]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcupreempt.c
Preempt-RCU: CPU Hotplug handling
[mirror_ubuntu-artful-kernel.git] / kernel / rcupreempt.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2006
19 *
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
25 *
26 * Papers: http://www.rdrop.com/users/paulmck/RCU
27 *
28 * Design Document: http://lwn.net/Articles/253651/
29 *
30 * For detailed explanation of Read-Copy Update mechanism see -
31 * Documentation/RCU/ *.txt
32 *
33 */
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/spinlock.h>
38 #include <linux/smp.h>
39 #include <linux/rcupdate.h>
40 #include <linux/interrupt.h>
41 #include <linux/sched.h>
42 #include <asm/atomic.h>
43 #include <linux/bitops.h>
44 #include <linux/module.h>
45 #include <linux/completion.h>
46 #include <linux/moduleparam.h>
47 #include <linux/percpu.h>
48 #include <linux/notifier.h>
49 #include <linux/rcupdate.h>
50 #include <linux/cpu.h>
51 #include <linux/random.h>
52 #include <linux/delay.h>
53 #include <linux/byteorder/swabb.h>
54 #include <linux/cpumask.h>
55 #include <linux/rcupreempt_trace.h>
56
57 /*
58 * Macro that prevents the compiler from reordering accesses, but does
59 * absolutely -nothing- to prevent CPUs from reordering. This is used
60 * only to mediate communication between mainline code and hardware
61 * interrupt and NMI handlers.
62 */
63 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
64
65 /*
66 * PREEMPT_RCU data structures.
67 */
68
69 /*
70 * GP_STAGES specifies the number of times the state machine has
71 * to go through the all the rcu_try_flip_states (see below)
72 * in a single Grace Period.
73 *
74 * GP in GP_STAGES stands for Grace Period ;)
75 */
76 #define GP_STAGES 2
77 struct rcu_data {
78 spinlock_t lock; /* Protect rcu_data fields. */
79 long completed; /* Number of last completed batch. */
80 int waitlistcount;
81 struct tasklet_struct rcu_tasklet;
82 struct rcu_head *nextlist;
83 struct rcu_head **nexttail;
84 struct rcu_head *waitlist[GP_STAGES];
85 struct rcu_head **waittail[GP_STAGES];
86 struct rcu_head *donelist;
87 struct rcu_head **donetail;
88 long rcu_flipctr[2];
89 #ifdef CONFIG_RCU_TRACE
90 struct rcupreempt_trace trace;
91 #endif /* #ifdef CONFIG_RCU_TRACE */
92 };
93
94 /*
95 * States for rcu_try_flip() and friends.
96 */
97
98 enum rcu_try_flip_states {
99
100 /*
101 * Stay here if nothing is happening. Flip the counter if somthing
102 * starts happening. Denoted by "I"
103 */
104 rcu_try_flip_idle_state,
105
106 /*
107 * Wait here for all CPUs to notice that the counter has flipped. This
108 * prevents the old set of counters from ever being incremented once
109 * we leave this state, which in turn is necessary because we cannot
110 * test any individual counter for zero -- we can only check the sum.
111 * Denoted by "A".
112 */
113 rcu_try_flip_waitack_state,
114
115 /*
116 * Wait here for the sum of the old per-CPU counters to reach zero.
117 * Denoted by "Z".
118 */
119 rcu_try_flip_waitzero_state,
120
121 /*
122 * Wait here for each of the other CPUs to execute a memory barrier.
123 * This is necessary to ensure that these other CPUs really have
124 * completed executing their RCU read-side critical sections, despite
125 * their CPUs wildly reordering memory. Denoted by "M".
