]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge remote-tracking branches 'asoc/topic/es7134', 'asoc/topic/es8328', 'asoc/topic...
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34
35 #ifdef CONFIG_RCU_BOOST
36
37 #include "../locking/rtmutex_common.h"
38
39 /*
40 * Control variables for per-CPU and per-rcu_node kthreads. These
41 * handle all flavors of RCU.
42 */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47
48 #else /* #ifdef CONFIG_RCU_BOOST */
49
50 /*
51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52 * all uses are in dead code. Provide a definition to keep the compiler
53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54 * This probably needs to be excluded from -rt builds.
55 */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65
66 /*
67 * Check the RCU kernel configuration parameters and print informative
68 * messages about anything out of the ordinary.
69 */
70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 if (IS_ENABLED(CONFIG_RCU_TRACE))
73 pr_info("\tRCU debugfs-based tracing is enabled.\n");
74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 RCU_FANOUT);
78 if (rcu_fanout_exact)
79 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 if (IS_ENABLED(CONFIG_PROVE_RCU))
83 pr_info("\tRCU lockdep checking is enabled.\n");
84 if (RCU_NUM_LVLS >= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF != 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 RCU_FANOUT_LEAF);
89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 if (nr_cpu_ids != NR_CPUS)
92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
93 if (IS_ENABLED(CONFIG_RCU_BOOST))
94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
95 }
96
97 #ifdef CONFIG_PREEMPT_RCU
98
99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
102
103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 bool wake);
105
106 /*
107 * Tell them what RCU they are running.
108 */
109 static void __init rcu_bootup_announce(void)
110 {
111 pr_info("Preemptible hierarchical RCU implementation.\n");
112 rcu_bootup_announce_oddness();
113 }
114
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS 0x8
117 #define RCU_EXP_TASKS 0x4
118 #define RCU_GP_BLKD 0x2
119 #define RCU_EXP_BLKD 0x1
120
121 /*
122 * Queues a task preempted within an RCU-preempt read-side critical
123 * section into the appropriate location within the ->blkd_tasks list,
124 * depending on the states of any ongoing normal and expedited grace
125 * periods. The ->gp_tasks pointer indicates which element the normal
126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127 * indicates which element the expedited grace period is waiting on (again,
128 * NULL if none). If a grace period is waiting on a given element in the
129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
130 * adding a task to the tail of the list blocks any grace period that is
131 * already waiting on one of the elements. In contrast, adding a task
132 * to the head of the list won't block any grace period that is already
133 * waiting on one of the elements.
134 *
135 * This queuing is imprecise, and can sometimes make an ongoing grace
136 * period wait for a task that is not strictly speaking blocking it.
137 * Given the choice, we needlessly block a normal grace period rather than
138 * blocking an expedited grace period.
139 *
140 * Note that an endless sequence of expedited grace periods still cannot
141 * indefinitely postpone a normal grace period. Eventually, all of the
142 * fixed number of preempted tasks blocking the normal grace period that are
143 * not also blocking the expedited grace period will resume and complete
144 * their RCU read-side critical sections. At that point, the ->gp_tasks
145 * pointer will equal the ->exp_tasks pointer, at which point the end of
146 * the corresponding expedited grace period will also be the end of the
147 * normal grace period.
148 */
149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 __releases(rnp->lock) /* But leaves rrupts disabled. */
151 {
152 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 struct task_struct *t = current;
157
158 /*
159 * Decide where to queue the newly blocked task. In theory,
160 * this could be an if-statement. In practice, when I tried
161 * that, it was quite messy.
162 */
163 switch (blkd_state) {
164 case 0:
165 case RCU_EXP_TASKS:
166 case RCU_EXP_TASKS + RCU_GP_BLKD:
167 case RCU_GP_TASKS:
168 case RCU_GP_TASKS + RCU_EXP_TASKS:
169
170 /*
171 * Blocking neither GP, or first task blocking the normal
172 * GP but not blocking the already-waiting expedited GP.
173 * Queue at the head of the list to avoid unnecessarily
174 * blocking the already-waiting GPs.
175 */
176 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 break;
178
179 case RCU_EXP_BLKD:
180 case RCU_GP_BLKD:
181 case RCU_GP_BLKD + RCU_EXP_BLKD:
182 case RCU_GP_TASKS + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185
186 /*
187 * First task arriving that blocks either GP, or first task
188 * arriving that blocks the expedited GP (with the normal
189 * GP already waiting), or a task arriving that blocks
190 * both GPs with both GPs already waiting. Queue at the
191 * tail of the list to avoid any GP waiting on any of the
192 * already queued tasks that are not blocking it.
193 */
194 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 break;
196
197 case RCU_EXP_TASKS + RCU_EXP_BLKD:
198 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the expedited GP.
203 * The task either does not block the normal GP, or is the
204 * first task blocking the normal GP. Queue just after
205 * the first task blocking the expedited GP.
206 */
207 list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 break;
209
210 case RCU_GP_TASKS + RCU_GP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212
213 /*
214 * Second or subsequent task blocking the normal GP.
215 * The task does not block the expedited GP. Queue just
216 * after the first task blocking the normal GP.
217 */
218 list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 break;
220
221 default:
222
223 /* Yet another exercise in excessive paranoia. */
224 WARN_ON_ONCE(1);
225 break;
226 }
227
228 /*
229 * We have now queued the task. If it was the first one to
230 * block either grace period, update the ->gp_tasks and/or
231 * ->exp_tasks pointers, respectively, to reference the newly
232 * blocked tasks.
233 */
234 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 rnp->gp_tasks = &t->rcu_node_entry;
236 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 rnp->exp_tasks = &t->rcu_node_entry;
238 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
239
240 /*
241 * Report the quiescent state for the expedited GP. This expedited
242 * GP should not be able to end until we report, so there should be
243 * no need to check for a subsequent expedited GP. (Though we are
244 * still in a quiescent state in any case.)
245 */
246 if (blkd_state & RCU_EXP_BLKD &&
247 t->rcu_read_unlock_special.b.exp_need_qs) {
248 t->rcu_read_unlock_special.b.exp_need_qs = false;
249 rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 } else {
251 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 }
253 }
254
255 /*
256 * Record a preemptible-RCU quiescent state for the specified CPU. Note
257 * that this just means that the task currently running on the CPU is
258 * not in a quiescent state. There might be any number of tasks blocked
259 * while in an RCU read-side critical section.
260 *
261 * As with the other rcu_*_qs() functions, callers to this function
262 * must disable preemption.
263 */
264 static void rcu_preempt_qs(void)
265 {
266 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data_p->gpnum),
269 TPS("cpuqs"));
270 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 current->rcu_read_unlock_special.b.need_qs = false;
273 }
274 }
275
276 /*
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
286 *
287 * Caller must disable interrupts.
288 */
289 static void rcu_preempt_note_context_switch(void)
290 {
291 struct task_struct *t = current;
292 struct rcu_data *rdp;
293 struct rcu_node *rnp;
294
295 if (t->rcu_read_lock_nesting > 0 &&
296 !t->rcu_read_unlock_special.b.blocked) {
297
298 /* Possibly blocking in an RCU read-side critical section. */
299 rdp = this_cpu_ptr(rcu_state_p->rda);
300 rnp = rdp->mynode;
301 raw_spin_lock_rcu_node(rnp);
302 t->rcu_read_unlock_special.b.blocked = true;
303 t->rcu_blocked_node = rnp;
304
305 /*
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
309 */
310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 trace_rcu_preempt_task(rdp->rsp->name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gpnum
316 : rnp->gpnum + 1);
317 rcu_preempt_ctxt_queue(rnp, rdp);
318 } else if (t->rcu_read_lock_nesting < 0 &&
319 t->rcu_read_unlock_special.s) {
320
321 /*
322 * Complete exit from RCU read-side critical section on
323 * behalf of preempted instance of __rcu_read_unlock().
324 */
325 rcu_read_unlock_special(t);
326 }
327
328 /*
329 * Either we were not in an RCU read-side critical section to
330 * begin with, or we have now recorded that critical section
331 * globally. Either way, we can now note a quiescent state
332 * for this CPU. Again, if we were in an RCU read-side critical
333 * section, and if that critical section was blocking the current
334 * grace period, then the fact that the task has been enqueued
335 * means that we continue to block the current grace period.
336 */
337 rcu_preempt_qs();
338 }
339
340 /*
341 * Check for preempted RCU readers blocking the current grace period
342 * for the specified rcu_node structure. If the caller needs a reliable
343 * answer, it must hold the rcu_node's ->lock.
344 */
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 {
347 return rnp->gp_tasks != NULL;
348 }
349
350 /*
351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
352 * returning NULL if at the end of the list.
353 */
354 static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 struct rcu_node *rnp)
356 {
357 struct list_head *np;
358
359 np = t->rcu_node_entry.next;
360 if (np == &rnp->blkd_tasks)
361 np = NULL;
362 return np;
363 }
364
365 /*
366 * Return true if the specified rcu_node structure has tasks that were
367 * preempted within an RCU read-side critical section.
368 */
369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370 {
371 return !list_empty(&rnp->blkd_tasks);
372 }
373
374 /*
375 * Handle special cases during rcu_read_unlock(), such as needing to
376 * notify RCU core processing or task having blocked during the RCU
377 * read-side critical section.
378 */
379 void rcu_read_unlock_special(struct task_struct *t)
380 {
381 bool empty_exp;
382 bool empty_norm;
383 bool empty_exp_now;
384 unsigned long flags;
385 struct list_head *np;
386 bool drop_boost_mutex = false;
387 struct rcu_data *rdp;
388 struct rcu_node *rnp;
389 union rcu_special special;
390
391 /* NMI handlers cannot block and cannot safely manipulate state. */
392 if (in_nmi())
393 return;
394
395 local_irq_save(flags);
396
397 /*
398 * If RCU core is waiting for this CPU to exit its critical section,
399 * report the fact that it has exited. Because irqs are disabled,
400 * t->rcu_read_unlock_special cannot change.
401 */
402 special = t->rcu_read_unlock_special;
403 if (special.b.need_qs) {
404 rcu_preempt_qs();
405 t->rcu_read_unlock_special.b.need_qs = false;
406 if (!t->rcu_read_unlock_special.s) {
407 local_irq_restore(flags);
408 return;
409 }
410 }
411
412 /*
413 * Respond to a request for an expedited grace period, but only if
414 * we were not preempted, meaning that we were running on the same
415 * CPU throughout. If we were preempted, the exp_need_qs flag
416 * would have been cleared at the time of the first preemption,
417 * and the quiescent state would be reported when we were dequeued.
