cur;
2780 unsigned long j;
2781 struct rcu_dynticks *rdtp = rdp->dynticks;
2782
2783 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2784 if (!tick_nohz_full_enabled())
2785 return;
2786
2787 /*
2788 * If some other CPU has already reported non-idle, if this is
2789 * not the flavor of RCU that tracks sysidle state, or if this
2790 * is an offline or the timekeeping CPU, nothing to do.
2791 */
2792 if (!*isidle || rdp->rsp != rcu_state_p ||
2793 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2794 return;
2795 /* Verify affinity of current kthread. */
2796 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2797
2798 /* Pick up current idle and NMI-nesting counter and check. */
2799 cur = atomic_read(&rdtp->dynticks_idle);
2800 if (cur & 0x1) {
2801 *isidle = false; /* We are not idle! */
2802 return;
2803 }
2804 smp_mb(); /* Read counters before timestamps. */
2805
2806 /* Pick up timestamps. */
2807 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2808 /* If this CPU entered idle more recently, update maxj timestamp. */
2809 if (ULONG_CMP_LT(*maxj, j))
2810 *maxj = j;
2811 }
2812
2813 /*
2814 * Is this the flavor of RCU that is handling full-system idle?
2815 */
2816 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2817 {
2818 return rsp == rcu_state_p;
2819 }
2820
2821 /*
2822 * Return a delay in jiffies based on the number of CPUs, rcu_node
2823 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2824 * systems more time to transition to full-idle state in order to
2825 * avoid the cache thrashing that otherwise occur on the state variable.
2826 * Really small systems (less than a couple of tens of CPUs) should
2827 * instead use a single global atomically incremented counter, and later
2828 * versions of this will automatically reconfigure themselves accordingly.
2829 */
2830 static unsigned long rcu_sysidle_delay(void)
2831 {
2832 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2833 return 0;
2834 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2835 }
2836
2837 /*
2838 * Advance the full-system-idle state. This is invoked when all of
2839 * the non-timekeeping CPUs are idle.
2840 */
2841 static void rcu_sysidle(unsigned long j)
2842 {
2843 /* Check the current state. */
2844 switch (READ_ONCE(full_sysidle_state)) {
2845 case RCU_SYSIDLE_NOT:
2846
2847 /* First time all are idle, so note a short idle period. */
2848 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2849 break;
2850
2851 case RCU_SYSIDLE_SHORT:
2852
2853 /*
2854 * Idle for a bit, time to advance to next state?
2855 * cmpxchg failure means race with non-idle, let them win.
2856 */
2857 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2858 (void)cmpxchg(&full_sysidle_state,
2859 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2860 break;
2861
2862 case RCU_SYSIDLE_LONG:
2863
2864 /*
2865 * Do an additional check pass before advancing to full.
2866 * cmpxchg failure means race with non-idle, let them win.
2867 */
2868 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2869 (void)cmpxchg(&full_sysidle_state,
2870 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2871 break;
2872
2873 default:
2874 break;
2875 }
2876 }
2877
2878 /*
2879 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2880 * back to the beginning.
2881 */
2882 static void rcu_sysidle_cancel(void)
2883 {
2884 smp_mb();
2885 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2886 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2887 }
2888
2889 /*
2890 * Update the sysidle state based on the results of a force-quiescent-state
2891 * scan of the CPUs' dyntick-idle state.
2892 */
2893 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2894 unsigned long maxj, bool gpkt)
2895 {
2896 if (rsp != rcu_state_p)
2897 return; /* Wrong flavor, ignore. */
2898 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2899 return; /* Running state machine from timekeeping CPU. */
2900 if (isidle)
2901 rcu_sysidle(maxj); /* More idle! */
2902 else
2903 rcu_sysidle_cancel(); /* Idle is over. */
2904 }
2905
2906 /*
2907 * Wrapper for rcu_sysidle_report() when called from the grace-period
2908 * kthread's context.
2909 */
2910 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2911 unsigned long maxj)
2912 {
2913 /* If there are no nohz_full= CPUs, no need to track this. */
2914 if (!tick_nohz_full_enabled())
2915 return;
2916
2917 rcu_sysidle_report(rsp, isidle, maxj, true);
2918 }
2919
2920 /* Callback and function for forcing an RCU grace period. */
2921 struct rcu_sysidle_head {
2922 struct rcu_head rh;
2923 int inuse;
2924 };
2925
2926 static void rcu_sysidle_cb(struct rcu_head *rhp)
2927 {
2928 struct rcu_sysidle_head *rshp;
2929
2930 /*
2931 * The following memory barrier is needed to replace the
2932 * memory barriers that would normally be in the memory
2933 * allocator.
