]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/update.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / update.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 *
10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12 * Papers:
13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15 *
16 * For detailed explanation of Read-Copy Update mechanism see -
17 * http://lse.sourceforge.net/locking/rcupdate.html
18 *
19 */
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/debug.h>
28 #include <linux/atomic.h>
29 #include <linux/bitops.h>
30 #include <linux/percpu.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/mutex.h>
34 #include <linux/export.h>
35 #include <linux/hardirq.h>
36 #include <linux/delay.h>
37 #include <linux/moduleparam.h>
38 #include <linux/kthread.h>
39 #include <linux/tick.h>
40 #include <linux/rcupdate_wait.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/kprobes.h>
43
44 #define CREATE_TRACE_POINTS
45
46 #include "rcu.h"
47
48 #ifdef MODULE_PARAM_PREFIX
49 #undef MODULE_PARAM_PREFIX
50 #endif
51 #define MODULE_PARAM_PREFIX "rcupdate."
52
53 #ifndef CONFIG_TINY_RCU
54 extern int rcu_expedited; /* from sysctl */
55 module_param(rcu_expedited, int, 0);
56 extern int rcu_normal; /* from sysctl */
57 module_param(rcu_normal, int, 0);
58 static int rcu_normal_after_boot;
59 module_param(rcu_normal_after_boot, int, 0);
60 #endif /* #ifndef CONFIG_TINY_RCU */
61
62 #ifdef CONFIG_DEBUG_LOCK_ALLOC
63 /**
64 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
65 *
66 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
67 * RCU-sched read-side critical section. In absence of
68 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
69 * critical section unless it can prove otherwise. Note that disabling
70 * of preemption (including disabling irqs) counts as an RCU-sched
71 * read-side critical section. This is useful for debug checks in functions
72 * that required that they be called within an RCU-sched read-side
73 * critical section.
74 *
75 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
76 * and while lockdep is disabled.
77 *
78 * Note that if the CPU is in the idle loop from an RCU point of
79 * view (ie: that we are in the section between rcu_idle_enter() and
80 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
81 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
82 * that are in such a section, considering these as in extended quiescent
83 * state, so such a CPU is effectively never in an RCU read-side critical
84 * section regardless of what RCU primitives it invokes. This state of
85 * affairs is required --- we need to keep an RCU-free window in idle
86 * where the CPU may possibly enter into low power mode. This way we can
87 * notice an extended quiescent state to other CPUs that started a grace
88 * period. Otherwise we would delay any grace period as long as we run in
89 * the idle task.
90 *
91 * Similarly, we avoid claiming an SRCU read lock held if the current
92 * CPU is offline.
93 */
94 int rcu_read_lock_sched_held(void)
95 {
96 int lockdep_opinion = 0;
97
98 if (!debug_lockdep_rcu_enabled())
99 return 1;
100 if (!rcu_is_watching())
101 return 0;
102 if (!rcu_lockdep_current_cpu_online())
103 return 0;
104 if (debug_locks)
105 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
106 return lockdep_opinion || !preemptible();
107 }
108 EXPORT_SYMBOL(rcu_read_lock_sched_held);
109 #endif
110
111 #ifndef CONFIG_TINY_RCU
112
113 /*
114 * Should expedited grace-period primitives always fall back to their
115 * non-expedited counterparts? Intended for use within RCU. Note
116 * that if the user specifies both rcu_expedited and rcu_normal, then
117 * rcu_normal wins. (Except during the time period during boot from
118 * when the first task is spawned until the rcu_set_runtime_mode()
119 * core_initcall() is invoked, at which point everything is expedited.)
