]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/update.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / update.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/kprobes.h>
56
57 #define CREATE_TRACE_POINTS
58
59 #include "rcu.h"
60
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "rcupdate."
65
66 #ifndef CONFIG_TINY_RCU
67 extern int rcu_expedited; /* from sysctl */
68 module_param(rcu_expedited, int, 0);
69 extern int rcu_normal; /* from sysctl */
70 module_param(rcu_normal, int, 0);
71 static int rcu_normal_after_boot;
72 module_param(rcu_normal_after_boot, int, 0);
73 #endif /* #ifndef CONFIG_TINY_RCU */
74
75 #ifdef CONFIG_DEBUG_LOCK_ALLOC
76 /**
77 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
78 *
79 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
80 * RCU-sched read-side critical section. In absence of
81 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
82 * critical section unless it can prove otherwise. Note that disabling
83 * of preemption (including disabling irqs) counts as an RCU-sched
84 * read-side critical section. This is useful for debug checks in functions
85 * that required that they be called within an RCU-sched read-side
86 * critical section.
87 *
88 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
89 * and while lockdep is disabled.
90 *
91 * Note that if the CPU is in the idle loop from an RCU point of
92 * view (ie: that we are in the section between rcu_idle_enter() and
93 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
94 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
95 * that are in such a section, considering these as in extended quiescent
96 * state, so such a CPU is effectively never in an RCU read-side critical
97 * section regardless of what RCU primitives it invokes. This state of
98 * affairs is required --- we need to keep an RCU-free window in idle
99 * where the CPU may possibly enter into low power mode. This way we can
100 * notice an extended quiescent state to other CPUs that started a grace
101 * period. Otherwise we would delay any grace period as long as we run in
102 * the idle task.
103 *
104 * Similarly, we avoid claiming an SRCU read lock held if the current
105 * CPU is offline.
106 */
107 int rcu_read_lock_sched_held(void)
108 {
109 int lockdep_opinion = 0;
110
111 if (!debug_lockdep_rcu_enabled())
112 return 1;
113 if (!rcu_is_watching())
114 return 0;
115 if (!rcu_lockdep_current_cpu_online())
116 return 0;
117 if (debug_locks)
118 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
119 return lockdep_opinion || !preemptible();
120 }
121 EXPORT_SYMBOL(rcu_read_lock_sched_held);
122 #endif
123
124 #ifndef CONFIG_TINY_RCU
125
126 /*
127 * Should expedited grace-period primitives always fall back to their
128 * non-expedited counterparts? Intended for use within RCU. Note
129 * that if the user specifies both rcu_expedited and rcu_normal, then
130 * rcu_normal wins. (Except during the time period during boot from
131 * when the first task is spawned until the rcu_set_runtime_mode()
132 * core_initcall() is invoked, at which point everything is expedited.)
133 */
134 bool rcu_gp_is_normal(void)
135 {
136 return READ_ONCE(rcu_normal) &&
137 rcu_scheduler_active != RCU_SCHEDULER_INIT;
138 }
139 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
140
141 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
142
143 /*
144 * Should normal grace-period primitives be expedited? Intended for
145 * use within RCU. Note that this function takes the rcu_expedited
146 * sysfs/boot variable and rcu_scheduler_active into account as well
147 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
148 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
149 */
150 bool rcu_gp_is_expedited(void)
151 {
152 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
153 rcu_scheduler_active == RCU_SCHEDULER_INIT;
154 }
155 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
156
157 /**
158 * rcu_expedite_gp - Expedite future RCU grace periods
159 *
160 * After a call to this function, future calls to synchronize_rcu() and
161 * friends act as the corresponding synchronize_rcu_expedited() function
162 * had instead been called.
163 */
164 void rcu_expedite_gp(void)
165 {
166 atomic_inc(&rcu_expedited_nesting);
167 }
168 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
169
170 /**
171 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
172 *
173 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
174 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
175 * and if the rcu_expedited sysfs/boot parameter is not set, then all
176 * subsequent calls to synchronize_rcu() and friends will return to
177 * their normal non-expedited behavior.
