]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/rcutiny_plugin.h
CAN: Use inode instead of kernel address for /proc file
[mirror_ubuntu-zesty-kernel.git] / kernel / rcutiny_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright (c) 2010 Linaro
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25 #ifdef CONFIG_TINY_PREEMPT_RCU
26
27 #include <linux/delay.h>
28
29 /* Global control variables for preemptible RCU. */
30 struct rcu_preempt_ctrlblk {
31 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
32 struct rcu_head **nexttail;
33 /* Tasks blocked in a preemptible RCU */
34 /* read-side critical section while an */
35 /* preemptible-RCU grace period is in */
36 /* progress must wait for a later grace */
37 /* period. This pointer points to the */
38 /* ->next pointer of the last task that */
39 /* must wait for a later grace period, or */
40 /* to &->rcb.rcucblist if there is no */
41 /* such task. */
42 struct list_head blkd_tasks;
43 /* Tasks blocked in RCU read-side critical */
44 /* section. Tasks are placed at the head */
45 /* of this list and age towards the tail. */
46 struct list_head *gp_tasks;
47 /* Pointer to the first task blocking the */
48 /* current grace period, or NULL if there */
49 /* is not such task. */
50 struct list_head *exp_tasks;
51 /* Pointer to first task blocking the */
52 /* current expedited grace period, or NULL */
53 /* if there is no such task. If there */
54 /* is no current expedited grace period, */
55 /* then there cannot be any such task. */
56 u8 gpnum; /* Current grace period. */
57 u8 gpcpu; /* Last grace period blocked by the CPU. */
58 u8 completed; /* Last grace period completed. */
59 /* If all three are equal, RCU is idle. */
60 };
61
62 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
63 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
64 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
65 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
66 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
67 };
68
69 static int rcu_preempted_readers_exp(void);
70 static void rcu_report_exp_done(void);
71
72 /*
73 * Return true if the CPU has not yet responded to the current grace period.
74 */
75 static int rcu_cpu_blocking_cur_gp(void)
76 {
77 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
78 }
79
80 /*
81 * Check for a running RCU reader. Because there is only one CPU,
82 * there can be but one running RCU reader at a time. ;-)
83 */
84 static int rcu_preempt_running_reader(void)
85 {
86 return current->rcu_read_lock_nesting;
87 }
88
89 /*
90 * Check for preempted RCU readers blocking any grace period.
91 * If the caller needs a reliable answer, it must disable hard irqs.
92 */
93 static int rcu_preempt_blocked_readers_any(void)
94 {
95 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
96 }
97
98 /*
99 * Check for preempted RCU readers blocking the current grace period.
100 * If the caller needs a reliable answer, it must disable hard irqs.
101 */
102 static int rcu_preempt_blocked_readers_cgp(void)
103 {
104 return rcu_preempt_ctrlblk.gp_tasks != NULL;
105 }
106
107 /*
108 * Return true if another preemptible-RCU grace period is needed.
109 */
110 static int rcu_preempt_needs_another_gp(void)
111 {
112 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
113 }
114
115 /*
116 * Return true if a preemptible-RCU grace period is in progress.
117 * The caller must disable hardirqs.
118 */
119 static int rcu_preempt_gp_in_progress(void)
120 {
121 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
122 }
123
124 /*
125 * Record a preemptible-RCU quiescent state for the specified CPU. Note
126 * that this just means that the task currently running on the CPU is
127 * in a quiescent state. There might be any number of tasks blocked
128 * while in an RCU read-side critical section.
129 *
130 * Unlike the other rcu_*_qs() functions, callers to this function
131 * must disable irqs in order to protect the assignment to
132 * ->rcu_read_unlock_special.
133 *
134 * Because this is a single-CPU implementation, the only way a grace
135 * period can end is if the CPU is in a quiescent state. The reason is
136 * that a blocked preemptible-RCU reader can exit its critical section
137 * only if the CPU is running it at the time. Therefore, when the
138 * last task blocking the current grace period exits its RCU read-side
139 * critical section, neither the CPU nor blocked tasks will be stopping
140 * the current grace period. (In contrast, SMP implementations
141 * might have CPUs running in RCU read-side critical sections that
142 * block later grace periods -- but this is not possible given only
143 * one CPU.)
144 */
145 static void rcu_preempt_cpu_qs(void)
146 {
147 /* Record both CPU and task as having responded to current GP. */
148 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
149 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
150
151 /*
152 * If there is no GP, or if blocked readers are still blocking GP,
153 * then there is nothing more to do.