120 */
121 bool rcu_gp_is_normal(void)
122 {
123 return READ_ONCE(rcu_normal) &&
124 rcu_scheduler_active != RCU_SCHEDULER_INIT;
125 }
126 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
127
128 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
129
130 /*
131 * Should normal grace-period primitives be expedited? Intended for
132 * use within RCU. Note that this function takes the rcu_expedited
133 * sysfs/boot variable and rcu_scheduler_active into account as well
134 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
135 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
136 */
137 bool rcu_gp_is_expedited(void)
138 {
139 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
140 rcu_scheduler_active == RCU_SCHEDULER_INIT;
141 }
142 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
143
144 /**
145 * rcu_expedite_gp - Expedite future RCU grace periods
146 *
147 * After a call to this function, future calls to synchronize_rcu() and
148 * friends act as the corresponding synchronize_rcu_expedited() function
149 * had instead been called.
150 */
151 void rcu_expedite_gp(void)
152 {
153 atomic_inc(&rcu_expedited_nesting);
154 }
155 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
156
157 /**
158 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
159 *
160 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
161 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
162 * and if the rcu_expedited sysfs/boot parameter is not set, then all
163 * subsequent calls to synchronize_rcu() and friends will return to
164 * their normal non-expedited behavior.
165 */
166 void rcu_unexpedite_gp(void)
167 {
168 atomic_dec(&rcu_expedited_nesting);
169 }
170 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
171
172 /*
173 * Inform RCU of the end of the in-kernel boot sequence.
174 */
175 void rcu_end_inkernel_boot(void)
176 {
177 rcu_unexpedite_gp();
178 if (rcu_normal_after_boot)
179 WRITE_ONCE(rcu_normal, 1);
180 }
181
182 #endif /* #ifndef CONFIG_TINY_RCU */
183
184 /*
185 * Test each non-SRCU synchronous grace-period wait API. This is
186 * useful just after a change in mode for these primitives, and
187 * during early boot.
188 */
189 void rcu_test_sync_prims(void)
190 {
191 if (!IS_ENABLED(CONFIG_PROVE_RCU))
192 return;
193 synchronize_rcu();
194 synchronize_rcu_expedited();
195 }
196
197 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
198
199 /*
200 * Switch to run-time mode once RCU has fully initialized.
201 */
202 static int __init rcu_set_runtime_mode(void)
203 {
204 rcu_test_sync_prims();
205 rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
206 rcu_test_sync_prims();
207 return 0;
208 }
209 core_initcall(rcu_set_runtime_mode);
210
211 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
212
213 #ifdef CONFIG_DEBUG_LOCK_ALLOC
214 static struct lock_class_key rcu_lock_key;
215 struct lockdep_map rcu_lock_map =
216 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
217 EXPORT_SYMBOL_GPL(rcu_lock_map);
218
219 static struct lock_class_key rcu_bh_lock_key;
220 struct lockdep_map rcu_bh_lock_map =
221 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
222 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
223
224 static struct lock_class_key rcu_sched_lock_key;
225 struct lockdep_map rcu_sched_lock_map =
226 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
227 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
228
229 static struct lock_class_key rcu_callback_key;
230 struct lockdep_map rcu_callback_map =
231 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
232 EXPORT_SYMBOL_GPL(rcu_callback_map);
233
234 int notrace debug_lockdep_rcu_enabled(void)
235 {
236 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
237 current->lockdep_recursion == 0;
238 }
239 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
240 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
241
242 /**
243 * rcu_read_lock_held() - might we be in RCU read-side critical section?
244 *
245 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
246 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
247 * this assumes we are in an RCU read-side critical section unless it can
248 * prove otherwise. This is useful for debug checks in functions that
249 * require that they be called within an RCU read-side critical section.
250 *
251 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
252 * and while lockdep is disabled.
253 *
254 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
255 * occur in the same context, for example, it is illegal to invoke
256 * rcu_read_unlock() in process context if the matching rcu_read_lock()
257 * was invoked from within an irq handler.
258 *
259 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
260 * offline from an RCU perspective, so check for those as well.
261 */
262 int rcu_read_lock_held(void)
263 {
264 if (!debug_lockdep_rcu_enabled())
265 return 1;
266 if (!rcu_is_watching())
267 return 0;
268 if (!rcu_lockdep_current_cpu_online())
269 return 0;
270 return lock_is_held(&rcu_lock_map);
271 }
272 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
273
274 /**
275 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
276 *
277 * Check for bottom half being disabled, which covers both the
278 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
279 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
280 * will show the situation. This is useful for debug checks in functions
281 * that require that they be called within an RCU read-side critical
282 * section.
