]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
54 /*
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary. If you like #ifdef, you
57 * will love this function.
58 */
59 static void __init rcu_bootup_announce_oddness(void)
60 {
61 #ifdef CONFIG_RCU_TRACE
62 pr_info("\tRCU debugfs-based tracing is enabled.\n");
63 #endif
64 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66 CONFIG_RCU_FANOUT);
67 #endif
68 #ifdef CONFIG_RCU_FANOUT_EXACT
69 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
70 #endif
71 #ifdef CONFIG_RCU_FAST_NO_HZ
72 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
73 #endif
74 #ifdef CONFIG_PROVE_RCU
75 pr_info("\tRCU lockdep checking is enabled.\n");
76 #endif
77 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
78 pr_info("\tRCU torture testing starts during boot.\n");
79 #endif
80 #if defined(CONFIG_RCU_CPU_STALL_INFO)
81 pr_info("\tAdditional per-CPU info printed with stalls.\n");
82 #endif
83 #if NUM_RCU_LVL_4 != 0
84 pr_info("\tFour-level hierarchy is enabled.\n");
85 #endif
86 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
87 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
88 if (nr_cpu_ids != NR_CPUS)
89 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
90 #ifdef CONFIG_RCU_BOOST
91 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
92 #endif
93 }
94
95 #ifdef CONFIG_PREEMPT_RCU
96
97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
98 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
99
100 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
102 bool wake);
103
104 /*
105 * Tell them what RCU they are running.
106 */
107 static void __init rcu_bootup_announce(void)
108 {
109 pr_info("Preemptible hierarchical RCU implementation.\n");
110 rcu_bootup_announce_oddness();
111 }
112
113 /*
114 * Record a preemptible-RCU quiescent state for the specified CPU. Note
115 * that this just means that the task currently running on the CPU is
116 * not in a quiescent state. There might be any number of tasks blocked
117 * while in an RCU read-side critical section.
118 *
119 * As with the other rcu_*_qs() functions, callers to this function
120 * must disable preemption.
121 */
122 static void rcu_preempt_qs(void)
123 {
124 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
125 trace_rcu_grace_period(TPS("rcu_preempt"),
126 __this_cpu_read(rcu_preempt_data.gpnum),
127 TPS("cpuqs"));
128 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
129 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
130 current->rcu_read_unlock_special.b.need_qs = false;
131 }
132 }
133
134 /*
135 * We have entered the scheduler, and the current task might soon be
136 * context-switched away from. If this task is in an RCU read-side
137 * critical section, we will no longer be able to rely on the CPU to
138 * record that fact, so we enqueue the task on the blkd_tasks list.
139 * The task will dequeue itself when it exits the outermost enclosing
140 * RCU read-side critical section. Therefore, the current grace period
141 * cannot be permitted to complete until the blkd_tasks list entries
142 * predating the current grace period drain, in other words, until
143 * rnp->gp_tasks becomes NULL.
144 *
145 * Caller must disable preemption.
146 */
147 static void rcu_preempt_note_context_switch(void)
148 {
149 struct task_struct *t = current;
150 unsigned long flags;
151 struct rcu_data *rdp;
152 struct rcu_node *rnp;
153
154 if (t->rcu_read_lock_nesting > 0 &&
155 !t->rcu_read_unlock_special.b.blocked) {
156
157 /* Possibly blocking in an RCU read-side critical section. */
158 rdp = this_cpu_ptr(rcu_preempt_state.rda);
159 rnp = rdp->mynode;
160 raw_spin_lock_irqsave(&rnp->lock, flags);
161 smp_mb__after_unlock_lock();
162 t->rcu_read_unlock_special.b.blocked = true;
163 t->rcu_blocked_node = rnp;
164
165 /*
166 * If this CPU has already checked in, then this task
167 * will hold up the next grace period rather than the
168 * current grace period. Queue the task accordingly.
169 * If the task is queued for the current grace period
170 * (i.e., this CPU has not yet passed through a quiescent
171 * state for the current grace period), then as long
172 * as that task remains queued, the current grace period
173 * cannot end. Note that there is some uncertainty as
174 * to exactly when the current grace period started.
175 * We take a conservative approach, which can result
176 * in unnecessarily waiting on tasks that started very
177 * slightly after the current grace period began. C'est
178 * la vie!!!
179 *
180 * But first, note that the current CPU must still be
181 * on line!
182 */
183 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
184 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
185 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
186 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
187 rnp->gp_tasks = &t->rcu_node_entry;
188 #ifdef CONFIG_RCU_BOOST
189 if (rnp->boost_tasks != NULL)
190 rnp->boost_tasks = rnp->gp_tasks;
191 #endif /* #ifdef CONFIG_RCU_BOOST */
192 } else {
193 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
194 if (rnp->qsmask & rdp->grpmask)
195 rnp->gp_tasks = &t->rcu_node_entry;
196 }
197 trace_rcu_preempt_task(rdp->rsp->name,
198 t->pid,
199 (rnp->qsmask & rdp->grpmask)
200 ? rnp->gpnum
201 : rnp->gpnum + 1);
202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
203 } else if (t->rcu_read_lock_nesting < 0 &&
204 t->rcu_read_unlock_special.s) {
205
206 /*
207 * Complete exit from RCU read-side critical section on
208 * behalf of preempted instance of __rcu_read_unlock().
209 */
210 rcu_read_unlock_special(t);
211 }
212
213 /*
214 * Either we were not in an RCU read-side critical section to
215 * begin with, or we have now recorded that critical section
216 * globally. Either way, we can now note a quiescent state
217 * for this CPU. Again, if we were in an RCU read-side critical
218 * section, and if that critical section was blocking the current
219 * grace period, then the fact that the task has been enqueued
220 * means that we continue to block the current grace period.
221 */
222 rcu_preempt_qs();
223 }
224
225 /*
226 * Check for preempted RCU readers blocking the current grace period
227 * for the specified rcu_node structure. If the caller needs a reliable
228 * answer, it must hold the rcu_node's ->lock.
229 */
230 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
231 {
232 return rnp->gp_tasks != NULL;
233 }
234
235 /*
236 * Record a quiescent state for all tasks that were previously queued
237 * on the specified rcu_node structure and that were blocking the current
238 * RCU grace period. The caller must hold the specified rnp->lock with
239 * irqs disabled, and this lock is released upon return, but irqs remain
240 * disabled.
241 */
242 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
243 __releases(rnp->lock)
244 {
245 unsigned long mask;
246 struct rcu_node *rnp_p;
247
248 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
250 return; /* Still need more quiescent states! */
251 }
252
253 rnp_p = rnp->parent;
254 if (rnp_p == NULL) {
255 /*
256 * Either there is only one rcu_node in the tree,
257 * or tasks were kicked up to root rcu_node due to
258 * CPUs going offline.
259 */
260 rcu_report_qs_rsp(&rcu_preempt_state, flags);
261 return;
262 }
263
264 /* Report up the rest of the hierarchy. */
265 mask = rnp->grpmask;
266 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
267 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
268 smp_mb__after_unlock_lock();
269 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
270 }
271
272 /*
273 * Advance a ->blkd_tasks-list pointer to the next entry, instead
274 * returning NULL if at the end of the list.
275 */
276 static struct list_head *rcu_next_node_entry(struct task_struct *t,
277 struct rcu_node *rnp)
278 {
279 struct list_head *np;
280
281 np = t->rcu_node_entry.next;
282 if (np == &rnp->blkd_tasks)
283 np = NULL;
284 return np;
285 }
286
287 /*
288 * Return true if the specified rcu_node structure has tasks that were
289 * preempted within an RCU read-side critical section.
290 */
291 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
292 {
293 return !list_empty(&rnp->blkd_tasks);
294 }
295
296 /*
297 * Handle special cases during rcu_read_unlock(), such as needing to
298 * notify RCU core processing or task having blocked during the RCU
299 * read-side critical section.
300 */
301 void rcu_read_unlock_special(struct task_struct *t)
302 {
303 bool empty;
304 bool empty_exp;
305 bool empty_norm;
306 bool empty_exp_now;
307 unsigned long flags;
308 struct list_head *np;
309 #ifdef CONFIG_RCU_BOOST
310 bool drop_boost_mutex = false;
311 #endif /* #ifdef CONFIG_RCU_BOOST */
312 struct rcu_node *rnp;
313 union rcu_special special;
314
315 /* NMI handlers cannot block and cannot safely manipulate state. */
316 if (in_nmi())
317 return;
318
319 local_irq_save(flags);
320
321 /*
322 * If RCU core is waiting for this CPU to exit critical section,
323 * let it know that we have done so. Because irqs are disabled,
324 * t->rcu_read_unlock_special cannot change.
325 */
326 special = t->rcu_read_unlock_special;
327 if (special.b.need_qs) {
328 rcu_preempt_qs();
329 t->rcu_read_unlock_special.b.need_qs = false;
330 if (!t->rcu_read_unlock_special.s) {
331 local_irq_restore(flags);
332 return;
333 }
334 }
335
336 /* Hardware IRQ handlers cannot block, complain if they get here. */
337 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
338 local_irq_restore(flags);
339 return;
340 }
341
342 /* Clean up if blocked during RCU read-side critical section. */
343 if (special.b.blocked) {
344 t->rcu_read_unlock_special.b.blocked = false;
345
346 /*
347 * Remove this task from the list it blocked on. The
348 * task can migrate while we acquire the lock, but at
349 * most one time. So at most two passes through loop.
350 */
351 for (;;) {
352 rnp = t->rcu_blocked_node;
353 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
354 smp_mb__after_unlock_lock();
355 if (rnp == t->rcu_blocked_node)
356 break;
357 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
358 }
359 empty = !rcu_preempt_has_tasks(rnp);
360 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
361 empty_exp = !rcu_preempted_readers_exp(rnp);
362 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363 np = rcu_next_node_entry(t, rnp);
364 list_del_init(&t->rcu_node_entry);
365 t->rcu_blocked_node = NULL;
366 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367 rnp->gpnum, t->pid);
368 if (&t->rcu_node_entry == rnp->gp_tasks)
369 rnp->gp_tasks = np;
370 if (&t->rcu_node_entry == rnp->exp_tasks)
371 rnp->exp_tasks = np;
372 #ifdef CONFIG_RCU_BOOST
373 if (&t->rcu_node_entry == rnp->boost_tasks)
374 rnp->boost_tasks = np;
375 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377 #endif /* #ifdef CONFIG_RCU_BOOST */
378
379 /*
380 * If this was the last task on the list, go see if we
381 * need to propagate ->qsmaskinit bit clearing up the
382 * rcu_node tree.
383 */
384 if (!empty && !rcu_preempt_has_tasks(rnp))
385 rcu_cleanup_dead_rnp(rnp);
386
387 /*
388 * If this was the last task on the current list, and if
389 * we aren't waiting on any CPUs, report the quiescent state.
390 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
391 * so we must take a snapshot of the expedited state.
