]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge tag 'pci-v4.4-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 RCU_FANOUT);
77 if (rcu_fanout_exact)
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF != 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 if (nr_cpu_ids != NR_CPUS)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 if (IS_ENABLED(CONFIG_RCU_BOOST))
95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97
98 #ifdef CONFIG_PREEMPT_RCU
99
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103
104 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
105 bool wake);
106
107 /*
108 * Tell them what RCU they are running.
109 */
110 static void __init rcu_bootup_announce(void)
111 {
112 pr_info("Preemptible hierarchical RCU implementation.\n");
113 rcu_bootup_announce_oddness();
114 }
115
116 /* Flags for rcu_preempt_ctxt_queue() decision table. */
117 #define RCU_GP_TASKS 0x8
118 #define RCU_EXP_TASKS 0x4
119 #define RCU_GP_BLKD 0x2
120 #define RCU_EXP_BLKD 0x1
121
122 /*
123 * Queues a task preempted within an RCU-preempt read-side critical
124 * section into the appropriate location within the ->blkd_tasks list,
125 * depending on the states of any ongoing normal and expedited grace
126 * periods. The ->gp_tasks pointer indicates which element the normal
127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128 * indicates which element the expedited grace period is waiting on (again,
129 * NULL if none). If a grace period is waiting on a given element in the
130 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
131 * adding a task to the tail of the list blocks any grace period that is
132 * already waiting on one of the elements. In contrast, adding a task
133 * to the head of the list won't block any grace period that is already
134 * waiting on one of the elements.
135 *
136 * This queuing is imprecise, and can sometimes make an ongoing grace
137 * period wait for a task that is not strictly speaking blocking it.
138 * Given the choice, we needlessly block a normal grace period rather than
139 * blocking an expedited grace period.
140 *
141 * Note that an endless sequence of expedited grace periods still cannot
142 * indefinitely postpone a normal grace period. Eventually, all of the
143 * fixed number of preempted tasks blocking the normal grace period that are
144 * not also blocking the expedited grace period will resume and complete
145 * their RCU read-side critical sections. At that point, the ->gp_tasks
146 * pointer will equal the ->exp_tasks pointer, at which point the end of
147 * the corresponding expedited grace period will also be the end of the
148 * normal grace period.
149 */
150 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
151 unsigned long flags) __releases(rnp->lock)
152 {
153 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 struct task_struct *t = current;
158
159 /*
160 * Decide where to queue the newly blocked task. In theory,
161 * this could be an if-statement. In practice, when I tried
162 * that, it was quite messy.
163 */
164 switch (blkd_state) {
165 case 0:
166 case RCU_EXP_TASKS:
167 case RCU_EXP_TASKS + RCU_GP_BLKD:
168 case RCU_GP_TASKS:
169 case RCU_GP_TASKS + RCU_EXP_TASKS:
170
171 /*
172 * Blocking neither GP, or first task blocking the normal
173 * GP but not blocking the already-waiting expedited GP.
174 * Queue at the head of the list to avoid unnecessarily
175 * blocking the already-waiting GPs.
176 */
177 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
178 break;
179
180 case RCU_EXP_BLKD:
181 case RCU_GP_BLKD:
182 case RCU_GP_BLKD + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
186
187 /*
188 * First task arriving that blocks either GP, or first task
189 * arriving that blocks the expedited GP (with the normal
190 * GP already waiting), or a task arriving that blocks
191 * both GPs with both GPs already waiting. Queue at the
192 * tail of the list to avoid any GP waiting on any of the
193 * already queued tasks that are not blocking it.
194 */
195 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
196 break;
197
198 case RCU_EXP_TASKS + RCU_EXP_BLKD:
199 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
200 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
201
202 /*
203 * Second or subsequent task blocking the expedited GP.
204 * The task either does not block the normal GP, or is the
205 * first task blocking the normal GP. Queue just after
206 * the first task blocking the expedited GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->exp_tasks);
209 break;
210
211 case RCU_GP_TASKS + RCU_GP_BLKD:
212 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
213
214 /*
215 * Second or subsequent task blocking the normal GP.
216 * The task does not block the expedited GP. Queue just
217 * after the first task blocking the normal GP.
218 */
219 list_add(&t->rcu_node_entry, rnp->gp_tasks);
220 break;
221
222 default:
223
224 /* Yet another exercise in excessive paranoia. */
225 WARN_ON_ONCE(1);
226 break;
227 }
228
229 /*
230 * We have now queued the task. If it was the first one to
231 * block either grace period, update the ->gp_tasks and/or
232 * ->exp_tasks pointers, respectively, to reference the newly
233 * blocked tasks.
234 */
235 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
236 rnp->gp_tasks = &t->rcu_node_entry;
237 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
238 rnp->exp_tasks = &t->rcu_node_entry;
239 raw_spin_unlock(&rnp->lock);
240
241 /*
242 * Report the quiescent state for the expedited GP. This expedited
243 * GP should not be able to end until we report, so there should be
244 * no need to check for a subsequent expedited GP. (Though we are
245 * still in a quiescent state in any case.)
246 */
247 if (blkd_state & RCU_EXP_BLKD &&
248 t->rcu_read_unlock_special.b.exp_need_qs) {
249 t->rcu_read_unlock_special.b.exp_need_qs = false;
250 rcu_report_exp_rdp(rdp->rsp, rdp, true);
251 } else {
252 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
253 }
254 local_irq_restore(flags);
255 }
256
257 /*
258 * Record a preemptible-RCU quiescent state for the specified CPU. Note
259 * that this just means that the task currently running on the CPU is
260 * not in a quiescent state. There might be any number of tasks blocked
261 * while in an RCU read-side critical section.
262 *
263 * As with the other rcu_*_qs() functions, callers to this function
264 * must disable preemption.
265 */
266 static void rcu_preempt_qs(void)
267 {
268 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
269 trace_rcu_grace_period(TPS("rcu_preempt"),
270 __this_cpu_read(rcu_data_p->gpnum),
271 TPS("cpuqs"));
272 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
273 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
274 current->rcu_read_unlock_special.b.need_qs = false;
275 }
276 }
277
278 /*
279 * We have entered the scheduler, and the current task might soon be
280 * context-switched away from. If this task is in an RCU read-side
281 * critical section, we will no longer be able to rely on the CPU to
282 * record that fact, so we enqueue the task on the blkd_tasks list.
283 * The task will dequeue itself when it exits the outermost enclosing
284 * RCU read-side critical section. Therefore, the current grace period
285 * cannot be permitted to complete until the blkd_tasks list entries
286 * predating the current grace period drain, in other words, until
287 * rnp->gp_tasks becomes NULL.
288 *
289 * Caller must disable preemption.
290 */
291 static void rcu_preempt_note_context_switch(void)
292 {
293 struct task_struct *t = current;
294 unsigned long flags;
295 struct rcu_data *rdp;
296 struct rcu_node *rnp;
297
298 if (t->rcu_read_lock_nesting > 0 &&
299 !t->rcu_read_unlock_special.b.blocked) {
300
301 /* Possibly blocking in an RCU read-side critical section. */
302 rdp = this_cpu_ptr(rcu_state_p->rda);
303 rnp = rdp->mynode;
304 raw_spin_lock_irqsave(&rnp->lock, flags);
305 smp_mb__after_unlock_lock();
306 t->rcu_read_unlock_special.b.blocked = true;
307 t->rcu_blocked_node = rnp;
308
309 /*
310 * Verify the CPU's sanity, trace the preemption, and
311 * then queue the task as required based on the states
312 * of any ongoing and expedited grace periods.
313 */
314 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
315 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
316 trace_rcu_preempt_task(rdp->rsp->name,
317 t->pid,
318 (rnp->qsmask & rdp->grpmask)
319 ? rnp->gpnum
320 : rnp->gpnum + 1);
321 rcu_preempt_ctxt_queue(rnp, rdp, flags);
322 } else if (t->rcu_read_lock_nesting < 0 &&
323 t->rcu_read_unlock_special.s) {
324
325 /*
326 * Complete exit from RCU read-side critical section on
327 * behalf of preempted instance of __rcu_read_unlock().
328 */
329 rcu_read_unlock_special(t);
330 }
331
332 /*
333 * Either we were not in an RCU read-side critical section to
334 * begin with, or we have now recorded that critical section
335 * globally. Either way, we can now note a quiescent state
336 * for this CPU. Again, if we were in an RCU read-side critical
337 * section, and if that critical section was blocking the current
338 * grace period, then the fact that the task has been enqueued
339 * means that we continue to block the current grace period.
340 */
341 rcu_preempt_qs();
342 }
343
344 /*
345 * Check for preempted RCU readers blocking the current grace period
346 * for the specified rcu_node structure. If the caller needs a reliable
347 * answer, it must hold the rcu_node's ->lock.
348 */
349 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
350 {
351 return rnp->gp_tasks != NULL;
352 }
353
354 /*
355 * Advance a ->blkd_tasks-list pointer to the next entry, instead
356 * returning NULL if at the end of the list.
357 */
358 static struct list_head *rcu_next_node_entry(struct task_struct *t,
359 struct rcu_node *rnp)
360 {
361 struct list_head *np;
362
363 np = t->rcu_node_entry.next;
364 if (np == &rnp->blkd_tasks)
365 np = NULL;
366 return np;
367 }
368
369 /*
370 * Return true if the specified rcu_node structure has tasks that were
371 * preempted within an RCU read-side critical section.
372 */
373 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
374 {
375 return !list_empty(&rnp->blkd_tasks);
376 }
377
378 /*
379 * Handle special cases during rcu_read_unlock(), such as needing to
380 * notify RCU core processing or task having blocked during the RCU
381 * read-side critical section.
382 */
383 void rcu_read_unlock_special(struct task_struct *t)
384 {
385 bool empty_exp;
386 bool empty_norm;
387 bool empty_exp_now;
388 unsigned long flags;
389 struct list_head *np;
390 bool drop_boost_mutex = false;
391 struct rcu_data *rdp;
392 struct rcu_node *rnp;
393 union rcu_special special;
394
395 /* NMI handlers cannot block and cannot safely manipulate state. */
396 if (in_nmi())
397 return;
398
399 local_irq_save(flags);
400
401 /*
402 * If RCU core is waiting for this CPU to exit its critical section,
403 * report the fact that it has exited. Because irqs are disabled,
404 * t->rcu_read_unlock_special cannot change.
405 */
406 special = t->rcu_read_unlock_special;
407 if (special.b.need_qs) {
408 rcu_preempt_qs();
409 t->rcu_read_unlock_special.b.need_qs = false;
410 if (!t->rcu_read_unlock_special.s) {
411 local_irq_restore(flags);
412 return;
413 }
414 }
415
416 /*
417 * Respond to a request for an expedited grace period, but only if
418 * we were not preempted, meaning that we were running on the same
419 * CPU throughout. If we were preempted, the exp_need_qs flag
420 * would have been cleared at the time of the first preemption,
421 * and the quiescent state would be reported when we were dequeued.
