]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /* rcuc/rcub kthread realtime priority */
38 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
39 module_param(kthread_prio, int, 0644);
40
41 /*
42 * Control variables for per-CPU and per-rcu_node kthreads. These
43 * handle all flavors of RCU.
44 */
45 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
47 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
48 DEFINE_PER_CPU(char, rcu_cpu_has_work);
49
50 #endif /* #ifdef CONFIG_RCU_BOOST */
51
52 #ifdef CONFIG_RCU_NOCB_CPU
53 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
54 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
55 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
56 static char __initdata nocb_buf[NR_CPUS * 5];
57 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
58
59 /*
60 * Check the RCU kernel configuration parameters and print informative
61 * messages about anything out of the ordinary. If you like #ifdef, you
62 * will love this function.
63 */
64 static void __init rcu_bootup_announce_oddness(void)
65 {
66 #ifdef CONFIG_RCU_TRACE
67 pr_info("\tRCU debugfs-based tracing is enabled.\n");
68 #endif
69 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
70 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
71 CONFIG_RCU_FANOUT);
72 #endif
73 #ifdef CONFIG_RCU_FANOUT_EXACT
74 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
75 #endif
76 #ifdef CONFIG_RCU_FAST_NO_HZ
77 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
78 #endif
79 #ifdef CONFIG_PROVE_RCU
80 pr_info("\tRCU lockdep checking is enabled.\n");
81 #endif
82 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
83 pr_info("\tRCU torture testing starts during boot.\n");
84 #endif
85 #if defined(CONFIG_RCU_CPU_STALL_INFO)
86 pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 #endif
88 #if NUM_RCU_LVL_4 != 0
89 pr_info("\tFour-level hierarchy is enabled.\n");
90 #endif
91 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
92 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
93 if (nr_cpu_ids != NR_CPUS)
94 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
97 #endif
98 }
99
100 #ifdef CONFIG_PREEMPT_RCU
101
102 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
104
105 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
106
107 /*
108 * Tell them what RCU they are running.
109 */
110 static void __init rcu_bootup_announce(void)
111 {
112 pr_info("Preemptible hierarchical RCU implementation.\n");
113 rcu_bootup_announce_oddness();
114 }
115
116 /*
117 * Return the number of RCU-preempt batches processed thus far
118 * for debug and statistics.
119 */
120 static long rcu_batches_completed_preempt(void)
121 {
122 return rcu_preempt_state.completed;
123 }
124 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
125
126 /*
127 * Return the number of RCU batches processed thus far for debug & stats.
128 */
129 long rcu_batches_completed(void)
130 {
131 return rcu_batches_completed_preempt();
132 }
133 EXPORT_SYMBOL_GPL(rcu_batches_completed);
134
135 /*
136 * Record a preemptible-RCU quiescent state for the specified CPU. Note
137 * that this just means that the task currently running on the CPU is
138 * not in a quiescent state. There might be any number of tasks blocked
139 * while in an RCU read-side critical section.
140 *
141 * As with the other rcu_*_qs() functions, callers to this function
142 * must disable preemption.
143 */
144 static void rcu_preempt_qs(void)
145 {
146 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
147 trace_rcu_grace_period(TPS("rcu_preempt"),
148 __this_cpu_read(rcu_preempt_data.gpnum),
149 TPS("cpuqs"));
150 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
151 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
152 current->rcu_read_unlock_special.b.need_qs = false;
153 }
154 }
155
156 /*
157 * We have entered the scheduler, and the current task might soon be
158 * context-switched away from. If this task is in an RCU read-side
159 * critical section, we will no longer be able to rely on the CPU to
160 * record that fact, so we enqueue the task on the blkd_tasks list.
161 * The task will dequeue itself when it exits the outermost enclosing
162 * RCU read-side critical section. Therefore, the current grace period
163 * cannot be permitted to complete until the blkd_tasks list entries
164 * predating the current grace period drain, in other words, until
165 * rnp->gp_tasks becomes NULL.
166 *
167 * Caller must disable preemption.
168 */
169 static void rcu_preempt_note_context_switch(void)
170 {
171 struct task_struct *t = current;
172 unsigned long flags;
173 struct rcu_data *rdp;
174 struct rcu_node *rnp;
175
176 if (t->rcu_read_lock_nesting > 0 &&
177 !t->rcu_read_unlock_special.b.blocked) {
178
179 /* Possibly blocking in an RCU read-side critical section. */
180 rdp = this_cpu_ptr(rcu_preempt_state.rda);
181 rnp = rdp->mynode;
182 raw_spin_lock_irqsave(&rnp->lock, flags);
183 smp_mb__after_unlock_lock();
184 t->rcu_read_unlock_special.b.blocked = true;
185 t->rcu_blocked_node = rnp;
186
187 /*
188 * If this CPU has already checked in, then this task
189 * will hold up the next grace period rather than the
190 * current grace period. Queue the task accordingly.
191 * If the task is queued for the current grace period
192 * (i.e., this CPU has not yet passed through a quiescent
193 * state for the current grace period), then as long
194 * as that task remains queued, the current grace period
195 * cannot end. Note that there is some uncertainty as
196 * to exactly when the current grace period started.
197 * We take a conservative approach, which can result
198 * in unnecessarily waiting on tasks that started very
199 * slightly after the current grace period began. C'est
200 * la vie!!!
201 *
202 * But first, note that the current CPU must still be
203 * on line!
204 */
205 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
206 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
207 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
208 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
209 rnp->gp_tasks = &t->rcu_node_entry;
210 #ifdef CONFIG_RCU_BOOST
211 if (rnp->boost_tasks != NULL)
212 rnp->boost_tasks = rnp->gp_tasks;
213 #endif /* #ifdef CONFIG_RCU_BOOST */
214 } else {
215 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
216 if (rnp->qsmask & rdp->grpmask)
217 rnp->gp_tasks = &t->rcu_node_entry;
218 }
219 trace_rcu_preempt_task(rdp->rsp->name,
220 t->pid,
221 (rnp->qsmask & rdp->grpmask)
222 ? rnp->gpnum
223 : rnp->gpnum + 1);
224 raw_spin_unlock_irqrestore(&rnp->lock, flags);
225 } else if (t->rcu_read_lock_nesting < 0 &&
226 t->rcu_read_unlock_special.s) {
227
228 /*
229 * Complete exit from RCU read-side critical section on
230 * behalf of preempted instance of __rcu_read_unlock().
231 */
232 rcu_read_unlock_special(t);
233 }
234
235 /*
236 * Either we were not in an RCU read-side critical section to
237 * begin with, or we have now recorded that critical section
238 * globally. Either way, we can now note a quiescent state
239 * for this CPU. Again, if we were in an RCU read-side critical
240 * section, and if that critical section was blocking the current
241 * grace period, then the fact that the task has been enqueued
242 * means that we continue to block the current grace period.
243 */
244 rcu_preempt_qs();
245 }
246
247 /*
248 * Check for preempted RCU readers blocking the current grace period
249 * for the specified rcu_node structure. If the caller needs a reliable
250 * answer, it must hold the rcu_node's ->lock.
251 */
252 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
253 {
254 return rnp->gp_tasks != NULL;
255 }
256
257 /*
258 * Record a quiescent state for all tasks that were previously queued
259 * on the specified rcu_node structure and that were blocking the current
260 * RCU grace period. The caller must hold the specified rnp->lock with
261 * irqs disabled, and this lock is released upon return, but irqs remain
262 * disabled.
263 */
264 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
265 __releases(rnp->lock)
266 {
267 unsigned long mask;
268 struct rcu_node *rnp_p;
269
270 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
272 return; /* Still need more quiescent states! */
273 }
274
275 rnp_p = rnp->parent;
276 if (rnp_p == NULL) {
277 /*
278 * Either there is only one rcu_node in the tree,
279 * or tasks were kicked up to root rcu_node due to
280 * CPUs going offline.
281 */
282 rcu_report_qs_rsp(&rcu_preempt_state, flags);
283 return;
284 }
285
286 /* Report up the rest of the hierarchy. */
287 mask = rnp->grpmask;
288 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
289 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
290 smp_mb__after_unlock_lock();
291 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
292 }
293
294 /*
295 * Advance a ->blkd_tasks-list pointer to the next entry, instead
296 * returning NULL if at the end of the list.
297 */
298 static struct list_head *rcu_next_node_entry(struct task_struct *t,
299 struct rcu_node *rnp)
300 {
301 struct list_head *np;
302
303 np = t->rcu_node_entry.next;
304 if (np == &rnp->blkd_tasks)
305 np = NULL;
306 return np;
307 }
308
309 /*
310 * Handle special cases during rcu_read_unlock(), such as needing to
311 * notify RCU core processing or task having blocked during the RCU
312 * read-side critical section.
313 */
314 void rcu_read_unlock_special(struct task_struct *t)
315 {
316 int empty;
317 int empty_exp;
318 int empty_exp_now;
319 unsigned long flags;
320 struct list_head *np;
321 #ifdef CONFIG_RCU_BOOST
322 bool drop_boost_mutex = false;
323 #endif /* #ifdef CONFIG_RCU_BOOST */
324 struct rcu_node *rnp;
325 union rcu_special special;
326
327 /* NMI handlers cannot block and cannot safely manipulate state. */
328 if (in_nmi())
329 return;
330
331 local_irq_save(flags);
332
333 /*
334 * If RCU core is waiting for this CPU to exit critical section,
335 * let it know that we have done so. Because irqs are disabled,
336 * t->rcu_read_unlock_special cannot change.
337 */
338 special = t->rcu_read_unlock_special;
339 if (special.b.need_qs) {
340 rcu_preempt_qs();
341 if (!t->rcu_read_unlock_special.s) {
342 local_irq_restore(flags);
343 return;
344 }
345 }
346
347 /* Hardware IRQ handlers cannot block, complain if they get here. */
348 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
349 local_irq_restore(flags);
350 return;
351 }
352
353 /* Clean up if blocked during RCU read-side critical section. */
354 if (special.b.blocked) {
355 t->rcu_read_unlock_special.b.blocked = false;
356
357 /*
358 * Remove this task from the list it blocked on. The
359 * task can migrate while we acquire the lock, but at
360 * most one time. So at most two passes through loop.
361 */
362 for (;;) {
363 rnp = t->rcu_blocked_node;
364 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
365 smp_mb__after_unlock_lock();
366 if (rnp == t->rcu_blocked_node)
367 break;
368 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
369 }
370 empty = !rcu_preempt_blocked_readers_cgp(rnp);
371 empty_exp = !rcu_preempted_readers_exp(rnp);
372 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
373 np = rcu_next_node_entry(t, rnp);
374 list_del_init(&t->rcu_node_entry);
375 t->rcu_blocked_node = NULL;
376 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
377 rnp->gpnum, t->pid);
378 if (&t->rcu_node_entry == rnp->gp_tasks)
379 rnp->gp_tasks = np;
380 if (&t->rcu_node_entry == rnp->exp_tasks)
381 rnp->exp_tasks = np;
382 #ifdef CONFIG_RCU_BOOST
383 if (&t->rcu_node_entry == rnp->boost_tasks)
384 rnp->boost_tasks = np;
385 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
386 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
387 #endif /* #ifdef CONFIG_RCU_BOOST */
388
389 /*
390 * If this was the last task on the current list, and if
391 * we aren't waiting on any CPUs, report the quiescent state.
392 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
393 * so we must take a snapshot of the expedited state.
394 */
395 empty_exp_now = !rcu_preempted_readers_exp(rnp);
396 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
397 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
398 rnp->gpnum,
399 0, rnp->qsmask,
400 rnp->level,
401 rnp->grplo,
402 rnp->grphi,
403 !!rnp->gp_tasks);
404 rcu_report_unblock_qs_rnp(rnp, flags);
405 } else {
406 raw_spin_unlock_irqrestore(&rnp->lock, flags);
407 }
408
409 #ifdef CONFIG_RCU_BOOST
410 /* Unboost if we were boosted. */
411 if (drop_boost_mutex) {
412 rt_mutex_unlock(&rnp->boost_mtx);
413 complete(&rnp->boost_completion);
414 }
415 #endif /* #ifdef CONFIG_RCU_BOOST */
416
417 /*
418 * If this was the last task on the expedited lists,
419 * then we need to report up the rcu_node hierarchy.
