]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/tree_plugin.h
rcu: Remove unused ->rcu_read_unlock_special.b.deferred_qs field
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
12 */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
24 */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 if (IS_ENABLED(CONFIG_RCU_TRACE))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
33 if (rcu_fanout_exact)
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 if (RCU_FANOUT_LEAF != 16)
42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
47 if (nr_cpu_ids != NR_CPUS)
48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (qovld != DEFAULT_RCU_QOVLD)
60 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61 if (jiffies_till_first_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63 if (jiffies_till_next_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65 if (jiffies_till_sched_qs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67 if (rcu_kick_kthreads)
68 pr_info("\tKick kthreads if too-long grace period.\n");
69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71 if (gp_preinit_delay)
72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73 if (gp_init_delay)
74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75 if (gp_cleanup_delay)
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77 if (!use_softirq)
78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80 pr_info("\tRCU debug extended QS entry/exit.\n");
81 rcupdate_announce_bootup_oddness();
82 }
83
84 #ifdef CONFIG_PREEMPT_RCU
85
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
88
89 /*
90 * Tell them what RCU they are running.
91 */
92 static void __init rcu_bootup_announce(void)
93 {
94 pr_info("Preemptible hierarchical RCU implementation.\n");
95 rcu_bootup_announce_oddness();
96 }
97
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS 0x8
100 #define RCU_EXP_TASKS 0x4
101 #define RCU_GP_BLKD 0x2
102 #define RCU_EXP_BLKD 0x1
103
104 /*
105 * Queues a task preempted within an RCU-preempt read-side critical
106 * section into the appropriate location within the ->blkd_tasks list,
107 * depending on the states of any ongoing normal and expedited grace
108 * periods. The ->gp_tasks pointer indicates which element the normal
109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110 * indicates which element the expedited grace period is waiting on (again,
111 * NULL if none). If a grace period is waiting on a given element in the
112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
113 * adding a task to the tail of the list blocks any grace period that is
114 * already waiting on one of the elements. In contrast, adding a task
115 * to the head of the list won't block any grace period that is already
116 * waiting on one of the elements.
117 *
118 * This queuing is imprecise, and can sometimes make an ongoing grace
119 * period wait for a task that is not strictly speaking blocking it.
120 * Given the choice, we needlessly block a normal grace period rather than
121 * blocking an expedited grace period.
122 *
123 * Note that an endless sequence of expedited grace periods still cannot
124 * indefinitely postpone a normal grace period. Eventually, all of the
125 * fixed number of preempted tasks blocking the normal grace period that are
126 * not also blocking the expedited grace period will resume and complete
127 * their RCU read-side critical sections. At that point, the ->gp_tasks
128 * pointer will equal the ->exp_tasks pointer, at which point the end of
129 * the corresponding expedited grace period will also be the end of the
130 * normal grace period.
131 */
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133 __releases(rnp->lock) /* But leaves rrupts disabled. */
134 {
135 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139 struct task_struct *t = current;
140
141 raw_lockdep_assert_held_rcu_node(rnp);
142 WARN_ON_ONCE(rdp->mynode != rnp);
143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144 /* RCU better not be waiting on newly onlined CPUs! */
145 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146 rdp->grpmask);
147
148 /*
149 * Decide where to queue the newly blocked task. In theory,
150 * this could be an if-statement. In practice, when I tried
151 * that, it was quite messy.
152 */
153 switch (blkd_state) {
154 case 0:
155 case RCU_EXP_TASKS:
156 case RCU_EXP_TASKS + RCU_GP_BLKD:
157 case RCU_GP_TASKS:
158 case RCU_GP_TASKS + RCU_EXP_TASKS:
159
160 /*
161 * Blocking neither GP, or first task blocking the normal
162 * GP but not blocking the already-waiting expedited GP.
163 * Queue at the head of the list to avoid unnecessarily
164 * blocking the already-waiting GPs.
165 */
166 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167 break;
168
169 case RCU_EXP_BLKD:
170 case RCU_GP_BLKD:
171 case RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_BLKD:
173 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175
176 /*
177 * First task arriving that blocks either GP, or first task
178 * arriving that blocks the expedited GP (with the normal
179 * GP already waiting), or a task arriving that blocks
180 * both GPs with both GPs already waiting. Queue at the
181 * tail of the list to avoid any GP waiting on any of the
182 * already queued tasks that are not blocking it.
183 */
184 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185 break;
186
187 case RCU_EXP_TASKS + RCU_EXP_BLKD:
188 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
190
191 /*
192 * Second or subsequent task blocking the expedited GP.
193 * The task either does not block the normal GP, or is the
194 * first task blocking the normal GP. Queue just after
195 * the first task blocking the expedited GP.
196 */
197 list_add(&t->rcu_node_entry, rnp->exp_tasks);
198 break;
199
200 case RCU_GP_TASKS + RCU_GP_BLKD:
201 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202
203 /*
204 * Second or subsequent task blocking the normal GP.
205 * The task does not block the expedited GP. Queue just
206 * after the first task blocking the normal GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->gp_tasks);
209 break;
210
211 default:
212
213 /* Yet another exercise in excessive paranoia. */
214 WARN_ON_ONCE(1);
215 break;
216 }
217
218 /*
219 * We have now queued the task. If it was the first one to
220 * block either grace period, update the ->gp_tasks and/or
221 * ->exp_tasks pointers, respectively, to reference the newly
222 * blocked tasks.
223 */
224 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
227 }
228 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229 rnp->exp_tasks = &t->rcu_node_entry;
230 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231 !(rnp->qsmask & rdp->grpmask));
232 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233 !(rnp->expmask & rdp->grpmask));
234 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235
236 /*
237 * Report the quiescent state for the expedited GP. This expedited
238 * GP should not be able to end until we report, so there should be
239 * no need to check for a subsequent expedited GP. (Though we are
240 * still in a quiescent state in any case.)
241 */
242 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243 rcu_report_exp_rdp(rdp);
244 else
245 WARN_ON_ONCE(rdp->exp_deferred_qs);
246 }
247
248 /*
249 * Record a preemptible-RCU quiescent state for the specified CPU.
250 * Note that this does not necessarily mean that the task currently running
251 * on the CPU is in a quiescent state: Instead, it means that the current
252 * grace period need not wait on any RCU read-side critical section that
253 * starts later on this CPU. It also means that if the current task is
254 * in an RCU read-side critical section, it has already added itself to
255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
256 * current task, there might be any number of other tasks blocked while
257 * in an RCU read-side critical section.
258 *
259 * Callers to this function must disable preemption.
260 */
261 static void rcu_qs(void)
262 {
263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265 trace_rcu_grace_period(TPS("rcu_preempt"),
266 __this_cpu_read(rcu_data.gp_seq),
267 TPS("cpuqs"));
268 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
271 }
272 }
273
274 /*
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
284 *
285 * Caller must disable interrupts.
286 */
287 void rcu_note_context_switch(bool preempt)
288 {
289 struct task_struct *t = current;
290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 struct rcu_node *rnp;
292
293 trace_rcu_utilization(TPS("Start context switch"));
294 lockdep_assert_irqs_disabled();
295 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296 if (rcu_preempt_depth() > 0 &&
297 !t->rcu_read_unlock_special.b.blocked) {
298
299 /* Possibly blocking in an RCU read-side critical section. */
300 rnp = rdp->mynode;
301 raw_spin_lock_rcu_node(rnp);
302 t->rcu_read_unlock_special.b.blocked = true;
303 t->rcu_blocked_node = rnp;
304
305 /*
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
309 */
310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 trace_rcu_preempt_task(rcu_state.name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gp_seq
316 : rcu_seq_snap(&rnp->gp_seq));
317 rcu_preempt_ctxt_queue(rnp, rdp);
318 } else {
319 rcu_preempt_deferred_qs(t);
320 }
321
322 /*
323 * Either we were not in an RCU read-side critical section to
324 * begin with, or we have now recorded that critical section
325 * globally. Either way, we can now note a quiescent state
326 * for this CPU. Again, if we were in an RCU read-side critical
327 * section, and if that critical section was blocking the current
328 * grace period, then the fact that the task has been enqueued
329 * means that we continue to block the current grace period.
330 */
331 rcu_qs();
332 if (rdp->exp_deferred_qs)
333 rcu_report_exp_rdp(rdp);
334 trace_rcu_utilization(TPS("End context switch"));
335 }
336 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
337
338 /*
339 * Check for preempted RCU readers blocking the current grace period
340 * for the specified rcu_node structure. If the caller needs a reliable
341 * answer, it must hold the rcu_node's ->lock.
342 */
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344 {
345 return READ_ONCE(rnp->gp_tasks) != NULL;
346 }
347
348 /* Bias and limit values for ->rcu_read_lock_nesting. */
349 #define RCU_NEST_BIAS INT_MAX
350 #define RCU_NEST_NMAX (-INT_MAX / 2)
351 #define RCU_NEST_PMAX (INT_MAX / 2)
352
353 static void rcu_preempt_read_enter(void)
354 {
355 current->rcu_read_lock_nesting++;
356 }
357
358 static void rcu_preempt_read_exit(void)
359 {
360 current->rcu_read_lock_nesting--;
361 }
362
363 static void rcu_preempt_depth_set(int val)
364 {
365 current->rcu_read_lock_nesting = val;
366 }
367
368 /*
369 * Preemptible RCU implementation for rcu_read_lock().