418 */
419 if (special.b.exp_need_qs) {
420 WARN_ON_ONCE(special.b.blocked);
421 t->rcu_read_unlock_special.b.exp_need_qs = false;
422 rdp = this_cpu_ptr(rcu_state_p->rda);
423 rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 if (!t->rcu_read_unlock_special.s) {
425 local_irq_restore(flags);
426 return;
427 }
428 }
429
430 /* Hardware IRQ handlers cannot block, complain if they get here. */
431 if (in_irq() || in_serving_softirq()) {
432 lockdep_rcu_suspicious(__FILE__, __LINE__,
433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 t->rcu_read_unlock_special.s,
436 t->rcu_read_unlock_special.b.blocked,
437 t->rcu_read_unlock_special.b.exp_need_qs,
438 t->rcu_read_unlock_special.b.need_qs);
439 local_irq_restore(flags);
440 return;
441 }
442
443 /* Clean up if blocked during RCU read-side critical section. */
444 if (special.b.blocked) {
445 t->rcu_read_unlock_special.b.blocked = false;
446
447 /*
448 * Remove this task from the list it blocked on. The task
449 * now remains queued on the rcu_node corresponding to the
450 * CPU it first blocked on, so there is no longer any need
451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
452 */
453 rnp = t->rcu_blocked_node;
454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
456 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
457 empty_exp = sync_rcu_preempt_exp_done(rnp);
458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 np = rcu_next_node_entry(t, rnp);
460 list_del_init(&t->rcu_node_entry);
461 t->rcu_blocked_node = NULL;
462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
463 rnp->gpnum, t->pid);
464 if (&t->rcu_node_entry == rnp->gp_tasks)
465 rnp->gp_tasks = np;
466 if (&t->rcu_node_entry == rnp->exp_tasks)
467 rnp->exp_tasks = np;
468 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 if (&t->rcu_node_entry == rnp->boost_tasks)
470 rnp->boost_tasks = np;
471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 }
474
475 /*
476 * If this was the last task on the current list, and if
477 * we aren't waiting on any CPUs, report the quiescent state.
478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 * so we must take a snapshot of the expedited state.
480 */
481 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
482 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
484 rnp->gpnum,
485 0, rnp->qsmask,
486 rnp->level,
487 rnp->grplo,
488 rnp->grphi,
489 !!rnp->gp_tasks);
490 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
491 } else {
492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
493 }
494
495 /* Unboost if we were boosted. */
496 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
497 rt_mutex_unlock(&rnp->boost_mtx);
498
499 /*
500 * If this was the last task on the expedited lists,
501 * then we need to report up the rcu_node hierarchy.
502 */
503 if (!empty_exp && empty_exp_now)
504 rcu_report_exp_rnp(rcu_state_p, rnp, true);
505 } else {
506 local_irq_restore(flags);
507 }
508 }
509
510 /*
511 * Dump detailed information for all tasks blocking the current RCU
512 * grace period on the specified rcu_node structure.
513 */
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515 {
516 unsigned long flags;
517 struct task_struct *t;
518
519 raw_spin_lock_irqsave_rcu_node(rnp, flags);
520 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
522 return;
523 }
524 t = list_entry(rnp->gp_tasks->prev,
525 struct task_struct, rcu_node_entry);
526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 sched_show_task(t);
528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530
531 /*
532 * Dump detailed information for all tasks blocking the current RCU
533 * grace period.
534 */
535 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536 {
537 struct rcu_node *rnp = rcu_get_root(rsp);
538
539 rcu_print_detail_task_stall_rnp(rnp);
540 rcu_for_each_leaf_node(rsp, rnp)
541 rcu_print_detail_task_stall_rnp(rnp);
542 }
543
544 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545 {
546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 rnp->level, rnp->grplo, rnp->grphi);
548 }
549
550 static void rcu_print_task_stall_end(void)
551 {
552 pr_cont("\n");
553 }
554
555 /*
556 * Scan the current list of tasks blocked within RCU read-side critical
557 * sections, printing out the tid of each.
558 */
559 static int rcu_print_task_stall(struct rcu_node *rnp)
560 {
561 struct task_struct *t;
562 int ndetected = 0;
563
564 if (!rcu_preempt_blocked_readers_cgp(rnp))
565 return 0;
566 rcu_print_task_stall_begin(rnp);
567 t = list_entry(rnp->gp_tasks->prev,
568 struct task_struct, rcu_node_entry);
569 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
570 pr_cont(" P%d", t->pid);
571 ndetected++;
572 }
573 rcu_print_task_stall_end();
574 return ndetected;
575 }
576
577 /*
578 * Scan the current list of tasks blocked within RCU read-side critical
579 * sections, printing out the tid of each that is blocking the current
580 * expedited grace period.
581 */
582 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583 {
584 struct task_struct *t;
585 int ndetected = 0;
586
587 if (!rnp->exp_tasks)
588 return 0;
589 t = list_entry(rnp->exp_tasks->prev,
590 struct task_struct, rcu_node_entry);
591 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 pr_cont(" P%d", t->pid);
593 ndetected++;
594 }
595 return ndetected;
596 }
597
598 /*
599 * Check that the list of blocked tasks for the newly completed grace
600 * period is in fact empty. It is a serious bug to complete a grace
601 * period that still has RCU readers blocked! This function must be
602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603 * must be held by the caller.
604 *
605 * Also, if there are blocked tasks on the list, they automatically
606 * block the newly created grace period, so set up ->gp_tasks accordingly.
607 */
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609 {
610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
611 if (rcu_preempt_has_tasks(rnp))
612 rnp->gp_tasks = rnp->blkd_tasks.next;
613 WARN_ON_ONCE(rnp->qsmask);
614 }
615
616 /*
617 * Check for a quiescent state from the current CPU. When a task blocks,
618 * the task is recorded in the corresponding CPU's rcu_node structure,
619 * which is checked elsewhere.
620 *
621 * Caller must disable hard irqs.
622 */
623 static void rcu_preempt_check_callbacks(void)
624 {
625 struct task_struct *t = current;
626
627 if (t->rcu_read_lock_nesting == 0) {
628 rcu_preempt_qs();
629 return;
630 }
631 if (t->rcu_read_lock_nesting > 0 &&
632 __this_cpu_read(rcu_data_p->core_needs_qs) &&
633 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
634 t->rcu_read_unlock_special.b.need_qs = true;
635 }
636
637 #ifdef CONFIG_RCU_BOOST
638
639 static void rcu_preempt_do_callbacks(void)
640 {
641 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
642 }
643
644 #endif /* #ifdef CONFIG_RCU_BOOST */
645
646 /*
647 * Queue a preemptible-RCU callback for invocation after a grace period.
648 */
649 void call_rcu(struct rcu_head *head, rcu_callback_t func)
650 {
651 __call_rcu(head, func, rcu_state_p, -1, 0);
652 }
653 EXPORT_SYMBOL_GPL(call_rcu);
654
655 /**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed. Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting. RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665 *
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
668 */
669 void synchronize_rcu(void)
670 {
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 lock_is_held(&rcu_lock_map) ||
673 lock_is_held(&rcu_sched_lock_map),
674 "Illegal synchronize_rcu() in RCU read-side critical section");
675 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
676 return;
677 if (rcu_gp_is_expedited())
678 synchronize_rcu_expedited();
679 else
680 wait_rcu_gp(call_rcu);
681 }
682 EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684 /**
685 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
686 *
687 * Note that this primitive does not necessarily wait for an RCU grace period
688 * to complete. For example, if there are no RCU callbacks queued anywhere
689 * in the system, then rcu_barrier() is within its rights to return
690 * immediately, without waiting for anything, much less an RCU grace period.
691 */
692 void rcu_barrier(void)
693 {
694 _rcu_barrier(rcu_state_p);
695 }
696 EXPORT_SYMBOL_GPL(rcu_barrier);
697
698 /*
699 * Initialize preemptible RCU's state structures.
700 */
701 static void __init __rcu_init_preempt(void)
702 {
703 rcu_init_one(rcu_state_p);
704 }
705
706 /*
707 * Check for a task exiting while in a preemptible-RCU read-side
708 * critical section, clean up if so. No need to issue warnings,
709 * as debug_check_no_locks_held() already does this if lockdep
710 * is enabled.
711 */
712 void exit_rcu(void)
713 {
714 struct task_struct *t = current;
715
716 if (likely(list_empty(&current->rcu_node_entry)))
717 return;
718 t->rcu_read_lock_nesting = 1;
719 barrier();
720 t->rcu_read_unlock_special.b.blocked = true;
721 __rcu_read_unlock();
722 }
723
724 #else /* #ifdef CONFIG_PREEMPT_RCU */
725
726 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
727
728 /*
729 * Tell them what RCU they are running.
730 */
731 static void __init rcu_bootup_announce(void)
732 {
733 pr_info("Hierarchical RCU implementation.\n");
734 rcu_bootup_announce_oddness();
735 }
736
737 /*
738 * Because preemptible RCU does not exist, we never have to check for
739 * CPUs being in quiescent states.
740 */
741 static void rcu_preempt_note_context_switch(void)
742 {
743 }
744
745 /*
746 * Because preemptible RCU does not exist, there are never any preempted
747 * RCU readers.
748 */
749 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
750 {
751 return 0;
752 }
753
754 /*
755 * Because there is no preemptible RCU, there can be no readers blocked.
756 */
757 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
758 {
759 return false;
760 }
761
762 /*
763 * Because preemptible RCU does not exist, we never have to check for
764 * tasks blocked within RCU read-side critical sections.
765 */
766 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
767 {
768 }
769
770 /*
771 * Because preemptible RCU does not exist, we never have to check for
772 * tasks blocked within RCU read-side critical sections.
773 */
774 static int rcu_print_task_stall(struct rcu_node *rnp)
775 {
776 return 0;
777 }
778
779 /*
780 * Because preemptible RCU does not exist, we never have to check for
781 * tasks blocked within RCU read-side critical sections that are
782 * blocking the current expedited grace period.
783 */
784 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
785 {
786 return 0;
787 }
788
789 /*
790 * Because there is no preemptible RCU, there can be no readers blocked,
791 * so there is no need to check for blocked tasks. So check only for
792 * bogus qsmask values.
793 */
794 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
795 {
796 WARN_ON_ONCE(rnp->qsmask);
797 }
798
799 /*
800 * Because preemptible RCU does not exist, it never has any callbacks
801 * to check.
802 */
803 static void rcu_preempt_check_callbacks(void)
804 {
805 }
806
807 /*
808 * Because preemptible RCU does not exist, rcu_barrier() is just
809 * another name for rcu_barrier_sched().
