]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcu/tree_plugin.h
rcu: Use single-stage IPI algorithm for RCU expedited grace period
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 RCU_FANOUT);
77 if (rcu_fanout_exact)
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF != 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 if (nr_cpu_ids != NR_CPUS)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 if (IS_ENABLED(CONFIG_RCU_BOOST))
95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97
98 #ifdef CONFIG_PREEMPT_RCU
99
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103
104 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
105 bool wake);
106
107 /*
108 * Tell them what RCU they are running.
109 */
110 static void __init rcu_bootup_announce(void)
111 {
112 pr_info("Preemptible hierarchical RCU implementation.\n");
113 rcu_bootup_announce_oddness();
114 }
115
116 /* Flags for rcu_preempt_ctxt_queue() decision table. */
117 #define RCU_GP_TASKS 0x8
118 #define RCU_EXP_TASKS 0x4
119 #define RCU_GP_BLKD 0x2
120 #define RCU_EXP_BLKD 0x1
121
122 /*
123 * Queues a task preempted within an RCU-preempt read-side critical
124 * section into the appropriate location within the ->blkd_tasks list,
125 * depending on the states of any ongoing normal and expedited grace
126 * periods. The ->gp_tasks pointer indicates which element the normal
127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128 * indicates which element the expedited grace period is waiting on (again,
129 * NULL if none). If a grace period is waiting on a given element in the
130 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
131 * adding a task to the tail of the list blocks any grace period that is
132 * already waiting on one of the elements. In contrast, adding a task
133 * to the head of the list won't block any grace period that is already
134 * waiting on one of the elements.
135 *
136 * This queuing is imprecise, and can sometimes make an ongoing grace
137 * period wait for a task that is not strictly speaking blocking it.
138 * Given the choice, we needlessly block a normal grace period rather than
139 * blocking an expedited grace period.
140 *
141 * Note that an endless sequence of expedited grace periods still cannot
142 * indefinitely postpone a normal grace period. Eventually, all of the
143 * fixed number of preempted tasks blocking the normal grace period that are
144 * not also blocking the expedited grace period will resume and complete
145 * their RCU read-side critical sections. At that point, the ->gp_tasks
146 * pointer will equal the ->exp_tasks pointer, at which point the end of
147 * the corresponding expedited grace period will also be the end of the
148 * normal grace period.
149 */
150 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
151 unsigned long flags) __releases(rnp->lock)
152 {
153 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 struct task_struct *t = current;
158
159 /*
160 * Decide where to queue the newly blocked task. In theory,
161 * this could be an if-statement. In practice, when I tried
162 * that, it was quite messy.
163 */
164 switch (blkd_state) {
165 case 0:
166 case RCU_EXP_TASKS:
167 case RCU_EXP_TASKS + RCU_GP_BLKD:
168 case RCU_GP_TASKS:
169 case RCU_GP_TASKS + RCU_EXP_TASKS:
170
171 /*
172 * Blocking neither GP, or first task blocking the normal
173 * GP but not blocking the already-waiting expedited GP.
174 * Queue at the head of the list to avoid unnecessarily
175 * blocking the already-waiting GPs.
176 */
177 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
178 break;
179
180 case RCU_EXP_BLKD:
181 case RCU_GP_BLKD:
182 case RCU_GP_BLKD + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
186
187 /*
188 * First task arriving that blocks either GP, or first task
189 * arriving that blocks the expedited GP (with the normal
190 * GP already waiting), or a task arriving that blocks
191 * both GPs with both GPs already waiting. Queue at the
192 * tail of the list to avoid any GP waiting on any of the
193 * already queued tasks that are not blocking it.
194 */
195 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
196 break;
197
198 case RCU_EXP_TASKS + RCU_EXP_BLKD:
199 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
200 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
201
202 /*
203 * Second or subsequent task blocking the expedited GP.
204 * The task either does not block the normal GP, or is the
205 * first task blocking the normal GP. Queue just after
206 * the first task blocking the expedited GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->exp_tasks);
209 break;
210
211 case RCU_GP_TASKS + RCU_GP_BLKD:
212 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
213
214 /*
215 * Second or subsequent task blocking the normal GP.
216 * The task does not block the expedited GP. Queue just
217 * after the first task blocking the normal GP.
218 */
219 list_add(&t->rcu_node_entry, rnp->gp_tasks);
220 break;
221
222 default:
223
224 /* Yet another exercise in excessive paranoia. */
225 WARN_ON_ONCE(1);
226 break;
227 }
228
229 /*
230 * We have now queued the task. If it was the first one to
231 * block either grace period, update the ->gp_tasks and/or
232 * ->exp_tasks pointers, respectively, to reference the newly
233 * blocked tasks.
234 */
235 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
236 rnp->gp_tasks = &t->rcu_node_entry;
237 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
238 rnp->exp_tasks = &t->rcu_node_entry;
239 raw_spin_unlock(&rnp->lock);
240
241 /*
242 * Report the quiescent state for the expedited GP. This expedited
243 * GP should not be able to end until we report, so there should be
244 * no need to check for a subsequent expedited GP. (Though we are
245 * still in a quiescent state in any case.)
246 */
247 if (blkd_state & RCU_EXP_BLKD &&
248 t->rcu_read_unlock_special.b.exp_need_qs) {
249 t->rcu_read_unlock_special.b.exp_need_qs = false;
250 rcu_report_exp_rdp(rdp->rsp, rdp, true);
251 } else {
252 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
253 }
254 local_irq_restore(flags);
255 }
256
257 /*
258 * Record a preemptible-RCU quiescent state for the specified CPU. Note
259 * that this just means that the task currently running on the CPU is
260 * not in a quiescent state. There might be any number of tasks blocked
261 * while in an RCU read-side critical section.
262 *
263 * As with the other rcu_*_qs() functions, callers to this function
264 * must disable preemption.
265 */
266 static void rcu_preempt_qs(void)
267 {
268 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
269 trace_rcu_grace_period(TPS("rcu_preempt"),
270 __this_cpu_read(rcu_data_p->gpnum),
271 TPS("cpuqs"));
272 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
273 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
274 current->rcu_read_unlock_special.b.need_qs = false;
275 }
276 }
277
278 /*
279 * We have entered the scheduler, and the current task might soon be
280 * context-switched away from. If this task is in an RCU read-side
281 * critical section, we will no longer be able to rely on the CPU to
282 * record that fact, so we enqueue the task on the blkd_tasks list.
283 * The task will dequeue itself when it exits the outermost enclosing
284 * RCU read-side critical section. Therefore, the current grace period
285 * cannot be permitted to complete until the blkd_tasks list entries
286 * predating the current grace period drain, in other words, until
287 * rnp->gp_tasks becomes NULL.
288 *
289 * Caller must disable preemption.
290 */
291 static void rcu_preempt_note_context_switch(void)
292 {
293 struct task_struct *t = current;
294 unsigned long flags;
295 struct rcu_data *rdp;
296 struct rcu_node *rnp;
297
298 if (t->rcu_read_lock_nesting > 0 &&
299 !t->rcu_read_unlock_special.b.blocked) {
300
301 /* Possibly blocking in an RCU read-side critical section. */
302 rdp = this_cpu_ptr(rcu_state_p->rda);
303 rnp = rdp->mynode;
304 raw_spin_lock_irqsave(&rnp->lock, flags);
305 smp_mb__after_unlock_lock();
306 t->rcu_read_unlock_special.b.blocked = true;
307 t->rcu_blocked_node = rnp;
308
309 /*
310 * Verify the CPU's sanity, trace the preemption, and
311 * then queue the task as required based on the states
312 * of any ongoing and expedited grace periods.
313 */
314 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
315 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
316 trace_rcu_preempt_task(rdp->rsp->name,
317 t->pid,
318 (rnp->qsmask & rdp->grpmask)
319 ? rnp->gpnum
320 : rnp->gpnum + 1);
321 rcu_preempt_ctxt_queue(rnp, rdp, flags);
322 } else if (t->rcu_read_lock_nesting < 0 &&
323 t->rcu_read_unlock_special.s) {
324
325 /*
326 * Complete exit from RCU read-side critical section on
327 * behalf of preempted instance of __rcu_read_unlock().
328 */
329 rcu_read_unlock_special(t);
330 }
331
332 /*
333 * Either we were not in an RCU read-side critical section to
334 * begin with, or we have now recorded that critical section
335 * globally. Either way, we can now note a quiescent state
336 * for this CPU. Again, if we were in an RCU read-side critical
337 * section, and if that critical section was blocking the current
338 * grace period, then the fact that the task has been enqueued
339 * means that we continue to block the current grace period.
340 */
341 rcu_preempt_qs();
342 }
343
344 /*
345 * Check for preempted RCU readers blocking the current grace period
346 * for the specified rcu_node structure. If the caller needs a reliable
347 * answer, it must hold the rcu_node's ->lock.
348 */
349 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
350 {
351 return rnp->gp_tasks != NULL;
352 }
353
354 /*
355 * Advance a ->blkd_tasks-list pointer to the next entry, instead
356 * returning NULL if at the end of the list.
357 */
358 static struct list_head *rcu_next_node_entry(struct task_struct *t,
359 struct rcu_node *rnp)
360 {
361 struct list_head *np;
362
363 np = t->rcu_node_entry.next;
364 if (np == &rnp->blkd_tasks)
365 np = NULL;
366 return np;
367 }
368
369 /*
370 * Return true if the specified rcu_node structure has tasks that were
371 * preempted within an RCU read-side critical section.
372 */
373 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
374 {
375 return !list_empty(&rnp->blkd_tasks);
376 }
377
378 /*
379 * Handle special cases during rcu_read_unlock(), such as needing to
380 * notify RCU core processing or task having blocked during the RCU
381 * read-side critical section.
382 */
383 void rcu_read_unlock_special(struct task_struct *t)
384 {
385 bool empty_exp;
386 bool empty_norm;
387 bool empty_exp_now;
388 unsigned long flags;
389 struct list_head *np;
390 bool drop_boost_mutex = false;
391 struct rcu_data *rdp;
392 struct rcu_node *rnp;
393 union rcu_special special;
394
395 /* NMI handlers cannot block and cannot safely manipulate state. */
396 if (in_nmi())
397 return;
398
399 local_irq_save(flags);
400
401 /*
402 * If RCU core is waiting for this CPU to exit its critical section,
403 * report the fact that it has exited. Because irqs are disabled,
404 * t->rcu_read_unlock_special cannot change.
405 */
406 special = t->rcu_read_unlock_special;
407 if (special.b.need_qs) {
408 rcu_preempt_qs();
409 t->rcu_read_unlock_special.b.need_qs = false;
410 if (!t->rcu_read_unlock_special.s) {
411 local_irq_restore(flags);
412 return;
413 }
414 }
415
416 /*
417 * Respond to a request for an expedited grace period, but only if
418 * we were not preempted, meaning that we were running on the same
419 * CPU throughout. If we were preempted, the exp_need_qs flag
420 * would have been cleared at the time of the first preemption,
421 * and the quiescent state would be reported when we were dequeued.