422 */
423 if (special.b.exp_need_qs) {
424 WARN_ON_ONCE(special.b.blocked);
425 t->rcu_read_unlock_special.b.exp_need_qs = false;
426 rdp = this_cpu_ptr(rcu_state_p->rda);
427 rcu_report_exp_rdp(rcu_state_p, rdp, true);
428 if (!t->rcu_read_unlock_special.s) {
429 local_irq_restore(flags);
430 return;
431 }
432 }
433
434 /* Hardware IRQ handlers cannot block, complain if they get here. */
435 if (in_irq() || in_serving_softirq()) {
436 lockdep_rcu_suspicious(__FILE__, __LINE__,
437 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
438 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
439 t->rcu_read_unlock_special.s,
440 t->rcu_read_unlock_special.b.blocked,
441 t->rcu_read_unlock_special.b.exp_need_qs,
442 t->rcu_read_unlock_special.b.need_qs);
443 local_irq_restore(flags);
444 return;
445 }
446
447 /* Clean up if blocked during RCU read-side critical section. */
448 if (special.b.blocked) {
449 t->rcu_read_unlock_special.b.blocked = false;
450
451 /*
452 * Remove this task from the list it blocked on. The task
453 * now remains queued on the rcu_node corresponding to
454 * the CPU it first blocked on, so the first attempt to
455 * acquire the task's rcu_node's ->lock will succeed.
456 * Keep the loop and add a WARN_ON() out of sheer paranoia.
457 */
458 for (;;) {
459 rnp = t->rcu_blocked_node;
460 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
461 smp_mb__after_unlock_lock();
462 if (rnp == t->rcu_blocked_node)
463 break;
464 WARN_ON_ONCE(1);
465 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
466 }
467 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
468 empty_exp = sync_rcu_preempt_exp_done(rnp);
469 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
470 np = rcu_next_node_entry(t, rnp);
471 list_del_init(&t->rcu_node_entry);
472 t->rcu_blocked_node = NULL;
473 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
474 rnp->gpnum, t->pid);
475 if (&t->rcu_node_entry == rnp->gp_tasks)
476 rnp->gp_tasks = np;
477 if (&t->rcu_node_entry == rnp->exp_tasks)
478 rnp->exp_tasks = np;
479 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
480 if (&t->rcu_node_entry == rnp->boost_tasks)
481 rnp->boost_tasks = np;
482 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
483 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
484 }
485
486 /*
487 * If this was the last task on the current list, and if
488 * we aren't waiting on any CPUs, report the quiescent state.
489 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
490 * so we must take a snapshot of the expedited state.
491 */
492 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
493 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
494 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
495 rnp->gpnum,
496 0, rnp->qsmask,
497 rnp->level,
498 rnp->grplo,
499 rnp->grphi,
500 !!rnp->gp_tasks);
501 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
502 } else {
503 raw_spin_unlock_irqrestore(&rnp->lock, flags);
504 }
505
506 /* Unboost if we were boosted. */
507 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
508 rt_mutex_unlock(&rnp->boost_mtx);
509
510 /*
511 * If this was the last task on the expedited lists,
512 * then we need to report up the rcu_node hierarchy.
513 */
514 if (!empty_exp && empty_exp_now)
515 rcu_report_exp_rnp(rcu_state_p, rnp, true);
516 } else {
517 local_irq_restore(flags);
518 }
519 }
520
521 /*
522 * Dump detailed information for all tasks blocking the current RCU
523 * grace period on the specified rcu_node structure.
524 */
525 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
526 {
527 unsigned long flags;
528 struct task_struct *t;
529
530 raw_spin_lock_irqsave(&rnp->lock, flags);
531 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
532 raw_spin_unlock_irqrestore(&rnp->lock, flags);
533 return;
534 }
535 t = list_entry(rnp->gp_tasks->prev,
536 struct task_struct, rcu_node_entry);
537 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
538 sched_show_task(t);
539 raw_spin_unlock_irqrestore(&rnp->lock, flags);
540 }
541
542 /*
543 * Dump detailed information for all tasks blocking the current RCU
544 * grace period.
545 */
546 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
547 {
548 struct rcu_node *rnp = rcu_get_root(rsp);
549
550 rcu_print_detail_task_stall_rnp(rnp);
551 rcu_for_each_leaf_node(rsp, rnp)
552 rcu_print_detail_task_stall_rnp(rnp);
553 }
554
555 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
556 {
557 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
558 rnp->level, rnp->grplo, rnp->grphi);
559 }
560
561 static void rcu_print_task_stall_end(void)
562 {
563 pr_cont("\n");
564 }
565
566 /*
567 * Scan the current list of tasks blocked within RCU read-side critical
568 * sections, printing out the tid of each.
569 */
570 static int rcu_print_task_stall(struct rcu_node *rnp)
571 {
572 struct task_struct *t;
573 int ndetected = 0;
574
575 if (!rcu_preempt_blocked_readers_cgp(rnp))
576 return 0;
577 rcu_print_task_stall_begin(rnp);
578 t = list_entry(rnp->gp_tasks->prev,
579 struct task_struct, rcu_node_entry);
580 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
581 pr_cont(" P%d", t->pid);
582 ndetected++;
583 }
584 rcu_print_task_stall_end();
585 return ndetected;
586 }
587
588 /*
589 * Scan the current list of tasks blocked within RCU read-side critical
590 * sections, printing out the tid of each that is blocking the current
591 * expedited grace period.
592 */
593 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
594 {
595 struct task_struct *t;
596 int ndetected = 0;
597
598 if (!rnp->exp_tasks)
599 return 0;
600 t = list_entry(rnp->exp_tasks->prev,
601 struct task_struct, rcu_node_entry);
602 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
603 pr_cont(" P%d", t->pid);
604 ndetected++;
605 }
606 return ndetected;
607 }
608
609 /*
610 * Check that the list of blocked tasks for the newly completed grace
611 * period is in fact empty. It is a serious bug to complete a grace
612 * period that still has RCU readers blocked! This function must be
613 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
614 * must be held by the caller.
615 *
616 * Also, if there are blocked tasks on the list, they automatically
617 * block the newly created grace period, so set up ->gp_tasks accordingly.
618 */
619 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
620 {
621 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
622 if (rcu_preempt_has_tasks(rnp))
623 rnp->gp_tasks = rnp->blkd_tasks.next;
624 WARN_ON_ONCE(rnp->qsmask);
625 }
626
627 /*
628 * Check for a quiescent state from the current CPU. When a task blocks,
629 * the task is recorded in the corresponding CPU's rcu_node structure,
630 * which is checked elsewhere.
631 *
632 * Caller must disable hard irqs.
633 */
634 static void rcu_preempt_check_callbacks(void)
635 {
636 struct task_struct *t = current;
637
638 if (t->rcu_read_lock_nesting == 0) {
639 rcu_preempt_qs();
640 return;
641 }
642 if (t->rcu_read_lock_nesting > 0 &&
643 __this_cpu_read(rcu_data_p->core_needs_qs) &&
644 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
645 t->rcu_read_unlock_special.b.need_qs = true;
646 }
647
648 #ifdef CONFIG_RCU_BOOST
649
650 static void rcu_preempt_do_callbacks(void)
651 {
652 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
653 }
654
655 #endif /* #ifdef CONFIG_RCU_BOOST */
656
657 /*
658 * Queue a preemptible-RCU callback for invocation after a grace period.
659 */
660 void call_rcu(struct rcu_head *head, rcu_callback_t func)
661 {
662 __call_rcu(head, func, rcu_state_p, -1, 0);
663 }
664 EXPORT_SYMBOL_GPL(call_rcu);
665
666 /**
667 * synchronize_rcu - wait until a grace period has elapsed.
668 *
669 * Control will return to the caller some time after a full grace
670 * period has elapsed, in other words after all currently executing RCU
671 * read-side critical sections have completed. Note, however, that
672 * upon return from synchronize_rcu(), the caller might well be executing
673 * concurrently with new RCU read-side critical sections that began while
674 * synchronize_rcu() was waiting. RCU read-side critical sections are
675 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
676 *
677 * See the description of synchronize_sched() for more detailed information
678 * on memory ordering guarantees.
679 */
680 void synchronize_rcu(void)
681 {
682 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
683 lock_is_held(&rcu_lock_map) ||
684 lock_is_held(&rcu_sched_lock_map),
685 "Illegal synchronize_rcu() in RCU read-side critical section");
686 if (!rcu_scheduler_active)
687 return;
688 if (rcu_gp_is_expedited())
689 synchronize_rcu_expedited();
690 else
691 wait_rcu_gp(call_rcu);
692 }
693 EXPORT_SYMBOL_GPL(synchronize_rcu);
694
695 /*
696 * Remote handler for smp_call_function_single(). If there is an
697 * RCU read-side critical section in effect, request that the
698 * next rcu_read_unlock() record the quiescent state up the
699 * ->expmask fields in the rcu_node tree. Otherwise, immediately
700 * report the quiescent state.
701 */
702 static void sync_rcu_exp_handler(void *info)
703 {
704 struct rcu_data *rdp;
705 struct rcu_state *rsp = info;
706 struct task_struct *t = current;
707
708 /*
709 * Within an RCU read-side critical section, request that the next
710 * rcu_read_unlock() report. Unless this RCU read-side critical
711 * section has already blocked, in which case it is already set
712 * up for the expedited grace period to wait on it.
713 */
714 if (t->rcu_read_lock_nesting > 0 &&
715 !t->rcu_read_unlock_special.b.blocked) {
716 t->rcu_read_unlock_special.b.exp_need_qs = true;
717 return;
718 }
719
720 /*
721 * We are either exiting an RCU read-side critical section (negative
722 * values of t->rcu_read_lock_nesting) or are not in one at all
723 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
724 * read-side critical section that blocked before this expedited
725 * grace period started. Either way, we can immediately report
726 * the quiescent state.
727 */
728 rdp = this_cpu_ptr(rsp->rda);
729 rcu_report_exp_rdp(rsp, rdp, true);
730 }
731
732 /**
733 * synchronize_rcu_expedited - Brute-force RCU grace period
734 *
735 * Wait for an RCU-preempt grace period, but expedite it. The basic
736 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
737 * the ->blkd_tasks lists and wait for this list to drain. This consumes
738 * significant time on all CPUs and is unfriendly to real-time workloads,
739 * so is thus not recommended for any sort of common-case code.
740 * In fact, if you are using synchronize_rcu_expedited() in a loop,
741 * please restructure your code to batch your updates, and then Use a
742 * single synchronize_rcu() instead.
743 */
744 void synchronize_rcu_expedited(void)
745 {
746 struct rcu_node *rnp;
747 struct rcu_node *rnp_unlock;
748 struct rcu_state *rsp = rcu_state_p;
749 unsigned long s;
750
751 s = rcu_exp_gp_seq_snap(rsp);
752
753 rnp_unlock = exp_funnel_lock(rsp, s);
754 if (rnp_unlock == NULL)
755 return; /* Someone else did our work for us. */
756
757 rcu_exp_gp_seq_start(rsp);
758
759 /* Initialize the rcu_node tree in preparation for the wait. */
760 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
761
762 /* Wait for snapshotted ->blkd_tasks lists to drain. */
763 rnp = rcu_get_root(rsp);
764 synchronize_sched_expedited_wait(rsp);
765
766 /* Clean up and exit. */
767 rcu_exp_gp_seq_end(rsp);
768 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
769 }
770 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
771
772 /**
773 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
774 *
775 * Note that this primitive does not necessarily wait for an RCU grace period
776 * to complete. For example, if there are no RCU callbacks queued anywhere
777 * in the system, then rcu_barrier() is within its rights to return
778 * immediately, without waiting for anything, much less an RCU grace period.