154 */
155 if (!rcu_preempt_gp_in_progress() || rcu_preempt_blocked_readers_cgp())
156 return;
157
158 /* Advance callbacks. */
159 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
160 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
161 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
162
163 /* If there are no blocked readers, next GP is done instantly. */
164 if (!rcu_preempt_blocked_readers_any())
165 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
166
167 /* If there are done callbacks, make RCU_SOFTIRQ process them. */
168 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
169 raise_softirq(RCU_SOFTIRQ);
170 }
171
172 /*
173 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
174 */
175 static void rcu_preempt_start_gp(void)
176 {
177 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
178
179 /* Official start of GP. */
180 rcu_preempt_ctrlblk.gpnum++;
181
182 /* Any blocked RCU readers block new GP. */
183 if (rcu_preempt_blocked_readers_any())
184 rcu_preempt_ctrlblk.gp_tasks =
185 rcu_preempt_ctrlblk.blkd_tasks.next;
186
187 /* If there is no running reader, CPU is done with GP. */
188 if (!rcu_preempt_running_reader())
189 rcu_preempt_cpu_qs();
190 }
191 }
192
193 /*
194 * We have entered the scheduler, and the current task might soon be
195 * context-switched away from. If this task is in an RCU read-side
196 * critical section, we will no longer be able to rely on the CPU to
197 * record that fact, so we enqueue the task on the blkd_tasks list.
198 * If the task started after the current grace period began, as recorded
199 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
200 * before the element referenced by ->gp_tasks (or at the tail if
201 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
202 * The task will dequeue itself when it exits the outermost enclosing
203 * RCU read-side critical section. Therefore, the current grace period
204 * cannot be permitted to complete until the ->gp_tasks pointer becomes
205 * NULL.
206 *
207 * Caller must disable preemption.
208 */
209 void rcu_preempt_note_context_switch(void)
210 {
211 struct task_struct *t = current;
212 unsigned long flags;
213
214 local_irq_save(flags); /* must exclude scheduler_tick(). */
215 if (rcu_preempt_running_reader() &&
216 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
217
218 /* Possibly blocking in an RCU read-side critical section. */
219 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
220
221 /*
222 * If this CPU has already checked in, then this task
223 * will hold up the next grace period rather than the
224 * current grace period. Queue the task accordingly.
225 * If the task is queued for the current grace period
226 * (i.e., this CPU has not yet passed through a quiescent
227 * state for the current grace period), then as long
228 * as that task remains queued, the current grace period
229 * cannot end.
230 */
231 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
232 if (rcu_cpu_blocking_cur_gp())
233 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
234 }
235
236 /*
237 * Either we were not in an RCU read-side critical section to
238 * begin with, or we have now recorded that critical section
239 * globally. Either way, we can now note a quiescent state
240 * for this CPU. Again, if we were in an RCU read-side critical
241 * section, and if that critical section was blocking the current
242 * grace period, then the fact that the task has been enqueued
243 * means that current grace period continues to be blocked.
244 */
245 rcu_preempt_cpu_qs();
246 local_irq_restore(flags);
247 }
248
249 /*
250 * Tiny-preemptible RCU implementation for rcu_read_lock().
251 * Just increment ->rcu_read_lock_nesting, shared state will be updated
252 * if we block.
253 */
254 void __rcu_read_lock(void)
255 {
256 current->rcu_read_lock_nesting++;
257 barrier(); /* needed if we ever invoke rcu_read_lock in rcutiny.c */
258 }
259 EXPORT_SYMBOL_GPL(__rcu_read_lock);
260
261 /*
262 * Handle special cases during rcu_read_unlock(), such as needing to
263 * notify RCU core processing or task having blocked during the RCU
264 * read-side critical section.
265 */
266 static void rcu_read_unlock_special(struct task_struct *t)
267 {
268 int empty;
269 int empty_exp;
270 unsigned long flags;
271 struct list_head *np;
272 int special;
273
274 /*
275 * NMI handlers cannot block and cannot safely manipulate state.
276 * They therefore cannot possibly be special, so just leave.
277 */
278 if (in_nmi())
279 return;
280
281 local_irq_save(flags);
282
283 /*
284 * If RCU core is waiting for this CPU to exit critical section,
285 * let it know that we have done so.
286 */
287 special = t->rcu_read_unlock_special;
288 if (special & RCU_READ_UNLOCK_NEED_QS)
289 rcu_preempt_cpu_qs();
290
291 /* Hardware IRQ handlers cannot block. */
292 if (in_irq()) {
293 local_irq_restore(flags);
294 return;
295 }
296
297 /* Clean up if blocked during RCU read-side critical section. */
298 if (special & RCU_READ_UNLOCK_BLOCKED) {
299 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
300
301 /*
302 * Remove this task from the ->blkd_tasks list and adjust
303 * any pointers that might have been referencing it.