810 */
811 void rcu_barrier(void)
812 {
813 rcu_barrier_sched();
814 }
815 EXPORT_SYMBOL_GPL(rcu_barrier);
816
817 /*
818 * Because preemptible RCU does not exist, it need not be initialized.
819 */
820 static void __init __rcu_init_preempt(void)
821 {
822 }
823
824 /*
825 * Because preemptible RCU does not exist, tasks cannot possibly exit
826 * while in preemptible RCU read-side critical sections.
827 */
828 void exit_rcu(void)
829 {
830 }
831
832 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
833
834 #ifdef CONFIG_RCU_BOOST
835
836 #include "../locking/rtmutex_common.h"
837
838 #ifdef CONFIG_RCU_TRACE
839
840 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
841 {
842 if (!rcu_preempt_has_tasks(rnp))
843 rnp->n_balk_blkd_tasks++;
844 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
845 rnp->n_balk_exp_gp_tasks++;
846 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
847 rnp->n_balk_boost_tasks++;
848 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
849 rnp->n_balk_notblocked++;
850 else if (rnp->gp_tasks != NULL &&
851 ULONG_CMP_LT(jiffies, rnp->boost_time))
852 rnp->n_balk_notyet++;
853 else
854 rnp->n_balk_nos++;
855 }
856
857 #else /* #ifdef CONFIG_RCU_TRACE */
858
859 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
860 {
861 }
862
863 #endif /* #else #ifdef CONFIG_RCU_TRACE */
864
865 static void rcu_wake_cond(struct task_struct *t, int status)
866 {
867 /*
868 * If the thread is yielding, only wake it when this
869 * is invoked from idle
870 */
871 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
872 wake_up_process(t);
873 }
874
875 /*
876 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
877 * or ->boost_tasks, advancing the pointer to the next task in the
878 * ->blkd_tasks list.
879 *
880 * Note that irqs must be enabled: boosting the task can block.
881 * Returns 1 if there are more tasks needing to be boosted.
882 */
883 static int rcu_boost(struct rcu_node *rnp)
884 {
885 unsigned long flags;
886 struct task_struct *t;
887 struct list_head *tb;
888
889 if (READ_ONCE(rnp->exp_tasks) == NULL &&
890 READ_ONCE(rnp->boost_tasks) == NULL)
891 return 0; /* Nothing left to boost. */
892
893 raw_spin_lock_irqsave_rcu_node(rnp, flags);
894
895 /*
896 * Recheck under the lock: all tasks in need of boosting
897 * might exit their RCU read-side critical sections on their own.
898 */
899 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
900 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
901 return 0;
902 }
903
904 /*
905 * Preferentially boost tasks blocking expedited grace periods.
906 * This cannot starve the normal grace periods because a second
907 * expedited grace period must boost all blocked tasks, including
908 * those blocking the pre-existing normal grace period.
909 */
910 if (rnp->exp_tasks != NULL) {
911 tb = rnp->exp_tasks;
912 rnp->n_exp_boosts++;
913 } else {
914 tb = rnp->boost_tasks;
915 rnp->n_normal_boosts++;
916 }
917 rnp->n_tasks_boosted++;
918
919 /*
920 * We boost task t by manufacturing an rt_mutex that appears to
921 * be held by task t. We leave a pointer to that rt_mutex where
922 * task t can find it, and task t will release the mutex when it
923 * exits its outermost RCU read-side critical section. Then
924 * simply acquiring this artificial rt_mutex will boost task
925 * t's priority. (Thanks to tglx for suggesting this approach!)
926 *
927 * Note that task t must acquire rnp->lock to remove itself from
928 * the ->blkd_tasks list, which it will do from exit() if from
929 * nowhere else. We therefore are guaranteed that task t will
930 * stay around at least until we drop rnp->lock. Note that
931 * rnp->lock also resolves races between our priority boosting
932 * and task t's exiting its outermost RCU read-side critical
933 * section.
934 */
935 t = container_of(tb, struct task_struct, rcu_node_entry);
936 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
937 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
938 /* Lock only for side effect: boosts task t's priority. */
939 rt_mutex_lock(&rnp->boost_mtx);
940 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
941
942 return READ_ONCE(rnp->exp_tasks) != NULL ||
943 READ_ONCE(rnp->boost_tasks) != NULL;
944 }
945
946 /*
947 * Priority-boosting kthread, one per leaf rcu_node.
948 */
949 static int rcu_boost_kthread(void *arg)
950 {
951 struct rcu_node *rnp = (struct rcu_node *)arg;
952 int spincnt = 0;
953 int more2boost;
954
955 trace_rcu_utilization(TPS("Start boost kthread@init"));
956 for (;;) {
957 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
958 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
959 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
960 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
961 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
962 more2boost = rcu_boost(rnp);
963 if (more2boost)
964 spincnt++;
965 else
966 spincnt = 0;
967 if (spincnt > 10) {
968 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
969 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
970 schedule_timeout_interruptible(2);
971 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
972 spincnt = 0;
973 }
974 }
975 /* NOTREACHED */
976 trace_rcu_utilization(TPS("End boost kthread@notreached"));
977 return 0;
978 }
979
980 /*
981 * Check to see if it is time to start boosting RCU readers that are
982 * blocking the current grace period, and, if so, tell the per-rcu_node
983 * kthread to start boosting them. If there is an expedited grace
984 * period in progress, it is always time to boost.
985 *
986 * The caller must hold rnp->lock, which this function releases.
987 * The ->boost_kthread_task is immortal, so we don't need to worry
988 * about it going away.
989 */
990 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
991 __releases(rnp->lock)
992 {
993 struct task_struct *t;
994
995 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
996 rnp->n_balk_exp_gp_tasks++;
997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
998 return;
999 }
1000 if (rnp->exp_tasks != NULL ||
1001 (rnp->gp_tasks != NULL &&
1002 rnp->boost_tasks == NULL &&
1003 rnp->qsmask == 0 &&
1004 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1005 if (rnp->exp_tasks == NULL)
1006 rnp->boost_tasks = rnp->gp_tasks;
1007 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1008 t = rnp->boost_kthread_task;
1009 if (t)
1010 rcu_wake_cond(t, rnp->boost_kthread_status);
1011 } else {
1012 rcu_initiate_boost_trace(rnp);
1013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1014 }
1015 }
1016
1017 /*
1018 * Wake up the per-CPU kthread to invoke RCU callbacks.
1019 */
1020 static void invoke_rcu_callbacks_kthread(void)
1021 {
1022 unsigned long flags;
1023
1024 local_irq_save(flags);
1025 __this_cpu_write(rcu_cpu_has_work, 1);
1026 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1027 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1028 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1029 __this_cpu_read(rcu_cpu_kthread_status));
1030 }
1031 local_irq_restore(flags);
1032 }
1033
1034 /*
1035 * Is the current CPU running the RCU-callbacks kthread?
1036 * Caller must have preemption disabled.
1037 */
1038 static bool rcu_is_callbacks_kthread(void)
1039 {
1040 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1041 }
1042
1043 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1044
1045 /*
1046 * Do priority-boost accounting for the start of a new grace period.
1047 */
1048 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1049 {
1050 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1051 }
1052
1053 /*
1054 * Create an RCU-boost kthread for the specified node if one does not
1055 * already exist. We only create this kthread for preemptible RCU.
1056 * Returns zero if all is well, a negated errno otherwise.
1057 */
1058 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1059 struct rcu_node *rnp)
1060 {
1061 int rnp_index = rnp - &rsp->node[0];
1062 unsigned long flags;
1063 struct sched_param sp;
1064 struct task_struct *t;
1065
1066 if (rcu_state_p != rsp)
1067 return 0;
1068
1069 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1070 return 0;
1071
1072 rsp->boost = 1;
1073 if (rnp->boost_kthread_task != NULL)
1074 return 0;
1075 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1076 "rcub/%d", rnp_index);
1077 if (IS_ERR(t))
1078 return PTR_ERR(t);
1079 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1080 rnp->boost_kthread_task = t;
1081 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1082 sp.sched_priority = kthread_prio;
1083 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1084 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1085 return 0;
1086 }
1087
1088 static void rcu_kthread_do_work(void)
1089 {
1090 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1091 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1092 rcu_preempt_do_callbacks();
1093 }
1094
1095 static void rcu_cpu_kthread_setup(unsigned int cpu)
1096 {
1097 struct sched_param sp;
1098
1099 sp.sched_priority = kthread_prio;
1100 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1101 }
1102
1103 static void rcu_cpu_kthread_park(unsigned int cpu)
1104 {
1105 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1106 }
1107
1108 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1109 {
1110 return __this_cpu_read(rcu_cpu_has_work);
1111 }
1112
1113 /*
1114 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1115 * RCU softirq used in flavors and configurations of RCU that do not
1116 * support RCU priority boosting.
1117 */
1118 static void rcu_cpu_kthread(unsigned int cpu)
1119 {
1120 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1121 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1122 int spincnt;
1123
1124 for (spincnt = 0; spincnt < 10; spincnt++) {
1125 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1126 local_bh_disable();
1127 *statusp = RCU_KTHREAD_RUNNING;
1128 this_cpu_inc(rcu_cpu_kthread_loops);
1129 local_irq_disable();
1130 work = *workp;
1131 *workp = 0;
1132 local_irq_enable();
1133 if (work)
1134 rcu_kthread_do_work();
1135 local_bh_enable();
1136 if (*workp == 0) {
1137 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1138 *statusp = RCU_KTHREAD_WAITING;
1139 return;
1140 }
1141 }
1142 *statusp = RCU_KTHREAD_YIELDING;
1143 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1144 schedule_timeout_interruptible(2);
1145 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1146 *statusp = RCU_KTHREAD_WAITING;
1147 }
1148
1149 /*
1150 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1151 * served by the rcu_node in question. The CPU hotplug lock is still
1152 * held, so the value of rnp->qsmaskinit will be stable.
1153 *
1154 * We don't include outgoingcpu in the affinity set, use -1 if there is
1155 * no outgoing CPU. If there are no CPUs left in the affinity set,
1156 * this function allows the kthread to execute on any CPU.