370 * Just increment ->rcu_read_lock_nesting, shared state will be updated
371 * if we block.
372 */
373 void __rcu_read_lock(void)
374 {
375 rcu_preempt_read_enter();
376 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
377 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
378 barrier(); /* critical section after entry code. */
379 }
380 EXPORT_SYMBOL_GPL(__rcu_read_lock);
381
382 /*
383 * Preemptible RCU implementation for rcu_read_unlock().
384 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
385 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
386 * invoke rcu_read_unlock_special() to clean up after a context switch
387 * in an RCU read-side critical section and other special cases.
388 */
389 void __rcu_read_unlock(void)
390 {
391 struct task_struct *t = current;
392
393 if (rcu_preempt_depth() != 1) {
394 rcu_preempt_read_exit();
395 } else {
396 barrier(); /* critical section before exit code. */
397 rcu_preempt_depth_set(-RCU_NEST_BIAS);
398 barrier(); /* assign before ->rcu_read_unlock_special load */
399 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
400 rcu_read_unlock_special(t);
401 barrier(); /* ->rcu_read_unlock_special load before assign */
402 rcu_preempt_depth_set(0);
403 }
404 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
405 int rrln = rcu_preempt_depth();
406
407 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
408 }
409 }
410 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411
412 /*
413 * Advance a ->blkd_tasks-list pointer to the next entry, instead
414 * returning NULL if at the end of the list.
415 */
416 static struct list_head *rcu_next_node_entry(struct task_struct *t,
417 struct rcu_node *rnp)
418 {
419 struct list_head *np;
420
421 np = t->rcu_node_entry.next;
422 if (np == &rnp->blkd_tasks)
423 np = NULL;
424 return np;
425 }
426
427 /*
428 * Return true if the specified rcu_node structure has tasks that were
429 * preempted within an RCU read-side critical section.
430 */
431 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
432 {
433 return !list_empty(&rnp->blkd_tasks);
434 }
435
436 /*
437 * Report deferred quiescent states. The deferral time can
438 * be quite short, for example, in the case of the call from
439 * rcu_read_unlock_special().
440 */
441 static void
442 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
443 {
444 bool empty_exp;
445 bool empty_norm;
446 bool empty_exp_now;
447 struct list_head *np;
448 bool drop_boost_mutex = false;
449 struct rcu_data *rdp;
450 struct rcu_node *rnp;
451 union rcu_special special;
452
453 /*
454 * If RCU core is waiting for this CPU to exit its critical section,
455 * report the fact that it has exited. Because irqs are disabled,
456 * t->rcu_read_unlock_special cannot change.
457 */
458 special = t->rcu_read_unlock_special;
459 rdp = this_cpu_ptr(&rcu_data);
460 if (!special.s && !rdp->exp_deferred_qs) {
461 local_irq_restore(flags);
462 return;
463 }
464 t->rcu_read_unlock_special.s = 0;
465 if (special.b.need_qs)
466 rcu_qs();
467
468 /*
469 * Respond to a request by an expedited grace period for a
470 * quiescent state from this CPU. Note that requests from
471 * tasks are handled when removing the task from the
472 * blocked-tasks list below.
473 */
474 if (rdp->exp_deferred_qs)
475 rcu_report_exp_rdp(rdp);
476
477 /* Clean up if blocked during RCU read-side critical section. */
478 if (special.b.blocked) {
479
480 /*
481 * Remove this task from the list it blocked on. The task
482 * now remains queued on the rcu_node corresponding to the
483 * CPU it first blocked on, so there is no longer any need
484 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
485 */
486 rnp = t->rcu_blocked_node;
487 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
488 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
489 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
490 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
491 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
492 (!empty_norm || rnp->qsmask));
493 empty_exp = sync_rcu_exp_done(rnp);
494 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
495 np = rcu_next_node_entry(t, rnp);
496 list_del_init(&t->rcu_node_entry);
497 t->rcu_blocked_node = NULL;
498 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
499 rnp->gp_seq, t->pid);
500 if (&t->rcu_node_entry == rnp->gp_tasks)
501 WRITE_ONCE(rnp->gp_tasks, np);
502 if (&t->rcu_node_entry == rnp->exp_tasks)
503 rnp->exp_tasks = np;
504 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
505 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
507 if (&t->rcu_node_entry == rnp->boost_tasks)
508 rnp->boost_tasks = np;
509 }
510
511 /*
512 * If this was the last task on the current list, and if
513 * we aren't waiting on any CPUs, report the quiescent state.
514 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515 * so we must take a snapshot of the expedited state.
516 */
517 empty_exp_now = sync_rcu_exp_done(rnp);
518 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
519 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
520 rnp->gp_seq,
521 0, rnp->qsmask,
522 rnp->level,
523 rnp->grplo,
524 rnp->grphi,
525 !!rnp->gp_tasks);
526 rcu_report_unblock_qs_rnp(rnp, flags);
527 } else {
528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530
531 /* Unboost if we were boosted. */
532 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
533 rt_mutex_futex_unlock(&rnp->boost_mtx);
534
535 /*
536 * If this was the last task on the expedited lists,
537 * then we need to report up the rcu_node hierarchy.
538 */
539 if (!empty_exp && empty_exp_now)
540 rcu_report_exp_rnp(rnp, true);
541 } else {
542 local_irq_restore(flags);
543 }
544 }
545
546 /*
547 * Is a deferred quiescent-state pending, and are we also not in
548 * an RCU read-side critical section? It is the caller's responsibility
549 * to ensure it is otherwise safe to report any deferred quiescent
550 * states. The reason for this is that it is safe to report a
551 * quiescent state during context switch even though preemption
552 * is disabled. This function cannot be expected to understand these
553 * nuances, so the caller must handle them.
554 */
555 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
556 {
557 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
558 READ_ONCE(t->rcu_read_unlock_special.s)) &&
559 rcu_preempt_depth() <= 0;
560 }
561
562 /*
563 * Report a deferred quiescent state if needed and safe to do so.
564 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
565 * not being in an RCU read-side critical section. The caller must
566 * evaluate safety in terms of interrupt, softirq, and preemption
567 * disabling.
568 */
569 static void rcu_preempt_deferred_qs(struct task_struct *t)
570 {
571 unsigned long flags;
572
573 if (!rcu_preempt_need_deferred_qs(t))
574 return;
575 local_irq_save(flags);
576 rcu_preempt_deferred_qs_irqrestore(t, flags);
577 }
578
579 /*
580 * Minimal handler to give the scheduler a chance to re-evaluate.
581 */
582 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583 {
584 struct rcu_data *rdp;
585
586 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587 rdp->defer_qs_iw_pending = false;
588 }
589
590 /*
591 * Handle special cases during rcu_read_unlock(), such as needing to
592 * notify RCU core processing or task having blocked during the RCU
593 * read-side critical section.
594 */
595 static void rcu_read_unlock_special(struct task_struct *t)
596 {
597 unsigned long flags;
598 bool preempt_bh_were_disabled =
599 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600 bool irqs_were_disabled;
601
602 /* NMI handlers cannot block and cannot safely manipulate state. */
603 if (in_nmi())
604 return;
605
606 local_irq_save(flags);
607 irqs_were_disabled = irqs_disabled_flags(flags);
608 if (preempt_bh_were_disabled || irqs_were_disabled) {
609 bool exp;
610 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611 struct rcu_node *rnp = rdp->mynode;
612
613 exp = (t->rcu_blocked_node &&
614 READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
615 (rdp->grpmask & READ_ONCE(rnp->expmask));
616 // Need to defer quiescent state until everything is enabled.
617 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
618 // Using softirq, safe to awaken, and either the
619 // wakeup is free or there is an expedited GP.
620 raise_softirq_irqoff(RCU_SOFTIRQ);
621 } else {
622 // Enabling BH or preempt does reschedule, so...
623 // Also if no expediting, slow is OK.
624 // Plus nohz_full CPUs eventually get tick enabled.
625 set_tsk_need_resched(current);
626 set_preempt_need_resched();
627 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
628 !rdp->defer_qs_iw_pending && exp) {
629 // Get scheduler to re-evaluate and call hooks.
630 // If !IRQ_WORK, FQS scan will eventually IPI.
631 init_irq_work(&rdp->defer_qs_iw,
632 rcu_preempt_deferred_qs_handler);
633 rdp->defer_qs_iw_pending = true;
634 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
635 }
636 }
637 local_irq_restore(flags);
638 return;
639 }
640 rcu_preempt_deferred_qs_irqrestore(t, flags);
641 }
642
643 /*
644 * Check that the list of blocked tasks for the newly completed grace
645 * period is in fact empty. It is a serious bug to complete a grace
646 * period that still has RCU readers blocked! This function must be
647 * invoked -before- updating this rnp's ->gp_seq.
648 *
649 * Also, if there are blocked tasks on the list, they automatically
650 * block the newly created grace period, so set up ->gp_tasks accordingly.