422 */
423 if (special.b.exp_need_qs) {
424 WARN_ON_ONCE(special.b.blocked);
425 t->rcu_read_unlock_special.b.exp_need_qs = false;
426 rdp = this_cpu_ptr(rcu_state_p->rda);
427 rcu_report_exp_rdp(rcu_state_p, rdp, true);
428 if (!t->rcu_read_unlock_special.s) {
429 local_irq_restore(flags);
430 return;
431 }
432 }
433
434 /* Hardware IRQ handlers cannot block, complain if they get here. */
435 if (in_irq() || in_serving_softirq()) {
436 lockdep_rcu_suspicious(__FILE__, __LINE__,
437 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
438 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
439 t->rcu_read_unlock_special.s,
440 t->rcu_read_unlock_special.b.blocked,
441 t->rcu_read_unlock_special.b.exp_need_qs,
442 t->rcu_read_unlock_special.b.need_qs);
443 local_irq_restore(flags);
444 return;
445 }
446
447 /* Clean up if blocked during RCU read-side critical section. */
448 if (special.b.blocked) {
449 t->rcu_read_unlock_special.b.blocked = false;
450
451 /*
452 * Remove this task from the list it blocked on. The task
453 * now remains queued on the rcu_node corresponding to
454 * the CPU it first blocked on, so the first attempt to
455 * acquire the task's rcu_node's ->lock will succeed.
456 * Keep the loop and add a WARN_ON() out of sheer paranoia.
457 */
458 for (;;) {
459 rnp = t->rcu_blocked_node;
460 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
461 smp_mb__after_unlock_lock();
462 if (rnp == t->rcu_blocked_node)
463 break;
464 WARN_ON_ONCE(1);
465 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
466 }
467 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
468 empty_exp = sync_rcu_preempt_exp_done(rnp);
469 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
470 np = rcu_next_node_entry(t, rnp);
471 list_del_init(&t->rcu_node_entry);
472 t->rcu_blocked_node = NULL;
473 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
474 rnp->gpnum, t->pid);
475 if (&t->rcu_node_entry == rnp->gp_tasks)
476 rnp->gp_tasks = np;
477 if (&t->rcu_node_entry == rnp->exp_tasks)
478 rnp->exp_tasks = np;
479 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
480 if (&t->rcu_node_entry == rnp->boost_tasks)
481 rnp->boost_tasks = np;
482 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
483 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
484 }
485
486 /*
487 * If this was the last task on the current list, and if
488 * we aren't waiting on any CPUs, report the quiescent state.
489 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
490 * so we must take a snapshot of the expedited state.
491 */
492 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
493 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
494 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
495 rnp->gpnum,
496 0, rnp->qsmask,
497 rnp->level,
498 rnp->grplo,
499 rnp->grphi,
500 !!rnp->gp_tasks);
501 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
502 } else {
503 raw_spin_unlock_irqrestore(&rnp->lock, flags);
504 }
505
506 /* Unboost if we were boosted. */
507 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
508 rt_mutex_unlock(&rnp->boost_mtx);
509
510 /*
511 * If this was the last task on the expedited lists,
512 * then we need to report up the rcu_node hierarchy.
513 */
514 if (!empty_exp && empty_exp_now)
515 rcu_report_exp_rnp(rcu_state_p, rnp, true);
516 } else {
517 local_irq_restore(flags);
518 }
519 }
520
521 /*
522 * Dump detailed information for all tasks blocking the current RCU
523 * grace period on the specified rcu_node structure.
524 */
525 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
526 {
527 unsigned long flags;
528 struct task_struct *t;
529
530 raw_spin_lock_irqsave(&rnp->lock, flags);
531 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
532 raw_spin_unlock_irqrestore(&rnp->lock, flags);
533 return;
534 }
535 t = list_entry(rnp->gp_tasks->prev,
536 struct task_struct, rcu_node_entry);
537 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
538 sched_show_task(t);
539 raw_spin_unlock_irqrestore(&rnp->lock, flags);
540 }
541
542 /*
543 * Dump detailed information for all tasks blocking the current RCU
544 * grace period.
545 */
546 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
547 {
548 struct rcu_node *rnp = rcu_get_root(rsp);
549
550 rcu_print_detail_task_stall_rnp(rnp);
551 rcu_for_each_leaf_node(rsp, rnp)
552 rcu_print_detail_task_stall_rnp(rnp);
553 }
554
555 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
556 {
557 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
558 rnp->level, rnp->grplo, rnp->grphi);
559 }
560
561 static void rcu_print_task_stall_end(void)
562 {
563 pr_cont("\n");
564 }
565
566 /*
567 * Scan the current list of tasks blocked within RCU read-side critical
568 * sections, printing out the tid of each.
569 */
570 static int rcu_print_task_stall(struct rcu_node *rnp)
571 {
572 struct task_struct *t;
573 int ndetected = 0;
574
575 if (!rcu_preempt_blocked_readers_cgp(rnp))
576 return 0;
577 rcu_print_task_stall_begin(rnp);
578 t = list_entry(rnp->gp_tasks->prev,
579 struct task_struct, rcu_node_entry);
580 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
581 pr_cont(" P%d", t->pid);
582 ndetected++;
583 }
584 rcu_print_task_stall_end();
585 return ndetected;
586 }
587
588 /*
589 * Check that the list of blocked tasks for the newly completed grace
590 * period is in fact empty. It is a serious bug to complete a grace
591 * period that still has RCU readers blocked! This function must be
592 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
593 * must be held by the caller.
594 *
595 * Also, if there are blocked tasks on the list, they automatically
596 * block the newly created grace period, so set up ->gp_tasks accordingly.
597 */
598 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
599 {
600 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
601 if (rcu_preempt_has_tasks(rnp))
602 rnp->gp_tasks = rnp->blkd_tasks.next;
603 WARN_ON_ONCE(rnp->qsmask);
604 }
605
606 /*
607 * Check for a quiescent state from the current CPU. When a task blocks,
608 * the task is recorded in the corresponding CPU's rcu_node structure,
609 * which is checked elsewhere.
610 *
611 * Caller must disable hard irqs.
612 */
613 static void rcu_preempt_check_callbacks(void)
614 {
615 struct task_struct *t = current;
616
617 if (t->rcu_read_lock_nesting == 0) {
618 rcu_preempt_qs();
619 return;
620 }
621 if (t->rcu_read_lock_nesting > 0 &&
622 __this_cpu_read(rcu_data_p->qs_pending) &&
623 !__this_cpu_read(rcu_data_p->passed_quiesce))
624 t->rcu_read_unlock_special.b.need_qs = true;
625 }
626
627 #ifdef CONFIG_RCU_BOOST
628
629 static void rcu_preempt_do_callbacks(void)
630 {
631 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
632 }
633
634 #endif /* #ifdef CONFIG_RCU_BOOST */
635
636 /*
637 * Queue a preemptible-RCU callback for invocation after a grace period.
638 */
639 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
640 {
641 __call_rcu(head, func, rcu_state_p, -1, 0);
642 }
643 EXPORT_SYMBOL_GPL(call_rcu);
644
645 /**
646 * synchronize_rcu - wait until a grace period has elapsed.
647 *
648 * Control will return to the caller some time after a full grace
649 * period has elapsed, in other words after all currently executing RCU
650 * read-side critical sections have completed. Note, however, that
651 * upon return from synchronize_rcu(), the caller might well be executing
652 * concurrently with new RCU read-side critical sections that began while
653 * synchronize_rcu() was waiting. RCU read-side critical sections are
654 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
655 *
656 * See the description of synchronize_sched() for more detailed information
657 * on memory ordering guarantees.
658 */
659 void synchronize_rcu(void)
660 {
661 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
662 lock_is_held(&rcu_lock_map) ||
663 lock_is_held(&rcu_sched_lock_map),
664 "Illegal synchronize_rcu() in RCU read-side critical section");
665 if (!rcu_scheduler_active)
666 return;
667 if (rcu_gp_is_expedited())
668 synchronize_rcu_expedited();
669 else
670 wait_rcu_gp(call_rcu);
671 }
672 EXPORT_SYMBOL_GPL(synchronize_rcu);
673
674 /*
675 * Remote handler for smp_call_function_single(). If there is an
676 * RCU read-side critical section in effect, request that the
677 * next rcu_read_unlock() record the quiescent state up the
678 * ->expmask fields in the rcu_node tree. Otherwise, immediately
679 * report the quiescent state.
680 */
681 static void sync_rcu_exp_handler(void *info)
682 {
683 struct rcu_data *rdp;
684 struct rcu_state *rsp = info;
685 struct task_struct *t = current;
686
687 /*
688 * Within an RCU read-side critical section, request that the next
689 * rcu_read_unlock() report. Unless this RCU read-side critical
690 * section has already blocked, in which case it is already set
691 * up for the expedited grace period to wait on it.
692 */
693 if (t->rcu_read_lock_nesting > 0 &&
694 !t->rcu_read_unlock_special.b.blocked) {
695 t->rcu_read_unlock_special.b.exp_need_qs = true;
696 return;
697 }
698
699 /*
700 * We are either exiting an RCU read-side critical section (negative
701 * values of t->rcu_read_lock_nesting) or are not in one at all
702 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
703 * read-side critical section that blocked before this expedited
704 * grace period started. Either way, we can immediately report
705 * the quiescent state.
706 */
707 rdp = this_cpu_ptr(rsp->rda);
708 rcu_report_exp_rdp(rsp, rdp, true);
709 }
710
711 /*
712 * Select the nodes that the upcoming expedited grace period needs
713 * to wait for.
714 */
715 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp)
716 {
717 int cpu;
718 unsigned long flags;
719 unsigned long mask;
720 unsigned long mask_ofl_test;
721 unsigned long mask_ofl_ipi;
722 int ret;
723 struct rcu_node *rnp;
724
725 sync_exp_reset_tree(rsp);
726 rcu_for_each_leaf_node(rsp, rnp) {
727 raw_spin_lock_irqsave(&rnp->lock, flags);
728 smp_mb__after_unlock_lock();
729
730 /* Each pass checks a CPU for identity, offline, and idle. */
731 mask_ofl_test = 0;
732 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
734 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
735
736 if (raw_smp_processor_id() == cpu ||
737 cpu_is_offline(cpu) ||
738 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
739 mask_ofl_test |= rdp->grpmask;
740 }
741 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
742
743 /*
744 * Need to wait for any blocked tasks as well. Note that
745 * additional blocking tasks will also block the expedited
746 * GP until such time as the ->expmask bits are cleared.
747 */
748 if (rcu_preempt_has_tasks(rnp))
749 rnp->exp_tasks = rnp->blkd_tasks.next;
750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
751
752 /* IPI the remaining CPUs for expedited quiescent state. */
753 mask = 1;
754 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
755 if (!(mask_ofl_ipi & mask))
756 continue;
757 ret = smp_call_function_single(cpu,
758 sync_rcu_exp_handler,
759 rsp, 0);
760 if (!ret)
761 mask_ofl_ipi &= ~mask;
762 }
763 /* Report quiescent states for those that went offline. */
764 mask_ofl_test |= mask_ofl_ipi;
765 if (mask_ofl_test)
766 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
767 }
768 }
769
770 /**
771 * synchronize_rcu_expedited - Brute-force RCU grace period
772 *
773 * Wait for an RCU-preempt grace period, but expedite it. The basic
774 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
775 * the ->blkd_tasks lists and wait for this list to drain. This consumes
776 * significant time on all CPUs and is unfriendly to real-time workloads,
777 * so is thus not recommended for any sort of common-case code.
778 * In fact, if you are using synchronize_rcu_expedited() in a loop,
779 * please restructure your code to batch your updates, and then Use a
780 * single synchronize_rcu() instead.