1157 */
1158 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1159 {
1160 struct task_struct *t = rnp->boost_kthread_task;
1161 unsigned long mask = rcu_rnp_online_cpus(rnp);
1162 cpumask_var_t cm;
1163 int cpu;
1164
1165 if (!t)
1166 return;
1167 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1168 return;
1169 for_each_leaf_node_possible_cpu(rnp, cpu)
1170 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1171 cpu != outgoingcpu)
1172 cpumask_set_cpu(cpu, cm);
1173 if (cpumask_weight(cm) == 0)
1174 cpumask_setall(cm);
1175 set_cpus_allowed_ptr(t, cm);
1176 free_cpumask_var(cm);
1177 }
1178
1179 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1180 .store = &rcu_cpu_kthread_task,
1181 .thread_should_run = rcu_cpu_kthread_should_run,
1182 .thread_fn = rcu_cpu_kthread,
1183 .thread_comm = "rcuc/%u",
1184 .setup = rcu_cpu_kthread_setup,
1185 .park = rcu_cpu_kthread_park,
1186 };
1187
1188 /*
1189 * Spawn boost kthreads -- called as soon as the scheduler is running.
1190 */
1191 static void __init rcu_spawn_boost_kthreads(void)
1192 {
1193 struct rcu_node *rnp;
1194 int cpu;
1195
1196 for_each_possible_cpu(cpu)
1197 per_cpu(rcu_cpu_has_work, cpu) = 0;
1198 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1199 rcu_for_each_leaf_node(rcu_state_p, rnp)
1200 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1201 }
1202
1203 static void rcu_prepare_kthreads(int cpu)
1204 {
1205 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1206 struct rcu_node *rnp = rdp->mynode;
1207
1208 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209 if (rcu_scheduler_fully_active)
1210 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1211 }
1212
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1214
1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216 __releases(rnp->lock)
1217 {
1218 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 }
1220
1221 static void invoke_rcu_callbacks_kthread(void)
1222 {
1223 WARN_ON_ONCE(1);
1224 }
1225
1226 static bool rcu_is_callbacks_kthread(void)
1227 {
1228 return false;
1229 }
1230
1231 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1232 {
1233 }
1234
1235 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1236 {
1237 }
1238
1239 static void __init rcu_spawn_boost_kthreads(void)
1240 {
1241 }
1242
1243 static void rcu_prepare_kthreads(int cpu)
1244 {
1245 }
1246
1247 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1248
1249 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1250
1251 /*
1252 * Check to see if any future RCU-related work will need to be done
1253 * by the current CPU, even if none need be done immediately, returning
1254 * 1 if so. This function is part of the RCU implementation; it is -not-
1255 * an exported member of the RCU API.
1256 *
1257 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1258 * any flavor of RCU.
1259 */
1260 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1261 {
1262 *nextevt = KTIME_MAX;
1263 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1264 ? 0 : rcu_cpu_has_callbacks(NULL);
1265 }
1266
1267 /*
1268 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1269 * after it.
1270 */
1271 static void rcu_cleanup_after_idle(void)
1272 {
1273 }
1274
1275 /*
1276 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1277 * is nothing.
1278 */
1279 static void rcu_prepare_for_idle(void)
1280 {
1281 }
1282
1283 /*
1284 * Don't bother keeping a running count of the number of RCU callbacks
1285 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1286 */
1287 static void rcu_idle_count_callbacks_posted(void)
1288 {
1289 }
1290
1291 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1292
1293 /*
1294 * This code is invoked when a CPU goes idle, at which point we want
1295 * to have the CPU do everything required for RCU so that it can enter
1296 * the energy-efficient dyntick-idle mode. This is handled by a
1297 * state machine implemented by rcu_prepare_for_idle() below.
1298 *
1299 * The following three proprocessor symbols control this state machine:
1300 *
1301 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1302 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1303 * is sized to be roughly one RCU grace period. Those energy-efficiency
1304 * benchmarkers who might otherwise be tempted to set this to a large
1305 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1306 * system. And if you are -that- concerned about energy efficiency,
1307 * just power the system down and be done with it!
1308 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1309 * permitted to sleep in dyntick-idle mode with only lazy RCU
1310 * callbacks pending. Setting this too high can OOM your system.
1311 *
1312 * The values below work well in practice. If future workloads require
1313 * adjustment, they can be converted into kernel config parameters, though
1314 * making the state machine smarter might be a better option.
1315 */
1316 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1317 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1318
1319 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1320 module_param(rcu_idle_gp_delay, int, 0644);
1321 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1322 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1323
1324 /*
1325 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1326 * only if it has been awhile since the last time we did so. Afterwards,
1327 * if there are any callbacks ready for immediate invocation, return true.
1328 */
1329 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1330 {
1331 bool cbs_ready = false;
1332 struct rcu_data *rdp;
1333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1334 struct rcu_node *rnp;
1335 struct rcu_state *rsp;
1336
1337 /* Exit early if we advanced recently. */
1338 if (jiffies == rdtp->last_advance_all)
1339 return false;
1340 rdtp->last_advance_all = jiffies;
1341
1342 for_each_rcu_flavor(rsp) {
1343 rdp = this_cpu_ptr(rsp->rda);
1344 rnp = rdp->mynode;
1345
1346 /*
1347 * Don't bother checking unless a grace period has
1348 * completed since we last checked and there are
1349 * callbacks not yet ready to invoke.
1350 */
1351 if ((rdp->completed != rnp->completed ||
1352 unlikely(READ_ONCE(rdp->gpwrap))) &&
1353 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1354 note_gp_changes(rsp, rdp);
1355
1356 if (cpu_has_callbacks_ready_to_invoke(rdp))
1357 cbs_ready = true;
1358 }
1359 return cbs_ready;
1360 }
1361
1362 /*
1363 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1364 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1365 * caller to set the timeout based on whether or not there are non-lazy
1366 * callbacks.
1367 *
1368 * The caller must have disabled interrupts.
1369 */
1370 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1371 {
1372 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1373 unsigned long dj;
1374
1375 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1376 *nextevt = KTIME_MAX;
1377 return 0;
1378 }
1379
1380 /* Snapshot to detect later posting of non-lazy callback. */
1381 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1382
1383 /* If no callbacks, RCU doesn't need the CPU. */
1384 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1385 *nextevt = KTIME_MAX;
1386 return 0;
1387 }
1388
1389 /* Attempt to advance callbacks. */
1390 if (rcu_try_advance_all_cbs()) {
1391 /* Some ready to invoke, so initiate later invocation. */
1392 invoke_rcu_core();
1393 return 1;
1394 }
1395 rdtp->last_accelerate = jiffies;
1396
1397 /* Request timer delay depending on laziness, and round. */
1398 if (!rdtp->all_lazy) {
1399 dj = round_up(rcu_idle_gp_delay + jiffies,
1400 rcu_idle_gp_delay) - jiffies;
1401 } else {
1402 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1403 }
1404 *nextevt = basemono + dj * TICK_NSEC;
1405 return 0;
1406 }
1407
1408 /*
1409 * Prepare a CPU for idle from an RCU perspective. The first major task
1410 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1411 * The second major task is to check to see if a non-lazy callback has
1412 * arrived at a CPU that previously had only lazy callbacks. The third
1413 * major task is to accelerate (that is, assign grace-period numbers to)
1414 * any recently arrived callbacks.
1415 *
1416 * The caller must have disabled interrupts.
1417 */
1418 static void rcu_prepare_for_idle(void)
1419 {
1420 bool needwake;
1421 struct rcu_data *rdp;
1422 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423 struct rcu_node *rnp;
1424 struct rcu_state *rsp;
1425 int tne;
1426
1427 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1428 rcu_is_nocb_cpu(smp_processor_id()))
1429 return;
1430
1431 /* Handle nohz enablement switches conservatively. */
1432 tne = READ_ONCE(tick_nohz_active);
1433 if (tne != rdtp->tick_nohz_enabled_snap) {
1434 if (rcu_cpu_has_callbacks(NULL))
1435 invoke_rcu_core(); /* force nohz to see update. */
1436 rdtp->tick_nohz_enabled_snap = tne;
1437 return;
1438 }
1439 if (!tne)
1440 return;
1441
1442 /*
1443 * If a non-lazy callback arrived at a CPU having only lazy
1444 * callbacks, invoke RCU core for the side-effect of recalculating
1445 * idle duration on re-entry to idle.
1446 */
1447 if (rdtp->all_lazy &&
1448 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1449 rdtp->all_lazy = false;
1450 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1451 invoke_rcu_core();
1452 return;
1453 }
1454
1455 /*
1456 * If we have not yet accelerated this jiffy, accelerate all
1457 * callbacks on this CPU.
1458 */
1459 if (rdtp->last_accelerate == jiffies)
1460 return;
1461 rdtp->last_accelerate = jiffies;
1462 for_each_rcu_flavor(rsp) {
1463 rdp = this_cpu_ptr(rsp->rda);
1464 if (!*rdp->nxttail[RCU_DONE_TAIL])
1465 continue;
1466 rnp = rdp->mynode;
1467 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1468 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1469 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1470 if (needwake)
1471 rcu_gp_kthread_wake(rsp);
1472 }
1473 }
1474
1475 /*
1476 * Clean up for exit from idle. Attempt to advance callbacks based on
1477 * any grace periods that elapsed while the CPU was idle, and if any
1478 * callbacks are now ready to invoke, initiate invocation.
1479 */
1480 static void rcu_cleanup_after_idle(void)
1481 {
1482 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1483 rcu_is_nocb_cpu(smp_processor_id()))
1484 return;
1485 if (rcu_try_advance_all_cbs())
1486 invoke_rcu_core();
1487 }
1488
1489 /*
1490 * Keep a running count of the number of non-lazy callbacks posted
1491 * on this CPU. This running counter (which is never decremented) allows
1492 * rcu_prepare_for_idle() to detect when something out of the idle loop
1493 * posts a callback, even if an equal number of callbacks are invoked.
1494 * Of course, callbacks should only be posted from within a trace event
1495 * designed to be called from idle or from within RCU_NONIDLE().
1496 */
1497 static void rcu_idle_count_callbacks_posted(void)
1498 {
1499 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1500 }
1501
1502 /*
1503 * Data for flushing lazy RCU callbacks at OOM time.
1504 */
1505 static atomic_t oom_callback_count;
1506 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1507
1508 /*
1509 * RCU OOM callback -- decrement the outstanding count and deliver the
1510 * wake-up if we are the last one.
1511 */
1512 static void rcu_oom_callback(struct rcu_head *rhp)
1513 {
1514 if (atomic_dec_and_test(&oom_callback_count))
1515 wake_up(&oom_callback_wq);
1516 }
1517
1518 /*
1519 * Post an rcu_oom_notify callback on the current CPU if it has at
1520 * least one lazy callback. This will unnecessarily post callbacks
1521 * to CPUs that already have a non-lazy callback at the end of their
1522 * callback list, but this is an infrequent operation, so accept some
1523 * extra overhead to keep things simple.