283 *
284 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
285 *
286 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
287 * offline from an RCU perspective, so check for those as well.
288 */
289 int rcu_read_lock_bh_held(void)
290 {
291 if (!debug_lockdep_rcu_enabled())
292 return 1;
293 if (!rcu_is_watching())
294 return 0;
295 if (!rcu_lockdep_current_cpu_online())
296 return 0;
297 return in_softirq() || irqs_disabled();
298 }
299 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
300
301 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
302
303 /**
304 * wakeme_after_rcu() - Callback function to awaken a task after grace period
305 * @head: Pointer to rcu_head member within rcu_synchronize structure
306 *
307 * Awaken the corresponding task now that a grace period has elapsed.
308 */
309 void wakeme_after_rcu(struct rcu_head *head)
310 {
311 struct rcu_synchronize *rcu;
312
313 rcu = container_of(head, struct rcu_synchronize, head);
314 complete(&rcu->completion);
315 }
316 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
317
318 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
319 struct rcu_synchronize *rs_array)
320 {
321 int i;
322 int j;
323
324 /* Initialize and register callbacks for each crcu_array element. */
325 for (i = 0; i < n; i++) {
326 if (checktiny &&
327 (crcu_array[i] == call_rcu)) {
328 might_sleep();
329 continue;
330 }
331 init_rcu_head_on_stack(&rs_array[i].head);
332 init_completion(&rs_array[i].completion);
333 for (j = 0; j < i; j++)
334 if (crcu_array[j] == crcu_array[i])
335 break;
336 if (j == i)
337 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
338 }
339
340 /* Wait for all callbacks to be invoked. */
341 for (i = 0; i < n; i++) {
342 if (checktiny &&
343 (crcu_array[i] == call_rcu))
344 continue;
345 for (j = 0; j < i; j++)
346 if (crcu_array[j] == crcu_array[i])
347 break;
348 if (j == i)
349 wait_for_completion(&rs_array[i].completion);
350 destroy_rcu_head_on_stack(&rs_array[i].head);
351 }
352 }
353 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
354
355 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
356 void init_rcu_head(struct rcu_head *head)
357 {
358 debug_object_init(head, &rcuhead_debug_descr);
359 }
360 EXPORT_SYMBOL_GPL(init_rcu_head);
361
362 void destroy_rcu_head(struct rcu_head *head)
363 {
364 debug_object_free(head, &rcuhead_debug_descr);
365 }
366 EXPORT_SYMBOL_GPL(destroy_rcu_head);
367
368 static bool rcuhead_is_static_object(void *addr)
369 {
370 return true;
371 }
372
373 /**
374 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
375 * @head: pointer to rcu_head structure to be initialized
376 *
377 * This function informs debugobjects of a new rcu_head structure that
378 * has been allocated as an auto variable on the stack. This function
379 * is not required for rcu_head structures that are statically defined or
380 * that are dynamically allocated on the heap. This function has no
381 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
382 */
383 void init_rcu_head_on_stack(struct rcu_head *head)
384 {
385 debug_object_init_on_stack(head, &rcuhead_debug_descr);
386 }
387 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
388
389 /**
390 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
391 * @head: pointer to rcu_head structure to be initialized
392 *
393 * This function informs debugobjects that an on-stack rcu_head structure
394 * is about to go out of scope. As with init_rcu_head_on_stack(), this
395 * function is not required for rcu_head structures that are statically
396 * defined or that are dynamically allocated on the heap. Also as with
397 * init_rcu_head_on_stack(), this function has no effect for
398 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
399 */
400 void destroy_rcu_head_on_stack(struct rcu_head *head)
401 {
402 debug_object_free(head, &rcuhead_debug_descr);
403 }
404 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
405
406 struct debug_obj_descr rcuhead_debug_descr = {
407 .name = "rcu_head",
408 .is_static_object = rcuhead_is_static_object,
409 };
410 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
411 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
412
413 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
414 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
415 unsigned long secs,