651 */
652 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
653 {
654 struct task_struct *t;
655
656 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
657 raw_lockdep_assert_held_rcu_node(rnp);
658 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
659 dump_blkd_tasks(rnp, 10);
660 if (rcu_preempt_has_tasks(rnp) &&
661 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
662 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
663 t = container_of(rnp->gp_tasks, struct task_struct,
664 rcu_node_entry);
665 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
666 rnp->gp_seq, t->pid);
667 }
668 WARN_ON_ONCE(rnp->qsmask);
669 }
670
671 /*
672 * Check for a quiescent state from the current CPU, including voluntary
673 * context switches for Tasks RCU. When a task blocks, the task is
674 * recorded in the corresponding CPU's rcu_node structure, which is checked
675 * elsewhere, hence this function need only check for quiescent states
676 * related to the current CPU, not to those related to tasks.
677 */
678 static void rcu_flavor_sched_clock_irq(int user)
679 {
680 struct task_struct *t = current;
681
682 if (user || rcu_is_cpu_rrupt_from_idle()) {
683 rcu_note_voluntary_context_switch(current);
684 }
685 if (rcu_preempt_depth() > 0 ||
686 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
687 /* No QS, force context switch if deferred. */
688 if (rcu_preempt_need_deferred_qs(t)) {
689 set_tsk_need_resched(t);
690 set_preempt_need_resched();
691 }
692 } else if (rcu_preempt_need_deferred_qs(t)) {
693 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
694 return;
695 } else if (!rcu_preempt_depth()) {
696 rcu_qs(); /* Report immediate QS. */
697 return;
698 }
699
700 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
701 if (rcu_preempt_depth() > 0 &&
702 __this_cpu_read(rcu_data.core_needs_qs) &&
703 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
704 !t->rcu_read_unlock_special.b.need_qs &&
705 time_after(jiffies, rcu_state.gp_start + HZ))
706 t->rcu_read_unlock_special.b.need_qs = true;
707 }
708
709 /*
710 * Check for a task exiting while in a preemptible-RCU read-side
711 * critical section, clean up if so. No need to issue warnings, as
712 * debug_check_no_locks_held() already does this if lockdep is enabled.
713 * Besides, if this function does anything other than just immediately
714 * return, there was a bug of some sort. Spewing warnings from this
715 * function is like as not to simply obscure important prior warnings.
716 */
717 void exit_rcu(void)
718 {
719 struct task_struct *t = current;
720
721 if (unlikely(!list_empty(&current->rcu_node_entry))) {
722 rcu_preempt_depth_set(1);
723 barrier();
724 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
725 } else if (unlikely(rcu_preempt_depth())) {
726 rcu_preempt_depth_set(1);
727 } else {
728 return;
729 }
730 __rcu_read_unlock();
731 rcu_preempt_deferred_qs(current);
732 }
733
734 /*
735 * Dump the blocked-tasks state, but limit the list dump to the
736 * specified number of elements.
737 */
738 static void
739 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
740 {
741 int cpu;
742 int i;
743 struct list_head *lhp;
744 bool onl;
745 struct rcu_data *rdp;
746 struct rcu_node *rnp1;
747
748 raw_lockdep_assert_held_rcu_node(rnp);
749 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
750 __func__, rnp->grplo, rnp->grphi, rnp->level,
751 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
752 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
753 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
754 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
755 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
756 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
757 rnp->exp_tasks);
758 pr_info("%s: ->blkd_tasks", __func__);
759 i = 0;
760 list_for_each(lhp, &rnp->blkd_tasks) {
761 pr_cont(" %p", lhp);
762 if (++i >= ncheck)
763 break;
764 }
765 pr_cont("\n");
766 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
767 rdp = per_cpu_ptr(&rcu_data, cpu);
768 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
769 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
770 cpu, ".o"[onl],
771 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
772 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
773 }
774 }
775
776 #else /* #ifdef CONFIG_PREEMPT_RCU */
777
778 /*
779 * Tell them what RCU they are running.
780 */
781 static void __init rcu_bootup_announce(void)
782 {
783 pr_info("Hierarchical RCU implementation.\n");
784 rcu_bootup_announce_oddness();
785 }
786
787 /*
788 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
789 * how many quiescent states passed, just if there was at least one since
790 * the start of the grace period, this just sets a flag. The caller must
791 * have disabled preemption.
792 */
793 static void rcu_qs(void)
794 {
795 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
796 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
797 return;
798 trace_rcu_grace_period(TPS("rcu_sched"),
799 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
800 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
801 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
802 return;
803 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
804 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
805 }
806
807 /*
808 * Register an urgently needed quiescent state. If there is an
809 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
810 * dyntick-idle quiescent state visible to other CPUs, which will in
811 * some cases serve for expedited as well as normal grace periods.
812 * Either way, register a lightweight quiescent state.
813 */
814 void rcu_all_qs(void)
815 {
816 unsigned long flags;
817
818 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
819 return;
820 preempt_disable();
821 /* Load rcu_urgent_qs before other flags. */
822 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
823 preempt_enable();
824 return;
825 }
826 this_cpu_write(rcu_data.rcu_urgent_qs, false);
827 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
828 local_irq_save(flags);
829 rcu_momentary_dyntick_idle();
830 local_irq_restore(flags);
831 }
832 rcu_qs();
833 preempt_enable();
834 }
835 EXPORT_SYMBOL_GPL(rcu_all_qs);
836
837 /*
838 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
839 */
840 void rcu_note_context_switch(bool preempt)
841 {
842 trace_rcu_utilization(TPS("Start context switch"));
843 rcu_qs();
844 /* Load rcu_urgent_qs before other flags. */
845 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
846 goto out;
847 this_cpu_write(rcu_data.rcu_urgent_qs, false);
848 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
849 rcu_momentary_dyntick_idle();
850 if (!preempt)
851 rcu_tasks_qs(current);
852 out:
853 trace_rcu_utilization(TPS("End context switch"));
854 }
855 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
856
857 /*
858 * Because preemptible RCU does not exist, there are never any preempted
859 * RCU readers.
860 */
861 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
862 {
863 return 0;
864 }
865
866 /*
867 * Because there is no preemptible RCU, there can be no readers blocked.
868 */
869 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
870 {
871 return false;
872 }
873
874 /*
875 * Because there is no preemptible RCU, there can be no deferred quiescent
876 * states.
877 */
878 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
879 {
880 return false;
881 }
882 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
883
884 /*
885 * Because there is no preemptible RCU, there can be no readers blocked,
886 * so there is no need to check for blocked tasks. So check only for
887 * bogus qsmask values.
888 */
889 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
890 {
891 WARN_ON_ONCE(rnp->qsmask);
892 }
893
894 /*
895 * Check to see if this CPU is in a non-context-switch quiescent state,
896 * namely user mode and idle loop.
897 */
898 static void rcu_flavor_sched_clock_irq(int user)
899 {
900 if (user || rcu_is_cpu_rrupt_from_idle()) {
901
902 /*
903 * Get here if this CPU took its interrupt from user
904 * mode or from the idle loop, and if this is not a
905 * nested interrupt. In this case, the CPU is in
906 * a quiescent state, so note it.
907 *
908 * No memory barrier is required here because rcu_qs()
909 * references only CPU-local variables that other CPUs
910 * neither access nor modify, at least not while the
911 * corresponding CPU is online.
912 */
913
914 rcu_qs();
915 }
916 }
917
918 /*
919 * Because preemptible RCU does not exist, tasks cannot possibly exit
920 * while in preemptible RCU read-side critical sections.
921 */
922 void exit_rcu(void)
923 {
924 }
925
926 /*
927 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
928 */
929 static void
930 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
931 {
932 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
933 }
934
935 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
936
937 /*
938 * If boosting, set rcuc kthreads to realtime priority.
939 */
940 static void rcu_cpu_kthread_setup(unsigned int cpu)
941 {
942 #ifdef CONFIG_RCU_BOOST
943 struct sched_param sp;
944
945 sp.sched_priority = kthread_prio;
946 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
947 #endif /* #ifdef CONFIG_RCU_BOOST */
948 }
949
950 #ifdef CONFIG_RCU_BOOST
951
952 /*
953 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
954 * or ->boost_tasks, advancing the pointer to the next task in the
955 * ->blkd_tasks list.
956 *
957 * Note that irqs must be enabled: boosting the task can block.
958 * Returns 1 if there are more tasks needing to be boosted.
959 */
960 static int rcu_boost(struct rcu_node *rnp)
961 {
962 unsigned long flags;
963 struct task_struct *t;
964 struct list_head *tb;
965
966 if (READ_ONCE(rnp->exp_tasks) == NULL &&
967 READ_ONCE(rnp->boost_tasks) == NULL)
968 return 0; /* Nothing left to boost. */
969
970 raw_spin_lock_irqsave_rcu_node(rnp, flags);
971
972 /*
973 * Recheck under the lock: all tasks in need of boosting
974 * might exit their RCU read-side critical sections on their own.
975 */
976 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
977 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
978 return 0;
979 }
980
981 /*
982 * Preferentially boost tasks blocking expedited grace periods.
983 * This cannot starve the normal grace periods because a second
984 * expedited grace period must boost all blocked tasks, including
985 * those blocking the pre-existing normal grace period.