781 */
782 void synchronize_rcu_expedited(void)
783 {
784 struct rcu_node *rnp;
785 struct rcu_node *rnp_unlock;
786 struct rcu_state *rsp = rcu_state_p;
787 unsigned long s;
788
789 s = rcu_exp_gp_seq_snap(rsp);
790
791 rnp_unlock = exp_funnel_lock(rsp, s);
792 if (rnp_unlock == NULL)
793 return; /* Someone else did our work for us. */
794
795 rcu_exp_gp_seq_start(rsp);
796
797 /* Initialize the rcu_node tree in preparation for the wait. */
798 sync_rcu_exp_select_cpus(rsp);
799
800 /* Wait for snapshotted ->blkd_tasks lists to drain. */
801 rnp = rcu_get_root(rsp);
802 wait_event(rsp->expedited_wq,
803 sync_rcu_preempt_exp_done(rnp));
804
805 /* Clean up and exit. */
806 rcu_exp_gp_seq_end(rsp);
807 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
808 }
809 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
810
811 /**
812 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
813 *
814 * Note that this primitive does not necessarily wait for an RCU grace period
815 * to complete. For example, if there are no RCU callbacks queued anywhere
816 * in the system, then rcu_barrier() is within its rights to return
817 * immediately, without waiting for anything, much less an RCU grace period.
818 */
819 void rcu_barrier(void)
820 {
821 _rcu_barrier(rcu_state_p);
822 }
823 EXPORT_SYMBOL_GPL(rcu_barrier);
824
825 /*
826 * Initialize preemptible RCU's state structures.
827 */
828 static void __init __rcu_init_preempt(void)
829 {
830 rcu_init_one(rcu_state_p, rcu_data_p);
831 }
832
833 /*
834 * Check for a task exiting while in a preemptible-RCU read-side
835 * critical section, clean up if so. No need to issue warnings,
836 * as debug_check_no_locks_held() already does this if lockdep
837 * is enabled.
838 */
839 void exit_rcu(void)
840 {
841 struct task_struct *t = current;
842
843 if (likely(list_empty(&current->rcu_node_entry)))
844 return;
845 t->rcu_read_lock_nesting = 1;
846 barrier();
847 t->rcu_read_unlock_special.b.blocked = true;
848 __rcu_read_unlock();
849 }
850
851 #else /* #ifdef CONFIG_PREEMPT_RCU */
852
853 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
854 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
855
856 /*
857 * Tell them what RCU they are running.
858 */
859 static void __init rcu_bootup_announce(void)
860 {
861 pr_info("Hierarchical RCU implementation.\n");
862 rcu_bootup_announce_oddness();
863 }
864
865 /*
866 * Because preemptible RCU does not exist, we never have to check for
867 * CPUs being in quiescent states.
868 */
869 static void rcu_preempt_note_context_switch(void)
870 {
871 }
872
873 /*
874 * Because preemptible RCU does not exist, there are never any preempted
875 * RCU readers.
876 */
877 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
878 {
879 return 0;
880 }
881
882 /*
883 * Because there is no preemptible RCU, there can be no readers blocked.
884 */
885 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
886 {
887 return false;
888 }
889
890 /*
891 * Because preemptible RCU does not exist, we never have to check for
892 * tasks blocked within RCU read-side critical sections.
893 */
894 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
895 {
896 }
897
898 /*
899 * Because preemptible RCU does not exist, we never have to check for
900 * tasks blocked within RCU read-side critical sections.
901 */
902 static int rcu_print_task_stall(struct rcu_node *rnp)
903 {
904 return 0;
905 }
906
907 /*
908 * Because there is no preemptible RCU, there can be no readers blocked,
909 * so there is no need to check for blocked tasks. So check only for
910 * bogus qsmask values.
911 */
912 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
913 {
914 WARN_ON_ONCE(rnp->qsmask);
915 }
916
917 /*
918 * Because preemptible RCU does not exist, it never has any callbacks
919 * to check.
920 */
921 static void rcu_preempt_check_callbacks(void)
922 {
923 }
924
925 /*
926 * Wait for an rcu-preempt grace period, but make it happen quickly.
927 * But because preemptible RCU does not exist, map to rcu-sched.
928 */
929 void synchronize_rcu_expedited(void)
930 {
931 synchronize_sched_expedited();
932 }
933 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
934
935 /*
936 * Because preemptible RCU does not exist, rcu_barrier() is just
937 * another name for rcu_barrier_sched().
938 */
939 void rcu_barrier(void)
940 {
941 rcu_barrier_sched();
942 }
943 EXPORT_SYMBOL_GPL(rcu_barrier);
944
945 /*
946 * Because preemptible RCU does not exist, it need not be initialized.
947 */
948 static void __init __rcu_init_preempt(void)
949 {
950 }
951
952 /*
953 * Because preemptible RCU does not exist, tasks cannot possibly exit
954 * while in preemptible RCU read-side critical sections.
955 */
956 void exit_rcu(void)
957 {
958 }
959
960 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
961
962 #ifdef CONFIG_RCU_BOOST
963
964 #include "../locking/rtmutex_common.h"
965
966 #ifdef CONFIG_RCU_TRACE
967
968 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
969 {
970 if (!rcu_preempt_has_tasks(rnp))
971 rnp->n_balk_blkd_tasks++;
972 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
973 rnp->n_balk_exp_gp_tasks++;
974 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
975 rnp->n_balk_boost_tasks++;
976 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
977 rnp->n_balk_notblocked++;
978 else if (rnp->gp_tasks != NULL &&
979 ULONG_CMP_LT(jiffies, rnp->boost_time))
980 rnp->n_balk_notyet++;
981 else
982 rnp->n_balk_nos++;
983 }
984
985 #else /* #ifdef CONFIG_RCU_TRACE */
986
987 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
988 {
989 }
990
991 #endif /* #else #ifdef CONFIG_RCU_TRACE */
992
993 static void rcu_wake_cond(struct task_struct *t, int status)
994 {
995 /*
996 * If the thread is yielding, only wake it when this
997 * is invoked from idle
998 */
999 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1000 wake_up_process(t);
1001 }
1002
1003 /*
1004 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1005 * or ->boost_tasks, advancing the pointer to the next task in the
1006 * ->blkd_tasks list.
1007 *
1008 * Note that irqs must be enabled: boosting the task can block.
1009 * Returns 1 if there are more tasks needing to be boosted.
1010 */
1011 static int rcu_boost(struct rcu_node *rnp)
1012 {
1013 unsigned long flags;
1014 struct task_struct *t;
1015 struct list_head *tb;
1016
1017 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1018 READ_ONCE(rnp->boost_tasks) == NULL)
1019 return 0; /* Nothing left to boost. */
1020
1021 raw_spin_lock_irqsave(&rnp->lock, flags);
1022 smp_mb__after_unlock_lock();
1023
1024 /*
1025 * Recheck under the lock: all tasks in need of boosting
1026 * might exit their RCU read-side critical sections on their own.
1027 */
1028 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1030 return 0;
1031 }
1032
1033 /*
1034 * Preferentially boost tasks blocking expedited grace periods.
1035 * This cannot starve the normal grace periods because a second
1036 * expedited grace period must boost all blocked tasks, including
1037 * those blocking the pre-existing normal grace period.
1038 */
1039 if (rnp->exp_tasks != NULL) {
1040 tb = rnp->exp_tasks;
1041 rnp->n_exp_boosts++;
1042 } else {
1043 tb = rnp->boost_tasks;
1044 rnp->n_normal_boosts++;
1045 }
1046 rnp->n_tasks_boosted++;
1047
1048 /*
1049 * We boost task t by manufacturing an rt_mutex that appears to
1050 * be held by task t. We leave a pointer to that rt_mutex where
1051 * task t can find it, and task t will release the mutex when it
1052 * exits its outermost RCU read-side critical section. Then
1053 * simply acquiring this artificial rt_mutex will boost task
1054 * t's priority. (Thanks to tglx for suggesting this approach!)
1055 *
1056 * Note that task t must acquire rnp->lock to remove itself from
1057 * the ->blkd_tasks list, which it will do from exit() if from
1058 * nowhere else. We therefore are guaranteed that task t will
1059 * stay around at least until we drop rnp->lock. Note that
1060 * rnp->lock also resolves races between our priority boosting
1061 * and task t's exiting its outermost RCU read-side critical
1062 * section.
1063 */
1064 t = container_of(tb, struct task_struct, rcu_node_entry);
1065 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 /* Lock only for side effect: boosts task t's priority. */
1068 rt_mutex_lock(&rnp->boost_mtx);
1069 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1070
1071 return READ_ONCE(rnp->exp_tasks) != NULL ||
1072 READ_ONCE(rnp->boost_tasks) != NULL;
1073 }
1074
1075 /*
1076 * Priority-boosting kthread, one per leaf rcu_node.
1077 */
1078 static int rcu_boost_kthread(void *arg)
1079 {
1080 struct rcu_node *rnp = (struct rcu_node *)arg;
1081 int spincnt = 0;
1082 int more2boost;
1083
1084 trace_rcu_utilization(TPS("Start boost kthread@init"));
1085 for (;;) {
1086 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1087 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1088 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1089 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1090 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1091 more2boost = rcu_boost(rnp);
1092 if (more2boost)
1093 spincnt++;
1094 else
1095 spincnt = 0;
1096 if (spincnt > 10) {
1097 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1098 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1099 schedule_timeout_interruptible(2);
1100 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1101 spincnt = 0;
1102 }
1103 }
1104 /* NOTREACHED */
1105 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1106 return 0;
1107 }
1108
1109 /*
1110 * Check to see if it is time to start boosting RCU readers that are
1111 * blocking the current grace period, and, if so, tell the per-rcu_node
1112 * kthread to start boosting them. If there is an expedited grace
1113 * period in progress, it is always time to boost.
1114 *
1115 * The caller must hold rnp->lock, which this function releases.
1116 * The ->boost_kthread_task is immortal, so we don't need to worry
1117 * about it going away.
1118 */
1119 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1120 __releases(rnp->lock)
1121 {
1122 struct task_struct *t;
1123
1124 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1125 rnp->n_balk_exp_gp_tasks++;
1126 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1127 return;
1128 }
1129 if (rnp->exp_tasks != NULL ||
1130 (rnp->gp_tasks != NULL &&
1131 rnp->boost_tasks == NULL &&
1132 rnp->qsmask == 0 &&
1133 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1134 if (rnp->exp_tasks == NULL)
1135 rnp->boost_tasks = rnp->gp_tasks;
1136 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1137 t = rnp->boost_kthread_task;
1138 if (t)
1139 rcu_wake_cond(t, rnp->boost_kthread_status);
1140 } else {
1141 rcu_initiate_boost_trace(rnp);
1142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1143 }
1144 }
1145
1146 /*
1147 * Wake up the per-CPU kthread to invoke RCU callbacks.
1148 */
1149 static void invoke_rcu_callbacks_kthread(void)
1150 {
1151 unsigned long flags;
1152
1153 local_irq_save(flags);
1154 __this_cpu_write(rcu_cpu_has_work, 1);
1155 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1156 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1157 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1158 __this_cpu_read(rcu_cpu_kthread_status));
1159 }
1160 local_irq_restore(flags);
1161 }
1162
1163 /*
1164 * Is the current CPU running the RCU-callbacks kthread?
1165 * Caller must have preemption disabled.
1166 */
1167 static bool rcu_is_callbacks_kthread(void)
1168 {
1169 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1170 }
1171
1172 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1173
1174 /*
1175 * Do priority-boost accounting for the start of a new grace period.
1176 */
1177 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1178 {
1179 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1180 }
1181
1182 /*
1183 * Create an RCU-boost kthread for the specified node if one does not
1184 * already exist. We only create this kthread for preemptible RCU.
1185 * Returns zero if all is well, a negated errno otherwise.
1186 */
1187 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1188 struct rcu_node *rnp)
1189 {
1190 int rnp_index = rnp - &rsp->node[0];
1191 unsigned long flags;
1192 struct sched_param sp;
1193 struct task_struct *t;
1194
1195 if (rcu_state_p != rsp)
1196 return 0;
1197
1198 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1199 return 0;
1200
1201 rsp->boost = 1;
1202 if (rnp->boost_kthread_task != NULL)
1203 return 0;
1204 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1205 "rcub/%d", rnp_index);
1206 if (IS_ERR(t))
1207 return PTR_ERR(t);
1208 raw_spin_lock_irqsave(&rnp->lock, flags);
1209 smp_mb__after_unlock_lock();
1210 rnp->boost_kthread_task = t;
1211 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1212 sp.sched_priority = kthread_prio;
1213 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1214 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1215 return 0;
1216 }
1217
1218 static void rcu_kthread_do_work(void)
1219 {
1220 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1221 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1222 rcu_preempt_do_callbacks();
1223 }
1224
1225 static void rcu_cpu_kthread_setup(unsigned int cpu)
1226 {
1227 struct sched_param sp;
1228
1229 sp.sched_priority = kthread_prio;
1230 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1231 }
1232
1233 static void rcu_cpu_kthread_park(unsigned int cpu)
1234 {
1235 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1236 }
1237
1238 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1239 {
1240 return __this_cpu_read(rcu_cpu_has_work);
1241 }
1242
1243 /*
1244 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1245 * RCU softirq used in flavors and configurations of RCU that do not
1246 * support RCU priority boosting.
1247 */
1248 static void rcu_cpu_kthread(unsigned int cpu)
1249 {
1250 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1251 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1252 int spincnt;
1253
1254 for (spincnt = 0; spincnt < 10; spincnt++) {
1255 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1256 local_bh_disable();
1257 *statusp = RCU_KTHREAD_RUNNING;
1258 this_cpu_inc(rcu_cpu_kthread_loops);
1259 local_irq_disable();
1260 work = *workp;
1261 *workp = 0;
1262 local_irq_enable();
1263 if (work)
1264 rcu_kthread_do_work();
1265 local_bh_enable();
1266 if (*workp == 0) {
1267 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1268 *statusp = RCU_KTHREAD_WAITING;
1269 return;
1270 }
1271 }
1272 *statusp = RCU_KTHREAD_YIELDING;
1273 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1274 schedule_timeout_interruptible(2);
1275 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1276 *statusp = RCU_KTHREAD_WAITING;
1277 }
1278
1279 /*
1280 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1281 * served by the rcu_node in question. The CPU hotplug lock is still
1282 * held, so the value of rnp->qsmaskinit will be stable.
1283 *
1284 * We don't include outgoingcpu in the affinity set, use -1 if there is
1285 * no outgoing CPU. If there are no CPUs left in the affinity set,
1286 * this function allows the kthread to execute on any CPU.
1287 */
1288 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1289 {
1290 struct task_struct *t = rnp->boost_kthread_task;
1291 unsigned long mask = rcu_rnp_online_cpus(rnp);
1292 cpumask_var_t cm;
1293 int cpu;
1294
1295 if (!t)
1296 return;
1297 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1298 return;
1299 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1300 if ((mask & 0x1) && cpu != outgoingcpu)
1301 cpumask_set_cpu(cpu, cm);
1302 if (cpumask_weight(cm) == 0)
1303 cpumask_setall(cm);
1304 set_cpus_allowed_ptr(t, cm);
1305 free_cpumask_var(cm);
1306 }
1307
1308 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1309 .store = &rcu_cpu_kthread_task,
1310 .thread_should_run = rcu_cpu_kthread_should_run,
1311 .thread_fn = rcu_cpu_kthread,
1312 .thread_comm = "rcuc/%u",
1313 .setup = rcu_cpu_kthread_setup,
1314 .park = rcu_cpu_kthread_park,
1315 };
1316
1317 /*
1318 * Spawn boost kthreads -- called as soon as the scheduler is running.
1319 */
1320 static void __init rcu_spawn_boost_kthreads(void)
1321 {
1322 struct rcu_node *rnp;
1323 int cpu;
1324
1325 for_each_possible_cpu(cpu)
1326 per_cpu(rcu_cpu_has_work, cpu) = 0;
1327 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1328 rcu_for_each_leaf_node(rcu_state_p, rnp)
1329 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1330 }
1331
1332 static void rcu_prepare_kthreads(int cpu)
1333 {
1334 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1335 struct rcu_node *rnp = rdp->mynode;
1336
1337 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1338 if (rcu_scheduler_fully_active)
1339 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1340 }
1341
1342 #else /* #ifdef CONFIG_RCU_BOOST */
1343
1344 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1345 __releases(rnp->lock)
1346 {
1347 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1348 }
1349
1350 static void invoke_rcu_callbacks_kthread(void)
1351 {
1352 WARN_ON_ONCE(1);
1353 }
1354
1355 static bool rcu_is_callbacks_kthread(void)
1356 {
1357 return false;
1358 }
1359
1360 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1361 {
1362 }
1363
1364 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1365 {
1366 }
1367
1368 static void __init rcu_spawn_boost_kthreads(void)
1369 {
1370 }
1371
1372 static void rcu_prepare_kthreads(int cpu)
1373 {
1374 }
1375
1376 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1377
1378 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1379
1380 /*
1381 * Check to see if any future RCU-related work will need to be done
1382 * by the current CPU, even if none need be done immediately, returning
1383 * 1 if so. This function is part of the RCU implementation; it is -not-
1384 * an exported member of the RCU API.
1385 *
1386 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1387 * any flavor of RCU.
1388 */
1389 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1390 {
1391 *nextevt = KTIME_MAX;
1392 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1393 ? 0 : rcu_cpu_has_callbacks(NULL);
1394 }
1395
1396 /*
1397 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1398 * after it.
1399 */
1400 static void rcu_cleanup_after_idle(void)
1401 {
1402 }
1403
1404 /*
1405 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1406 * is nothing.
1407 */
1408 static void rcu_prepare_for_idle(void)
1409 {
1410 }
1411
1412 /*
1413 * Don't bother keeping a running count of the number of RCU callbacks
1414 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1415 */
1416 static void rcu_idle_count_callbacks_posted(void)
1417 {
1418 }
1419
1420 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1421
1422 /*
1423 * This code is invoked when a CPU goes idle, at which point we want
1424 * to have the CPU do everything required for RCU so that it can enter
1425 * the energy-efficient dyntick-idle mode. This is handled by a
1426 * state machine implemented by rcu_prepare_for_idle() below.
1427 *
1428 * The following three proprocessor symbols control this state machine:
1429 *
1430 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1431 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1432 * is sized to be roughly one RCU grace period. Those energy-efficiency
1433 * benchmarkers who might otherwise be tempted to set this to a large
1434 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1435 * system. And if you are -that- concerned about energy efficiency,
1436 * just power the system down and be done with it!
1437 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1438 * permitted to sleep in dyntick-idle mode with only lazy RCU
1439 * callbacks pending. Setting this too high can OOM your system.
1440 *
1441 * The values below work well in practice. If future workloads require
1442 * adjustment, they can be converted into kernel config parameters, though
1443 * making the state machine smarter might be a better option.
1444 */
1445 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1446 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1447
1448 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1449 module_param(rcu_idle_gp_delay, int, 0644);
1450 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1451 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1452
1453 /*
1454 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1455 * only if it has been awhile since the last time we did so. Afterwards,
1456 * if there are any callbacks ready for immediate invocation, return true.
1457 */
1458 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1459 {
1460 bool cbs_ready = false;
1461 struct rcu_data *rdp;
1462 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1463 struct rcu_node *rnp;
1464 struct rcu_state *rsp;
1465
1466 /* Exit early if we advanced recently. */
1467 if (jiffies == rdtp->last_advance_all)
1468 return false;
1469 rdtp->last_advance_all = jiffies;
1470
1471 for_each_rcu_flavor(rsp) {
1472 rdp = this_cpu_ptr(rsp->rda);
1473 rnp = rdp->mynode;
1474
1475 /*
1476 * Don't bother checking unless a grace period has
1477 * completed since we last checked and there are
1478 * callbacks not yet ready to invoke.
1479 */
1480 if ((rdp->completed != rnp->completed ||
1481 unlikely(READ_ONCE(rdp->gpwrap))) &&
1482 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1483 note_gp_changes(rsp, rdp);
1484
1485 if (cpu_has_callbacks_ready_to_invoke(rdp))
1486 cbs_ready = true;
1487 }
1488 return cbs_ready;
1489 }
1490
1491 /*
1492 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1493 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1494 * caller to set the timeout based on whether or not there are non-lazy
1495 * callbacks.
1496 *
1497 * The caller must have disabled interrupts.
1498 */
1499 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1500 {
1501 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1502 unsigned long dj;
1503
1504 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1505 *nextevt = KTIME_MAX;
1506 return 0;
1507 }
1508
1509 /* Snapshot to detect later posting of non-lazy callback. */
1510 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1511
1512 /* If no callbacks, RCU doesn't need the CPU. */
1513 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1514 *nextevt = KTIME_MAX;
1515 return 0;
1516 }
1517
1518 /* Attempt to advance callbacks. */
1519 if (rcu_try_advance_all_cbs()) {
1520 /* Some ready to invoke, so initiate later invocation. */
1521 invoke_rcu_core();
1522 return 1;
1523 }
1524 rdtp->last_accelerate = jiffies;
1525
1526 /* Request timer delay depending on laziness, and round. */
1527 if (!rdtp->all_lazy) {
1528 dj = round_up(rcu_idle_gp_delay + jiffies,
1529 rcu_idle_gp_delay) - jiffies;
1530 } else {
1531 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1532 }
1533 *nextevt = basemono + dj * TICK_NSEC;
1534 return 0;
1535 }
1536
1537 /*
1538 * Prepare a CPU for idle from an RCU perspective. The first major task
1539 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1540 * The second major task is to check to see if a non-lazy callback has
1541 * arrived at a CPU that previously had only lazy callbacks. The third
1542 * major task is to accelerate (that is, assign grace-period numbers to)
1543 * any recently arrived callbacks.
1544 *
1545 * The caller must have disabled interrupts.
1546 */
1547 static void rcu_prepare_for_idle(void)
1548 {
1549 bool needwake;
1550 struct rcu_data *rdp;
1551 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1552 struct rcu_node *rnp;
1553 struct rcu_state *rsp;
1554 int tne;
1555
1556 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1557 return;
1558
1559 /* Handle nohz enablement switches conservatively. */
1560 tne = READ_ONCE(tick_nohz_active);
1561 if (tne != rdtp->tick_nohz_enabled_snap) {
1562 if (rcu_cpu_has_callbacks(NULL))
1563 invoke_rcu_core(); /* force nohz to see update. */
1564 rdtp->tick_nohz_enabled_snap = tne;
1565 return;
1566 }
1567 if (!tne)
1568 return;
1569
1570 /* If this is a no-CBs CPU, no callbacks, just return. */
1571 if (rcu_is_nocb_cpu(smp_processor_id()))
1572 return;
1573
1574 /*
1575 * If a non-lazy callback arrived at a CPU having only lazy
1576 * callbacks, invoke RCU core for the side-effect of recalculating
1577 * idle duration on re-entry to idle.
1578 */
1579 if (rdtp->all_lazy &&
1580 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1581 rdtp->all_lazy = false;
1582 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1583 invoke_rcu_core();
1584 return;
1585 }
1586
1587 /*
1588 * If we have not yet accelerated this jiffy, accelerate all
1589 * callbacks on this CPU.
1590 */
1591 if (rdtp->last_accelerate == jiffies)
1592 return;
1593 rdtp->last_accelerate = jiffies;
1594 for_each_rcu_flavor(rsp) {
1595 rdp = this_cpu_ptr(rsp->rda);
1596 if (!*rdp->nxttail[RCU_DONE_TAIL])
1597 continue;
1598 rnp = rdp->mynode;
1599 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1600 smp_mb__after_unlock_lock();
1601 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1602 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1603 if (needwake)
1604 rcu_gp_kthread_wake(rsp);
1605 }
1606 }
1607
1608 /*
1609 * Clean up for exit from idle. Attempt to advance callbacks based on
1610 * any grace periods that elapsed while the CPU was idle, and if any
1611 * callbacks are now ready to invoke, initiate invocation.
1612 */
1613 static void rcu_cleanup_after_idle(void)
1614 {
1615 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1616 rcu_is_nocb_cpu(smp_processor_id()))
1617 return;
1618 if (rcu_try_advance_all_cbs())
1619 invoke_rcu_core();
1620 }
1621
1622 /*
1623 * Keep a running count of the number of non-lazy callbacks posted
1624 * on this CPU. This running counter (which is never decremented) allows
1625 * rcu_prepare_for_idle() to detect when something out of the idle loop
1626 * posts a callback, even if an equal number of callbacks are invoked.
1627 * Of course, callbacks should only be posted from within a trace event
1628 * designed to be called from idle or from within RCU_NONIDLE().
1629 */
1630 static void rcu_idle_count_callbacks_posted(void)
1631 {
1632 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1633 }
1634
1635 /*
1636 * Data for flushing lazy RCU callbacks at OOM time.
1637 */
1638 static atomic_t oom_callback_count;
1639 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1640
1641 /*
1642 * RCU OOM callback -- decrement the outstanding count and deliver the
1643 * wake-up if we are the last one.
1644 */
1645 static void rcu_oom_callback(struct rcu_head *rhp)
1646 {
1647 if (atomic_dec_and_test(&oom_callback_count))
1648 wake_up(&oom_callback_wq);
1649 }
1650
1651 /*
1652 * Post an rcu_oom_notify callback on the current CPU if it has at
1653 * least one lazy callback. This will unnecessarily post callbacks
1654 * to CPUs that already have a non-lazy callback at the end of their
1655 * callback list, but this is an infrequent operation, so accept some
1656 * extra overhead to keep things simple.
1657 */
1658 static void rcu_oom_notify_cpu(void *unused)
1659 {
1660 struct rcu_state *rsp;
1661 struct rcu_data *rdp;
1662
1663 for_each_rcu_flavor(rsp) {
1664 rdp = raw_cpu_ptr(rsp->rda);
1665 if (rdp->qlen_lazy != 0) {
1666 atomic_inc(&oom_callback_count);
1667 rsp->call(&rdp->oom_head, rcu_oom_callback);
1668 }
1669 }
1670 }
1671
1672 /*
1673 * If low on memory, ensure that each CPU has a non-lazy callback.
1674 * This will wake up CPUs that have only lazy callbacks, in turn
1675 * ensuring that they free up the corresponding memory in a timely manner.
1676 * Because an uncertain amount of memory will be freed in some uncertain
1677 * timeframe, we do not claim to have freed anything.
1678 */
1679 static int rcu_oom_notify(struct notifier_block *self,
1680 unsigned long notused, void *nfreed)
1681 {
1682 int cpu;
1683
1684 /* Wait for callbacks from earlier instance to complete. */
1685 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1686 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1687
1688 /*
1689 * Prevent premature wakeup: ensure that all increments happen
1690 * before there is a chance of the counter reaching zero.
1691 */
1692 atomic_set(&oom_callback_count, 1);
1693
1694 for_each_online_cpu(cpu) {
1695 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1696 cond_resched_rcu_qs();
1697 }
1698
1699 /* Unconditionally decrement: no need to wake ourselves up. */
1700 atomic_dec(&oom_callback_count);
1701
1702 return NOTIFY_OK;
1703 }
1704
1705 static struct notifier_block rcu_oom_nb = {
1706 .notifier_call = rcu_oom_notify
1707 };
1708
1709 static int __init rcu_register_oom_notifier(void)
1710 {
1711 register_oom_notifier(&rcu_oom_nb);
1712 return 0;
1713 }
1714 early_initcall(rcu_register_oom_notifier);
1715
1716 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1717
1718 #ifdef CONFIG_RCU_FAST_NO_HZ
1719
1720 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1721 {
1722 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1723 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1724
1725 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1726 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1727 ulong2long(nlpd),
1728 rdtp->all_lazy ? 'L' : '.',
1729 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1730 }
1731
1732 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1733
1734 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1735 {
1736 *cp = '\0';
1737 }
1738
1739 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1740
1741 /* Initiate the stall-info list. */
1742 static void print_cpu_stall_info_begin(void)
1743 {
1744 pr_cont("\n");
1745 }
1746
1747 /*
1748 * Print out diagnostic information for the specified stalled CPU.
1749 *
1750 * If the specified CPU is aware of the current RCU grace period
1751 * (flavor specified by rsp), then print the number of scheduling
1752 * clock interrupts the CPU has taken during the time that it has
1753 * been aware. Otherwise, print the number of RCU grace periods
1754 * that this CPU is ignorant of, for example, "1" if the CPU was
1755 * aware of the previous grace period.
1756 *
1757 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1758 */
1759 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1760 {
1761 char fast_no_hz[72];
1762 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1763 struct rcu_dynticks *rdtp = rdp->dynticks;
1764 char *ticks_title;
1765 unsigned long ticks_value;
1766
1767 if (rsp->gpnum == rdp->gpnum) {
1768 ticks_title = "ticks this GP";
1769 ticks_value = rdp->ticks_this_gp;
1770 } else {
1771 ticks_title = "GPs behind";
1772 ticks_value = rsp->gpnum - rdp->gpnum;
1773 }
1774 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1775 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1776 cpu, ticks_value, ticks_title,
1777 atomic_read(&rdtp->dynticks) & 0xfff,
1778 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1779 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1780 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1781 fast_no_hz);
1782 }
1783
1784 /* Terminate the stall-info list. */
1785 static void print_cpu_stall_info_end(void)
1786 {
1787 pr_err("\t");
1788 }
1789
1790 /* Zero ->ticks_this_gp for all flavors of RCU. */
1791 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1792 {
1793 rdp->ticks_this_gp = 0;
1794 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1795 }
1796
1797 /* Increment ->ticks_this_gp for all flavors of RCU. */
1798 static void increment_cpu_stall_ticks(void)
1799 {
1800 struct rcu_state *rsp;
1801
1802 for_each_rcu_flavor(rsp)
1803 raw_cpu_inc(rsp->rda->ticks_this_gp);
1804 }
1805
1806 #ifdef CONFIG_RCU_NOCB_CPU
1807
1808 /*
1809 * Offload callback processing from the boot-time-specified set of CPUs
1810 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1811 * kthread created that pulls the callbacks from the corresponding CPU,
1812 * waits for a grace period to elapse, and invokes the callbacks.
1813 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1814 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1815 * has been specified, in which case each kthread actively polls its
1816 * CPU. (Which isn't so great for energy efficiency, but which does
1817 * reduce RCU's overhead on that CPU.)
1818 *
1819 * This is intended to be used in conjunction with Frederic Weisbecker's
1820 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1821 * running CPU-bound user-mode computations.
1822 *
1823 * Offloading of callback processing could also in theory be used as
1824 * an energy-efficiency measure because CPUs with no RCU callbacks
1825 * queued are more aggressive about entering dyntick-idle mode.
1826 */
1827
1828
1829 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1830 static int __init rcu_nocb_setup(char *str)
1831 {
1832 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1833 have_rcu_nocb_mask = true;
1834 cpulist_parse(str, rcu_nocb_mask);
1835 return 1;
1836 }
1837 __setup("rcu_nocbs=", rcu_nocb_setup);
1838
1839 static int __init parse_rcu_nocb_poll(char *arg)
1840 {
1841 rcu_nocb_poll = 1;
1842 return 0;
1843 }
1844 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1845
1846 /*
1847 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1848 * grace period.
1849 */
1850 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1851 {
1852 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1853 }
1854
1855 /*
1856 * Set the root rcu_node structure's ->need_future_gp field
1857 * based on the sum of those of all rcu_node structures. This does
1858 * double-count the root rcu_node structure's requests, but this
1859 * is necessary to handle the possibility of a rcu_nocb_kthread()
1860 * having awakened during the time that the rcu_node structures
1861 * were being updated for the end of the previous grace period.
1862 */
1863 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1864 {
1865 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1866 }
1867
1868 static void rcu_init_one_nocb(struct rcu_node *rnp)
1869 {
1870 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1871 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1872 }
1873
1874 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1875 /* Is the specified CPU a no-CBs CPU? */
1876 bool rcu_is_nocb_cpu(int cpu)
1877 {
1878 if (have_rcu_nocb_mask)
1879 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1880 return false;
1881 }
1882 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1883
1884 /*
1885 * Kick the leader kthread for this NOCB group.
1886 */
1887 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1888 {
1889 struct rcu_data *rdp_leader = rdp->nocb_leader;
1890
1891 if (!READ_ONCE(rdp_leader->nocb_kthread))
1892 return;
1893 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1894 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1895 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1896 wake_up(&rdp_leader->nocb_wq);
1897 }
1898 }
1899
1900 /*
1901 * Does the specified CPU need an RCU callback for the specified flavor
1902 * of rcu_barrier()?
1903 */
1904 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1905 {
1906 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1907 unsigned long ret;
1908 #ifdef CONFIG_PROVE_RCU
1909 struct rcu_head *rhp;
1910 #endif /* #ifdef CONFIG_PROVE_RCU */
1911
1912 /*
1913 * Check count of all no-CBs callbacks awaiting invocation.
1914 * There needs to be a barrier before this function is called,
1915 * but associated with a prior determination that no more
1916 * callbacks would be posted. In the worst case, the first
1917 * barrier in _rcu_barrier() suffices (but the caller cannot
1918 * necessarily rely on this, not a substitute for the caller
1919 * getting the concurrency design right!). There must also be
1920 * a barrier between the following load an posting of a callback
1921 * (if a callback is in fact needed). This is associated with an
1922 * atomic_inc() in the caller.
1923 */
1924 ret = atomic_long_read(&rdp->nocb_q_count);
1925
1926 #ifdef CONFIG_PROVE_RCU
1927 rhp = READ_ONCE(rdp->nocb_head);
1928 if (!rhp)
1929 rhp = READ_ONCE(rdp->nocb_gp_head);
1930 if (!rhp)
1931 rhp = READ_ONCE(rdp->nocb_follower_head);
1932
1933 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1934 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1935 rcu_scheduler_fully_active) {
1936 /* RCU callback enqueued before CPU first came online??? */
1937 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1938 cpu, rhp->func);
1939 WARN_ON_ONCE(1);
1940 }
1941 #endif /* #ifdef CONFIG_PROVE_RCU */
1942
1943 return !!ret;
1944 }
1945
1946 /*
1947 * Enqueue the specified string of rcu_head structures onto the specified
1948 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1949 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1950 * counts are supplied by rhcount and rhcount_lazy.
1951 *
1952 * If warranted, also wake up the kthread servicing this CPUs queues.
1953 */
1954 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1955 struct rcu_head *rhp,
1956 struct rcu_head **rhtp,
1957 int rhcount, int rhcount_lazy,
1958 unsigned long flags)
1959 {
1960 int len;
1961 struct rcu_head **old_rhpp;
1962 struct task_struct *t;
1963
1964 /* Enqueue the callback on the nocb list and update counts. */
1965 atomic_long_add(rhcount, &rdp->nocb_q_count);
1966 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1967 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1968 WRITE_ONCE(*old_rhpp, rhp);
1969 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1970 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1971
1972 /* If we are not being polled and there is a kthread, awaken it ... */
1973 t = READ_ONCE(rdp->nocb_kthread);
1974 if (rcu_nocb_poll || !t) {
1975 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1976 TPS("WakeNotPoll"));
1977 return;
1978 }
1979 len = atomic_long_read(&rdp->nocb_q_count);
1980 if (old_rhpp == &rdp->nocb_head) {
1981 if (!irqs_disabled_flags(flags)) {
1982 /* ... if queue was empty ... */
1983 wake_nocb_leader(rdp, false);
1984 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1985 TPS("WakeEmpty"));
1986 } else {
1987 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1988 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1989 TPS("WakeEmptyIsDeferred"));
1990 }
1991 rdp->qlen_last_fqs_check = 0;
1992 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1993 /* ... or if many callbacks queued. */
1994 if (!irqs_disabled_flags(flags)) {
1995 wake_nocb_leader(rdp, true);
1996 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1997 TPS("WakeOvf"));
1998 } else {
1999 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2000 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2001 TPS("WakeOvfIsDeferred"));
2002 }
2003 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2004 } else {
2005 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2006 }
2007 return;
2008 }
2009
2010 /*
2011 * This is a helper for __call_rcu(), which invokes this when the normal
2012 * callback queue is inoperable. If this is not a no-CBs CPU, this
2013 * function returns failure back to __call_rcu(), which can complain
2014 * appropriately.
2015 *
2016 * Otherwise, this function queues the callback where the corresponding
2017 * "rcuo" kthread can find it.
2018 */
2019 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2020 bool lazy, unsigned long flags)
2021 {
2022
2023 if (!rcu_is_nocb_cpu(rdp->cpu))
2024 return false;
2025 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2026 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2027 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2028 (unsigned long)rhp->func,
2029 -atomic_long_read(&rdp->nocb_q_count_lazy),
2030 -atomic_long_read(&rdp->nocb_q_count));
2031 else
2032 trace_rcu_callback(rdp->rsp->name, rhp,
2033 -atomic_long_read(&rdp->nocb_q_count_lazy),
2034 -atomic_long_read(&rdp->nocb_q_count));
2035
2036 /*
2037 * If called from an extended quiescent state with interrupts
2038 * disabled, invoke the RCU core in order to allow the idle-entry
2039 * deferred-wakeup check to function.
2040 */
2041 if (irqs_disabled_flags(flags) &&
2042 !rcu_is_watching() &&
2043 cpu_online(smp_processor_id()))
2044 invoke_rcu_core();
2045
2046 return true;
2047 }
2048
2049 /*
2050 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2051 * not a no-CBs CPU.
2052 */
2053 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2054 struct rcu_data *rdp,
2055 unsigned long flags)
2056 {
2057 long ql = rsp->qlen;
2058 long qll = rsp->qlen_lazy;
2059
2060 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2061 if (!rcu_is_nocb_cpu(smp_processor_id()))
2062 return false;
2063 rsp->qlen = 0;
2064 rsp->qlen_lazy = 0;
2065
2066 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2067 if (rsp->orphan_donelist != NULL) {
2068 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2069 rsp->orphan_donetail, ql, qll, flags);
2070 ql = qll = 0;
2071 rsp->orphan_donelist = NULL;
2072 rsp->orphan_donetail = &rsp->orphan_donelist;
2073 }
2074 if (rsp->orphan_nxtlist != NULL) {
2075 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2076 rsp->orphan_nxttail, ql, qll, flags);
2077 ql = qll = 0;
2078 rsp->orphan_nxtlist = NULL;
2079 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2080 }
2081 return true;
2082 }
2083
2084 /*
2085 * If necessary, kick off a new grace period, and either way wait
2086 * for a subsequent grace period to complete.
2087 */
2088 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2089 {
2090 unsigned long c;
2091 bool d;
2092 unsigned long flags;
2093 bool needwake;
2094 struct rcu_node *rnp = rdp->mynode;
2095
2096 raw_spin_lock_irqsave(&rnp->lock, flags);
2097 smp_mb__after_unlock_lock();
2098 needwake = rcu_start_future_gp(rnp, rdp, &c);
2099 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2100 if (needwake)
2101 rcu_gp_kthread_wake(rdp->rsp);
2102
2103 /*
2104 * Wait for the grace period. Do so interruptibly to avoid messing
2105 * up the load average.
2106 */
2107 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2108 for (;;) {
2109 wait_event_interruptible(
2110 rnp->nocb_gp_wq[c & 0x1],
2111 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2112 if (likely(d))
2113 break;
2114 WARN_ON(signal_pending(current));
2115 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2116 }
2117 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2118 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2119 }
2120
2121 /*
2122 * Leaders come here to wait for additional callbacks to show up.
2123 * This function does not return until callbacks appear.
2124 */
2125 static void nocb_leader_wait(struct rcu_data *my_rdp)
2126 {
2127 bool firsttime = true;
2128 bool gotcbs;
2129 struct rcu_data *rdp;
2130 struct rcu_head **tail;
2131
2132 wait_again:
2133
2134 /* Wait for callbacks to appear. */
2135 if (!rcu_nocb_poll) {
2136 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2137 wait_event_interruptible(my_rdp->nocb_wq,
2138 !READ_ONCE(my_rdp->nocb_leader_sleep));
2139 /* Memory barrier handled by smp_mb() calls below and repoll. */
2140 } else if (firsttime) {
2141 firsttime = false; /* Don't drown trace log with "Poll"! */
2142 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2143 }
2144
2145 /*
2146 * Each pass through the following loop checks a follower for CBs.
2147 * We are our own first follower. Any CBs found are moved to
2148 * nocb_gp_head, where they await a grace period.
2149 */
2150 gotcbs = false;
2151 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2152 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2153 if (!rdp->nocb_gp_head)
2154 continue; /* No CBs here, try next follower. */
2155
2156 /* Move callbacks to wait-for-GP list, which is empty. */
2157 WRITE_ONCE(rdp->nocb_head, NULL);
2158 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2159 gotcbs = true;
2160 }
2161
2162 /*
2163 * If there were no callbacks, sleep a bit, rescan after a
2164 * memory barrier, and go retry.
2165 */
2166 if (unlikely(!gotcbs)) {
2167 if (!rcu_nocb_poll)
2168 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2169 "WokeEmpty");
2170 WARN_ON(signal_pending(current));
2171 schedule_timeout_interruptible(1);
2172
2173 /* Rescan in case we were a victim of memory ordering. */
2174 my_rdp->nocb_leader_sleep = true;
2175 smp_mb(); /* Ensure _sleep true before scan. */
2176 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2177 if (READ_ONCE(rdp->nocb_head)) {
2178 /* Found CB, so short-circuit next wait. */
2179 my_rdp->nocb_leader_sleep = false;
2180 break;
2181 }
2182 goto wait_again;
2183 }
2184
2185 /* Wait for one grace period. */
2186 rcu_nocb_wait_gp(my_rdp);
2187
2188 /*
2189 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2190 * We set it now, but recheck for new callbacks while
2191 * traversing our follower list.
2192 */
2193 my_rdp->nocb_leader_sleep = true;
2194 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2195
2196 /* Each pass through the following loop wakes a follower, if needed. */
2197 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2198 if (READ_ONCE(rdp->nocb_head))
2199 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2200 if (!rdp->nocb_gp_head)
2201 continue; /* No CBs, so no need to wake follower. */
2202
2203 /* Append callbacks to follower's "done" list. */
2204 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2205 *tail = rdp->nocb_gp_head;
2206 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2207 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2208 /*
2209 * List was empty, wake up the follower.
2210 * Memory barriers supplied by atomic_long_add().
2211 */
2212 wake_up(&rdp->nocb_wq);
2213 }
2214 }
2215
2216 /* If we (the leader) don't have CBs, go wait some more. */
2217 if (!my_rdp->nocb_follower_head)
2218 goto wait_again;
2219 }
2220
2221 /*
2222 * Followers come here to wait for additional callbacks to show up.
2223 * This function does not return until callbacks appear.
2224 */
2225 static void nocb_follower_wait(struct rcu_data *rdp)
2226 {
2227 bool firsttime = true;
2228
2229 for (;;) {
2230 if (!rcu_nocb_poll) {
2231 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2232 "FollowerSleep");
2233 wait_event_interruptible(rdp->nocb_wq,
2234 READ_ONCE(rdp->nocb_follower_head));
2235 } else if (firsttime) {
2236 /* Don't drown trace log with "Poll"! */
2237 firsttime = false;
2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2239 }
2240 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2241 /* ^^^ Ensure CB invocation follows _head test. */
2242 return;
2243 }
2244 if (!rcu_nocb_poll)
2245 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2246 "WokeEmpty");
2247 WARN_ON(signal_pending(current));
2248 schedule_timeout_interruptible(1);
2249 }
2250 }
2251
2252 /*
2253 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2254 * callbacks queued by the corresponding no-CBs CPU, however, there is
2255 * an optional leader-follower relationship so that the grace-period
2256 * kthreads don't have to do quite so many wakeups.
