]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcupdate.c
[PATCH] add rcu_barrier() synchronization point
[mirror_ubuntu-artful-kernel.git] / kernel / rcupdate.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <asm/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/module.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/rcupdate.h>
48 #include <linux/rcuref.h>
49 #include <linux/cpu.h>
50
51 /* Definition for rcupdate control block. */
52 struct rcu_ctrlblk rcu_ctrlblk =
53 { .cur = -300, .completed = -300 };
54 struct rcu_ctrlblk rcu_bh_ctrlblk =
55 { .cur = -300, .completed = -300 };
56
57 /* Bookkeeping of the progress of the grace period */
58 struct rcu_state {
59 spinlock_t lock; /* Guard this struct and writes to rcu_ctrlblk */
60 cpumask_t cpumask; /* CPUs that need to switch in order */
61 /* for current batch to proceed. */
62 };
63
64 static struct rcu_state rcu_state ____cacheline_maxaligned_in_smp =
65 {.lock = SPIN_LOCK_UNLOCKED, .cpumask = CPU_MASK_NONE };
66 static struct rcu_state rcu_bh_state ____cacheline_maxaligned_in_smp =
67 {.lock = SPIN_LOCK_UNLOCKED, .cpumask = CPU_MASK_NONE };
68
69 DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L };
70 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data) = { 0L };
71
72 /* Fake initialization required by compiler */
73 static DEFINE_PER_CPU(struct tasklet_struct, rcu_tasklet) = {NULL};
74 static int maxbatch = 10000;
75
76 #ifndef __HAVE_ARCH_CMPXCHG
77 /*
78 * We use an array of spinlocks for the rcurefs -- similar to ones in sparc
79 * 32 bit atomic_t implementations, and a hash function similar to that
80 * for our refcounting needs.
81 * Can't help multiprocessors which donot have cmpxchg :(
82 */
83
84 spinlock_t __rcuref_hash[RCUREF_HASH_SIZE] = {
85 [0 ... (RCUREF_HASH_SIZE-1)] = SPIN_LOCK_UNLOCKED
86 };
87 #endif
88
89 /**
90 * call_rcu - Queue an RCU callback for invocation after a grace period.
91 * @head: structure to be used for queueing the RCU updates.
92 * @func: actual update function to be invoked after the grace period
93 *
94 * The update function will be invoked some time after a full grace
95 * period elapses, in other words after all currently executing RCU
96 * read-side critical sections have completed. RCU read-side critical
97 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
98 * and may be nested.
99 */
100 void fastcall call_rcu(struct rcu_head *head,
101 void (*func)(struct rcu_head *rcu))
102 {
103 unsigned long flags;
104 struct rcu_data *rdp;
105
106 head->func = func;
107 head->next = NULL;
108 local_irq_save(flags);
109 rdp = &__get_cpu_var(rcu_data);
110 *rdp->nxttail = head;
111 rdp->nxttail = &head->next;
112
113 if (unlikely(++rdp->count > 10000))
114 set_need_resched();
115
116 local_irq_restore(flags);
117 }
118
119 static atomic_t rcu_barrier_cpu_count;
120 static struct semaphore rcu_barrier_sema;
121 static struct completion rcu_barrier_completion;
122
123 /**
124 * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
125 * @head: structure to be used for queueing the RCU updates.
126 * @func: actual update function to be invoked after the grace period
127 *
128 * The update function will be invoked some time after a full grace
129 * period elapses, in other words after all currently executing RCU
130 * read-side critical sections have completed. call_rcu_bh() assumes
131 * that the read-side critical sections end on completion of a softirq
132 * handler. This means that read-side critical sections in process
133 * context must not be interrupted by softirqs. This interface is to be
134 * used when most of the read-side critical sections are in softirq context.
135 * RCU read-side critical sections are delimited by rcu_read_lock() and
136 * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
137 * and rcu_read_unlock_bh(), if in process context. These may be nested.
138 */
139 void fastcall call_rcu_bh(struct rcu_head *head,
140 void (*func)(struct rcu_head *rcu))
141 {
142 unsigned long flags;
143 struct rcu_data *rdp;
144
145 head->func = func;
146 head->next = NULL;
147 local_irq_save(flags);
148 rdp = &__get_cpu_var(rcu_bh_data);
149 *rdp->nxttail = head;
150 rdp->nxttail = &head->next;
151 rdp->count++;
152 /*
153 * Should we directly call rcu_do_batch() here ?