416 unsigned long c_old, unsigned long c)
417 {
418 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
419 }
420 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
421 #else
422 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
423 do { } while (0)
424 #endif
425
426 #ifdef CONFIG_RCU_STALL_COMMON
427
428 #ifdef CONFIG_PROVE_RCU
429 #define RCU_STALL_DELAY_DELTA (5 * HZ)
430 #else
431 #define RCU_STALL_DELAY_DELTA 0
432 #endif
433
434 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
435 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
436 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
437
438 module_param(rcu_cpu_stall_suppress, int, 0644);
439 module_param(rcu_cpu_stall_timeout, int, 0644);
440
441 int rcu_jiffies_till_stall_check(void)
442 {
443 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
444
445 /*
446 * Limit check must be consistent with the Kconfig limits
447 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
448 */
449 if (till_stall_check < 3) {
450 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
451 till_stall_check = 3;
452 } else if (till_stall_check > 300) {
453 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
454 till_stall_check = 300;
455 }
456 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
457 }
458 EXPORT_SYMBOL_GPL(rcu_jiffies_till_stall_check);
459
460 void rcu_sysrq_start(void)
461 {
462 if (!rcu_cpu_stall_suppress)
463 rcu_cpu_stall_suppress = 2;
464 }
465
466 void rcu_sysrq_end(void)
467 {
468 if (rcu_cpu_stall_suppress == 2)
469 rcu_cpu_stall_suppress = 0;
470 }
471
472 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
473 {
474 rcu_cpu_stall_suppress = 1;
475 return NOTIFY_DONE;
476 }
477
478 static struct notifier_block rcu_panic_block = {
479 .notifier_call = rcu_panic,
480 };
481
482 static int __init check_cpu_stall_init(void)
483 {
484 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
485 return 0;
486 }
487 early_initcall(check_cpu_stall_init);
488
489 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
490
491 #ifdef CONFIG_TASKS_RCU
492
493 /*
494 * Simple variant of RCU whose quiescent states are voluntary context
495 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
496 * As such, grace periods can take one good long time. There are no
497 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
498 * because this implementation is intended to get the system into a safe
499 * state for some of the manipulations involved in tracing and the like.
500 * Finally, this implementation does not support high call_rcu_tasks()
501 * rates from multiple CPUs. If this is required, per-CPU callback lists
502 * will be needed.
503 */
504
505 /* Global list of callbacks and associated lock. */
506 static struct rcu_head *rcu_tasks_cbs_head;
507 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
508 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
509 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
510
511 /* Track exiting tasks in order to allow them to be waited for. */
512 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
513
514 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
515 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
516 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
517 module_param(rcu_task_stall_timeout, int, 0644);
518
519 static struct task_struct *rcu_tasks_kthread_ptr;
520
521 /**
522 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
523 * @rhp: structure to be used for queueing the RCU updates.
524 * @func: actual callback function to be invoked after the grace period
525 *
526 * The callback function will be invoked some time after a full grace
527 * period elapses, in other words after all currently executing RCU
528 * read-side critical sections have completed. call_rcu_tasks() assumes
529 * that the read-side critical sections end at a voluntary context
530 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
531 * or transition to usermode execution. As such, there are no read-side
532 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
533 * this primitive is intended to determine that all tasks have passed
534 * through a safe state, not so much for data-strcuture synchronization.
535 *
536 * See the description of call_rcu() for more detailed information on
537 * memory ordering guarantees.