178 */
179 void rcu_unexpedite_gp(void)
180 {
181 atomic_dec(&rcu_expedited_nesting);
182 }
183 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
184
185 /*
186 * Inform RCU of the end of the in-kernel boot sequence.
187 */
188 void rcu_end_inkernel_boot(void)
189 {
190 rcu_unexpedite_gp();
191 if (rcu_normal_after_boot)
192 WRITE_ONCE(rcu_normal, 1);
193 }
194
195 #endif /* #ifndef CONFIG_TINY_RCU */
196
197 /*
198 * Test each non-SRCU synchronous grace-period wait API. This is
199 * useful just after a change in mode for these primitives, and
200 * during early boot.
201 */
202 void rcu_test_sync_prims(void)
203 {
204 if (!IS_ENABLED(CONFIG_PROVE_RCU))
205 return;
206 synchronize_rcu();
207 synchronize_rcu_bh();
208 synchronize_sched();
209 synchronize_rcu_expedited();
210 synchronize_rcu_bh_expedited();
211 synchronize_sched_expedited();
212 }
213
214 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
215
216 /*
217 * Switch to run-time mode once RCU has fully initialized.
218 */
219 static int __init rcu_set_runtime_mode(void)
220 {
221 rcu_test_sync_prims();
222 rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
223 rcu_test_sync_prims();
224 return 0;
225 }
226 core_initcall(rcu_set_runtime_mode);
227
228 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
229
230 #ifdef CONFIG_PREEMPT_RCU
231
232 /*
233 * Preemptible RCU implementation for rcu_read_lock().
234 * Just increment ->rcu_read_lock_nesting, shared state will be updated
235 * if we block.
236 */
237 void __rcu_read_lock(void)
238 {
239 current->rcu_read_lock_nesting++;
240 barrier(); /* critical section after entry code. */
241 }
242 EXPORT_SYMBOL_GPL(__rcu_read_lock);
243
244 /*
245 * Preemptible RCU implementation for rcu_read_unlock().
246 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
247 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
248 * invoke rcu_read_unlock_special() to clean up after a context switch
249 * in an RCU read-side critical section and other special cases.
250 */
251 void __rcu_read_unlock(void)
252 {
253 struct task_struct *t = current;
254
255 if (t->rcu_read_lock_nesting != 1) {
256 --t->rcu_read_lock_nesting;
257 } else {
258 barrier(); /* critical section before exit code. */
259 t->rcu_read_lock_nesting = INT_MIN;
260 barrier(); /* assign before ->rcu_read_unlock_special load */
261 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
262 rcu_read_unlock_special(t);
263 barrier(); /* ->rcu_read_unlock_special load before assign */
264 t->rcu_read_lock_nesting = 0;
265 }
266 #ifdef CONFIG_PROVE_LOCKING
267 {
268 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
269
270 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
271 }
272 #endif /* #ifdef CONFIG_PROVE_LOCKING */
273 }
274 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
275
276 #endif /* #ifdef CONFIG_PREEMPT_RCU */
277
278 #ifdef CONFIG_DEBUG_LOCK_ALLOC
279 static struct lock_class_key rcu_lock_key;
280 struct lockdep_map rcu_lock_map =
281 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
282 EXPORT_SYMBOL_GPL(rcu_lock_map);
283
284 static struct lock_class_key rcu_bh_lock_key;
285 struct lockdep_map rcu_bh_lock_map =
286 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
287 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
288
289 static struct lock_class_key rcu_sched_lock_key;
290 struct lockdep_map rcu_sched_lock_map =
291 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
292 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
293
294 static struct lock_class_key rcu_callback_key;
295 struct lockdep_map rcu_callback_map =
296 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
297 EXPORT_SYMBOL_GPL(rcu_callback_map);
298
299 int notrace debug_lockdep_rcu_enabled(void)
300 {
301 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
302 current->lockdep_recursion == 0;
303 }
304 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
305 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
306
307 /**
308 * rcu_read_lock_held() - might we be in RCU read-side critical section?
309 *
310 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
311 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
312 * this assumes we are in an RCU read-side critical section unless it can
313 * prove otherwise. This is useful for debug checks in functions that
314 * require that they be called within an RCU read-side critical section.
315 *
316 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
317 * and while lockdep is disabled.