392 */
393 empty_exp_now = !rcu_preempted_readers_exp(rnp);
394 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
395 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
396 rnp->gpnum,
397 0, rnp->qsmask,
398 rnp->level,
399 rnp->grplo,
400 rnp->grphi,
401 !!rnp->gp_tasks);
402 rcu_report_unblock_qs_rnp(rnp, flags);
403 } else {
404 raw_spin_unlock_irqrestore(&rnp->lock, flags);
405 }
406
407 #ifdef CONFIG_RCU_BOOST
408 /* Unboost if we were boosted. */
409 if (drop_boost_mutex)
410 rt_mutex_unlock(&rnp->boost_mtx);
411 #endif /* #ifdef CONFIG_RCU_BOOST */
412
413 /*
414 * If this was the last task on the expedited lists,
415 * then we need to report up the rcu_node hierarchy.
416 */
417 if (!empty_exp && empty_exp_now)
418 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
419 } else {
420 local_irq_restore(flags);
421 }
422 }
423
424 /*
425 * Dump detailed information for all tasks blocking the current RCU
426 * grace period on the specified rcu_node structure.
427 */
428 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
429 {
430 unsigned long flags;
431 struct task_struct *t;
432
433 raw_spin_lock_irqsave(&rnp->lock, flags);
434 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
435 raw_spin_unlock_irqrestore(&rnp->lock, flags);
436 return;
437 }
438 t = list_entry(rnp->gp_tasks,
439 struct task_struct, rcu_node_entry);
440 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
441 sched_show_task(t);
442 raw_spin_unlock_irqrestore(&rnp->lock, flags);
443 }
444
445 /*
446 * Dump detailed information for all tasks blocking the current RCU
447 * grace period.
448 */
449 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
450 {
451 struct rcu_node *rnp = rcu_get_root(rsp);
452
453 rcu_print_detail_task_stall_rnp(rnp);
454 rcu_for_each_leaf_node(rsp, rnp)
455 rcu_print_detail_task_stall_rnp(rnp);
456 }
457
458 #ifdef CONFIG_RCU_CPU_STALL_INFO
459
460 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
461 {
462 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
463 rnp->level, rnp->grplo, rnp->grphi);
464 }
465
466 static void rcu_print_task_stall_end(void)
467 {
468 pr_cont("\n");
469 }
470
471 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
472
473 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
474 {
475 }
476
477 static void rcu_print_task_stall_end(void)
478 {
479 }
480
481 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
482
483 /*
484 * Scan the current list of tasks blocked within RCU read-side critical
485 * sections, printing out the tid of each.
486 */
487 static int rcu_print_task_stall(struct rcu_node *rnp)
488 {
489 struct task_struct *t;
490 int ndetected = 0;
491
492 if (!rcu_preempt_blocked_readers_cgp(rnp))
493 return 0;
494 rcu_print_task_stall_begin(rnp);
495 t = list_entry(rnp->gp_tasks,
496 struct task_struct, rcu_node_entry);
497 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
498 pr_cont(" P%d", t->pid);
499 ndetected++;
500 }
501 rcu_print_task_stall_end();
502 return ndetected;
503 }
504
505 /*
506 * Check that the list of blocked tasks for the newly completed grace
507 * period is in fact empty. It is a serious bug to complete a grace
508 * period that still has RCU readers blocked! This function must be
509 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
510 * must be held by the caller.
511 *
512 * Also, if there are blocked tasks on the list, they automatically
513 * block the newly created grace period, so set up ->gp_tasks accordingly.
514 */
515 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
516 {
517 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
518 if (rcu_preempt_has_tasks(rnp))
519 rnp->gp_tasks = rnp->blkd_tasks.next;
520 WARN_ON_ONCE(rnp->qsmask);
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524
525 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
526
527 /*
528 * Check for a quiescent state from the current CPU. When a task blocks,
529 * the task is recorded in the corresponding CPU's rcu_node structure,
530 * which is checked elsewhere.
531 *
532 * Caller must disable hard irqs.
533 */
534 static void rcu_preempt_check_callbacks(void)
535 {
536 struct task_struct *t = current;
537
538 if (t->rcu_read_lock_nesting == 0) {
539 rcu_preempt_qs();
540 return;
541 }
542 if (t->rcu_read_lock_nesting > 0 &&
543 __this_cpu_read(rcu_preempt_data.qs_pending) &&
544 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
545 t->rcu_read_unlock_special.b.need_qs = true;
546 }
547
548 #ifdef CONFIG_RCU_BOOST
549
550 static void rcu_preempt_do_callbacks(void)
551 {
552 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
553 }
554
555 #endif /* #ifdef CONFIG_RCU_BOOST */
556
557 /*
558 * Queue a preemptible-RCU callback for invocation after a grace period.
559 */
560 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
561 {
562 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
563 }
564 EXPORT_SYMBOL_GPL(call_rcu);
565
566 /**
567 * synchronize_rcu - wait until a grace period has elapsed.
568 *
569 * Control will return to the caller some time after a full grace
570 * period has elapsed, in other words after all currently executing RCU
571 * read-side critical sections have completed. Note, however, that
572 * upon return from synchronize_rcu(), the caller might well be executing
573 * concurrently with new RCU read-side critical sections that began while
574 * synchronize_rcu() was waiting. RCU read-side critical sections are
575 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
576 *
577 * See the description of synchronize_sched() for more detailed information
578 * on memory ordering guarantees.
579 */
580 void synchronize_rcu(void)
581 {
582 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
583 !lock_is_held(&rcu_lock_map) &&
584 !lock_is_held(&rcu_sched_lock_map),
585 "Illegal synchronize_rcu() in RCU read-side critical section");
586 if (!rcu_scheduler_active)
587 return;
588 if (rcu_expedited)
589 synchronize_rcu_expedited();
590 else
591 wait_rcu_gp(call_rcu);
592 }
593 EXPORT_SYMBOL_GPL(synchronize_rcu);
594
595 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
596 static unsigned long sync_rcu_preempt_exp_count;
597 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
598
599 /*
600 * Return non-zero if there are any tasks in RCU read-side critical
601 * sections blocking the current preemptible-RCU expedited grace period.
602 * If there is no preemptible-RCU expedited grace period currently in
603 * progress, returns zero unconditionally.
604 */
605 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
606 {
607 return rnp->exp_tasks != NULL;
608 }
609
610 /*
611 * return non-zero if there is no RCU expedited grace period in progress
612 * for the specified rcu_node structure, in other words, if all CPUs and
613 * tasks covered by the specified rcu_node structure have done their bit
614 * for the current expedited grace period. Works only for preemptible
615 * RCU -- other RCU implementation use other means.
616 *
617 * Caller must hold sync_rcu_preempt_exp_mutex.
618 */
619 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
620 {
621 return !rcu_preempted_readers_exp(rnp) &&
622 ACCESS_ONCE(rnp->expmask) == 0;
623 }
624
625 /*
626 * Report the exit from RCU read-side critical section for the last task
627 * that queued itself during or before the current expedited preemptible-RCU
628 * grace period. This event is reported either to the rcu_node structure on
629 * which the task was queued or to one of that rcu_node structure's ancestors,
630 * recursively up the tree. (Calm down, calm down, we do the recursion
631 * iteratively!)
632 *
633 * Most callers will set the "wake" flag, but the task initiating the
634 * expedited grace period need not wake itself.
635 *
636 * Caller must hold sync_rcu_preempt_exp_mutex.
637 */
638 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
639 bool wake)
640 {
641 unsigned long flags;
642 unsigned long mask;
643
644 raw_spin_lock_irqsave(&rnp->lock, flags);
645 smp_mb__after_unlock_lock();
646 for (;;) {
647 if (!sync_rcu_preempt_exp_done(rnp)) {
648 raw_spin_unlock_irqrestore(&rnp->lock, flags);
649 break;
650 }
651 if (rnp->parent == NULL) {
652 raw_spin_unlock_irqrestore(&rnp->lock, flags);
653 if (wake) {
654 smp_mb(); /* EGP done before wake_up(). */
655 wake_up(&sync_rcu_preempt_exp_wq);
656 }
657 break;
658 }
659 mask = rnp->grpmask;
660 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
661 rnp = rnp->parent;
662 raw_spin_lock(&rnp->lock); /* irqs already disabled */
663 smp_mb__after_unlock_lock();
664 rnp->expmask &= ~mask;
665 }
666 }
667
668 /*
669 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
670 * grace period for the specified rcu_node structure. If there are no such
671 * tasks, report it up the rcu_node hierarchy.
672 *
673 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
674 * CPU hotplug operations.
675 */
676 static void
677 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
678 {
679 unsigned long flags;
680 int must_wait = 0;
681
682 raw_spin_lock_irqsave(&rnp->lock, flags);
683 smp_mb__after_unlock_lock();
684 if (!rcu_preempt_has_tasks(rnp)) {
685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
686 } else {
687 rnp->exp_tasks = rnp->blkd_tasks.next;
688 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
689 must_wait = 1;
690 }
691 if (!must_wait)
692 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
693 }
694
695 /**
696 * synchronize_rcu_expedited - Brute-force RCU grace period
697 *
698 * Wait for an RCU-preempt grace period, but expedite it. The basic
699 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
700 * the ->blkd_tasks lists and wait for this list to drain. This consumes
701 * significant time on all CPUs and is unfriendly to real-time workloads,
702 * so is thus not recommended for any sort of common-case code.
703 * In fact, if you are using synchronize_rcu_expedited() in a loop,
704 * please restructure your code to batch your updates, and then Use a
705 * single synchronize_rcu() instead.
706 */
707 void synchronize_rcu_expedited(void)
708 {
709 unsigned long flags;
710 struct rcu_node *rnp;
711 struct rcu_state *rsp = &rcu_preempt_state;
712 unsigned long snap;
713 int trycount = 0;
714
715 smp_mb(); /* Caller's modifications seen first by other CPUs. */
716 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
717 smp_mb(); /* Above access cannot bleed into critical section. */
718
719 /*
720 * Block CPU-hotplug operations. This means that any CPU-hotplug
721 * operation that finds an rcu_node structure with tasks in the
722 * process of being boosted will know that all tasks blocking
723 * this expedited grace period will already be in the process of
724 * being boosted. This simplifies the process of moving tasks
725 * from leaf to root rcu_node structures.
726 */
727 if (!try_get_online_cpus()) {
728 /* CPU-hotplug operation in flight, fall back to normal GP. */
729 wait_rcu_gp(call_rcu);
730 return;
731 }
732
733 /*
734 * Acquire lock, falling back to synchronize_rcu() if too many
735 * lock-acquisition failures. Of course, if someone does the
736 * expedited grace period for us, just leave.