420 */
421 if (!empty_exp && empty_exp_now)
422 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
423 } else {
424 local_irq_restore(flags);
425 }
426 }
427
428 /*
429 * Dump detailed information for all tasks blocking the current RCU
430 * grace period on the specified rcu_node structure.
431 */
432 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
433 {
434 unsigned long flags;
435 struct task_struct *t;
436
437 raw_spin_lock_irqsave(&rnp->lock, flags);
438 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
439 raw_spin_unlock_irqrestore(&rnp->lock, flags);
440 return;
441 }
442 t = list_entry(rnp->gp_tasks,
443 struct task_struct, rcu_node_entry);
444 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
445 sched_show_task(t);
446 raw_spin_unlock_irqrestore(&rnp->lock, flags);
447 }
448
449 /*
450 * Dump detailed information for all tasks blocking the current RCU
451 * grace period.
452 */
453 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
454 {
455 struct rcu_node *rnp = rcu_get_root(rsp);
456
457 rcu_print_detail_task_stall_rnp(rnp);
458 rcu_for_each_leaf_node(rsp, rnp)
459 rcu_print_detail_task_stall_rnp(rnp);
460 }
461
462 #ifdef CONFIG_RCU_CPU_STALL_INFO
463
464 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465 {
466 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467 rnp->level, rnp->grplo, rnp->grphi);
468 }
469
470 static void rcu_print_task_stall_end(void)
471 {
472 pr_cont("\n");
473 }
474
475 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478 {
479 }
480
481 static void rcu_print_task_stall_end(void)
482 {
483 }
484
485 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
487 /*
488 * Scan the current list of tasks blocked within RCU read-side critical
489 * sections, printing out the tid of each.
490 */
491 static int rcu_print_task_stall(struct rcu_node *rnp)
492 {
493 struct task_struct *t;
494 int ndetected = 0;
495
496 if (!rcu_preempt_blocked_readers_cgp(rnp))
497 return 0;
498 rcu_print_task_stall_begin(rnp);
499 t = list_entry(rnp->gp_tasks,
500 struct task_struct, rcu_node_entry);
501 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502 pr_cont(" P%d", t->pid);
503 ndetected++;
504 }
505 rcu_print_task_stall_end();
506 return ndetected;
507 }
508
509 /*
510 * Check that the list of blocked tasks for the newly completed grace
511 * period is in fact empty. It is a serious bug to complete a grace
512 * period that still has RCU readers blocked! This function must be
513 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514 * must be held by the caller.
515 *
516 * Also, if there are blocked tasks on the list, they automatically
517 * block the newly created grace period, so set up ->gp_tasks accordingly.
518 */
519 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520 {
521 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522 if (!list_empty(&rnp->blkd_tasks))
523 rnp->gp_tasks = rnp->blkd_tasks.next;
524 WARN_ON_ONCE(rnp->qsmask);
525 }
526
527 #ifdef CONFIG_HOTPLUG_CPU
528
529 /*
530 * Handle tasklist migration for case in which all CPUs covered by the
531 * specified rcu_node have gone offline. Move them up to the root
532 * rcu_node. The reason for not just moving them to the immediate
533 * parent is to remove the need for rcu_read_unlock_special() to
534 * make more than two attempts to acquire the target rcu_node's lock.
535 * Returns true if there were tasks blocking the current RCU grace
536 * period.
537 *
538 * Returns 1 if there was previously a task blocking the current grace
539 * period on the specified rcu_node structure.
540 *
541 * The caller must hold rnp->lock with irqs disabled.
542 */
543 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544 struct rcu_node *rnp,
545 struct rcu_data *rdp)
546 {
547 struct list_head *lp;
548 struct list_head *lp_root;
549 int retval = 0;
550 struct rcu_node *rnp_root = rcu_get_root(rsp);
551 struct task_struct *t;
552
553 if (rnp == rnp_root) {
554 WARN_ONCE(1, "Last CPU thought to be offlined?");
555 return 0; /* Shouldn't happen: at least one CPU online. */
556 }
557
558 /* If we are on an internal node, complain bitterly. */
559 WARN_ON_ONCE(rnp != rdp->mynode);
560
561 /*
562 * Move tasks up to root rcu_node. Don't try to get fancy for
563 * this corner-case operation -- just put this node's tasks
564 * at the head of the root node's list, and update the root node's
565 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566 * if non-NULL. This might result in waiting for more tasks than
567 * absolutely necessary, but this is a good performance/complexity
568 * tradeoff.
569 */
570 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571 retval |= RCU_OFL_TASKS_NORM_GP;
572 if (rcu_preempted_readers_exp(rnp))
573 retval |= RCU_OFL_TASKS_EXP_GP;
574 lp = &rnp->blkd_tasks;
575 lp_root = &rnp_root->blkd_tasks;
576 while (!list_empty(lp)) {
577 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579 smp_mb__after_unlock_lock();
580 list_del(&t->rcu_node_entry);
581 t->rcu_blocked_node = rnp_root;
582 list_add(&t->rcu_node_entry, lp_root);
583 if (&t->rcu_node_entry == rnp->gp_tasks)
584 rnp_root->gp_tasks = rnp->gp_tasks;
585 if (&t->rcu_node_entry == rnp->exp_tasks)
586 rnp_root->exp_tasks = rnp->exp_tasks;
587 #ifdef CONFIG_RCU_BOOST
588 if (&t->rcu_node_entry == rnp->boost_tasks)
589 rnp_root->boost_tasks = rnp->boost_tasks;
590 #endif /* #ifdef CONFIG_RCU_BOOST */
591 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592 }
593
594 rnp->gp_tasks = NULL;
595 rnp->exp_tasks = NULL;
596 #ifdef CONFIG_RCU_BOOST
597 rnp->boost_tasks = NULL;
598 /*
599 * In case root is being boosted and leaf was not. Make sure
600 * that we boost the tasks blocking the current grace period
601 * in this case.
602 */
603 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604 smp_mb__after_unlock_lock();
605 if (rnp_root->boost_tasks != NULL &&
606 rnp_root->boost_tasks != rnp_root->gp_tasks &&
607 rnp_root->boost_tasks != rnp_root->exp_tasks)
608 rnp_root->boost_tasks = rnp_root->gp_tasks;
609 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610 #endif /* #ifdef CONFIG_RCU_BOOST */
611
612 return retval;
613 }
614
615 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
617 /*
618 * Check for a quiescent state from the current CPU. When a task blocks,
619 * the task is recorded in the corresponding CPU's rcu_node structure,
620 * which is checked elsewhere.
621 *
622 * Caller must disable hard irqs.
623 */
624 static void rcu_preempt_check_callbacks(void)
625 {
626 struct task_struct *t = current;
627
628 if (t->rcu_read_lock_nesting == 0) {
629 rcu_preempt_qs();
630 return;
631 }
632 if (t->rcu_read_lock_nesting > 0 &&
633 __this_cpu_read(rcu_preempt_data.qs_pending) &&
634 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
635 t->rcu_read_unlock_special.b.need_qs = true;
636 }
637
638 #ifdef CONFIG_RCU_BOOST
639
640 static void rcu_preempt_do_callbacks(void)
641 {
642 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
643 }
644
645 #endif /* #ifdef CONFIG_RCU_BOOST */
646
647 /*
648 * Queue a preemptible-RCU callback for invocation after a grace period.
649 */
650 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
651 {
652 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
653 }
654 EXPORT_SYMBOL_GPL(call_rcu);
655
656 /**
657 * synchronize_rcu - wait until a grace period has elapsed.
658 *
659 * Control will return to the caller some time after a full grace
660 * period has elapsed, in other words after all currently executing RCU
661 * read-side critical sections have completed. Note, however, that
662 * upon return from synchronize_rcu(), the caller might well be executing
663 * concurrently with new RCU read-side critical sections that began while
664 * synchronize_rcu() was waiting. RCU read-side critical sections are
665 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666 *
667 * See the description of synchronize_sched() for more detailed information
668 * on memory ordering guarantees.
669 */
670 void synchronize_rcu(void)
671 {
672 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
673 !lock_is_held(&rcu_lock_map) &&
674 !lock_is_held(&rcu_sched_lock_map),
675 "Illegal synchronize_rcu() in RCU read-side critical section");
676 if (!rcu_scheduler_active)
677 return;
678 if (rcu_expedited)
679 synchronize_rcu_expedited();
680 else
681 wait_rcu_gp(call_rcu);
682 }
683 EXPORT_SYMBOL_GPL(synchronize_rcu);
684
685 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
686 static unsigned long sync_rcu_preempt_exp_count;
687 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
688
689 /*
690 * Return non-zero if there are any tasks in RCU read-side critical
691 * sections blocking the current preemptible-RCU expedited grace period.
692 * If there is no preemptible-RCU expedited grace period currently in
693 * progress, returns zero unconditionally.
694 */
695 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
696 {
697 return rnp->exp_tasks != NULL;
698 }
699
700 /*
701 * return non-zero if there is no RCU expedited grace period in progress
702 * for the specified rcu_node structure, in other words, if all CPUs and
703 * tasks covered by the specified rcu_node structure have done their bit
704 * for the current expedited grace period. Works only for preemptible
705 * RCU -- other RCU implementation use other means.
706 *
707 * Caller must hold sync_rcu_preempt_exp_mutex.
708 */
709 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
710 {
711 return !rcu_preempted_readers_exp(rnp) &&
712 ACCESS_ONCE(rnp->expmask) == 0;
713 }
714
715 /*
716 * Report the exit from RCU read-side critical section for the last task
717 * that queued itself during or before the current expedited preemptible-RCU
718 * grace period. This event is reported either to the rcu_node structure on
719 * which the task was queued or to one of that rcu_node structure's ancestors,
720 * recursively up the tree. (Calm down, calm down, we do the recursion
721 * iteratively!)
722 *
723 * Most callers will set the "wake" flag, but the task initiating the
724 * expedited grace period need not wake itself.
725 *
726 * Caller must hold sync_rcu_preempt_exp_mutex.
727 */
728 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
729 bool wake)
730 {
731 unsigned long flags;
732 unsigned long mask;
733
734 raw_spin_lock_irqsave(&rnp->lock, flags);
735 smp_mb__after_unlock_lock();
736 for (;;) {
737 if (!sync_rcu_preempt_exp_done(rnp)) {
738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
739 break;
740 }
741 if (rnp->parent == NULL) {
742 raw_spin_unlock_irqrestore(&rnp->lock, flags);
743 if (wake) {
744 smp_mb(); /* EGP done before wake_up(). */
745 wake_up(&sync_rcu_preempt_exp_wq);
746 }
747 break;
748 }
749 mask = rnp->grpmask;
750 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
751 rnp = rnp->parent;
752 raw_spin_lock(&rnp->lock); /* irqs already disabled */
753 smp_mb__after_unlock_lock();
754 rnp->expmask &= ~mask;
755 }
756 }
757
758 /*
759 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
760 * grace period for the specified rcu_node structure. If there are no such
761 * tasks, report it up the rcu_node hierarchy.
762 *
763 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
764 * CPU hotplug operations.