986 */
987 if (rnp->exp_tasks != NULL)
988 tb = rnp->exp_tasks;
989 else
990 tb = rnp->boost_tasks;
991
992 /*
993 * We boost task t by manufacturing an rt_mutex that appears to
994 * be held by task t. We leave a pointer to that rt_mutex where
995 * task t can find it, and task t will release the mutex when it
996 * exits its outermost RCU read-side critical section. Then
997 * simply acquiring this artificial rt_mutex will boost task
998 * t's priority. (Thanks to tglx for suggesting this approach!)
999 *
1000 * Note that task t must acquire rnp->lock to remove itself from
1001 * the ->blkd_tasks list, which it will do from exit() if from
1002 * nowhere else. We therefore are guaranteed that task t will
1003 * stay around at least until we drop rnp->lock. Note that
1004 * rnp->lock also resolves races between our priority boosting
1005 * and task t's exiting its outermost RCU read-side critical
1006 * section.
1007 */
1008 t = container_of(tb, struct task_struct, rcu_node_entry);
1009 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1010 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1011 /* Lock only for side effect: boosts task t's priority. */
1012 rt_mutex_lock(&rnp->boost_mtx);
1013 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1014
1015 return READ_ONCE(rnp->exp_tasks) != NULL ||
1016 READ_ONCE(rnp->boost_tasks) != NULL;
1017 }
1018
1019 /*
1020 * Priority-boosting kthread, one per leaf rcu_node.
1021 */
1022 static int rcu_boost_kthread(void *arg)
1023 {
1024 struct rcu_node *rnp = (struct rcu_node *)arg;
1025 int spincnt = 0;
1026 int more2boost;
1027
1028 trace_rcu_utilization(TPS("Start boost kthread@init"));
1029 for (;;) {
1030 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1031 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1032 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1033 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1034 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1035 more2boost = rcu_boost(rnp);
1036 if (more2boost)
1037 spincnt++;
1038 else
1039 spincnt = 0;
1040 if (spincnt > 10) {
1041 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1042 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1043 schedule_timeout_interruptible(2);
1044 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1045 spincnt = 0;
1046 }
1047 }
1048 /* NOTREACHED */
1049 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1050 return 0;
1051 }
1052
1053 /*
1054 * Check to see if it is time to start boosting RCU readers that are
1055 * blocking the current grace period, and, if so, tell the per-rcu_node
1056 * kthread to start boosting them. If there is an expedited grace
1057 * period in progress, it is always time to boost.
1058 *
1059 * The caller must hold rnp->lock, which this function releases.
1060 * The ->boost_kthread_task is immortal, so we don't need to worry
1061 * about it going away.
1062 */
1063 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1064 __releases(rnp->lock)
1065 {
1066 raw_lockdep_assert_held_rcu_node(rnp);
1067 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1068 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1069 return;
1070 }
1071 if (rnp->exp_tasks != NULL ||
1072 (rnp->gp_tasks != NULL &&
1073 rnp->boost_tasks == NULL &&
1074 rnp->qsmask == 0 &&
1075 (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) {
1076 if (rnp->exp_tasks == NULL)
1077 rnp->boost_tasks = rnp->gp_tasks;
1078 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1079 rcu_wake_cond(rnp->boost_kthread_task,
1080 READ_ONCE(rnp->boost_kthread_status));
1081 } else {
1082 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1083 }
1084 }
1085
1086 /*
1087 * Is the current CPU running the RCU-callbacks kthread?
1088 * Caller must have preemption disabled.
1089 */
1090 static bool rcu_is_callbacks_kthread(void)
1091 {
1092 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1093 }
1094
1095 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1096
1097 /*
1098 * Do priority-boost accounting for the start of a new grace period.
1099 */
1100 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1101 {
1102 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1103 }
1104
1105 /*
1106 * Create an RCU-boost kthread for the specified node if one does not
1107 * already exist. We only create this kthread for preemptible RCU.
1108 * Returns zero if all is well, a negated errno otherwise.
1109 */
1110 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1111 {
1112 int rnp_index = rnp - rcu_get_root();
1113 unsigned long flags;
1114 struct sched_param sp;
1115 struct task_struct *t;
1116
1117 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1118 return;
1119
1120 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1121 return;
1122
1123 rcu_state.boost = 1;
1124
1125 if (rnp->boost_kthread_task != NULL)
1126 return;
1127
1128 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1129 "rcub/%d", rnp_index);
1130 if (WARN_ON_ONCE(IS_ERR(t)))
1131 return;
1132
1133 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1134 rnp->boost_kthread_task = t;
1135 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1136 sp.sched_priority = kthread_prio;
1137 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1138 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1139 }
1140
1141 /*
1142 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1143 * served by the rcu_node in question. The CPU hotplug lock is still
1144 * held, so the value of rnp->qsmaskinit will be stable.
1145 *
1146 * We don't include outgoingcpu in the affinity set, use -1 if there is
1147 * no outgoing CPU. If there are no CPUs left in the affinity set,
1148 * this function allows the kthread to execute on any CPU.
1149 */
1150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1151 {
1152 struct task_struct *t = rnp->boost_kthread_task;
1153 unsigned long mask = rcu_rnp_online_cpus(rnp);
1154 cpumask_var_t cm;
1155 int cpu;
1156
1157 if (!t)
1158 return;
1159 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1160 return;
1161 for_each_leaf_node_possible_cpu(rnp, cpu)
1162 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1163 cpu != outgoingcpu)
1164 cpumask_set_cpu(cpu, cm);
1165 if (cpumask_weight(cm) == 0)
1166 cpumask_setall(cm);
1167 set_cpus_allowed_ptr(t, cm);
1168 free_cpumask_var(cm);
1169 }
1170
1171 /*
1172 * Spawn boost kthreads -- called as soon as the scheduler is running.
1173 */
1174 static void __init rcu_spawn_boost_kthreads(void)
1175 {
1176 struct rcu_node *rnp;
1177
1178 rcu_for_each_leaf_node(rnp)
1179 rcu_spawn_one_boost_kthread(rnp);
1180 }
1181
1182 static void rcu_prepare_kthreads(int cpu)
1183 {
1184 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1185 struct rcu_node *rnp = rdp->mynode;
1186
1187 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1188 if (rcu_scheduler_fully_active)
1189 rcu_spawn_one_boost_kthread(rnp);
1190 }
1191
1192 #else /* #ifdef CONFIG_RCU_BOOST */
1193
1194 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1195 __releases(rnp->lock)
1196 {
1197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1198 }
1199
1200 static bool rcu_is_callbacks_kthread(void)
1201 {
1202 return false;
1203 }
1204
1205 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1206 {
1207 }
1208
1209 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210 {
1211 }
1212
1213 static void __init rcu_spawn_boost_kthreads(void)
1214 {
1215 }
1216
1217 static void rcu_prepare_kthreads(int cpu)
1218 {
1219 }
1220
1221 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1222
1223 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1224
1225 /*
1226 * Check to see if any future non-offloaded RCU-related work will need
1227 * to be done by the current CPU, even if none need be done immediately,
1228 * returning 1 if so. This function is part of the RCU implementation;
1229 * it is -not- an exported member of the RCU API.
1230 *
1231 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1232 * CPU has RCU callbacks queued.
1233 */
1234 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1235 {
1236 *nextevt = KTIME_MAX;
1237 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1238 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1239 }
1240
1241 /*
1242 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1243 * after it.
1244 */
1245 static void rcu_cleanup_after_idle(void)
1246 {
1247 }
1248
1249 /*
1250 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1251 * is nothing.
1252 */
1253 static void rcu_prepare_for_idle(void)
1254 {
1255 }
1256
1257 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1258
1259 /*
1260 * This code is invoked when a CPU goes idle, at which point we want
1261 * to have the CPU do everything required for RCU so that it can enter
1262 * the energy-efficient dyntick-idle mode.
1263 *
1264 * The following preprocessor symbol controls this:
1265 *
1266 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1267 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1268 * is sized to be roughly one RCU grace period. Those energy-efficiency
1269 * benchmarkers who might otherwise be tempted to set this to a large
1270 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1271 * system. And if you are -that- concerned about energy efficiency,
1272 * just power the system down and be done with it!
1273 *
1274 * The value below works well in practice. If future workloads require
1275 * adjustment, they can be converted into kernel config parameters, though
1276 * making the state machine smarter might be a better option.
1277 */
1278 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1279
1280 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1281 module_param(rcu_idle_gp_delay, int, 0644);
1282
1283 /*
1284 * Try to advance callbacks on the current CPU, but only if it has been
1285 * awhile since the last time we did so. Afterwards, if there are any
1286 * callbacks ready for immediate invocation, return true.
1287 */
1288 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1289 {
1290 bool cbs_ready = false;
1291 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1292 struct rcu_node *rnp;
1293
1294 /* Exit early if we advanced recently. */
1295 if (jiffies == rdp->last_advance_all)
1296 return false;
1297 rdp->last_advance_all = jiffies;
1298
1299 rnp = rdp->mynode;
1300
1301 /*
1302 * Don't bother checking unless a grace period has
1303 * completed since we last checked and there are
1304 * callbacks not yet ready to invoke.