154 * if (unlikely(rdp->count > 10000))
155 * rcu_do_batch(rdp);
156 */
157 local_irq_restore(flags);
158 }
159
160 /*
161 * Return the number of RCU batches processed thus far. Useful
162 * for debug and statistics.
163 */
164 long rcu_batches_completed(void)
165 {
166 return rcu_ctrlblk.completed;
167 }
168
169 static void rcu_barrier_callback(struct rcu_head *notused)
170 {
171 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
172 complete(&rcu_barrier_completion);
173 }
174
175 /*
176 * Called with preemption disabled, and from cross-cpu IRQ context.
177 */
178 static void rcu_barrier_func(void *notused)
179 {
180 int cpu = smp_processor_id();
181 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
182 struct rcu_head *head;
183
184 head = &rdp->barrier;
185 atomic_inc(&rcu_barrier_cpu_count);
186 call_rcu(head, rcu_barrier_callback);
187 }
188
189 /**
190 * rcu_barrier - Wait until all the in-flight RCUs are complete.
191 */
192 void rcu_barrier(void)
193 {
194 BUG_ON(in_interrupt());
195 /* Take cpucontrol semaphore to protect against CPU hotplug */
196 down(&rcu_barrier_sema);
197 init_completion(&rcu_barrier_completion);
198 atomic_set(&rcu_barrier_cpu_count, 0);
199 on_each_cpu(rcu_barrier_func, NULL, 0, 1);
200 wait_for_completion(&rcu_barrier_completion);
201 up(&rcu_barrier_sema);
202 }
203 EXPORT_SYMBOL_GPL(rcu_barrier);
204
205 /*
206 * Invoke the completed RCU callbacks. They are expected to be in
207 * a per-cpu list.
208 */
209 static void rcu_do_batch(struct rcu_data *rdp)
210 {
211 struct rcu_head *next, *list;
212 int count = 0;
213
214 list = rdp->donelist;
215 while (list) {
216 next = rdp->donelist = list->next;
217 list->func(list);
218 list = next;
219 rdp->count--;
220 if (++count >= maxbatch)
221 break;
222 }
223 if (!rdp->donelist)
224 rdp->donetail = &rdp->donelist;
225 else
226 tasklet_schedule(&per_cpu(rcu_tasklet, rdp->cpu));
227 }
228
229 /*
230 * Grace period handling:
231 * The grace period handling consists out of two steps:
232 * - A new grace period is started.
233 * This is done by rcu_start_batch. The start is not broadcasted to
234 * all cpus, they must pick this up by comparing rcp->cur with
235 * rdp->quiescbatch. All cpus are recorded in the
236 * rcu_state.cpumask bitmap.
237 * - All cpus must go through a quiescent state.
238 * Since the start of the grace period is not broadcasted, at least two
239 * calls to rcu_check_quiescent_state are required:
240 * The first call just notices that a new grace period is running. The
241 * following calls check if there was a quiescent state since the beginning
242 * of the grace period. If so, it updates rcu_state.cpumask. If
243 * the bitmap is empty, then the grace period is completed.
244 * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
245 * period (if necessary).
246 */
247 /*
248 * Register a new batch of callbacks, and start it up if there is currently no
249 * active batch and the batch to be registered has not already occurred.
250 * Caller must hold rcu_state.lock.
251 */
252 static void rcu_start_batch(struct rcu_ctrlblk *rcp, struct rcu_state *rsp,
253 int next_pending)
254 {
255 if (next_pending)
256 rcp->next_pending = 1;
257
258 if (rcp->next_pending &&
259 rcp->completed == rcp->cur) {
260 /* Can't change, since spin lock held. */
261 cpus_andnot(rsp->cpumask, cpu_online_map, nohz_cpu_mask);
262
263 rcp->next_pending = 0;
264 /* next_pending == 0 must be visible in __rcu_process_callbacks()
265 * before it can see new value of cur.
266 */
267 smp_wmb();
268 rcp->cur++;
269 }
270 }
271
272 /*
273 * cpu went through a quiescent state since the beginning of the grace period.
274 * Clear it from the cpu mask and complete the grace period if it was the last
275 * cpu. Start another grace period if someone has further entries pending
276 */
277 static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp, struct rcu_state *rsp)
278 {
279 cpu_clear(cpu, rsp->cpumask);
280 if (cpus_empty(rsp->cpumask)) {
281 /* batch completed ! */
282 rcp->completed = rcp->cur;
283 rcu_start_batch(rcp, rsp, 0);
284 }
285 }
286
287 /*
288 * Check if the cpu has gone through a quiescent state (say context
289 * switch). If so and if it already hasn't done so in this RCU
290 * quiescent cycle, then indicate that it has done so.