765 */
766 static void
767 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
768 {
769 unsigned long flags;
770 int must_wait = 0;
771
772 raw_spin_lock_irqsave(&rnp->lock, flags);
773 smp_mb__after_unlock_lock();
774 if (list_empty(&rnp->blkd_tasks)) {
775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
776 } else {
777 rnp->exp_tasks = rnp->blkd_tasks.next;
778 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
779 must_wait = 1;
780 }
781 if (!must_wait)
782 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
783 }
784
785 /**
786 * synchronize_rcu_expedited - Brute-force RCU grace period
787 *
788 * Wait for an RCU-preempt grace period, but expedite it. The basic
789 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
790 * the ->blkd_tasks lists and wait for this list to drain. This consumes
791 * significant time on all CPUs and is unfriendly to real-time workloads,
792 * so is thus not recommended for any sort of common-case code.
793 * In fact, if you are using synchronize_rcu_expedited() in a loop,
794 * please restructure your code to batch your updates, and then Use a
795 * single synchronize_rcu() instead.
796 */
797 void synchronize_rcu_expedited(void)
798 {
799 unsigned long flags;
800 struct rcu_node *rnp;
801 struct rcu_state *rsp = &rcu_preempt_state;
802 unsigned long snap;
803 int trycount = 0;
804
805 smp_mb(); /* Caller's modifications seen first by other CPUs. */
806 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807 smp_mb(); /* Above access cannot bleed into critical section. */
808
809 /*
810 * Block CPU-hotplug operations. This means that any CPU-hotplug
811 * operation that finds an rcu_node structure with tasks in the
812 * process of being boosted will know that all tasks blocking
813 * this expedited grace period will already be in the process of
814 * being boosted. This simplifies the process of moving tasks
815 * from leaf to root rcu_node structures.
816 */
817 if (!try_get_online_cpus()) {
818 /* CPU-hotplug operation in flight, fall back to normal GP. */
819 wait_rcu_gp(call_rcu);
820 return;
821 }
822
823 /*
824 * Acquire lock, falling back to synchronize_rcu() if too many
825 * lock-acquisition failures. Of course, if someone does the
826 * expedited grace period for us, just leave.
827 */
828 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829 if (ULONG_CMP_LT(snap,
830 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831 put_online_cpus();
832 goto mb_ret; /* Others did our work for us. */
833 }
834 if (trycount++ < 10) {
835 udelay(trycount * num_online_cpus());
836 } else {
837 put_online_cpus();
838 wait_rcu_gp(call_rcu);
839 return;
840 }
841 }
842 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843 put_online_cpus();
844 goto unlock_mb_ret; /* Others did our work for us. */
845 }
846
847 /* force all RCU readers onto ->blkd_tasks lists. */
848 synchronize_sched_expedited();
849
850 /* Initialize ->expmask for all non-leaf rcu_node structures. */
851 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852 raw_spin_lock_irqsave(&rnp->lock, flags);
853 smp_mb__after_unlock_lock();
854 rnp->expmask = rnp->qsmaskinit;
855 raw_spin_unlock_irqrestore(&rnp->lock, flags);
856 }
857
858 /* Snapshot current state of ->blkd_tasks lists. */
859 rcu_for_each_leaf_node(rsp, rnp)
860 sync_rcu_preempt_exp_init(rsp, rnp);
861 if (NUM_RCU_NODES > 1)
862 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863
864 put_online_cpus();
865
866 /* Wait for snapshotted ->blkd_tasks lists to drain. */
867 rnp = rcu_get_root(rsp);
868 wait_event(sync_rcu_preempt_exp_wq,
869 sync_rcu_preempt_exp_done(rnp));
870
871 /* Clean up and exit. */
872 smp_mb(); /* ensure expedited GP seen before counter increment. */
873 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
874 sync_rcu_preempt_exp_count + 1;
875 unlock_mb_ret:
876 mutex_unlock(&sync_rcu_preempt_exp_mutex);
877 mb_ret:
878 smp_mb(); /* ensure subsequent action seen after grace period. */
879 }
880 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
881
882 /**
883 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
884 *
885 * Note that this primitive does not necessarily wait for an RCU grace period
886 * to complete. For example, if there are no RCU callbacks queued anywhere
887 * in the system, then rcu_barrier() is within its rights to return
888 * immediately, without waiting for anything, much less an RCU grace period.
889 */
890 void rcu_barrier(void)
891 {
892 _rcu_barrier(&rcu_preempt_state);
893 }
894 EXPORT_SYMBOL_GPL(rcu_barrier);
895
896 /*
897 * Initialize preemptible RCU's state structures.
898 */
899 static void __init __rcu_init_preempt(void)
900 {
901 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
902 }
903
904 /*
905 * Check for a task exiting while in a preemptible-RCU read-side
906 * critical section, clean up if so. No need to issue warnings,
907 * as debug_check_no_locks_held() already does this if lockdep
908 * is enabled.
909 */
910 void exit_rcu(void)
911 {
912 struct task_struct *t = current;
913
914 if (likely(list_empty(&current->rcu_node_entry)))
915 return;
916 t->rcu_read_lock_nesting = 1;
917 barrier();
918 t->rcu_read_unlock_special.b.blocked = true;
919 __rcu_read_unlock();
920 }
921
922 #else /* #ifdef CONFIG_PREEMPT_RCU */
923
924 static struct rcu_state *rcu_state_p = &rcu_sched_state;
925
926 /*
927 * Tell them what RCU they are running.
928 */
929 static void __init rcu_bootup_announce(void)
930 {
931 pr_info("Hierarchical RCU implementation.\n");
932 rcu_bootup_announce_oddness();
933 }
934
935 /*
936 * Return the number of RCU batches processed thus far for debug & stats.
937 */
938 long rcu_batches_completed(void)
939 {
940 return rcu_batches_completed_sched();
941 }
942 EXPORT_SYMBOL_GPL(rcu_batches_completed);
943
944 /*
945 * Because preemptible RCU does not exist, we never have to check for
946 * CPUs being in quiescent states.
947 */
948 static void rcu_preempt_note_context_switch(void)
949 {
950 }
951
952 /*
953 * Because preemptible RCU does not exist, there are never any preempted
954 * RCU readers.
955 */
956 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
957 {
958 return 0;
959 }
960
961 #ifdef CONFIG_HOTPLUG_CPU
962
963 /* Because preemptible RCU does not exist, no quieting of tasks. */
964 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
965 __releases(rnp->lock)
966 {
967 raw_spin_unlock_irqrestore(&rnp->lock, flags);
968 }
969
970 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
971
972 /*
973 * Because preemptible RCU does not exist, we never have to check for
974 * tasks blocked within RCU read-side critical sections.
975 */
976 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
977 {
978 }
979
980 /*
981 * Because preemptible RCU does not exist, we never have to check for
982 * tasks blocked within RCU read-side critical sections.
983 */
984 static int rcu_print_task_stall(struct rcu_node *rnp)
985 {
986 return 0;
987 }
988
989 /*
990 * Because there is no preemptible RCU, there can be no readers blocked,
991 * so there is no need to check for blocked tasks. So check only for
992 * bogus qsmask values.
993 */
994 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
995 {
996 WARN_ON_ONCE(rnp->qsmask);
997 }
998
999 #ifdef CONFIG_HOTPLUG_CPU
1000
1001 /*
1002 * Because preemptible RCU does not exist, it never needs to migrate
1003 * tasks that were blocked within RCU read-side critical sections, and
1004 * such non-existent tasks cannot possibly have been blocking the current
1005 * grace period.
1006 */
1007 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1008 struct rcu_node *rnp,
1009 struct rcu_data *rdp)
1010 {
1011 return 0;
1012 }
1013
1014 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1015
1016 /*
1017 * Because preemptible RCU does not exist, it never has any callbacks
1018 * to check.
1019 */
1020 static void rcu_preempt_check_callbacks(void)
1021 {
1022 }
1023
1024 /*
1025 * Wait for an rcu-preempt grace period, but make it happen quickly.
1026 * But because preemptible RCU does not exist, map to rcu-sched.
1027 */
1028 void synchronize_rcu_expedited(void)
1029 {
1030 synchronize_sched_expedited();
1031 }
1032 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1033
1034 #ifdef CONFIG_HOTPLUG_CPU
1035
1036 /*
1037 * Because preemptible RCU does not exist, there is never any need to
1038 * report on tasks preempted in RCU read-side critical sections during
1039 * expedited RCU grace periods.
1040 */
1041 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1042 bool wake)
1043 {
1044 }
1045
1046 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1047
1048 /*
1049 * Because preemptible RCU does not exist, rcu_barrier() is just
1050 * another name for rcu_barrier_sched().
1051 */
1052 void rcu_barrier(void)
1053 {
1054 rcu_barrier_sched();
1055 }
1056 EXPORT_SYMBOL_GPL(rcu_barrier);
1057
1058 /*
1059 * Because preemptible RCU does not exist, it need not be initialized.
1060 */
1061 static void __init __rcu_init_preempt(void)
1062 {
1063 }
1064
1065 /*
1066 * Because preemptible RCU does not exist, tasks cannot possibly exit
1067 * while in preemptible RCU read-side critical sections.
1068 */
1069 void exit_rcu(void)
1070 {
1071 }
1072
1073 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1074
1075 #ifdef CONFIG_RCU_BOOST
1076
1077 #include "../locking/rtmutex_common.h"
1078
1079 #ifdef CONFIG_RCU_TRACE
1080
1081 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1082 {
1083 if (list_empty(&rnp->blkd_tasks))
1084 rnp->n_balk_blkd_tasks++;
1085 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1086 rnp->n_balk_exp_gp_tasks++;
1087 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1088 rnp->n_balk_boost_tasks++;
1089 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1090 rnp->n_balk_notblocked++;
1091 else if (rnp->gp_tasks != NULL &&
1092 ULONG_CMP_LT(jiffies, rnp->boost_time))
1093 rnp->n_balk_notyet++;
1094 else
1095 rnp->n_balk_nos++;
1096 }
1097
1098 #else /* #ifdef CONFIG_RCU_TRACE */
1099
1100 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1101 {
1102 }
1103
1104 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1105
1106 static void rcu_wake_cond(struct task_struct *t, int status)
1107 {
1108 /*
1109 * If the thread is yielding, only wake it when this
1110 * is invoked from idle
1111 */
1112 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1113 wake_up_process(t);
1114 }
1115
1116 /*
1117 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1118 * or ->boost_tasks, advancing the pointer to the next task in the
1119 * ->blkd_tasks list.
1120 *
1121 * Note that irqs must be enabled: boosting the task can block.
1122 * Returns 1 if there are more tasks needing to be boosted.
1123 */
1124 static int rcu_boost(struct rcu_node *rnp)
1125 {
1126 unsigned long flags;
1127 struct task_struct *t;
1128 struct list_head *tb;
1129
1130 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1131 return 0; /* Nothing left to boost. */
1132
1133 raw_spin_lock_irqsave(&rnp->lock, flags);
1134 smp_mb__after_unlock_lock();
1135
1136 /*
1137 * Recheck under the lock: all tasks in need of boosting
1138 * might exit their RCU read-side critical sections on their own.
1139 */
1140 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1141 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142 return 0;
1143 }
1144
1145 /*
1146 * Preferentially boost tasks blocking expedited grace periods.
1147 * This cannot starve the normal grace periods because a second
1148 * expedited grace period must boost all blocked tasks, including
1149 * those blocking the pre-existing normal grace period.
1150 */
1151 if (rnp->exp_tasks != NULL) {
1152 tb = rnp->exp_tasks;
1153 rnp->n_exp_boosts++;
1154 } else {
1155 tb = rnp->boost_tasks;
1156 rnp->n_normal_boosts++;
1157 }
1158 rnp->n_tasks_boosted++;
1159
1160 /*
1161 * We boost task t by manufacturing an rt_mutex that appears to
1162 * be held by task t. We leave a pointer to that rt_mutex where
1163 * task t can find it, and task t will release the mutex when it
1164 * exits its outermost RCU read-side critical section. Then
1165 * simply acquiring this artificial rt_mutex will boost task
1166 * t's priority. (Thanks to tglx for suggesting this approach!)