538 */
539 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
540 {
541 unsigned long flags;
542 bool needwake;
543
544 rhp->next = NULL;
545 rhp->func = func;
546 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
547 needwake = !rcu_tasks_cbs_head;
548 *rcu_tasks_cbs_tail = rhp;
549 rcu_tasks_cbs_tail = &rhp->next;
550 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
551 /* We can't create the thread unless interrupts are enabled. */
552 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
553 wake_up(&rcu_tasks_cbs_wq);
554 }
555 EXPORT_SYMBOL_GPL(call_rcu_tasks);
556
557 /**
558 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
559 *
560 * Control will return to the caller some time after a full rcu-tasks
561 * grace period has elapsed, in other words after all currently
562 * executing rcu-tasks read-side critical sections have elapsed. These
563 * read-side critical sections are delimited by calls to schedule(),
564 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
565 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
566 *
567 * This is a very specialized primitive, intended only for a few uses in
568 * tracing and other situations requiring manipulation of function
569 * preambles and profiling hooks. The synchronize_rcu_tasks() function
570 * is not (yet) intended for heavy use from multiple CPUs.
571 *
572 * Note that this guarantee implies further memory-ordering guarantees.
573 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
574 * each CPU is guaranteed to have executed a full memory barrier since the
575 * end of its last RCU-tasks read-side critical section whose beginning
576 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
577 * having an RCU-tasks read-side critical section that extends beyond
578 * the return from synchronize_rcu_tasks() is guaranteed to have executed
579 * a full memory barrier after the beginning of synchronize_rcu_tasks()
580 * and before the beginning of that RCU-tasks read-side critical section.
581 * Note that these guarantees include CPUs that are offline, idle, or
582 * executing in user mode, as well as CPUs that are executing in the kernel.
583 *
584 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
585 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
586 * to have executed a full memory barrier during the execution of
587 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
588 * (but again only if the system has more than one CPU).
589 */
590 void synchronize_rcu_tasks(void)
591 {
592 /* Complain if the scheduler has not started. */
593 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
594 "synchronize_rcu_tasks called too soon");
595
596 /* Wait for the grace period. */
597 wait_rcu_gp(call_rcu_tasks);
598 }
599 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
600
601 /**
602 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
603 *
604 * Although the current implementation is guaranteed to wait, it is not
605 * obligated to, for example, if there are no pending callbacks.
606 */
607 void rcu_barrier_tasks(void)
608 {
609 /* There is only one callback queue, so this is easy. ;-) */
610 synchronize_rcu_tasks();
611 }
612 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
613
614 /* See if tasks are still holding out, complain if so. */
615 static void check_holdout_task(struct task_struct *t,
616 bool needreport, bool *firstreport)
617 {
618 int cpu;
619
620 if (!READ_ONCE(t->rcu_tasks_holdout) ||
621 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
622 !READ_ONCE(t->on_rq) ||
623 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
624 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
625 WRITE_ONCE(t->rcu_tasks_holdout, false);
626 list_del_init(&t->rcu_tasks_holdout_list);
627 put_task_struct(t);
628 return;
629 }
630 rcu_request_urgent_qs_task(t);
631 if (!needreport)
632 return;
633 if (*firstreport) {
634 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
635 *firstreport = false;
636 }
637 cpu = task_cpu(t);
638 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
639 t, ".I"[is_idle_task(t)],
640 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
641 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
642 t->rcu_tasks_idle_cpu, cpu);
643 sched_show_task(t);
644 }
645
646 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
647 static int __noreturn rcu_tasks_kthread(void *arg)
648 {
649 unsigned long flags;
650 struct task_struct *g, *t;
651 unsigned long lastreport;
652 struct rcu_head *list;
653 struct rcu_head *next;
654 LIST_HEAD(rcu_tasks_holdouts);
655 int fract;
656
657 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
658 housekeeping_affine(current, HK_FLAG_RCU);
659
660 /*
661 * Each pass through the following loop makes one check for
662 * newly arrived callbacks, and, if there are some, waits for
663 * one RCU-tasks grace period and then invokes the callbacks.