126 */
127 rcu_try_flip_waitmb_state,
128 };
129
130 struct rcu_ctrlblk {
131 spinlock_t fliplock; /* Protect state-machine transitions. */
132 long completed; /* Number of last completed batch. */
133 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
134 the rcu state machine */
135 };
136
137 static DEFINE_PER_CPU(struct rcu_data, rcu_data);
138 static struct rcu_ctrlblk rcu_ctrlblk = {
139 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
140 .completed = 0,
141 .rcu_try_flip_state = rcu_try_flip_idle_state,
142 };
143
144
145 #ifdef CONFIG_RCU_TRACE
146 static char *rcu_try_flip_state_names[] =
147 { "idle", "waitack", "waitzero", "waitmb" };
148 #endif /* #ifdef CONFIG_RCU_TRACE */
149
150 static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
151
152 /*
153 * Enum and per-CPU flag to determine when each CPU has seen
154 * the most recent counter flip.
155 */
156
157 enum rcu_flip_flag_values {
158 rcu_flip_seen, /* Steady/initial state, last flip seen. */
159 /* Only GP detector can update. */
160 rcu_flipped /* Flip just completed, need confirmation. */
161 /* Only corresponding CPU can update. */
162 };
163 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
164 = rcu_flip_seen;
165
166 /*
167 * Enum and per-CPU flag to determine when each CPU has executed the
168 * needed memory barrier to fence in memory references from its last RCU
169 * read-side critical section in the just-completed grace period.
170 */
171
172 enum rcu_mb_flag_values {
173 rcu_mb_done, /* Steady/initial state, no mb()s required. */
174 /* Only GP detector can update. */
175 rcu_mb_needed /* Flip just completed, need an mb(). */
176 /* Only corresponding CPU can update. */
177 };
178 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
179 = rcu_mb_done;
180
181 /*
182 * RCU_DATA_ME: find the current CPU's rcu_data structure.
183 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
184 */
185 #define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
186 #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
187
188 /*
189 * Helper macro for tracing when the appropriate rcu_data is not
190 * cached in a local variable, but where the CPU number is so cached.
191 */
192 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
193
194 /*
195 * Helper macro for tracing when the appropriate rcu_data is not
196 * cached in a local variable.
197 */
198 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
199
200 /*
201 * Helper macro for tracing when the appropriate rcu_data is pointed
202 * to by a local variable.
203 */
204 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
205
206 /*
207 * Return the number of RCU batches processed thus far. Useful
208 * for debug and statistics.
209 */
210 long rcu_batches_completed(void)
211 {
212 return rcu_ctrlblk.completed;
213 }
214 EXPORT_SYMBOL_GPL(rcu_batches_completed);
215
216 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
217
218 void __rcu_read_lock(void)
219 {
220 int idx;
221 struct task_struct *t = current;
222 int nesting;
223
224 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
225 if (nesting != 0) {
226
227 /* An earlier rcu_read_lock() covers us, just count it. */
228
229 t->rcu_read_lock_nesting = nesting + 1;
230
231 } else {
232 unsigned long flags;
233
234 /*
235 * We disable interrupts for the following reasons:
236 * - If we get scheduling clock interrupt here, and we
237 * end up acking the counter flip, it's like a promise
238 * that we will never increment the old counter again.
239 * Thus we will break that promise if that
240 * scheduling clock interrupt happens between the time
241 * we pick the .completed field and the time that we
242 * increment our counter.
243 *
244 * - We don't want to be preempted out here.
245 *
246 * NMIs can still occur, of course, and might themselves
247 * contain rcu_read_lock().
248 */
249
250 local_irq_save(flags);
251
252 /*
253 * Outermost nesting of rcu_read_lock(), so increment
254 * the current counter for the current CPU. Use volatile
255 * casts to prevent the compiler from reordering.
256 */
257
258 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
259 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
260
261 /*
262 * Now that the per-CPU counter has been incremented, we
263 * are protected from races with rcu_read_lock() invoked
264 * from NMI handlers on this CPU. We can therefore safely
265 * increment the nesting counter, relieving further NMIs
266 * of the need to increment the per-CPU counter.