2257 */
2258 static int rcu_nocb_kthread(void *arg)
2259 {
2260 int c, cl;
2261 struct rcu_head *list;
2262 struct rcu_head *next;
2263 struct rcu_head **tail;
2264 struct rcu_data *rdp = arg;
2265
2266 /* Each pass through this loop invokes one batch of callbacks */
2267 for (;;) {
2268 /* Wait for callbacks. */
2269 if (rdp->nocb_leader == rdp)
2270 nocb_leader_wait(rdp);
2271 else
2272 nocb_follower_wait(rdp);
2273
2274 /* Pull the ready-to-invoke callbacks onto local list. */
2275 list = READ_ONCE(rdp->nocb_follower_head);
2276 BUG_ON(!list);
2277 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2278 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2279 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2280
2281 /* Each pass through the following loop invokes a callback. */
2282 trace_rcu_batch_start(rdp->rsp->name,
2283 atomic_long_read(&rdp->nocb_q_count_lazy),
2284 atomic_long_read(&rdp->nocb_q_count), -1);
2285 c = cl = 0;
2286 while (list) {
2287 next = list->next;
2288 /* Wait for enqueuing to complete, if needed. */
2289 while (next == NULL && &list->next != tail) {
2290 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2291 TPS("WaitQueue"));
2292 schedule_timeout_interruptible(1);
2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2294 TPS("WokeQueue"));
2295 next = list->next;
2296 }
2297 debug_rcu_head_unqueue(list);
2298 local_bh_disable();
2299 if (__rcu_reclaim(rdp->rsp->name, list))
2300 cl++;
2301 c++;
2302 local_bh_enable();
2303 list = next;
2304 }
2305 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2306 smp_mb__before_atomic(); /* _add after CB invocation. */
2307 atomic_long_add(-c, &rdp->nocb_q_count);
2308 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2309 rdp->n_nocbs_invoked += c;
2310 }
2311 return 0;
2312 }
2313
2314 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2315 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2316 {
2317 return READ_ONCE(rdp->nocb_defer_wakeup);
2318 }
2319
2320 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2321 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2322 {
2323 int ndw;
2324
2325 if (!rcu_nocb_need_deferred_wakeup(rdp))
2326 return;
2327 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2328 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2329 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2330 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2331 }
2332
2333 void __init rcu_init_nohz(void)
2334 {
2335 int cpu;
2336 bool need_rcu_nocb_mask = true;
2337 struct rcu_state *rsp;
2338
2339 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2340 need_rcu_nocb_mask = false;
2341 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2342
2343 #if defined(CONFIG_NO_HZ_FULL)
2344 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2345 need_rcu_nocb_mask = true;
2346 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2347
2348 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2349 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2350 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2351 return;
2352 }
2353 have_rcu_nocb_mask = true;
2354 }
2355 if (!have_rcu_nocb_mask)
2356 return;
2357
2358 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2359 pr_info("\tOffload RCU callbacks from CPU 0\n");
2360 cpumask_set_cpu(0, rcu_nocb_mask);
2361 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2362 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2363 pr_info("\tOffload RCU callbacks from all CPUs\n");
2364 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2365 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2366 #if defined(CONFIG_NO_HZ_FULL)
2367 if (tick_nohz_full_running)
2368 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2369 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2370
2371 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2372 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2373 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2374 rcu_nocb_mask);
2375 }
2376 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2377 cpumask_pr_args(rcu_nocb_mask));
2378 if (rcu_nocb_poll)
2379 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2380
2381 for_each_rcu_flavor(rsp) {
2382 for_each_cpu(cpu, rcu_nocb_mask)
2383 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2384 rcu_organize_nocb_kthreads(rsp);
2385 }
2386 }
2387
2388 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2389 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2390 {
2391 rdp->nocb_tail = &rdp->nocb_head;
2392 init_waitqueue_head(&rdp->nocb_wq);
2393 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2394 }
2395
2396 /*
2397 * If the specified CPU is a no-CBs CPU that does not already have its
2398 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2399 * brought online out of order, this can require re-organizing the
2400 * leader-follower relationships.
2401 */
2402 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2403 {
2404 struct rcu_data *rdp;
2405 struct rcu_data *rdp_last;
2406 struct rcu_data *rdp_old_leader;
2407 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2408 struct task_struct *t;
2409
2410 /*
2411 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2412 * then nothing to do.
2413 */
2414 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2415 return;
2416
2417 /* If we didn't spawn the leader first, reorganize! */
2418 rdp_old_leader = rdp_spawn->nocb_leader;
2419 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2420 rdp_last = NULL;
2421 rdp = rdp_old_leader;
2422 do {
2423 rdp->nocb_leader = rdp_spawn;
2424 if (rdp_last && rdp != rdp_spawn)
2425 rdp_last->nocb_next_follower = rdp;
2426 if (rdp == rdp_spawn) {
2427 rdp = rdp->nocb_next_follower;
2428 } else {
2429 rdp_last = rdp;
2430 rdp = rdp->nocb_next_follower;
2431 rdp_last->nocb_next_follower = NULL;
2432 }
2433 } while (rdp);
2434 rdp_spawn->nocb_next_follower = rdp_old_leader;
2435 }
2436
2437 /* Spawn the kthread for this CPU and RCU flavor. */
2438 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2439 "rcuo%c/%d", rsp->abbr, cpu);
2440 BUG_ON(IS_ERR(t));
2441 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2442 }
2443
2444 /*
2445 * If the specified CPU is a no-CBs CPU that does not already have its
2446 * rcuo kthreads, spawn them.
2447 */
2448 static void rcu_spawn_all_nocb_kthreads(int cpu)
2449 {
2450 struct rcu_state *rsp;
2451
2452 if (rcu_scheduler_fully_active)
2453 for_each_rcu_flavor(rsp)
2454 rcu_spawn_one_nocb_kthread(rsp, cpu);
2455 }
2456
2457 /*
2458 * Once the scheduler is running, spawn rcuo kthreads for all online
2459 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2460 * non-boot CPUs come online -- if this changes, we will need to add
2461 * some mutual exclusion.
2462 */
2463 static void __init rcu_spawn_nocb_kthreads(void)
2464 {
2465 int cpu;
2466
2467 for_each_online_cpu(cpu)
2468 rcu_spawn_all_nocb_kthreads(cpu);
2469 }
2470
2471 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2472 static int rcu_nocb_leader_stride = -1;
2473 module_param(rcu_nocb_leader_stride, int, 0444);
2474
2475 /*
2476 * Initialize leader-follower relationships for all no-CBs CPU.
2477 */
2478 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2479 {
2480 int cpu;
2481 int ls = rcu_nocb_leader_stride;
2482 int nl = 0; /* Next leader. */
2483 struct rcu_data *rdp;
2484 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2485 struct rcu_data *rdp_prev = NULL;
2486
2487 if (!have_rcu_nocb_mask)
2488 return;
2489 if (ls == -1) {
2490 ls = int_sqrt(nr_cpu_ids);
2491 rcu_nocb_leader_stride = ls;
2492 }
2493
2494 /*
2495 * Each pass through this loop sets up one rcu_data structure and
2496 * spawns one rcu_nocb_kthread().
2497 */
2498 for_each_cpu(cpu, rcu_nocb_mask) {
2499 rdp = per_cpu_ptr(rsp->rda, cpu);
2500 if (rdp->cpu >= nl) {
2501 /* New leader, set up for followers & next leader. */
2502 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2503 rdp->nocb_leader = rdp;
2504 rdp_leader = rdp;
2505 } else {
2506 /* Another follower, link to previous leader. */
2507 rdp->nocb_leader = rdp_leader;
2508 rdp_prev->nocb_next_follower = rdp;
2509 }
2510 rdp_prev = rdp;
2511 }
2512 }
2513
2514 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2515 static bool init_nocb_callback_list(struct rcu_data *rdp)
2516 {
2517 if (!rcu_is_nocb_cpu(rdp->cpu))
2518 return false;
2519
2520 /* If there are early-boot callbacks, move them to nocb lists. */
2521 if (rdp->nxtlist) {
2522 rdp->nocb_head = rdp->nxtlist;
2523 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2524 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2525 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2526 rdp->nxtlist = NULL;
2527 rdp->qlen = 0;
2528 rdp->qlen_lazy = 0;
2529 }
2530 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2531 return true;
2532 }
2533
2534 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2535
2536 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2537 {
2538 WARN_ON_ONCE(1); /* Should be dead code. */
2539 return false;
2540 }
2541
2542 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2543 {
2544 }
2545
2546 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2547 {
2548 }
2549
2550 static void rcu_init_one_nocb(struct rcu_node *rnp)
2551 {
2552 }
2553
2554 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2555 bool lazy, unsigned long flags)
2556 {
2557 return false;
2558 }
2559
2560 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2561 struct rcu_data *rdp,
2562 unsigned long flags)
2563 {
2564 return false;
2565 }
2566
2567 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2568 {
2569 }
2570
2571 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2572 {
2573 return false;
2574 }
2575
2576 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2577 {
2578 }
2579
2580 static void rcu_spawn_all_nocb_kthreads(int cpu)
2581 {
2582 }
2583
2584 static void __init rcu_spawn_nocb_kthreads(void)
2585 {
2586 }
2587
2588 static bool init_nocb_callback_list(struct rcu_data *rdp)
2589 {
2590 return false;
2591 }
2592
2593 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2594
2595 /*
2596 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2597 * arbitrarily long period of time with the scheduling-clock tick turned
2598 * off. RCU will be paying attention to this CPU because it is in the
2599 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2600 * machine because the scheduling-clock tick has been disabled. Therefore,
2601 * if an adaptive-ticks CPU is failing to respond to the current grace
2602 * period and has not be idle from an RCU perspective, kick it.
2603 */
2604 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2605 {
2606 #ifdef CONFIG_NO_HZ_FULL
2607 if (tick_nohz_full_cpu(cpu))
2608 smp_send_reschedule(cpu);
2609 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2610 }
2611
2612
2613 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2614
2615 static int full_sysidle_state; /* Current system-idle state. */
2616 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2617 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2618 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2619 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2620 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2621
2622 /*
2623 * Invoked to note exit from irq or task transition to idle. Note that
2624 * usermode execution does -not- count as idle here! After all, we want
2625 * to detect full-system idle states, not RCU quiescent states and grace
2626 * periods. The caller must have disabled interrupts.
2627 */
2628 static void rcu_sysidle_enter(int irq)
2629 {
2630 unsigned long j;
2631 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2632
2633 /* If there are no nohz_full= CPUs, no need to track this. */
2634 if (!tick_nohz_full_enabled())
2635 return;
2636
2637 /* Adjust nesting, check for fully idle. */
2638 if (irq) {
2639 rdtp->dynticks_idle_nesting--;
2640 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2641 if (rdtp->dynticks_idle_nesting != 0)
2642 return; /* Still not fully idle. */
2643 } else {
2644 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2645 DYNTICK_TASK_NEST_VALUE) {
2646 rdtp->dynticks_idle_nesting = 0;
2647 } else {
2648 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2649 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2650 return; /* Still not fully idle. */
2651 }
2652 }
2653
2654 /* Record start of fully idle period. */
2655 j = jiffies;
2656 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2657 smp_mb__before_atomic();
2658 atomic_inc(&rdtp->dynticks_idle);
2659 smp_mb__after_atomic();
2660 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2661 }
2662
2663 /*
2664 * Unconditionally force exit from full system-idle state. This is
2665 * invoked when a normal CPU exits idle, but must be called separately
2666 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2667 * is that the timekeeping CPU is permitted to take scheduling-clock
2668 * interrupts while the system is in system-idle state, and of course
2669 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2670 * interrupt from any other type of interrupt.
2671 */
2672 void rcu_sysidle_force_exit(void)
2673 {
2674 int oldstate = READ_ONCE(full_sysidle_state);
2675 int newoldstate;
2676
2677 /*
2678 * Each pass through the following loop attempts to exit full
2679 * system-idle state. If contention proves to be a problem,
2680 * a trylock-based contention tree could be used here.