318 *
319 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
320 * occur in the same context, for example, it is illegal to invoke
321 * rcu_read_unlock() in process context if the matching rcu_read_lock()
322 * was invoked from within an irq handler.
323 *
324 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
325 * offline from an RCU perspective, so check for those as well.
326 */
327 int rcu_read_lock_held(void)
328 {
329 if (!debug_lockdep_rcu_enabled())
330 return 1;
331 if (!rcu_is_watching())
332 return 0;
333 if (!rcu_lockdep_current_cpu_online())
334 return 0;
335 return lock_is_held(&rcu_lock_map);
336 }
337 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
338
339 /**
340 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
341 *
342 * Check for bottom half being disabled, which covers both the
343 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
344 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
345 * will show the situation. This is useful for debug checks in functions
346 * that require that they be called within an RCU read-side critical
347 * section.
348 *
349 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
350 *
351 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
352 * offline from an RCU perspective, so check for those as well.
353 */
354 int rcu_read_lock_bh_held(void)
355 {
356 if (!debug_lockdep_rcu_enabled())
357 return 1;
358 if (!rcu_is_watching())
359 return 0;
360 if (!rcu_lockdep_current_cpu_online())
361 return 0;
362 return in_softirq() || irqs_disabled();
363 }
364 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
365
366 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
367
368 /**
369 * wakeme_after_rcu() - Callback function to awaken a task after grace period
370 * @head: Pointer to rcu_head member within rcu_synchronize structure
371 *
372 * Awaken the corresponding task now that a grace period has elapsed.
373 */
374 void wakeme_after_rcu(struct rcu_head *head)
375 {
376 struct rcu_synchronize *rcu;
377
378 rcu = container_of(head, struct rcu_synchronize, head);
379 complete(&rcu->completion);
380 }
381 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
382
383 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
384 struct rcu_synchronize *rs_array)
385 {
386 int i;
387 int j;
388
389 /* Initialize and register callbacks for each flavor specified. */
390 for (i = 0; i < n; i++) {
391 if (checktiny &&
392 (crcu_array[i] == call_rcu ||
393 crcu_array[i] == call_rcu_bh)) {
394 might_sleep();
395 continue;
396 }
397 init_rcu_head_on_stack(&rs_array[i].head);
398 init_completion(&rs_array[i].completion);
399 for (j = 0; j < i; j++)
400 if (crcu_array[j] == crcu_array[i])
401 break;
402 if (j == i)
403 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
404 }
405
406 /* Wait for all callbacks to be invoked. */
407 for (i = 0; i < n; i++) {
408 if (checktiny &&
409 (crcu_array[i] == call_rcu ||
410 crcu_array[i] == call_rcu_bh))
411 continue;
412 for (j = 0; j < i; j++)
413 if (crcu_array[j] == crcu_array[i])
414 break;
415 if (j == i)
416 wait_for_completion(&rs_array[i].completion);
417 destroy_rcu_head_on_stack(&rs_array[i].head);
418 }
419 }
420 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
421
422 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
423 void init_rcu_head(struct rcu_head *head)
424 {
425 debug_object_init(head, &rcuhead_debug_descr);
426 }
427 EXPORT_SYMBOL_GPL(init_rcu_head);
428
429 void destroy_rcu_head(struct rcu_head *head)
430 {
431 debug_object_free(head, &rcuhead_debug_descr);
432 }
433 EXPORT_SYMBOL_GPL(destroy_rcu_head);
434
435 static bool rcuhead_is_static_object(void *addr)
436 {
437 return true;
438 }
439
440 /**
441 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
442 * @head: pointer to rcu_head structure to be initialized
443 *
444 * This function informs debugobjects of a new rcu_head structure that
445 * has been allocated as an auto variable on the stack. This function
446 * is not required for rcu_head structures that are statically defined or
447 * that are dynamically allocated on the heap. This function has no
448 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
449 */
450 void init_rcu_head_on_stack(struct rcu_head *head)
451 {
452 debug_object_init_on_stack(head, &rcuhead_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
455
456 /**
457 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
458 * @head: pointer to rcu_head structure to be initialized
459 *
460 * This function informs debugobjects that an on-stack rcu_head structure
461 * is about to go out of scope. As with init_rcu_head_on_stack(), this
462 * function is not required for rcu_head structures that are statically
463 * defined or that are dynamically allocated on the heap. Also as with
464 * init_rcu_head_on_stack(), this function has no effect for