1305 */
1306 if ((rcu_seq_completed_gp(rdp->gp_seq,
1307 rcu_seq_current(&rnp->gp_seq)) ||
1308 unlikely(READ_ONCE(rdp->gpwrap))) &&
1309 rcu_segcblist_pend_cbs(&rdp->cblist))
1310 note_gp_changes(rdp);
1311
1312 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1313 cbs_ready = true;
1314 return cbs_ready;
1315 }
1316
1317 /*
1318 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1319 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1320 * caller about what to set the timeout.
1321 *
1322 * The caller must have disabled interrupts.
1323 */
1324 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1325 {
1326 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1327 unsigned long dj;
1328
1329 lockdep_assert_irqs_disabled();
1330
1331 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1332 if (rcu_segcblist_empty(&rdp->cblist) ||
1333 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1334 *nextevt = KTIME_MAX;
1335 return 0;
1336 }
1337
1338 /* Attempt to advance callbacks. */
1339 if (rcu_try_advance_all_cbs()) {
1340 /* Some ready to invoke, so initiate later invocation. */
1341 invoke_rcu_core();
1342 return 1;
1343 }
1344 rdp->last_accelerate = jiffies;
1345
1346 /* Request timer and round. */
1347 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1348
1349 *nextevt = basemono + dj * TICK_NSEC;
1350 return 0;
1351 }
1352
1353 /*
1354 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1355 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1356 * major task is to accelerate (that is, assign grace-period numbers to) any
1357 * recently arrived callbacks.
1358 *
1359 * The caller must have disabled interrupts.
1360 */
1361 static void rcu_prepare_for_idle(void)
1362 {
1363 bool needwake;
1364 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1365 struct rcu_node *rnp;
1366 int tne;
1367
1368 lockdep_assert_irqs_disabled();
1369 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1370 return;
1371
1372 /* Handle nohz enablement switches conservatively. */
1373 tne = READ_ONCE(tick_nohz_active);
1374 if (tne != rdp->tick_nohz_enabled_snap) {
1375 if (!rcu_segcblist_empty(&rdp->cblist))
1376 invoke_rcu_core(); /* force nohz to see update. */
1377 rdp->tick_nohz_enabled_snap = tne;
1378 return;
1379 }
1380 if (!tne)
1381 return;
1382
1383 /*
1384 * If we have not yet accelerated this jiffy, accelerate all
1385 * callbacks on this CPU.
1386 */
1387 if (rdp->last_accelerate == jiffies)
1388 return;
1389 rdp->last_accelerate = jiffies;
1390 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1391 rnp = rdp->mynode;
1392 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1393 needwake = rcu_accelerate_cbs(rnp, rdp);
1394 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1395 if (needwake)
1396 rcu_gp_kthread_wake();
1397 }
1398 }
1399
1400 /*
1401 * Clean up for exit from idle. Attempt to advance callbacks based on
1402 * any grace periods that elapsed while the CPU was idle, and if any
1403 * callbacks are now ready to invoke, initiate invocation.
1404 */
1405 static void rcu_cleanup_after_idle(void)
1406 {
1407 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1408
1409 lockdep_assert_irqs_disabled();
1410 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1411 return;
1412 if (rcu_try_advance_all_cbs())
1413 invoke_rcu_core();
1414 }
1415
1416 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1417
1418 #ifdef CONFIG_RCU_NOCB_CPU
1419
1420 /*
1421 * Offload callback processing from the boot-time-specified set of CPUs
1422 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1423 * created that pull the callbacks from the corresponding CPU, wait for
1424 * a grace period to elapse, and invoke the callbacks. These kthreads
1425 * are organized into GP kthreads, which manage incoming callbacks, wait for
1426 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1427 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1428 * do a wake_up() on their GP kthread when they insert a callback into any
1429 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1430 * in which case each kthread actively polls its CPU. (Which isn't so great
1431 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1432 *
1433 * This is intended to be used in conjunction with Frederic Weisbecker's
1434 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1435 * running CPU-bound user-mode computations.
1436 *
1437 * Offloading of callbacks can also be used as an energy-efficiency
1438 * measure because CPUs with no RCU callbacks queued are more aggressive
1439 * about entering dyntick-idle mode.
1440 */
1441
1442
1443 /*
1444 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1445 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1446 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1447 * given, a warning is emitted and all CPUs are offloaded.
1448 */
1449 static int __init rcu_nocb_setup(char *str)
1450 {
1451 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1452 if (!strcasecmp(str, "all"))
1453 cpumask_setall(rcu_nocb_mask);
1454 else
1455 if (cpulist_parse(str, rcu_nocb_mask)) {
1456 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1457 cpumask_setall(rcu_nocb_mask);
1458 }
1459 return 1;
1460 }
1461 __setup("rcu_nocbs=", rcu_nocb_setup);
1462
1463 static int __init parse_rcu_nocb_poll(char *arg)
1464 {
1465 rcu_nocb_poll = true;
1466 return 0;
1467 }
1468 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1469
1470 /*
1471 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1472 * After all, the main point of bypassing is to avoid lock contention
1473 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1474 */
1475 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1476 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1477
1478 /*
1479 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1480 * lock isn't immediately available, increment ->nocb_lock_contended to
1481 * flag the contention.
1482 */
1483 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1484 __acquires(&rdp->nocb_bypass_lock)
1485 {
1486 lockdep_assert_irqs_disabled();
1487 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1488 return;
1489 atomic_inc(&rdp->nocb_lock_contended);
1490 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1491 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1492 raw_spin_lock(&rdp->nocb_bypass_lock);
1493 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1494 atomic_dec(&rdp->nocb_lock_contended);
1495 }
1496
1497 /*
1498 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1499 * not contended. Please note that this is extremely special-purpose,
1500 * relying on the fact that at most two kthreads and one CPU contend for
1501 * this lock, and also that the two kthreads are guaranteed to have frequent
1502 * grace-period-duration time intervals between successive acquisitions
1503 * of the lock. This allows us to use an extremely simple throttling
1504 * mechanism, and further to apply it only to the CPU doing floods of
1505 * call_rcu() invocations. Don't try this at home!
1506 */
1507 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1508 {
1509 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1510 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1511 cpu_relax();
1512 }
1513
1514 /*
1515 * Conditionally acquire the specified rcu_data structure's
1516 * ->nocb_bypass_lock.
1517 */
1518 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1519 {
1520 lockdep_assert_irqs_disabled();
1521 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1522 }
1523
1524 /*
1525 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1526 */
1527 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1528 __releases(&rdp->nocb_bypass_lock)
1529 {
1530 lockdep_assert_irqs_disabled();
1531 raw_spin_unlock(&rdp->nocb_bypass_lock);
1532 }
1533
1534 /*
1535 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1536 * if it corresponds to a no-CBs CPU.
1537 */
1538 static void rcu_nocb_lock(struct rcu_data *rdp)
1539 {
1540 lockdep_assert_irqs_disabled();
1541 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1542 return;
1543 raw_spin_lock(&rdp->nocb_lock);
1544 }
1545
1546 /*
1547 * Release the specified rcu_data structure's ->nocb_lock, but only
1548 * if it corresponds to a no-CBs CPU.
1549 */
1550 static void rcu_nocb_unlock(struct rcu_data *rdp)
1551 {
1552 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1553 lockdep_assert_irqs_disabled();
1554 raw_spin_unlock(&rdp->nocb_lock);
1555 }
1556 }
1557
1558 /*
1559 * Release the specified rcu_data structure's ->nocb_lock and restore
1560 * interrupts, but only if it corresponds to a no-CBs CPU.
1561 */
1562 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1563 unsigned long flags)
1564 {
1565 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1566 lockdep_assert_irqs_disabled();
1567 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1568 } else {
1569 local_irq_restore(flags);
1570 }
1571 }
1572
1573 /* Lockdep check that ->cblist may be safely accessed. */
1574 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1575 {
1576 lockdep_assert_irqs_disabled();
1577 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1578 lockdep_assert_held(&rdp->nocb_lock);
1579 }
1580
1581 /*
1582 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1583 * grace period.
1584 */
1585 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1586 {
1587 swake_up_all(sq);
1588 }
1589
1590 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1591 {
1592 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1593 }
1594
1595 static void rcu_init_one_nocb(struct rcu_node *rnp)
1596 {
1597 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1598 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1599 }
1600
1601 /* Is the specified CPU a no-CBs CPU? */
1602 bool rcu_is_nocb_cpu(int cpu)
1603 {
1604 if (cpumask_available(rcu_nocb_mask))
1605 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1606 return false;
1607 }
1608
1609 /*
1610 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1611 * and this function releases it.
1612 */
1613 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1614 unsigned long flags)
1615 __releases(rdp->nocb_lock)
1616 {
1617 bool needwake = false;
1618 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1619
1620 lockdep_assert_held(&rdp->nocb_lock);
1621 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1622 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1623 TPS("AlreadyAwake"));
1624 rcu_nocb_unlock_irqrestore(rdp, flags);
1625 return;
1626 }
1627 del_timer(&rdp->nocb_timer);
1628 rcu_nocb_unlock_irqrestore(rdp, flags);
1629 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1630 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1631 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1632 needwake = true;
1633 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1634 }
1635 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1636 if (needwake)
1637 wake_up_process(rdp_gp->nocb_gp_kthread);
1638 }
1639
1640 /*
1641 * Arrange to wake the GP kthread for this NOCB group at some future
1642 * time when it is safe to do so.