2681 */
2682 while (oldstate > RCU_SYSIDLE_SHORT) {
2683 newoldstate = cmpxchg(&full_sysidle_state,
2684 oldstate, RCU_SYSIDLE_NOT);
2685 if (oldstate == newoldstate &&
2686 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2687 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2688 return; /* We cleared it, done! */
2689 }
2690 oldstate = newoldstate;
2691 }
2692 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2693 }
2694
2695 /*
2696 * Invoked to note entry to irq or task transition from idle. Note that
2697 * usermode execution does -not- count as idle here! The caller must
2698 * have disabled interrupts.
2699 */
2700 static void rcu_sysidle_exit(int irq)
2701 {
2702 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2703
2704 /* If there are no nohz_full= CPUs, no need to track this. */
2705 if (!tick_nohz_full_enabled())
2706 return;
2707
2708 /* Adjust nesting, check for already non-idle. */
2709 if (irq) {
2710 rdtp->dynticks_idle_nesting++;
2711 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2712 if (rdtp->dynticks_idle_nesting != 1)
2713 return; /* Already non-idle. */
2714 } else {
2715 /*
2716 * Allow for irq misnesting. Yes, it really is possible
2717 * to enter an irq handler then never leave it, and maybe
2718 * also vice versa. Handle both possibilities.
2719 */
2720 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2721 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2722 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2723 return; /* Already non-idle. */
2724 } else {
2725 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2726 }
2727 }
2728
2729 /* Record end of idle period. */
2730 smp_mb__before_atomic();
2731 atomic_inc(&rdtp->dynticks_idle);
2732 smp_mb__after_atomic();
2733 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2734
2735 /*
2736 * If we are the timekeeping CPU, we are permitted to be non-idle
2737 * during a system-idle state. This must be the case, because
2738 * the timekeeping CPU has to take scheduling-clock interrupts
2739 * during the time that the system is transitioning to full
2740 * system-idle state. This means that the timekeeping CPU must
2741 * invoke rcu_sysidle_force_exit() directly if it does anything
2742 * more than take a scheduling-clock interrupt.
2743 */
2744 if (smp_processor_id() == tick_do_timer_cpu)
2745 return;
2746
2747 /* Update system-idle state: We are clearly no longer fully idle! */
2748 rcu_sysidle_force_exit();
2749 }
2750
2751 /*
2752 * Check to see if the current CPU is idle. Note that usermode execution
2753 * does not count as idle. The caller must have disabled interrupts,
2754 * and must be running on tick_do_timer_cpu.
2755 */
2756 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2757 unsigned long *maxj)
2758 {
2759 int cur;
2760 unsigned long j;
2761 struct rcu_dynticks *rdtp = rdp->dynticks;
2762
2763 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2764 if (!tick_nohz_full_enabled())
2765 return;
2766
2767 /*
2768 * If some other CPU has already reported non-idle, if this is
2769 * not the flavor of RCU that tracks sysidle state, or if this
2770 * is an offline or the timekeeping CPU, nothing to do.
2771 */
2772 if (!*isidle || rdp->rsp != rcu_state_p ||
2773 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2774 return;
2775 /* Verify affinity of current kthread. */
2776 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2777
2778 /* Pick up current idle and NMI-nesting counter and check. */
2779 cur = atomic_read(&rdtp->dynticks_idle);
2780 if (cur & 0x1) {
2781 *isidle = false; /* We are not idle! */
2782 return;
2783 }
2784 smp_mb(); /* Read counters before timestamps. */
2785
2786 /* Pick up timestamps. */
2787 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2788 /* If this CPU entered idle more recently, update maxj timestamp. */
2789 if (ULONG_CMP_LT(*maxj, j))
2790 *maxj = j;
2791 }
2792
2793 /*
2794 * Is this the flavor of RCU that is handling full-system idle?
2795 */
2796 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2797 {
2798 return rsp == rcu_state_p;
2799 }
2800
2801 /*
2802 * Return a delay in jiffies based on the number of CPUs, rcu_node
2803 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2804 * systems more time to transition to full-idle state in order to
2805 * avoid the cache thrashing that otherwise occur on the state variable.
2806 * Really small systems (less than a couple of tens of CPUs) should
2807 * instead use a single global atomically incremented counter, and later
2808 * versions of this will automatically reconfigure themselves accordingly.
2809 */
2810 static unsigned long rcu_sysidle_delay(void)
2811 {
2812 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2813 return 0;
2814 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2815 }
2816
2817 /*
2818 * Advance the full-system-idle state. This is invoked when all of
2819 * the non-timekeeping CPUs are idle.
2820 */
2821 static void rcu_sysidle(unsigned long j)
2822 {
2823 /* Check the current state. */
2824 switch (READ_ONCE(full_sysidle_state)) {
2825 case RCU_SYSIDLE_NOT:
2826
2827 /* First time all are idle, so note a short idle period. */
2828 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2829 break;
2830
2831 case RCU_SYSIDLE_SHORT:
2832
2833 /*
2834 * Idle for a bit, time to advance to next state?
2835 * cmpxchg failure means race with non-idle, let them win.
2836 */
2837 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2838 (void)cmpxchg(&full_sysidle_state,
2839 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2840 break;
2841
2842 case RCU_SYSIDLE_LONG:
2843
2844 /*
2845 * Do an additional check pass before advancing to full.
2846 * cmpxchg failure means race with non-idle, let them win.
2847 */
2848 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2849 (void)cmpxchg(&full_sysidle_state,
2850 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2851 break;
2852
2853 default:
2854 break;
2855 }
2856 }
2857
2858 /*
2859 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2860 * back to the beginning.
2861 */
2862 static void rcu_sysidle_cancel(void)
2863 {
2864 smp_mb();
2865 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2866 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2867 }
2868
2869 /*
2870 * Update the sysidle state based on the results of a force-quiescent-state
2871 * scan of the CPUs' dyntick-idle state.
2872 */
2873 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2874 unsigned long maxj, bool gpkt)
2875 {
2876 if (rsp != rcu_state_p)
2877 return; /* Wrong flavor, ignore. */
2878 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2879 return; /* Running state machine from timekeeping CPU. */
2880 if (isidle)
2881 rcu_sysidle(maxj); /* More idle! */
2882 else
2883 rcu_sysidle_cancel(); /* Idle is over. */
2884 }
2885
2886 /*
2887 * Wrapper for rcu_sysidle_report() when called from the grace-period
2888 * kthread's context.
2889 */
2890 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2891 unsigned long maxj)
2892 {
2893 /* If there are no nohz_full= CPUs, no need to track this. */
2894 if (!tick_nohz_full_enabled())
2895 return;
2896
2897 rcu_sysidle_report(rsp, isidle, maxj, true);
2898 }
2899
2900 /* Callback and function for forcing an RCU grace period. */
2901 struct rcu_sysidle_head {
2902 struct rcu_head rh;
2903 int inuse;
2904 };
2905
2906 static void rcu_sysidle_cb(struct rcu_head *rhp)
2907 {
2908 struct rcu_sysidle_head *rshp;
2909
2910 /*
2911 * The following memory barrier is needed to replace the
2912 * memory barriers that would normally be in the memory
2913 * allocator.
2914 */
2915 smp_mb(); /* grace period precedes setting inuse. */
2916
2917 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2918 WRITE_ONCE(rshp->inuse, 0);
2919 }
2920
2921 /*
2922 * Check to see if the system is fully idle, other than the timekeeping CPU.
2923 * The caller must have disabled interrupts. This is not intended to be
2924 * called unless tick_nohz_full_enabled().
2925 */
2926 bool rcu_sys_is_idle(void)
2927 {
2928 static struct rcu_sysidle_head rsh;
2929 int rss = READ_ONCE(full_sysidle_state);
2930
2931 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2932 return false;
2933
2934 /* Handle small-system case by doing a full scan of CPUs. */
2935 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2936 int oldrss = rss - 1;
2937
2938 /*
2939 * One pass to advance to each state up to _FULL.
2940 * Give up if any pass fails to advance the state.
2941 */
2942 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2943 int cpu;
2944 bool isidle = true;
2945 unsigned long maxj = jiffies - ULONG_MAX / 4;
2946 struct rcu_data *rdp;
2947
2948 /* Scan all the CPUs looking for nonidle CPUs. */
2949 for_each_possible_cpu(cpu) {
2950 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2951 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2952 if (!isidle)
2953 break;
2954 }
2955 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2956 oldrss = rss;
2957 rss = READ_ONCE(full_sysidle_state);
2958 }
2959 }
2960
2961 /* If this is the first observation of an idle period, record it. */
2962 if (rss == RCU_SYSIDLE_FULL) {
2963 rss = cmpxchg(&full_sysidle_state,
2964 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2965 return rss == RCU_SYSIDLE_FULL;
2966 }
2967
2968 smp_mb(); /* ensure rss load happens before later caller actions. */
2969
2970 /* If already fully idle, tell the caller (in case of races). */
2971 if (rss == RCU_SYSIDLE_FULL_NOTED)
2972 return true;
2973
2974 /*
2975 * If we aren't there yet, and a grace period is not in flight,
2976 * initiate a grace period. Either way, tell the caller that
2977 * we are not there yet. We use an xchg() rather than an assignment
2978 * to make up for the memory barriers that would otherwise be
2979 * provided by the memory allocator.
2980 */
2981 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2982 !rcu_gp_in_progress(rcu_state_p) &&
2983 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2984 call_rcu(&rsh.rh, rcu_sysidle_cb);
2985 return false;
2986 }
2987
2988 /*
2989 * Initialize dynticks sysidle state for CPUs coming online.
2990 */
2991 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2992 {
2993 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2994 }
2995
2996 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2997
2998 static void rcu_sysidle_enter(int irq)
2999 {
3000 }
3001
3002 static void rcu_sysidle_exit(int irq)
3003 {
3004 }
3005
3006 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3007 unsigned long *maxj)
3008 {
3009 }
3010
3011 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3012 {
3013 return false;
3014 }
3015
3016 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3017 unsigned long maxj)
3018 {
3019 }
3020
3021 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3022 {
3023 }
3024
3025 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3026
3027 /*
3028 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3029 * grace-period kthread will do force_quiescent_state() processing?
3030 * The idea is to avoid waking up RCU core processing on such a
3031 * CPU unless the grace period has extended for too long.
3032 *
3033 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3034 * CONFIG_RCU_NOCB_CPU CPUs.
3035 */
3036 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3037 {
3038 #ifdef CONFIG_NO_HZ_FULL
3039 if (tick_nohz_full_cpu(smp_processor_id()) &&
3040 (!rcu_gp_in_progress(rsp) ||
3041 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3042 return true;
3043 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3044 return false;
3045 }
3046
3047 /*
3048 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3049 * timekeeping CPU.
3050 */
3051 static void rcu_bind_gp_kthread(void)
3052 {
3053 int __maybe_unused cpu;
3054
3055 if (!tick_nohz_full_enabled())
3056 return;
3057 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3058 cpu = tick_do_timer_cpu;
3059 if (cpu >= 0 && cpu < nr_cpu_ids)
3060 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3061 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3062 housekeeping_affine(current);
3063 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3064 }
3065
3066 /* Record the current task on dyntick-idle entry. */
3067 static void rcu_dynticks_task_enter(void)
3068 {
3069 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3070 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3071 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3072 }
3073
3074 /* Record no current task on dyntick-idle exit. */
3075 static void rcu_dynticks_task_exit(void)
3076 {
3077 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3078 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3079 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3080 }