267 */
268
269 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
270
271 /*
272 * Now that we have preventing any NMIs from storing
273 * to the ->rcu_flipctr_idx, we can safely use it to
274 * remember which counter to decrement in the matching
275 * rcu_read_unlock().
276 */
277
278 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
279 local_irq_restore(flags);
280 }
281 }
282 EXPORT_SYMBOL_GPL(__rcu_read_lock);
283
284 void __rcu_read_unlock(void)
285 {
286 int idx;
287 struct task_struct *t = current;
288 int nesting;
289
290 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
291 if (nesting > 1) {
292
293 /*
294 * We are still protected by the enclosing rcu_read_lock(),
295 * so simply decrement the counter.
296 */
297
298 t->rcu_read_lock_nesting = nesting - 1;
299
300 } else {
301 unsigned long flags;
302
303 /*
304 * Disable local interrupts to prevent the grace-period
305 * detection state machine from seeing us half-done.
306 * NMIs can still occur, of course, and might themselves
307 * contain rcu_read_lock() and rcu_read_unlock().
308 */
309
310 local_irq_save(flags);
311
312 /*
313 * Outermost nesting of rcu_read_unlock(), so we must
314 * decrement the current counter for the current CPU.
315 * This must be done carefully, because NMIs can
316 * occur at any point in this code, and any rcu_read_lock()
317 * and rcu_read_unlock() pairs in the NMI handlers
318 * must interact non-destructively with this code.
319 * Lots of volatile casts, and -very- careful ordering.
320 *
321 * Changes to this code, including this one, must be
322 * inspected, validated, and tested extremely carefully!!!
323 */
324
325 /*
326 * First, pick up the index.
327 */
328
329 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
330
331 /*
332 * Now that we have fetched the counter index, it is
333 * safe to decrement the per-task RCU nesting counter.
334 * After this, any interrupts or NMIs will increment and
335 * decrement the per-CPU counters.
336 */
337 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
338
339 /*
340 * It is now safe to decrement this task's nesting count.
341 * NMIs that occur after this statement will route their
342 * rcu_read_lock() calls through this "else" clause, and
343 * will thus start incrementing the per-CPU counter on
344 * their own. They will also clobber ->rcu_flipctr_idx,
345 * but that is OK, since we have already fetched it.
346 */
347
348 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
349 local_irq_restore(flags);
350 }
351 }
352 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
353
354 /*
355 * If a global counter flip has occurred since the last time that we
356 * advanced callbacks, advance them. Hardware interrupts must be
357 * disabled when calling this function.
358 */
359 static void __rcu_advance_callbacks(struct rcu_data *rdp)
360 {
361 int cpu;
362 int i;
363 int wlc = 0;
364
365 if (rdp->completed != rcu_ctrlblk.completed) {
366 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
367 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
368 rdp->donetail = rdp->waittail[GP_STAGES - 1];
369 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
370 }
371 for (i = GP_STAGES - 2; i >= 0; i--) {
372 if (rdp->waitlist[i] != NULL) {
373 rdp->waitlist[i + 1] = rdp->waitlist[i];
374 rdp->waittail[i + 1] = rdp->waittail[i];
375 wlc++;
376 } else {
377 rdp->waitlist[i + 1] = NULL;
378 rdp->waittail[i + 1] =
379 &rdp->waitlist[i + 1];
380 }
381 }
382 if (rdp->nextlist != NULL) {
383 rdp->waitlist[0] = rdp->nextlist;
384 rdp->waittail[0] = rdp->nexttail;
385 wlc++;
386 rdp->nextlist = NULL;
387 rdp->nexttail = &rdp->nextlist;
388 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
389 } else {
390 rdp->waitlist[0] = NULL;
391 rdp->waittail[0] = &rdp->waitlist[0];
392 }
393 rdp->waitlistcount = wlc;
394 rdp->completed = rcu_ctrlblk.completed;
395 }
396
397 /*
398 * Check to see if this CPU needs to report that it has seen
399 * the most recent counter flip, thereby declaring that all
400 * subsequent rcu_read_lock() invocations will respect this flip.