779 */
780 void rcu_barrier(void)
781 {
782 _rcu_barrier(rcu_state_p);
783 }
784 EXPORT_SYMBOL_GPL(rcu_barrier);
785
786 /*
787 * Initialize preemptible RCU's state structures.
788 */
789 static void __init __rcu_init_preempt(void)
790 {
791 rcu_init_one(rcu_state_p, rcu_data_p);
792 }
793
794 /*
795 * Check for a task exiting while in a preemptible-RCU read-side
796 * critical section, clean up if so. No need to issue warnings,
797 * as debug_check_no_locks_held() already does this if lockdep
798 * is enabled.
799 */
800 void exit_rcu(void)
801 {
802 struct task_struct *t = current;
803
804 if (likely(list_empty(&current->rcu_node_entry)))
805 return;
806 t->rcu_read_lock_nesting = 1;
807 barrier();
808 t->rcu_read_unlock_special.b.blocked = true;
809 __rcu_read_unlock();
810 }
811
812 #else /* #ifdef CONFIG_PREEMPT_RCU */
813
814 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
815 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
816
817 /*
818 * Tell them what RCU they are running.
819 */
820 static void __init rcu_bootup_announce(void)
821 {
822 pr_info("Hierarchical RCU implementation.\n");
823 rcu_bootup_announce_oddness();
824 }
825
826 /*
827 * Because preemptible RCU does not exist, we never have to check for
828 * CPUs being in quiescent states.
829 */
830 static void rcu_preempt_note_context_switch(void)
831 {
832 }
833
834 /*
835 * Because preemptible RCU does not exist, there are never any preempted
836 * RCU readers.
837 */
838 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
839 {
840 return 0;
841 }
842
843 /*
844 * Because there is no preemptible RCU, there can be no readers blocked.
845 */
846 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
847 {
848 return false;
849 }
850
851 /*
852 * Because preemptible RCU does not exist, we never have to check for
853 * tasks blocked within RCU read-side critical sections.
854 */
855 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
856 {
857 }
858
859 /*
860 * Because preemptible RCU does not exist, we never have to check for
861 * tasks blocked within RCU read-side critical sections.
862 */
863 static int rcu_print_task_stall(struct rcu_node *rnp)
864 {
865 return 0;
866 }
867
868 /*
869 * Because preemptible RCU does not exist, we never have to check for
870 * tasks blocked within RCU read-side critical sections that are
871 * blocking the current expedited grace period.
872 */
873 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
874 {
875 return 0;
876 }
877
878 /*
879 * Because there is no preemptible RCU, there can be no readers blocked,
880 * so there is no need to check for blocked tasks. So check only for
881 * bogus qsmask values.
882 */
883 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
884 {
885 WARN_ON_ONCE(rnp->qsmask);
886 }
887
888 /*
889 * Because preemptible RCU does not exist, it never has any callbacks
890 * to check.
891 */
892 static void rcu_preempt_check_callbacks(void)
893 {
894 }
895
896 /*
897 * Wait for an rcu-preempt grace period, but make it happen quickly.
898 * But because preemptible RCU does not exist, map to rcu-sched.
899 */
900 void synchronize_rcu_expedited(void)
901 {
902 synchronize_sched_expedited();
903 }
904 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
905
906 /*
907 * Because preemptible RCU does not exist, rcu_barrier() is just
908 * another name for rcu_barrier_sched().
909 */
910 void rcu_barrier(void)
911 {
912 rcu_barrier_sched();
913 }
914 EXPORT_SYMBOL_GPL(rcu_barrier);
915
916 /*
917 * Because preemptible RCU does not exist, it need not be initialized.
918 */
919 static void __init __rcu_init_preempt(void)
920 {
921 }
922
923 /*
924 * Because preemptible RCU does not exist, tasks cannot possibly exit
925 * while in preemptible RCU read-side critical sections.
926 */
927 void exit_rcu(void)
928 {
929 }
930
931 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
932
933 #ifdef CONFIG_RCU_BOOST
934
935 #include "../locking/rtmutex_common.h"
936
937 #ifdef CONFIG_RCU_TRACE
938
939 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
940 {
941 if (!rcu_preempt_has_tasks(rnp))
942 rnp->n_balk_blkd_tasks++;
943 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
944 rnp->n_balk_exp_gp_tasks++;
945 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
946 rnp->n_balk_boost_tasks++;
947 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
948 rnp->n_balk_notblocked++;
949 else if (rnp->gp_tasks != NULL &&
950 ULONG_CMP_LT(jiffies, rnp->boost_time))
951 rnp->n_balk_notyet++;
952 else
953 rnp->n_balk_nos++;
954 }
955
956 #else /* #ifdef CONFIG_RCU_TRACE */
957
958 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
959 {
960 }
961
962 #endif /* #else #ifdef CONFIG_RCU_TRACE */
963
964 static void rcu_wake_cond(struct task_struct *t, int status)
965 {
966 /*
967 * If the thread is yielding, only wake it when this
968 * is invoked from idle
969 */
970 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
971 wake_up_process(t);
972 }
973
974 /*
975 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
976 * or ->boost_tasks, advancing the pointer to the next task in the
977 * ->blkd_tasks list.
978 *
979 * Note that irqs must be enabled: boosting the task can block.
980 * Returns 1 if there are more tasks needing to be boosted.
981 */
982 static int rcu_boost(struct rcu_node *rnp)
983 {
984 unsigned long flags;
985 struct task_struct *t;
986 struct list_head *tb;
987
988 if (READ_ONCE(rnp->exp_tasks) == NULL &&
989 READ_ONCE(rnp->boost_tasks) == NULL)
990 return 0; /* Nothing left to boost. */
991
992 raw_spin_lock_irqsave(&rnp->lock, flags);
993 smp_mb__after_unlock_lock();
994
995 /*
996 * Recheck under the lock: all tasks in need of boosting
997 * might exit their RCU read-side critical sections on their own.
998 */
999 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return 0;
1002 }
1003
1004 /*
1005 * Preferentially boost tasks blocking expedited grace periods.
1006 * This cannot starve the normal grace periods because a second
1007 * expedited grace period must boost all blocked tasks, including
1008 * those blocking the pre-existing normal grace period.
1009 */
1010 if (rnp->exp_tasks != NULL) {
1011 tb = rnp->exp_tasks;
1012 rnp->n_exp_boosts++;
1013 } else {
1014 tb = rnp->boost_tasks;
1015 rnp->n_normal_boosts++;
1016 }
1017 rnp->n_tasks_boosted++;
1018
1019 /*
1020 * We boost task t by manufacturing an rt_mutex that appears to
1021 * be held by task t. We leave a pointer to that rt_mutex where
1022 * task t can find it, and task t will release the mutex when it
1023 * exits its outermost RCU read-side critical section. Then
1024 * simply acquiring this artificial rt_mutex will boost task
1025 * t's priority. (Thanks to tglx for suggesting this approach!)
1026 *
1027 * Note that task t must acquire rnp->lock to remove itself from
1028 * the ->blkd_tasks list, which it will do from exit() if from
1029 * nowhere else. We therefore are guaranteed that task t will
1030 * stay around at least until we drop rnp->lock. Note that
1031 * rnp->lock also resolves races between our priority boosting
1032 * and task t's exiting its outermost RCU read-side critical
1033 * section.
1034 */
1035 t = container_of(tb, struct task_struct, rcu_node_entry);
1036 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1037 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1038 /* Lock only for side effect: boosts task t's priority. */
1039 rt_mutex_lock(&rnp->boost_mtx);
1040 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1041
1042 return READ_ONCE(rnp->exp_tasks) != NULL ||
1043 READ_ONCE(rnp->boost_tasks) != NULL;
1044 }
1045
1046 /*
1047 * Priority-boosting kthread, one per leaf rcu_node.
1048 */
1049 static int rcu_boost_kthread(void *arg)
1050 {
1051 struct rcu_node *rnp = (struct rcu_node *)arg;
1052 int spincnt = 0;
1053 int more2boost;
1054
1055 trace_rcu_utilization(TPS("Start boost kthread@init"));
1056 for (;;) {
1057 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1058 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1059 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1060 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1061 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1062 more2boost = rcu_boost(rnp);
1063 if (more2boost)
1064 spincnt++;
1065 else
1066 spincnt = 0;
1067 if (spincnt > 10) {
1068 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1069 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1070 schedule_timeout_interruptible(2);
1071 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1072 spincnt = 0;
1073 }
1074 }
1075 /* NOTREACHED */
1076 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1077 return 0;
1078 }
1079
1080 /*
1081 * Check to see if it is time to start boosting RCU readers that are
1082 * blocking the current grace period, and, if so, tell the per-rcu_node
1083 * kthread to start boosting them. If there is an expedited grace
1084 * period in progress, it is always time to boost.
1085 *
1086 * The caller must hold rnp->lock, which this function releases.
1087 * The ->boost_kthread_task is immortal, so we don't need to worry
1088 * about it going away.
1089 */
1090 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1091 __releases(rnp->lock)
1092 {
1093 struct task_struct *t;
1094
1095 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1096 rnp->n_balk_exp_gp_tasks++;
1097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 return;
1099 }
1100 if (rnp->exp_tasks != NULL ||
1101 (rnp->gp_tasks != NULL &&
1102 rnp->boost_tasks == NULL &&
1103 rnp->qsmask == 0 &&
1104 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1105 if (rnp->exp_tasks == NULL)
1106 rnp->boost_tasks = rnp->gp_tasks;
1107 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1108 t = rnp->boost_kthread_task;
1109 if (t)
1110 rcu_wake_cond(t, rnp->boost_kthread_status);
1111 } else {
1112 rcu_initiate_boost_trace(rnp);
1113 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1114 }
1115 }
1116
1117 /*
1118 * Wake up the per-CPU kthread to invoke RCU callbacks.
1119 */
1120 static void invoke_rcu_callbacks_kthread(void)
1121 {
1122 unsigned long flags;
1123
1124 local_irq_save(flags);
1125 __this_cpu_write(rcu_cpu_has_work, 1);
1126 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1127 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1128 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1129 __this_cpu_read(rcu_cpu_kthread_status));
1130 }
1131 local_irq_restore(flags);
1132 }
1133
1134 /*
1135 * Is the current CPU running the RCU-callbacks kthread?
1136 * Caller must have preemption disabled.
1137 */
1138 static bool rcu_is_callbacks_kthread(void)
1139 {
1140 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1141 }
1142
1143 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1144
1145 /*
1146 * Do priority-boost accounting for the start of a new grace period.
1147 */
1148 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1149 {
1150 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1151 }
1152
1153 /*
1154 * Create an RCU-boost kthread for the specified node if one does not
1155 * already exist. We only create this kthread for preemptible RCU.
1156 * Returns zero if all is well, a negated errno otherwise.