304 */
305 empty = !rcu_preempt_blocked_readers_cgp();
306 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
307 np = t->rcu_node_entry.next;
308 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
309 np = NULL;
310 list_del(&t->rcu_node_entry);
311 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
312 rcu_preempt_ctrlblk.gp_tasks = np;
313 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
314 rcu_preempt_ctrlblk.exp_tasks = np;
315 INIT_LIST_HEAD(&t->rcu_node_entry);
316
317 /*
318 * If this was the last task on the current list, and if
319 * we aren't waiting on the CPU, report the quiescent state
320 * and start a new grace period if needed.
321 */
322 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
323 rcu_preempt_cpu_qs();
324 rcu_preempt_start_gp();
325 }
326
327 /*
328 * If this was the last task on the expedited lists,
329 * then we need wake up the waiting task.
330 */
331 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
332 rcu_report_exp_done();
333 }
334 local_irq_restore(flags);
335 }
336
337 /*
338 * Tiny-preemptible RCU implementation for rcu_read_unlock().
339 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
340 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
341 * invoke rcu_read_unlock_special() to clean up after a context switch
342 * in an RCU read-side critical section and other special cases.
343 */
344 void __rcu_read_unlock(void)
345 {
346 struct task_struct *t = current;
347
348 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
349 --t->rcu_read_lock_nesting;
350 barrier(); /* decrement before load of ->rcu_read_unlock_special */
351 if (t->rcu_read_lock_nesting == 0 &&
352 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
353 rcu_read_unlock_special(t);
354 #ifdef CONFIG_PROVE_LOCKING
355 WARN_ON_ONCE(t->rcu_read_lock_nesting < 0);
356 #endif /* #ifdef CONFIG_PROVE_LOCKING */
357 }
358 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
359
360 /*
361 * Check for a quiescent state from the current CPU. When a task blocks,
362 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
363 * checked elsewhere. This is called from the scheduling-clock interrupt.
364 *
365 * Caller must disable hard irqs.
366 */
367 static void rcu_preempt_check_callbacks(void)
368 {
369 struct task_struct *t = current;
370
371 if (rcu_preempt_gp_in_progress() &&
372 (!rcu_preempt_running_reader() ||
373 !rcu_cpu_blocking_cur_gp()))
374 rcu_preempt_cpu_qs();
375 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
376 rcu_preempt_ctrlblk.rcb.donetail)
377 raise_softirq(RCU_SOFTIRQ);
378 if (rcu_preempt_gp_in_progress() &&
379 rcu_cpu_blocking_cur_gp() &&
380 rcu_preempt_running_reader())
381 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
382 }
383
384 /*
385 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
386 * update, so this is invoked from __rcu_process_callbacks() to
387 * handle that case. Of course, it is invoked for all flavors of
388 * RCU, but RCU callbacks can appear only on one of the lists, and
389 * neither ->nexttail nor ->donetail can possibly be NULL, so there
390 * is no need for an explicit check.
391 */
392 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
393 {
394 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
395 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
396 }
397
398 /*
399 * Process callbacks for preemptible RCU.
400 */
401 static void rcu_preempt_process_callbacks(void)
402 {
403 __rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
404 }
405
406 /*
407 * Queue a preemptible -RCU callback for invocation after a grace period.
408 */
409 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
410 {
411 unsigned long flags;
412
413 debug_rcu_head_queue(head);
414 head->func = func;
415 head->next = NULL;
416
417 local_irq_save(flags);
418 *rcu_preempt_ctrlblk.nexttail = head;
419 rcu_preempt_ctrlblk.nexttail = &head->next;
420 rcu_preempt_start_gp(); /* checks to see if GP needed. */
421 local_irq_restore(flags);
422 }
423 EXPORT_SYMBOL_GPL(call_rcu);
424
425 void rcu_barrier(void)
426 {
427 struct rcu_synchronize rcu;
428
429 init_rcu_head_on_stack(&rcu.head);
430 init_completion(&rcu.completion);
431 /* Will wake me after RCU finished. */
432 call_rcu(&rcu.head, wakeme_after_rcu);
433 /* Wait for it. */
434 wait_for_completion(&rcu.completion);
435 destroy_rcu_head_on_stack(&rcu.head);
436 }
437 EXPORT_SYMBOL_GPL(rcu_barrier);
438
439 /*
440 * synchronize_rcu - wait until a grace period has elapsed.
441 *
442 * Control will return to the caller some time after a full grace
443 * period has elapsed, in other words after all currently executing RCU
444 * read-side critical sections have completed. RCU read-side critical
445 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
446 * and may be nested.
447 */
448 void synchronize_rcu(void)
449 {
450 #ifdef CONFIG_DEBUG_LOCK_ALLOC
451 if (!rcu_scheduler_active)
452 return;
453 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
454
455 WARN_ON_ONCE(rcu_preempt_running_reader());
456 if (!rcu_preempt_blocked_readers_any())
457 return;
458
459 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
460 rcu_barrier();
461 }
462 EXPORT_SYMBOL_GPL(synchronize_rcu);
463
464 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
465 static unsigned long sync_rcu_preempt_exp_count;
466 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
467
468 /*
469 * Return non-zero if there are any tasks in RCU read-side critical
470 * sections blocking the current preemptible-RCU expedited grace period.
