]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge tag 'media/v4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35
36 #ifdef CONFIG_RCU_BOOST
37
38 #include "../locking/rtmutex_common.h"
39
40 /*
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
43 */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
49 #else /* #ifdef CONFIG_RCU_BOOST */
50
51 /*
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
56 */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66
67 /*
68 * Check the RCU kernel configuration parameters and print informative
69 * messages about anything out of the ordinary.
70 */
71 static void __init rcu_bootup_announce_oddness(void)
72 {
73 if (IS_ENABLED(CONFIG_RCU_TRACE))
74 pr_info("\tRCU event tracing is enabled.\n");
75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78 RCU_FANOUT);
79 if (rcu_fanout_exact)
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 if (IS_ENABLED(CONFIG_PROVE_RCU))
84 pr_info("\tRCU lockdep checking is enabled.\n");
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF != 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 if (nr_cpu_ids != NR_CPUS)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96 #endif
97 if (blimit != DEFAULT_RCU_BLIMIT)
98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99 if (qhimark != DEFAULT_RCU_QHIMARK)
100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101 if (qlowmark != DEFAULT_RCU_QLOMARK)
102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103 if (jiffies_till_first_fqs != ULONG_MAX)
104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105 if (jiffies_till_next_fqs != ULONG_MAX)
106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107 if (rcu_kick_kthreads)
108 pr_info("\tKick kthreads if too-long grace period.\n");
109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111 if (gp_preinit_delay)
112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113 if (gp_init_delay)
114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115 if (gp_cleanup_delay)
116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118 pr_info("\tRCU debug extended QS entry/exit.\n");
119 rcupdate_announce_bootup_oddness();
120 }
121
122 #ifdef CONFIG_PREEMPT_RCU
123
124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
127
128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129 bool wake);
130
131 /*
132 * Tell them what RCU they are running.
133 */
134 static void __init rcu_bootup_announce(void)
135 {
136 pr_info("Preemptible hierarchical RCU implementation.\n");
137 rcu_bootup_announce_oddness();
138 }
139
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS 0x8
142 #define RCU_EXP_TASKS 0x4
143 #define RCU_GP_BLKD 0x2
144 #define RCU_EXP_BLKD 0x1
145
146 /*
147 * Queues a task preempted within an RCU-preempt read-side critical
148 * section into the appropriate location within the ->blkd_tasks list,
149 * depending on the states of any ongoing normal and expedited grace
150 * periods. The ->gp_tasks pointer indicates which element the normal
151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152 * indicates which element the expedited grace period is waiting on (again,
153 * NULL if none). If a grace period is waiting on a given element in the
154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
155 * adding a task to the tail of the list blocks any grace period that is
156 * already waiting on one of the elements. In contrast, adding a task
157 * to the head of the list won't block any grace period that is already
158 * waiting on one of the elements.
159 *
160 * This queuing is imprecise, and can sometimes make an ongoing grace
161 * period wait for a task that is not strictly speaking blocking it.
162 * Given the choice, we needlessly block a normal grace period rather than
163 * blocking an expedited grace period.
164 *
165 * Note that an endless sequence of expedited grace periods still cannot
166 * indefinitely postpone a normal grace period. Eventually, all of the
167 * fixed number of preempted tasks blocking the normal grace period that are
168 * not also blocking the expedited grace period will resume and complete
169 * their RCU read-side critical sections. At that point, the ->gp_tasks
170 * pointer will equal the ->exp_tasks pointer, at which point the end of
171 * the corresponding expedited grace period will also be the end of the
172 * normal grace period.
173 */
174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175 __releases(rnp->lock) /* But leaves rrupts disabled. */
176 {
177 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181 struct task_struct *t = current;
182
183 raw_lockdep_assert_held_rcu_node(rnp);
184 WARN_ON_ONCE(rdp->mynode != rnp);
185 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
186
187 /*
188 * Decide where to queue the newly blocked task. In theory,
189 * this could be an if-statement. In practice, when I tried
190 * that, it was quite messy.
191 */
192 switch (blkd_state) {
193 case 0:
194 case RCU_EXP_TASKS:
195 case RCU_EXP_TASKS + RCU_GP_BLKD:
196 case RCU_GP_TASKS:
197 case RCU_GP_TASKS + RCU_EXP_TASKS:
198
199 /*
200 * Blocking neither GP, or first task blocking the normal
201 * GP but not blocking the already-waiting expedited GP.
202 * Queue at the head of the list to avoid unnecessarily
203 * blocking the already-waiting GPs.
204 */
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 break;
207
208 case RCU_EXP_BLKD:
209 case RCU_GP_BLKD:
210 case RCU_GP_BLKD + RCU_EXP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_BLKD:
212 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
213 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214
215 /*
216 * First task arriving that blocks either GP, or first task
217 * arriving that blocks the expedited GP (with the normal
218 * GP already waiting), or a task arriving that blocks
219 * both GPs with both GPs already waiting. Queue at the
220 * tail of the list to avoid any GP waiting on any of the
221 * already queued tasks that are not blocking it.
222 */
223 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224 break;
225
226 case RCU_EXP_TASKS + RCU_EXP_BLKD:
227 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
229
230 /*
231 * Second or subsequent task blocking the expedited GP.
232 * The task either does not block the normal GP, or is the
233 * first task blocking the normal GP. Queue just after
234 * the first task blocking the expedited GP.
235 */
236 list_add(&t->rcu_node_entry, rnp->exp_tasks);
237 break;
238
239 case RCU_GP_TASKS + RCU_GP_BLKD:
240 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
241
242 /*
243 * Second or subsequent task blocking the normal GP.
244 * The task does not block the expedited GP. Queue just
245 * after the first task blocking the normal GP.
246 */
247 list_add(&t->rcu_node_entry, rnp->gp_tasks);
248 break;
249
250 default:
251
252 /* Yet another exercise in excessive paranoia. */
253 WARN_ON_ONCE(1);
254 break;
255 }
256
257 /*
258 * We have now queued the task. If it was the first one to
259 * block either grace period, update the ->gp_tasks and/or
260 * ->exp_tasks pointers, respectively, to reference the newly
261 * blocked tasks.
262 */
263 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
264 rnp->gp_tasks = &t->rcu_node_entry;
265 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
266 rnp->exp_tasks = &t->rcu_node_entry;
267 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
268 !(rnp->qsmask & rdp->grpmask));
269 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
270 !(rnp->expmask & rdp->grpmask));
271 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
272
273 /*
274 * Report the quiescent state for the expedited GP. This expedited
275 * GP should not be able to end until we report, so there should be
276 * no need to check for a subsequent expedited GP. (Though we are
277 * still in a quiescent state in any case.)
278 */
279 if (blkd_state & RCU_EXP_BLKD &&
280 t->rcu_read_unlock_special.b.exp_need_qs) {
281 t->rcu_read_unlock_special.b.exp_need_qs = false;
282 rcu_report_exp_rdp(rdp->rsp, rdp, true);
283 } else {
284 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
285 }
286 }
287
288 /*
289 * Record a preemptible-RCU quiescent state for the specified CPU. Note
290 * that this just means that the task currently running on the CPU is
291 * not in a quiescent state. There might be any number of tasks blocked
292 * while in an RCU read-side critical section.
293 *
294 * As with the other rcu_*_qs() functions, callers to this function
295 * must disable preemption.
296 */
297 static void rcu_preempt_qs(void)
298 {
299 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301 trace_rcu_grace_period(TPS("rcu_preempt"),
302 __this_cpu_read(rcu_data_p->gpnum),
303 TPS("cpuqs"));
304 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306 current->rcu_read_unlock_special.b.need_qs = false;
307 }
308 }
309
310 /*
311 * We have entered the scheduler, and the current task might soon be
312 * context-switched away from. If this task is in an RCU read-side
313 * critical section, we will no longer be able to rely on the CPU to
314 * record that fact, so we enqueue the task on the blkd_tasks list.
315 * The task will dequeue itself when it exits the outermost enclosing
316 * RCU read-side critical section. Therefore, the current grace period
317 * cannot be permitted to complete until the blkd_tasks list entries
318 * predating the current grace period drain, in other words, until
319 * rnp->gp_tasks becomes NULL.
320 *
321 * Caller must disable interrupts.
322 */
323 static void rcu_preempt_note_context_switch(bool preempt)
324 {
325 struct task_struct *t = current;
326 struct rcu_data *rdp;
327 struct rcu_node *rnp;
328
329 lockdep_assert_irqs_disabled();
330 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331 if (t->rcu_read_lock_nesting > 0 &&
332 !t->rcu_read_unlock_special.b.blocked) {
333
334 /* Possibly blocking in an RCU read-side critical section. */
335 rdp = this_cpu_ptr(rcu_state_p->rda);
336 rnp = rdp->mynode;
337 raw_spin_lock_rcu_node(rnp);
338 t->rcu_read_unlock_special.b.blocked = true;
339 t->rcu_blocked_node = rnp;
340
341 /*
342 * Verify the CPU's sanity, trace the preemption, and
343 * then queue the task as required based on the states
344 * of any ongoing and expedited grace periods.
345 */
346 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 trace_rcu_preempt_task(rdp->rsp->name,
349 t->pid,
350 (rnp->qsmask & rdp->grpmask)
351 ? rnp->gpnum
352 : rnp->gpnum + 1);
353 rcu_preempt_ctxt_queue(rnp, rdp);
354 } else if (t->rcu_read_lock_nesting < 0 &&
355 t->rcu_read_unlock_special.s) {
356
357 /*
358 * Complete exit from RCU read-side critical section on
359 * behalf of preempted instance of __rcu_read_unlock().