1157 */
1158 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1159 struct rcu_node *rnp)
1160 {
1161 int rnp_index = rnp - &rsp->node[0];
1162 unsigned long flags;
1163 struct sched_param sp;
1164 struct task_struct *t;
1165
1166 if (rcu_state_p != rsp)
1167 return 0;
1168
1169 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1170 return 0;
1171
1172 rsp->boost = 1;
1173 if (rnp->boost_kthread_task != NULL)
1174 return 0;
1175 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1176 "rcub/%d", rnp_index);
1177 if (IS_ERR(t))
1178 return PTR_ERR(t);
1179 raw_spin_lock_irqsave(&rnp->lock, flags);
1180 smp_mb__after_unlock_lock();
1181 rnp->boost_kthread_task = t;
1182 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183 sp.sched_priority = kthread_prio;
1184 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1185 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1186 return 0;
1187 }
1188
1189 static void rcu_kthread_do_work(void)
1190 {
1191 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1192 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1193 rcu_preempt_do_callbacks();
1194 }
1195
1196 static void rcu_cpu_kthread_setup(unsigned int cpu)
1197 {
1198 struct sched_param sp;
1199
1200 sp.sched_priority = kthread_prio;
1201 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1202 }
1203
1204 static void rcu_cpu_kthread_park(unsigned int cpu)
1205 {
1206 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1207 }
1208
1209 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1210 {
1211 return __this_cpu_read(rcu_cpu_has_work);
1212 }
1213
1214 /*
1215 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1216 * RCU softirq used in flavors and configurations of RCU that do not
1217 * support RCU priority boosting.
1218 */
1219 static void rcu_cpu_kthread(unsigned int cpu)
1220 {
1221 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1222 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1223 int spincnt;
1224
1225 for (spincnt = 0; spincnt < 10; spincnt++) {
1226 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1227 local_bh_disable();
1228 *statusp = RCU_KTHREAD_RUNNING;
1229 this_cpu_inc(rcu_cpu_kthread_loops);
1230 local_irq_disable();
1231 work = *workp;
1232 *workp = 0;
1233 local_irq_enable();
1234 if (work)
1235 rcu_kthread_do_work();
1236 local_bh_enable();
1237 if (*workp == 0) {
1238 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1239 *statusp = RCU_KTHREAD_WAITING;
1240 return;
1241 }
1242 }
1243 *statusp = RCU_KTHREAD_YIELDING;
1244 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1245 schedule_timeout_interruptible(2);
1246 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1247 *statusp = RCU_KTHREAD_WAITING;
1248 }
1249
1250 /*
1251 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1252 * served by the rcu_node in question. The CPU hotplug lock is still
1253 * held, so the value of rnp->qsmaskinit will be stable.
1254 *
1255 * We don't include outgoingcpu in the affinity set, use -1 if there is
1256 * no outgoing CPU. If there are no CPUs left in the affinity set,
1257 * this function allows the kthread to execute on any CPU.
1258 */
1259 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1260 {
1261 struct task_struct *t = rnp->boost_kthread_task;
1262 unsigned long mask = rcu_rnp_online_cpus(rnp);
1263 cpumask_var_t cm;
1264 int cpu;
1265
1266 if (!t)
1267 return;
1268 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1269 return;
1270 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1271 if ((mask & 0x1) && cpu != outgoingcpu)
1272 cpumask_set_cpu(cpu, cm);
1273 if (cpumask_weight(cm) == 0)
1274 cpumask_setall(cm);
1275 set_cpus_allowed_ptr(t, cm);
1276 free_cpumask_var(cm);
1277 }
1278
1279 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1280 .store = &rcu_cpu_kthread_task,
1281 .thread_should_run = rcu_cpu_kthread_should_run,
1282 .thread_fn = rcu_cpu_kthread,
1283 .thread_comm = "rcuc/%u",
1284 .setup = rcu_cpu_kthread_setup,
1285 .park = rcu_cpu_kthread_park,
1286 };
1287
1288 /*
1289 * Spawn boost kthreads -- called as soon as the scheduler is running.
1290 */
1291 static void __init rcu_spawn_boost_kthreads(void)
1292 {
1293 struct rcu_node *rnp;
1294 int cpu;
1295
1296 for_each_possible_cpu(cpu)
1297 per_cpu(rcu_cpu_has_work, cpu) = 0;
1298 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1299 rcu_for_each_leaf_node(rcu_state_p, rnp)
1300 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1301 }
1302
1303 static void rcu_prepare_kthreads(int cpu)
1304 {
1305 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1306 struct rcu_node *rnp = rdp->mynode;
1307
1308 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1309 if (rcu_scheduler_fully_active)
1310 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1311 }
1312
1313 #else /* #ifdef CONFIG_RCU_BOOST */
1314
1315 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1316 __releases(rnp->lock)
1317 {
1318 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1319 }
1320
1321 static void invoke_rcu_callbacks_kthread(void)
1322 {
1323 WARN_ON_ONCE(1);
1324 }
1325
1326 static bool rcu_is_callbacks_kthread(void)
1327 {
1328 return false;
1329 }
1330
1331 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1332 {
1333 }
1334
1335 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1336 {
1337 }
1338
1339 static void __init rcu_spawn_boost_kthreads(void)
1340 {
1341 }
1342
1343 static void rcu_prepare_kthreads(int cpu)
1344 {
1345 }
1346
1347 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1348
1349 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1350
1351 /*
1352 * Check to see if any future RCU-related work will need to be done
1353 * by the current CPU, even if none need be done immediately, returning
1354 * 1 if so. This function is part of the RCU implementation; it is -not-
1355 * an exported member of the RCU API.
1356 *
1357 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1358 * any flavor of RCU.
1359 */
1360 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1361 {
1362 *nextevt = KTIME_MAX;
1363 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1364 ? 0 : rcu_cpu_has_callbacks(NULL);
1365 }
1366
1367 /*
1368 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1369 * after it.
1370 */
1371 static void rcu_cleanup_after_idle(void)
1372 {
1373 }
1374
1375 /*
1376 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1377 * is nothing.
1378 */
1379 static void rcu_prepare_for_idle(void)
1380 {
1381 }
1382
1383 /*
1384 * Don't bother keeping a running count of the number of RCU callbacks
1385 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1386 */
1387 static void rcu_idle_count_callbacks_posted(void)
1388 {
1389 }
1390
1391 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1392
1393 /*
1394 * This code is invoked when a CPU goes idle, at which point we want
1395 * to have the CPU do everything required for RCU so that it can enter
1396 * the energy-efficient dyntick-idle mode. This is handled by a
1397 * state machine implemented by rcu_prepare_for_idle() below.
1398 *
1399 * The following three proprocessor symbols control this state machine:
1400 *
1401 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1402 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1403 * is sized to be roughly one RCU grace period. Those energy-efficiency
1404 * benchmarkers who might otherwise be tempted to set this to a large
1405 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1406 * system. And if you are -that- concerned about energy efficiency,
1407 * just power the system down and be done with it!
1408 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1409 * permitted to sleep in dyntick-idle mode with only lazy RCU
1410 * callbacks pending. Setting this too high can OOM your system.
1411 *
1412 * The values below work well in practice. If future workloads require
1413 * adjustment, they can be converted into kernel config parameters, though
1414 * making the state machine smarter might be a better option.
1415 */
1416 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1417 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1418
1419 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1420 module_param(rcu_idle_gp_delay, int, 0644);
1421 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1422 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1423
1424 /*
1425 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1426 * only if it has been awhile since the last time we did so. Afterwards,
1427 * if there are any callbacks ready for immediate invocation, return true.
1428 */
1429 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1430 {
1431 bool cbs_ready = false;
1432 struct rcu_data *rdp;
1433 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1434 struct rcu_node *rnp;
1435 struct rcu_state *rsp;
1436
1437 /* Exit early if we advanced recently. */
1438 if (jiffies == rdtp->last_advance_all)
1439 return false;
1440 rdtp->last_advance_all = jiffies;
1441
1442 for_each_rcu_flavor(rsp) {
1443 rdp = this_cpu_ptr(rsp->rda);
1444 rnp = rdp->mynode;
1445
1446 /*
1447 * Don't bother checking unless a grace period has
1448 * completed since we last checked and there are
1449 * callbacks not yet ready to invoke.
1450 */
1451 if ((rdp->completed != rnp->completed ||
1452 unlikely(READ_ONCE(rdp->gpwrap))) &&
1453 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1454 note_gp_changes(rsp, rdp);
1455
1456 if (cpu_has_callbacks_ready_to_invoke(rdp))
1457 cbs_ready = true;
1458 }
1459 return cbs_ready;
1460 }
1461
1462 /*
1463 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1464 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1465 * caller to set the timeout based on whether or not there are non-lazy
1466 * callbacks.
1467 *
1468 * The caller must have disabled interrupts.
1469 */
1470 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1471 {
1472 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1473 unsigned long dj;
1474
1475 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1476 *nextevt = KTIME_MAX;
1477 return 0;
1478 }
1479
1480 /* Snapshot to detect later posting of non-lazy callback. */
1481 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1482
1483 /* If no callbacks, RCU doesn't need the CPU. */
1484 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1485 *nextevt = KTIME_MAX;
1486 return 0;
1487 }
1488
1489 /* Attempt to advance callbacks. */
1490 if (rcu_try_advance_all_cbs()) {
1491 /* Some ready to invoke, so initiate later invocation. */
1492 invoke_rcu_core();
1493 return 1;
1494 }
1495 rdtp->last_accelerate = jiffies;
1496
1497 /* Request timer delay depending on laziness, and round. */
1498 if (!rdtp->all_lazy) {
1499 dj = round_up(rcu_idle_gp_delay + jiffies,
1500 rcu_idle_gp_delay) - jiffies;
1501 } else {
1502 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1503 }
1504 *nextevt = basemono + dj * TICK_NSEC;
1505 return 0;
1506 }
1507
1508 /*
1509 * Prepare a CPU for idle from an RCU perspective. The first major task
1510 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1511 * The second major task is to check to see if a non-lazy callback has
1512 * arrived at a CPU that previously had only lazy callbacks. The third
1513 * major task is to accelerate (that is, assign grace-period numbers to)
1514 * any recently arrived callbacks.
1515 *
1516 * The caller must have disabled interrupts.
1517 */
1518 static void rcu_prepare_for_idle(void)
1519 {
1520 bool needwake;
1521 struct rcu_data *rdp;
1522 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1523 struct rcu_node *rnp;
1524 struct rcu_state *rsp;
1525 int tne;
1526
1527 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1528 return;
1529
1530 /* Handle nohz enablement switches conservatively. */
1531 tne = READ_ONCE(tick_nohz_active);
1532 if (tne != rdtp->tick_nohz_enabled_snap) {
1533 if (rcu_cpu_has_callbacks(NULL))
1534 invoke_rcu_core(); /* force nohz to see update. */
1535 rdtp->tick_nohz_enabled_snap = tne;
1536 return;
1537 }
1538 if (!tne)
1539 return;
1540
1541 /* If this is a no-CBs CPU, no callbacks, just return. */
1542 if (rcu_is_nocb_cpu(smp_processor_id()))
1543 return;
1544
1545 /*
1546 * If a non-lazy callback arrived at a CPU having only lazy
1547 * callbacks, invoke RCU core for the side-effect of recalculating
1548 * idle duration on re-entry to idle.