1524 */
1525 static void rcu_oom_notify_cpu(void *unused)
1526 {
1527 struct rcu_state *rsp;
1528 struct rcu_data *rdp;
1529
1530 for_each_rcu_flavor(rsp) {
1531 rdp = raw_cpu_ptr(rsp->rda);
1532 if (rdp->qlen_lazy != 0) {
1533 atomic_inc(&oom_callback_count);
1534 rsp->call(&rdp->oom_head, rcu_oom_callback);
1535 }
1536 }
1537 }
1538
1539 /*
1540 * If low on memory, ensure that each CPU has a non-lazy callback.
1541 * This will wake up CPUs that have only lazy callbacks, in turn
1542 * ensuring that they free up the corresponding memory in a timely manner.
1543 * Because an uncertain amount of memory will be freed in some uncertain
1544 * timeframe, we do not claim to have freed anything.
1545 */
1546 static int rcu_oom_notify(struct notifier_block *self,
1547 unsigned long notused, void *nfreed)
1548 {
1549 int cpu;
1550
1551 /* Wait for callbacks from earlier instance to complete. */
1552 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1553 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1554
1555 /*
1556 * Prevent premature wakeup: ensure that all increments happen
1557 * before there is a chance of the counter reaching zero.
1558 */
1559 atomic_set(&oom_callback_count, 1);
1560
1561 for_each_online_cpu(cpu) {
1562 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1563 cond_resched_rcu_qs();
1564 }
1565
1566 /* Unconditionally decrement: no need to wake ourselves up. */
1567 atomic_dec(&oom_callback_count);
1568
1569 return NOTIFY_OK;
1570 }
1571
1572 static struct notifier_block rcu_oom_nb = {
1573 .notifier_call = rcu_oom_notify
1574 };
1575
1576 static int __init rcu_register_oom_notifier(void)
1577 {
1578 register_oom_notifier(&rcu_oom_nb);
1579 return 0;
1580 }
1581 early_initcall(rcu_register_oom_notifier);
1582
1583 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1584
1585 #ifdef CONFIG_RCU_FAST_NO_HZ
1586
1587 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1588 {
1589 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1590 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1591
1592 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1593 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1594 ulong2long(nlpd),
1595 rdtp->all_lazy ? 'L' : '.',
1596 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1597 }
1598
1599 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1600
1601 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1602 {
1603 *cp = '\0';
1604 }
1605
1606 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1607
1608 /* Initiate the stall-info list. */
1609 static void print_cpu_stall_info_begin(void)
1610 {
1611 pr_cont("\n");
1612 }
1613
1614 /*
1615 * Print out diagnostic information for the specified stalled CPU.
1616 *
1617 * If the specified CPU is aware of the current RCU grace period
1618 * (flavor specified by rsp), then print the number of scheduling
1619 * clock interrupts the CPU has taken during the time that it has
1620 * been aware. Otherwise, print the number of RCU grace periods
1621 * that this CPU is ignorant of, for example, "1" if the CPU was
1622 * aware of the previous grace period.
1623 *
1624 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1625 */
1626 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1627 {
1628 char fast_no_hz[72];
1629 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1630 struct rcu_dynticks *rdtp = rdp->dynticks;
1631 char *ticks_title;
1632 unsigned long ticks_value;
1633
1634 if (rsp->gpnum == rdp->gpnum) {
1635 ticks_title = "ticks this GP";
1636 ticks_value = rdp->ticks_this_gp;
1637 } else {
1638 ticks_title = "GPs behind";
1639 ticks_value = rsp->gpnum - rdp->gpnum;
1640 }
1641 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1642 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1643 cpu,
1644 "O."[!!cpu_online(cpu)],
1645 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1646 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1647 ticks_value, ticks_title,
1648 rcu_dynticks_snap(rdtp) & 0xfff,
1649 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1650 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1651 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1652 fast_no_hz);
1653 }
1654
1655 /* Terminate the stall-info list. */
1656 static void print_cpu_stall_info_end(void)
1657 {
1658 pr_err("\t");
1659 }
1660
1661 /* Zero ->ticks_this_gp for all flavors of RCU. */
1662 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1663 {
1664 rdp->ticks_this_gp = 0;
1665 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1666 }
1667
1668 /* Increment ->ticks_this_gp for all flavors of RCU. */
1669 static void increment_cpu_stall_ticks(void)
1670 {
1671 struct rcu_state *rsp;
1672
1673 for_each_rcu_flavor(rsp)
1674 raw_cpu_inc(rsp->rda->ticks_this_gp);
1675 }
1676
1677 #ifdef CONFIG_RCU_NOCB_CPU
1678
1679 /*
1680 * Offload callback processing from the boot-time-specified set of CPUs
1681 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1682 * kthread created that pulls the callbacks from the corresponding CPU,
1683 * waits for a grace period to elapse, and invokes the callbacks.
1684 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1685 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1686 * has been specified, in which case each kthread actively polls its
1687 * CPU. (Which isn't so great for energy efficiency, but which does
1688 * reduce RCU's overhead on that CPU.)
1689 *
1690 * This is intended to be used in conjunction with Frederic Weisbecker's
1691 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1692 * running CPU-bound user-mode computations.
1693 *
1694 * Offloading of callback processing could also in theory be used as
1695 * an energy-efficiency measure because CPUs with no RCU callbacks
1696 * queued are more aggressive about entering dyntick-idle mode.
1697 */
1698
1699
1700 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1701 static int __init rcu_nocb_setup(char *str)
1702 {
1703 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1704 have_rcu_nocb_mask = true;
1705 cpulist_parse(str, rcu_nocb_mask);
1706 return 1;
1707 }
1708 __setup("rcu_nocbs=", rcu_nocb_setup);
1709
1710 static int __init parse_rcu_nocb_poll(char *arg)
1711 {
1712 rcu_nocb_poll = 1;
1713 return 0;
1714 }
1715 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1716
1717 /*
1718 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1719 * grace period.
1720 */
1721 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1722 {
1723 swake_up_all(sq);
1724 }
1725
1726 /*
1727 * Set the root rcu_node structure's ->need_future_gp field
1728 * based on the sum of those of all rcu_node structures. This does
1729 * double-count the root rcu_node structure's requests, but this
1730 * is necessary to handle the possibility of a rcu_nocb_kthread()
1731 * having awakened during the time that the rcu_node structures
1732 * were being updated for the end of the previous grace period.
1733 */
1734 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1735 {
1736 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1737 }
1738
1739 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1740 {
1741 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1742 }
1743
1744 static void rcu_init_one_nocb(struct rcu_node *rnp)
1745 {
1746 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1747 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1748 }
1749
1750 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1751 /* Is the specified CPU a no-CBs CPU? */
1752 bool rcu_is_nocb_cpu(int cpu)
1753 {
1754 if (have_rcu_nocb_mask)
1755 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1756 return false;
1757 }
1758 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759
1760 /*
1761 * Kick the leader kthread for this NOCB group.
1762 */
1763 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1764 {
1765 struct rcu_data *rdp_leader = rdp->nocb_leader;
1766
1767 if (!READ_ONCE(rdp_leader->nocb_kthread))
1768 return;
1769 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1770 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1771 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1772 swake_up(&rdp_leader->nocb_wq);
1773 }
1774 }
1775
1776 /*
1777 * Does the specified CPU need an RCU callback for the specified flavor
1778 * of rcu_barrier()?
1779 */
1780 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1781 {
1782 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1783 unsigned long ret;
1784 #ifdef CONFIG_PROVE_RCU
1785 struct rcu_head *rhp;
1786 #endif /* #ifdef CONFIG_PROVE_RCU */
1787
1788 /*
1789 * Check count of all no-CBs callbacks awaiting invocation.
1790 * There needs to be a barrier before this function is called,
1791 * but associated with a prior determination that no more
1792 * callbacks would be posted. In the worst case, the first
1793 * barrier in _rcu_barrier() suffices (but the caller cannot
1794 * necessarily rely on this, not a substitute for the caller
1795 * getting the concurrency design right!). There must also be
1796 * a barrier between the following load an posting of a callback
1797 * (if a callback is in fact needed). This is associated with an
1798 * atomic_inc() in the caller.
1799 */
1800 ret = atomic_long_read(&rdp->nocb_q_count);
1801
1802 #ifdef CONFIG_PROVE_RCU
1803 rhp = READ_ONCE(rdp->nocb_head);
1804 if (!rhp)
1805 rhp = READ_ONCE(rdp->nocb_gp_head);
1806 if (!rhp)
1807 rhp = READ_ONCE(rdp->nocb_follower_head);
1808
1809 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1810 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1811 rcu_scheduler_fully_active) {
1812 /* RCU callback enqueued before CPU first came online??? */
1813 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1814 cpu, rhp->func);
1815 WARN_ON_ONCE(1);
1816 }
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1818
1819 return !!ret;
1820 }
1821
1822 /*
1823 * Enqueue the specified string of rcu_head structures onto the specified
1824 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1825 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1826 * counts are supplied by rhcount and rhcount_lazy.
1827 *
1828 * If warranted, also wake up the kthread servicing this CPUs queues.
1829 */
1830 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1831 struct rcu_head *rhp,
1832 struct rcu_head **rhtp,
1833 int rhcount, int rhcount_lazy,
1834 unsigned long flags)
1835 {
1836 int len;
1837 struct rcu_head **old_rhpp;
1838 struct task_struct *t;
1839
1840 /* Enqueue the callback on the nocb list and update counts. */
1841 atomic_long_add(rhcount, &rdp->nocb_q_count);
1842 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1843 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1844 WRITE_ONCE(*old_rhpp, rhp);
1845 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1846 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1847
1848 /* If we are not being polled and there is a kthread, awaken it ... */
1849 t = READ_ONCE(rdp->nocb_kthread);
1850 if (rcu_nocb_poll || !t) {
1851 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1852 TPS("WakeNotPoll"));
1853 return;
1854 }
1855 len = atomic_long_read(&rdp->nocb_q_count);
1856 if (old_rhpp == &rdp->nocb_head) {
1857 if (!irqs_disabled_flags(flags)) {
1858 /* ... if queue was empty ... */
1859 wake_nocb_leader(rdp, false);
1860 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1861 TPS("WakeEmpty"));
1862 } else {
1863 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1864 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1865 TPS("WakeEmptyIsDeferred"));
1866 }
1867 rdp->qlen_last_fqs_check = 0;
1868 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1869 /* ... or if many callbacks queued. */
1870 if (!irqs_disabled_flags(flags)) {
1871 wake_nocb_leader(rdp, true);
1872 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1873 TPS("WakeOvf"));
1874 } else {
1875 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1876 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1877 TPS("WakeOvfIsDeferred"));
1878 }
1879 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1880 } else {
1881 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1882 }
1883 return;
1884 }
1885
1886 /*
1887 * This is a helper for __call_rcu(), which invokes this when the normal
1888 * callback queue is inoperable. If this is not a no-CBs CPU, this
1889 * function returns failure back to __call_rcu(), which can complain
1890 * appropriately.