1643 */
1644 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1645 const char *reason)
1646 {
1647 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1648 mod_timer(&rdp->nocb_timer, jiffies + 1);
1649 if (rdp->nocb_defer_wakeup < waketype)
1650 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1651 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1652 }
1653
1654 /*
1655 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1656 * However, if there is a callback to be enqueued and if ->nocb_bypass
1657 * proves to be initially empty, just return false because the no-CB GP
1658 * kthread may need to be awakened in this case.
1659 *
1660 * Note that this function always returns true if rhp is NULL.
1661 */
1662 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1663 unsigned long j)
1664 {
1665 struct rcu_cblist rcl;
1666
1667 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1668 rcu_lockdep_assert_cblist_protected(rdp);
1669 lockdep_assert_held(&rdp->nocb_bypass_lock);
1670 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1671 raw_spin_unlock(&rdp->nocb_bypass_lock);
1672 return false;
1673 }
1674 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1675 if (rhp)
1676 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1677 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1678 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1679 WRITE_ONCE(rdp->nocb_bypass_first, j);
1680 rcu_nocb_bypass_unlock(rdp);
1681 return true;
1682 }
1683
1684 /*
1685 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1686 * However, if there is a callback to be enqueued and if ->nocb_bypass
1687 * proves to be initially empty, just return false because the no-CB GP
1688 * kthread may need to be awakened in this case.
1689 *
1690 * Note that this function always returns true if rhp is NULL.
1691 */
1692 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1693 unsigned long j)
1694 {
1695 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1696 return true;
1697 rcu_lockdep_assert_cblist_protected(rdp);
1698 rcu_nocb_bypass_lock(rdp);
1699 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1700 }
1701
1702 /*
1703 * If the ->nocb_bypass_lock is immediately available, flush the
1704 * ->nocb_bypass queue into ->cblist.
1705 */
1706 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1707 {
1708 rcu_lockdep_assert_cblist_protected(rdp);
1709 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1710 !rcu_nocb_bypass_trylock(rdp))
1711 return;
1712 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1713 }
1714
1715 /*
1716 * See whether it is appropriate to use the ->nocb_bypass list in order
1717 * to control contention on ->nocb_lock. A limited number of direct
1718 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1719 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1720 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1721 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1722 * used if ->cblist is empty, because otherwise callbacks can be stranded
1723 * on ->nocb_bypass because we cannot count on the current CPU ever again
1724 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1725 * non-empty, the corresponding no-CBs grace-period kthread must not be
1726 * in an indefinite sleep state.
1727 *
1728 * Finally, it is not permitted to use the bypass during early boot,
1729 * as doing so would confuse the auto-initialization code. Besides
1730 * which, there is no point in worrying about lock contention while
1731 * there is only one CPU in operation.
1732 */
1733 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1734 bool *was_alldone, unsigned long flags)
1735 {
1736 unsigned long c;
1737 unsigned long cur_gp_seq;
1738 unsigned long j = jiffies;
1739 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1740
1741 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1742 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1743 return false; /* Not offloaded, no bypassing. */
1744 }
1745 lockdep_assert_irqs_disabled();
1746
1747 // Don't use ->nocb_bypass during early boot.
1748 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1749 rcu_nocb_lock(rdp);
1750 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1751 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1752 return false;
1753 }
1754
1755 // If we have advanced to a new jiffy, reset counts to allow
1756 // moving back from ->nocb_bypass to ->cblist.
1757 if (j == rdp->nocb_nobypass_last) {
1758 c = rdp->nocb_nobypass_count + 1;
1759 } else {
1760 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1761 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1762 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1763 nocb_nobypass_lim_per_jiffy))
1764 c = 0;
1765 else if (c > nocb_nobypass_lim_per_jiffy)
1766 c = nocb_nobypass_lim_per_jiffy;
1767 }
1768 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1769
1770 // If there hasn't yet been all that many ->cblist enqueues
1771 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1772 // ->nocb_bypass first.
1773 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1774 rcu_nocb_lock(rdp);
1775 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1776 if (*was_alldone)
1777 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1778 TPS("FirstQ"));
1779 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1780 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1781 return false; // Caller must enqueue the callback.
1782 }
1783
1784 // If ->nocb_bypass has been used too long or is too full,
1785 // flush ->nocb_bypass to ->cblist.
1786 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1787 ncbs >= qhimark) {
1788 rcu_nocb_lock(rdp);
1789 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1790 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1791 if (*was_alldone)
1792 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1793 TPS("FirstQ"));
1794 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1795 return false; // Caller must enqueue the callback.
1796 }
1797 if (j != rdp->nocb_gp_adv_time &&
1798 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1799 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1800 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1801 rdp->nocb_gp_adv_time = j;
1802 }
1803 rcu_nocb_unlock_irqrestore(rdp, flags);
1804 return true; // Callback already enqueued.
1805 }
1806
1807 // We need to use the bypass.
1808 rcu_nocb_wait_contended(rdp);
1809 rcu_nocb_bypass_lock(rdp);
1810 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1811 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1812 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1813 if (!ncbs) {
1814 WRITE_ONCE(rdp->nocb_bypass_first, j);
1815 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1816 }
1817 rcu_nocb_bypass_unlock(rdp);
1818 smp_mb(); /* Order enqueue before wake. */
1819 if (ncbs) {
1820 local_irq_restore(flags);
1821 } else {
1822 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1823 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1824 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1825 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1826 TPS("FirstBQwake"));
1827 __call_rcu_nocb_wake(rdp, true, flags);
1828 } else {
1829 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1830 TPS("FirstBQnoWake"));
1831 rcu_nocb_unlock_irqrestore(rdp, flags);
1832 }
1833 }
1834 return true; // Callback already enqueued.
1835 }
1836
1837 /*
1838 * Awaken the no-CBs grace-period kthead if needed, either due to it
1839 * legitimately being asleep or due to overload conditions.
1840 *
1841 * If warranted, also wake up the kthread servicing this CPUs queues.
1842 */
1843 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1844 unsigned long flags)
1845 __releases(rdp->nocb_lock)
1846 {
1847 unsigned long cur_gp_seq;
1848 unsigned long j;
1849 long len;
1850 struct task_struct *t;
1851
1852 // If we are being polled or there is no kthread, just leave.
1853 t = READ_ONCE(rdp->nocb_gp_kthread);
1854 if (rcu_nocb_poll || !t) {
1855 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1856 TPS("WakeNotPoll"));
1857 rcu_nocb_unlock_irqrestore(rdp, flags);
1858 return;
1859 }
1860 // Need to actually to a wakeup.
1861 len = rcu_segcblist_n_cbs(&rdp->cblist);
1862 if (was_alldone) {
1863 rdp->qlen_last_fqs_check = len;
1864 if (!irqs_disabled_flags(flags)) {
1865 /* ... if queue was empty ... */
1866 wake_nocb_gp(rdp, false, flags);
1867 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1868 TPS("WakeEmpty"));
1869 } else {
1870 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1871 TPS("WakeEmptyIsDeferred"));
1872 rcu_nocb_unlock_irqrestore(rdp, flags);
1873 }
1874 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1875 /* ... or if many callbacks queued. */
1876 rdp->qlen_last_fqs_check = len;
1877 j = jiffies;
1878 if (j != rdp->nocb_gp_adv_time &&
1879 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1880 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1881 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1882 rdp->nocb_gp_adv_time = j;
1883 }
1884 smp_mb(); /* Enqueue before timer_pending(). */
1885 if ((rdp->nocb_cb_sleep ||
1886 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1887 !timer_pending(&rdp->nocb_bypass_timer))
1888 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1889 TPS("WakeOvfIsDeferred"));
1890 rcu_nocb_unlock_irqrestore(rdp, flags);
1891 } else {
1892 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1893 rcu_nocb_unlock_irqrestore(rdp, flags);
1894 }
1895 return;
1896 }
1897
1898 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1899 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1900 {
1901 unsigned long flags;
1902 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1903
1904 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1905 rcu_nocb_lock_irqsave(rdp, flags);
1906 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1907 __call_rcu_nocb_wake(rdp, true, flags);
1908 }
1909
1910 /*
1911 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1912 * or for grace periods to end.
1913 */
1914 static void nocb_gp_wait(struct rcu_data *my_rdp)
1915 {
1916 bool bypass = false;
1917 long bypass_ncbs;
1918 int __maybe_unused cpu = my_rdp->cpu;
1919 unsigned long cur_gp_seq;
1920 unsigned long flags;
1921 bool gotcbs = false;
1922 unsigned long j = jiffies;
1923 bool needwait_gp = false; // This prevents actual uninitialized use.
1924 bool needwake;
1925 bool needwake_gp;
1926 struct rcu_data *rdp;
1927 struct rcu_node *rnp;
1928 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1929 bool wasempty = false;
1930
1931 /*
1932 * Each pass through the following loop checks for CBs and for the
1933 * nearest grace period (if any) to wait for next. The CB kthreads
1934 * and the global grace-period kthread are awakened if needed.
1935 */
1936 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1937 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1938 rcu_nocb_lock_irqsave(rdp, flags);
1939 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1940 if (bypass_ncbs &&
1941 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1942 bypass_ncbs > 2 * qhimark)) {
1943 // Bypass full or old, so flush it.
1944 (void)rcu_nocb_try_flush_bypass(rdp, j);
1945 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1946 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1947 rcu_nocb_unlock_irqrestore(rdp, flags);
1948 continue; /* No callbacks here, try next. */
1949 }
1950 if (bypass_ncbs) {
1951 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1952 TPS("Bypass"));
1953 bypass = true;
1954 }
1955 rnp = rdp->mynode;
1956 if (bypass) { // Avoid race with first bypass CB.
1957 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1958 RCU_NOCB_WAKE_NOT);
1959 del_timer(&my_rdp->nocb_timer);
1960 }
1961 // Advance callbacks if helpful and low contention.
1962 needwake_gp = false;
1963 if (!rcu_segcblist_restempty(&rdp->cblist,
1964 RCU_NEXT_READY_TAIL) ||
1965 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1966 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1967 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1968 needwake_gp = rcu_advance_cbs(rnp, rdp);
1969 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1970 RCU_NEXT_READY_TAIL);
1971 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1972 }
1973 // Need to wait on some grace period?
1974 WARN_ON_ONCE(wasempty &&
1975 !rcu_segcblist_restempty(&rdp->cblist,
1976 RCU_NEXT_READY_TAIL));
1977 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1978 if (!needwait_gp ||
1979 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1980 wait_gp_seq = cur_gp_seq;
1981 needwait_gp = true;
1982 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1983 TPS("NeedWaitGP"));
1984 }
1985 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1986 needwake = rdp->nocb_cb_sleep;
1987 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1988 smp_mb(); /* CB invocation -after- GP end. */
1989 } else {
1990 needwake = false;
1991 }
1992 rcu_nocb_unlock_irqrestore(rdp, flags);
1993 if (needwake) {
1994 swake_up_one(&rdp->nocb_cb_wq);
1995 gotcbs = true;
1996 }
1997 if (needwake_gp)
1998 rcu_gp_kthread_wake();
1999 }
2000
2001 my_rdp->nocb_gp_bypass = bypass;
2002 my_rdp->nocb_gp_gp = needwait_gp;
2003 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2004 if (bypass && !rcu_nocb_poll) {
2005 // At least one child with non-empty ->nocb_bypass, so set
2006 // timer in order to avoid stranding its callbacks.
2007 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2008 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2009 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2010 }
2011 if (rcu_nocb_poll) {
2012 /* Polling, so trace if first poll in the series. */
2013 if (gotcbs)
2014 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2015 schedule_timeout_interruptible(1);
2016 } else if (!needwait_gp) {
2017 /* Wait for callbacks to appear. */
2018 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2019 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2020 !READ_ONCE(my_rdp->nocb_gp_sleep));
2021 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2022 } else {
2023 rnp = my_rdp->mynode;
2024 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2025 swait_event_interruptible_exclusive(
2026 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2027 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2028 !READ_ONCE(my_rdp->nocb_gp_sleep));
2029 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2030 }
2031 if (!rcu_nocb_poll) {
2032 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033 if (bypass)
2034 del_timer(&my_rdp->nocb_bypass_timer);
2035 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2036 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2037 }
2038 my_rdp->nocb_gp_seq = -1;
2039 WARN_ON(signal_pending(current));
2040 }
2041
2042 /*
2043 * No-CBs grace-period-wait kthread. There is one of these per group
2044 * of CPUs, but only once at least one CPU in that group has come online
2045 * at least once since boot. This kthread checks for newly posted
2046 * callbacks from any of the CPUs it is responsible for, waits for a
2047 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048 * that then have callback-invocation work to do.
2049 */
2050 static int rcu_nocb_gp_kthread(void *arg)
2051 {
2052 struct rcu_data *rdp = arg;
2053
2054 for (;;) {
2055 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2056 nocb_gp_wait(rdp);
2057 cond_resched_tasks_rcu_qs();
2058 }
2059 return 0;
2060 }
2061
2062 /*
2063 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064 * then, if there are no more, wait for more to appear.
2065 */
2066 static void nocb_cb_wait(struct rcu_data *rdp)
2067 {
2068 unsigned long cur_gp_seq;
2069 unsigned long flags;
2070 bool needwake_gp = false;
2071 struct rcu_node *rnp = rdp->mynode;
2072
2073 local_irq_save(flags);
2074 rcu_momentary_dyntick_idle();
2075 local_irq_restore(flags);
2076 local_bh_disable();
2077 rcu_do_batch(rdp);
2078 local_bh_enable();
2079 lockdep_assert_irqs_enabled();
2080 rcu_nocb_lock_irqsave(rdp, flags);
2081 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2082 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2083 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2084 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2085 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2086 }
2087 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2088 rcu_nocb_unlock_irqrestore(rdp, flags);
2089 if (needwake_gp)
2090 rcu_gp_kthread_wake();
2091 return;
2092 }
2093
2094 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2095 WRITE_ONCE(rdp->nocb_cb_sleep, true);
2096 rcu_nocb_unlock_irqrestore(rdp, flags);
2097 if (needwake_gp)
2098 rcu_gp_kthread_wake();
2099 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2100 !READ_ONCE(rdp->nocb_cb_sleep));
2101 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2102 /* ^^^ Ensure CB invocation follows _sleep test. */
2103 return;
2104 }
2105 WARN_ON(signal_pending(current));
2106 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2107 }
2108
2109 /*
2110 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2111 * nocb_cb_wait() to do the dirty work.
2112 */
2113 static int rcu_nocb_cb_kthread(void *arg)
2114 {
2115 struct rcu_data *rdp = arg;
2116
2117 // Each pass through this loop does one callback batch, and,
2118 // if there are no more ready callbacks, waits for them.
2119 for (;;) {
2120 nocb_cb_wait(rdp);
2121 cond_resched_tasks_rcu_qs();
2122 }
2123 return 0;
2124 }
2125
2126 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2127 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2128 {
2129 return READ_ONCE(rdp->nocb_defer_wakeup);
2130 }
2131
2132 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2133 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2134 {
2135 unsigned long flags;
2136 int ndw;
2137
2138 rcu_nocb_lock_irqsave(rdp, flags);
2139 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2140 rcu_nocb_unlock_irqrestore(rdp, flags);
2141 return;
2142 }
2143 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2144 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2145 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2146 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2147 }
2148
2149 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2150 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2151 {
2152 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2153
2154 do_nocb_deferred_wakeup_common(rdp);
2155 }
2156
2157 /*
2158 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159 * This means we do an inexact common-case check. Note that if
2160 * we miss, ->nocb_timer will eventually clean things up.
2161 */
2162 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2163 {
2164 if (rcu_nocb_need_deferred_wakeup(rdp))
2165 do_nocb_deferred_wakeup_common(rdp);
2166 }
2167
2168 void __init rcu_init_nohz(void)
2169 {
2170 int cpu;
2171 bool need_rcu_nocb_mask = false;
2172 struct rcu_data *rdp;
2173
2174 #if defined(CONFIG_NO_HZ_FULL)
2175 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2176 need_rcu_nocb_mask = true;
2177 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2178
2179 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2180 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2181 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2182 return;
2183 }
2184 }
2185 if (!cpumask_available(rcu_nocb_mask))
2186 return;
2187
2188 #if defined(CONFIG_NO_HZ_FULL)
2189 if (tick_nohz_full_running)
2190 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2191 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2192
2193 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2194 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2195 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2196 rcu_nocb_mask);
2197 }
2198 if (cpumask_empty(rcu_nocb_mask))
2199 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2200 else
2201 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202 cpumask_pr_args(rcu_nocb_mask));
2203 if (rcu_nocb_poll)
2204 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2205
2206 for_each_cpu(cpu, rcu_nocb_mask) {
2207 rdp = per_cpu_ptr(&rcu_data, cpu);
2208 if (rcu_segcblist_empty(&rdp->cblist))
2209 rcu_segcblist_init(&rdp->cblist);
2210 rcu_segcblist_offload(&rdp->cblist);
2211 }
2212 rcu_organize_nocb_kthreads();
2213 }
2214
2215 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2216 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2217 {
2218 init_swait_queue_head(&rdp->nocb_cb_wq);
2219 init_swait_queue_head(&rdp->nocb_gp_wq);
2220 raw_spin_lock_init(&rdp->nocb_lock);
2221 raw_spin_lock_init(&rdp->nocb_bypass_lock);
2222 raw_spin_lock_init(&rdp->nocb_gp_lock);
2223 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2224 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2225 rcu_cblist_init(&rdp->nocb_bypass);
2226 }
2227
2228 /*
2229 * If the specified CPU is a no-CBs CPU that does not already have its
2230 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2231 * for this CPU's group has not yet been created, spawn it as well.
2232 */
2233 static void rcu_spawn_one_nocb_kthread(int cpu)
2234 {
2235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2236 struct rcu_data *rdp_gp;
2237 struct task_struct *t;
2238
2239 /*
2240 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241 * then nothing to do.