360 */
361 rcu_read_unlock_special(t);
362 }
363
364 /*
365 * Either we were not in an RCU read-side critical section to
366 * begin with, or we have now recorded that critical section
367 * globally. Either way, we can now note a quiescent state
368 * for this CPU. Again, if we were in an RCU read-side critical
369 * section, and if that critical section was blocking the current
370 * grace period, then the fact that the task has been enqueued
371 * means that we continue to block the current grace period.
372 */
373 rcu_preempt_qs();
374 }
375
376 /*
377 * Check for preempted RCU readers blocking the current grace period
378 * for the specified rcu_node structure. If the caller needs a reliable
379 * answer, it must hold the rcu_node's ->lock.
380 */
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
382 {
383 return rnp->gp_tasks != NULL;
384 }
385
386 /*
387 * Preemptible RCU implementation for rcu_read_lock().
388 * Just increment ->rcu_read_lock_nesting, shared state will be updated
389 * if we block.
390 */
391 void __rcu_read_lock(void)
392 {
393 current->rcu_read_lock_nesting++;
394 barrier(); /* critical section after entry code. */
395 }
396 EXPORT_SYMBOL_GPL(__rcu_read_lock);
397
398 /*
399 * Preemptible RCU implementation for rcu_read_unlock().
400 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
401 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
402 * invoke rcu_read_unlock_special() to clean up after a context switch
403 * in an RCU read-side critical section and other special cases.
404 */
405 void __rcu_read_unlock(void)
406 {
407 struct task_struct *t = current;
408
409 if (t->rcu_read_lock_nesting != 1) {
410 --t->rcu_read_lock_nesting;
411 } else {
412 barrier(); /* critical section before exit code. */
413 t->rcu_read_lock_nesting = INT_MIN;
414 barrier(); /* assign before ->rcu_read_unlock_special load */
415 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
416 rcu_read_unlock_special(t);
417 barrier(); /* ->rcu_read_unlock_special load before assign */
418 t->rcu_read_lock_nesting = 0;
419 }
420 #ifdef CONFIG_PROVE_LOCKING
421 {
422 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
423
424 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
425 }
426 #endif /* #ifdef CONFIG_PROVE_LOCKING */
427 }
428 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
429
430 /*
431 * Advance a ->blkd_tasks-list pointer to the next entry, instead
432 * returning NULL if at the end of the list.
433 */
434 static struct list_head *rcu_next_node_entry(struct task_struct *t,
435 struct rcu_node *rnp)
436 {
437 struct list_head *np;
438
439 np = t->rcu_node_entry.next;
440 if (np == &rnp->blkd_tasks)
441 np = NULL;
442 return np;
443 }
444
445 /*
446 * Return true if the specified rcu_node structure has tasks that were
447 * preempted within an RCU read-side critical section.
448 */
449 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
450 {
451 return !list_empty(&rnp->blkd_tasks);
452 }
453
454 /*
455 * Handle special cases during rcu_read_unlock(), such as needing to
456 * notify RCU core processing or task having blocked during the RCU
457 * read-side critical section.
458 */
459 void rcu_read_unlock_special(struct task_struct *t)
460 {
461 bool empty_exp;
462 bool empty_norm;
463 bool empty_exp_now;
464 unsigned long flags;
465 struct list_head *np;
466 bool drop_boost_mutex = false;
467 struct rcu_data *rdp;
468 struct rcu_node *rnp;
469 union rcu_special special;
470
471 /* NMI handlers cannot block and cannot safely manipulate state. */
472 if (in_nmi())
473 return;
474
475 local_irq_save(flags);
476
477 /*
478 * If RCU core is waiting for this CPU to exit its critical section,
479 * report the fact that it has exited. Because irqs are disabled,
480 * t->rcu_read_unlock_special cannot change.
481 */
482 special = t->rcu_read_unlock_special;
483 if (special.b.need_qs) {
484 rcu_preempt_qs();
485 t->rcu_read_unlock_special.b.need_qs = false;
486 if (!t->rcu_read_unlock_special.s) {
487 local_irq_restore(flags);
488 return;
489 }
490 }
491
492 /*
493 * Respond to a request for an expedited grace period, but only if
494 * we were not preempted, meaning that we were running on the same
495 * CPU throughout. If we were preempted, the exp_need_qs flag
496 * would have been cleared at the time of the first preemption,
497 * and the quiescent state would be reported when we were dequeued.
498 */
499 if (special.b.exp_need_qs) {
500 WARN_ON_ONCE(special.b.blocked);
501 t->rcu_read_unlock_special.b.exp_need_qs = false;
502 rdp = this_cpu_ptr(rcu_state_p->rda);
503 rcu_report_exp_rdp(rcu_state_p, rdp, true);
504 if (!t->rcu_read_unlock_special.s) {
505 local_irq_restore(flags);
506 return;
507 }
508 }
509
510 /* Hardware IRQ handlers cannot block, complain if they get here. */
511 if (in_irq() || in_serving_softirq()) {
512 lockdep_rcu_suspicious(__FILE__, __LINE__,
513 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
514 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
515 t->rcu_read_unlock_special.s,
516 t->rcu_read_unlock_special.b.blocked,
517 t->rcu_read_unlock_special.b.exp_need_qs,
518 t->rcu_read_unlock_special.b.need_qs);
519 local_irq_restore(flags);
520 return;
521 }
522
523 /* Clean up if blocked during RCU read-side critical section. */
524 if (special.b.blocked) {
525 t->rcu_read_unlock_special.b.blocked = false;
526
527 /*
528 * Remove this task from the list it blocked on. The task
529 * now remains queued on the rcu_node corresponding to the
530 * CPU it first blocked on, so there is no longer any need
531 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
532 */
533 rnp = t->rcu_blocked_node;
534 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
535 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
536 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
537 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
538 empty_exp = sync_rcu_preempt_exp_done(rnp);
539 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
540 np = rcu_next_node_entry(t, rnp);
541 list_del_init(&t->rcu_node_entry);
542 t->rcu_blocked_node = NULL;
543 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
544 rnp->gpnum, t->pid);
545 if (&t->rcu_node_entry == rnp->gp_tasks)
546 rnp->gp_tasks = np;
547 if (&t->rcu_node_entry == rnp->exp_tasks)
548 rnp->exp_tasks = np;
549 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
550 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
551 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
552 if (&t->rcu_node_entry == rnp->boost_tasks)
553 rnp->boost_tasks = np;
554 }
555
556 /*
557 * If this was the last task on the current list, and if
558 * we aren't waiting on any CPUs, report the quiescent state.
559 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
560 * so we must take a snapshot of the expedited state.
561 */
562 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
563 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
564 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
565 rnp->gpnum,
566 0, rnp->qsmask,
567 rnp->level,
568 rnp->grplo,
569 rnp->grphi,
570 !!rnp->gp_tasks);
571 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
572 } else {
573 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
574 }
575
576 /* Unboost if we were boosted. */
577 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
578 rt_mutex_futex_unlock(&rnp->boost_mtx);
579
580 /*
581 * If this was the last task on the expedited lists,
582 * then we need to report up the rcu_node hierarchy.
583 */
584 if (!empty_exp && empty_exp_now)
585 rcu_report_exp_rnp(rcu_state_p, rnp, true);
586 } else {
587 local_irq_restore(flags);
588 }
589 }
590
591 /*
592 * Dump detailed information for all tasks blocking the current RCU
593 * grace period on the specified rcu_node structure.
594 */
595 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
596 {
597 unsigned long flags;
598 struct task_struct *t;
599
600 raw_spin_lock_irqsave_rcu_node(rnp, flags);
601 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
602 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
603 return;
604 }
605 t = list_entry(rnp->gp_tasks->prev,
606 struct task_struct, rcu_node_entry);
607 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
608 /*
609 * We could be printing a lot while holding a spinlock.
610 * Avoid triggering hard lockup.
611 */
612 touch_nmi_watchdog();
613 sched_show_task(t);
614 }
615 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
616 }
617
618 /*
619 * Dump detailed information for all tasks blocking the current RCU
620 * grace period.
621 */
622 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
623 {
624 struct rcu_node *rnp = rcu_get_root(rsp);
625
626 rcu_print_detail_task_stall_rnp(rnp);
627 rcu_for_each_leaf_node(rsp, rnp)
628 rcu_print_detail_task_stall_rnp(rnp);
629 }
630
631 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
632 {
633 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
634 rnp->level, rnp->grplo, rnp->grphi);
635 }
636
637 static void rcu_print_task_stall_end(void)
638 {
639 pr_cont("\n");
640 }
641
642 /*
643 * Scan the current list of tasks blocked within RCU read-side critical
644 * sections, printing out the tid of each.
645 */
646 static int rcu_print_task_stall(struct rcu_node *rnp)
647 {
648 struct task_struct *t;
649 int ndetected = 0;
650
651 if (!rcu_preempt_blocked_readers_cgp(rnp))
652 return 0;
653 rcu_print_task_stall_begin(rnp);
654 t = list_entry(rnp->gp_tasks->prev,
655 struct task_struct, rcu_node_entry);
656 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
657 pr_cont(" P%d", t->pid);
658 ndetected++;
659 }
660 rcu_print_task_stall_end();
661 return ndetected;
662 }
663
664 /*
665 * Scan the current list of tasks blocked within RCU read-side critical
666 * sections, printing out the tid of each that is blocking the current
667 * expedited grace period.
668 */
669 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
670 {
671 struct task_struct *t;
672 int ndetected = 0;
673
674 if (!rnp->exp_tasks)
675 return 0;
676 t = list_entry(rnp->exp_tasks->prev,
677 struct task_struct, rcu_node_entry);
678 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
679 pr_cont(" P%d", t->pid);
680 ndetected++;
681 }
682 return ndetected;
683 }
684
685 /*
686 * Check that the list of blocked tasks for the newly completed grace
687 * period is in fact empty. It is a serious bug to complete a grace
688 * period that still has RCU readers blocked! This function must be
689 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
690 * must be held by the caller.