401 */
402
403 cpu = raw_smp_processor_id();
404 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
405 smp_mb(); /* Subsequent counter accesses must see new value */
406 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
407 smp_mb(); /* Subsequent RCU read-side critical sections */
408 /* seen -after- acknowledgement. */
409 }
410 }
411
412 /*
413 * Get here when RCU is idle. Decide whether we need to
414 * move out of idle state, and return non-zero if so.
415 * "Straightforward" approach for the moment, might later
416 * use callback-list lengths, grace-period duration, or
417 * some such to determine when to exit idle state.
418 * Might also need a pre-idle test that does not acquire
419 * the lock, but let's get the simple case working first...
420 */
421
422 static int
423 rcu_try_flip_idle(void)
424 {
425 int cpu;
426
427 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
428 if (!rcu_pending(smp_processor_id())) {
429 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
430 return 0;
431 }
432
433 /*
434 * Do the flip.
435 */
436
437 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
438 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
439
440 /*
441 * Need a memory barrier so that other CPUs see the new
442 * counter value before they see the subsequent change of all
443 * the rcu_flip_flag instances to rcu_flipped.
444 */
445
446 smp_mb(); /* see above block comment. */
447
448 /* Now ask each CPU for acknowledgement of the flip. */
449
450 for_each_cpu_mask(cpu, rcu_cpu_online_map)
451 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
452
453 return 1;
454 }
455
456 /*
457 * Wait for CPUs to acknowledge the flip.
458 */
459
460 static int
461 rcu_try_flip_waitack(void)
462 {
463 int cpu;
464
465 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
466 for_each_cpu_mask(cpu, rcu_cpu_online_map)
467 if (per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
468 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
469 return 0;
470 }
471
472 /*
473 * Make sure our checks above don't bleed into subsequent
474 * waiting for the sum of the counters to reach zero.
475 */
476
477 smp_mb(); /* see above block comment. */
478 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
479 return 1;
480 }
481
482 /*
483 * Wait for collective ``last'' counter to reach zero,
484 * then tell all CPUs to do an end-of-grace-period memory barrier.
485 */
486
487 static int
488 rcu_try_flip_waitzero(void)
489 {
490 int cpu;
491 int lastidx = !(rcu_ctrlblk.completed & 0x1);
492 int sum = 0;
493
494 /* Check to see if the sum of the "last" counters is zero. */
495
496 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
497 for_each_cpu_mask(cpu, rcu_cpu_online_map)
498 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
499 if (sum != 0) {
500 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
501 return 0;
502 }
503
504 /*
505 * This ensures that the other CPUs see the call for
506 * memory barriers -after- the sum to zero has been
507 * detected here
508 */
509 smp_mb(); /* ^^^^^^^^^^^^ */
510
511 /* Call for a memory barrier from each CPU. */
512 for_each_cpu_mask(cpu, rcu_cpu_online_map)
513 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
514
515 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
516 return 1;
517 }
518
519 /*
520 * Wait for all CPUs to do their end-of-grace-period memory barrier.
521 * Return 0 once all CPUs have done so.
522 */
523
524 static int
525 rcu_try_flip_waitmb(void)
526 {
527 int cpu;
528
529 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
530 for_each_cpu_mask(cpu, rcu_cpu_online_map)
531 if (per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
532 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
533 return 0;
534 }
535
536 smp_mb(); /* Ensure that the above checks precede any following flip. */
537 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
538 return 1;
539 }
540
541 /*
542 * Attempt a single flip of the counters. Remember, a single flip does
543 * -not- constitute a grace period. Instead, the interval between
544 * at least GP_STAGES consecutive flips is a grace period.
545 *
546 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
547 * on a large SMP, they might want to use a hierarchical organization of
548 * the per-CPU-counter pairs.