1891 *
1892 * Otherwise, this function queues the callback where the corresponding
1893 * "rcuo" kthread can find it.
1894 */
1895 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1896 bool lazy, unsigned long flags)
1897 {
1898
1899 if (!rcu_is_nocb_cpu(rdp->cpu))
1900 return false;
1901 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1902 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1903 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1904 (unsigned long)rhp->func,
1905 -atomic_long_read(&rdp->nocb_q_count_lazy),
1906 -atomic_long_read(&rdp->nocb_q_count));
1907 else
1908 trace_rcu_callback(rdp->rsp->name, rhp,
1909 -atomic_long_read(&rdp->nocb_q_count_lazy),
1910 -atomic_long_read(&rdp->nocb_q_count));
1911
1912 /*
1913 * If called from an extended quiescent state with interrupts
1914 * disabled, invoke the RCU core in order to allow the idle-entry
1915 * deferred-wakeup check to function.
1916 */
1917 if (irqs_disabled_flags(flags) &&
1918 !rcu_is_watching() &&
1919 cpu_online(smp_processor_id()))
1920 invoke_rcu_core();
1921
1922 return true;
1923 }
1924
1925 /*
1926 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1927 * not a no-CBs CPU.
1928 */
1929 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1930 struct rcu_data *rdp,
1931 unsigned long flags)
1932 {
1933 long ql = rsp->qlen;
1934 long qll = rsp->qlen_lazy;
1935
1936 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1937 if (!rcu_is_nocb_cpu(smp_processor_id()))
1938 return false;
1939 rsp->qlen = 0;
1940 rsp->qlen_lazy = 0;
1941
1942 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1943 if (rsp->orphan_donelist != NULL) {
1944 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1945 rsp->orphan_donetail, ql, qll, flags);
1946 ql = qll = 0;
1947 rsp->orphan_donelist = NULL;
1948 rsp->orphan_donetail = &rsp->orphan_donelist;
1949 }
1950 if (rsp->orphan_nxtlist != NULL) {
1951 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1952 rsp->orphan_nxttail, ql, qll, flags);
1953 ql = qll = 0;
1954 rsp->orphan_nxtlist = NULL;
1955 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1956 }
1957 return true;
1958 }
1959
1960 /*
1961 * If necessary, kick off a new grace period, and either way wait
1962 * for a subsequent grace period to complete.
1963 */
1964 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1965 {
1966 unsigned long c;
1967 bool d;
1968 unsigned long flags;
1969 bool needwake;
1970 struct rcu_node *rnp = rdp->mynode;
1971
1972 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1973 needwake = rcu_start_future_gp(rnp, rdp, &c);
1974 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975 if (needwake)
1976 rcu_gp_kthread_wake(rdp->rsp);
1977
1978 /*
1979 * Wait for the grace period. Do so interruptibly to avoid messing
1980 * up the load average.
1981 */
1982 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1983 for (;;) {
1984 swait_event_interruptible(
1985 rnp->nocb_gp_wq[c & 0x1],
1986 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1987 if (likely(d))
1988 break;
1989 WARN_ON(signal_pending(current));
1990 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1991 }
1992 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1993 smp_mb(); /* Ensure that CB invocation happens after GP end. */
1994 }
1995
1996 /*
1997 * Leaders come here to wait for additional callbacks to show up.
1998 * This function does not return until callbacks appear.
1999 */
2000 static void nocb_leader_wait(struct rcu_data *my_rdp)
2001 {
2002 bool firsttime = true;
2003 bool gotcbs;
2004 struct rcu_data *rdp;
2005 struct rcu_head **tail;
2006
2007 wait_again:
2008
2009 /* Wait for callbacks to appear. */
2010 if (!rcu_nocb_poll) {
2011 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2012 swait_event_interruptible(my_rdp->nocb_wq,
2013 !READ_ONCE(my_rdp->nocb_leader_sleep));
2014 /* Memory barrier handled by smp_mb() calls below and repoll. */
2015 } else if (firsttime) {
2016 firsttime = false; /* Don't drown trace log with "Poll"! */
2017 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2018 }
2019
2020 /*
2021 * Each pass through the following loop checks a follower for CBs.
2022 * We are our own first follower. Any CBs found are moved to
2023 * nocb_gp_head, where they await a grace period.
2024 */
2025 gotcbs = false;
2026 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2027 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2028 if (!rdp->nocb_gp_head)
2029 continue; /* No CBs here, try next follower. */
2030
2031 /* Move callbacks to wait-for-GP list, which is empty. */
2032 WRITE_ONCE(rdp->nocb_head, NULL);
2033 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2034 gotcbs = true;
2035 }
2036
2037 /*
2038 * If there were no callbacks, sleep a bit, rescan after a
2039 * memory barrier, and go retry.
2040 */
2041 if (unlikely(!gotcbs)) {
2042 if (!rcu_nocb_poll)
2043 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2044 "WokeEmpty");
2045 WARN_ON(signal_pending(current));
2046 schedule_timeout_interruptible(1);
2047
2048 /* Rescan in case we were a victim of memory ordering. */
2049 my_rdp->nocb_leader_sleep = true;
2050 smp_mb(); /* Ensure _sleep true before scan. */
2051 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2052 if (READ_ONCE(rdp->nocb_head)) {
2053 /* Found CB, so short-circuit next wait. */
2054 my_rdp->nocb_leader_sleep = false;
2055 break;
2056 }
2057 goto wait_again;
2058 }
2059
2060 /* Wait for one grace period. */
2061 rcu_nocb_wait_gp(my_rdp);
2062
2063 /*
2064 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2065 * We set it now, but recheck for new callbacks while
2066 * traversing our follower list.
2067 */
2068 my_rdp->nocb_leader_sleep = true;
2069 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2070
2071 /* Each pass through the following loop wakes a follower, if needed. */
2072 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2073 if (READ_ONCE(rdp->nocb_head))
2074 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2075 if (!rdp->nocb_gp_head)
2076 continue; /* No CBs, so no need to wake follower. */
2077
2078 /* Append callbacks to follower's "done" list. */
2079 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2080 *tail = rdp->nocb_gp_head;
2081 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2082 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2083 /*
2084 * List was empty, wake up the follower.
2085 * Memory barriers supplied by atomic_long_add().
2086 */
2087 swake_up(&rdp->nocb_wq);
2088 }
2089 }
2090
2091 /* If we (the leader) don't have CBs, go wait some more. */
2092 if (!my_rdp->nocb_follower_head)
2093 goto wait_again;
2094 }
2095
2096 /*
2097 * Followers come here to wait for additional callbacks to show up.
2098 * This function does not return until callbacks appear.
2099 */
2100 static void nocb_follower_wait(struct rcu_data *rdp)
2101 {
2102 bool firsttime = true;
2103
2104 for (;;) {
2105 if (!rcu_nocb_poll) {
2106 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2107 "FollowerSleep");
2108 swait_event_interruptible(rdp->nocb_wq,
2109 READ_ONCE(rdp->nocb_follower_head));
2110 } else if (firsttime) {
2111 /* Don't drown trace log with "Poll"! */
2112 firsttime = false;
2113 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2114 }
2115 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2116 /* ^^^ Ensure CB invocation follows _head test. */
2117 return;
2118 }
2119 if (!rcu_nocb_poll)
2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 "WokeEmpty");
2122 WARN_ON(signal_pending(current));
2123 schedule_timeout_interruptible(1);
2124 }
2125 }
2126
2127 /*
2128 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2129 * callbacks queued by the corresponding no-CBs CPU, however, there is
2130 * an optional leader-follower relationship so that the grace-period
2131 * kthreads don't have to do quite so many wakeups.
2132 */
2133 static int rcu_nocb_kthread(void *arg)
2134 {
2135 int c, cl;
2136 struct rcu_head *list;
2137 struct rcu_head *next;
2138 struct rcu_head **tail;
2139 struct rcu_data *rdp = arg;
2140
2141 /* Each pass through this loop invokes one batch of callbacks */
2142 for (;;) {
2143 /* Wait for callbacks. */
2144 if (rdp->nocb_leader == rdp)
2145 nocb_leader_wait(rdp);
2146 else
2147 nocb_follower_wait(rdp);
2148
2149 /* Pull the ready-to-invoke callbacks onto local list. */
2150 list = READ_ONCE(rdp->nocb_follower_head);
2151 BUG_ON(!list);
2152 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2153 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2154 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2155
2156 /* Each pass through the following loop invokes a callback. */
2157 trace_rcu_batch_start(rdp->rsp->name,
2158 atomic_long_read(&rdp->nocb_q_count_lazy),
2159 atomic_long_read(&rdp->nocb_q_count), -1);
2160 c = cl = 0;
2161 while (list) {
2162 next = list->next;
2163 /* Wait for enqueuing to complete, if needed. */
2164 while (next == NULL && &list->next != tail) {
2165 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2166 TPS("WaitQueue"));
2167 schedule_timeout_interruptible(1);
2168 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2169 TPS("WokeQueue"));
2170 next = list->next;
2171 }
2172 debug_rcu_head_unqueue(list);
2173 local_bh_disable();
2174 if (__rcu_reclaim(rdp->rsp->name, list))
2175 cl++;
2176 c++;
2177 local_bh_enable();
2178 cond_resched_rcu_qs();
2179 list = next;
2180 }
2181 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2182 smp_mb__before_atomic(); /* _add after CB invocation. */
2183 atomic_long_add(-c, &rdp->nocb_q_count);
2184 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2185 rdp->n_nocbs_invoked += c;
2186 }
2187 return 0;
2188 }
2189
2190 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2191 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2192 {
2193 return READ_ONCE(rdp->nocb_defer_wakeup);
2194 }
2195
2196 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2197 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2198 {
2199 int ndw;
2200
2201 if (!rcu_nocb_need_deferred_wakeup(rdp))
2202 return;
2203 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2204 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2205 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2206 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2207 }
2208
2209 void __init rcu_init_nohz(void)
2210 {
2211 int cpu;
2212 bool need_rcu_nocb_mask = true;
2213 struct rcu_state *rsp;
2214
2215 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2216 need_rcu_nocb_mask = false;
2217 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2218
2219 #if defined(CONFIG_NO_HZ_FULL)
2220 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2221 need_rcu_nocb_mask = true;
2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2223
2224 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2225 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2226 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2227 return;
2228 }
2229 have_rcu_nocb_mask = true;
2230 }
2231 if (!have_rcu_nocb_mask)
2232 return;
2233
2234 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2235 pr_info("\tOffload RCU callbacks from CPU 0\n");
2236 cpumask_set_cpu(0, rcu_nocb_mask);
2237 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2238 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2239 pr_info("\tOffload RCU callbacks from all CPUs\n");
2240 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2241 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2242 #if defined(CONFIG_NO_HZ_FULL)
2243 if (tick_nohz_full_running)
2244 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2245 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2246
2247 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2248 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2249 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2250 rcu_nocb_mask);
2251 }
2252 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2253 cpumask_pr_args(rcu_nocb_mask));
2254 if (rcu_nocb_poll)
2255 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2256
2257 for_each_rcu_flavor(rsp) {
2258 for_each_cpu(cpu, rcu_nocb_mask)
2259 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2260 rcu_organize_nocb_kthreads(rsp);
2261 }
2262 }
2263
2264 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2265 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2266 {
2267 rdp->nocb_tail = &rdp->nocb_head;
2268 init_swait_queue_head(&rdp->nocb_wq);
2269 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2270 }
2271
2272 /*
2273 * If the specified CPU is a no-CBs CPU that does not already have its
2274 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2275 * brought online out of order, this can require re-organizing the
2276 * leader-follower relationships.