2242 */
2243 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2244 return;
2245
2246 /* If we didn't spawn the GP kthread first, reorganize! */
2247 rdp_gp = rdp->nocb_gp_rdp;
2248 if (!rdp_gp->nocb_gp_kthread) {
2249 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2250 "rcuog/%d", rdp_gp->cpu);
2251 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2252 return;
2253 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2254 }
2255
2256 /* Spawn the kthread for this CPU. */
2257 t = kthread_run(rcu_nocb_cb_kthread, rdp,
2258 "rcuo%c/%d", rcu_state.abbr, cpu);
2259 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2260 return;
2261 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2262 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2263 }
2264
2265 /*
2266 * If the specified CPU is a no-CBs CPU that does not already have its
2267 * rcuo kthread, spawn it.
2268 */
2269 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2270 {
2271 if (rcu_scheduler_fully_active)
2272 rcu_spawn_one_nocb_kthread(cpu);
2273 }
2274
2275 /*
2276 * Once the scheduler is running, spawn rcuo kthreads for all online
2277 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2278 * non-boot CPUs come online -- if this changes, we will need to add
2279 * some mutual exclusion.
2280 */
2281 static void __init rcu_spawn_nocb_kthreads(void)
2282 {
2283 int cpu;
2284
2285 for_each_online_cpu(cpu)
2286 rcu_spawn_cpu_nocb_kthread(cpu);
2287 }
2288
2289 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2290 static int rcu_nocb_gp_stride = -1;
2291 module_param(rcu_nocb_gp_stride, int, 0444);
2292
2293 /*
2294 * Initialize GP-CB relationships for all no-CBs CPU.
2295 */
2296 static void __init rcu_organize_nocb_kthreads(void)
2297 {
2298 int cpu;
2299 bool firsttime = true;
2300 bool gotnocbs = false;
2301 bool gotnocbscbs = true;
2302 int ls = rcu_nocb_gp_stride;
2303 int nl = 0; /* Next GP kthread. */
2304 struct rcu_data *rdp;
2305 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
2306 struct rcu_data *rdp_prev = NULL;
2307
2308 if (!cpumask_available(rcu_nocb_mask))
2309 return;
2310 if (ls == -1) {
2311 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2312 rcu_nocb_gp_stride = ls;
2313 }
2314
2315 /*
2316 * Each pass through this loop sets up one rcu_data structure.
2317 * Should the corresponding CPU come online in the future, then
2318 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2319 */
2320 for_each_cpu(cpu, rcu_nocb_mask) {
2321 rdp = per_cpu_ptr(&rcu_data, cpu);
2322 if (rdp->cpu >= nl) {
2323 /* New GP kthread, set up for CBs & next GP. */
2324 gotnocbs = true;
2325 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2326 rdp->nocb_gp_rdp = rdp;
2327 rdp_gp = rdp;
2328 if (dump_tree) {
2329 if (!firsttime)
2330 pr_cont("%s\n", gotnocbscbs
2331 ? "" : " (self only)");
2332 gotnocbscbs = false;
2333 firsttime = false;
2334 pr_alert("%s: No-CB GP kthread CPU %d:",
2335 __func__, cpu);
2336 }
2337 } else {
2338 /* Another CB kthread, link to previous GP kthread. */
2339 gotnocbscbs = true;
2340 rdp->nocb_gp_rdp = rdp_gp;
2341 rdp_prev->nocb_next_cb_rdp = rdp;
2342 if (dump_tree)
2343 pr_cont(" %d", cpu);
2344 }
2345 rdp_prev = rdp;
2346 }
2347 if (gotnocbs && dump_tree)
2348 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2349 }
2350
2351 /*
2352 * Bind the current task to the offloaded CPUs. If there are no offloaded
2353 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2354 */
2355 void rcu_bind_current_to_nocb(void)
2356 {
2357 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2358 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2359 }
2360 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2361
2362 /*
2363 * Dump out nocb grace-period kthread state for the specified rcu_data
2364 * structure.
2365 */
2366 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2367 {
2368 struct rcu_node *rnp = rdp->mynode;
2369
2370 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2371 rdp->cpu,
2372 "kK"[!!rdp->nocb_gp_kthread],
2373 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2374 "dD"[!!rdp->nocb_defer_wakeup],
2375 "tT"[timer_pending(&rdp->nocb_timer)],
2376 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2377 "sS"[!!rdp->nocb_gp_sleep],
2378 ".W"[swait_active(&rdp->nocb_gp_wq)],
2379 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2380 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2381 ".B"[!!rdp->nocb_gp_bypass],
2382 ".G"[!!rdp->nocb_gp_gp],
2383 (long)rdp->nocb_gp_seq,
2384 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2385 }
2386
2387 /* Dump out nocb kthread state for the specified rcu_data structure. */
2388 static void show_rcu_nocb_state(struct rcu_data *rdp)
2389 {
2390 struct rcu_segcblist *rsclp = &rdp->cblist;
2391 bool waslocked;
2392 bool wastimer;
2393 bool wassleep;
2394
2395 if (rdp->nocb_gp_rdp == rdp)
2396 show_rcu_nocb_gp_state(rdp);
2397
2398 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2400 "kK"[!!rdp->nocb_cb_kthread],
2401 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2402 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2403 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2404 "sS"[!!rdp->nocb_cb_sleep],
2405 ".W"[swait_active(&rdp->nocb_cb_wq)],
2406 jiffies - rdp->nocb_bypass_first,
2407 jiffies - rdp->nocb_nobypass_last,
2408 rdp->nocb_nobypass_count,
2409 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2410 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2411 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2412 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2413 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2414 rcu_segcblist_n_cbs(&rdp->cblist));
2415
2416 /* It is OK for GP kthreads to have GP state. */
2417 if (rdp->nocb_gp_rdp == rdp)
2418 return;
2419
2420 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2421 wastimer = timer_pending(&rdp->nocb_timer);
2422 wassleep = swait_active(&rdp->nocb_gp_wq);
2423 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2424 !waslocked && !wastimer && !wassleep)
2425 return; /* Nothing untowards. */
2426
2427 pr_info(" !!! %c%c%c%c %c\n",
2428 "lL"[waslocked],
2429 "dD"[!!rdp->nocb_defer_wakeup],
2430 "tT"[wastimer],
2431 "sS"[!!rdp->nocb_gp_sleep],
2432 ".W"[wassleep]);
2433 }
2434
2435 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2436
2437 /* No ->nocb_lock to acquire. */
2438 static void rcu_nocb_lock(struct rcu_data *rdp)
2439 {
2440 }
2441
2442 /* No ->nocb_lock to release. */
2443 static void rcu_nocb_unlock(struct rcu_data *rdp)
2444 {
2445 }
2446
2447 /* No ->nocb_lock to release. */
2448 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2449 unsigned long flags)
2450 {
2451 local_irq_restore(flags);
2452 }
2453
2454 /* Lockdep check that ->cblist may be safely accessed. */
2455 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2456 {
2457 lockdep_assert_irqs_disabled();
2458 }
2459
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2461 {
2462 }
2463
2464 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2465 {
2466 return NULL;
2467 }
2468
2469 static void rcu_init_one_nocb(struct rcu_node *rnp)
2470 {
2471 }
2472
2473 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2474 unsigned long j)
2475 {
2476 return true;
2477 }
2478
2479 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2480 bool *was_alldone, unsigned long flags)
2481 {
2482 return false;
2483 }
2484
2485 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2486 unsigned long flags)
2487 {
2488 WARN_ON_ONCE(1); /* Should be dead code! */
2489 }
2490
2491 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2492 {
2493 }
2494
2495 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2496 {
2497 return false;
2498 }
2499
2500 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2501 {
2502 }
2503
2504 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2505 {
2506 }
2507
2508 static void __init rcu_spawn_nocb_kthreads(void)
2509 {
2510 }
2511
2512 static void show_rcu_nocb_state(struct rcu_data *rdp)
2513 {
2514 }
2515
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2517
2518 /*
2519 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520 * grace-period kthread will do force_quiescent_state() processing?
2521 * The idea is to avoid waking up RCU core processing on such a
2522 * CPU unless the grace period has extended for too long.
2523 *
2524 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2525 * CONFIG_RCU_NOCB_CPU CPUs.
2526 */
2527 static bool rcu_nohz_full_cpu(void)
2528 {
2529 #ifdef CONFIG_NO_HZ_FULL
2530 if (tick_nohz_full_cpu(smp_processor_id()) &&
2531 (!rcu_gp_in_progress() ||
2532 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2533 return true;
2534 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2535 return false;
2536 }
2537
2538 /*
2539 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2540 */
2541 static void rcu_bind_gp_kthread(void)
2542 {
2543 if (!tick_nohz_full_enabled())
2544 return;
2545 housekeeping_affine(current, HK_FLAG_RCU);
2546 }
2547
2548 /* Record the current task on dyntick-idle entry. */
2549 static void rcu_dynticks_task_enter(void)
2550 {
2551 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2552 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2553 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2554 }
2555
2556 /* Record no current task on dyntick-idle exit. */
2557 static void rcu_dynticks_task_exit(void)
2558 {
2559 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2560 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2561 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2562 }