471 * If there is no preemptible-RCU expedited grace period currently in
472 * progress, returns zero unconditionally.
473 */
474 static int rcu_preempted_readers_exp(void)
475 {
476 return rcu_preempt_ctrlblk.exp_tasks != NULL;
477 }
478
479 /*
480 * Report the exit from RCU read-side critical section for the last task
481 * that queued itself during or before the current expedited preemptible-RCU
482 * grace period.
483 */
484 static void rcu_report_exp_done(void)
485 {
486 wake_up(&sync_rcu_preempt_exp_wq);
487 }
488
489 /*
490 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
491 * is to rely in the fact that there is but one CPU, and that it is
492 * illegal for a task to invoke synchronize_rcu_expedited() while in a
493 * preemptible-RCU read-side critical section. Therefore, any such
494 * critical sections must correspond to blocked tasks, which must therefore
495 * be on the ->blkd_tasks list. So just record the current head of the
496 * list in the ->exp_tasks pointer, and wait for all tasks including and
497 * after the task pointed to by ->exp_tasks to drain.
498 */
499 void synchronize_rcu_expedited(void)
500 {
501 unsigned long flags;
502 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
503 unsigned long snap;
504
505 barrier(); /* ensure prior action seen before grace period. */
506
507 WARN_ON_ONCE(rcu_preempt_running_reader());
508
509 /*
510 * Acquire lock so that there is only one preemptible RCU grace
511 * period in flight. Of course, if someone does the expedited
512 * grace period for us while we are acquiring the lock, just leave.
513 */
514 snap = sync_rcu_preempt_exp_count + 1;
515 mutex_lock(&sync_rcu_preempt_exp_mutex);
516 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
517 goto unlock_mb_ret; /* Others did our work for us. */
518
519 local_irq_save(flags);
520
521 /*
522 * All RCU readers have to already be on blkd_tasks because
523 * we cannot legally be executing in an RCU read-side critical
524 * section.
525 */
526
527 /* Snapshot current head of ->blkd_tasks list. */
528 rpcp->exp_tasks = rpcp->blkd_tasks.next;
529 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
530 rpcp->exp_tasks = NULL;
531 local_irq_restore(flags);
532
533 /* Wait for tail of ->blkd_tasks list to drain. */
534 if (rcu_preempted_readers_exp())
535 wait_event(sync_rcu_preempt_exp_wq,
536 !rcu_preempted_readers_exp());
537
538 /* Clean up and exit. */
539 barrier(); /* ensure expedited GP seen before counter increment. */
540 sync_rcu_preempt_exp_count++;
541 unlock_mb_ret:
542 mutex_unlock(&sync_rcu_preempt_exp_mutex);
543 barrier(); /* ensure subsequent action seen after grace period. */
544 }
545 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
546
547 /*
548 * Does preemptible RCU need the CPU to stay out of dynticks mode?
549 */
550 int rcu_preempt_needs_cpu(void)
551 {
552 if (!rcu_preempt_running_reader())
553 rcu_preempt_cpu_qs();
554 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
555 }
556
557 /*
558 * Check for a task exiting while in a preemptible -RCU read-side
559 * critical section, clean up if so. No need to issue warnings,
560 * as debug_check_no_locks_held() already does this if lockdep
561 * is enabled.
562 */
563 void exit_rcu(void)
564 {
565 struct task_struct *t = current;
566
567 if (t->rcu_read_lock_nesting == 0)
568 return;
569 t->rcu_read_lock_nesting = 1;
570 rcu_read_unlock();
571 }
572
573 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
574
575 /*
576 * Because preemptible RCU does not exist, it never has any callbacks
577 * to check.
578 */
579 static void rcu_preempt_check_callbacks(void)
580 {
581 }
582
583 /*
584 * Because preemptible RCU does not exist, it never has any callbacks
585 * to remove.
586 */
587 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
588 {
589 }
590
591 /*
592 * Because preemptible RCU does not exist, it never has any callbacks
593 * to process.
594 */
595 static void rcu_preempt_process_callbacks(void)
596 {
597 }
598
599 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
600
601 #ifdef CONFIG_DEBUG_LOCK_ALLOC
602
603 #include <linux/kernel_stat.h>
604
605 /*
606 * During boot, we forgive RCU lockdep issues. After this function is
607 * invoked, we start taking RCU lockdep issues seriously.
608 */
609 void rcu_scheduler_starting(void)
610 {
611 WARN_ON(nr_context_switches() > 0);
612 rcu_scheduler_active = 1;
613 }
614
615 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */