]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcutree.c
rcu: Add RCU_CPU_STALL_VERBOSE to dump detailed per-task information
[mirror_ubuntu-artful-kernel.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50
51 #include "rcutree.h"
52
53 /* Data structures. */
54
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56
57 #define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 }
77
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83
84 static int rcu_scheduler_active __read_mostly;
85
86
87 /*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92 static int rcu_gp_in_progress(struct rcu_state *rsp)
93 {
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95 }
96
97 /*
98 * Note a quiescent state. Because we do not need to know
99 * how many quiescent states passed, just if there was at least
100 * one since the start of the grace period, this just sets a flag.
101 */
102 void rcu_sched_qs(int cpu)
103 {
104 struct rcu_data *rdp;
105
106 rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
111 }
112
113 void rcu_bh_qs(int cpu)
114 {
115 struct rcu_data *rdp;
116
117 rdp = &per_cpu(rcu_bh_data, cpu);
118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
119 barrier();
120 rdp->passed_quiesc = 1;
121 }
122
123 #ifdef CONFIG_NO_HZ
124 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
125 .dynticks_nesting = 1,
126 .dynticks = 1,
127 };
128 #endif /* #ifdef CONFIG_NO_HZ */
129
130 static int blimit = 10; /* Maximum callbacks per softirq. */
131 static int qhimark = 10000; /* If this many pending, ignore blimit. */
132 static int qlowmark = 100; /* Once only this many pending, use blimit. */
133
134 module_param(blimit, int, 0);
135 module_param(qhimark, int, 0);
136 module_param(qlowmark, int, 0);
137
138 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
139 static int rcu_pending(int cpu);
140
141 /*
142 * Return the number of RCU-sched batches processed thus far for debug & stats.
143 */
144 long rcu_batches_completed_sched(void)
145 {
146 return rcu_sched_state.completed;
147 }
148 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
149
150 /*
151 * Return the number of RCU BH batches processed thus far for debug & stats.
152 */
153 long rcu_batches_completed_bh(void)
154 {
155 return rcu_bh_state.completed;
156 }
157 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
158
159 /*
160 * Force a quiescent state for RCU BH.
161 */
162 void rcu_bh_force_quiescent_state(void)
163 {
164 force_quiescent_state(&rcu_bh_state, 0);
165 }
166 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
167
168 /*
169 * Force a quiescent state for RCU-sched.
170 */
171 void rcu_sched_force_quiescent_state(void)
172 {
173 force_quiescent_state(&rcu_sched_state, 0);
174 }
175 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
176
177 /*
178 * Does the CPU have callbacks ready to be invoked?
179 */
180 static int
181 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
182 {
183 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
184 }
185
186 /*
187 * Does the current CPU require a yet-as-unscheduled grace period?
188 */
189 static int
190 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
191 {
192 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
193 }
194
195 /*
196 * Return the root node of the specified rcu_state structure.
197 */
198 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
199 {
200 return &rsp->node[0];
201 }
202
203 #ifdef CONFIG_SMP
204
205 /*
206 * If the specified CPU is offline, tell the caller that it is in
207 * a quiescent state. Otherwise, whack it with a reschedule IPI.
208 * Grace periods can end up waiting on an offline CPU when that
209 * CPU is in the process of coming online -- it will be added to the
210 * rcu_node bitmasks before it actually makes it online. The same thing
211 * can happen while a CPU is in the process of coming online. Because this
212 * race is quite rare, we check for it after detecting that the grace
213 * period has been delayed rather than checking each and every CPU
214 * each and every time we start a new grace period.
215 */
216 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
217 {
218 /*
219 * If the CPU is offline, it is in a quiescent state. We can
220 * trust its state not to change because interrupts are disabled.
221 */
222 if (cpu_is_offline(rdp->cpu)) {
223 rdp->offline_fqs++;
224 return 1;
225 }
226
227 /* If preemptable RCU, no point in sending reschedule IPI. */
228 if (rdp->preemptable)
229 return 0;
230
231 /* The CPU is online, so send it a reschedule IPI. */
232 if (rdp->cpu != smp_processor_id())
233 smp_send_reschedule(rdp->cpu);
234 else
235 set_need_resched();
236 rdp->resched_ipi++;
237 return 0;
238 }
239
240 #endif /* #ifdef CONFIG_SMP */
241
242 #ifdef CONFIG_NO_HZ
243
244 /**
245 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
246 *
247 * Enter nohz mode, in other words, -leave- the mode in which RCU
248 * read-side critical sections can occur. (Though RCU read-side
249 * critical sections can occur in irq handlers in nohz mode, a possibility
250 * handled by rcu_irq_enter() and rcu_irq_exit()).
251 */
252 void rcu_enter_nohz(void)
253 {
254 unsigned long flags;
255 struct rcu_dynticks *rdtp;
256
257 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
258 local_irq_save(flags);
259 rdtp = &__get_cpu_var(rcu_dynticks);
260 rdtp->dynticks++;
261 rdtp->dynticks_nesting--;
262 WARN_ON_ONCE(rdtp->dynticks & 0x1);
263 local_irq_restore(flags);
264 }
265
266 /*
267 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
268 *
269 * Exit nohz mode, in other words, -enter- the mode in which RCU
270 * read-side critical sections normally occur.