465 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
466 */
467 void destroy_rcu_head_on_stack(struct rcu_head *head)
468 {
469 debug_object_free(head, &rcuhead_debug_descr);
470 }
471 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
472
473 struct debug_obj_descr rcuhead_debug_descr = {
474 .name = "rcu_head",
475 .is_static_object = rcuhead_is_static_object,
476 };
477 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
478 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
479
480 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
481 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
482 unsigned long secs,
483 unsigned long c_old, unsigned long c)
484 {
485 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
486 }
487 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
488 #else
489 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
490 do { } while (0)
491 #endif
492
493 #ifdef CONFIG_RCU_STALL_COMMON
494
495 #ifdef CONFIG_PROVE_RCU
496 #define RCU_STALL_DELAY_DELTA (5 * HZ)
497 #else
498 #define RCU_STALL_DELAY_DELTA 0
499 #endif
500
501 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
502 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
503 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
504
505 module_param(rcu_cpu_stall_suppress, int, 0644);
506 module_param(rcu_cpu_stall_timeout, int, 0644);
507
508 int rcu_jiffies_till_stall_check(void)
509 {
510 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
511
512 /*
513 * Limit check must be consistent with the Kconfig limits
514 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
515 */
516 if (till_stall_check < 3) {
517 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
518 till_stall_check = 3;
519 } else if (till_stall_check > 300) {
520 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
521 till_stall_check = 300;
522 }
523 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
524 }
525
526 void rcu_sysrq_start(void)
527 {
528 if (!rcu_cpu_stall_suppress)
529 rcu_cpu_stall_suppress = 2;
530 }
531
532 void rcu_sysrq_end(void)
533 {
534 if (rcu_cpu_stall_suppress == 2)
535 rcu_cpu_stall_suppress = 0;
536 }
537
538 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
539 {
540 rcu_cpu_stall_suppress = 1;
541 return NOTIFY_DONE;
542 }
543
544 static struct notifier_block rcu_panic_block = {
545 .notifier_call = rcu_panic,
546 };
547
548 static int __init check_cpu_stall_init(void)
549 {
550 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
551 return 0;
552 }
553 early_initcall(check_cpu_stall_init);
554
555 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
556
557 #ifdef CONFIG_TASKS_RCU
558
559 /*
560 * Simple variant of RCU whose quiescent states are voluntary context switch,
561 * user-space execution, and idle. As such, grace periods can take one good
562 * long time. There are no read-side primitives similar to rcu_read_lock()
563 * and rcu_read_unlock() because this implementation is intended to get
564 * the system into a safe state for some of the manipulations involved in
565 * tracing and the like. Finally, this implementation does not support
566 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
567 * per-CPU callback lists will be needed.
568 */
569
570 /* Global list of callbacks and associated lock. */
571 static struct rcu_head *rcu_tasks_cbs_head;
572 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
573 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
574 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
575
576 /* Track exiting tasks in order to allow them to be waited for. */
577 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
578
579 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
580 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
581 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
582 module_param(rcu_task_stall_timeout, int, 0644);
583
584 static struct task_struct *rcu_tasks_kthread_ptr;
585
586 /**
587 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
588 * @rhp: structure to be used for queueing the RCU updates.
589 * @func: actual callback function to be invoked after the grace period
590 *
591 * The callback function will be invoked some time after a full grace
592 * period elapses, in other words after all currently executing RCU
593 * read-side critical sections have completed. call_rcu_tasks() assumes
594 * that the read-side critical sections end at a voluntary context
595 * switch (not a preemption!), entry into idle, or transition to usermode
596 * execution. As such, there are no read-side primitives analogous to
597 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
598 * to determine that all tasks have passed through a safe state, not so
599 * much for data-strcuture synchronization.
600 *
601 * See the description of call_rcu() for more detailed information on
602 * memory ordering guarantees.
603 */
604 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
605 {
606 unsigned long flags;
607 bool needwake;
608
609 rhp->next = NULL;
610 rhp->func = func;
611 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
612 needwake = !rcu_tasks_cbs_head;
613 *rcu_tasks_cbs_tail = rhp;
614 rcu_tasks_cbs_tail = &rhp->next;
615 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
616 /* We can't create the thread unless interrupts are enabled. */
617 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
618 wake_up(&rcu_tasks_cbs_wq);
619 }
620 EXPORT_SYMBOL_GPL(call_rcu_tasks);
621
622 /**
623 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
624 *
625 * Control will return to the caller some time after a full rcu-tasks
626 * grace period has elapsed, in other words after all currently
627 * executing rcu-tasks read-side critical sections have elapsed. These
628 * read-side critical sections are delimited by calls to schedule(),
629 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
630 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
631 *
632 * This is a very specialized primitive, intended only for a few uses in
633 * tracing and other situations requiring manipulation of function
634 * preambles and profiling hooks. The synchronize_rcu_tasks() function
635 * is not (yet) intended for heavy use from multiple CPUs.
636 *
637 * Note that this guarantee implies further memory-ordering guarantees.
638 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
639 * each CPU is guaranteed to have executed a full memory barrier since the
640 * end of its last RCU-tasks read-side critical section whose beginning
641 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
642 * having an RCU-tasks read-side critical section that extends beyond
643 * the return from synchronize_rcu_tasks() is guaranteed to have executed
644 * a full memory barrier after the beginning of synchronize_rcu_tasks()
645 * and before the beginning of that RCU-tasks read-side critical section.
646 * Note that these guarantees include CPUs that are offline, idle, or
647 * executing in user mode, as well as CPUs that are executing in the kernel.
648 *
649 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
650 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
651 * to have executed a full memory barrier during the execution of
652 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
653 * (but again only if the system has more than one CPU).
654 */
655 void synchronize_rcu_tasks(void)
656 {
657 /* Complain if the scheduler has not started. */
658 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
659 "synchronize_rcu_tasks called too soon");
660
661 /* Wait for the grace period. */
662 wait_rcu_gp(call_rcu_tasks);
663 }
664 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
665
666 /**
667 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
668 *
669 * Although the current implementation is guaranteed to wait, it is not
670 * obligated to, for example, if there are no pending callbacks.
671 */
672 void rcu_barrier_tasks(void)
673 {
674 /* There is only one callback queue, so this is easy. ;-) */
675 synchronize_rcu_tasks();
676 }
677 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
678
679 /* See if tasks are still holding out, complain if so. */
680 static void check_holdout_task(struct task_struct *t,
681 bool needreport, bool *firstreport)
682 {
683 int cpu;
684
685 if (!READ_ONCE(t->rcu_tasks_holdout) ||
686 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
687 !READ_ONCE(t->on_rq) ||
688 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
689 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
690 WRITE_ONCE(t->rcu_tasks_holdout, false);
691 list_del_init(&t->rcu_tasks_holdout_list);
692 put_task_struct(t);
693 return;
694 }
695 rcu_request_urgent_qs_task(t);
696 if (!needreport)
697 return;
698 if (*firstreport) {
699 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
700 *firstreport = false;
701 }
702 cpu = task_cpu(t);
703 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
704 t, ".I"[is_idle_task(t)],
705 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
706 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
707 t->rcu_tasks_idle_cpu, cpu);
708 sched_show_task(t);
709 }
710
711 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
712 static int __noreturn rcu_tasks_kthread(void *arg)
713 {
714 unsigned long flags;
715 struct task_struct *g, *t;
716 unsigned long lastreport;
717 struct rcu_head *list;
718 struct rcu_head *next;
719 LIST_HEAD(rcu_tasks_holdouts);
720
721 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
722 housekeeping_affine(current, HK_FLAG_RCU);
723
724 /*
725 * Each pass through the following loop makes one check for
726 * newly arrived callbacks, and, if there are some, waits for
727 * one RCU-tasks grace period and then invokes the callbacks.