1167 *
1168 * Note that task t must acquire rnp->lock to remove itself from
1169 * the ->blkd_tasks list, which it will do from exit() if from
1170 * nowhere else. We therefore are guaranteed that task t will
1171 * stay around at least until we drop rnp->lock. Note that
1172 * rnp->lock also resolves races between our priority boosting
1173 * and task t's exiting its outermost RCU read-side critical
1174 * section.
1175 */
1176 t = container_of(tb, struct task_struct, rcu_node_entry);
1177 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1178 init_completion(&rnp->boost_completion);
1179 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180 /* Lock only for side effect: boosts task t's priority. */
1181 rt_mutex_lock(&rnp->boost_mtx);
1182 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1183
1184 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1185 wait_for_completion(&rnp->boost_completion);
1186
1187 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1188 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1189 }
1190
1191 /*
1192 * Priority-boosting kthread. One per leaf rcu_node and one for the
1193 * root rcu_node.
1194 */
1195 static int rcu_boost_kthread(void *arg)
1196 {
1197 struct rcu_node *rnp = (struct rcu_node *)arg;
1198 int spincnt = 0;
1199 int more2boost;
1200
1201 trace_rcu_utilization(TPS("Start boost kthread@init"));
1202 for (;;) {
1203 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1204 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1205 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1206 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1207 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1208 more2boost = rcu_boost(rnp);
1209 if (more2boost)
1210 spincnt++;
1211 else
1212 spincnt = 0;
1213 if (spincnt > 10) {
1214 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1215 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1216 schedule_timeout_interruptible(2);
1217 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1218 spincnt = 0;
1219 }
1220 }
1221 /* NOTREACHED */
1222 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1223 return 0;
1224 }
1225
1226 /*
1227 * Check to see if it is time to start boosting RCU readers that are
1228 * blocking the current grace period, and, if so, tell the per-rcu_node
1229 * kthread to start boosting them. If there is an expedited grace
1230 * period in progress, it is always time to boost.
1231 *
1232 * The caller must hold rnp->lock, which this function releases.
1233 * The ->boost_kthread_task is immortal, so we don't need to worry
1234 * about it going away.
1235 */
1236 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1237 __releases(rnp->lock)
1238 {
1239 struct task_struct *t;
1240
1241 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1242 rnp->n_balk_exp_gp_tasks++;
1243 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1244 return;
1245 }
1246 if (rnp->exp_tasks != NULL ||
1247 (rnp->gp_tasks != NULL &&
1248 rnp->boost_tasks == NULL &&
1249 rnp->qsmask == 0 &&
1250 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1251 if (rnp->exp_tasks == NULL)
1252 rnp->boost_tasks = rnp->gp_tasks;
1253 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1254 t = rnp->boost_kthread_task;
1255 if (t)
1256 rcu_wake_cond(t, rnp->boost_kthread_status);
1257 } else {
1258 rcu_initiate_boost_trace(rnp);
1259 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260 }
1261 }
1262
1263 /*
1264 * Wake up the per-CPU kthread to invoke RCU callbacks.
1265 */
1266 static void invoke_rcu_callbacks_kthread(void)
1267 {
1268 unsigned long flags;
1269
1270 local_irq_save(flags);
1271 __this_cpu_write(rcu_cpu_has_work, 1);
1272 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1273 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1274 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1275 __this_cpu_read(rcu_cpu_kthread_status));
1276 }
1277 local_irq_restore(flags);
1278 }
1279
1280 /*
1281 * Is the current CPU running the RCU-callbacks kthread?
1282 * Caller must have preemption disabled.
1283 */
1284 static bool rcu_is_callbacks_kthread(void)
1285 {
1286 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1287 }
1288
1289 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1290
1291 /*
1292 * Do priority-boost accounting for the start of a new grace period.
1293 */
1294 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1295 {
1296 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1297 }
1298
1299 /*
1300 * Create an RCU-boost kthread for the specified node if one does not
1301 * already exist. We only create this kthread for preemptible RCU.
1302 * Returns zero if all is well, a negated errno otherwise.
1303 */
1304 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1305 struct rcu_node *rnp)
1306 {
1307 int rnp_index = rnp - &rsp->node[0];
1308 unsigned long flags;
1309 struct sched_param sp;
1310 struct task_struct *t;
1311
1312 if (&rcu_preempt_state != rsp)
1313 return 0;
1314
1315 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1316 return 0;
1317
1318 rsp->boost = 1;
1319 if (rnp->boost_kthread_task != NULL)
1320 return 0;
1321 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1322 "rcub/%d", rnp_index);
1323 if (IS_ERR(t))
1324 return PTR_ERR(t);
1325 raw_spin_lock_irqsave(&rnp->lock, flags);
1326 smp_mb__after_unlock_lock();
1327 rnp->boost_kthread_task = t;
1328 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329 sp.sched_priority = kthread_prio;
1330 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1331 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1332 return 0;
1333 }
1334
1335 static void rcu_kthread_do_work(void)
1336 {
1337 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1338 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1339 rcu_preempt_do_callbacks();
1340 }
1341
1342 static void rcu_cpu_kthread_setup(unsigned int cpu)
1343 {
1344 struct sched_param sp;
1345
1346 sp.sched_priority = kthread_prio;
1347 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1348 }
1349
1350 static void rcu_cpu_kthread_park(unsigned int cpu)
1351 {
1352 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1353 }
1354
1355 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1356 {
1357 return __this_cpu_read(rcu_cpu_has_work);
1358 }
1359
1360 /*
1361 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1362 * RCU softirq used in flavors and configurations of RCU that do not
1363 * support RCU priority boosting.
1364 */
1365 static void rcu_cpu_kthread(unsigned int cpu)
1366 {
1367 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1368 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1369 int spincnt;
1370
1371 for (spincnt = 0; spincnt < 10; spincnt++) {
1372 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1373 local_bh_disable();
1374 *statusp = RCU_KTHREAD_RUNNING;
1375 this_cpu_inc(rcu_cpu_kthread_loops);
1376 local_irq_disable();
1377 work = *workp;
1378 *workp = 0;
1379 local_irq_enable();
1380 if (work)
1381 rcu_kthread_do_work();
1382 local_bh_enable();
1383 if (*workp == 0) {
1384 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1385 *statusp = RCU_KTHREAD_WAITING;
1386 return;
1387 }
1388 }
1389 *statusp = RCU_KTHREAD_YIELDING;
1390 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1391 schedule_timeout_interruptible(2);
1392 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1393 *statusp = RCU_KTHREAD_WAITING;
1394 }
1395
1396 /*
1397 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1398 * served by the rcu_node in question. The CPU hotplug lock is still
1399 * held, so the value of rnp->qsmaskinit will be stable.
1400 *
1401 * We don't include outgoingcpu in the affinity set, use -1 if there is
1402 * no outgoing CPU. If there are no CPUs left in the affinity set,
1403 * this function allows the kthread to execute on any CPU.
1404 */
1405 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1406 {
1407 struct task_struct *t = rnp->boost_kthread_task;
1408 unsigned long mask = rnp->qsmaskinit;
1409 cpumask_var_t cm;
1410 int cpu;
1411
1412 if (!t)
1413 return;
1414 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1415 return;
1416 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1417 if ((mask & 0x1) && cpu != outgoingcpu)
1418 cpumask_set_cpu(cpu, cm);
1419 if (cpumask_weight(cm) == 0) {
1420 cpumask_setall(cm);
1421 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1422 cpumask_clear_cpu(cpu, cm);
1423 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1424 }
1425 set_cpus_allowed_ptr(t, cm);
1426 free_cpumask_var(cm);
1427 }
1428
1429 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1430 .store = &rcu_cpu_kthread_task,
1431 .thread_should_run = rcu_cpu_kthread_should_run,
1432 .thread_fn = rcu_cpu_kthread,
1433 .thread_comm = "rcuc/%u",
1434 .setup = rcu_cpu_kthread_setup,
1435 .park = rcu_cpu_kthread_park,
1436 };
1437
1438 /*
1439 * Spawn boost kthreads -- called as soon as the scheduler is running.
1440 */
1441 static void __init rcu_spawn_boost_kthreads(void)
1442 {
1443 struct rcu_node *rnp;
1444 int cpu;
1445
1446 for_each_possible_cpu(cpu)
1447 per_cpu(rcu_cpu_has_work, cpu) = 0;
1448 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449 rnp = rcu_get_root(rcu_state_p);
1450 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451 if (NUM_RCU_NODES > 1) {
1452 rcu_for_each_leaf_node(rcu_state_p, rnp)
1453 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454 }
1455 }
1456
1457 static void rcu_prepare_kthreads(int cpu)
1458 {
1459 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1460 struct rcu_node *rnp = rdp->mynode;
1461
1462 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1463 if (rcu_scheduler_fully_active)
1464 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1465 }
1466
1467 #else /* #ifdef CONFIG_RCU_BOOST */
1468
1469 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1470 __releases(rnp->lock)
1471 {
1472 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1473 }
1474
1475 static void invoke_rcu_callbacks_kthread(void)
1476 {
1477 WARN_ON_ONCE(1);
1478 }
1479
1480 static bool rcu_is_callbacks_kthread(void)
1481 {
1482 return false;
1483 }
1484
1485 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1486 {
1487 }
1488
1489 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1490 {
1491 }
1492
1493 static void __init rcu_spawn_boost_kthreads(void)
1494 {
1495 }
1496
1497 static void rcu_prepare_kthreads(int cpu)
1498 {
1499 }
1500
1501 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1502
1503 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1504
1505 /*
1506 * Check to see if any future RCU-related work will need to be done
1507 * by the current CPU, even if none need be done immediately, returning
1508 * 1 if so. This function is part of the RCU implementation; it is -not-
1509 * an exported member of the RCU API.
1510 *
1511 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1512 * any flavor of RCU.
1513 */
1514 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1515 int rcu_needs_cpu(unsigned long *delta_jiffies)
1516 {
1517 *delta_jiffies = ULONG_MAX;
1518 return rcu_cpu_has_callbacks(NULL);
1519 }
1520 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1521
1522 /*
1523 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1524 * after it.
1525 */
1526 static void rcu_cleanup_after_idle(void)
1527 {
1528 }
1529
1530 /*
1531 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1532 * is nothing.
1533 */
1534 static void rcu_prepare_for_idle(void)
1535 {
1536 }
1537
1538 /*
1539 * Don't bother keeping a running count of the number of RCU callbacks
1540 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1541 */
1542 static void rcu_idle_count_callbacks_posted(void)
1543 {
1544 }
1545
1546 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1547
1548 /*
1549 * This code is invoked when a CPU goes idle, at which point we want
1550 * to have the CPU do everything required for RCU so that it can enter
1551 * the energy-efficient dyntick-idle mode. This is handled by a
1552 * state machine implemented by rcu_prepare_for_idle() below.
1553 *
1554 * The following three proprocessor symbols control this state machine:
1555 *
1556 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1557 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1558 * is sized to be roughly one RCU grace period. Those energy-efficiency
1559 * benchmarkers who might otherwise be tempted to set this to a large
1560 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1561 * system. And if you are -that- concerned about energy efficiency,
1562 * just power the system down and be done with it!
1563 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1564 * permitted to sleep in dyntick-idle mode with only lazy RCU
1565 * callbacks pending. Setting this too high can OOM your system.
1566 *
1567 * The values below work well in practice. If future workloads require
1568 * adjustment, they can be converted into kernel config parameters, though
1569 * making the state machine smarter might be a better option.
1570 */
1571 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1572 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1573
1574 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1575 module_param(rcu_idle_gp_delay, int, 0644);
1576 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1577 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1578
1579 extern int tick_nohz_active;
1580
1581 /*
1582 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1583 * only if it has been awhile since the last time we did so. Afterwards,
1584 * if there are any callbacks ready for immediate invocation, return true.