737 */
738 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
739 if (ULONG_CMP_LT(snap,
740 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
741 put_online_cpus();
742 goto mb_ret; /* Others did our work for us. */
743 }
744 if (trycount++ < 10) {
745 udelay(trycount * num_online_cpus());
746 } else {
747 put_online_cpus();
748 wait_rcu_gp(call_rcu);
749 return;
750 }
751 }
752 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
753 put_online_cpus();
754 goto unlock_mb_ret; /* Others did our work for us. */
755 }
756
757 /* force all RCU readers onto ->blkd_tasks lists. */
758 synchronize_sched_expedited();
759
760 /* Initialize ->expmask for all non-leaf rcu_node structures. */
761 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
762 raw_spin_lock_irqsave(&rnp->lock, flags);
763 smp_mb__after_unlock_lock();
764 rnp->expmask = rnp->qsmaskinit;
765 raw_spin_unlock_irqrestore(&rnp->lock, flags);
766 }
767
768 /* Snapshot current state of ->blkd_tasks lists. */
769 rcu_for_each_leaf_node(rsp, rnp)
770 sync_rcu_preempt_exp_init(rsp, rnp);
771 if (NUM_RCU_NODES > 1)
772 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
773
774 put_online_cpus();
775
776 /* Wait for snapshotted ->blkd_tasks lists to drain. */
777 rnp = rcu_get_root(rsp);
778 wait_event(sync_rcu_preempt_exp_wq,
779 sync_rcu_preempt_exp_done(rnp));
780
781 /* Clean up and exit. */
782 smp_mb(); /* ensure expedited GP seen before counter increment. */
783 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
784 sync_rcu_preempt_exp_count + 1;
785 unlock_mb_ret:
786 mutex_unlock(&sync_rcu_preempt_exp_mutex);
787 mb_ret:
788 smp_mb(); /* ensure subsequent action seen after grace period. */
789 }
790 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
791
792 /**
793 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
794 *
795 * Note that this primitive does not necessarily wait for an RCU grace period
796 * to complete. For example, if there are no RCU callbacks queued anywhere
797 * in the system, then rcu_barrier() is within its rights to return
798 * immediately, without waiting for anything, much less an RCU grace period.
799 */
800 void rcu_barrier(void)
801 {
802 _rcu_barrier(&rcu_preempt_state);
803 }
804 EXPORT_SYMBOL_GPL(rcu_barrier);
805
806 /*
807 * Initialize preemptible RCU's state structures.
808 */
809 static void __init __rcu_init_preempt(void)
810 {
811 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
812 }
813
814 /*
815 * Check for a task exiting while in a preemptible-RCU read-side
816 * critical section, clean up if so. No need to issue warnings,
817 * as debug_check_no_locks_held() already does this if lockdep
818 * is enabled.
819 */
820 void exit_rcu(void)
821 {
822 struct task_struct *t = current;
823
824 if (likely(list_empty(&current->rcu_node_entry)))
825 return;
826 t->rcu_read_lock_nesting = 1;
827 barrier();
828 t->rcu_read_unlock_special.b.blocked = true;
829 __rcu_read_unlock();
830 }
831
832 #else /* #ifdef CONFIG_PREEMPT_RCU */
833
834 static struct rcu_state *rcu_state_p = &rcu_sched_state;
835
836 /*
837 * Tell them what RCU they are running.
838 */
839 static void __init rcu_bootup_announce(void)
840 {
841 pr_info("Hierarchical RCU implementation.\n");
842 rcu_bootup_announce_oddness();
843 }
844
845 /*
846 * Because preemptible RCU does not exist, we never have to check for
847 * CPUs being in quiescent states.
848 */
849 static void rcu_preempt_note_context_switch(void)
850 {
851 }
852
853 /*
854 * Because preemptible RCU does not exist, there are never any preempted
855 * RCU readers.
856 */
857 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
858 {
859 return 0;
860 }
861
862 #ifdef CONFIG_HOTPLUG_CPU
863
864 /*
865 * Because there is no preemptible RCU, there can be no readers blocked.
866 */
867 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
868 {
869 return false;
870 }
871
872 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
873
874 /*
875 * Because preemptible RCU does not exist, we never have to check for
876 * tasks blocked within RCU read-side critical sections.
877 */
878 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
879 {
880 }
881
882 /*
883 * Because preemptible RCU does not exist, we never have to check for
884 * tasks blocked within RCU read-side critical sections.
885 */
886 static int rcu_print_task_stall(struct rcu_node *rnp)
887 {
888 return 0;
889 }
890
891 /*
892 * Because there is no preemptible RCU, there can be no readers blocked,
893 * so there is no need to check for blocked tasks. So check only for
894 * bogus qsmask values.
895 */
896 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
897 {
898 WARN_ON_ONCE(rnp->qsmask);
899 }
900
901 /*
902 * Because preemptible RCU does not exist, it never has any callbacks
903 * to check.
904 */
905 static void rcu_preempt_check_callbacks(void)
906 {
907 }
908
909 /*
910 * Wait for an rcu-preempt grace period, but make it happen quickly.
911 * But because preemptible RCU does not exist, map to rcu-sched.
912 */
913 void synchronize_rcu_expedited(void)
914 {
915 synchronize_sched_expedited();
916 }
917 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
918
919 /*
920 * Because preemptible RCU does not exist, rcu_barrier() is just
921 * another name for rcu_barrier_sched().
922 */
923 void rcu_barrier(void)
924 {
925 rcu_barrier_sched();
926 }
927 EXPORT_SYMBOL_GPL(rcu_barrier);
928
929 /*
930 * Because preemptible RCU does not exist, it need not be initialized.
931 */
932 static void __init __rcu_init_preempt(void)
933 {
934 }
935
936 /*
937 * Because preemptible RCU does not exist, tasks cannot possibly exit
938 * while in preemptible RCU read-side critical sections.
939 */
940 void exit_rcu(void)
941 {
942 }
943
944 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
945
946 #ifdef CONFIG_RCU_BOOST
947
948 #include "../locking/rtmutex_common.h"
949
950 #ifdef CONFIG_RCU_TRACE
951
952 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
953 {
954 if (!rcu_preempt_has_tasks(rnp))
955 rnp->n_balk_blkd_tasks++;
956 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
957 rnp->n_balk_exp_gp_tasks++;
958 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
959 rnp->n_balk_boost_tasks++;
960 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
961 rnp->n_balk_notblocked++;
962 else if (rnp->gp_tasks != NULL &&
963 ULONG_CMP_LT(jiffies, rnp->boost_time))
964 rnp->n_balk_notyet++;
965 else
966 rnp->n_balk_nos++;
967 }
968
969 #else /* #ifdef CONFIG_RCU_TRACE */
970
971 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
972 {
973 }
974
975 #endif /* #else #ifdef CONFIG_RCU_TRACE */
976
977 static void rcu_wake_cond(struct task_struct *t, int status)
978 {
979 /*
980 * If the thread is yielding, only wake it when this
981 * is invoked from idle
982 */
983 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
984 wake_up_process(t);
985 }
986
987 /*
988 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
989 * or ->boost_tasks, advancing the pointer to the next task in the
990 * ->blkd_tasks list.
991 *
992 * Note that irqs must be enabled: boosting the task can block.
993 * Returns 1 if there are more tasks needing to be boosted.
994 */
995 static int rcu_boost(struct rcu_node *rnp)
996 {
997 unsigned long flags;
998 struct task_struct *t;
999 struct list_head *tb;
1000
1001 if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1002 ACCESS_ONCE(rnp->boost_tasks) == NULL)
1003 return 0; /* Nothing left to boost. */
1004
1005 raw_spin_lock_irqsave(&rnp->lock, flags);
1006 smp_mb__after_unlock_lock();
1007
1008 /*
1009 * Recheck under the lock: all tasks in need of boosting
1010 * might exit their RCU read-side critical sections on their own.
1011 */
1012 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1013 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1014 return 0;
1015 }
1016
1017 /*
1018 * Preferentially boost tasks blocking expedited grace periods.
1019 * This cannot starve the normal grace periods because a second
1020 * expedited grace period must boost all blocked tasks, including
1021 * those blocking the pre-existing normal grace period.
1022 */
1023 if (rnp->exp_tasks != NULL) {
1024 tb = rnp->exp_tasks;
1025 rnp->n_exp_boosts++;
1026 } else {
1027 tb = rnp->boost_tasks;
1028 rnp->n_normal_boosts++;
1029 }
1030 rnp->n_tasks_boosted++;
1031
1032 /*
1033 * We boost task t by manufacturing an rt_mutex that appears to
1034 * be held by task t. We leave a pointer to that rt_mutex where
1035 * task t can find it, and task t will release the mutex when it
1036 * exits its outermost RCU read-side critical section. Then
1037 * simply acquiring this artificial rt_mutex will boost task
1038 * t's priority. (Thanks to tglx for suggesting this approach!)
1039 *
1040 * Note that task t must acquire rnp->lock to remove itself from
1041 * the ->blkd_tasks list, which it will do from exit() if from
1042 * nowhere else. We therefore are guaranteed that task t will
1043 * stay around at least until we drop rnp->lock. Note that
1044 * rnp->lock also resolves races between our priority boosting
1045 * and task t's exiting its outermost RCU read-side critical
1046 * section.
1047 */
1048 t = container_of(tb, struct task_struct, rcu_node_entry);
1049 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1050 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1051 /* Lock only for side effect: boosts task t's priority. */
1052 rt_mutex_lock(&rnp->boost_mtx);
1053 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1054
1055 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1056 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1057 }
1058
1059 /*
1060 * Priority-boosting kthread. One per leaf rcu_node and one for the
1061 * root rcu_node.
1062 */
1063 static int rcu_boost_kthread(void *arg)
1064 {
1065 struct rcu_node *rnp = (struct rcu_node *)arg;
1066 int spincnt = 0;
1067 int more2boost;
1068
1069 trace_rcu_utilization(TPS("Start boost kthread@init"));
1070 for (;;) {
1071 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1072 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1073 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1074 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1075 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1076 more2boost = rcu_boost(rnp);
1077 if (more2boost)
1078 spincnt++;
1079 else
1080 spincnt = 0;
1081 if (spincnt > 10) {
1082 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1083 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1084 schedule_timeout_interruptible(2);
1085 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1086 spincnt = 0;
1087 }
1088 }
1089 /* NOTREACHED */
1090 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1091 return 0;
1092 }
1093
1094 /*
1095 * Check to see if it is time to start boosting RCU readers that are
1096 * blocking the current grace period, and, if so, tell the per-rcu_node
1097 * kthread to start boosting them. If there is an expedited grace
1098 * period in progress, it is always time to boost.
1099 *
1100 * The caller must hold rnp->lock, which this function releases.
1101 * The ->boost_kthread_task is immortal, so we don't need to worry
1102 * about it going away.
1103 */
1104 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1105 __releases(rnp->lock)
1106 {
1107 struct task_struct *t;
1108
1109 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1110 rnp->n_balk_exp_gp_tasks++;
1111 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1112 return;
1113 }
1114 if (rnp->exp_tasks != NULL ||
1115 (rnp->gp_tasks != NULL &&
1116 rnp->boost_tasks == NULL &&
1117 rnp->qsmask == 0 &&
1118 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1119 if (rnp->exp_tasks == NULL)
1120 rnp->boost_tasks = rnp->gp_tasks;
1121 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1122 t = rnp->boost_kthread_task;
1123 if (t)
1124 rcu_wake_cond(t, rnp->boost_kthread_status);
1125 } else {
1126 rcu_initiate_boost_trace(rnp);
1127 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1128 }
1129 }
1130
1131 /*
1132 * Wake up the per-CPU kthread to invoke RCU callbacks.
1133 */
1134 static void invoke_rcu_callbacks_kthread(void)
1135 {
1136 unsigned long flags;
1137
1138 local_irq_save(flags);
1139 __this_cpu_write(rcu_cpu_has_work, 1);
1140 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1141 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1142 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1143 __this_cpu_read(rcu_cpu_kthread_status));
1144 }
1145 local_irq_restore(flags);
1146 }
1147
1148 /*
1149 * Is the current CPU running the RCU-callbacks kthread?
1150 * Caller must have preemption disabled.
1151 */
1152 static bool rcu_is_callbacks_kthread(void)
1153 {
1154 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1155 }
1156
1157 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1158
1159 /*
1160 * Do priority-boost accounting for the start of a new grace period.