1549 */
1550 if (rdtp->all_lazy &&
1551 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1552 rdtp->all_lazy = false;
1553 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1554 invoke_rcu_core();
1555 return;
1556 }
1557
1558 /*
1559 * If we have not yet accelerated this jiffy, accelerate all
1560 * callbacks on this CPU.
1561 */
1562 if (rdtp->last_accelerate == jiffies)
1563 return;
1564 rdtp->last_accelerate = jiffies;
1565 for_each_rcu_flavor(rsp) {
1566 rdp = this_cpu_ptr(rsp->rda);
1567 if (!*rdp->nxttail[RCU_DONE_TAIL])
1568 continue;
1569 rnp = rdp->mynode;
1570 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1571 smp_mb__after_unlock_lock();
1572 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1573 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1574 if (needwake)
1575 rcu_gp_kthread_wake(rsp);
1576 }
1577 }
1578
1579 /*
1580 * Clean up for exit from idle. Attempt to advance callbacks based on
1581 * any grace periods that elapsed while the CPU was idle, and if any
1582 * callbacks are now ready to invoke, initiate invocation.
1583 */
1584 static void rcu_cleanup_after_idle(void)
1585 {
1586 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1587 rcu_is_nocb_cpu(smp_processor_id()))
1588 return;
1589 if (rcu_try_advance_all_cbs())
1590 invoke_rcu_core();
1591 }
1592
1593 /*
1594 * Keep a running count of the number of non-lazy callbacks posted
1595 * on this CPU. This running counter (which is never decremented) allows
1596 * rcu_prepare_for_idle() to detect when something out of the idle loop
1597 * posts a callback, even if an equal number of callbacks are invoked.
1598 * Of course, callbacks should only be posted from within a trace event
1599 * designed to be called from idle or from within RCU_NONIDLE().
1600 */
1601 static void rcu_idle_count_callbacks_posted(void)
1602 {
1603 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1604 }
1605
1606 /*
1607 * Data for flushing lazy RCU callbacks at OOM time.
1608 */
1609 static atomic_t oom_callback_count;
1610 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1611
1612 /*
1613 * RCU OOM callback -- decrement the outstanding count and deliver the
1614 * wake-up if we are the last one.
1615 */
1616 static void rcu_oom_callback(struct rcu_head *rhp)
1617 {
1618 if (atomic_dec_and_test(&oom_callback_count))
1619 wake_up(&oom_callback_wq);
1620 }
1621
1622 /*
1623 * Post an rcu_oom_notify callback on the current CPU if it has at
1624 * least one lazy callback. This will unnecessarily post callbacks
1625 * to CPUs that already have a non-lazy callback at the end of their
1626 * callback list, but this is an infrequent operation, so accept some
1627 * extra overhead to keep things simple.
1628 */
1629 static void rcu_oom_notify_cpu(void *unused)
1630 {
1631 struct rcu_state *rsp;
1632 struct rcu_data *rdp;
1633
1634 for_each_rcu_flavor(rsp) {
1635 rdp = raw_cpu_ptr(rsp->rda);
1636 if (rdp->qlen_lazy != 0) {
1637 atomic_inc(&oom_callback_count);
1638 rsp->call(&rdp->oom_head, rcu_oom_callback);
1639 }
1640 }
1641 }
1642
1643 /*
1644 * If low on memory, ensure that each CPU has a non-lazy callback.
1645 * This will wake up CPUs that have only lazy callbacks, in turn
1646 * ensuring that they free up the corresponding memory in a timely manner.
1647 * Because an uncertain amount of memory will be freed in some uncertain
1648 * timeframe, we do not claim to have freed anything.
1649 */
1650 static int rcu_oom_notify(struct notifier_block *self,
1651 unsigned long notused, void *nfreed)
1652 {
1653 int cpu;
1654
1655 /* Wait for callbacks from earlier instance to complete. */
1656 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1657 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1658
1659 /*
1660 * Prevent premature wakeup: ensure that all increments happen
1661 * before there is a chance of the counter reaching zero.
1662 */
1663 atomic_set(&oom_callback_count, 1);
1664
1665 for_each_online_cpu(cpu) {
1666 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1667 cond_resched_rcu_qs();
1668 }
1669
1670 /* Unconditionally decrement: no need to wake ourselves up. */
1671 atomic_dec(&oom_callback_count);
1672
1673 return NOTIFY_OK;
1674 }
1675
1676 static struct notifier_block rcu_oom_nb = {
1677 .notifier_call = rcu_oom_notify
1678 };
1679
1680 static int __init rcu_register_oom_notifier(void)
1681 {
1682 register_oom_notifier(&rcu_oom_nb);
1683 return 0;
1684 }
1685 early_initcall(rcu_register_oom_notifier);
1686
1687 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1688
1689 #ifdef CONFIG_RCU_FAST_NO_HZ
1690
1691 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1692 {
1693 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1694 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1695
1696 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1697 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1698 ulong2long(nlpd),
1699 rdtp->all_lazy ? 'L' : '.',
1700 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1701 }
1702
1703 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1704
1705 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1706 {
1707 *cp = '\0';
1708 }
1709
1710 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1711
1712 /* Initiate the stall-info list. */
1713 static void print_cpu_stall_info_begin(void)
1714 {
1715 pr_cont("\n");
1716 }
1717
1718 /*
1719 * Print out diagnostic information for the specified stalled CPU.
1720 *
1721 * If the specified CPU is aware of the current RCU grace period
1722 * (flavor specified by rsp), then print the number of scheduling
1723 * clock interrupts the CPU has taken during the time that it has
1724 * been aware. Otherwise, print the number of RCU grace periods
1725 * that this CPU is ignorant of, for example, "1" if the CPU was
1726 * aware of the previous grace period.
1727 *
1728 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1729 */
1730 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1731 {
1732 char fast_no_hz[72];
1733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1734 struct rcu_dynticks *rdtp = rdp->dynticks;
1735 char *ticks_title;
1736 unsigned long ticks_value;
1737
1738 if (rsp->gpnum == rdp->gpnum) {
1739 ticks_title = "ticks this GP";
1740 ticks_value = rdp->ticks_this_gp;
1741 } else {
1742 ticks_title = "GPs behind";
1743 ticks_value = rsp->gpnum - rdp->gpnum;
1744 }
1745 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1746 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1747 cpu,
1748 "O."[!!cpu_online(cpu)],
1749 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1750 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1751 ticks_value, ticks_title,
1752 atomic_read(&rdtp->dynticks) & 0xfff,
1753 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1754 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1755 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1756 fast_no_hz);
1757 }
1758
1759 /* Terminate the stall-info list. */
1760 static void print_cpu_stall_info_end(void)
1761 {
1762 pr_err("\t");
1763 }
1764
1765 /* Zero ->ticks_this_gp for all flavors of RCU. */
1766 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1767 {
1768 rdp->ticks_this_gp = 0;
1769 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1770 }
1771
1772 /* Increment ->ticks_this_gp for all flavors of RCU. */
1773 static void increment_cpu_stall_ticks(void)
1774 {
1775 struct rcu_state *rsp;
1776
1777 for_each_rcu_flavor(rsp)
1778 raw_cpu_inc(rsp->rda->ticks_this_gp);
1779 }
1780
1781 #ifdef CONFIG_RCU_NOCB_CPU
1782
1783 /*
1784 * Offload callback processing from the boot-time-specified set of CPUs
1785 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1786 * kthread created that pulls the callbacks from the corresponding CPU,
1787 * waits for a grace period to elapse, and invokes the callbacks.
1788 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1789 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1790 * has been specified, in which case each kthread actively polls its
1791 * CPU. (Which isn't so great for energy efficiency, but which does
1792 * reduce RCU's overhead on that CPU.)
1793 *
1794 * This is intended to be used in conjunction with Frederic Weisbecker's
1795 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1796 * running CPU-bound user-mode computations.
1797 *
1798 * Offloading of callback processing could also in theory be used as
1799 * an energy-efficiency measure because CPUs with no RCU callbacks
1800 * queued are more aggressive about entering dyntick-idle mode.
1801 */
1802
1803
1804 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1805 static int __init rcu_nocb_setup(char *str)
1806 {
1807 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1808 have_rcu_nocb_mask = true;
1809 cpulist_parse(str, rcu_nocb_mask);
1810 return 1;
1811 }
1812 __setup("rcu_nocbs=", rcu_nocb_setup);
1813
1814 static int __init parse_rcu_nocb_poll(char *arg)
1815 {
1816 rcu_nocb_poll = 1;
1817 return 0;
1818 }
1819 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1820
1821 /*
1822 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1823 * grace period.
1824 */
1825 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1826 {
1827 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1828 }
1829
1830 /*
1831 * Set the root rcu_node structure's ->need_future_gp field
1832 * based on the sum of those of all rcu_node structures. This does
1833 * double-count the root rcu_node structure's requests, but this
1834 * is necessary to handle the possibility of a rcu_nocb_kthread()
1835 * having awakened during the time that the rcu_node structures
1836 * were being updated for the end of the previous grace period.
1837 */
1838 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1839 {
1840 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1841 }
1842
1843 static void rcu_init_one_nocb(struct rcu_node *rnp)
1844 {
1845 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1846 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1847 }
1848
1849 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1850 /* Is the specified CPU a no-CBs CPU? */
1851 bool rcu_is_nocb_cpu(int cpu)
1852 {
1853 if (have_rcu_nocb_mask)
1854 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1855 return false;
1856 }
1857 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1858
1859 /*
1860 * Kick the leader kthread for this NOCB group.
1861 */
1862 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1863 {
1864 struct rcu_data *rdp_leader = rdp->nocb_leader;
1865
1866 if (!READ_ONCE(rdp_leader->nocb_kthread))
1867 return;
1868 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1869 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1870 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1871 wake_up(&rdp_leader->nocb_wq);
1872 }
1873 }
1874
1875 /*
1876 * Does the specified CPU need an RCU callback for the specified flavor
1877 * of rcu_barrier()?
1878 */
1879 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1880 {
1881 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1882 unsigned long ret;
1883 #ifdef CONFIG_PROVE_RCU
1884 struct rcu_head *rhp;
1885 #endif /* #ifdef CONFIG_PROVE_RCU */
1886
1887 /*
1888 * Check count of all no-CBs callbacks awaiting invocation.
1889 * There needs to be a barrier before this function is called,
1890 * but associated with a prior determination that no more
1891 * callbacks would be posted. In the worst case, the first
1892 * barrier in _rcu_barrier() suffices (but the caller cannot
1893 * necessarily rely on this, not a substitute for the caller
1894 * getting the concurrency design right!). There must also be
1895 * a barrier between the following load an posting of a callback
1896 * (if a callback is in fact needed). This is associated with an
1897 * atomic_inc() in the caller.
1898 */
1899 ret = atomic_long_read(&rdp->nocb_q_count);
1900
1901 #ifdef CONFIG_PROVE_RCU
1902 rhp = READ_ONCE(rdp->nocb_head);
1903 if (!rhp)
1904 rhp = READ_ONCE(rdp->nocb_gp_head);
1905 if (!rhp)
1906 rhp = READ_ONCE(rdp->nocb_follower_head);
1907
1908 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1909 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1910 rcu_scheduler_fully_active) {
1911 /* RCU callback enqueued before CPU first came online??? */
1912 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1913 cpu, rhp->func);
1914 WARN_ON_ONCE(1);
1915 }
1916 #endif /* #ifdef CONFIG_PROVE_RCU */
1917
1918 return !!ret;
1919 }
1920
1921 /*
1922 * Enqueue the specified string of rcu_head structures onto the specified
1923 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1924 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1925 * counts are supplied by rhcount and rhcount_lazy.