691 *
692 * Also, if there are blocked tasks on the list, they automatically
693 * block the newly created grace period, so set up ->gp_tasks accordingly.
694 */
695 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
696 {
697 struct task_struct *t;
698
699 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
700 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
701 if (rcu_preempt_has_tasks(rnp)) {
702 rnp->gp_tasks = rnp->blkd_tasks.next;
703 t = container_of(rnp->gp_tasks, struct task_struct,
704 rcu_node_entry);
705 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
706 rnp->gpnum, t->pid);
707 }
708 WARN_ON_ONCE(rnp->qsmask);
709 }
710
711 /*
712 * Check for a quiescent state from the current CPU. When a task blocks,
713 * the task is recorded in the corresponding CPU's rcu_node structure,
714 * which is checked elsewhere.
715 *
716 * Caller must disable hard irqs.
717 */
718 static void rcu_preempt_check_callbacks(void)
719 {
720 struct task_struct *t = current;
721
722 if (t->rcu_read_lock_nesting == 0) {
723 rcu_preempt_qs();
724 return;
725 }
726 if (t->rcu_read_lock_nesting > 0 &&
727 __this_cpu_read(rcu_data_p->core_needs_qs) &&
728 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
729 t->rcu_read_unlock_special.b.need_qs = true;
730 }
731
732 /**
733 * call_rcu() - Queue an RCU callback for invocation after a grace period.
734 * @head: structure to be used for queueing the RCU updates.
735 * @func: actual callback function to be invoked after the grace period
736 *
737 * The callback function will be invoked some time after a full grace
738 * period elapses, in other words after all pre-existing RCU read-side
739 * critical sections have completed. However, the callback function
740 * might well execute concurrently with RCU read-side critical sections
741 * that started after call_rcu() was invoked. RCU read-side critical
742 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
743 * and may be nested.
744 *
745 * Note that all CPUs must agree that the grace period extended beyond
746 * all pre-existing RCU read-side critical section. On systems with more
747 * than one CPU, this means that when "func()" is invoked, each CPU is
748 * guaranteed to have executed a full memory barrier since the end of its
749 * last RCU read-side critical section whose beginning preceded the call
750 * to call_rcu(). It also means that each CPU executing an RCU read-side
751 * critical section that continues beyond the start of "func()" must have
752 * executed a memory barrier after the call_rcu() but before the beginning
753 * of that RCU read-side critical section. Note that these guarantees
754 * include CPUs that are offline, idle, or executing in user mode, as
755 * well as CPUs that are executing in the kernel.
756 *
757 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
758 * resulting RCU callback function "func()", then both CPU A and CPU B are
759 * guaranteed to execute a full memory barrier during the time interval
760 * between the call to call_rcu() and the invocation of "func()" -- even
761 * if CPU A and CPU B are the same CPU (but again only if the system has
762 * more than one CPU).
763 */
764 void call_rcu(struct rcu_head *head, rcu_callback_t func)
765 {
766 __call_rcu(head, func, rcu_state_p, -1, 0);
767 }
768 EXPORT_SYMBOL_GPL(call_rcu);
769
770 /**
771 * synchronize_rcu - wait until a grace period has elapsed.
772 *
773 * Control will return to the caller some time after a full grace
774 * period has elapsed, in other words after all currently executing RCU
775 * read-side critical sections have completed. Note, however, that
776 * upon return from synchronize_rcu(), the caller might well be executing
777 * concurrently with new RCU read-side critical sections that began while
778 * synchronize_rcu() was waiting. RCU read-side critical sections are
779 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
780 *
781 * See the description of synchronize_sched() for more detailed
782 * information on memory-ordering guarantees. However, please note
783 * that -only- the memory-ordering guarantees apply. For example,
784 * synchronize_rcu() is -not- guaranteed to wait on things like code
785 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
786 * guaranteed to wait on RCU read-side critical sections, that is, sections
787 * of code protected by rcu_read_lock().
788 */
789 void synchronize_rcu(void)
790 {
791 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
792 lock_is_held(&rcu_lock_map) ||
793 lock_is_held(&rcu_sched_lock_map),
794 "Illegal synchronize_rcu() in RCU read-side critical section");
795 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
796 return;
797 if (rcu_gp_is_expedited())
798 synchronize_rcu_expedited();
799 else
800 wait_rcu_gp(call_rcu);
801 }
802 EXPORT_SYMBOL_GPL(synchronize_rcu);
803
804 /**
805 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
806 *
807 * Note that this primitive does not necessarily wait for an RCU grace period
808 * to complete. For example, if there are no RCU callbacks queued anywhere
809 * in the system, then rcu_barrier() is within its rights to return
810 * immediately, without waiting for anything, much less an RCU grace period.
811 */
812 void rcu_barrier(void)
813 {
814 _rcu_barrier(rcu_state_p);
815 }
816 EXPORT_SYMBOL_GPL(rcu_barrier);
817
818 /*
819 * Initialize preemptible RCU's state structures.
820 */
821 static void __init __rcu_init_preempt(void)
822 {
823 rcu_init_one(rcu_state_p);
824 }
825
826 /*
827 * Check for a task exiting while in a preemptible-RCU read-side
828 * critical section, clean up if so. No need to issue warnings,
829 * as debug_check_no_locks_held() already does this if lockdep
830 * is enabled.
831 */
832 void exit_rcu(void)
833 {
834 struct task_struct *t = current;
835
836 if (likely(list_empty(&current->rcu_node_entry)))
837 return;
838 t->rcu_read_lock_nesting = 1;
839 barrier();
840 t->rcu_read_unlock_special.b.blocked = true;
841 __rcu_read_unlock();
842 }
843
844 #else /* #ifdef CONFIG_PREEMPT_RCU */
845
846 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
847
848 /*
849 * Tell them what RCU they are running.
850 */
851 static void __init rcu_bootup_announce(void)
852 {
853 pr_info("Hierarchical RCU implementation.\n");
854 rcu_bootup_announce_oddness();
855 }
856
857 /*
858 * Because preemptible RCU does not exist, we never have to check for
859 * CPUs being in quiescent states.
860 */
861 static void rcu_preempt_note_context_switch(bool preempt)
862 {
863 }
864
865 /*
866 * Because preemptible RCU does not exist, there are never any preempted
867 * RCU readers.
868 */
869 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
870 {
871 return 0;
872 }
873
874 /*
875 * Because there is no preemptible RCU, there can be no readers blocked.
876 */
877 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
878 {
879 return false;
880 }
881
882 /*
883 * Because preemptible RCU does not exist, we never have to check for
884 * tasks blocked within RCU read-side critical sections.
885 */
886 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
887 {
888 }
889
890 /*
891 * Because preemptible RCU does not exist, we never have to check for
892 * tasks blocked within RCU read-side critical sections.
893 */
894 static int rcu_print_task_stall(struct rcu_node *rnp)
895 {
896 return 0;
897 }
898
899 /*
900 * Because preemptible RCU does not exist, we never have to check for
901 * tasks blocked within RCU read-side critical sections that are
902 * blocking the current expedited grace period.
903 */
904 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
905 {
906 return 0;
907 }
908
909 /*
910 * Because there is no preemptible RCU, there can be no readers blocked,
911 * so there is no need to check for blocked tasks. So check only for
912 * bogus qsmask values.
913 */
914 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
915 {
916 WARN_ON_ONCE(rnp->qsmask);
917 }
918
919 /*
920 * Because preemptible RCU does not exist, it never has any callbacks
921 * to check.
922 */
923 static void rcu_preempt_check_callbacks(void)
924 {
925 }
926
927 /*
928 * Because preemptible RCU does not exist, rcu_barrier() is just
929 * another name for rcu_barrier_sched().
930 */
931 void rcu_barrier(void)
932 {
933 rcu_barrier_sched();
934 }
935 EXPORT_SYMBOL_GPL(rcu_barrier);
936
937 /*
938 * Because preemptible RCU does not exist, it need not be initialized.
939 */
940 static void __init __rcu_init_preempt(void)
941 {
942 }
943
944 /*
945 * Because preemptible RCU does not exist, tasks cannot possibly exit
946 * while in preemptible RCU read-side critical sections.
947 */
948 void exit_rcu(void)
949 {
950 }
951
952 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
953
954 #ifdef CONFIG_RCU_BOOST
955
956 static void rcu_wake_cond(struct task_struct *t, int status)
957 {
958 /*
959 * If the thread is yielding, only wake it when this
960 * is invoked from idle
961 */
962 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
963 wake_up_process(t);
964 }
965
966 /*
967 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
968 * or ->boost_tasks, advancing the pointer to the next task in the
969 * ->blkd_tasks list.
970 *
971 * Note that irqs must be enabled: boosting the task can block.
972 * Returns 1 if there are more tasks needing to be boosted.
973 */
974 static int rcu_boost(struct rcu_node *rnp)
975 {
976 unsigned long flags;
977 struct task_struct *t;
978 struct list_head *tb;
979
980 if (READ_ONCE(rnp->exp_tasks) == NULL &&
981 READ_ONCE(rnp->boost_tasks) == NULL)
982 return 0; /* Nothing left to boost. */
983
984 raw_spin_lock_irqsave_rcu_node(rnp, flags);
985
986 /*
987 * Recheck under the lock: all tasks in need of boosting
988 * might exit their RCU read-side critical sections on their own.
989 */
990 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
991 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
992 return 0;
993 }
994
995 /*
996 * Preferentially boost tasks blocking expedited grace periods.