1585 */
1586 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1587 {
1588 bool cbs_ready = false;
1589 struct rcu_data *rdp;
1590 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1591 struct rcu_node *rnp;
1592 struct rcu_state *rsp;
1593
1594 /* Exit early if we advanced recently. */
1595 if (jiffies == rdtp->last_advance_all)
1596 return false;
1597 rdtp->last_advance_all = jiffies;
1598
1599 for_each_rcu_flavor(rsp) {
1600 rdp = this_cpu_ptr(rsp->rda);
1601 rnp = rdp->mynode;
1602
1603 /*
1604 * Don't bother checking unless a grace period has
1605 * completed since we last checked and there are
1606 * callbacks not yet ready to invoke.
1607 */
1608 if (rdp->completed != rnp->completed &&
1609 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1610 note_gp_changes(rsp, rdp);
1611
1612 if (cpu_has_callbacks_ready_to_invoke(rdp))
1613 cbs_ready = true;
1614 }
1615 return cbs_ready;
1616 }
1617
1618 /*
1619 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1620 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1621 * caller to set the timeout based on whether or not there are non-lazy
1622 * callbacks.
1623 *
1624 * The caller must have disabled interrupts.
1625 */
1626 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1627 int rcu_needs_cpu(unsigned long *dj)
1628 {
1629 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1630
1631 /* Snapshot to detect later posting of non-lazy callback. */
1632 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1633
1634 /* If no callbacks, RCU doesn't need the CPU. */
1635 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1636 *dj = ULONG_MAX;
1637 return 0;
1638 }
1639
1640 /* Attempt to advance callbacks. */
1641 if (rcu_try_advance_all_cbs()) {
1642 /* Some ready to invoke, so initiate later invocation. */
1643 invoke_rcu_core();
1644 return 1;
1645 }
1646 rdtp->last_accelerate = jiffies;
1647
1648 /* Request timer delay depending on laziness, and round. */
1649 if (!rdtp->all_lazy) {
1650 *dj = round_up(rcu_idle_gp_delay + jiffies,
1651 rcu_idle_gp_delay) - jiffies;
1652 } else {
1653 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1654 }
1655 return 0;
1656 }
1657 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1658
1659 /*
1660 * Prepare a CPU for idle from an RCU perspective. The first major task
1661 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1662 * The second major task is to check to see if a non-lazy callback has
1663 * arrived at a CPU that previously had only lazy callbacks. The third
1664 * major task is to accelerate (that is, assign grace-period numbers to)
1665 * any recently arrived callbacks.
1666 *
1667 * The caller must have disabled interrupts.
1668 */
1669 static void rcu_prepare_for_idle(void)
1670 {
1671 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1672 bool needwake;
1673 struct rcu_data *rdp;
1674 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1675 struct rcu_node *rnp;
1676 struct rcu_state *rsp;
1677 int tne;
1678
1679 /* Handle nohz enablement switches conservatively. */
1680 tne = ACCESS_ONCE(tick_nohz_active);
1681 if (tne != rdtp->tick_nohz_enabled_snap) {
1682 if (rcu_cpu_has_callbacks(NULL))
1683 invoke_rcu_core(); /* force nohz to see update. */
1684 rdtp->tick_nohz_enabled_snap = tne;
1685 return;
1686 }
1687 if (!tne)
1688 return;
1689
1690 /* If this is a no-CBs CPU, no callbacks, just return. */
1691 if (rcu_is_nocb_cpu(smp_processor_id()))
1692 return;
1693
1694 /*
1695 * If a non-lazy callback arrived at a CPU having only lazy
1696 * callbacks, invoke RCU core for the side-effect of recalculating
1697 * idle duration on re-entry to idle.
1698 */
1699 if (rdtp->all_lazy &&
1700 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1701 rdtp->all_lazy = false;
1702 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1703 invoke_rcu_core();
1704 return;
1705 }
1706
1707 /*
1708 * If we have not yet accelerated this jiffy, accelerate all
1709 * callbacks on this CPU.
1710 */
1711 if (rdtp->last_accelerate == jiffies)
1712 return;
1713 rdtp->last_accelerate = jiffies;
1714 for_each_rcu_flavor(rsp) {
1715 rdp = this_cpu_ptr(rsp->rda);
1716 if (!*rdp->nxttail[RCU_DONE_TAIL])
1717 continue;
1718 rnp = rdp->mynode;
1719 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1720 smp_mb__after_unlock_lock();
1721 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1722 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1723 if (needwake)
1724 rcu_gp_kthread_wake(rsp);
1725 }
1726 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1727 }
1728
1729 /*
1730 * Clean up for exit from idle. Attempt to advance callbacks based on
1731 * any grace periods that elapsed while the CPU was idle, and if any
1732 * callbacks are now ready to invoke, initiate invocation.
1733 */
1734 static void rcu_cleanup_after_idle(void)
1735 {
1736 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1737 if (rcu_is_nocb_cpu(smp_processor_id()))
1738 return;
1739 if (rcu_try_advance_all_cbs())
1740 invoke_rcu_core();
1741 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1742 }
1743
1744 /*
1745 * Keep a running count of the number of non-lazy callbacks posted
1746 * on this CPU. This running counter (which is never decremented) allows
1747 * rcu_prepare_for_idle() to detect when something out of the idle loop
1748 * posts a callback, even if an equal number of callbacks are invoked.
1749 * Of course, callbacks should only be posted from within a trace event
1750 * designed to be called from idle or from within RCU_NONIDLE().
1751 */
1752 static void rcu_idle_count_callbacks_posted(void)
1753 {
1754 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1755 }
1756
1757 /*
1758 * Data for flushing lazy RCU callbacks at OOM time.
1759 */
1760 static atomic_t oom_callback_count;
1761 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1762
1763 /*
1764 * RCU OOM callback -- decrement the outstanding count and deliver the
1765 * wake-up if we are the last one.
1766 */
1767 static void rcu_oom_callback(struct rcu_head *rhp)
1768 {
1769 if (atomic_dec_and_test(&oom_callback_count))
1770 wake_up(&oom_callback_wq);
1771 }
1772
1773 /*
1774 * Post an rcu_oom_notify callback on the current CPU if it has at
1775 * least one lazy callback. This will unnecessarily post callbacks
1776 * to CPUs that already have a non-lazy callback at the end of their
1777 * callback list, but this is an infrequent operation, so accept some
1778 * extra overhead to keep things simple.
1779 */
1780 static void rcu_oom_notify_cpu(void *unused)
1781 {
1782 struct rcu_state *rsp;
1783 struct rcu_data *rdp;
1784
1785 for_each_rcu_flavor(rsp) {
1786 rdp = raw_cpu_ptr(rsp->rda);
1787 if (rdp->qlen_lazy != 0) {
1788 atomic_inc(&oom_callback_count);
1789 rsp->call(&rdp->oom_head, rcu_oom_callback);
1790 }
1791 }
1792 }
1793
1794 /*
1795 * If low on memory, ensure that each CPU has a non-lazy callback.
1796 * This will wake up CPUs that have only lazy callbacks, in turn
1797 * ensuring that they free up the corresponding memory in a timely manner.
1798 * Because an uncertain amount of memory will be freed in some uncertain
1799 * timeframe, we do not claim to have freed anything.
1800 */
1801 static int rcu_oom_notify(struct notifier_block *self,
1802 unsigned long notused, void *nfreed)
1803 {
1804 int cpu;
1805
1806 /* Wait for callbacks from earlier instance to complete. */
1807 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1808 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1809
1810 /*
1811 * Prevent premature wakeup: ensure that all increments happen
1812 * before there is a chance of the counter reaching zero.
1813 */
1814 atomic_set(&oom_callback_count, 1);
1815
1816 get_online_cpus();
1817 for_each_online_cpu(cpu) {
1818 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1819 cond_resched_rcu_qs();
1820 }
1821 put_online_cpus();
1822
1823 /* Unconditionally decrement: no need to wake ourselves up. */
1824 atomic_dec(&oom_callback_count);
1825
1826 return NOTIFY_OK;
1827 }
1828
1829 static struct notifier_block rcu_oom_nb = {
1830 .notifier_call = rcu_oom_notify
1831 };
1832
1833 static int __init rcu_register_oom_notifier(void)
1834 {
1835 register_oom_notifier(&rcu_oom_nb);
1836 return 0;
1837 }
1838 early_initcall(rcu_register_oom_notifier);
1839
1840 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1841
1842 #ifdef CONFIG_RCU_CPU_STALL_INFO
1843
1844 #ifdef CONFIG_RCU_FAST_NO_HZ
1845
1846 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1847 {
1848 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1849 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1850
1851 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1852 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1853 ulong2long(nlpd),
1854 rdtp->all_lazy ? 'L' : '.',
1855 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1856 }
1857
1858 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1859
1860 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1861 {
1862 *cp = '\0';
1863 }
1864
1865 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1866
1867 /* Initiate the stall-info list. */
1868 static void print_cpu_stall_info_begin(void)
1869 {
1870 pr_cont("\n");
1871 }
1872
1873 /*
1874 * Print out diagnostic information for the specified stalled CPU.
1875 *
1876 * If the specified CPU is aware of the current RCU grace period
1877 * (flavor specified by rsp), then print the number of scheduling
1878 * clock interrupts the CPU has taken during the time that it has
1879 * been aware. Otherwise, print the number of RCU grace periods
1880 * that this CPU is ignorant of, for example, "1" if the CPU was
1881 * aware of the previous grace period.
1882 *
1883 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1884 */
1885 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1886 {
1887 char fast_no_hz[72];
1888 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1889 struct rcu_dynticks *rdtp = rdp->dynticks;
1890 char *ticks_title;
1891 unsigned long ticks_value;
1892
1893 if (rsp->gpnum == rdp->gpnum) {
1894 ticks_title = "ticks this GP";
1895 ticks_value = rdp->ticks_this_gp;
1896 } else {
1897 ticks_title = "GPs behind";
1898 ticks_value = rsp->gpnum - rdp->gpnum;
1899 }
1900 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1901 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1902 cpu, ticks_value, ticks_title,
1903 atomic_read(&rdtp->dynticks) & 0xfff,
1904 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1905 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1906 fast_no_hz);
1907 }
1908
1909 /* Terminate the stall-info list. */
1910 static void print_cpu_stall_info_end(void)
1911 {
1912 pr_err("\t");
1913 }
1914
1915 /* Zero ->ticks_this_gp for all flavors of RCU. */
1916 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1917 {
1918 rdp->ticks_this_gp = 0;
1919 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1920 }
1921
1922 /* Increment ->ticks_this_gp for all flavors of RCU. */
1923 static void increment_cpu_stall_ticks(void)
1924 {
1925 struct rcu_state *rsp;
1926
1927 for_each_rcu_flavor(rsp)
1928 raw_cpu_inc(rsp->rda->ticks_this_gp);
1929 }
1930
1931 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1932
1933 static void print_cpu_stall_info_begin(void)
1934 {
1935 pr_cont(" {");
1936 }
1937
1938 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1939 {
1940 pr_cont(" %d", cpu);
1941 }
1942
1943 static void print_cpu_stall_info_end(void)
1944 {
1945 pr_cont("} ");
1946 }
1947
1948 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949 {
1950 }
1951
1952 static void increment_cpu_stall_ticks(void)
1953 {
1954 }
1955
1956 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1957
1958 #ifdef CONFIG_RCU_NOCB_CPU
1959
1960 /*
1961 * Offload callback processing from the boot-time-specified set of CPUs
1962 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1963 * kthread created that pulls the callbacks from the corresponding CPU,
1964 * waits for a grace period to elapse, and invokes the callbacks.
1965 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1966 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1967 * has been specified, in which case each kthread actively polls its
1968 * CPU. (Which isn't so great for energy efficiency, but which does
1969 * reduce RCU's overhead on that CPU.)
1970 *
1971 * This is intended to be used in conjunction with Frederic Weisbecker's
1972 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1973 * running CPU-bound user-mode computations.