1926 *
1927 * If warranted, also wake up the kthread servicing this CPUs queues.
1928 */
1929 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1930 struct rcu_head *rhp,
1931 struct rcu_head **rhtp,
1932 int rhcount, int rhcount_lazy,
1933 unsigned long flags)
1934 {
1935 int len;
1936 struct rcu_head **old_rhpp;
1937 struct task_struct *t;
1938
1939 /* Enqueue the callback on the nocb list and update counts. */
1940 atomic_long_add(rhcount, &rdp->nocb_q_count);
1941 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1942 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1943 WRITE_ONCE(*old_rhpp, rhp);
1944 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1945 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1946
1947 /* If we are not being polled and there is a kthread, awaken it ... */
1948 t = READ_ONCE(rdp->nocb_kthread);
1949 if (rcu_nocb_poll || !t) {
1950 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1951 TPS("WakeNotPoll"));
1952 return;
1953 }
1954 len = atomic_long_read(&rdp->nocb_q_count);
1955 if (old_rhpp == &rdp->nocb_head) {
1956 if (!irqs_disabled_flags(flags)) {
1957 /* ... if queue was empty ... */
1958 wake_nocb_leader(rdp, false);
1959 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1960 TPS("WakeEmpty"));
1961 } else {
1962 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1963 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1964 TPS("WakeEmptyIsDeferred"));
1965 }
1966 rdp->qlen_last_fqs_check = 0;
1967 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1968 /* ... or if many callbacks queued. */
1969 if (!irqs_disabled_flags(flags)) {
1970 wake_nocb_leader(rdp, true);
1971 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1972 TPS("WakeOvf"));
1973 } else {
1974 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1975 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1976 TPS("WakeOvfIsDeferred"));
1977 }
1978 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1979 } else {
1980 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1981 }
1982 return;
1983 }
1984
1985 /*
1986 * This is a helper for __call_rcu(), which invokes this when the normal
1987 * callback queue is inoperable. If this is not a no-CBs CPU, this
1988 * function returns failure back to __call_rcu(), which can complain
1989 * appropriately.
1990 *
1991 * Otherwise, this function queues the callback where the corresponding
1992 * "rcuo" kthread can find it.
1993 */
1994 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1995 bool lazy, unsigned long flags)
1996 {
1997
1998 if (!rcu_is_nocb_cpu(rdp->cpu))
1999 return false;
2000 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2001 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2002 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2003 (unsigned long)rhp->func,
2004 -atomic_long_read(&rdp->nocb_q_count_lazy),
2005 -atomic_long_read(&rdp->nocb_q_count));
2006 else
2007 trace_rcu_callback(rdp->rsp->name, rhp,
2008 -atomic_long_read(&rdp->nocb_q_count_lazy),
2009 -atomic_long_read(&rdp->nocb_q_count));
2010
2011 /*
2012 * If called from an extended quiescent state with interrupts
2013 * disabled, invoke the RCU core in order to allow the idle-entry
2014 * deferred-wakeup check to function.
2015 */
2016 if (irqs_disabled_flags(flags) &&
2017 !rcu_is_watching() &&
2018 cpu_online(smp_processor_id()))
2019 invoke_rcu_core();
2020
2021 return true;
2022 }
2023
2024 /*
2025 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2026 * not a no-CBs CPU.
2027 */
2028 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2029 struct rcu_data *rdp,
2030 unsigned long flags)
2031 {
2032 long ql = rsp->qlen;
2033 long qll = rsp->qlen_lazy;
2034
2035 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2036 if (!rcu_is_nocb_cpu(smp_processor_id()))
2037 return false;
2038 rsp->qlen = 0;
2039 rsp->qlen_lazy = 0;
2040
2041 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2042 if (rsp->orphan_donelist != NULL) {
2043 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2044 rsp->orphan_donetail, ql, qll, flags);
2045 ql = qll = 0;
2046 rsp->orphan_donelist = NULL;
2047 rsp->orphan_donetail = &rsp->orphan_donelist;
2048 }
2049 if (rsp->orphan_nxtlist != NULL) {
2050 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2051 rsp->orphan_nxttail, ql, qll, flags);
2052 ql = qll = 0;
2053 rsp->orphan_nxtlist = NULL;
2054 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2055 }
2056 return true;
2057 }
2058
2059 /*
2060 * If necessary, kick off a new grace period, and either way wait
2061 * for a subsequent grace period to complete.
2062 */
2063 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2064 {
2065 unsigned long c;
2066 bool d;
2067 unsigned long flags;
2068 bool needwake;
2069 struct rcu_node *rnp = rdp->mynode;
2070
2071 raw_spin_lock_irqsave(&rnp->lock, flags);
2072 smp_mb__after_unlock_lock();
2073 needwake = rcu_start_future_gp(rnp, rdp, &c);
2074 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2075 if (needwake)
2076 rcu_gp_kthread_wake(rdp->rsp);
2077
2078 /*
2079 * Wait for the grace period. Do so interruptibly to avoid messing
2080 * up the load average.
2081 */
2082 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2083 for (;;) {
2084 wait_event_interruptible(
2085 rnp->nocb_gp_wq[c & 0x1],
2086 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2087 if (likely(d))
2088 break;
2089 WARN_ON(signal_pending(current));
2090 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2091 }
2092 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2093 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2094 }
2095
2096 /*
2097 * Leaders come here to wait for additional callbacks to show up.
2098 * This function does not return until callbacks appear.
2099 */
2100 static void nocb_leader_wait(struct rcu_data *my_rdp)
2101 {
2102 bool firsttime = true;
2103 bool gotcbs;
2104 struct rcu_data *rdp;
2105 struct rcu_head **tail;
2106
2107 wait_again:
2108
2109 /* Wait for callbacks to appear. */
2110 if (!rcu_nocb_poll) {
2111 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2112 wait_event_interruptible(my_rdp->nocb_wq,
2113 !READ_ONCE(my_rdp->nocb_leader_sleep));
2114 /* Memory barrier handled by smp_mb() calls below and repoll. */
2115 } else if (firsttime) {
2116 firsttime = false; /* Don't drown trace log with "Poll"! */
2117 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2118 }
2119
2120 /*
2121 * Each pass through the following loop checks a follower for CBs.
2122 * We are our own first follower. Any CBs found are moved to
2123 * nocb_gp_head, where they await a grace period.
2124 */
2125 gotcbs = false;
2126 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2127 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2128 if (!rdp->nocb_gp_head)
2129 continue; /* No CBs here, try next follower. */
2130
2131 /* Move callbacks to wait-for-GP list, which is empty. */
2132 WRITE_ONCE(rdp->nocb_head, NULL);
2133 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2134 gotcbs = true;
2135 }
2136
2137 /*
2138 * If there were no callbacks, sleep a bit, rescan after a
2139 * memory barrier, and go retry.
2140 */
2141 if (unlikely(!gotcbs)) {
2142 if (!rcu_nocb_poll)
2143 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2144 "WokeEmpty");
2145 WARN_ON(signal_pending(current));
2146 schedule_timeout_interruptible(1);
2147
2148 /* Rescan in case we were a victim of memory ordering. */
2149 my_rdp->nocb_leader_sleep = true;
2150 smp_mb(); /* Ensure _sleep true before scan. */
2151 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2152 if (READ_ONCE(rdp->nocb_head)) {
2153 /* Found CB, so short-circuit next wait. */
2154 my_rdp->nocb_leader_sleep = false;
2155 break;
2156 }
2157 goto wait_again;
2158 }
2159
2160 /* Wait for one grace period. */
2161 rcu_nocb_wait_gp(my_rdp);
2162
2163 /*
2164 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2165 * We set it now, but recheck for new callbacks while
2166 * traversing our follower list.
2167 */
2168 my_rdp->nocb_leader_sleep = true;
2169 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2170
2171 /* Each pass through the following loop wakes a follower, if needed. */
2172 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2173 if (READ_ONCE(rdp->nocb_head))
2174 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2175 if (!rdp->nocb_gp_head)
2176 continue; /* No CBs, so no need to wake follower. */
2177
2178 /* Append callbacks to follower's "done" list. */
2179 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2180 *tail = rdp->nocb_gp_head;
2181 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2182 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2183 /*
2184 * List was empty, wake up the follower.
2185 * Memory barriers supplied by atomic_long_add().
2186 */
2187 wake_up(&rdp->nocb_wq);
2188 }
2189 }
2190
2191 /* If we (the leader) don't have CBs, go wait some more. */
2192 if (!my_rdp->nocb_follower_head)
2193 goto wait_again;
2194 }
2195
2196 /*
2197 * Followers come here to wait for additional callbacks to show up.
2198 * This function does not return until callbacks appear.
2199 */
2200 static void nocb_follower_wait(struct rcu_data *rdp)
2201 {
2202 bool firsttime = true;
2203
2204 for (;;) {
2205 if (!rcu_nocb_poll) {
2206 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2207 "FollowerSleep");
2208 wait_event_interruptible(rdp->nocb_wq,
2209 READ_ONCE(rdp->nocb_follower_head));
2210 } else if (firsttime) {
2211 /* Don't drown trace log with "Poll"! */
2212 firsttime = false;
2213 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2214 }
2215 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2216 /* ^^^ Ensure CB invocation follows _head test. */
2217 return;
2218 }
2219 if (!rcu_nocb_poll)
2220 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221 "WokeEmpty");
2222 WARN_ON(signal_pending(current));
2223 schedule_timeout_interruptible(1);
2224 }
2225 }
2226
2227 /*
2228 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2229 * callbacks queued by the corresponding no-CBs CPU, however, there is
2230 * an optional leader-follower relationship so that the grace-period
2231 * kthreads don't have to do quite so many wakeups.