728 * This loop is terminated by the system going down. ;-)
729 */
730 for (;;) {
731
732 /* Pick up any new callbacks. */
733 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
734 list = rcu_tasks_cbs_head;
735 rcu_tasks_cbs_head = NULL;
736 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
737 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
738
739 /* If there were none, wait a bit and start over. */
740 if (!list) {
741 wait_event_interruptible(rcu_tasks_cbs_wq,
742 rcu_tasks_cbs_head);
743 if (!rcu_tasks_cbs_head) {
744 WARN_ON(signal_pending(current));
745 schedule_timeout_interruptible(HZ/10);
746 }
747 continue;
748 }
749
750 /*
751 * Wait for all pre-existing t->on_rq and t->nvcsw
752 * transitions to complete. Invoking synchronize_sched()
753 * suffices because all these transitions occur with
754 * interrupts disabled. Without this synchronize_sched(),
755 * a read-side critical section that started before the
756 * grace period might be incorrectly seen as having started
757 * after the grace period.
758 *
759 * This synchronize_sched() also dispenses with the
760 * need for a memory barrier on the first store to
761 * ->rcu_tasks_holdout, as it forces the store to happen
762 * after the beginning of the grace period.
763 */
764 synchronize_sched();
765
766 /*
767 * There were callbacks, so we need to wait for an
768 * RCU-tasks grace period. Start off by scanning
769 * the task list for tasks that are not already
770 * voluntarily blocked. Mark these tasks and make
771 * a list of them in rcu_tasks_holdouts.
772 */
773 rcu_read_lock();
774 for_each_process_thread(g, t) {
775 if (t != current && READ_ONCE(t->on_rq) &&
776 !is_idle_task(t)) {
777 get_task_struct(t);
778 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
779 WRITE_ONCE(t->rcu_tasks_holdout, true);
780 list_add(&t->rcu_tasks_holdout_list,
781 &rcu_tasks_holdouts);
782 }
783 }
784 rcu_read_unlock();
785
786 /*
787 * Wait for tasks that are in the process of exiting.
788 * This does only part of the job, ensuring that all
789 * tasks that were previously exiting reach the point
790 * where they have disabled preemption, allowing the
791 * later synchronize_sched() to finish the job.
792 */
793 synchronize_srcu(&tasks_rcu_exit_srcu);
794
795 /*
796 * Each pass through the following loop scans the list
797 * of holdout tasks, removing any that are no longer
798 * holdouts. When the list is empty, we are done.
799 */
800 lastreport = jiffies;
801 while (!list_empty(&rcu_tasks_holdouts)) {
802 bool firstreport;
803 bool needreport;
804 int rtst;
805 struct task_struct *t1;
806
807 schedule_timeout_interruptible(HZ);
808 rtst = READ_ONCE(rcu_task_stall_timeout);
809 needreport = rtst > 0 &&
810 time_after(jiffies, lastreport + rtst);
811 if (needreport)
812 lastreport = jiffies;
813 firstreport = true;
814 WARN_ON(signal_pending(current));
815 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
816 rcu_tasks_holdout_list) {
817 check_holdout_task(t, needreport, &firstreport);
818 cond_resched();
819 }
820 }
821
822 /*
823 * Because ->on_rq and ->nvcsw are not guaranteed
824 * to have a full memory barriers prior to them in the
825 * schedule() path, memory reordering on other CPUs could
826 * cause their RCU-tasks read-side critical sections to
827 * extend past the end of the grace period. However,
828 * because these ->nvcsw updates are carried out with
829 * interrupts disabled, we can use synchronize_sched()
830 * to force the needed ordering on all such CPUs.
831 *
832 * This synchronize_sched() also confines all
833 * ->rcu_tasks_holdout accesses to be within the grace
834 * period, avoiding the need for memory barriers for
835 * ->rcu_tasks_holdout accesses.
836 *
837 * In addition, this synchronize_sched() waits for exiting
838 * tasks to complete their final preempt_disable() region
839 * of execution, cleaning up after the synchronize_srcu()
840 * above.