1974 *
1975 * Offloading of callback processing could also in theory be used as
1976 * an energy-efficiency measure because CPUs with no RCU callbacks
1977 * queued are more aggressive about entering dyntick-idle mode.
1978 */
1979
1980
1981 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1982 static int __init rcu_nocb_setup(char *str)
1983 {
1984 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1985 have_rcu_nocb_mask = true;
1986 cpulist_parse(str, rcu_nocb_mask);
1987 return 1;
1988 }
1989 __setup("rcu_nocbs=", rcu_nocb_setup);
1990
1991 static int __init parse_rcu_nocb_poll(char *arg)
1992 {
1993 rcu_nocb_poll = 1;
1994 return 0;
1995 }
1996 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1997
1998 /*
1999 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2000 * grace period.
2001 */
2002 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2003 {
2004 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2005 }
2006
2007 /*
2008 * Set the root rcu_node structure's ->need_future_gp field
2009 * based on the sum of those of all rcu_node structures. This does
2010 * double-count the root rcu_node structure's requests, but this
2011 * is necessary to handle the possibility of a rcu_nocb_kthread()
2012 * having awakened during the time that the rcu_node structures
2013 * were being updated for the end of the previous grace period.
2014 */
2015 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2016 {
2017 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2018 }
2019
2020 static void rcu_init_one_nocb(struct rcu_node *rnp)
2021 {
2022 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2023 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2024 }
2025
2026 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2027 /* Is the specified CPU a no-CBs CPU? */
2028 bool rcu_is_nocb_cpu(int cpu)
2029 {
2030 if (have_rcu_nocb_mask)
2031 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2032 return false;
2033 }
2034 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2035
2036 /*
2037 * Kick the leader kthread for this NOCB group.
2038 */
2039 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2040 {
2041 struct rcu_data *rdp_leader = rdp->nocb_leader;
2042
2043 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2044 return;
2045 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2046 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
2047 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2048 wake_up(&rdp_leader->nocb_wq);
2049 }
2050 }
2051
2052 /*
2053 * Does the specified CPU need an RCU callback for the specified flavor
2054 * of rcu_barrier()?
2055 */
2056 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2057 {
2058 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2059 struct rcu_head *rhp;
2060
2061 /* No-CBs CPUs might have callbacks on any of three lists. */
2062 rhp = ACCESS_ONCE(rdp->nocb_head);
2063 if (!rhp)
2064 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
2065 if (!rhp)
2066 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
2067
2068 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2069 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
2070 /* RCU callback enqueued before CPU first came online??? */
2071 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2072 cpu, rhp->func);
2073 WARN_ON_ONCE(1);
2074 }
2075
2076 return !!rhp;
2077 }
2078
2079 /*
2080 * Enqueue the specified string of rcu_head structures onto the specified
2081 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2082 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2083 * counts are supplied by rhcount and rhcount_lazy.
2084 *
2085 * If warranted, also wake up the kthread servicing this CPUs queues.
2086 */
2087 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2088 struct rcu_head *rhp,
2089 struct rcu_head **rhtp,
2090 int rhcount, int rhcount_lazy,
2091 unsigned long flags)
2092 {
2093 int len;
2094 struct rcu_head **old_rhpp;
2095 struct task_struct *t;
2096
2097 /* Enqueue the callback on the nocb list and update counts. */
2098 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2099 ACCESS_ONCE(*old_rhpp) = rhp;
2100 atomic_long_add(rhcount, &rdp->nocb_q_count);
2101 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2102 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2103
2104 /* If we are not being polled and there is a kthread, awaken it ... */
2105 t = ACCESS_ONCE(rdp->nocb_kthread);
2106 if (rcu_nocb_poll || !t) {
2107 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2108 TPS("WakeNotPoll"));
2109 return;
2110 }
2111 len = atomic_long_read(&rdp->nocb_q_count);
2112 if (old_rhpp == &rdp->nocb_head) {
2113 if (!irqs_disabled_flags(flags)) {
2114 /* ... if queue was empty ... */
2115 wake_nocb_leader(rdp, false);
2116 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2117 TPS("WakeEmpty"));
2118 } else {
2119 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 TPS("WakeEmptyIsDeferred"));
2122 }
2123 rdp->qlen_last_fqs_check = 0;
2124 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2125 /* ... or if many callbacks queued. */
2126 if (!irqs_disabled_flags(flags)) {
2127 wake_nocb_leader(rdp, true);
2128 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2129 TPS("WakeOvf"));
2130 } else {
2131 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2132 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2133 TPS("WakeOvfIsDeferred"));
2134 }
2135 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2136 } else {
2137 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2138 }
2139 return;
2140 }
2141
2142 /*
2143 * This is a helper for __call_rcu(), which invokes this when the normal
2144 * callback queue is inoperable. If this is not a no-CBs CPU, this
2145 * function returns failure back to __call_rcu(), which can complain
2146 * appropriately.
2147 *
2148 * Otherwise, this function queues the callback where the corresponding
2149 * "rcuo" kthread can find it.
2150 */
2151 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2152 bool lazy, unsigned long flags)
2153 {
2154
2155 if (!rcu_is_nocb_cpu(rdp->cpu))
2156 return false;
2157 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2158 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2159 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2160 (unsigned long)rhp->func,
2161 -atomic_long_read(&rdp->nocb_q_count_lazy),
2162 -atomic_long_read(&rdp->nocb_q_count));
2163 else
2164 trace_rcu_callback(rdp->rsp->name, rhp,
2165 -atomic_long_read(&rdp->nocb_q_count_lazy),
2166 -atomic_long_read(&rdp->nocb_q_count));
2167
2168 /*
2169 * If called from an extended quiescent state with interrupts
2170 * disabled, invoke the RCU core in order to allow the idle-entry
2171 * deferred-wakeup check to function.
2172 */
2173 if (irqs_disabled_flags(flags) &&
2174 !rcu_is_watching() &&
2175 cpu_online(smp_processor_id()))
2176 invoke_rcu_core();
2177
2178 return true;
2179 }
2180
2181 /*
2182 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2183 * not a no-CBs CPU.
2184 */
2185 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2186 struct rcu_data *rdp,
2187 unsigned long flags)
2188 {
2189 long ql = rsp->qlen;
2190 long qll = rsp->qlen_lazy;
2191
2192 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2193 if (!rcu_is_nocb_cpu(smp_processor_id()))
2194 return false;
2195 rsp->qlen = 0;
2196 rsp->qlen_lazy = 0;
2197
2198 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2199 if (rsp->orphan_donelist != NULL) {
2200 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2201 rsp->orphan_donetail, ql, qll, flags);
2202 ql = qll = 0;
2203 rsp->orphan_donelist = NULL;
2204 rsp->orphan_donetail = &rsp->orphan_donelist;
2205 }
2206 if (rsp->orphan_nxtlist != NULL) {
2207 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2208 rsp->orphan_nxttail, ql, qll, flags);
2209 ql = qll = 0;
2210 rsp->orphan_nxtlist = NULL;
2211 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2212 }
2213 return true;
2214 }
2215
2216 /*
2217 * If necessary, kick off a new grace period, and either way wait
2218 * for a subsequent grace period to complete.
2219 */
2220 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2221 {
2222 unsigned long c;
2223 bool d;
2224 unsigned long flags;
2225 bool needwake;
2226 struct rcu_node *rnp = rdp->mynode;
2227
2228 raw_spin_lock_irqsave(&rnp->lock, flags);
2229 smp_mb__after_unlock_lock();
2230 needwake = rcu_start_future_gp(rnp, rdp, &c);
2231 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2232 if (needwake)
2233 rcu_gp_kthread_wake(rdp->rsp);
2234
2235 /*
2236 * Wait for the grace period. Do so interruptibly to avoid messing
2237 * up the load average.
2238 */
2239 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2240 for (;;) {
2241 wait_event_interruptible(
2242 rnp->nocb_gp_wq[c & 0x1],
2243 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2244 if (likely(d))
2245 break;
2246 WARN_ON(signal_pending(current));
2247 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2248 }
2249 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2250 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2251 }
2252
2253 /*
2254 * Leaders come here to wait for additional callbacks to show up.
2255 * This function does not return until callbacks appear.
2256 */
2257 static void nocb_leader_wait(struct rcu_data *my_rdp)
2258 {
2259 bool firsttime = true;
2260 bool gotcbs;
2261 struct rcu_data *rdp;
2262 struct rcu_head **tail;
2263
2264 wait_again:
2265
2266 /* Wait for callbacks to appear. */
2267 if (!rcu_nocb_poll) {
2268 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2269 wait_event_interruptible(my_rdp->nocb_wq,
2270 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2271 /* Memory barrier handled by smp_mb() calls below and repoll. */
2272 } else if (firsttime) {
2273 firsttime = false; /* Don't drown trace log with "Poll"! */
2274 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2275 }
2276
2277 /*
2278 * Each pass through the following loop checks a follower for CBs.
2279 * We are our own first follower. Any CBs found are moved to
2280 * nocb_gp_head, where they await a grace period.
2281 */
2282 gotcbs = false;
2283 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2284 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2285 if (!rdp->nocb_gp_head)
2286 continue; /* No CBs here, try next follower. */
2287
2288 /* Move callbacks to wait-for-GP list, which is empty. */
2289 ACCESS_ONCE(rdp->nocb_head) = NULL;
2290 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2291 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2292 rdp->nocb_gp_count_lazy =
2293 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2294 gotcbs = true;
2295 }
2296
2297 /*
2298 * If there were no callbacks, sleep a bit, rescan after a
2299 * memory barrier, and go retry.
2300 */
2301 if (unlikely(!gotcbs)) {
2302 if (!rcu_nocb_poll)
2303 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2304 "WokeEmpty");
2305 WARN_ON(signal_pending(current));
2306 schedule_timeout_interruptible(1);
2307
2308 /* Rescan in case we were a victim of memory ordering. */
2309 my_rdp->nocb_leader_sleep = true;
2310 smp_mb(); /* Ensure _sleep true before scan. */
2311 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2312 if (ACCESS_ONCE(rdp->nocb_head)) {
2313 /* Found CB, so short-circuit next wait. */
2314 my_rdp->nocb_leader_sleep = false;
2315 break;
2316 }
2317 goto wait_again;
2318 }
2319
2320 /* Wait for one grace period. */
2321 rcu_nocb_wait_gp(my_rdp);
2322
2323 /*
2324 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2325 * We set it now, but recheck for new callbacks while
2326 * traversing our follower list.
2327 */
2328 my_rdp->nocb_leader_sleep = true;
2329 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2330
2331 /* Each pass through the following loop wakes a follower, if needed. */
2332 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2333 if (ACCESS_ONCE(rdp->nocb_head))
2334 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2335 if (!rdp->nocb_gp_head)
2336 continue; /* No CBs, so no need to wake follower. */
2337
2338 /* Append callbacks to follower's "done" list. */
2339 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2340 *tail = rdp->nocb_gp_head;
2341 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2342 atomic_long_add(rdp->nocb_gp_count_lazy,
2343 &rdp->nocb_follower_count_lazy);
2344 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2345 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2346 /*
2347 * List was empty, wake up the follower.
2348 * Memory barriers supplied by atomic_long_add().
2349 */
2350 wake_up(&rdp->nocb_wq);
2351 }
2352 }
2353
2354 /* If we (the leader) don't have CBs, go wait some more. */
2355 if (!my_rdp->nocb_follower_head)
2356 goto wait_again;
2357 }
2358
2359 /*
2360 * Followers come here to wait for additional callbacks to show up.
2361 * This function does not return until callbacks appear.