2232 */
2233 static int rcu_nocb_kthread(void *arg)
2234 {
2235 int c, cl;
2236 struct rcu_head *list;
2237 struct rcu_head *next;
2238 struct rcu_head **tail;
2239 struct rcu_data *rdp = arg;
2240
2241 /* Each pass through this loop invokes one batch of callbacks */
2242 for (;;) {
2243 /* Wait for callbacks. */
2244 if (rdp->nocb_leader == rdp)
2245 nocb_leader_wait(rdp);
2246 else
2247 nocb_follower_wait(rdp);
2248
2249 /* Pull the ready-to-invoke callbacks onto local list. */
2250 list = READ_ONCE(rdp->nocb_follower_head);
2251 BUG_ON(!list);
2252 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2253 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2254 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2255
2256 /* Each pass through the following loop invokes a callback. */
2257 trace_rcu_batch_start(rdp->rsp->name,
2258 atomic_long_read(&rdp->nocb_q_count_lazy),
2259 atomic_long_read(&rdp->nocb_q_count), -1);
2260 c = cl = 0;
2261 while (list) {
2262 next = list->next;
2263 /* Wait for enqueuing to complete, if needed. */
2264 while (next == NULL && &list->next != tail) {
2265 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2266 TPS("WaitQueue"));
2267 schedule_timeout_interruptible(1);
2268 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269 TPS("WokeQueue"));
2270 next = list->next;
2271 }
2272 debug_rcu_head_unqueue(list);
2273 local_bh_disable();
2274 if (__rcu_reclaim(rdp->rsp->name, list))
2275 cl++;
2276 c++;
2277 local_bh_enable();
2278 list = next;
2279 }
2280 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2281 smp_mb__before_atomic(); /* _add after CB invocation. */
2282 atomic_long_add(-c, &rdp->nocb_q_count);
2283 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2284 rdp->n_nocbs_invoked += c;
2285 }
2286 return 0;
2287 }
2288
2289 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2290 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2291 {
2292 return READ_ONCE(rdp->nocb_defer_wakeup);
2293 }
2294
2295 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2296 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2297 {
2298 int ndw;
2299
2300 if (!rcu_nocb_need_deferred_wakeup(rdp))
2301 return;
2302 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2303 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2304 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2305 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2306 }
2307
2308 void __init rcu_init_nohz(void)
2309 {
2310 int cpu;
2311 bool need_rcu_nocb_mask = true;
2312 struct rcu_state *rsp;
2313
2314 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2315 need_rcu_nocb_mask = false;
2316 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2317
2318 #if defined(CONFIG_NO_HZ_FULL)
2319 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2320 need_rcu_nocb_mask = true;
2321 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2322
2323 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2324 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2325 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2326 return;
2327 }
2328 have_rcu_nocb_mask = true;
2329 }
2330 if (!have_rcu_nocb_mask)
2331 return;
2332
2333 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2334 pr_info("\tOffload RCU callbacks from CPU 0\n");
2335 cpumask_set_cpu(0, rcu_nocb_mask);
2336 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2337 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2338 pr_info("\tOffload RCU callbacks from all CPUs\n");
2339 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2340 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2341 #if defined(CONFIG_NO_HZ_FULL)
2342 if (tick_nohz_full_running)
2343 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2344 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2345
2346 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2347 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2348 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2349 rcu_nocb_mask);
2350 }
2351 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2352 cpumask_pr_args(rcu_nocb_mask));
2353 if (rcu_nocb_poll)
2354 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2355
2356 for_each_rcu_flavor(rsp) {
2357 for_each_cpu(cpu, rcu_nocb_mask)
2358 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2359 rcu_organize_nocb_kthreads(rsp);
2360 }
2361 }
2362
2363 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2364 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2365 {
2366 rdp->nocb_tail = &rdp->nocb_head;
2367 init_waitqueue_head(&rdp->nocb_wq);
2368 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2369 }
2370
2371 /*
2372 * If the specified CPU is a no-CBs CPU that does not already have its
2373 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2374 * brought online out of order, this can require re-organizing the
2375 * leader-follower relationships.
2376 */
2377 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2378 {
2379 struct rcu_data *rdp;
2380 struct rcu_data *rdp_last;
2381 struct rcu_data *rdp_old_leader;
2382 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2383 struct task_struct *t;
2384
2385 /*
2386 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2387 * then nothing to do.
2388 */
2389 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2390 return;
2391
2392 /* If we didn't spawn the leader first, reorganize! */
2393 rdp_old_leader = rdp_spawn->nocb_leader;
2394 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2395 rdp_last = NULL;
2396 rdp = rdp_old_leader;
2397 do {
2398 rdp->nocb_leader = rdp_spawn;
2399 if (rdp_last && rdp != rdp_spawn)
2400 rdp_last->nocb_next_follower = rdp;
2401 if (rdp == rdp_spawn) {
2402 rdp = rdp->nocb_next_follower;
2403 } else {
2404 rdp_last = rdp;
2405 rdp = rdp->nocb_next_follower;
2406 rdp_last->nocb_next_follower = NULL;
2407 }
2408 } while (rdp);
2409 rdp_spawn->nocb_next_follower = rdp_old_leader;
2410 }
2411
2412 /* Spawn the kthread for this CPU and RCU flavor. */
2413 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2414 "rcuo%c/%d", rsp->abbr, cpu);
2415 BUG_ON(IS_ERR(t));
2416 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2417 }
2418
2419 /*
2420 * If the specified CPU is a no-CBs CPU that does not already have its
2421 * rcuo kthreads, spawn them.
2422 */
2423 static void rcu_spawn_all_nocb_kthreads(int cpu)
2424 {
2425 struct rcu_state *rsp;
2426
2427 if (rcu_scheduler_fully_active)
2428 for_each_rcu_flavor(rsp)
2429 rcu_spawn_one_nocb_kthread(rsp, cpu);
2430 }
2431
2432 /*
2433 * Once the scheduler is running, spawn rcuo kthreads for all online
2434 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2435 * non-boot CPUs come online -- if this changes, we will need to add
2436 * some mutual exclusion.
2437 */
2438 static void __init rcu_spawn_nocb_kthreads(void)
2439 {
2440 int cpu;
2441
2442 for_each_online_cpu(cpu)
2443 rcu_spawn_all_nocb_kthreads(cpu);
2444 }
2445
2446 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2447 static int rcu_nocb_leader_stride = -1;
2448 module_param(rcu_nocb_leader_stride, int, 0444);
2449
2450 /*
2451 * Initialize leader-follower relationships for all no-CBs CPU.
2452 */
2453 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2454 {
2455 int cpu;
2456 int ls = rcu_nocb_leader_stride;
2457 int nl = 0; /* Next leader. */
2458 struct rcu_data *rdp;
2459 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2460 struct rcu_data *rdp_prev = NULL;
2461
2462 if (!have_rcu_nocb_mask)
2463 return;
2464 if (ls == -1) {
2465 ls = int_sqrt(nr_cpu_ids);
2466 rcu_nocb_leader_stride = ls;
2467 }
2468
2469 /*
2470 * Each pass through this loop sets up one rcu_data structure and
2471 * spawns one rcu_nocb_kthread().
2472 */
2473 for_each_cpu(cpu, rcu_nocb_mask) {
2474 rdp = per_cpu_ptr(rsp->rda, cpu);
2475 if (rdp->cpu >= nl) {
2476 /* New leader, set up for followers & next leader. */
2477 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2478 rdp->nocb_leader = rdp;
2479 rdp_leader = rdp;
2480 } else {
2481 /* Another follower, link to previous leader. */
2482 rdp->nocb_leader = rdp_leader;
2483 rdp_prev->nocb_next_follower = rdp;
2484 }
2485 rdp_prev = rdp;
2486 }
2487 }
2488
2489 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490 static bool init_nocb_callback_list(struct rcu_data *rdp)
2491 {
2492 if (!rcu_is_nocb_cpu(rdp->cpu))
2493 return false;
2494
2495 /* If there are early-boot callbacks, move them to nocb lists. */
2496 if (rdp->nxtlist) {
2497 rdp->nocb_head = rdp->nxtlist;
2498 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2499 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2500 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2501 rdp->nxtlist = NULL;
2502 rdp->qlen = 0;
2503 rdp->qlen_lazy = 0;
2504 }
2505 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2506 return true;
2507 }
2508
2509 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2512 {
2513 WARN_ON_ONCE(1); /* Should be dead code. */
2514 return false;
2515 }
2516
2517 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2518 {
2519 }
2520
2521 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2522 {
2523 }
2524
2525 static void rcu_init_one_nocb(struct rcu_node *rnp)
2526 {
2527 }
2528
2529 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2530 bool lazy, unsigned long flags)
2531 {
2532 return false;
2533 }
2534
2535 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2536 struct rcu_data *rdp,
2537 unsigned long flags)
2538 {
2539 return false;
2540 }
2541
2542 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2543 {
2544 }
2545
2546 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2547 {
2548 return false;
2549 }
2550
2551 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2552 {
2553 }
2554
2555 static void rcu_spawn_all_nocb_kthreads(int cpu)
2556 {
2557 }
2558
2559 static void __init rcu_spawn_nocb_kthreads(void)
2560 {
2561 }
2562
2563 static bool init_nocb_callback_list(struct rcu_data *rdp)
2564 {
2565 return false;
2566 }
2567
2568 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2569
2570 /*
2571 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2572 * arbitrarily long period of time with the scheduling-clock tick turned
2573 * off. RCU will be paying attention to this CPU because it is in the
2574 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2575 * machine because the scheduling-clock tick has been disabled. Therefore,
2576 * if an adaptive-ticks CPU is failing to respond to the current grace
2577 * period and has not be idle from an RCU perspective, kick it.
2578 */
2579 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2580 {
2581 #ifdef CONFIG_NO_HZ_FULL
2582 if (tick_nohz_full_cpu(cpu))
2583 smp_send_reschedule(cpu);
2584 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2585 }
2586
2587
2588 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2589
2590 static int full_sysidle_state; /* Current system-idle state. */
2591 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2592 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2593 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2594 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2595 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2596
2597 /*
2598 * Invoked to note exit from irq or task transition to idle. Note that
2599 * usermode execution does -not- count as idle here! After all, we want
2600 * to detect full-system idle states, not RCU quiescent states and grace
2601 * periods. The caller must have disabled interrupts.
2602 */
2603 static void rcu_sysidle_enter(int irq)
2604 {
2605 unsigned long j;
2606 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2607
2608 /* If there are no nohz_full= CPUs, no need to track this. */
2609 if (!tick_nohz_full_enabled())
2610 return;
2611
2612 /* Adjust nesting, check for fully idle. */
2613 if (irq) {
2614 rdtp->dynticks_idle_nesting--;
2615 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2616 if (rdtp->dynticks_idle_nesting != 0)
2617 return; /* Still not fully idle. */
2618 } else {
2619 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2620 DYNTICK_TASK_NEST_VALUE) {
2621 rdtp->dynticks_idle_nesting = 0;
2622 } else {
2623 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2624 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2625 return; /* Still not fully idle. */
2626 }
2627 }
2628
2629 /* Record start of fully idle period. */
2630 j = jiffies;
2631 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2632 smp_mb__before_atomic();
2633 atomic_inc(&rdtp->dynticks_idle);
2634 smp_mb__after_atomic();
2635 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2636 }
2637
2638 /*
2639 * Unconditionally force exit from full system-idle state. This is
2640 * invoked when a normal CPU exits idle, but must be called separately
2641 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2642 * is that the timekeeping CPU is permitted to take scheduling-clock
2643 * interrupts while the system is in system-idle state, and of course
2644 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2645 * interrupt from any other type of interrupt.
2646 */
2647 void rcu_sysidle_force_exit(void)
2648 {
2649 int oldstate = READ_ONCE(full_sysidle_state);
2650 int newoldstate;
2651
2652 /*
2653 * Each pass through the following loop attempts to exit full
2654 * system-idle state. If contention proves to be a problem,
2655 * a trylock-based contention tree could be used here.