664 * This loop is terminated by the system going down. ;-)
665 */
666 for (;;) {
667
668 /* Pick up any new callbacks. */
669 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
670 list = rcu_tasks_cbs_head;
671 rcu_tasks_cbs_head = NULL;
672 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
673 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
674
675 /* If there were none, wait a bit and start over. */
676 if (!list) {
677 wait_event_interruptible(rcu_tasks_cbs_wq,
678 rcu_tasks_cbs_head);
679 if (!rcu_tasks_cbs_head) {
680 WARN_ON(signal_pending(current));
681 schedule_timeout_interruptible(HZ/10);
682 }
683 continue;
684 }
685
686 /*
687 * Wait for all pre-existing t->on_rq and t->nvcsw
688 * transitions to complete. Invoking synchronize_rcu()
689 * suffices because all these transitions occur with
690 * interrupts disabled. Without this synchronize_rcu(),
691 * a read-side critical section that started before the
692 * grace period might be incorrectly seen as having started
693 * after the grace period.
694 *
695 * This synchronize_rcu() also dispenses with the
696 * need for a memory barrier on the first store to
697 * ->rcu_tasks_holdout, as it forces the store to happen
698 * after the beginning of the grace period.
699 */
700 synchronize_rcu();
701
702 /*
703 * There were callbacks, so we need to wait for an
704 * RCU-tasks grace period. Start off by scanning
705 * the task list for tasks that are not already
706 * voluntarily blocked. Mark these tasks and make
707 * a list of them in rcu_tasks_holdouts.
708 */
709 rcu_read_lock();
710 for_each_process_thread(g, t) {
711 if (t != current && READ_ONCE(t->on_rq) &&
712 !is_idle_task(t)) {
713 get_task_struct(t);
714 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
715 WRITE_ONCE(t->rcu_tasks_holdout, true);
716 list_add(&t->rcu_tasks_holdout_list,
717 &rcu_tasks_holdouts);
718 }
719 }
720 rcu_read_unlock();
721
722 /*
723 * Wait for tasks that are in the process of exiting.
724 * This does only part of the job, ensuring that all
725 * tasks that were previously exiting reach the point
726 * where they have disabled preemption, allowing the
727 * later synchronize_rcu() to finish the job.
728 */
729 synchronize_srcu(&tasks_rcu_exit_srcu);
730
731 /*
732 * Each pass through the following loop scans the list
733 * of holdout tasks, removing any that are no longer
734 * holdouts. When the list is empty, we are done.
735 */
736 lastreport = jiffies;
737
738 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
739 fract = 10;
740
741 for (;;) {
742 bool firstreport;
743 bool needreport;
744 int rtst;
745 struct task_struct *t1;
746
747 if (list_empty(&rcu_tasks_holdouts))
748 break;
749
750 /* Slowly back off waiting for holdouts */
751 schedule_timeout_interruptible(HZ/fract);
752
753 if (fract > 1)
754 fract--;
755
756 rtst = READ_ONCE(rcu_task_stall_timeout);
757 needreport = rtst > 0 &&
758 time_after(jiffies, lastreport + rtst);
759 if (needreport)
760 lastreport = jiffies;
761 firstreport = true;
762 WARN_ON(signal_pending(current));
763 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
764 rcu_tasks_holdout_list) {
765 check_holdout_task(t, needreport, &firstreport);
766 cond_resched();
767 }
768 }
769
770 /*
771 * Because ->on_rq and ->nvcsw are not guaranteed
772 * to have a full memory barriers prior to them in the
773 * schedule() path, memory reordering on other CPUs could
774 * cause their RCU-tasks read-side critical sections to
775 * extend past the end of the grace period. However,
776 * because these ->nvcsw updates are carried out with
777 * interrupts disabled, we can use synchronize_rcu()
778 * to force the needed ordering on all such CPUs.
779 *
780 * This synchronize_rcu() also confines all
781 * ->rcu_tasks_holdout accesses to be within the grace
782 * period, avoiding the need for memory barriers for
783 * ->rcu_tasks_holdout accesses.
784 *
785 * In addition, this synchronize_rcu() waits for exiting
786 * tasks to complete their final preempt_disable() region
787 * of execution, cleaning up after the synchronize_srcu()
788 * above.