549 */
550 static void rcu_try_flip(void)
551 {
552 unsigned long flags;
553
554 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
555 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
556 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
557 return;
558 }
559
560 /*
561 * Take the next transition(s) through the RCU grace-period
562 * flip-counter state machine.
563 */
564
565 switch (rcu_ctrlblk.rcu_try_flip_state) {
566 case rcu_try_flip_idle_state:
567 if (rcu_try_flip_idle())
568 rcu_ctrlblk.rcu_try_flip_state =
569 rcu_try_flip_waitack_state;
570 break;
571 case rcu_try_flip_waitack_state:
572 if (rcu_try_flip_waitack())
573 rcu_ctrlblk.rcu_try_flip_state =
574 rcu_try_flip_waitzero_state;
575 break;
576 case rcu_try_flip_waitzero_state:
577 if (rcu_try_flip_waitzero())
578 rcu_ctrlblk.rcu_try_flip_state =
579 rcu_try_flip_waitmb_state;
580 break;
581 case rcu_try_flip_waitmb_state:
582 if (rcu_try_flip_waitmb())
583 rcu_ctrlblk.rcu_try_flip_state =
584 rcu_try_flip_idle_state;
585 }
586 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
587 }
588
589 /*
590 * Check to see if this CPU needs to do a memory barrier in order to
591 * ensure that any prior RCU read-side critical sections have committed
592 * their counter manipulations and critical-section memory references
593 * before declaring the grace period to be completed.
594 */
595 static void rcu_check_mb(int cpu)
596 {
597 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
598 smp_mb(); /* Ensure RCU read-side accesses are visible. */
599 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
600 }
601 }
602
603 void rcu_check_callbacks(int cpu, int user)
604 {
605 unsigned long flags;
606 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
607
608 rcu_check_mb(cpu);
609 if (rcu_ctrlblk.completed == rdp->completed)
610 rcu_try_flip();
611 spin_lock_irqsave(&rdp->lock, flags);
612 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
613 __rcu_advance_callbacks(rdp);
614 if (rdp->donelist == NULL) {
615 spin_unlock_irqrestore(&rdp->lock, flags);
616 } else {
617 spin_unlock_irqrestore(&rdp->lock, flags);
618 raise_softirq(RCU_SOFTIRQ);
619 }
620 }
621
622 /*
623 * Needed by dynticks, to make sure all RCU processing has finished
624 * when we go idle:
625 */
626 void rcu_advance_callbacks(int cpu, int user)
627 {
628 unsigned long flags;
629 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
630
631 if (rcu_ctrlblk.completed == rdp->completed) {
632 rcu_try_flip();
633 if (rcu_ctrlblk.completed == rdp->completed)
634 return;
635 }
636 spin_lock_irqsave(&rdp->lock, flags);
637 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
638 __rcu_advance_callbacks(rdp);
639 spin_unlock_irqrestore(&rdp->lock, flags);
640 }
641
642 #ifdef CONFIG_HOTPLUG_CPU
643 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
644 *dsttail = srclist; \
645 if (srclist != NULL) { \
646 dsttail = srctail; \
647 srclist = NULL; \
648 srctail = &srclist;\
649 } \
650 } while (0)
651
652 void rcu_offline_cpu(int cpu)
653 {
654 int i;
655 struct rcu_head *list = NULL;
656 unsigned long flags;
657 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
658 struct rcu_head **tail = &list;
659
660 /*
661 * Remove all callbacks from the newly dead CPU, retaining order.
662 * Otherwise rcu_barrier() will fail
663 */
664
665 spin_lock_irqsave(&rdp->lock, flags);
666 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
667 for (i = GP_STAGES - 1; i >= 0; i--)
668 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
669 list, tail);
670 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
671 spin_unlock_irqrestore(&rdp->lock, flags);
672 rdp->waitlistcount = 0;
673
674 /* Disengage the newly dead CPU from the grace-period computation. */
675
676 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
677 rcu_check_mb(cpu);
678 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
679 smp_mb(); /* Subsequent counter accesses must see new value */
680 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
681 smp_mb(); /* Subsequent RCU read-side critical sections */
682 /* seen -after- acknowledgement. */
683 }
684
685 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
686 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
687
688 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
689 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
690
691 cpu_clear(cpu, rcu_cpu_online_map);
692
693 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
694
695 /*
696 * Place the removed callbacks on the current CPU's queue.