1161 */
1162 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1163 {
1164 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1165 }
1166
1167 /*
1168 * Create an RCU-boost kthread for the specified node if one does not
1169 * already exist. We only create this kthread for preemptible RCU.
1170 * Returns zero if all is well, a negated errno otherwise.
1171 */
1172 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1173 struct rcu_node *rnp)
1174 {
1175 int rnp_index = rnp - &rsp->node[0];
1176 unsigned long flags;
1177 struct sched_param sp;
1178 struct task_struct *t;
1179
1180 if (&rcu_preempt_state != rsp)
1181 return 0;
1182
1183 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1184 return 0;
1185
1186 rsp->boost = 1;
1187 if (rnp->boost_kthread_task != NULL)
1188 return 0;
1189 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1190 "rcub/%d", rnp_index);
1191 if (IS_ERR(t))
1192 return PTR_ERR(t);
1193 raw_spin_lock_irqsave(&rnp->lock, flags);
1194 smp_mb__after_unlock_lock();
1195 rnp->boost_kthread_task = t;
1196 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1197 sp.sched_priority = kthread_prio;
1198 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1199 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1200 return 0;
1201 }
1202
1203 static void rcu_kthread_do_work(void)
1204 {
1205 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1206 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1207 rcu_preempt_do_callbacks();
1208 }
1209
1210 static void rcu_cpu_kthread_setup(unsigned int cpu)
1211 {
1212 struct sched_param sp;
1213
1214 sp.sched_priority = kthread_prio;
1215 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1216 }
1217
1218 static void rcu_cpu_kthread_park(unsigned int cpu)
1219 {
1220 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1221 }
1222
1223 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1224 {
1225 return __this_cpu_read(rcu_cpu_has_work);
1226 }
1227
1228 /*
1229 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1230 * RCU softirq used in flavors and configurations of RCU that do not
1231 * support RCU priority boosting.
1232 */
1233 static void rcu_cpu_kthread(unsigned int cpu)
1234 {
1235 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1236 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1237 int spincnt;
1238
1239 for (spincnt = 0; spincnt < 10; spincnt++) {
1240 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1241 local_bh_disable();
1242 *statusp = RCU_KTHREAD_RUNNING;
1243 this_cpu_inc(rcu_cpu_kthread_loops);
1244 local_irq_disable();
1245 work = *workp;
1246 *workp = 0;
1247 local_irq_enable();
1248 if (work)
1249 rcu_kthread_do_work();
1250 local_bh_enable();
1251 if (*workp == 0) {
1252 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1253 *statusp = RCU_KTHREAD_WAITING;
1254 return;
1255 }
1256 }
1257 *statusp = RCU_KTHREAD_YIELDING;
1258 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1259 schedule_timeout_interruptible(2);
1260 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1261 *statusp = RCU_KTHREAD_WAITING;
1262 }
1263
1264 /*
1265 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1266 * served by the rcu_node in question. The CPU hotplug lock is still
1267 * held, so the value of rnp->qsmaskinit will be stable.
1268 *
1269 * We don't include outgoingcpu in the affinity set, use -1 if there is
1270 * no outgoing CPU. If there are no CPUs left in the affinity set,
1271 * this function allows the kthread to execute on any CPU.
1272 */
1273 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1274 {
1275 struct task_struct *t = rnp->boost_kthread_task;
1276 unsigned long mask = rnp->qsmaskinit;
1277 cpumask_var_t cm;
1278 int cpu;
1279
1280 if (!t)
1281 return;
1282 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1283 return;
1284 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1285 if ((mask & 0x1) && cpu != outgoingcpu)
1286 cpumask_set_cpu(cpu, cm);
1287 if (cpumask_weight(cm) == 0)
1288 cpumask_setall(cm);
1289 set_cpus_allowed_ptr(t, cm);
1290 free_cpumask_var(cm);
1291 }
1292
1293 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1294 .store = &rcu_cpu_kthread_task,
1295 .thread_should_run = rcu_cpu_kthread_should_run,
1296 .thread_fn = rcu_cpu_kthread,
1297 .thread_comm = "rcuc/%u",
1298 .setup = rcu_cpu_kthread_setup,
1299 .park = rcu_cpu_kthread_park,
1300 };
1301
1302 /*
1303 * Spawn boost kthreads -- called as soon as the scheduler is running.
1304 */
1305 static void __init rcu_spawn_boost_kthreads(void)
1306 {
1307 struct rcu_node *rnp;
1308 int cpu;
1309
1310 for_each_possible_cpu(cpu)
1311 per_cpu(rcu_cpu_has_work, cpu) = 0;
1312 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1313 rcu_for_each_leaf_node(rcu_state_p, rnp)
1314 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1315 }
1316
1317 static void rcu_prepare_kthreads(int cpu)
1318 {
1319 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1320 struct rcu_node *rnp = rdp->mynode;
1321
1322 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1323 if (rcu_scheduler_fully_active)
1324 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1325 }
1326
1327 #else /* #ifdef CONFIG_RCU_BOOST */
1328
1329 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1330 __releases(rnp->lock)
1331 {
1332 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1333 }
1334
1335 static void invoke_rcu_callbacks_kthread(void)
1336 {
1337 WARN_ON_ONCE(1);
1338 }
1339
1340 static bool rcu_is_callbacks_kthread(void)
1341 {
1342 return false;
1343 }
1344
1345 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1346 {
1347 }
1348
1349 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1350 {
1351 }
1352
1353 static void __init rcu_spawn_boost_kthreads(void)
1354 {
1355 }
1356
1357 static void rcu_prepare_kthreads(int cpu)
1358 {
1359 }
1360
1361 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1362
1363 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1364
1365 /*
1366 * Check to see if any future RCU-related work will need to be done
1367 * by the current CPU, even if none need be done immediately, returning
1368 * 1 if so. This function is part of the RCU implementation; it is -not-
1369 * an exported member of the RCU API.
1370 *
1371 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1372 * any flavor of RCU.
1373 */
1374 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1375 int rcu_needs_cpu(unsigned long *delta_jiffies)
1376 {
1377 *delta_jiffies = ULONG_MAX;
1378 return rcu_cpu_has_callbacks(NULL);
1379 }
1380 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1381
1382 /*
1383 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1384 * after it.
1385 */
1386 static void rcu_cleanup_after_idle(void)
1387 {
1388 }
1389
1390 /*
1391 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1392 * is nothing.
1393 */
1394 static void rcu_prepare_for_idle(void)
1395 {
1396 }
1397
1398 /*
1399 * Don't bother keeping a running count of the number of RCU callbacks
1400 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1401 */
1402 static void rcu_idle_count_callbacks_posted(void)
1403 {
1404 }
1405
1406 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1407
1408 /*
1409 * This code is invoked when a CPU goes idle, at which point we want
1410 * to have the CPU do everything required for RCU so that it can enter
1411 * the energy-efficient dyntick-idle mode. This is handled by a
1412 * state machine implemented by rcu_prepare_for_idle() below.
1413 *
1414 * The following three proprocessor symbols control this state machine:
1415 *
1416 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1417 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1418 * is sized to be roughly one RCU grace period. Those energy-efficiency
1419 * benchmarkers who might otherwise be tempted to set this to a large
1420 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1421 * system. And if you are -that- concerned about energy efficiency,
1422 * just power the system down and be done with it!
1423 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1424 * permitted to sleep in dyntick-idle mode with only lazy RCU
1425 * callbacks pending. Setting this too high can OOM your system.
1426 *
1427 * The values below work well in practice. If future workloads require
1428 * adjustment, they can be converted into kernel config parameters, though
1429 * making the state machine smarter might be a better option.
1430 */
1431 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1432 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1433
1434 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1435 module_param(rcu_idle_gp_delay, int, 0644);
1436 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1437 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1438
1439 extern int tick_nohz_active;
1440
1441 /*
1442 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1443 * only if it has been awhile since the last time we did so. Afterwards,
1444 * if there are any callbacks ready for immediate invocation, return true.
1445 */
1446 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1447 {
1448 bool cbs_ready = false;
1449 struct rcu_data *rdp;
1450 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1451 struct rcu_node *rnp;
1452 struct rcu_state *rsp;
1453
1454 /* Exit early if we advanced recently. */
1455 if (jiffies == rdtp->last_advance_all)
1456 return false;
1457 rdtp->last_advance_all = jiffies;
1458
1459 for_each_rcu_flavor(rsp) {
1460 rdp = this_cpu_ptr(rsp->rda);
1461 rnp = rdp->mynode;
1462
1463 /*
1464 * Don't bother checking unless a grace period has
1465 * completed since we last checked and there are
1466 * callbacks not yet ready to invoke.
1467 */
1468 if ((rdp->completed != rnp->completed ||
1469 unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1470 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1471 note_gp_changes(rsp, rdp);
1472
1473 if (cpu_has_callbacks_ready_to_invoke(rdp))
1474 cbs_ready = true;
1475 }
1476 return cbs_ready;
1477 }
1478
1479 /*
1480 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1481 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1482 * caller to set the timeout based on whether or not there are non-lazy
1483 * callbacks.
1484 *
1485 * The caller must have disabled interrupts.
1486 */
1487 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1488 int rcu_needs_cpu(unsigned long *dj)
1489 {
1490 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1491
1492 /* Snapshot to detect later posting of non-lazy callback. */
1493 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1494
1495 /* If no callbacks, RCU doesn't need the CPU. */
1496 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1497 *dj = ULONG_MAX;
1498 return 0;
1499 }
1500
1501 /* Attempt to advance callbacks. */
1502 if (rcu_try_advance_all_cbs()) {
1503 /* Some ready to invoke, so initiate later invocation. */
1504 invoke_rcu_core();
1505 return 1;
1506 }
1507 rdtp->last_accelerate = jiffies;
1508
1509 /* Request timer delay depending on laziness, and round. */
1510 if (!rdtp->all_lazy) {
1511 *dj = round_up(rcu_idle_gp_delay + jiffies,
1512 rcu_idle_gp_delay) - jiffies;
1513 } else {
1514 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1515 }
1516 return 0;
1517 }
1518 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1519
1520 /*
1521 * Prepare a CPU for idle from an RCU perspective. The first major task
1522 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1523 * The second major task is to check to see if a non-lazy callback has
1524 * arrived at a CPU that previously had only lazy callbacks. The third
1525 * major task is to accelerate (that is, assign grace-period numbers to)
1526 * any recently arrived callbacks.
1527 *
1528 * The caller must have disabled interrupts.
1529 */
1530 static void rcu_prepare_for_idle(void)
1531 {
1532 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1533 bool needwake;
1534 struct rcu_data *rdp;
1535 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1536 struct rcu_node *rnp;
1537 struct rcu_state *rsp;
1538 int tne;
1539
1540 /* Handle nohz enablement switches conservatively. */
1541 tne = ACCESS_ONCE(tick_nohz_active);
1542 if (tne != rdtp->tick_nohz_enabled_snap) {
1543 if (rcu_cpu_has_callbacks(NULL))
1544 invoke_rcu_core(); /* force nohz to see update. */
1545 rdtp->tick_nohz_enabled_snap = tne;
1546 return;
1547 }
1548 if (!tne)
1549 return;
1550
1551 /* If this is a no-CBs CPU, no callbacks, just return. */
1552 if (rcu_is_nocb_cpu(smp_processor_id()))
1553 return;
1554
1555 /*
1556 * If a non-lazy callback arrived at a CPU having only lazy
1557 * callbacks, invoke RCU core for the side-effect of recalculating
1558 * idle duration on re-entry to idle.
1559 */
1560 if (rdtp->all_lazy &&
1561 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1562 rdtp->all_lazy = false;
1563 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1564 invoke_rcu_core();
1565 return;
1566 }
1567
1568 /*
1569 * If we have not yet accelerated this jiffy, accelerate all
1570 * callbacks on this CPU.
1571 */
1572 if (rdtp->last_accelerate == jiffies)
1573 return;
1574 rdtp->last_accelerate = jiffies;
1575 for_each_rcu_flavor(rsp) {
1576 rdp = this_cpu_ptr(rsp->rda);
1577 if (!*rdp->nxttail[RCU_DONE_TAIL])
1578 continue;
1579 rnp = rdp->mynode;
1580 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1581 smp_mb__after_unlock_lock();
1582 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1583 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1584 if (needwake)
1585 rcu_gp_kthread_wake(rsp);
1586 }
1587 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1588 }
1589
1590 /*
1591 * Clean up for exit from idle. Attempt to advance callbacks based on
1592 * any grace periods that elapsed while the CPU was idle, and if any
1593 * callbacks are now ready to invoke, initiate invocation.
1594 */
1595 static void rcu_cleanup_after_idle(void)
1596 {
1597 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1598 if (rcu_is_nocb_cpu(smp_processor_id()))
1599 return;
1600 if (rcu_try_advance_all_cbs())
1601 invoke_rcu_core();
1602 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1603 }
1604
1605 /*
1606 * Keep a running count of the number of non-lazy callbacks posted
1607 * on this CPU. This running counter (which is never decremented) allows
1608 * rcu_prepare_for_idle() to detect when something out of the idle loop
1609 * posts a callback, even if an equal number of callbacks are invoked.
1610 * Of course, callbacks should only be posted from within a trace event
1611 * designed to be called from idle or from within RCU_NONIDLE().
1612 */
1613 static void rcu_idle_count_callbacks_posted(void)
1614 {
1615 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1616 }
1617
1618 /*
1619 * Data for flushing lazy RCU callbacks at OOM time.
1620 */
1621 static atomic_t oom_callback_count;
1622 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1623
1624 /*
1625 * RCU OOM callback -- decrement the outstanding count and deliver the
1626 * wake-up if we are the last one.
1627 */
1628 static void rcu_oom_callback(struct rcu_head *rhp)
1629 {
1630 if (atomic_dec_and_test(&oom_callback_count))
1631 wake_up(&oom_callback_wq);
1632 }
1633
1634 /*
1635 * Post an rcu_oom_notify callback on the current CPU if it has at
1636 * least one lazy callback. This will unnecessarily post callbacks
1637 * to CPUs that already have a non-lazy callback at the end of their
1638 * callback list, but this is an infrequent operation, so accept some
1639 * extra overhead to keep things simple.
1640 */
1641 static void rcu_oom_notify_cpu(void *unused)
1642 {
1643 struct rcu_state *rsp;
1644 struct rcu_data *rdp;
1645
1646 for_each_rcu_flavor(rsp) {
1647 rdp = raw_cpu_ptr(rsp->rda);
1648 if (rdp->qlen_lazy != 0) {
1649 atomic_inc(&oom_callback_count);
1650 rsp->call(&rdp->oom_head, rcu_oom_callback);
1651 }
1652 }
1653 }
1654
1655 /*
1656 * If low on memory, ensure that each CPU has a non-lazy callback.
1657 * This will wake up CPUs that have only lazy callbacks, in turn
1658 * ensuring that they free up the corresponding memory in a timely manner.
1659 * Because an uncertain amount of memory will be freed in some uncertain
1660 * timeframe, we do not claim to have freed anything.
1661 */
1662 static int rcu_oom_notify(struct notifier_block *self,
1663 unsigned long notused, void *nfreed)
1664 {
1665 int cpu;
1666
1667 /* Wait for callbacks from earlier instance to complete. */
1668 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1669 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1670
1671 /*
1672 * Prevent premature wakeup: ensure that all increments happen
1673 * before there is a chance of the counter reaching zero.
1674 */
1675 atomic_set(&oom_callback_count, 1);
1676
1677 get_online_cpus();
1678 for_each_online_cpu(cpu) {
1679 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1680 cond_resched_rcu_qs();
1681 }
1682 put_online_cpus();
1683
1684 /* Unconditionally decrement: no need to wake ourselves up. */
1685 atomic_dec(&oom_callback_count);
1686
1687 return NOTIFY_OK;
1688 }
1689
1690 static struct notifier_block rcu_oom_nb = {
1691 .notifier_call = rcu_oom_notify
1692 };
1693
1694 static int __init rcu_register_oom_notifier(void)
1695 {
1696 register_oom_notifier(&rcu_oom_nb);
1697 return 0;
1698 }
1699 early_initcall(rcu_register_oom_notifier);
1700
1701 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1702
1703 #ifdef CONFIG_RCU_CPU_STALL_INFO
1704
1705 #ifdef CONFIG_RCU_FAST_NO_HZ
1706
1707 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1708 {
1709 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1710 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1711
1712 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1713 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1714 ulong2long(nlpd),
1715 rdtp->all_lazy ? 'L' : '.',
1716 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1717 }
1718
1719 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1720
1721 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1722 {
1723 *cp = '\0';
1724 }
1725
1726 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1727
1728 /* Initiate the stall-info list. */
1729 static void print_cpu_stall_info_begin(void)
1730 {
1731 pr_cont("\n");
1732 }
1733
1734 /*
1735 * Print out diagnostic information for the specified stalled CPU.
1736 *
1737 * If the specified CPU is aware of the current RCU grace period
1738 * (flavor specified by rsp), then print the number of scheduling
1739 * clock interrupts the CPU has taken during the time that it has
1740 * been aware. Otherwise, print the number of RCU grace periods
1741 * that this CPU is ignorant of, for example, "1" if the CPU was
1742 * aware of the previous grace period.
1743 *
1744 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1745 */
1746 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1747 {
1748 char fast_no_hz[72];
1749 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1750 struct rcu_dynticks *rdtp = rdp->dynticks;
1751 char *ticks_title;
1752 unsigned long ticks_value;
1753
1754 if (rsp->gpnum == rdp->gpnum) {
1755 ticks_title = "ticks this GP";
1756 ticks_value = rdp->ticks_this_gp;
1757 } else {
1758 ticks_title = "GPs behind";
1759 ticks_value = rsp->gpnum - rdp->gpnum;
1760 }
1761 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1762 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1763 cpu, ticks_value, ticks_title,
1764 atomic_read(&rdtp->dynticks) & 0xfff,
1765 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1766 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1767 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1768 fast_no_hz);
1769 }
1770
1771 /* Terminate the stall-info list. */
1772 static void print_cpu_stall_info_end(void)
1773 {
1774 pr_err("\t");
1775 }
1776
1777 /* Zero ->ticks_this_gp for all flavors of RCU. */
1778 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1779 {
1780 rdp->ticks_this_gp = 0;
1781 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1782 }
1783
1784 /* Increment ->ticks_this_gp for all flavors of RCU. */
1785 static void increment_cpu_stall_ticks(void)
1786 {
1787 struct rcu_state *rsp;
1788
1789 for_each_rcu_flavor(rsp)
1790 raw_cpu_inc(rsp->rda->ticks_this_gp);
1791 }
1792
1793 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1794
1795 static void print_cpu_stall_info_begin(void)
1796 {
1797 pr_cont(" {");
1798 }
1799
1800 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1801 {
1802 pr_cont(" %d", cpu);
1803 }
1804
1805 static void print_cpu_stall_info_end(void)
1806 {
1807 pr_cont("} ");
1808 }
1809
1810 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1811 {
1812 }
1813
1814 static void increment_cpu_stall_ticks(void)
1815 {
1816 }
1817
1818 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1819
1820 #ifdef CONFIG_RCU_NOCB_CPU
1821
1822 /*
1823 * Offload callback processing from the boot-time-specified set of CPUs
1824 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1825 * kthread created that pulls the callbacks from the corresponding CPU,
1826 * waits for a grace period to elapse, and invokes the callbacks.
1827 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1828 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1829 * has been specified, in which case each kthread actively polls its
1830 * CPU. (Which isn't so great for energy efficiency, but which does
1831 * reduce RCU's overhead on that CPU.)
1832 *
1833 * This is intended to be used in conjunction with Frederic Weisbecker's
1834 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1835 * running CPU-bound user-mode computations.
1836 *
1837 * Offloading of callback processing could also in theory be used as
1838 * an energy-efficiency measure because CPUs with no RCU callbacks
1839 * queued are more aggressive about entering dyntick-idle mode.
1840 */
1841
1842
1843 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1844 static int __init rcu_nocb_setup(char *str)
1845 {
1846 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1847 have_rcu_nocb_mask = true;
1848 cpulist_parse(str, rcu_nocb_mask);
1849 return 1;
1850 }
1851 __setup("rcu_nocbs=", rcu_nocb_setup);
1852
1853 static int __init parse_rcu_nocb_poll(char *arg)
1854 {
1855 rcu_nocb_poll = 1;
1856 return 0;
1857 }
1858 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1859
1860 /*
1861 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1862 * grace period.
1863 */
1864 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1865 {
1866 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1867 }
1868
1869 /*
1870 * Set the root rcu_node structure's ->need_future_gp field
1871 * based on the sum of those of all rcu_node structures. This does
1872 * double-count the root rcu_node structure's requests, but this
1873 * is necessary to handle the possibility of a rcu_nocb_kthread()
1874 * having awakened during the time that the rcu_node structures
1875 * were being updated for the end of the previous grace period.
1876 */
1877 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1878 {
1879 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1880 }
1881
1882 static void rcu_init_one_nocb(struct rcu_node *rnp)
1883 {
1884 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1885 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1886 }
1887
1888 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1889 /* Is the specified CPU a no-CBs CPU? */
1890 bool rcu_is_nocb_cpu(int cpu)
1891 {
1892 if (have_rcu_nocb_mask)
1893 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1894 return false;
1895 }
1896 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1897
1898 /*
1899 * Kick the leader kthread for this NOCB group.
1900 */
1901 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1902 {
1903 struct rcu_data *rdp_leader = rdp->nocb_leader;
1904
1905 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1906 return;
1907 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1908 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1909 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1910 wake_up(&rdp_leader->nocb_wq);
1911 }
1912 }
1913
1914 /*
1915 * Does the specified CPU need an RCU callback for the specified flavor
1916 * of rcu_barrier()?
1917 */
1918 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1919 {
1920 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1921 unsigned long ret;
1922 #ifdef CONFIG_PROVE_RCU
1923 struct rcu_head *rhp;
1924 #endif /* #ifdef CONFIG_PROVE_RCU */
1925
1926 /*
1927 * Check count of all no-CBs callbacks awaiting invocation.
1928 * There needs to be a barrier before this function is called,
1929 * but associated with a prior determination that no more
1930 * callbacks would be posted. In the worst case, the first
1931 * barrier in _rcu_barrier() suffices (but the caller cannot
1932 * necessarily rely on this, not a substitute for the caller
1933 * getting the concurrency design right!). There must also be
1934 * a barrier between the following load an posting of a callback
1935 * (if a callback is in fact needed). This is associated with an
1936 * atomic_inc() in the caller.
1937 */
1938 ret = atomic_long_read(&rdp->nocb_q_count);
1939
1940 #ifdef CONFIG_PROVE_RCU
1941 rhp = ACCESS_ONCE(rdp->nocb_head);
1942 if (!rhp)
1943 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1944 if (!rhp)
1945 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1946
1947 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1948 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1949 /* RCU callback enqueued before CPU first came online??? */
1950 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1951 cpu, rhp->func);
1952 WARN_ON_ONCE(1);
1953 }
1954 #endif /* #ifdef CONFIG_PROVE_RCU */
1955
1956 return !!ret;
1957 }
1958
1959 /*
1960 * Enqueue the specified string of rcu_head structures onto the specified
1961 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1962 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1963 * counts are supplied by rhcount and rhcount_lazy.
1964 *
1965 * If warranted, also wake up the kthread servicing this CPUs queues.
1966 */
1967 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1968 struct rcu_head *rhp,
1969 struct rcu_head **rhtp,
1970 int rhcount, int rhcount_lazy,
1971 unsigned long flags)
1972 {
1973 int len;
1974 struct rcu_head **old_rhpp;
1975 struct task_struct *t;
1976
1977 /* Enqueue the callback on the nocb list and update counts. */
1978 atomic_long_add(rhcount, &rdp->nocb_q_count);
1979 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1980 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1981 ACCESS_ONCE(*old_rhpp) = rhp;
1982 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1983 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1984
1985 /* If we are not being polled and there is a kthread, awaken it ... */
1986 t = ACCESS_ONCE(rdp->nocb_kthread);
1987 if (rcu_nocb_poll || !t) {
1988 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1989 TPS("WakeNotPoll"));
1990 return;
1991 }
1992 len = atomic_long_read(&rdp->nocb_q_count);
1993 if (old_rhpp == &rdp->nocb_head) {
1994 if (!irqs_disabled_flags(flags)) {
1995 /* ... if queue was empty ... */
1996 wake_nocb_leader(rdp, false);
1997 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1998 TPS("WakeEmpty"));
1999 } else {
2000 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2001 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2002 TPS("WakeEmptyIsDeferred"));
2003 }
2004 rdp->qlen_last_fqs_check = 0;
2005 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2006 /* ... or if many callbacks queued. */
2007 if (!irqs_disabled_flags(flags)) {
2008 wake_nocb_leader(rdp, true);
2009 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2010 TPS("WakeOvf"));
2011 } else {
2012 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2013 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2014 TPS("WakeOvfIsDeferred"));
2015 }
2016 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2017 } else {
2018 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2019 }
2020 return;
2021 }
2022
2023 /*
2024 * This is a helper for __call_rcu(), which invokes this when the normal
2025 * callback queue is inoperable. If this is not a no-CBs CPU, this
2026 * function returns failure back to __call_rcu(), which can complain
2027 * appropriately.
2028 *
2029 * Otherwise, this function queues the callback where the corresponding
2030 * "rcuo" kthread can find it.
2031 */
2032 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2033 bool lazy, unsigned long flags)
2034 {
2035
2036 if (!rcu_is_nocb_cpu(rdp->cpu))
2037 return false;
2038 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2039 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2040 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2041 (unsigned long)rhp->func,
2042 -atomic_long_read(&rdp->nocb_q_count_lazy),
2043 -atomic_long_read(&rdp->nocb_q_count));
2044 else
2045 trace_rcu_callback(rdp->rsp->name, rhp,
2046 -atomic_long_read(&rdp->nocb_q_count_lazy),
2047 -atomic_long_read(&rdp->nocb_q_count));
2048
2049 /*
2050 * If called from an extended quiescent state with interrupts
2051 * disabled, invoke the RCU core in order to allow the idle-entry
2052 * deferred-wakeup check to function.
2053 */
2054 if (irqs_disabled_flags(flags) &&
2055 !rcu_is_watching() &&
2056 cpu_online(smp_processor_id()))
2057 invoke_rcu_core();
2058
2059 return true;
2060 }
2061
2062 /*
2063 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2064 * not a no-CBs CPU.
2065 */
2066 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2067 struct rcu_data *rdp,
2068 unsigned long flags)
2069 {
2070 long ql = rsp->qlen;
2071 long qll = rsp->qlen_lazy;
2072
2073 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2074 if (!rcu_is_nocb_cpu(smp_processor_id()))
2075 return false;
2076 rsp->qlen = 0;
2077 rsp->qlen_lazy = 0;
2078
2079 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2080 if (rsp->orphan_donelist != NULL) {
2081 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2082 rsp->orphan_donetail, ql, qll, flags);
2083 ql = qll = 0;
2084 rsp->orphan_donelist = NULL;
2085 rsp->orphan_donetail = &rsp->orphan_donelist;
2086 }
2087 if (rsp->orphan_nxtlist != NULL) {
2088 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2089 rsp->orphan_nxttail, ql, qll, flags);
2090 ql = qll = 0;
2091 rsp->orphan_nxtlist = NULL;
2092 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2093 }
2094 return true;
2095 }
2096
2097 /*
2098 * If necessary, kick off a new grace period, and either way wait
2099 * for a subsequent grace period to complete.
2100 */
2101 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2102 {
2103 unsigned long c;
2104 bool d;
2105 unsigned long flags;
2106 bool needwake;
2107 struct rcu_node *rnp = rdp->mynode;
2108
2109 raw_spin_lock_irqsave(&rnp->lock, flags);
2110 smp_mb__after_unlock_lock();
2111 needwake = rcu_start_future_gp(rnp, rdp, &c);
2112 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2113 if (needwake)
2114 rcu_gp_kthread_wake(rdp->rsp);
2115
2116 /*
2117 * Wait for the grace period. Do so interruptibly to avoid messing
2118 * up the load average.
2119 */
2120 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2121 for (;;) {
2122 wait_event_interruptible(
2123 rnp->nocb_gp_wq[c & 0x1],
2124 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2125 if (likely(d))
2126 break;
2127 WARN_ON(signal_pending(current));
2128 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2129 }
2130 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2131 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2132 }
2133
2134 /*
2135 * Leaders come here to wait for additional callbacks to show up.
2136 * This function does not return until callbacks appear.
2137 */
2138 static void nocb_leader_wait(struct rcu_data *my_rdp)
2139 {
2140 bool firsttime = true;
2141 bool gotcbs;
2142 struct rcu_data *rdp;
2143 struct rcu_head **tail;
2144
2145 wait_again:
2146
2147 /* Wait for callbacks to appear. */
2148 if (!rcu_nocb_poll) {
2149 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2150 wait_event_interruptible(my_rdp->nocb_wq,
2151 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2152 /* Memory barrier handled by smp_mb() calls below and repoll. */
2153 } else if (firsttime) {
2154 firsttime = false; /* Don't drown trace log with "Poll"! */
2155 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2156 }
2157
2158 /*
2159 * Each pass through the following loop checks a follower for CBs.
2160 * We are our own first follower. Any CBs found are moved to
2161 * nocb_gp_head, where they await a grace period.
2162 */
2163 gotcbs = false;
2164 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2165 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2166 if (!rdp->nocb_gp_head)
2167 continue; /* No CBs here, try next follower. */
2168
2169 /* Move callbacks to wait-for-GP list, which is empty. */
2170 ACCESS_ONCE(rdp->nocb_head) = NULL;
2171 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2172 gotcbs = true;
2173 }
2174
2175 /*
2176 * If there were no callbacks, sleep a bit, rescan after a
2177 * memory barrier, and go retry.
2178 */
2179 if (unlikely(!gotcbs)) {
2180 if (!rcu_nocb_poll)
2181 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2182 "WokeEmpty");
2183 WARN_ON(signal_pending(current));
2184 schedule_timeout_interruptible(1);
2185
2186 /* Rescan in case we were a victim of memory ordering. */
2187 my_rdp->nocb_leader_sleep = true;
2188 smp_mb(); /* Ensure _sleep true before scan. */
2189 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2190 if (ACCESS_ONCE(rdp->nocb_head)) {
2191 /* Found CB, so short-circuit next wait. */
2192 my_rdp->nocb_leader_sleep = false;
2193 break;
2194 }
2195 goto wait_again;
2196 }
2197
2198 /* Wait for one grace period. */
2199 rcu_nocb_wait_gp(my_rdp);
2200
2201 /*
2202 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2203 * We set it now, but recheck for new callbacks while
2204 * traversing our follower list.
2205 */
2206 my_rdp->nocb_leader_sleep = true;
2207 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2208
2209 /* Each pass through the following loop wakes a follower, if needed. */
2210 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2211 if (ACCESS_ONCE(rdp->nocb_head))
2212 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2213 if (!rdp->nocb_gp_head)
2214 continue; /* No CBs, so no need to wake follower. */
2215
2216 /* Append callbacks to follower's "done" list. */
2217 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2218 *tail = rdp->nocb_gp_head;
2219 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2220 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2221 /*
2222 * List was empty, wake up the follower.
2223 * Memory barriers supplied by atomic_long_add().
2224 */
2225 wake_up(&rdp->nocb_wq);
2226 }
2227 }
2228
2229 /* If we (the leader) don't have CBs, go wait some more. */
2230 if (!my_rdp->nocb_follower_head)
2231 goto wait_again;
2232 }
2233
2234 /*
2235 * Followers come here to wait for additional callbacks to show up.
2236 * This function does not return until callbacks appear.
2237 */
2238 static void nocb_follower_wait(struct rcu_data *rdp)
2239 {
2240 bool firsttime = true;
2241
2242 for (;;) {
2243 if (!rcu_nocb_poll) {
2244 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2245 "FollowerSleep");
2246 wait_event_interruptible(rdp->nocb_wq,
2247 ACCESS_ONCE(rdp->nocb_follower_head));
2248 } else if (firsttime) {
2249 /* Don't drown trace log with "Poll"! */
2250 firsttime = false;
2251 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2252 }
2253 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2254 /* ^^^ Ensure CB invocation follows _head test. */
2255 return;
2256 }
2257 if (!rcu_nocb_poll)
2258 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2259 "WokeEmpty");
2260 WARN_ON(signal_pending(current));
2261 schedule_timeout_interruptible(1);
2262 }
2263 }
2264
2265 /*
2266 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2267 * callbacks queued by the corresponding no-CBs CPU, however, there is
2268 * an optional leader-follower relationship so that the grace-period
2269 * kthreads don't have to do quite so many wakeups.