997 * This cannot starve the normal grace periods because a second
998 * expedited grace period must boost all blocked tasks, including
999 * those blocking the pre-existing normal grace period.
1000 */
1001 if (rnp->exp_tasks != NULL)
1002 tb = rnp->exp_tasks;
1003 else
1004 tb = rnp->boost_tasks;
1005
1006 /*
1007 * We boost task t by manufacturing an rt_mutex that appears to
1008 * be held by task t. We leave a pointer to that rt_mutex where
1009 * task t can find it, and task t will release the mutex when it
1010 * exits its outermost RCU read-side critical section. Then
1011 * simply acquiring this artificial rt_mutex will boost task
1012 * t's priority. (Thanks to tglx for suggesting this approach!)
1013 *
1014 * Note that task t must acquire rnp->lock to remove itself from
1015 * the ->blkd_tasks list, which it will do from exit() if from
1016 * nowhere else. We therefore are guaranteed that task t will
1017 * stay around at least until we drop rnp->lock. Note that
1018 * rnp->lock also resolves races between our priority boosting
1019 * and task t's exiting its outermost RCU read-side critical
1020 * section.
1021 */
1022 t = container_of(tb, struct task_struct, rcu_node_entry);
1023 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1024 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1025 /* Lock only for side effect: boosts task t's priority. */
1026 rt_mutex_lock(&rnp->boost_mtx);
1027 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1028
1029 return READ_ONCE(rnp->exp_tasks) != NULL ||
1030 READ_ONCE(rnp->boost_tasks) != NULL;
1031 }
1032
1033 /*
1034 * Priority-boosting kthread, one per leaf rcu_node.
1035 */
1036 static int rcu_boost_kthread(void *arg)
1037 {
1038 struct rcu_node *rnp = (struct rcu_node *)arg;
1039 int spincnt = 0;
1040 int more2boost;
1041
1042 trace_rcu_utilization(TPS("Start boost kthread@init"));
1043 for (;;) {
1044 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1045 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1046 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1047 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1048 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1049 more2boost = rcu_boost(rnp);
1050 if (more2boost)
1051 spincnt++;
1052 else
1053 spincnt = 0;
1054 if (spincnt > 10) {
1055 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1056 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1057 schedule_timeout_interruptible(2);
1058 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1059 spincnt = 0;
1060 }
1061 }
1062 /* NOTREACHED */
1063 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1064 return 0;
1065 }
1066
1067 /*
1068 * Check to see if it is time to start boosting RCU readers that are
1069 * blocking the current grace period, and, if so, tell the per-rcu_node
1070 * kthread to start boosting them. If there is an expedited grace
1071 * period in progress, it is always time to boost.
1072 *
1073 * The caller must hold rnp->lock, which this function releases.
1074 * The ->boost_kthread_task is immortal, so we don't need to worry
1075 * about it going away.
1076 */
1077 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1078 __releases(rnp->lock)
1079 {
1080 struct task_struct *t;
1081
1082 raw_lockdep_assert_held_rcu_node(rnp);
1083 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1084 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1085 return;
1086 }
1087 if (rnp->exp_tasks != NULL ||
1088 (rnp->gp_tasks != NULL &&
1089 rnp->boost_tasks == NULL &&
1090 rnp->qsmask == 0 &&
1091 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1092 if (rnp->exp_tasks == NULL)
1093 rnp->boost_tasks = rnp->gp_tasks;
1094 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1095 t = rnp->boost_kthread_task;
1096 if (t)
1097 rcu_wake_cond(t, rnp->boost_kthread_status);
1098 } else {
1099 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100 }
1101 }
1102
1103 /*
1104 * Wake up the per-CPU kthread to invoke RCU callbacks.
1105 */
1106 static void invoke_rcu_callbacks_kthread(void)
1107 {
1108 unsigned long flags;
1109
1110 local_irq_save(flags);
1111 __this_cpu_write(rcu_cpu_has_work, 1);
1112 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1113 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1114 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1115 __this_cpu_read(rcu_cpu_kthread_status));
1116 }
1117 local_irq_restore(flags);
1118 }
1119
1120 /*
1121 * Is the current CPU running the RCU-callbacks kthread?
1122 * Caller must have preemption disabled.
1123 */
1124 static bool rcu_is_callbacks_kthread(void)
1125 {
1126 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1127 }
1128
1129 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1130
1131 /*
1132 * Do priority-boost accounting for the start of a new grace period.
1133 */
1134 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1135 {
1136 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1137 }
1138
1139 /*
1140 * Create an RCU-boost kthread for the specified node if one does not
1141 * already exist. We only create this kthread for preemptible RCU.
1142 * Returns zero if all is well, a negated errno otherwise.
1143 */
1144 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1145 struct rcu_node *rnp)
1146 {
1147 int rnp_index = rnp - &rsp->node[0];
1148 unsigned long flags;
1149 struct sched_param sp;
1150 struct task_struct *t;
1151
1152 if (rcu_state_p != rsp)
1153 return 0;
1154
1155 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1156 return 0;
1157
1158 rsp->boost = 1;
1159 if (rnp->boost_kthread_task != NULL)
1160 return 0;
1161 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1162 "rcub/%d", rnp_index);
1163 if (IS_ERR(t))
1164 return PTR_ERR(t);
1165 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1166 rnp->boost_kthread_task = t;
1167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1168 sp.sched_priority = kthread_prio;
1169 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1170 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1171 return 0;
1172 }
1173
1174 static void rcu_kthread_do_work(void)
1175 {
1176 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1177 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1178 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
1179 }
1180
1181 static void rcu_cpu_kthread_setup(unsigned int cpu)
1182 {
1183 struct sched_param sp;
1184
1185 sp.sched_priority = kthread_prio;
1186 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1187 }
1188
1189 static void rcu_cpu_kthread_park(unsigned int cpu)
1190 {
1191 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1192 }
1193
1194 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1195 {
1196 return __this_cpu_read(rcu_cpu_has_work);
1197 }
1198
1199 /*
1200 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1201 * RCU softirq used in flavors and configurations of RCU that do not
1202 * support RCU priority boosting.
1203 */
1204 static void rcu_cpu_kthread(unsigned int cpu)
1205 {
1206 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1207 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1208 int spincnt;
1209
1210 for (spincnt = 0; spincnt < 10; spincnt++) {
1211 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1212 local_bh_disable();
1213 *statusp = RCU_KTHREAD_RUNNING;
1214 this_cpu_inc(rcu_cpu_kthread_loops);
1215 local_irq_disable();
1216 work = *workp;
1217 *workp = 0;
1218 local_irq_enable();
1219 if (work)
1220 rcu_kthread_do_work();
1221 local_bh_enable();
1222 if (*workp == 0) {
1223 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1224 *statusp = RCU_KTHREAD_WAITING;
1225 return;
1226 }
1227 }
1228 *statusp = RCU_KTHREAD_YIELDING;
1229 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1230 schedule_timeout_interruptible(2);
1231 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1232 *statusp = RCU_KTHREAD_WAITING;
1233 }
1234
1235 /*
1236 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1237 * served by the rcu_node in question. The CPU hotplug lock is still
1238 * held, so the value of rnp->qsmaskinit will be stable.
1239 *
1240 * We don't include outgoingcpu in the affinity set, use -1 if there is
1241 * no outgoing CPU. If there are no CPUs left in the affinity set,
1242 * this function allows the kthread to execute on any CPU.
1243 */
1244 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1245 {
1246 struct task_struct *t = rnp->boost_kthread_task;
1247 unsigned long mask = rcu_rnp_online_cpus(rnp);
1248 cpumask_var_t cm;
1249 int cpu;
1250
1251 if (!t)
1252 return;
1253 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1254 return;
1255 for_each_leaf_node_possible_cpu(rnp, cpu)
1256 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1257 cpu != outgoingcpu)
1258 cpumask_set_cpu(cpu, cm);
1259 if (cpumask_weight(cm) == 0)
1260 cpumask_setall(cm);
1261 set_cpus_allowed_ptr(t, cm);
1262 free_cpumask_var(cm);
1263 }
1264
1265 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1266 .store = &rcu_cpu_kthread_task,
1267 .thread_should_run = rcu_cpu_kthread_should_run,
1268 .thread_fn = rcu_cpu_kthread,
1269 .thread_comm = "rcuc/%u",
1270 .setup = rcu_cpu_kthread_setup,
1271 .park = rcu_cpu_kthread_park,
1272 };
1273
1274 /*
1275 * Spawn boost kthreads -- called as soon as the scheduler is running.
1276 */
1277 static void __init rcu_spawn_boost_kthreads(void)
1278 {
1279 struct rcu_node *rnp;
1280 int cpu;
1281
1282 for_each_possible_cpu(cpu)
1283 per_cpu(rcu_cpu_has_work, cpu) = 0;
1284 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1285 rcu_for_each_leaf_node(rcu_state_p, rnp)
1286 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1287 }
1288
1289 static void rcu_prepare_kthreads(int cpu)
1290 {
1291 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1292 struct rcu_node *rnp = rdp->mynode;
1293
1294 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1295 if (rcu_scheduler_fully_active)
1296 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1297 }
1298
1299 #else /* #ifdef CONFIG_RCU_BOOST */
1300
1301 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1302 __releases(rnp->lock)
1303 {
1304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1305 }
1306
1307 static void invoke_rcu_callbacks_kthread(void)
1308 {
1309 WARN_ON_ONCE(1);
1310 }
1311
1312 static bool rcu_is_callbacks_kthread(void)
1313 {
1314 return false;
1315 }
1316
1317 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1318 {
1319 }
1320
1321 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1322 {
1323 }
1324
1325 static void __init rcu_spawn_boost_kthreads(void)
1326 {
1327 }
1328
1329 static void rcu_prepare_kthreads(int cpu)
1330 {
1331 }
1332
1333 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1334
1335 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1336
1337 /*
1338 * Check to see if any future RCU-related work will need to be done
1339 * by the current CPU, even if none need be done immediately, returning
1340 * 1 if so. This function is part of the RCU implementation; it is -not-
1341 * an exported member of the RCU API.