697 * Make them all start a new grace period: simple approach,
698 * in theory could starve a given set of callbacks, but
699 * you would need to be doing some serious CPU hotplugging
700 * to make this happen. If this becomes a problem, adding
701 * a synchronize_rcu() to the hotplug path would be a simple
702 * fix.
703 */
704
705 rdp = RCU_DATA_ME();
706 spin_lock_irqsave(&rdp->lock, flags);
707 *rdp->nexttail = list;
708 if (list)
709 rdp->nexttail = tail;
710 spin_unlock_irqrestore(&rdp->lock, flags);
711 }
712
713 void __devinit rcu_online_cpu(int cpu)
714 {
715 unsigned long flags;
716
717 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
718 cpu_set(cpu, rcu_cpu_online_map);
719 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
720 }
721
722 #else /* #ifdef CONFIG_HOTPLUG_CPU */
723
724 void rcu_offline_cpu(int cpu)
725 {
726 }
727
728 void __devinit rcu_online_cpu(int cpu)
729 {
730 }
731
732 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
733
734 static void rcu_process_callbacks(struct softirq_action *unused)
735 {
736 unsigned long flags;
737 struct rcu_head *next, *list;
738 struct rcu_data *rdp = RCU_DATA_ME();
739
740 spin_lock_irqsave(&rdp->lock, flags);
741 list = rdp->donelist;
742 if (list == NULL) {
743 spin_unlock_irqrestore(&rdp->lock, flags);
744 return;
745 }
746 rdp->donelist = NULL;
747 rdp->donetail = &rdp->donelist;
748 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
749 spin_unlock_irqrestore(&rdp->lock, flags);
750 while (list) {
751 next = list->next;
752 list->func(list);
753 list = next;
754 RCU_TRACE_ME(rcupreempt_trace_invoke);
755 }
756 }
757
758 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
759 {
760 unsigned long flags;
761 struct rcu_data *rdp;
762
763 head->func = func;
764 head->next = NULL;
765 local_irq_save(flags);
766 rdp = RCU_DATA_ME();
767 spin_lock(&rdp->lock);
768 __rcu_advance_callbacks(rdp);
769 *rdp->nexttail = head;
770 rdp->nexttail = &head->next;
771 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
772 spin_unlock(&rdp->lock);
773 local_irq_restore(flags);
774 }
775 EXPORT_SYMBOL_GPL(call_rcu);
776
777 /*
778 * Wait until all currently running preempt_disable() code segments
779 * (including hardware-irq-disable segments) complete. Note that
780 * in -rt this does -not- necessarily result in all currently executing
781 * interrupt -handlers- having completed.
782 */
783 void __synchronize_sched(void)
784 {
785 cpumask_t oldmask;
786 int cpu;
787
788 if (sched_getaffinity(0, &oldmask) < 0)
789 oldmask = cpu_possible_map;
790 for_each_online_cpu(cpu) {
791 sched_setaffinity(0, cpumask_of_cpu(cpu));
792 schedule();
793 }
794 sched_setaffinity(0, oldmask);
795 }
796 EXPORT_SYMBOL_GPL(__synchronize_sched);
797
798 /*
799 * Check to see if any future RCU-related work will need to be done
800 * by the current CPU, even if none need be done immediately, returning
801 * 1 if so. Assumes that notifiers would take care of handling any
802 * outstanding requests from the RCU core.
803 *
804 * This function is part of the RCU implementation; it is -not-
805 * an exported member of the RCU API.