2934 */
2935 smp_mb(); /* grace period precedes setting inuse. */
2936
2937 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2938 WRITE_ONCE(rshp->inuse, 0);
2939 }
2940
2941 /*
2942 * Check to see if the system is fully idle, other than the timekeeping CPU.
2943 * The caller must have disabled interrupts. This is not intended to be
2944 * called unless tick_nohz_full_enabled().
2945 */
2946 bool rcu_sys_is_idle(void)
2947 {
2948 static struct rcu_sysidle_head rsh;
2949 int rss = READ_ONCE(full_sysidle_state);
2950
2951 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2952 return false;
2953
2954 /* Handle small-system case by doing a full scan of CPUs. */
2955 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2956 int oldrss = rss - 1;
2957
2958 /*
2959 * One pass to advance to each state up to _FULL.
2960 * Give up if any pass fails to advance the state.
2961 */
2962 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2963 int cpu;
2964 bool isidle = true;
2965 unsigned long maxj = jiffies - ULONG_MAX / 4;
2966 struct rcu_data *rdp;
2967
2968 /* Scan all the CPUs looking for nonidle CPUs. */
2969 for_each_possible_cpu(cpu) {
2970 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2971 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2972 if (!isidle)
2973 break;
2974 }
2975 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2976 oldrss = rss;
2977 rss = READ_ONCE(full_sysidle_state);
2978 }
2979 }
2980
2981 /* If this is the first observation of an idle period, record it. */
2982 if (rss == RCU_SYSIDLE_FULL) {
2983 rss = cmpxchg(&full_sysidle_state,
2984 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2985 return rss == RCU_SYSIDLE_FULL;
2986 }
2987
2988 smp_mb(); /* ensure rss load happens before later caller actions. */
2989
2990 /* If already fully idle, tell the caller (in case of races). */
2991 if (rss == RCU_SYSIDLE_FULL_NOTED)
2992 return true;
2993
2994 /*
2995 * If we aren't there yet, and a grace period is not in flight,
2996 * initiate a grace period. Either way, tell the caller that
2997 * we are not there yet. We use an xchg() rather than an assignment
2998 * to make up for the memory barriers that would otherwise be
2999 * provided by the memory allocator.
3000 */
3001 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3002 !rcu_gp_in_progress(rcu_state_p) &&
3003 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3004 call_rcu(&rsh.rh, rcu_sysidle_cb);
3005 return false;
3006 }
3007
3008 /*
3009 * Initialize dynticks sysidle state for CPUs coming online.
3010 */
3011 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3012 {
3013 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3014 }
3015
3016 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3017
3018 static void rcu_sysidle_enter(int irq)
3019 {
3020 }
3021
3022 static void rcu_sysidle_exit(int irq)
3023 {
3024 }
3025
3026 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3027 unsigned long *maxj)
3028 {
3029 }
3030
3031 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3032 {
3033 return false;
3034 }
3035
3036 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3037 unsigned long maxj)
3038 {
3039 }
3040
3041 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3042 {
3043 }
3044
3045 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3046
3047 /*
3048 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3049 * grace-period kthread will do force_quiescent_state() processing?
3050 * The idea is to avoid waking up RCU core processing on such a
3051 * CPU unless the grace period has extended for too long.
3052 *
3053 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3054 * CONFIG_RCU_NOCB_CPU CPUs.
3055 */
3056 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3057 {
3058 #ifdef CONFIG_NO_HZ_FULL
3059 if (tick_nohz_full_cpu(smp_processor_id()) &&
3060 (!rcu_gp_in_progress(rsp) ||
3061 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3062 return true;
3063 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3064 return false;
3065 }
3066
3067 /*
3068 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3069 * timekeeping CPU.
3070 */
3071 static void rcu_bind_gp_kthread(void)
3072 {
3073 int __maybe_unused cpu;
3074
3075 if (!tick_nohz_full_enabled())
3076 return;
3077 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3078 cpu = tick_do_timer_cpu;
3079 if (cpu >= 0 && cpu < nr_cpu_ids)
3080 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3081 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3082 housekeeping_affine(current);
3083 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3084 }
3085
3086 /* Record the current task on dyntick-idle entry. */
3087 static void rcu_dynticks_task_enter(void)
3088 {
3089 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3090 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3091 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3092 }
3093
3094 /* Record no current task on dyntick-idle exit. */
3095 static void rcu_dynticks_task_exit(void)
3096 {
3097 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3098 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3099 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3100 }