1342 *
1343 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1344 * any flavor of RCU.
1345 */
1346 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1347 {
1348 *nextevt = KTIME_MAX;
1349 return rcu_cpu_has_callbacks(NULL);
1350 }
1351
1352 /*
1353 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1354 * after it.
1355 */
1356 static void rcu_cleanup_after_idle(void)
1357 {
1358 }
1359
1360 /*
1361 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1362 * is nothing.
1363 */
1364 static void rcu_prepare_for_idle(void)
1365 {
1366 }
1367
1368 /*
1369 * Don't bother keeping a running count of the number of RCU callbacks
1370 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1371 */
1372 static void rcu_idle_count_callbacks_posted(void)
1373 {
1374 }
1375
1376 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1377
1378 /*
1379 * This code is invoked when a CPU goes idle, at which point we want
1380 * to have the CPU do everything required for RCU so that it can enter
1381 * the energy-efficient dyntick-idle mode. This is handled by a
1382 * state machine implemented by rcu_prepare_for_idle() below.
1383 *
1384 * The following three proprocessor symbols control this state machine:
1385 *
1386 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1387 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1388 * is sized to be roughly one RCU grace period. Those energy-efficiency
1389 * benchmarkers who might otherwise be tempted to set this to a large
1390 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1391 * system. And if you are -that- concerned about energy efficiency,
1392 * just power the system down and be done with it!
1393 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1394 * permitted to sleep in dyntick-idle mode with only lazy RCU
1395 * callbacks pending. Setting this too high can OOM your system.
1396 *
1397 * The values below work well in practice. If future workloads require
1398 * adjustment, they can be converted into kernel config parameters, though
1399 * making the state machine smarter might be a better option.
1400 */
1401 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1402 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1403
1404 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1405 module_param(rcu_idle_gp_delay, int, 0644);
1406 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1407 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1408
1409 /*
1410 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1411 * only if it has been awhile since the last time we did so. Afterwards,
1412 * if there are any callbacks ready for immediate invocation, return true.
1413 */
1414 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1415 {
1416 bool cbs_ready = false;
1417 struct rcu_data *rdp;
1418 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1419 struct rcu_node *rnp;
1420 struct rcu_state *rsp;
1421
1422 /* Exit early if we advanced recently. */
1423 if (jiffies == rdtp->last_advance_all)
1424 return false;
1425 rdtp->last_advance_all = jiffies;
1426
1427 for_each_rcu_flavor(rsp) {
1428 rdp = this_cpu_ptr(rsp->rda);
1429 rnp = rdp->mynode;
1430
1431 /*
1432 * Don't bother checking unless a grace period has
1433 * completed since we last checked and there are
1434 * callbacks not yet ready to invoke.
1435 */
1436 if ((rdp->completed != rnp->completed ||
1437 unlikely(READ_ONCE(rdp->gpwrap))) &&
1438 rcu_segcblist_pend_cbs(&rdp->cblist))
1439 note_gp_changes(rsp, rdp);
1440
1441 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1442 cbs_ready = true;
1443 }
1444 return cbs_ready;
1445 }
1446
1447 /*
1448 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1449 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1450 * caller to set the timeout based on whether or not there are non-lazy
1451 * callbacks.
1452 *
1453 * The caller must have disabled interrupts.
1454 */
1455 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1456 {
1457 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1458 unsigned long dj;
1459
1460 lockdep_assert_irqs_disabled();
1461
1462 /* Snapshot to detect later posting of non-lazy callback. */
1463 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1464
1465 /* If no callbacks, RCU doesn't need the CPU. */
1466 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1467 *nextevt = KTIME_MAX;
1468 return 0;
1469 }
1470
1471 /* Attempt to advance callbacks. */
1472 if (rcu_try_advance_all_cbs()) {
1473 /* Some ready to invoke, so initiate later invocation. */
1474 invoke_rcu_core();
1475 return 1;
1476 }
1477 rdtp->last_accelerate = jiffies;
1478
1479 /* Request timer delay depending on laziness, and round. */
1480 if (!rdtp->all_lazy) {
1481 dj = round_up(rcu_idle_gp_delay + jiffies,
1482 rcu_idle_gp_delay) - jiffies;
1483 } else {
1484 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1485 }
1486 *nextevt = basemono + dj * TICK_NSEC;
1487 return 0;
1488 }
1489
1490 /*
1491 * Prepare a CPU for idle from an RCU perspective. The first major task
1492 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1493 * The second major task is to check to see if a non-lazy callback has
1494 * arrived at a CPU that previously had only lazy callbacks. The third
1495 * major task is to accelerate (that is, assign grace-period numbers to)
1496 * any recently arrived callbacks.
1497 *
1498 * The caller must have disabled interrupts.
1499 */
1500 static void rcu_prepare_for_idle(void)
1501 {
1502 bool needwake;
1503 struct rcu_data *rdp;
1504 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1505 struct rcu_node *rnp;
1506 struct rcu_state *rsp;
1507 int tne;
1508
1509 lockdep_assert_irqs_disabled();
1510 if (rcu_is_nocb_cpu(smp_processor_id()))
1511 return;
1512
1513 /* Handle nohz enablement switches conservatively. */
1514 tne = READ_ONCE(tick_nohz_active);
1515 if (tne != rdtp->tick_nohz_enabled_snap) {
1516 if (rcu_cpu_has_callbacks(NULL))
1517 invoke_rcu_core(); /* force nohz to see update. */
1518 rdtp->tick_nohz_enabled_snap = tne;
1519 return;
1520 }
1521 if (!tne)
1522 return;
1523
1524 /*
1525 * If a non-lazy callback arrived at a CPU having only lazy
1526 * callbacks, invoke RCU core for the side-effect of recalculating
1527 * idle duration on re-entry to idle.
1528 */
1529 if (rdtp->all_lazy &&
1530 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1531 rdtp->all_lazy = false;
1532 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1533 invoke_rcu_core();
1534 return;
1535 }
1536
1537 /*
1538 * If we have not yet accelerated this jiffy, accelerate all
1539 * callbacks on this CPU.
1540 */
1541 if (rdtp->last_accelerate == jiffies)
1542 return;
1543 rdtp->last_accelerate = jiffies;
1544 for_each_rcu_flavor(rsp) {
1545 rdp = this_cpu_ptr(rsp->rda);
1546 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1547 continue;
1548 rnp = rdp->mynode;
1549 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1550 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1551 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1552 if (needwake)
1553 rcu_gp_kthread_wake(rsp);
1554 }
1555 }
1556
1557 /*
1558 * Clean up for exit from idle. Attempt to advance callbacks based on
1559 * any grace periods that elapsed while the CPU was idle, and if any
1560 * callbacks are now ready to invoke, initiate invocation.
1561 */
1562 static void rcu_cleanup_after_idle(void)
1563 {
1564 lockdep_assert_irqs_disabled();
1565 if (rcu_is_nocb_cpu(smp_processor_id()))
1566 return;
1567 if (rcu_try_advance_all_cbs())
1568 invoke_rcu_core();
1569 }
1570
1571 /*
1572 * Keep a running count of the number of non-lazy callbacks posted
1573 * on this CPU. This running counter (which is never decremented) allows
1574 * rcu_prepare_for_idle() to detect when something out of the idle loop
1575 * posts a callback, even if an equal number of callbacks are invoked.
1576 * Of course, callbacks should only be posted from within a trace event
1577 * designed to be called from idle or from within RCU_NONIDLE().
1578 */
1579 static void rcu_idle_count_callbacks_posted(void)
1580 {
1581 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1582 }
1583
1584 /*
1585 * Data for flushing lazy RCU callbacks at OOM time.
1586 */
1587 static atomic_t oom_callback_count;
1588 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1589
1590 /*
1591 * RCU OOM callback -- decrement the outstanding count and deliver the
1592 * wake-up if we are the last one.
1593 */
1594 static void rcu_oom_callback(struct rcu_head *rhp)
1595 {
1596 if (atomic_dec_and_test(&oom_callback_count))
1597 wake_up(&oom_callback_wq);
1598 }
1599
1600 /*
1601 * Post an rcu_oom_notify callback on the current CPU if it has at
1602 * least one lazy callback. This will unnecessarily post callbacks
1603 * to CPUs that already have a non-lazy callback at the end of their
1604 * callback list, but this is an infrequent operation, so accept some
1605 * extra overhead to keep things simple.
1606 */
1607 static void rcu_oom_notify_cpu(void *unused)
1608 {
1609 struct rcu_state *rsp;
1610 struct rcu_data *rdp;
1611
1612 for_each_rcu_flavor(rsp) {
1613 rdp = raw_cpu_ptr(rsp->rda);
1614 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1615 atomic_inc(&oom_callback_count);
1616 rsp->call(&rdp->oom_head, rcu_oom_callback);
1617 }
1618 }
1619 }
1620
1621 /*
1622 * If low on memory, ensure that each CPU has a non-lazy callback.
1623 * This will wake up CPUs that have only lazy callbacks, in turn
1624 * ensuring that they free up the corresponding memory in a timely manner.
1625 * Because an uncertain amount of memory will be freed in some uncertain
1626 * timeframe, we do not claim to have freed anything.