2277 */
2278 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2279 {
2280 struct rcu_data *rdp;
2281 struct rcu_data *rdp_last;
2282 struct rcu_data *rdp_old_leader;
2283 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2284 struct task_struct *t;
2285
2286 /*
2287 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2288 * then nothing to do.
2289 */
2290 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2291 return;
2292
2293 /* If we didn't spawn the leader first, reorganize! */
2294 rdp_old_leader = rdp_spawn->nocb_leader;
2295 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2296 rdp_last = NULL;
2297 rdp = rdp_old_leader;
2298 do {
2299 rdp->nocb_leader = rdp_spawn;
2300 if (rdp_last && rdp != rdp_spawn)
2301 rdp_last->nocb_next_follower = rdp;
2302 if (rdp == rdp_spawn) {
2303 rdp = rdp->nocb_next_follower;
2304 } else {
2305 rdp_last = rdp;
2306 rdp = rdp->nocb_next_follower;
2307 rdp_last->nocb_next_follower = NULL;
2308 }
2309 } while (rdp);
2310 rdp_spawn->nocb_next_follower = rdp_old_leader;
2311 }
2312
2313 /* Spawn the kthread for this CPU and RCU flavor. */
2314 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2315 "rcuo%c/%d", rsp->abbr, cpu);
2316 BUG_ON(IS_ERR(t));
2317 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2318 }
2319
2320 /*
2321 * If the specified CPU is a no-CBs CPU that does not already have its
2322 * rcuo kthreads, spawn them.
2323 */
2324 static void rcu_spawn_all_nocb_kthreads(int cpu)
2325 {
2326 struct rcu_state *rsp;
2327
2328 if (rcu_scheduler_fully_active)
2329 for_each_rcu_flavor(rsp)
2330 rcu_spawn_one_nocb_kthread(rsp, cpu);
2331 }
2332
2333 /*
2334 * Once the scheduler is running, spawn rcuo kthreads for all online
2335 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2336 * non-boot CPUs come online -- if this changes, we will need to add
2337 * some mutual exclusion.
2338 */
2339 static void __init rcu_spawn_nocb_kthreads(void)
2340 {
2341 int cpu;
2342
2343 for_each_online_cpu(cpu)
2344 rcu_spawn_all_nocb_kthreads(cpu);
2345 }
2346
2347 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2348 static int rcu_nocb_leader_stride = -1;
2349 module_param(rcu_nocb_leader_stride, int, 0444);
2350
2351 /*
2352 * Initialize leader-follower relationships for all no-CBs CPU.
2353 */
2354 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2355 {
2356 int cpu;
2357 int ls = rcu_nocb_leader_stride;
2358 int nl = 0; /* Next leader. */
2359 struct rcu_data *rdp;
2360 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2361 struct rcu_data *rdp_prev = NULL;
2362
2363 if (!have_rcu_nocb_mask)
2364 return;
2365 if (ls == -1) {
2366 ls = int_sqrt(nr_cpu_ids);
2367 rcu_nocb_leader_stride = ls;
2368 }
2369
2370 /*
2371 * Each pass through this loop sets up one rcu_data structure.
2372 * Should the corresponding CPU come online in the future, then
2373 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2374 */
2375 for_each_cpu(cpu, rcu_nocb_mask) {
2376 rdp = per_cpu_ptr(rsp->rda, cpu);
2377 if (rdp->cpu >= nl) {
2378 /* New leader, set up for followers & next leader. */
2379 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2380 rdp->nocb_leader = rdp;
2381 rdp_leader = rdp;
2382 } else {
2383 /* Another follower, link to previous leader. */
2384 rdp->nocb_leader = rdp_leader;
2385 rdp_prev->nocb_next_follower = rdp;
2386 }
2387 rdp_prev = rdp;
2388 }
2389 }
2390
2391 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2392 static bool init_nocb_callback_list(struct rcu_data *rdp)
2393 {
2394 if (!rcu_is_nocb_cpu(rdp->cpu))
2395 return false;
2396
2397 /* If there are early-boot callbacks, move them to nocb lists. */
2398 if (rdp->nxtlist) {
2399 rdp->nocb_head = rdp->nxtlist;
2400 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2401 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2402 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2403 rdp->nxtlist = NULL;
2404 rdp->qlen = 0;
2405 rdp->qlen_lazy = 0;
2406 }
2407 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2408 return true;
2409 }
2410
2411 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2412
2413 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2414 {
2415 WARN_ON_ONCE(1); /* Should be dead code. */
2416 return false;
2417 }
2418
2419 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2420 {
2421 }
2422
2423 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2424 {
2425 }
2426
2427 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2428 {
2429 return NULL;
2430 }
2431
2432 static void rcu_init_one_nocb(struct rcu_node *rnp)
2433 {
2434 }
2435
2436 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2437 bool lazy, unsigned long flags)
2438 {
2439 return false;
2440 }
2441
2442 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2443 struct rcu_data *rdp,
2444 unsigned long flags)
2445 {
2446 return false;
2447 }
2448
2449 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2450 {
2451 }
2452
2453 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2454 {
2455 return false;
2456 }
2457
2458 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2459 {
2460 }
2461
2462 static void rcu_spawn_all_nocb_kthreads(int cpu)
2463 {
2464 }
2465
2466 static void __init rcu_spawn_nocb_kthreads(void)
2467 {
2468 }
2469
2470 static bool init_nocb_callback_list(struct rcu_data *rdp)
2471 {
2472 return false;
2473 }
2474
2475 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2476
2477 /*
2478 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2479 * arbitrarily long period of time with the scheduling-clock tick turned
2480 * off. RCU will be paying attention to this CPU because it is in the
2481 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2482 * machine because the scheduling-clock tick has been disabled. Therefore,
2483 * if an adaptive-ticks CPU is failing to respond to the current grace
2484 * period and has not be idle from an RCU perspective, kick it.
2485 */
2486 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2487 {
2488 #ifdef CONFIG_NO_HZ_FULL
2489 if (tick_nohz_full_cpu(cpu))
2490 smp_send_reschedule(cpu);
2491 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2492 }
2493
2494
2495 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2496
2497 static int full_sysidle_state; /* Current system-idle state. */
2498 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2499 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2500 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2501 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2502 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2503
2504 /*
2505 * Invoked to note exit from irq or task transition to idle. Note that
2506 * usermode execution does -not- count as idle here! After all, we want
2507 * to detect full-system idle states, not RCU quiescent states and grace
2508 * periods. The caller must have disabled interrupts.
2509 */
2510 static void rcu_sysidle_enter(int irq)
2511 {
2512 unsigned long j;
2513 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2514
2515 /* If there are no nohz_full= CPUs, no need to track this. */
2516 if (!tick_nohz_full_enabled())
2517 return;
2518
2519 /* Adjust nesting, check for fully idle. */
2520 if (irq) {
2521 rdtp->dynticks_idle_nesting--;
2522 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2523 if (rdtp->dynticks_idle_nesting != 0)
2524 return; /* Still not fully idle. */
2525 } else {
2526 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2527 DYNTICK_TASK_NEST_VALUE) {
2528 rdtp->dynticks_idle_nesting = 0;
2529 } else {
2530 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2531 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2532 return; /* Still not fully idle. */
2533 }
2534 }
2535
2536 /* Record start of fully idle period. */
2537 j = jiffies;
2538 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2539 smp_mb__before_atomic();
2540 atomic_inc(&rdtp->dynticks_idle);
2541 smp_mb__after_atomic();
2542 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2543 }
2544
2545 /*
2546 * Unconditionally force exit from full system-idle state. This is
2547 * invoked when a normal CPU exits idle, but must be called separately
2548 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2549 * is that the timekeeping CPU is permitted to take scheduling-clock
2550 * interrupts while the system is in system-idle state, and of course
2551 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2552 * interrupt from any other type of interrupt.
2553 */
2554 void rcu_sysidle_force_exit(void)
2555 {
2556 int oldstate = READ_ONCE(full_sysidle_state);
2557 int newoldstate;
2558
2559 /*
2560 * Each pass through the following loop attempts to exit full
2561 * system-idle state. If contention proves to be a problem,
2562 * a trylock-based contention tree could be used here.
2563 */
2564 while (oldstate > RCU_SYSIDLE_SHORT) {
2565 newoldstate = cmpxchg(&full_sysidle_state,
2566 oldstate, RCU_SYSIDLE_NOT);
2567 if (oldstate == newoldstate &&
2568 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2569 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2570 return; /* We cleared it, done! */
2571 }
2572 oldstate = newoldstate;
2573 }
2574 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2575 }
2576
2577 /*
2578 * Invoked to note entry to irq or task transition from idle. Note that
2579 * usermode execution does -not- count as idle here! The caller must
2580 * have disabled interrupts.