2656 */
2657 while (oldstate > RCU_SYSIDLE_SHORT) {
2658 newoldstate = cmpxchg(&full_sysidle_state,
2659 oldstate, RCU_SYSIDLE_NOT);
2660 if (oldstate == newoldstate &&
2661 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2662 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2663 return; /* We cleared it, done! */
2664 }
2665 oldstate = newoldstate;
2666 }
2667 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2668 }
2669
2670 /*
2671 * Invoked to note entry to irq or task transition from idle. Note that
2672 * usermode execution does -not- count as idle here! The caller must
2673 * have disabled interrupts.
2674 */
2675 static void rcu_sysidle_exit(int irq)
2676 {
2677 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2678
2679 /* If there are no nohz_full= CPUs, no need to track this. */
2680 if (!tick_nohz_full_enabled())
2681 return;
2682
2683 /* Adjust nesting, check for already non-idle. */
2684 if (irq) {
2685 rdtp->dynticks_idle_nesting++;
2686 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2687 if (rdtp->dynticks_idle_nesting != 1)
2688 return; /* Already non-idle. */
2689 } else {
2690 /*
2691 * Allow for irq misnesting. Yes, it really is possible
2692 * to enter an irq handler then never leave it, and maybe
2693 * also vice versa. Handle both possibilities.
2694 */
2695 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2696 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2697 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2698 return; /* Already non-idle. */
2699 } else {
2700 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2701 }
2702 }
2703
2704 /* Record end of idle period. */
2705 smp_mb__before_atomic();
2706 atomic_inc(&rdtp->dynticks_idle);
2707 smp_mb__after_atomic();
2708 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2709
2710 /*
2711 * If we are the timekeeping CPU, we are permitted to be non-idle
2712 * during a system-idle state. This must be the case, because
2713 * the timekeeping CPU has to take scheduling-clock interrupts
2714 * during the time that the system is transitioning to full
2715 * system-idle state. This means that the timekeeping CPU must
2716 * invoke rcu_sysidle_force_exit() directly if it does anything
2717 * more than take a scheduling-clock interrupt.
2718 */
2719 if (smp_processor_id() == tick_do_timer_cpu)
2720 return;
2721
2722 /* Update system-idle state: We are clearly no longer fully idle! */
2723 rcu_sysidle_force_exit();
2724 }
2725
2726 /*
2727 * Check to see if the current CPU is idle. Note that usermode execution
2728 * does not count as idle. The caller must have disabled interrupts,
2729 * and must be running on tick_do_timer_cpu.
2730 */
2731 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2732 unsigned long *maxj)
2733 {
2734 int cur;
2735 unsigned long j;
2736 struct rcu_dynticks *rdtp = rdp->dynticks;
2737
2738 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2739 if (!tick_nohz_full_enabled())
2740 return;
2741
2742 /*
2743 * If some other CPU has already reported non-idle, if this is
2744 * not the flavor of RCU that tracks sysidle state, or if this
2745 * is an offline or the timekeeping CPU, nothing to do.
2746 */
2747 if (!*isidle || rdp->rsp != rcu_state_p ||
2748 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2749 return;
2750 /* Verify affinity of current kthread. */
2751 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2752
2753 /* Pick up current idle and NMI-nesting counter and check. */
2754 cur = atomic_read(&rdtp->dynticks_idle);
2755 if (cur & 0x1) {
2756 *isidle = false; /* We are not idle! */
2757 return;
2758 }
2759 smp_mb(); /* Read counters before timestamps. */
2760
2761 /* Pick up timestamps. */
2762 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2763 /* If this CPU entered idle more recently, update maxj timestamp. */
2764 if (ULONG_CMP_LT(*maxj, j))
2765 *maxj = j;
2766 }
2767
2768 /*
2769 * Is this the flavor of RCU that is handling full-system idle?
2770 */
2771 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2772 {
2773 return rsp == rcu_state_p;
2774 }
2775
2776 /*
2777 * Return a delay in jiffies based on the number of CPUs, rcu_node
2778 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2779 * systems more time to transition to full-idle state in order to
2780 * avoid the cache thrashing that otherwise occur on the state variable.
2781 * Really small systems (less than a couple of tens of CPUs) should
2782 * instead use a single global atomically incremented counter, and later
2783 * versions of this will automatically reconfigure themselves accordingly.
2784 */
2785 static unsigned long rcu_sysidle_delay(void)
2786 {
2787 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2788 return 0;
2789 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2790 }
2791
2792 /*
2793 * Advance the full-system-idle state. This is invoked when all of
2794 * the non-timekeeping CPUs are idle.
2795 */
2796 static void rcu_sysidle(unsigned long j)
2797 {
2798 /* Check the current state. */
2799 switch (READ_ONCE(full_sysidle_state)) {
2800 case RCU_SYSIDLE_NOT:
2801
2802 /* First time all are idle, so note a short idle period. */
2803 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2804 break;
2805
2806 case RCU_SYSIDLE_SHORT:
2807
2808 /*
2809 * Idle for a bit, time to advance to next state?
2810 * cmpxchg failure means race with non-idle, let them win.
2811 */
2812 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2813 (void)cmpxchg(&full_sysidle_state,
2814 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2815 break;
2816
2817 case RCU_SYSIDLE_LONG:
2818
2819 /*
2820 * Do an additional check pass before advancing to full.
2821 * cmpxchg failure means race with non-idle, let them win.
2822 */
2823 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2824 (void)cmpxchg(&full_sysidle_state,
2825 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2826 break;
2827
2828 default:
2829 break;
2830 }
2831 }
2832
2833 /*
2834 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2835 * back to the beginning.
2836 */
2837 static void rcu_sysidle_cancel(void)
2838 {
2839 smp_mb();
2840 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2841 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2842 }
2843
2844 /*
2845 * Update the sysidle state based on the results of a force-quiescent-state
2846 * scan of the CPUs' dyntick-idle state.
2847 */
2848 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2849 unsigned long maxj, bool gpkt)
2850 {
2851 if (rsp != rcu_state_p)
2852 return; /* Wrong flavor, ignore. */
2853 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2854 return; /* Running state machine from timekeeping CPU. */
2855 if (isidle)
2856 rcu_sysidle(maxj); /* More idle! */
2857 else
2858 rcu_sysidle_cancel(); /* Idle is over. */
2859 }
2860
2861 /*
2862 * Wrapper for rcu_sysidle_report() when called from the grace-period
2863 * kthread's context.
2864 */
2865 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2866 unsigned long maxj)
2867 {
2868 /* If there are no nohz_full= CPUs, no need to track this. */
2869 if (!tick_nohz_full_enabled())
2870 return;
2871
2872 rcu_sysidle_report(rsp, isidle, maxj, true);
2873 }
2874
2875 /* Callback and function for forcing an RCU grace period. */
2876 struct rcu_sysidle_head {
2877 struct rcu_head rh;
2878 int inuse;
2879 };
2880
2881 static void rcu_sysidle_cb(struct rcu_head *rhp)
2882 {
2883 struct rcu_sysidle_head *rshp;
2884
2885 /*
2886 * The following memory barrier is needed to replace the
2887 * memory barriers that would normally be in the memory
2888 * allocator.
2889 */
2890 smp_mb(); /* grace period precedes setting inuse. */
2891
2892 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2893 WRITE_ONCE(rshp->inuse, 0);
2894 }
2895
2896 /*
2897 * Check to see if the system is fully idle, other than the timekeeping CPU.
2898 * The caller must have disabled interrupts. This is not intended to be
2899 * called unless tick_nohz_full_enabled().
2900 */
2901 bool rcu_sys_is_idle(void)
2902 {
2903 static struct rcu_sysidle_head rsh;
2904 int rss = READ_ONCE(full_sysidle_state);
2905
2906 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2907 return false;
2908
2909 /* Handle small-system case by doing a full scan of CPUs. */
2910 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2911 int oldrss = rss - 1;
2912
2913 /*
2914 * One pass to advance to each state up to _FULL.
2915 * Give up if any pass fails to advance the state.
2916 */
2917 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2918 int cpu;
2919 bool isidle = true;
2920 unsigned long maxj = jiffies - ULONG_MAX / 4;
2921 struct rcu_data *rdp;
2922
2923 /* Scan all the CPUs looking for nonidle CPUs. */
2924 for_each_possible_cpu(cpu) {
2925 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2926 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2927 if (!isidle)
2928 break;
2929 }
2930 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2931 oldrss = rss;
2932 rss = READ_ONCE(full_sysidle_state);
2933 }
2934 }
2935
2936 /* If this is the first observation of an idle period, record it. */
2937 if (rss == RCU_SYSIDLE_FULL) {
2938 rss = cmpxchg(&full_sysidle_state,
2939 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2940 return rss == RCU_SYSIDLE_FULL;
2941 }
2942
2943 smp_mb(); /* ensure rss load happens before later caller actions. */
2944
2945 /* If already fully idle, tell the caller (in case of races). */
2946 if (rss == RCU_SYSIDLE_FULL_NOTED)
2947 return true;
2948
2949 /*
2950 * If we aren't there yet, and a grace period is not in flight,
2951 * initiate a grace period. Either way, tell the caller that
2952 * we are not there yet. We use an xchg() rather than an assignment
2953 * to make up for the memory barriers that would otherwise be
2954 * provided by the memory allocator.
2955 */
2956 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2957 !rcu_gp_in_progress(rcu_state_p) &&
2958 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2959 call_rcu(&rsh.rh, rcu_sysidle_cb);
2960 return false;
2961 }
2962
2963 /*
2964 * Initialize dynticks sysidle state for CPUs coming online.
2965 */
2966 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2967 {
2968 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2969 }
2970
2971 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2972
2973 static void rcu_sysidle_enter(int irq)
2974 {
2975 }
2976
2977 static void rcu_sysidle_exit(int irq)
2978 {
2979 }
2980
2981 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2982 unsigned long *maxj)
2983 {
2984 }
2985
2986 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2987 {
2988 return false;
2989 }
2990
2991 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2992 unsigned long maxj)
2993 {
2994 }
2995
2996 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2997 {
2998 }
2999
3000 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3001
3002 /*
3003 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3004 * grace-period kthread will do force_quiescent_state() processing?
3005 * The idea is to avoid waking up RCU core processing on such a
3006 * CPU unless the grace period has extended for too long.
3007 *
3008 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3009 * CONFIG_RCU_NOCB_CPU CPUs.
3010 */
3011 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3012 {
3013 #ifdef CONFIG_NO_HZ_FULL
3014 if (tick_nohz_full_cpu(smp_processor_id()) &&
3015 (!rcu_gp_in_progress(rsp) ||
3016 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3017 return true;
3018 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3019 return false;
3020 }
3021
3022 /*
3023 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3024 * timekeeping CPU.
3025 */
3026 static void rcu_bind_gp_kthread(void)
3027 {
3028 int __maybe_unused cpu;
3029
3030 if (!tick_nohz_full_enabled())
3031 return;
3032 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3033 cpu = tick_do_timer_cpu;
3034 if (cpu >= 0 && cpu < nr_cpu_ids)
3035 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3036 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3037 housekeeping_affine(current);
3038 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3039 }
3040
3041 /* Record the current task on dyntick-idle entry. */
3042 static void rcu_dynticks_task_enter(void)
3043 {
3044 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3046 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047 }
3048
3049 /* Record no current task on dyntick-idle exit. */
3050 static void rcu_dynticks_task_exit(void)
3051 {
3052 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3053 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3054 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3055 }