1627 */
1628 static int rcu_oom_notify(struct notifier_block *self,
1629 unsigned long notused, void *nfreed)
1630 {
1631 int cpu;
1632
1633 /* Wait for callbacks from earlier instance to complete. */
1634 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1635 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1636
1637 /*
1638 * Prevent premature wakeup: ensure that all increments happen
1639 * before there is a chance of the counter reaching zero.
1640 */
1641 atomic_set(&oom_callback_count, 1);
1642
1643 for_each_online_cpu(cpu) {
1644 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1645 cond_resched_tasks_rcu_qs();
1646 }
1647
1648 /* Unconditionally decrement: no need to wake ourselves up. */
1649 atomic_dec(&oom_callback_count);
1650
1651 return NOTIFY_OK;
1652 }
1653
1654 static struct notifier_block rcu_oom_nb = {
1655 .notifier_call = rcu_oom_notify
1656 };
1657
1658 static int __init rcu_register_oom_notifier(void)
1659 {
1660 register_oom_notifier(&rcu_oom_nb);
1661 return 0;
1662 }
1663 early_initcall(rcu_register_oom_notifier);
1664
1665 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1666
1667 #ifdef CONFIG_RCU_FAST_NO_HZ
1668
1669 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1670 {
1671 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1672 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1673
1674 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1675 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1676 ulong2long(nlpd),
1677 rdtp->all_lazy ? 'L' : '.',
1678 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1679 }
1680
1681 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1682
1683 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1684 {
1685 *cp = '\0';
1686 }
1687
1688 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1689
1690 /* Initiate the stall-info list. */
1691 static void print_cpu_stall_info_begin(void)
1692 {
1693 pr_cont("\n");
1694 }
1695
1696 /*
1697 * Print out diagnostic information for the specified stalled CPU.
1698 *
1699 * If the specified CPU is aware of the current RCU grace period
1700 * (flavor specified by rsp), then print the number of scheduling
1701 * clock interrupts the CPU has taken during the time that it has
1702 * been aware. Otherwise, print the number of RCU grace periods
1703 * that this CPU is ignorant of, for example, "1" if the CPU was
1704 * aware of the previous grace period.
1705 *
1706 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1707 */
1708 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1709 {
1710 unsigned long delta;
1711 char fast_no_hz[72];
1712 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1713 struct rcu_dynticks *rdtp = rdp->dynticks;
1714 char *ticks_title;
1715 unsigned long ticks_value;
1716
1717 /*
1718 * We could be printing a lot while holding a spinlock. Avoid
1719 * triggering hard lockup.
1720 */
1721 touch_nmi_watchdog();
1722
1723 if (rsp->gpnum == rdp->gpnum) {
1724 ticks_title = "ticks this GP";
1725 ticks_value = rdp->ticks_this_gp;
1726 } else {
1727 ticks_title = "GPs behind";
1728 ticks_value = rsp->gpnum - rdp->gpnum;
1729 }
1730 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1731 delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1732 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1733 cpu,
1734 "O."[!!cpu_online(cpu)],
1735 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1736 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1737 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1738 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1739 "!."[!delta],
1740 ticks_value, ticks_title,
1741 rcu_dynticks_snap(rdtp) & 0xfff,
1742 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1743 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1744 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1745 fast_no_hz);
1746 }
1747
1748 /* Terminate the stall-info list. */
1749 static void print_cpu_stall_info_end(void)
1750 {
1751 pr_err("\t");
1752 }
1753
1754 /* Zero ->ticks_this_gp for all flavors of RCU. */
1755 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1756 {
1757 rdp->ticks_this_gp = 0;
1758 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1759 }
1760
1761 /* Increment ->ticks_this_gp for all flavors of RCU. */
1762 static void increment_cpu_stall_ticks(void)
1763 {
1764 struct rcu_state *rsp;
1765
1766 for_each_rcu_flavor(rsp)
1767 raw_cpu_inc(rsp->rda->ticks_this_gp);
1768 }
1769
1770 #ifdef CONFIG_RCU_NOCB_CPU
1771
1772 /*
1773 * Offload callback processing from the boot-time-specified set of CPUs
1774 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1775 * kthread created that pulls the callbacks from the corresponding CPU,
1776 * waits for a grace period to elapse, and invokes the callbacks.
1777 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1778 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1779 * has been specified, in which case each kthread actively polls its
1780 * CPU. (Which isn't so great for energy efficiency, but which does
1781 * reduce RCU's overhead on that CPU.)
1782 *
1783 * This is intended to be used in conjunction with Frederic Weisbecker's
1784 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1785 * running CPU-bound user-mode computations.
1786 *
1787 * Offloading of callback processing could also in theory be used as
1788 * an energy-efficiency measure because CPUs with no RCU callbacks
1789 * queued are more aggressive about entering dyntick-idle mode.
1790 */
1791
1792
1793 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1794 static int __init rcu_nocb_setup(char *str)
1795 {
1796 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1797 cpulist_parse(str, rcu_nocb_mask);
1798 return 1;
1799 }
1800 __setup("rcu_nocbs=", rcu_nocb_setup);
1801
1802 static int __init parse_rcu_nocb_poll(char *arg)
1803 {
1804 rcu_nocb_poll = true;
1805 return 0;
1806 }
1807 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1808
1809 /*
1810 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1811 * grace period.
1812 */
1813 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1814 {
1815 swake_up_all(sq);
1816 }
1817
1818 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1819 {
1820 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1821 }
1822
1823 static void rcu_init_one_nocb(struct rcu_node *rnp)
1824 {
1825 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1826 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1827 }
1828
1829 /* Is the specified CPU a no-CBs CPU? */
1830 bool rcu_is_nocb_cpu(int cpu)
1831 {
1832 if (cpumask_available(rcu_nocb_mask))
1833 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1834 return false;
1835 }
1836
1837 /*
1838 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1839 * and this function releases it.
1840 */
1841 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1842 unsigned long flags)
1843 __releases(rdp->nocb_lock)
1844 {
1845 struct rcu_data *rdp_leader = rdp->nocb_leader;
1846
1847 lockdep_assert_held(&rdp->nocb_lock);
1848 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1849 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1850 return;
1851 }
1852 if (rdp_leader->nocb_leader_sleep || force) {
1853 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1854 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1855 del_timer(&rdp->nocb_timer);
1856 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1857 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1858 swake_up(&rdp_leader->nocb_wq);
1859 } else {
1860 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1861 }
1862 }
1863
1864 /*
1865 * Kick the leader kthread for this NOCB group, but caller has not
1866 * acquired locks.
1867 */
1868 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1869 {
1870 unsigned long flags;
1871
1872 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1873 __wake_nocb_leader(rdp, force, flags);
1874 }
1875
1876 /*
1877 * Arrange to wake the leader kthread for this NOCB group at some
1878 * future time when it is safe to do so.
1879 */
1880 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1881 const char *reason)
1882 {
1883 unsigned long flags;
1884
1885 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1886 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1887 mod_timer(&rdp->nocb_timer, jiffies + 1);
1888 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1889 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1890 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1891 }
1892
1893 /*
1894 * Does the specified CPU need an RCU callback for the specified flavor
1895 * of rcu_barrier()?
1896 */
1897 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1898 {
1899 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1900 unsigned long ret;
1901 #ifdef CONFIG_PROVE_RCU
1902 struct rcu_head *rhp;
1903 #endif /* #ifdef CONFIG_PROVE_RCU */
1904
1905 /*
1906 * Check count of all no-CBs callbacks awaiting invocation.
1907 * There needs to be a barrier before this function is called,
1908 * but associated with a prior determination that no more
1909 * callbacks would be posted. In the worst case, the first
1910 * barrier in _rcu_barrier() suffices (but the caller cannot
1911 * necessarily rely on this, not a substitute for the caller
1912 * getting the concurrency design right!). There must also be
1913 * a barrier between the following load an posting of a callback
1914 * (if a callback is in fact needed). This is associated with an
1915 * atomic_inc() in the caller.
1916 */
1917 ret = atomic_long_read(&rdp->nocb_q_count);
1918
1919 #ifdef CONFIG_PROVE_RCU
1920 rhp = READ_ONCE(rdp->nocb_head);
1921 if (!rhp)
1922 rhp = READ_ONCE(rdp->nocb_gp_head);
1923 if (!rhp)
1924 rhp = READ_ONCE(rdp->nocb_follower_head);
1925
1926 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1927 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1928 rcu_scheduler_fully_active) {
1929 /* RCU callback enqueued before CPU first came online??? */
1930 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1931 cpu, rhp->func);
1932 WARN_ON_ONCE(1);
1933 }
1934 #endif /* #ifdef CONFIG_PROVE_RCU */
1935
1936 return !!ret;
1937 }
1938
1939 /*
1940 * Enqueue the specified string of rcu_head structures onto the specified
1941 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1942 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1943 * counts are supplied by rhcount and rhcount_lazy.
1944 *
1945 * If warranted, also wake up the kthread servicing this CPUs queues.