2581 */
2582 static void rcu_sysidle_exit(int irq)
2583 {
2584 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2585
2586 /* If there are no nohz_full= CPUs, no need to track this. */
2587 if (!tick_nohz_full_enabled())
2588 return;
2589
2590 /* Adjust nesting, check for already non-idle. */
2591 if (irq) {
2592 rdtp->dynticks_idle_nesting++;
2593 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2594 if (rdtp->dynticks_idle_nesting != 1)
2595 return; /* Already non-idle. */
2596 } else {
2597 /*
2598 * Allow for irq misnesting. Yes, it really is possible
2599 * to enter an irq handler then never leave it, and maybe
2600 * also vice versa. Handle both possibilities.
2601 */
2602 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2603 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2604 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2605 return; /* Already non-idle. */
2606 } else {
2607 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2608 }
2609 }
2610
2611 /* Record end of idle period. */
2612 smp_mb__before_atomic();
2613 atomic_inc(&rdtp->dynticks_idle);
2614 smp_mb__after_atomic();
2615 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2616
2617 /*
2618 * If we are the timekeeping CPU, we are permitted to be non-idle
2619 * during a system-idle state. This must be the case, because
2620 * the timekeeping CPU has to take scheduling-clock interrupts
2621 * during the time that the system is transitioning to full
2622 * system-idle state. This means that the timekeeping CPU must
2623 * invoke rcu_sysidle_force_exit() directly if it does anything
2624 * more than take a scheduling-clock interrupt.
2625 */
2626 if (smp_processor_id() == tick_do_timer_cpu)
2627 return;
2628
2629 /* Update system-idle state: We are clearly no longer fully idle! */
2630 rcu_sysidle_force_exit();
2631 }
2632
2633 /*
2634 * Check to see if the current CPU is idle. Note that usermode execution
2635 * does not count as idle. The caller must have disabled interrupts,
2636 * and must be running on tick_do_timer_cpu.
2637 */
2638 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2639 unsigned long *maxj)
2640 {
2641 int cur;
2642 unsigned long j;
2643 struct rcu_dynticks *rdtp = rdp->dynticks;
2644
2645 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2646 if (!tick_nohz_full_enabled())
2647 return;
2648
2649 /*
2650 * If some other CPU has already reported non-idle, if this is
2651 * not the flavor of RCU that tracks sysidle state, or if this
2652 * is an offline or the timekeeping CPU, nothing to do.
2653 */
2654 if (!*isidle || rdp->rsp != rcu_state_p ||
2655 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2656 return;
2657 /* Verify affinity of current kthread. */
2658 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2659
2660 /* Pick up current idle and NMI-nesting counter and check. */
2661 cur = atomic_read(&rdtp->dynticks_idle);
2662 if (cur & 0x1) {
2663 *isidle = false; /* We are not idle! */
2664 return;
2665 }
2666 smp_mb(); /* Read counters before timestamps. */
2667
2668 /* Pick up timestamps. */
2669 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2670 /* If this CPU entered idle more recently, update maxj timestamp. */
2671 if (ULONG_CMP_LT(*maxj, j))
2672 *maxj = j;
2673 }
2674
2675 /*
2676 * Is this the flavor of RCU that is handling full-system idle?
2677 */
2678 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2679 {
2680 return rsp == rcu_state_p;
2681 }
2682
2683 /*
2684 * Return a delay in jiffies based on the number of CPUs, rcu_node
2685 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2686 * systems more time to transition to full-idle state in order to
2687 * avoid the cache thrashing that otherwise occur on the state variable.
2688 * Really small systems (less than a couple of tens of CPUs) should
2689 * instead use a single global atomically incremented counter, and later
2690 * versions of this will automatically reconfigure themselves accordingly.
2691 */
2692 static unsigned long rcu_sysidle_delay(void)
2693 {
2694 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2695 return 0;
2696 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2697 }
2698
2699 /*
2700 * Advance the full-system-idle state. This is invoked when all of
2701 * the non-timekeeping CPUs are idle.
2702 */
2703 static void rcu_sysidle(unsigned long j)
2704 {
2705 /* Check the current state. */
2706 switch (READ_ONCE(full_sysidle_state)) {
2707 case RCU_SYSIDLE_NOT:
2708
2709 /* First time all are idle, so note a short idle period. */
2710 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2711 break;
2712
2713 case RCU_SYSIDLE_SHORT:
2714
2715 /*
2716 * Idle for a bit, time to advance to next state?
2717 * cmpxchg failure means race with non-idle, let them win.
2718 */
2719 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2720 (void)cmpxchg(&full_sysidle_state,
2721 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2722 break;
2723
2724 case RCU_SYSIDLE_LONG:
2725
2726 /*
2727 * Do an additional check pass before advancing to full.
2728 * cmpxchg failure means race with non-idle, let them win.
2729 */
2730 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2731 (void)cmpxchg(&full_sysidle_state,
2732 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2733 break;
2734
2735 default:
2736 break;
2737 }
2738 }
2739
2740 /*
2741 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2742 * back to the beginning.
2743 */
2744 static void rcu_sysidle_cancel(void)
2745 {
2746 smp_mb();
2747 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2748 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2749 }
2750
2751 /*
2752 * Update the sysidle state based on the results of a force-quiescent-state
2753 * scan of the CPUs' dyntick-idle state.
2754 */
2755 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2756 unsigned long maxj, bool gpkt)
2757 {
2758 if (rsp != rcu_state_p)
2759 return; /* Wrong flavor, ignore. */
2760 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2761 return; /* Running state machine from timekeeping CPU. */
2762 if (isidle)
2763 rcu_sysidle(maxj); /* More idle! */
2764 else
2765 rcu_sysidle_cancel(); /* Idle is over. */
2766 }
2767
2768 /*
2769 * Wrapper for rcu_sysidle_report() when called from the grace-period
2770 * kthread's context.
2771 */
2772 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2773 unsigned long maxj)
2774 {
2775 /* If there are no nohz_full= CPUs, no need to track this. */
2776 if (!tick_nohz_full_enabled())
2777 return;
2778
2779 rcu_sysidle_report(rsp, isidle, maxj, true);
2780 }
2781
2782 /* Callback and function for forcing an RCU grace period. */
2783 struct rcu_sysidle_head {
2784 struct rcu_head rh;
2785 int inuse;
2786 };
2787
2788 static void rcu_sysidle_cb(struct rcu_head *rhp)
2789 {
2790 struct rcu_sysidle_head *rshp;
2791
2792 /*
2793 * The following memory barrier is needed to replace the
2794 * memory barriers that would normally be in the memory
2795 * allocator.
2796 */
2797 smp_mb(); /* grace period precedes setting inuse. */
2798
2799 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2800 WRITE_ONCE(rshp->inuse, 0);
2801 }
2802
2803 /*
2804 * Check to see if the system is fully idle, other than the timekeeping CPU.
2805 * The caller must have disabled interrupts. This is not intended to be
2806 * called unless tick_nohz_full_enabled().
2807 */
2808 bool rcu_sys_is_idle(void)
2809 {
2810 static struct rcu_sysidle_head rsh;
2811 int rss = READ_ONCE(full_sysidle_state);
2812
2813 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2814 return false;
2815
2816 /* Handle small-system case by doing a full scan of CPUs. */
2817 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2818 int oldrss = rss - 1;
2819
2820 /*
2821 * One pass to advance to each state up to _FULL.
2822 * Give up if any pass fails to advance the state.
2823 */
2824 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2825 int cpu;
2826 bool isidle = true;
2827 unsigned long maxj = jiffies - ULONG_MAX / 4;
2828 struct rcu_data *rdp;
2829
2830 /* Scan all the CPUs looking for nonidle CPUs. */
2831 for_each_possible_cpu(cpu) {
2832 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2833 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2834 if (!isidle)
2835 break;
2836 }
2837 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2838 oldrss = rss;
2839 rss = READ_ONCE(full_sysidle_state);
2840 }
2841 }
2842
2843 /* If this is the first observation of an idle period, record it. */
2844 if (rss == RCU_SYSIDLE_FULL) {
2845 rss = cmpxchg(&full_sysidle_state,
2846 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2847 return rss == RCU_SYSIDLE_FULL;
2848 }
2849
2850 smp_mb(); /* ensure rss load happens before later caller actions. */
2851
2852 /* If already fully idle, tell the caller (in case of races). */
2853 if (rss == RCU_SYSIDLE_FULL_NOTED)
2854 return true;
2855
2856 /*
2857 * If we aren't there yet, and a grace period is not in flight,
2858 * initiate a grace period. Either way, tell the caller that
2859 * we are not there yet. We use an xchg() rather than an assignment
2860 * to make up for the memory barriers that would otherwise be
2861 * provided by the memory allocator.
2862 */
2863 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2864 !rcu_gp_in_progress(rcu_state_p) &&
2865 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2866 call_rcu(&rsh.rh, rcu_sysidle_cb);
2867 return false;
2868 }
2869
2870 /*
2871 * Initialize dynticks sysidle state for CPUs coming online.
2872 */
2873 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2874 {
2875 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2876 }
2877
2878 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2879
2880 static void rcu_sysidle_enter(int irq)
2881 {
2882 }
2883
2884 static void rcu_sysidle_exit(int irq)
2885 {
2886 }
2887
2888 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2889 unsigned long *maxj)
2890 {
2891 }
2892
2893 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2894 {
2895 return false;
2896 }
2897
2898 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2899 unsigned long maxj)
2900 {
2901 }
2902
2903 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2904 {
2905 }
2906
2907 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2908
2909 /*
2910 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2911 * grace-period kthread will do force_quiescent_state() processing?
2912 * The idea is to avoid waking up RCU core processing on such a
2913 * CPU unless the grace period has extended for too long.
2914 *
2915 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2916 * CONFIG_RCU_NOCB_CPU CPUs.
2917 */
2918 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2919 {
2920 #ifdef CONFIG_NO_HZ_FULL
2921 if (tick_nohz_full_cpu(smp_processor_id()) &&
2922 (!rcu_gp_in_progress(rsp) ||
2923 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2924 return true;
2925 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2926 return false;
2927 }
2928
2929 /*
2930 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2931 * timekeeping CPU.
2932 */
2933 static void rcu_bind_gp_kthread(void)
2934 {
2935 int __maybe_unused cpu;
2936
2937 if (!tick_nohz_full_enabled())
2938 return;
2939 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2940 cpu = tick_do_timer_cpu;
2941 if (cpu >= 0 && cpu < nr_cpu_ids)
2942 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2943 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2944 housekeeping_affine(current);
2945 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2946 }
2947
2948 /* Record the current task on dyntick-idle entry. */
2949 static void rcu_dynticks_task_enter(void)
2950 {
2951 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2952 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2953 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2954 }
2955
2956 /* Record no current task on dyntick-idle exit. */
2957 static void rcu_dynticks_task_exit(void)
2958 {
2959 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2960 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2961 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2962 }