291 */
292 static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp,
293 struct rcu_state *rsp, struct rcu_data *rdp)
294 {
295 if (rdp->quiescbatch != rcp->cur) {
296 /* start new grace period: */
297 rdp->qs_pending = 1;
298 rdp->passed_quiesc = 0;
299 rdp->quiescbatch = rcp->cur;
300 return;
301 }
302
303 /* Grace period already completed for this cpu?
304 * qs_pending is checked instead of the actual bitmap to avoid
305 * cacheline trashing.
306 */
307 if (!rdp->qs_pending)
308 return;
309
310 /*
311 * Was there a quiescent state since the beginning of the grace
312 * period? If no, then exit and wait for the next call.
313 */
314 if (!rdp->passed_quiesc)
315 return;
316 rdp->qs_pending = 0;
317
318 spin_lock(&rsp->lock);
319 /*
320 * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync
321 * during cpu startup. Ignore the quiescent state.
322 */
323 if (likely(rdp->quiescbatch == rcp->cur))
324 cpu_quiet(rdp->cpu, rcp, rsp);
325
326 spin_unlock(&rsp->lock);
327 }
328
329
330 #ifdef CONFIG_HOTPLUG_CPU
331
332 /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing
333 * locking requirements, the list it's pulling from has to belong to a cpu
334 * which is dead and hence not processing interrupts.
335 */
336 static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list,
337 struct rcu_head **tail)
338 {
339 local_irq_disable();
340 *this_rdp->nxttail = list;
341 if (list)
342 this_rdp->nxttail = tail;
343 local_irq_enable();
344 }
345
346 static void __rcu_offline_cpu(struct rcu_data *this_rdp,
347 struct rcu_ctrlblk *rcp, struct rcu_state *rsp, struct rcu_data *rdp)
348 {
349 /* if the cpu going offline owns the grace period
350 * we can block indefinitely waiting for it, so flush
351 * it here
352 */
353 spin_lock_bh(&rsp->lock);
354 if (rcp->cur != rcp->completed)
355 cpu_quiet(rdp->cpu, rcp, rsp);
356 spin_unlock_bh(&rsp->lock);
357 rcu_move_batch(this_rdp, rdp->curlist, rdp->curtail);
358 rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail);
359
360 }
361 static void rcu_offline_cpu(int cpu)
362 {
363 struct rcu_data *this_rdp = &get_cpu_var(rcu_data);
364 struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data);
365
366 __rcu_offline_cpu(this_rdp, &rcu_ctrlblk, &rcu_state,
367 &per_cpu(rcu_data, cpu));
368 __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk, &rcu_bh_state,
369 &per_cpu(rcu_bh_data, cpu));
370 put_cpu_var(rcu_data);
371 put_cpu_var(rcu_bh_data);
372 tasklet_kill_immediate(&per_cpu(rcu_tasklet, cpu), cpu);
373 }
374
375 #else
376
377 static void rcu_offline_cpu(int cpu)
378 {
379 }
380
381 #endif
382
383 /*
384 * This does the RCU processing work from tasklet context.
385 */
386 static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp,
387 struct rcu_state *rsp, struct rcu_data *rdp)
388 {
389 if (rdp->curlist && !rcu_batch_before(rcp->completed, rdp->batch)) {
390 *rdp->donetail = rdp->curlist;
391 rdp->donetail = rdp->curtail;
392 rdp->curlist = NULL;
393 rdp->curtail = &rdp->curlist;
394 }
395
396 local_irq_disable();
397 if (rdp->nxtlist && !rdp->curlist) {
398 rdp->curlist = rdp->nxtlist;
399 rdp->curtail = rdp->nxttail;
400 rdp->nxtlist = NULL;
401 rdp->nxttail = &rdp->nxtlist;
402 local_irq_enable();
403
404 /*
405 * start the next batch of callbacks
406 */
407
408 /* determine batch number */
409 rdp->batch = rcp->cur + 1;
410 /* see the comment and corresponding wmb() in
411 * the rcu_start_batch()
412 */
413 smp_rmb();
414
415 if (!rcp->next_pending) {
416 /* and start it/schedule start if it's a new batch */
417 spin_lock(&rsp->lock);
418 rcu_start_batch(rcp, rsp, 1);
419 spin_unlock(&rsp->lock);
420 }
421 } else {
422 local_irq_enable();
423 }
424 rcu_check_quiescent_state(rcp, rsp, rdp);
425 if (rdp->donelist)
426 rcu_do_batch(rdp);
427 }
428
429 static void rcu_process_callbacks(unsigned long unused)
430 {