2270 */
2271 static int rcu_nocb_kthread(void *arg)
2272 {
2273 int c, cl;
2274 struct rcu_head *list;
2275 struct rcu_head *next;
2276 struct rcu_head **tail;
2277 struct rcu_data *rdp = arg;
2278
2279 /* Each pass through this loop invokes one batch of callbacks */
2280 for (;;) {
2281 /* Wait for callbacks. */
2282 if (rdp->nocb_leader == rdp)
2283 nocb_leader_wait(rdp);
2284 else
2285 nocb_follower_wait(rdp);
2286
2287 /* Pull the ready-to-invoke callbacks onto local list. */
2288 list = ACCESS_ONCE(rdp->nocb_follower_head);
2289 BUG_ON(!list);
2290 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2291 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2292 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2293
2294 /* Each pass through the following loop invokes a callback. */
2295 trace_rcu_batch_start(rdp->rsp->name,
2296 atomic_long_read(&rdp->nocb_q_count_lazy),
2297 atomic_long_read(&rdp->nocb_q_count), -1);
2298 c = cl = 0;
2299 while (list) {
2300 next = list->next;
2301 /* Wait for enqueuing to complete, if needed. */
2302 while (next == NULL && &list->next != tail) {
2303 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2304 TPS("WaitQueue"));
2305 schedule_timeout_interruptible(1);
2306 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2307 TPS("WokeQueue"));
2308 next = list->next;
2309 }
2310 debug_rcu_head_unqueue(list);
2311 local_bh_disable();
2312 if (__rcu_reclaim(rdp->rsp->name, list))
2313 cl++;
2314 c++;
2315 local_bh_enable();
2316 list = next;
2317 }
2318 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2319 smp_mb__before_atomic(); /* _add after CB invocation. */
2320 atomic_long_add(-c, &rdp->nocb_q_count);
2321 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2322 rdp->n_nocbs_invoked += c;
2323 }
2324 return 0;
2325 }
2326
2327 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2328 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2329 {
2330 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2331 }
2332
2333 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2334 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2335 {
2336 int ndw;
2337
2338 if (!rcu_nocb_need_deferred_wakeup(rdp))
2339 return;
2340 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2341 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2342 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2343 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2344 }
2345
2346 void __init rcu_init_nohz(void)
2347 {
2348 int cpu;
2349 bool need_rcu_nocb_mask = true;
2350 struct rcu_state *rsp;
2351
2352 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2353 need_rcu_nocb_mask = false;
2354 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2355
2356 #if defined(CONFIG_NO_HZ_FULL)
2357 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2358 need_rcu_nocb_mask = true;
2359 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2360
2361 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2362 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2363 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2364 return;
2365 }
2366 have_rcu_nocb_mask = true;
2367 }
2368 if (!have_rcu_nocb_mask)
2369 return;
2370
2371 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2372 pr_info("\tOffload RCU callbacks from CPU 0\n");
2373 cpumask_set_cpu(0, rcu_nocb_mask);
2374 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2375 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2376 pr_info("\tOffload RCU callbacks from all CPUs\n");
2377 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2378 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2379 #if defined(CONFIG_NO_HZ_FULL)
2380 if (tick_nohz_full_running)
2381 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2382 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2383
2384 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2385 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2386 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2387 rcu_nocb_mask);
2388 }
2389 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2390 cpumask_pr_args(rcu_nocb_mask));
2391 if (rcu_nocb_poll)
2392 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2393
2394 for_each_rcu_flavor(rsp) {
2395 for_each_cpu(cpu, rcu_nocb_mask) {
2396 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2397
2398 /*
2399 * If there are early callbacks, they will need
2400 * to be moved to the nocb lists.
2401 */
2402 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2403 &rdp->nxtlist &&
2404 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2405 init_nocb_callback_list(rdp);
2406 }
2407 rcu_organize_nocb_kthreads(rsp);
2408 }
2409 }
2410
2411 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2412 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2413 {
2414 rdp->nocb_tail = &rdp->nocb_head;
2415 init_waitqueue_head(&rdp->nocb_wq);
2416 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2417 }
2418
2419 /*
2420 * If the specified CPU is a no-CBs CPU that does not already have its
2421 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2422 * brought online out of order, this can require re-organizing the
2423 * leader-follower relationships.
2424 */
2425 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2426 {
2427 struct rcu_data *rdp;
2428 struct rcu_data *rdp_last;
2429 struct rcu_data *rdp_old_leader;
2430 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2431 struct task_struct *t;
2432
2433 /*
2434 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2435 * then nothing to do.
2436 */
2437 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2438 return;
2439
2440 /* If we didn't spawn the leader first, reorganize! */
2441 rdp_old_leader = rdp_spawn->nocb_leader;
2442 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2443 rdp_last = NULL;
2444 rdp = rdp_old_leader;
2445 do {
2446 rdp->nocb_leader = rdp_spawn;
2447 if (rdp_last && rdp != rdp_spawn)
2448 rdp_last->nocb_next_follower = rdp;
2449 if (rdp == rdp_spawn) {
2450 rdp = rdp->nocb_next_follower;
2451 } else {
2452 rdp_last = rdp;
2453 rdp = rdp->nocb_next_follower;
2454 rdp_last->nocb_next_follower = NULL;
2455 }
2456 } while (rdp);
2457 rdp_spawn->nocb_next_follower = rdp_old_leader;
2458 }
2459
2460 /* Spawn the kthread for this CPU and RCU flavor. */
2461 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2462 "rcuo%c/%d", rsp->abbr, cpu);
2463 BUG_ON(IS_ERR(t));
2464 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2465 }
2466
2467 /*
2468 * If the specified CPU is a no-CBs CPU that does not already have its
2469 * rcuo kthreads, spawn them.
2470 */
2471 static void rcu_spawn_all_nocb_kthreads(int cpu)
2472 {
2473 struct rcu_state *rsp;
2474
2475 if (rcu_scheduler_fully_active)
2476 for_each_rcu_flavor(rsp)
2477 rcu_spawn_one_nocb_kthread(rsp, cpu);
2478 }
2479
2480 /*
2481 * Once the scheduler is running, spawn rcuo kthreads for all online
2482 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2483 * non-boot CPUs come online -- if this changes, we will need to add
2484 * some mutual exclusion.
2485 */
2486 static void __init rcu_spawn_nocb_kthreads(void)
2487 {
2488 int cpu;
2489
2490 for_each_online_cpu(cpu)
2491 rcu_spawn_all_nocb_kthreads(cpu);
2492 }
2493
2494 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2495 static int rcu_nocb_leader_stride = -1;
2496 module_param(rcu_nocb_leader_stride, int, 0444);
2497
2498 /*
2499 * Initialize leader-follower relationships for all no-CBs CPU.
2500 */
2501 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2502 {
2503 int cpu;
2504 int ls = rcu_nocb_leader_stride;
2505 int nl = 0; /* Next leader. */
2506 struct rcu_data *rdp;
2507 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2508 struct rcu_data *rdp_prev = NULL;
2509
2510 if (!have_rcu_nocb_mask)
2511 return;
2512 if (ls == -1) {
2513 ls = int_sqrt(nr_cpu_ids);
2514 rcu_nocb_leader_stride = ls;
2515 }
2516
2517 /*
2518 * Each pass through this loop sets up one rcu_data structure and
2519 * spawns one rcu_nocb_kthread().
2520 */
2521 for_each_cpu(cpu, rcu_nocb_mask) {
2522 rdp = per_cpu_ptr(rsp->rda, cpu);
2523 if (rdp->cpu >= nl) {
2524 /* New leader, set up for followers & next leader. */
2525 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2526 rdp->nocb_leader = rdp;
2527 rdp_leader = rdp;
2528 } else {
2529 /* Another follower, link to previous leader. */
2530 rdp->nocb_leader = rdp_leader;
2531 rdp_prev->nocb_next_follower = rdp;
2532 }
2533 rdp_prev = rdp;
2534 }
2535 }
2536
2537 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2538 static bool init_nocb_callback_list(struct rcu_data *rdp)
2539 {
2540 if (!rcu_is_nocb_cpu(rdp->cpu))
2541 return false;
2542
2543 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2544 return true;
2545 }
2546
2547 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2548
2549 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2550 {
2551 WARN_ON_ONCE(1); /* Should be dead code. */
2552 return false;
2553 }
2554
2555 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2556 {
2557 }
2558
2559 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2560 {
2561 }
2562
2563 static void rcu_init_one_nocb(struct rcu_node *rnp)
2564 {
2565 }
2566
2567 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2568 bool lazy, unsigned long flags)
2569 {
2570 return false;
2571 }
2572
2573 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2574 struct rcu_data *rdp,
2575 unsigned long flags)
2576 {
2577 return false;
2578 }
2579
2580 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2581 {
2582 }
2583
2584 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2585 {
2586 return false;
2587 }
2588
2589 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2590 {
2591 }
2592
2593 static void rcu_spawn_all_nocb_kthreads(int cpu)
2594 {
2595 }
2596
2597 static void __init rcu_spawn_nocb_kthreads(void)
2598 {
2599 }
2600
2601 static bool init_nocb_callback_list(struct rcu_data *rdp)
2602 {
2603 return false;
2604 }
2605
2606 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2607
2608 /*
2609 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2610 * arbitrarily long period of time with the scheduling-clock tick turned
2611 * off. RCU will be paying attention to this CPU because it is in the
2612 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2613 * machine because the scheduling-clock tick has been disabled. Therefore,
2614 * if an adaptive-ticks CPU is failing to respond to the current grace
2615 * period and has not be idle from an RCU perspective, kick it.
2616 */
2617 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2618 {
2619 #ifdef CONFIG_NO_HZ_FULL
2620 if (tick_nohz_full_cpu(cpu))
2621 smp_send_reschedule(cpu);
2622 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2623 }
2624
2625
2626 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2627
2628 static int full_sysidle_state; /* Current system-idle state. */
2629 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2630 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2631 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2632 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2633 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2634
2635 /*
2636 * Invoked to note exit from irq or task transition to idle. Note that
2637 * usermode execution does -not- count as idle here! After all, we want
2638 * to detect full-system idle states, not RCU quiescent states and grace
2639 * periods. The caller must have disabled interrupts.
2640 */
2641 static void rcu_sysidle_enter(int irq)
2642 {
2643 unsigned long j;
2644 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2645
2646 /* If there are no nohz_full= CPUs, no need to track this. */
2647 if (!tick_nohz_full_enabled())
2648 return;
2649
2650 /* Adjust nesting, check for fully idle. */
2651 if (irq) {
2652 rdtp->dynticks_idle_nesting--;
2653 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2654 if (rdtp->dynticks_idle_nesting != 0)
2655 return; /* Still not fully idle. */
2656 } else {
2657 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2658 DYNTICK_TASK_NEST_VALUE) {
2659 rdtp->dynticks_idle_nesting = 0;
2660 } else {
2661 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2662 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2663 return; /* Still not fully idle. */
2664 }
2665 }
2666
2667 /* Record start of fully idle period. */
2668 j = jiffies;
2669 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2670 smp_mb__before_atomic();
2671 atomic_inc(&rdtp->dynticks_idle);
2672 smp_mb__after_atomic();
2673 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2674 }
2675
2676 /*
2677 * Unconditionally force exit from full system-idle state. This is
2678 * invoked when a normal CPU exits idle, but must be called separately
2679 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2680 * is that the timekeeping CPU is permitted to take scheduling-clock
2681 * interrupts while the system is in system-idle state, and of course
2682 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2683 * interrupt from any other type of interrupt.
2684 */
2685 void rcu_sysidle_force_exit(void)
2686 {
2687 int oldstate = ACCESS_ONCE(full_sysidle_state);
2688 int newoldstate;
2689
2690 /*
2691 * Each pass through the following loop attempts to exit full
2692 * system-idle state. If contention proves to be a problem,
2693 * a trylock-based contention tree could be used here.