841 */
842 synchronize_sched();
843
844 /* Invoke the callbacks. */
845 while (list) {
846 next = list->next;
847 local_bh_disable();
848 list->func(list);
849 local_bh_enable();
850 list = next;
851 cond_resched();
852 }
853 schedule_timeout_uninterruptible(HZ/10);
854 }
855 }
856
857 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
858 static int __init rcu_spawn_tasks_kthread(void)
859 {
860 struct task_struct *t;
861
862 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
863 BUG_ON(IS_ERR(t));
864 smp_mb(); /* Ensure others see full kthread. */
865 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
866 return 0;
867 }
868 core_initcall(rcu_spawn_tasks_kthread);
869
870 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
871 void exit_tasks_rcu_start(void)
872 {
873 preempt_disable();
874 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
875 preempt_enable();
876 }
877
878 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
879 void exit_tasks_rcu_finish(void)
880 {
881 preempt_disable();
882 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
883 preempt_enable();
884 }
885
886 #endif /* #ifdef CONFIG_TASKS_RCU */
887
888 #ifndef CONFIG_TINY_RCU
889
890 /*
891 * Print any non-default Tasks RCU settings.
892 */
893 static void __init rcu_tasks_bootup_oddness(void)
894 {
895 #ifdef CONFIG_TASKS_RCU
896 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
897 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
898 else
899 pr_info("\tTasks RCU enabled.\n");
900 #endif /* #ifdef CONFIG_TASKS_RCU */
901 }
902
903 #endif /* #ifndef CONFIG_TINY_RCU */
904
905 #ifdef CONFIG_PROVE_RCU
906
907 /*
908 * Early boot self test parameters, one for each flavor
909 */
910 static bool rcu_self_test;
911 static bool rcu_self_test_bh;
912 static bool rcu_self_test_sched;
913
914 module_param(rcu_self_test, bool, 0444);
915 module_param(rcu_self_test_bh, bool, 0444);
916 module_param(rcu_self_test_sched, bool, 0444);
917
918 static int rcu_self_test_counter;
919
920 static void test_callback(struct rcu_head *r)
921 {
922 rcu_self_test_counter++;
923 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
924 }
925
926 static void early_boot_test_call_rcu(void)
927 {
928 static struct rcu_head head;
929
930 call_rcu(&head, test_callback);
931 }
932
933 static void early_boot_test_call_rcu_bh(void)
934 {
935 static struct rcu_head head;
936
937 call_rcu_bh(&head, test_callback);
938 }
939
940 static void early_boot_test_call_rcu_sched(void)
941 {
942 static struct rcu_head head;
943
944 call_rcu_sched(&head, test_callback);
945 }
946
947 void rcu_early_boot_tests(void)
948 {
949 pr_info("Running RCU self tests\n");
950
951 if (rcu_self_test)
952 early_boot_test_call_rcu();
953 if (rcu_self_test_bh)
954 early_boot_test_call_rcu_bh();
955 if (rcu_self_test_sched)
956 early_boot_test_call_rcu_sched();
957 rcu_test_sync_prims();
958 }
959
960 static int rcu_verify_early_boot_tests(void)
961 {
962 int ret = 0;
963 int early_boot_test_counter = 0;
964
965 if (rcu_self_test) {
966 early_boot_test_counter++;
967 rcu_barrier();
968 }
969 if (rcu_self_test_bh) {
970 early_boot_test_counter++;
971 rcu_barrier_bh();
972 }
973 if (rcu_self_test_sched) {
974 early_boot_test_counter++;
975 rcu_barrier_sched();
976 }
977
978 if (rcu_self_test_counter != early_boot_test_counter) {
979 WARN_ON(1);
980 ret = -1;
981 }
982
983 return ret;
984 }
985 late_initcall(rcu_verify_early_boot_tests);
986 #else
987 void rcu_early_boot_tests(void) {}
988 #endif /* CONFIG_PROVE_RCU */
989
990 #ifndef CONFIG_TINY_RCU
991
992 /*
993 * Print any significant non-default boot-time settings.
994 */
995 void __init rcupdate_announce_bootup_oddness(void)
996 {
997 if (rcu_normal)
998 pr_info("\tNo expedited grace period (rcu_normal).\n");
999 else if (rcu_normal_after_boot)
1000 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
1001 else if (rcu_expedited)
1002 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
1003 if (rcu_cpu_stall_suppress)
1004 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1005 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1006 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1007 rcu_tasks_bootup_oddness();
1008 }
1009
1010 #endif /* #ifndef CONFIG_TINY_RCU */