2362 */
2363 static void nocb_follower_wait(struct rcu_data *rdp)
2364 {
2365 bool firsttime = true;
2366
2367 for (;;) {
2368 if (!rcu_nocb_poll) {
2369 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2370 "FollowerSleep");
2371 wait_event_interruptible(rdp->nocb_wq,
2372 ACCESS_ONCE(rdp->nocb_follower_head));
2373 } else if (firsttime) {
2374 /* Don't drown trace log with "Poll"! */
2375 firsttime = false;
2376 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2377 }
2378 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2379 /* ^^^ Ensure CB invocation follows _head test. */
2380 return;
2381 }
2382 if (!rcu_nocb_poll)
2383 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2384 "WokeEmpty");
2385 WARN_ON(signal_pending(current));
2386 schedule_timeout_interruptible(1);
2387 }
2388 }
2389
2390 /*
2391 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2392 * callbacks queued by the corresponding no-CBs CPU, however, there is
2393 * an optional leader-follower relationship so that the grace-period
2394 * kthreads don't have to do quite so many wakeups.
2395 */
2396 static int rcu_nocb_kthread(void *arg)
2397 {
2398 int c, cl;
2399 struct rcu_head *list;
2400 struct rcu_head *next;
2401 struct rcu_head **tail;
2402 struct rcu_data *rdp = arg;
2403
2404 /* Each pass through this loop invokes one batch of callbacks */
2405 for (;;) {
2406 /* Wait for callbacks. */
2407 if (rdp->nocb_leader == rdp)
2408 nocb_leader_wait(rdp);
2409 else
2410 nocb_follower_wait(rdp);
2411
2412 /* Pull the ready-to-invoke callbacks onto local list. */
2413 list = ACCESS_ONCE(rdp->nocb_follower_head);
2414 BUG_ON(!list);
2415 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2416 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2417 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2418 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2419 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2420 rdp->nocb_p_count += c;
2421 rdp->nocb_p_count_lazy += cl;
2422
2423 /* Each pass through the following loop invokes a callback. */
2424 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2425 c = cl = 0;
2426 while (list) {
2427 next = list->next;
2428 /* Wait for enqueuing to complete, if needed. */
2429 while (next == NULL && &list->next != tail) {
2430 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2431 TPS("WaitQueue"));
2432 schedule_timeout_interruptible(1);
2433 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2434 TPS("WokeQueue"));
2435 next = list->next;
2436 }
2437 debug_rcu_head_unqueue(list);
2438 local_bh_disable();
2439 if (__rcu_reclaim(rdp->rsp->name, list))
2440 cl++;
2441 c++;
2442 local_bh_enable();
2443 list = next;
2444 }
2445 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2446 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2447 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2448 rdp->nocb_p_count_lazy - cl;
2449 rdp->n_nocbs_invoked += c;
2450 }
2451 return 0;
2452 }
2453
2454 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2455 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2456 {
2457 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2458 }
2459
2460 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2461 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2462 {
2463 int ndw;
2464
2465 if (!rcu_nocb_need_deferred_wakeup(rdp))
2466 return;
2467 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2468 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2469 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2470 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2471 }
2472
2473 void __init rcu_init_nohz(void)
2474 {
2475 int cpu;
2476 bool need_rcu_nocb_mask = true;
2477 struct rcu_state *rsp;
2478
2479 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2480 need_rcu_nocb_mask = false;
2481 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2482
2483 #if defined(CONFIG_NO_HZ_FULL)
2484 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2485 need_rcu_nocb_mask = true;
2486 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2487
2488 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2489 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2490 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2491 return;
2492 }
2493 have_rcu_nocb_mask = true;
2494 }
2495 if (!have_rcu_nocb_mask)
2496 return;
2497
2498 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2499 pr_info("\tOffload RCU callbacks from CPU 0\n");
2500 cpumask_set_cpu(0, rcu_nocb_mask);
2501 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2502 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2503 pr_info("\tOffload RCU callbacks from all CPUs\n");
2504 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2505 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2506 #if defined(CONFIG_NO_HZ_FULL)
2507 if (tick_nohz_full_running)
2508 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2509 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2510
2511 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2512 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2513 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2514 rcu_nocb_mask);
2515 }
2516 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2517 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2518 if (rcu_nocb_poll)
2519 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2520
2521 for_each_rcu_flavor(rsp) {
2522 for_each_cpu(cpu, rcu_nocb_mask) {
2523 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2524
2525 /*
2526 * If there are early callbacks, they will need
2527 * to be moved to the nocb lists.
2528 */
2529 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2530 &rdp->nxtlist &&
2531 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2532 init_nocb_callback_list(rdp);
2533 }
2534 rcu_organize_nocb_kthreads(rsp);
2535 }
2536 }
2537
2538 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2539 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2540 {
2541 rdp->nocb_tail = &rdp->nocb_head;
2542 init_waitqueue_head(&rdp->nocb_wq);
2543 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2544 }
2545
2546 /*
2547 * If the specified CPU is a no-CBs CPU that does not already have its
2548 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2549 * brought online out of order, this can require re-organizing the
2550 * leader-follower relationships.
2551 */
2552 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2553 {
2554 struct rcu_data *rdp;
2555 struct rcu_data *rdp_last;
2556 struct rcu_data *rdp_old_leader;
2557 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2558 struct task_struct *t;
2559
2560 /*
2561 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2562 * then nothing to do.
2563 */
2564 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2565 return;
2566
2567 /* If we didn't spawn the leader first, reorganize! */
2568 rdp_old_leader = rdp_spawn->nocb_leader;
2569 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2570 rdp_last = NULL;
2571 rdp = rdp_old_leader;
2572 do {
2573 rdp->nocb_leader = rdp_spawn;
2574 if (rdp_last && rdp != rdp_spawn)
2575 rdp_last->nocb_next_follower = rdp;
2576 if (rdp == rdp_spawn) {
2577 rdp = rdp->nocb_next_follower;
2578 } else {
2579 rdp_last = rdp;
2580 rdp = rdp->nocb_next_follower;
2581 rdp_last->nocb_next_follower = NULL;
2582 }
2583 } while (rdp);
2584 rdp_spawn->nocb_next_follower = rdp_old_leader;
2585 }
2586
2587 /* Spawn the kthread for this CPU and RCU flavor. */
2588 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2589 "rcuo%c/%d", rsp->abbr, cpu);
2590 BUG_ON(IS_ERR(t));
2591 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2592 }
2593
2594 /*
2595 * If the specified CPU is a no-CBs CPU that does not already have its
2596 * rcuo kthreads, spawn them.
2597 */
2598 static void rcu_spawn_all_nocb_kthreads(int cpu)
2599 {
2600 struct rcu_state *rsp;
2601
2602 if (rcu_scheduler_fully_active)
2603 for_each_rcu_flavor(rsp)
2604 rcu_spawn_one_nocb_kthread(rsp, cpu);
2605 }
2606
2607 /*
2608 * Once the scheduler is running, spawn rcuo kthreads for all online
2609 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2610 * non-boot CPUs come online -- if this changes, we will need to add
2611 * some mutual exclusion.
2612 */
2613 static void __init rcu_spawn_nocb_kthreads(void)
2614 {
2615 int cpu;
2616
2617 for_each_online_cpu(cpu)
2618 rcu_spawn_all_nocb_kthreads(cpu);
2619 }
2620
2621 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2622 static int rcu_nocb_leader_stride = -1;
2623 module_param(rcu_nocb_leader_stride, int, 0444);
2624
2625 /*
2626 * Initialize leader-follower relationships for all no-CBs CPU.
2627 */
2628 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2629 {
2630 int cpu;
2631 int ls = rcu_nocb_leader_stride;
2632 int nl = 0; /* Next leader. */
2633 struct rcu_data *rdp;
2634 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2635 struct rcu_data *rdp_prev = NULL;
2636
2637 if (!have_rcu_nocb_mask)
2638 return;
2639 if (ls == -1) {
2640 ls = int_sqrt(nr_cpu_ids);
2641 rcu_nocb_leader_stride = ls;
2642 }
2643
2644 /*
2645 * Each pass through this loop sets up one rcu_data structure and
2646 * spawns one rcu_nocb_kthread().
2647 */
2648 for_each_cpu(cpu, rcu_nocb_mask) {
2649 rdp = per_cpu_ptr(rsp->rda, cpu);
2650 if (rdp->cpu >= nl) {
2651 /* New leader, set up for followers & next leader. */
2652 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2653 rdp->nocb_leader = rdp;
2654 rdp_leader = rdp;
2655 } else {
2656 /* Another follower, link to previous leader. */
2657 rdp->nocb_leader = rdp_leader;
2658 rdp_prev->nocb_next_follower = rdp;
2659 }
2660 rdp_prev = rdp;
2661 }
2662 }
2663
2664 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2665 static bool init_nocb_callback_list(struct rcu_data *rdp)
2666 {
2667 if (!rcu_is_nocb_cpu(rdp->cpu))
2668 return false;
2669
2670 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2671 return true;
2672 }
2673
2674 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2675
2676 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2677 {
2678 WARN_ON_ONCE(1); /* Should be dead code. */
2679 return false;
2680 }
2681
2682 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2683 {
2684 }
2685
2686 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2687 {
2688 }
2689
2690 static void rcu_init_one_nocb(struct rcu_node *rnp)
2691 {
2692 }
2693
2694 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2695 bool lazy, unsigned long flags)
2696 {
2697 return false;
2698 }
2699
2700 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2701 struct rcu_data *rdp,
2702 unsigned long flags)
2703 {
2704 return false;
2705 }
2706
2707 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2708 {
2709 }
2710
2711 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2712 {
2713 return false;
2714 }
2715
2716 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2717 {
2718 }
2719
2720 static void rcu_spawn_all_nocb_kthreads(int cpu)
2721 {
2722 }
2723
2724 static void __init rcu_spawn_nocb_kthreads(void)
2725 {
2726 }
2727
2728 static bool init_nocb_callback_list(struct rcu_data *rdp)
2729 {
2730 return false;
2731 }
2732
2733 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2734
2735 /*
2736 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2737 * arbitrarily long period of time with the scheduling-clock tick turned
2738 * off. RCU will be paying attention to this CPU because it is in the
2739 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2740 * machine because the scheduling-clock tick has been disabled. Therefore,
2741 * if an adaptive-ticks CPU is failing to respond to the current grace
2742 * period and has not be idle from an RCU perspective, kick it.
2743 */
2744 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2745 {
2746 #ifdef CONFIG_NO_HZ_FULL
2747 if (tick_nohz_full_cpu(cpu))
2748 smp_send_reschedule(cpu);
2749 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2750 }
2751
2752
2753 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2754
2755 static int full_sysidle_state; /* Current system-idle state. */
2756 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2757 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2758 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2759 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2760 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2761
2762 /*
2763 * Invoked to note exit from irq or task transition to idle. Note that
2764 * usermode execution does -not- count as idle here! After all, we want
2765 * to detect full-system idle states, not RCU quiescent states and grace
2766 * periods. The caller must have disabled interrupts.
2767 */
2768 static void rcu_sysidle_enter(int irq)
2769 {
2770 unsigned long j;
2771 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2772
2773 /* If there are no nohz_full= CPUs, no need to track this. */
2774 if (!tick_nohz_full_enabled())
2775 return;
2776
2777 /* Adjust nesting, check for fully idle. */
2778 if (irq) {
2779 rdtp->dynticks_idle_nesting--;
2780 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2781 if (rdtp->dynticks_idle_nesting != 0)
2782 return; /* Still not fully idle. */
2783 } else {
2784 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2785 DYNTICK_TASK_NEST_VALUE) {
2786 rdtp->dynticks_idle_nesting = 0;
2787 } else {
2788 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2789 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2790 return; /* Still not fully idle. */
2791 }
2792 }
2793
2794 /* Record start of fully idle period. */
2795 j = jiffies;
2796 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2797 smp_mb__before_atomic();
2798 atomic_inc(&rdtp->dynticks_idle);
2799 smp_mb__after_atomic();
2800 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2801 }
2802
2803 /*
2804 * Unconditionally force exit from full system-idle state. This is
2805 * invoked when a normal CPU exits idle, but must be called separately
2806 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2807 * is that the timekeeping CPU is permitted to take scheduling-clock
2808 * interrupts while the system is in system-idle state, and of course
2809 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2810 * interrupt from any other type of interrupt.