2694 */
2695 while (oldstate > RCU_SYSIDLE_SHORT) {
2696 newoldstate = cmpxchg(&full_sysidle_state,
2697 oldstate, RCU_SYSIDLE_NOT);
2698 if (oldstate == newoldstate &&
2699 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2700 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2701 return; /* We cleared it, done! */
2702 }
2703 oldstate = newoldstate;
2704 }
2705 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2706 }
2707
2708 /*
2709 * Invoked to note entry to irq or task transition from idle. Note that
2710 * usermode execution does -not- count as idle here! The caller must
2711 * have disabled interrupts.
2712 */
2713 static void rcu_sysidle_exit(int irq)
2714 {
2715 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2716
2717 /* If there are no nohz_full= CPUs, no need to track this. */
2718 if (!tick_nohz_full_enabled())
2719 return;
2720
2721 /* Adjust nesting, check for already non-idle. */
2722 if (irq) {
2723 rdtp->dynticks_idle_nesting++;
2724 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2725 if (rdtp->dynticks_idle_nesting != 1)
2726 return; /* Already non-idle. */
2727 } else {
2728 /*
2729 * Allow for irq misnesting. Yes, it really is possible
2730 * to enter an irq handler then never leave it, and maybe
2731 * also vice versa. Handle both possibilities.
2732 */
2733 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2734 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2735 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2736 return; /* Already non-idle. */
2737 } else {
2738 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2739 }
2740 }
2741
2742 /* Record end of idle period. */
2743 smp_mb__before_atomic();
2744 atomic_inc(&rdtp->dynticks_idle);
2745 smp_mb__after_atomic();
2746 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2747
2748 /*
2749 * If we are the timekeeping CPU, we are permitted to be non-idle
2750 * during a system-idle state. This must be the case, because
2751 * the timekeeping CPU has to take scheduling-clock interrupts
2752 * during the time that the system is transitioning to full
2753 * system-idle state. This means that the timekeeping CPU must
2754 * invoke rcu_sysidle_force_exit() directly if it does anything
2755 * more than take a scheduling-clock interrupt.
2756 */
2757 if (smp_processor_id() == tick_do_timer_cpu)
2758 return;
2759
2760 /* Update system-idle state: We are clearly no longer fully idle! */
2761 rcu_sysidle_force_exit();
2762 }
2763
2764 /*
2765 * Check to see if the current CPU is idle. Note that usermode execution
2766 * does not count as idle. The caller must have disabled interrupts.
2767 */
2768 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2769 unsigned long *maxj)
2770 {
2771 int cur;
2772 unsigned long j;
2773 struct rcu_dynticks *rdtp = rdp->dynticks;
2774
2775 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2776 if (!tick_nohz_full_enabled())
2777 return;
2778
2779 /*
2780 * If some other CPU has already reported non-idle, if this is
2781 * not the flavor of RCU that tracks sysidle state, or if this
2782 * is an offline or the timekeeping CPU, nothing to do.
2783 */
2784 if (!*isidle || rdp->rsp != rcu_state_p ||
2785 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2786 return;
2787 if (rcu_gp_in_progress(rdp->rsp))
2788 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2789
2790 /* Pick up current idle and NMI-nesting counter and check. */
2791 cur = atomic_read(&rdtp->dynticks_idle);
2792 if (cur & 0x1) {
2793 *isidle = false; /* We are not idle! */
2794 return;
2795 }
2796 smp_mb(); /* Read counters before timestamps. */
2797
2798 /* Pick up timestamps. */
2799 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2800 /* If this CPU entered idle more recently, update maxj timestamp. */
2801 if (ULONG_CMP_LT(*maxj, j))
2802 *maxj = j;
2803 }
2804
2805 /*
2806 * Is this the flavor of RCU that is handling full-system idle?
2807 */
2808 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2809 {
2810 return rsp == rcu_state_p;
2811 }
2812
2813 /*
2814 * Return a delay in jiffies based on the number of CPUs, rcu_node
2815 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2816 * systems more time to transition to full-idle state in order to
2817 * avoid the cache thrashing that otherwise occur on the state variable.
2818 * Really small systems (less than a couple of tens of CPUs) should
2819 * instead use a single global atomically incremented counter, and later
2820 * versions of this will automatically reconfigure themselves accordingly.
2821 */
2822 static unsigned long rcu_sysidle_delay(void)
2823 {
2824 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2825 return 0;
2826 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2827 }
2828
2829 /*
2830 * Advance the full-system-idle state. This is invoked when all of
2831 * the non-timekeeping CPUs are idle.
2832 */
2833 static void rcu_sysidle(unsigned long j)
2834 {
2835 /* Check the current state. */
2836 switch (ACCESS_ONCE(full_sysidle_state)) {
2837 case RCU_SYSIDLE_NOT:
2838
2839 /* First time all are idle, so note a short idle period. */
2840 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2841 break;
2842
2843 case RCU_SYSIDLE_SHORT:
2844
2845 /*
2846 * Idle for a bit, time to advance to next state?
2847 * cmpxchg failure means race with non-idle, let them win.
2848 */
2849 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2850 (void)cmpxchg(&full_sysidle_state,
2851 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2852 break;
2853
2854 case RCU_SYSIDLE_LONG:
2855
2856 /*
2857 * Do an additional check pass before advancing to full.
2858 * cmpxchg failure means race with non-idle, let them win.
2859 */
2860 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2861 (void)cmpxchg(&full_sysidle_state,
2862 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2863 break;
2864
2865 default:
2866 break;
2867 }
2868 }
2869
2870 /*
2871 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2872 * back to the beginning.
2873 */
2874 static void rcu_sysidle_cancel(void)
2875 {
2876 smp_mb();
2877 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2878 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2879 }
2880
2881 /*
2882 * Update the sysidle state based on the results of a force-quiescent-state
2883 * scan of the CPUs' dyntick-idle state.
2884 */
2885 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2886 unsigned long maxj, bool gpkt)
2887 {
2888 if (rsp != rcu_state_p)
2889 return; /* Wrong flavor, ignore. */
2890 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2891 return; /* Running state machine from timekeeping CPU. */
2892 if (isidle)
2893 rcu_sysidle(maxj); /* More idle! */
2894 else
2895 rcu_sysidle_cancel(); /* Idle is over. */
2896 }
2897
2898 /*
2899 * Wrapper for rcu_sysidle_report() when called from the grace-period
2900 * kthread's context.
2901 */
2902 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2903 unsigned long maxj)
2904 {
2905 /* If there are no nohz_full= CPUs, no need to track this. */
2906 if (!tick_nohz_full_enabled())
2907 return;
2908
2909 rcu_sysidle_report(rsp, isidle, maxj, true);
2910 }
2911
2912 /* Callback and function for forcing an RCU grace period. */
2913 struct rcu_sysidle_head {
2914 struct rcu_head rh;
2915 int inuse;
2916 };
2917
2918 static void rcu_sysidle_cb(struct rcu_head *rhp)
2919 {
2920 struct rcu_sysidle_head *rshp;
2921
2922 /*
2923 * The following memory barrier is needed to replace the
2924 * memory barriers that would normally be in the memory
2925 * allocator.
2926 */
2927 smp_mb(); /* grace period precedes setting inuse. */
2928
2929 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2930 ACCESS_ONCE(rshp->inuse) = 0;
2931 }
2932
2933 /*
2934 * Check to see if the system is fully idle, other than the timekeeping CPU.
2935 * The caller must have disabled interrupts. This is not intended to be
2936 * called unless tick_nohz_full_enabled().
2937 */
2938 bool rcu_sys_is_idle(void)
2939 {
2940 static struct rcu_sysidle_head rsh;
2941 int rss = ACCESS_ONCE(full_sysidle_state);
2942
2943 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2944 return false;
2945
2946 /* Handle small-system case by doing a full scan of CPUs. */
2947 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2948 int oldrss = rss - 1;
2949
2950 /*
2951 * One pass to advance to each state up to _FULL.
2952 * Give up if any pass fails to advance the state.
2953 */
2954 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2955 int cpu;
2956 bool isidle = true;
2957 unsigned long maxj = jiffies - ULONG_MAX / 4;
2958 struct rcu_data *rdp;
2959
2960 /* Scan all the CPUs looking for nonidle CPUs. */
2961 for_each_possible_cpu(cpu) {
2962 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2963 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2964 if (!isidle)
2965 break;
2966 }
2967 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2968 oldrss = rss;
2969 rss = ACCESS_ONCE(full_sysidle_state);
2970 }
2971 }
2972
2973 /* If this is the first observation of an idle period, record it. */
2974 if (rss == RCU_SYSIDLE_FULL) {
2975 rss = cmpxchg(&full_sysidle_state,
2976 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2977 return rss == RCU_SYSIDLE_FULL;
2978 }
2979
2980 smp_mb(); /* ensure rss load happens before later caller actions. */
2981
2982 /* If already fully idle, tell the caller (in case of races). */
2983 if (rss == RCU_SYSIDLE_FULL_NOTED)
2984 return true;
2985
2986 /*
2987 * If we aren't there yet, and a grace period is not in flight,
2988 * initiate a grace period. Either way, tell the caller that
2989 * we are not there yet. We use an xchg() rather than an assignment
2990 * to make up for the memory barriers that would otherwise be
2991 * provided by the memory allocator.
2992 */
2993 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2994 !rcu_gp_in_progress(rcu_state_p) &&
2995 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2996 call_rcu(&rsh.rh, rcu_sysidle_cb);
2997 return false;
2998 }
2999
3000 /*
3001 * Initialize dynticks sysidle state for CPUs coming online.
3002 */
3003 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3004 {
3005 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3006 }
3007
3008 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3009
3010 static void rcu_sysidle_enter(int irq)
3011 {
3012 }
3013
3014 static void rcu_sysidle_exit(int irq)
3015 {
3016 }
3017
3018 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3019 unsigned long *maxj)
3020 {
3021 }
3022
3023 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3024 {
3025 return false;
3026 }
3027
3028 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3029 unsigned long maxj)
3030 {
3031 }
3032
3033 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3034 {
3035 }
3036
3037 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3038
3039 /*
3040 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3041 * grace-period kthread will do force_quiescent_state() processing?
3042 * The idea is to avoid waking up RCU core processing on such a
3043 * CPU unless the grace period has extended for too long.
3044 *
3045 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3046 * CONFIG_RCU_NOCB_CPU CPUs.
3047 */
3048 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3049 {
3050 #ifdef CONFIG_NO_HZ_FULL
3051 if (tick_nohz_full_cpu(smp_processor_id()) &&
3052 (!rcu_gp_in_progress(rsp) ||
3053 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3054 return 1;
3055 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3056 return 0;
3057 }
3058
3059 /*
3060 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3061 * timekeeping CPU.
3062 */
3063 static void rcu_bind_gp_kthread(void)
3064 {
3065 int __maybe_unused cpu;
3066
3067 if (!tick_nohz_full_enabled())
3068 return;
3069 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3070 cpu = tick_do_timer_cpu;
3071 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3072 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3073 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3074 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3075 housekeeping_affine(current);
3076 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3077 }
3078
3079 /* Record the current task on dyntick-idle entry. */
3080 static void rcu_dynticks_task_enter(void)
3081 {
3082 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3083 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3084 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3085 }
3086
3087 /* Record no current task on dyntick-idle exit. */
3088 static void rcu_dynticks_task_exit(void)
3089 {
3090 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3091 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3092 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3093 }