806 */
807 int rcu_needs_cpu(int cpu)
808 {
809 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
810
811 return (rdp->donelist != NULL ||
812 !!rdp->waitlistcount ||
813 rdp->nextlist != NULL);
814 }
815
816 int rcu_pending(int cpu)
817 {
818 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
819
820 /* The CPU has at least one callback queued somewhere. */
821
822 if (rdp->donelist != NULL ||
823 !!rdp->waitlistcount ||
824 rdp->nextlist != NULL)
825 return 1;
826
827 /* The RCU core needs an acknowledgement from this CPU. */
828
829 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
830 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
831 return 1;
832
833 /* This CPU has fallen behind the global grace-period number. */
834
835 if (rdp->completed != rcu_ctrlblk.completed)
836 return 1;
837
838 /* Nothing needed from this CPU. */
839
840 return 0;
841 }
842
843 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
844 unsigned long action, void *hcpu)
845 {
846 long cpu = (long)hcpu;
847
848 switch (action) {
849 case CPU_UP_PREPARE:
850 case CPU_UP_PREPARE_FROZEN:
851 rcu_online_cpu(cpu);
852 break;
853 case CPU_UP_CANCELED:
854 case CPU_UP_CANCELED_FROZEN:
855 case CPU_DEAD:
856 case CPU_DEAD_FROZEN:
857 rcu_offline_cpu(cpu);
858 break;
859 default:
860 break;
861 }
862 return NOTIFY_OK;
863 }
864
865 static struct notifier_block __cpuinitdata rcu_nb = {
866 .notifier_call = rcu_cpu_notify,
867 };
868
869 void __init __rcu_init(void)
870 {
871 int cpu;
872 int i;
873 struct rcu_data *rdp;
874
875 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
876 for_each_possible_cpu(cpu) {
877 rdp = RCU_DATA_CPU(cpu);
878 spin_lock_init(&rdp->lock);
879 rdp->completed = 0;
880 rdp->waitlistcount = 0;
881 rdp->nextlist = NULL;
882 rdp->nexttail = &rdp->nextlist;
883 for (i = 0; i < GP_STAGES; i++) {
884 rdp->waitlist[i] = NULL;
885 rdp->waittail[i] = &rdp->waitlist[i];
886 }
887 rdp->donelist = NULL;
888 rdp->donetail = &rdp->donelist;
889 rdp->rcu_flipctr[0] = 0;
890 rdp->rcu_flipctr[1] = 0;
891 }
892 register_cpu_notifier(&rcu_nb);
893
894 /*
895 * We don't need protection against CPU-Hotplug here
896 * since
897 * a) If a CPU comes online while we are iterating over the
898 * cpu_online_map below, we would only end up making a
899 * duplicate call to rcu_online_cpu() which sets the corresponding
900 * CPU's mask in the rcu_cpu_online_map.
901 *
902 * b) A CPU cannot go offline at this point in time since the user
903 * does not have access to the sysfs interface, nor do we
904 * suspend the system.
905 */
906 for_each_online_cpu(cpu)
907 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
908
909 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
910 }
911
912 /*
913 * Deprecated, use synchronize_rcu() or synchronize_sched() instead.
914 */
915 void synchronize_kernel(void)
916 {
917 synchronize_rcu();
918 }
919
920 #ifdef CONFIG_RCU_TRACE
921 long *rcupreempt_flipctr(int cpu)
922 {
923 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
924 }
925 EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
926
927 int rcupreempt_flip_flag(int cpu)
928 {
929 return per_cpu(rcu_flip_flag, cpu);
930 }
931 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
932
933 int rcupreempt_mb_flag(int cpu)
934 {
935 return per_cpu(rcu_mb_flag, cpu);
936 }
937 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
938
939 char *rcupreempt_try_flip_state_name(void)
940 {
941 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
942 }
943 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
944
945 struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
946 {
947 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
948
949 return &rdp->trace;
950 }
951 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
952
953 #endif /* #ifdef RCU_TRACE */