2811 */
2812 void rcu_sysidle_force_exit(void)
2813 {
2814 int oldstate = ACCESS_ONCE(full_sysidle_state);
2815 int newoldstate;
2816
2817 /*
2818 * Each pass through the following loop attempts to exit full
2819 * system-idle state. If contention proves to be a problem,
2820 * a trylock-based contention tree could be used here.
2821 */
2822 while (oldstate > RCU_SYSIDLE_SHORT) {
2823 newoldstate = cmpxchg(&full_sysidle_state,
2824 oldstate, RCU_SYSIDLE_NOT);
2825 if (oldstate == newoldstate &&
2826 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2827 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2828 return; /* We cleared it, done! */
2829 }
2830 oldstate = newoldstate;
2831 }
2832 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2833 }
2834
2835 /*
2836 * Invoked to note entry to irq or task transition from idle. Note that
2837 * usermode execution does -not- count as idle here! The caller must
2838 * have disabled interrupts.
2839 */
2840 static void rcu_sysidle_exit(int irq)
2841 {
2842 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2843
2844 /* If there are no nohz_full= CPUs, no need to track this. */
2845 if (!tick_nohz_full_enabled())
2846 return;
2847
2848 /* Adjust nesting, check for already non-idle. */
2849 if (irq) {
2850 rdtp->dynticks_idle_nesting++;
2851 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2852 if (rdtp->dynticks_idle_nesting != 1)
2853 return; /* Already non-idle. */
2854 } else {
2855 /*
2856 * Allow for irq misnesting. Yes, it really is possible
2857 * to enter an irq handler then never leave it, and maybe
2858 * also vice versa. Handle both possibilities.
2859 */
2860 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2861 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2862 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2863 return; /* Already non-idle. */
2864 } else {
2865 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2866 }
2867 }
2868
2869 /* Record end of idle period. */
2870 smp_mb__before_atomic();
2871 atomic_inc(&rdtp->dynticks_idle);
2872 smp_mb__after_atomic();
2873 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2874
2875 /*
2876 * If we are the timekeeping CPU, we are permitted to be non-idle
2877 * during a system-idle state. This must be the case, because
2878 * the timekeeping CPU has to take scheduling-clock interrupts
2879 * during the time that the system is transitioning to full
2880 * system-idle state. This means that the timekeeping CPU must
2881 * invoke rcu_sysidle_force_exit() directly if it does anything
2882 * more than take a scheduling-clock interrupt.
2883 */
2884 if (smp_processor_id() == tick_do_timer_cpu)
2885 return;
2886
2887 /* Update system-idle state: We are clearly no longer fully idle! */
2888 rcu_sysidle_force_exit();
2889 }
2890
2891 /*
2892 * Check to see if the current CPU is idle. Note that usermode execution
2893 * does not count as idle. The caller must have disabled interrupts.
2894 */
2895 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2896 unsigned long *maxj)
2897 {
2898 int cur;
2899 unsigned long j;
2900 struct rcu_dynticks *rdtp = rdp->dynticks;
2901
2902 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2903 if (!tick_nohz_full_enabled())
2904 return;
2905
2906 /*
2907 * If some other CPU has already reported non-idle, if this is
2908 * not the flavor of RCU that tracks sysidle state, or if this
2909 * is an offline or the timekeeping CPU, nothing to do.
2910 */
2911 if (!*isidle || rdp->rsp != rcu_state_p ||
2912 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2913 return;
2914 if (rcu_gp_in_progress(rdp->rsp))
2915 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2916
2917 /* Pick up current idle and NMI-nesting counter and check. */
2918 cur = atomic_read(&rdtp->dynticks_idle);
2919 if (cur & 0x1) {
2920 *isidle = false; /* We are not idle! */
2921 return;
2922 }
2923 smp_mb(); /* Read counters before timestamps. */
2924
2925 /* Pick up timestamps. */
2926 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2927 /* If this CPU entered idle more recently, update maxj timestamp. */
2928 if (ULONG_CMP_LT(*maxj, j))
2929 *maxj = j;
2930 }
2931
2932 /*
2933 * Is this the flavor of RCU that is handling full-system idle?
2934 */
2935 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2936 {
2937 return rsp == rcu_state_p;
2938 }
2939
2940 /*
2941 * Return a delay in jiffies based on the number of CPUs, rcu_node
2942 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2943 * systems more time to transition to full-idle state in order to
2944 * avoid the cache thrashing that otherwise occur on the state variable.
2945 * Really small systems (less than a couple of tens of CPUs) should
2946 * instead use a single global atomically incremented counter, and later
2947 * versions of this will automatically reconfigure themselves accordingly.
2948 */
2949 static unsigned long rcu_sysidle_delay(void)
2950 {
2951 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2952 return 0;
2953 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2954 }
2955
2956 /*
2957 * Advance the full-system-idle state. This is invoked when all of
2958 * the non-timekeeping CPUs are idle.
2959 */
2960 static void rcu_sysidle(unsigned long j)
2961 {
2962 /* Check the current state. */
2963 switch (ACCESS_ONCE(full_sysidle_state)) {
2964 case RCU_SYSIDLE_NOT:
2965
2966 /* First time all are idle, so note a short idle period. */
2967 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2968 break;
2969
2970 case RCU_SYSIDLE_SHORT:
2971
2972 /*
2973 * Idle for a bit, time to advance to next state?
2974 * cmpxchg failure means race with non-idle, let them win.
2975 */
2976 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2977 (void)cmpxchg(&full_sysidle_state,
2978 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2979 break;
2980
2981 case RCU_SYSIDLE_LONG:
2982
2983 /*
2984 * Do an additional check pass before advancing to full.
2985 * cmpxchg failure means race with non-idle, let them win.
2986 */
2987 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2988 (void)cmpxchg(&full_sysidle_state,
2989 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2990 break;
2991
2992 default:
2993 break;
2994 }
2995 }
2996
2997 /*
2998 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2999 * back to the beginning.
3000 */
3001 static void rcu_sysidle_cancel(void)
3002 {
3003 smp_mb();
3004 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
3005 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
3006 }
3007
3008 /*
3009 * Update the sysidle state based on the results of a force-quiescent-state
3010 * scan of the CPUs' dyntick-idle state.
3011 */
3012 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
3013 unsigned long maxj, bool gpkt)
3014 {
3015 if (rsp != rcu_state_p)
3016 return; /* Wrong flavor, ignore. */
3017 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
3018 return; /* Running state machine from timekeeping CPU. */
3019 if (isidle)
3020 rcu_sysidle(maxj); /* More idle! */
3021 else
3022 rcu_sysidle_cancel(); /* Idle is over. */
3023 }
3024
3025 /*
3026 * Wrapper for rcu_sysidle_report() when called from the grace-period
3027 * kthread's context.
3028 */
3029 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3030 unsigned long maxj)
3031 {
3032 /* If there are no nohz_full= CPUs, no need to track this. */
3033 if (!tick_nohz_full_enabled())
3034 return;
3035
3036 rcu_sysidle_report(rsp, isidle, maxj, true);
3037 }
3038
3039 /* Callback and function for forcing an RCU grace period. */
3040 struct rcu_sysidle_head {
3041 struct rcu_head rh;
3042 int inuse;
3043 };
3044
3045 static void rcu_sysidle_cb(struct rcu_head *rhp)
3046 {
3047 struct rcu_sysidle_head *rshp;
3048
3049 /*
3050 * The following memory barrier is needed to replace the
3051 * memory barriers that would normally be in the memory
3052 * allocator.
3053 */
3054 smp_mb(); /* grace period precedes setting inuse. */
3055
3056 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3057 ACCESS_ONCE(rshp->inuse) = 0;
3058 }
3059
3060 /*
3061 * Check to see if the system is fully idle, other than the timekeeping CPU.
3062 * The caller must have disabled interrupts. This is not intended to be
3063 * called unless tick_nohz_full_enabled().
3064 */
3065 bool rcu_sys_is_idle(void)
3066 {
3067 static struct rcu_sysidle_head rsh;
3068 int rss = ACCESS_ONCE(full_sysidle_state);
3069
3070 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3071 return false;
3072
3073 /* Handle small-system case by doing a full scan of CPUs. */
3074 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3075 int oldrss = rss - 1;
3076
3077 /*
3078 * One pass to advance to each state up to _FULL.
3079 * Give up if any pass fails to advance the state.
3080 */
3081 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3082 int cpu;
3083 bool isidle = true;
3084 unsigned long maxj = jiffies - ULONG_MAX / 4;
3085 struct rcu_data *rdp;
3086
3087 /* Scan all the CPUs looking for nonidle CPUs. */
3088 for_each_possible_cpu(cpu) {
3089 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3090 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3091 if (!isidle)
3092 break;
3093 }
3094 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3095 oldrss = rss;
3096 rss = ACCESS_ONCE(full_sysidle_state);
3097 }
3098 }
3099
3100 /* If this is the first observation of an idle period, record it. */
3101 if (rss == RCU_SYSIDLE_FULL) {
3102 rss = cmpxchg(&full_sysidle_state,
3103 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3104 return rss == RCU_SYSIDLE_FULL;
3105 }
3106
3107 smp_mb(); /* ensure rss load happens before later caller actions. */
3108
3109 /* If already fully idle, tell the caller (in case of races). */
3110 if (rss == RCU_SYSIDLE_FULL_NOTED)
3111 return true;
3112
3113 /*
3114 * If we aren't there yet, and a grace period is not in flight,
3115 * initiate a grace period. Either way, tell the caller that
3116 * we are not there yet. We use an xchg() rather than an assignment
3117 * to make up for the memory barriers that would otherwise be
3118 * provided by the memory allocator.
3119 */
3120 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3121 !rcu_gp_in_progress(rcu_state_p) &&
3122 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3123 call_rcu(&rsh.rh, rcu_sysidle_cb);
3124 return false;
3125 }
3126
3127 /*
3128 * Initialize dynticks sysidle state for CPUs coming online.
3129 */
3130 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3131 {
3132 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3133 }
3134
3135 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3136
3137 static void rcu_sysidle_enter(int irq)
3138 {
3139 }
3140
3141 static void rcu_sysidle_exit(int irq)
3142 {
3143 }
3144
3145 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3146 unsigned long *maxj)
3147 {
3148 }
3149
3150 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3151 {
3152 return false;
3153 }
3154
3155 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3156 unsigned long maxj)
3157 {
3158 }
3159
3160 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3161 {
3162 }
3163
3164 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3165
3166 /*
3167 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3168 * grace-period kthread will do force_quiescent_state() processing?
3169 * The idea is to avoid waking up RCU core processing on such a
3170 * CPU unless the grace period has extended for too long.
3171 *
3172 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3173 * CONFIG_RCU_NOCB_CPU CPUs.
3174 */
3175 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3176 {
3177 #ifdef CONFIG_NO_HZ_FULL
3178 if (tick_nohz_full_cpu(smp_processor_id()) &&
3179 (!rcu_gp_in_progress(rsp) ||
3180 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3181 return 1;
3182 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3183 return 0;
3184 }
3185
3186 /*
3187 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3188 * timekeeping CPU.
3189 */
3190 static void rcu_bind_gp_kthread(void)
3191 {
3192 int __maybe_unused cpu;
3193
3194 if (!tick_nohz_full_enabled())
3195 return;
3196 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3197 cpu = tick_do_timer_cpu;
3198 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3199 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3200 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3201 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3202 housekeeping_affine(current);
3203 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3204 }
3205
3206 /* Record the current task on dyntick-idle entry. */
3207 static void rcu_dynticks_task_enter(void)
3208 {
3209 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3210 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3211 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3212 }
3213
3214 /* Record no current task on dyntick-idle exit. */
3215 static void rcu_dynticks_task_exit(void)
3216 {
3217 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3218 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3219 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3220 }