431 __rcu_process_callbacks(&rcu_ctrlblk, &rcu_state,
432 &__get_cpu_var(rcu_data));
433 __rcu_process_callbacks(&rcu_bh_ctrlblk, &rcu_bh_state,
434 &__get_cpu_var(rcu_bh_data));
435 }
436
437 void rcu_check_callbacks(int cpu, int user)
438 {
439 if (user ||
440 (idle_cpu(cpu) && !in_softirq() &&
441 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
442 rcu_qsctr_inc(cpu);
443 rcu_bh_qsctr_inc(cpu);
444 } else if (!in_softirq())
445 rcu_bh_qsctr_inc(cpu);
446 tasklet_schedule(&per_cpu(rcu_tasklet, cpu));
447 }
448
449 static void rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp,
450 struct rcu_data *rdp)
451 {
452 memset(rdp, 0, sizeof(*rdp));
453 rdp->curtail = &rdp->curlist;
454 rdp->nxttail = &rdp->nxtlist;
455 rdp->donetail = &rdp->donelist;
456 rdp->quiescbatch = rcp->completed;
457 rdp->qs_pending = 0;
458 rdp->cpu = cpu;
459 }
460
461 static void __devinit rcu_online_cpu(int cpu)
462 {
463 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
464 struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu);
465
466 rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp);
467 rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp);
468 tasklet_init(&per_cpu(rcu_tasklet, cpu), rcu_process_callbacks, 0UL);
469 }
470
471 static int __devinit rcu_cpu_notify(struct notifier_block *self,
472 unsigned long action, void *hcpu)
473 {
474 long cpu = (long)hcpu;
475 switch (action) {
476 case CPU_UP_PREPARE:
477 rcu_online_cpu(cpu);
478 break;
479 case CPU_DEAD:
480 rcu_offline_cpu(cpu);
481 break;
482 default:
483 break;
484 }
485 return NOTIFY_OK;
486 }
487
488 static struct notifier_block __devinitdata rcu_nb = {
489 .notifier_call = rcu_cpu_notify,
490 };
491
492 /*
493 * Initializes rcu mechanism. Assumed to be called early.
494 * That is before local timer(SMP) or jiffie timer (uniproc) is setup.
495 * Note that rcu_qsctr and friends are implicitly
496 * initialized due to the choice of ``0'' for RCU_CTR_INVALID.
497 */
498 void __init rcu_init(void)
499 {
500 sema_init(&rcu_barrier_sema, 1);
501 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
502 (void *)(long)smp_processor_id());
503 /* Register notifier for non-boot CPUs */
504 register_cpu_notifier(&rcu_nb);
505 }
506
507 struct rcu_synchronize {
508 struct rcu_head head;
509 struct completion completion;
510 };
511
512 /* Because of FASTCALL declaration of complete, we use this wrapper */
513 static void wakeme_after_rcu(struct rcu_head *head)
514 {
515 struct rcu_synchronize *rcu;
516
517 rcu = container_of(head, struct rcu_synchronize, head);
518 complete(&rcu->completion);
519 }
520
521 /**
522 * synchronize_rcu - wait until a grace period has elapsed.
523 *
524 * Control will return to the caller some time after a full grace
525 * period has elapsed, in other words after all currently executing RCU
526 * read-side critical sections have completed. RCU read-side critical
527 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
528 * and may be nested.
529 *
530 * If your read-side code is not protected by rcu_read_lock(), do -not-
531 * use synchronize_rcu().
532 */
533 void synchronize_rcu(void)
534 {
535 struct rcu_synchronize rcu;
536
537 init_completion(&rcu.completion);
538 /* Will wake me after RCU finished */
539 call_rcu(&rcu.head, wakeme_after_rcu);
540
541 /* Wait for it */
542 wait_for_completion(&rcu.completion);
543 }
544
545 /*
546 * Deprecated, use synchronize_rcu() or synchronize_sched() instead.
547 */
548 void synchronize_kernel(void)
549 {
550 synchronize_rcu();
551 }
552
553 module_param(maxbatch, int, 0);
554 EXPORT_SYMBOL_GPL(rcu_batches_completed);
555 EXPORT_SYMBOL(call_rcu); /* WARNING: GPL-only in April 2006. */
556 EXPORT_SYMBOL(call_rcu_bh); /* WARNING: GPL-only in April 2006. */
557 EXPORT_SYMBOL_GPL(synchronize_rcu);
558 EXPORT_SYMBOL(synchronize_kernel); /* WARNING: GPL-only in April 2006. */