1946 */
1947 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1948 struct rcu_head *rhp,
1949 struct rcu_head **rhtp,
1950 int rhcount, int rhcount_lazy,
1951 unsigned long flags)
1952 {
1953 int len;
1954 struct rcu_head **old_rhpp;
1955 struct task_struct *t;
1956
1957 /* Enqueue the callback on the nocb list and update counts. */
1958 atomic_long_add(rhcount, &rdp->nocb_q_count);
1959 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1960 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1961 WRITE_ONCE(*old_rhpp, rhp);
1962 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1963 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1964
1965 /* If we are not being polled and there is a kthread, awaken it ... */
1966 t = READ_ONCE(rdp->nocb_kthread);
1967 if (rcu_nocb_poll || !t) {
1968 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1969 TPS("WakeNotPoll"));
1970 return;
1971 }
1972 len = atomic_long_read(&rdp->nocb_q_count);
1973 if (old_rhpp == &rdp->nocb_head) {
1974 if (!irqs_disabled_flags(flags)) {
1975 /* ... if queue was empty ... */
1976 wake_nocb_leader(rdp, false);
1977 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1978 TPS("WakeEmpty"));
1979 } else {
1980 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1981 TPS("WakeEmptyIsDeferred"));
1982 }
1983 rdp->qlen_last_fqs_check = 0;
1984 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1985 /* ... or if many callbacks queued. */
1986 if (!irqs_disabled_flags(flags)) {
1987 wake_nocb_leader(rdp, true);
1988 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1989 TPS("WakeOvf"));
1990 } else {
1991 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
1992 TPS("WakeOvfIsDeferred"));
1993 }
1994 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1995 } else {
1996 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1997 }
1998 return;
1999 }
2000
2001 /*
2002 * This is a helper for __call_rcu(), which invokes this when the normal
2003 * callback queue is inoperable. If this is not a no-CBs CPU, this
2004 * function returns failure back to __call_rcu(), which can complain
2005 * appropriately.
2006 *
2007 * Otherwise, this function queues the callback where the corresponding
2008 * "rcuo" kthread can find it.
2009 */
2010 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2011 bool lazy, unsigned long flags)
2012 {
2013
2014 if (!rcu_is_nocb_cpu(rdp->cpu))
2015 return false;
2016 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2017 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2018 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2019 (unsigned long)rhp->func,
2020 -atomic_long_read(&rdp->nocb_q_count_lazy),
2021 -atomic_long_read(&rdp->nocb_q_count));
2022 else
2023 trace_rcu_callback(rdp->rsp->name, rhp,
2024 -atomic_long_read(&rdp->nocb_q_count_lazy),
2025 -atomic_long_read(&rdp->nocb_q_count));
2026
2027 /*
2028 * If called from an extended quiescent state with interrupts
2029 * disabled, invoke the RCU core in order to allow the idle-entry
2030 * deferred-wakeup check to function.
2031 */
2032 if (irqs_disabled_flags(flags) &&
2033 !rcu_is_watching() &&
2034 cpu_online(smp_processor_id()))
2035 invoke_rcu_core();
2036
2037 return true;
2038 }
2039
2040 /*
2041 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2042 * not a no-CBs CPU.
2043 */
2044 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2045 struct rcu_data *rdp,
2046 unsigned long flags)
2047 {
2048 lockdep_assert_irqs_disabled();
2049 if (!rcu_is_nocb_cpu(smp_processor_id()))
2050 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2051 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2052 rcu_segcblist_tail(&rdp->cblist),
2053 rcu_segcblist_n_cbs(&rdp->cblist),
2054 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2055 rcu_segcblist_init(&rdp->cblist);
2056 rcu_segcblist_disable(&rdp->cblist);
2057 return true;
2058 }
2059
2060 /*
2061 * If necessary, kick off a new grace period, and either way wait
2062 * for a subsequent grace period to complete.
2063 */
2064 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2065 {
2066 unsigned long c;
2067 bool d;
2068 unsigned long flags;
2069 bool needwake;
2070 struct rcu_node *rnp = rdp->mynode;
2071
2072 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2073 c = rcu_cbs_completed(rdp->rsp, rnp);
2074 needwake = rcu_start_this_gp(rnp, rdp, c);
2075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2076 if (needwake)
2077 rcu_gp_kthread_wake(rdp->rsp);
2078
2079 /*
2080 * Wait for the grace period. Do so interruptibly to avoid messing
2081 * up the load average.
2082 */
2083 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2084 for (;;) {
2085 swait_event_interruptible(
2086 rnp->nocb_gp_wq[c & 0x1],
2087 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2088 if (likely(d))
2089 break;
2090 WARN_ON(signal_pending(current));
2091 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2092 }
2093 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2094 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2095 }
2096
2097 /*
2098 * Leaders come here to wait for additional callbacks to show up.
2099 * This function does not return until callbacks appear.
2100 */
2101 static void nocb_leader_wait(struct rcu_data *my_rdp)
2102 {
2103 bool firsttime = true;
2104 unsigned long flags;
2105 bool gotcbs;
2106 struct rcu_data *rdp;
2107 struct rcu_head **tail;
2108
2109 wait_again:
2110
2111 /* Wait for callbacks to appear. */
2112 if (!rcu_nocb_poll) {
2113 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2114 swait_event_interruptible(my_rdp->nocb_wq,
2115 !READ_ONCE(my_rdp->nocb_leader_sleep));
2116 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2117 my_rdp->nocb_leader_sleep = true;
2118 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2119 del_timer(&my_rdp->nocb_timer);
2120 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2121 } else if (firsttime) {
2122 firsttime = false; /* Don't drown trace log with "Poll"! */
2123 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2124 }
2125
2126 /*
2127 * Each pass through the following loop checks a follower for CBs.
2128 * We are our own first follower. Any CBs found are moved to
2129 * nocb_gp_head, where they await a grace period.
2130 */
2131 gotcbs = false;
2132 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2133 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2134 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2135 if (!rdp->nocb_gp_head)
2136 continue; /* No CBs here, try next follower. */
2137
2138 /* Move callbacks to wait-for-GP list, which is empty. */
2139 WRITE_ONCE(rdp->nocb_head, NULL);
2140 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2141 gotcbs = true;
2142 }
2143
2144 /* No callbacks? Sleep a bit if polling, and go retry. */
2145 if (unlikely(!gotcbs)) {
2146 WARN_ON(signal_pending(current));
2147 if (rcu_nocb_poll) {
2148 schedule_timeout_interruptible(1);
2149 } else {
2150 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2151 TPS("WokeEmpty"));
2152 }
2153 goto wait_again;
2154 }
2155
2156 /* Wait for one grace period. */
2157 rcu_nocb_wait_gp(my_rdp);
2158
2159 /* Each pass through the following loop wakes a follower, if needed. */
2160 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161 if (!rcu_nocb_poll &&
2162 READ_ONCE(rdp->nocb_head) &&
2163 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2164 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2165 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2166 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2167 }
2168 if (!rdp->nocb_gp_head)
2169 continue; /* No CBs, so no need to wake follower. */
2170
2171 /* Append callbacks to follower's "done" list. */
2172 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2173 tail = rdp->nocb_follower_tail;
2174 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2175 *tail = rdp->nocb_gp_head;
2176 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2177 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2178 /* List was empty, so wake up the follower. */
2179 swake_up(&rdp->nocb_wq);
2180 }
2181 }
2182
2183 /* If we (the leader) don't have CBs, go wait some more. */
2184 if (!my_rdp->nocb_follower_head)
2185 goto wait_again;
2186 }
2187
2188 /*
2189 * Followers come here to wait for additional callbacks to show up.
2190 * This function does not return until callbacks appear.
2191 */
2192 static void nocb_follower_wait(struct rcu_data *rdp)
2193 {
2194 for (;;) {
2195 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2196 swait_event_interruptible(rdp->nocb_wq,
2197 READ_ONCE(rdp->nocb_follower_head));
2198 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2199 /* ^^^ Ensure CB invocation follows _head test. */
2200 return;
2201 }
2202 WARN_ON(signal_pending(current));
2203 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2204 }
2205 }
2206
2207 /*
2208 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2209 * callbacks queued by the corresponding no-CBs CPU, however, there is
2210 * an optional leader-follower relationship so that the grace-period
2211 * kthreads don't have to do quite so many wakeups.
2212 */
2213 static int rcu_nocb_kthread(void *arg)
2214 {
2215 int c, cl;
2216 unsigned long flags;
2217 struct rcu_head *list;
2218 struct rcu_head *next;
2219 struct rcu_head **tail;
2220 struct rcu_data *rdp = arg;
2221
2222 /* Each pass through this loop invokes one batch of callbacks */
2223 for (;;) {
2224 /* Wait for callbacks. */
2225 if (rdp->nocb_leader == rdp)
2226 nocb_leader_wait(rdp);
2227 else
2228 nocb_follower_wait(rdp);
2229
2230 /* Pull the ready-to-invoke callbacks onto local list. */
2231 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2232 list = rdp->nocb_follower_head;
2233 rdp->nocb_follower_head = NULL;
2234 tail = rdp->nocb_follower_tail;
2235 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2236 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2237 BUG_ON(!list);
2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2239
2240 /* Each pass through the following loop invokes a callback. */
2241 trace_rcu_batch_start(rdp->rsp->name,
2242 atomic_long_read(&rdp->nocb_q_count_lazy),
2243 atomic_long_read(&rdp->nocb_q_count), -1);
2244 c = cl = 0;
2245 while (list) {
2246 next = list->next;
2247 /* Wait for enqueuing to complete, if needed. */
2248 while (next == NULL && &list->next != tail) {
2249 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2250 TPS("WaitQueue"));
2251 schedule_timeout_interruptible(1);
2252 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2253 TPS("WokeQueue"));
2254 next = list->next;
2255 }
2256 debug_rcu_head_unqueue(list);
2257 local_bh_disable();
2258 if (__rcu_reclaim(rdp->rsp->name, list))
2259 cl++;
2260 c++;
2261 local_bh_enable();
2262 cond_resched_tasks_rcu_qs();
2263 list = next;
2264 }
2265 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2266 smp_mb__before_atomic(); /* _add after CB invocation. */
2267 atomic_long_add(-c, &rdp->nocb_q_count);
2268 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2269 }
2270 return 0;
2271 }
2272
2273 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2274 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2275 {
2276 return READ_ONCE(rdp->nocb_defer_wakeup);
2277 }
2278
2279 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2280 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2281 {
2282 unsigned long flags;
2283 int ndw;
2284
2285 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2286 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2287 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2288 return;
2289 }
2290 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2291 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2292 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2294 }
2295
2296 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2297 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2298 {
2299 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2300
2301 do_nocb_deferred_wakeup_common(rdp);
2302 }
2303
2304 /*
2305 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2306 * This means we do an inexact common-case check. Note that if
2307 * we miss, ->nocb_timer will eventually clean things up.