789 */
790 synchronize_rcu();
791
792 /* Invoke the callbacks. */
793 while (list) {
794 next = list->next;
795 local_bh_disable();
796 list->func(list);
797 local_bh_enable();
798 list = next;
799 cond_resched();
800 }
801 /* Paranoid sleep to keep this from entering a tight loop */
802 schedule_timeout_uninterruptible(HZ/10);
803 }
804 }
805
806 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
807 static int __init rcu_spawn_tasks_kthread(void)
808 {
809 struct task_struct *t;
810
811 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
812 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
813 return 0;
814 smp_mb(); /* Ensure others see full kthread. */
815 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
816 return 0;
817 }
818 core_initcall(rcu_spawn_tasks_kthread);
819
820 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
821 void exit_tasks_rcu_start(void)
822 {
823 preempt_disable();
824 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
825 preempt_enable();
826 }
827
828 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
829 void exit_tasks_rcu_finish(void)
830 {
831 preempt_disable();
832 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
833 preempt_enable();
834 }
835
836 #endif /* #ifdef CONFIG_TASKS_RCU */
837
838 #ifndef CONFIG_TINY_RCU
839
840 /*
841 * Print any non-default Tasks RCU settings.
842 */
843 static void __init rcu_tasks_bootup_oddness(void)
844 {
845 #ifdef CONFIG_TASKS_RCU
846 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
847 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
848 else
849 pr_info("\tTasks RCU enabled.\n");
850 #endif /* #ifdef CONFIG_TASKS_RCU */
851 }
852
853 #endif /* #ifndef CONFIG_TINY_RCU */
854
855 #ifdef CONFIG_PROVE_RCU
856
857 /*
858 * Early boot self test parameters.
859 */
860 static bool rcu_self_test;
861 module_param(rcu_self_test, bool, 0444);
862
863 static int rcu_self_test_counter;
864
865 static void test_callback(struct rcu_head *r)
866 {
867 rcu_self_test_counter++;
868 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
869 }
870
871 DEFINE_STATIC_SRCU(early_srcu);
872
873 static void early_boot_test_call_rcu(void)
874 {
875 static struct rcu_head head;
876 static struct rcu_head shead;
877
878 call_rcu(&head, test_callback);
879 if (IS_ENABLED(CONFIG_SRCU))
880 call_srcu(&early_srcu, &shead, test_callback);
881 }
882
883 void rcu_early_boot_tests(void)
884 {
885 pr_info("Running RCU self tests\n");
886
887 if (rcu_self_test)
888 early_boot_test_call_rcu();
889 rcu_test_sync_prims();
890 }
891
892 static int rcu_verify_early_boot_tests(void)
893 {
894 int ret = 0;
895 int early_boot_test_counter = 0;
896
897 if (rcu_self_test) {
898 early_boot_test_counter++;
899 rcu_barrier();
900 if (IS_ENABLED(CONFIG_SRCU)) {
901 early_boot_test_counter++;
902 srcu_barrier(&early_srcu);
903 }
904 }
905 if (rcu_self_test_counter != early_boot_test_counter) {
906 WARN_ON(1);
907 ret = -1;
908 }
909
910 return ret;
911 }
912 late_initcall(rcu_verify_early_boot_tests);
913 #else
914 void rcu_early_boot_tests(void) {}
915 #endif /* CONFIG_PROVE_RCU */
916
917 #ifndef CONFIG_TINY_RCU
918
919 /*
920 * Print any significant non-default boot-time settings.
921 */
922 void __init rcupdate_announce_bootup_oddness(void)
923 {
924 if (rcu_normal)
925 pr_info("\tNo expedited grace period (rcu_normal).\n");
926 else if (rcu_normal_after_boot)
927 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
928 else if (rcu_expedited)
929 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
930 if (rcu_cpu_stall_suppress)
931 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
932 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
933 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
934 rcu_tasks_bootup_oddness();
935 }
936
937 #endif /* #ifndef CONFIG_TINY_RCU */