2308 */
2309 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2310 {
2311 if (rcu_nocb_need_deferred_wakeup(rdp))
2312 do_nocb_deferred_wakeup_common(rdp);
2313 }
2314
2315 void __init rcu_init_nohz(void)
2316 {
2317 int cpu;
2318 bool need_rcu_nocb_mask = false;
2319 struct rcu_state *rsp;
2320
2321 #if defined(CONFIG_NO_HZ_FULL)
2322 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2323 need_rcu_nocb_mask = true;
2324 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2325
2326 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2327 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2328 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2329 return;
2330 }
2331 }
2332 if (!cpumask_available(rcu_nocb_mask))
2333 return;
2334
2335 #if defined(CONFIG_NO_HZ_FULL)
2336 if (tick_nohz_full_running)
2337 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2338 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2339
2340 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2341 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2342 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2343 rcu_nocb_mask);
2344 }
2345 if (cpumask_empty(rcu_nocb_mask))
2346 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2347 else
2348 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2349 cpumask_pr_args(rcu_nocb_mask));
2350 if (rcu_nocb_poll)
2351 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2352
2353 for_each_rcu_flavor(rsp) {
2354 for_each_cpu(cpu, rcu_nocb_mask)
2355 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2356 rcu_organize_nocb_kthreads(rsp);
2357 }
2358 }
2359
2360 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2361 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2362 {
2363 rdp->nocb_tail = &rdp->nocb_head;
2364 init_swait_queue_head(&rdp->nocb_wq);
2365 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2366 raw_spin_lock_init(&rdp->nocb_lock);
2367 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2368 }
2369
2370 /*
2371 * If the specified CPU is a no-CBs CPU that does not already have its
2372 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2373 * brought online out of order, this can require re-organizing the
2374 * leader-follower relationships.
2375 */
2376 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2377 {
2378 struct rcu_data *rdp;
2379 struct rcu_data *rdp_last;
2380 struct rcu_data *rdp_old_leader;
2381 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2382 struct task_struct *t;
2383
2384 /*
2385 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2386 * then nothing to do.
2387 */
2388 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2389 return;
2390
2391 /* If we didn't spawn the leader first, reorganize! */
2392 rdp_old_leader = rdp_spawn->nocb_leader;
2393 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2394 rdp_last = NULL;
2395 rdp = rdp_old_leader;
2396 do {
2397 rdp->nocb_leader = rdp_spawn;
2398 if (rdp_last && rdp != rdp_spawn)
2399 rdp_last->nocb_next_follower = rdp;
2400 if (rdp == rdp_spawn) {
2401 rdp = rdp->nocb_next_follower;
2402 } else {
2403 rdp_last = rdp;
2404 rdp = rdp->nocb_next_follower;
2405 rdp_last->nocb_next_follower = NULL;
2406 }
2407 } while (rdp);
2408 rdp_spawn->nocb_next_follower = rdp_old_leader;
2409 }
2410
2411 /* Spawn the kthread for this CPU and RCU flavor. */
2412 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2413 "rcuo%c/%d", rsp->abbr, cpu);
2414 BUG_ON(IS_ERR(t));
2415 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2416 }
2417
2418 /*
2419 * If the specified CPU is a no-CBs CPU that does not already have its
2420 * rcuo kthreads, spawn them.
2421 */
2422 static void rcu_spawn_all_nocb_kthreads(int cpu)
2423 {
2424 struct rcu_state *rsp;
2425
2426 if (rcu_scheduler_fully_active)
2427 for_each_rcu_flavor(rsp)
2428 rcu_spawn_one_nocb_kthread(rsp, cpu);
2429 }
2430
2431 /*
2432 * Once the scheduler is running, spawn rcuo kthreads for all online
2433 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2434 * non-boot CPUs come online -- if this changes, we will need to add
2435 * some mutual exclusion.
2436 */
2437 static void __init rcu_spawn_nocb_kthreads(void)
2438 {
2439 int cpu;
2440
2441 for_each_online_cpu(cpu)
2442 rcu_spawn_all_nocb_kthreads(cpu);
2443 }
2444
2445 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2446 static int rcu_nocb_leader_stride = -1;
2447 module_param(rcu_nocb_leader_stride, int, 0444);
2448
2449 /*
2450 * Initialize leader-follower relationships for all no-CBs CPU.
2451 */
2452 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2453 {
2454 int cpu;
2455 int ls = rcu_nocb_leader_stride;
2456 int nl = 0; /* Next leader. */
2457 struct rcu_data *rdp;
2458 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2459 struct rcu_data *rdp_prev = NULL;
2460
2461 if (!cpumask_available(rcu_nocb_mask))
2462 return;
2463 if (ls == -1) {
2464 ls = int_sqrt(nr_cpu_ids);
2465 rcu_nocb_leader_stride = ls;
2466 }
2467
2468 /*
2469 * Each pass through this loop sets up one rcu_data structure.
2470 * Should the corresponding CPU come online in the future, then
2471 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2472 */
2473 for_each_cpu(cpu, rcu_nocb_mask) {
2474 rdp = per_cpu_ptr(rsp->rda, cpu);
2475 if (rdp->cpu >= nl) {
2476 /* New leader, set up for followers & next leader. */
2477 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2478 rdp->nocb_leader = rdp;
2479 rdp_leader = rdp;
2480 } else {
2481 /* Another follower, link to previous leader. */
2482 rdp->nocb_leader = rdp_leader;
2483 rdp_prev->nocb_next_follower = rdp;
2484 }
2485 rdp_prev = rdp;
2486 }
2487 }
2488
2489 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2490 static bool init_nocb_callback_list(struct rcu_data *rdp)
2491 {
2492 if (!rcu_is_nocb_cpu(rdp->cpu))
2493 return false;
2494
2495 /* If there are early-boot callbacks, move them to nocb lists. */
2496 if (!rcu_segcblist_empty(&rdp->cblist)) {
2497 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2498 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2499 atomic_long_set(&rdp->nocb_q_count,
2500 rcu_segcblist_n_cbs(&rdp->cblist));
2501 atomic_long_set(&rdp->nocb_q_count_lazy,
2502 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2503 rcu_segcblist_init(&rdp->cblist);
2504 }
2505 rcu_segcblist_disable(&rdp->cblist);
2506 return true;
2507 }
2508
2509 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2512 {
2513 WARN_ON_ONCE(1); /* Should be dead code. */
2514 return false;
2515 }
2516
2517 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2518 {
2519 }
2520
2521 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2522 {
2523 return NULL;
2524 }
2525
2526 static void rcu_init_one_nocb(struct rcu_node *rnp)
2527 {
2528 }
2529
2530 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2531 bool lazy, unsigned long flags)
2532 {
2533 return false;
2534 }
2535
2536 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2537 struct rcu_data *rdp,
2538 unsigned long flags)
2539 {
2540 return false;
2541 }
2542
2543 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2544 {
2545 }
2546
2547 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2548 {
2549 return false;
2550 }
2551
2552 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2553 {
2554 }
2555
2556 static void rcu_spawn_all_nocb_kthreads(int cpu)
2557 {
2558 }
2559
2560 static void __init rcu_spawn_nocb_kthreads(void)
2561 {
2562 }
2563
2564 static bool init_nocb_callback_list(struct rcu_data *rdp)
2565 {
2566 return false;
2567 }
2568
2569 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2570
2571 /*
2572 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2573 * arbitrarily long period of time with the scheduling-clock tick turned
2574 * off. RCU will be paying attention to this CPU because it is in the
2575 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2576 * machine because the scheduling-clock tick has been disabled. Therefore,
2577 * if an adaptive-ticks CPU is failing to respond to the current grace
2578 * period and has not be idle from an RCU perspective, kick it.
2579 */
2580 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2581 {
2582 #ifdef CONFIG_NO_HZ_FULL
2583 if (tick_nohz_full_cpu(cpu))
2584 smp_send_reschedule(cpu);
2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2586 }
2587
2588 /*
2589 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2590 * grace-period kthread will do force_quiescent_state() processing?
2591 * The idea is to avoid waking up RCU core processing on such a
2592 * CPU unless the grace period has extended for too long.
2593 *
2594 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2595 * CONFIG_RCU_NOCB_CPU CPUs.
2596 */
2597 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2598 {
2599 #ifdef CONFIG_NO_HZ_FULL
2600 if (tick_nohz_full_cpu(smp_processor_id()) &&
2601 (!rcu_gp_in_progress(rsp) ||
2602 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2603 return true;
2604 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2605 return false;
2606 }
2607
2608 /*
2609 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2610 */
2611 static void rcu_bind_gp_kthread(void)
2612 {
2613 int __maybe_unused cpu;
2614
2615 if (!tick_nohz_full_enabled())
2616 return;
2617 housekeeping_affine(current, HK_FLAG_RCU);
2618 }
2619
2620 /* Record the current task on dyntick-idle entry. */
2621 static void rcu_dynticks_task_enter(void)
2622 {
2623 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2624 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2625 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2626 }
2627
2628 /* Record no current task on dyntick-idle exit. */
2629 static void rcu_dynticks_task_exit(void)
2630 {
2631 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2632 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2633 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2634 }