271 */
272 void rcu_exit_nohz(void)
273 {
274 unsigned long flags;
275 struct rcu_dynticks *rdtp;
276
277 local_irq_save(flags);
278 rdtp = &__get_cpu_var(rcu_dynticks);
279 rdtp->dynticks++;
280 rdtp->dynticks_nesting++;
281 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
282 local_irq_restore(flags);
283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
284 }
285
286 /**
287 * rcu_nmi_enter - inform RCU of entry to NMI context
288 *
289 * If the CPU was idle with dynamic ticks active, and there is no
290 * irq handler running, this updates rdtp->dynticks_nmi to let the
291 * RCU grace-period handling know that the CPU is active.
292 */
293 void rcu_nmi_enter(void)
294 {
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
296
297 if (rdtp->dynticks & 0x1)
298 return;
299 rdtp->dynticks_nmi++;
300 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
301 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
302 }
303
304 /**
305 * rcu_nmi_exit - inform RCU of exit from NMI context
306 *
307 * If the CPU was idle with dynamic ticks active, and there is no
308 * irq handler running, this updates rdtp->dynticks_nmi to let the
309 * RCU grace-period handling know that the CPU is no longer active.
310 */
311 void rcu_nmi_exit(void)
312 {
313 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
314
315 if (rdtp->dynticks & 0x1)
316 return;
317 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
318 rdtp->dynticks_nmi++;
319 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
320 }
321
322 /**
323 * rcu_irq_enter - inform RCU of entry to hard irq context
324 *
325 * If the CPU was idle with dynamic ticks active, this updates the
326 * rdtp->dynticks to let the RCU handling know that the CPU is active.
327 */
328 void rcu_irq_enter(void)
329 {
330 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
331
332 if (rdtp->dynticks_nesting++)
333 return;
334 rdtp->dynticks++;
335 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
336 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
337 }
338
339 /**
340 * rcu_irq_exit - inform RCU of exit from hard irq context
341 *
342 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
343 * to put let the RCU handling be aware that the CPU is going back to idle
344 * with no ticks.
345 */
346 void rcu_irq_exit(void)
347 {
348 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
349
350 if (--rdtp->dynticks_nesting)
351 return;
352 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
353 rdtp->dynticks++;
354 WARN_ON_ONCE(rdtp->dynticks & 0x1);
355
356 /* If the interrupt queued a callback, get out of dyntick mode. */
357 if (__get_cpu_var(rcu_sched_data).nxtlist ||
358 __get_cpu_var(rcu_bh_data).nxtlist)
359 set_need_resched();
360 }
361
362 #ifdef CONFIG_SMP
363
364 /*
365 * Snapshot the specified CPU's dynticks counter so that we can later
366 * credit them with an implicit quiescent state. Return 1 if this CPU
367 * is in dynticks idle mode, which is an extended quiescent state.
368 */
369 static int dyntick_save_progress_counter(struct rcu_data *rdp)
370 {
371 int ret;
372 int snap;
373 int snap_nmi;
374
375 snap = rdp->dynticks->dynticks;
376 snap_nmi = rdp->dynticks->dynticks_nmi;
377 smp_mb(); /* Order sampling of snap with end of grace period. */
378 rdp->dynticks_snap = snap;
379 rdp->dynticks_nmi_snap = snap_nmi;
380 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
381 if (ret)
382 rdp->dynticks_fqs++;
383 return ret;
384 }
385
386 /*
387 * Return true if the specified CPU has passed through a quiescent
388 * state by virtue of being in or having passed through an dynticks
389 * idle state since the last call to dyntick_save_progress_counter()
390 * for this same CPU.
391 */
392 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
393 {
394 long curr;
395 long curr_nmi;
396 long snap;
397 long snap_nmi;
398
399 curr = rdp->dynticks->dynticks;
400 snap = rdp->dynticks_snap;
401 curr_nmi = rdp->dynticks->dynticks_nmi;
402 snap_nmi = rdp->dynticks_nmi_snap;
403 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
404
405 /*
406 * If the CPU passed through or entered a dynticks idle phase with
407 * no active irq/NMI handlers, then we can safely pretend that the CPU
408 * already acknowledged the request to pass through a quiescent
409 * state. Either way, that CPU cannot possibly be in an RCU
410 * read-side critical section that started before the beginning
411 * of the current RCU grace period.
412 */
413 if ((curr != snap || (curr & 0x1) == 0) &&
414 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
415 rdp->dynticks_fqs++;
416 return 1;
417 }
418
419 /* Go check for the CPU being offline. */
420 return rcu_implicit_offline_qs(rdp);
421 }
422
423 #endif /* #ifdef CONFIG_SMP */
424
425 #else /* #ifdef CONFIG_NO_HZ */
426
427 #ifdef CONFIG_SMP
428
429 static int dyntick_save_progress_counter(struct rcu_data *rdp)
430 {
431 return 0;
432 }
433
434 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
435 {
436 return rcu_implicit_offline_qs(rdp);
437 }
438
439 #endif /* #ifdef CONFIG_SMP */
440
441 #endif /* #else #ifdef CONFIG_NO_HZ */
442
443 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
444
445 static void record_gp_stall_check_time(struct rcu_state *rsp)
446 {
447 rsp->gp_start = jiffies;
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
449 }
450
451 static void print_other_cpu_stall(struct rcu_state *rsp)
452 {
453 int cpu;
454 long delta;
455 unsigned long flags;
456 struct rcu_node *rnp = rcu_get_root(rsp);
457
458 /* Only let one CPU complain about others per time interval. */
459
460 raw_spin_lock_irqsave(&rnp->lock, flags);
461 delta = jiffies - rsp->jiffies_stall;
462 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
463 raw_spin_unlock_irqrestore(&rnp->lock, flags);
464 return;
465 }
466 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
467
468 /*
469 * Now rat on any tasks that got kicked up to the root rcu_node
470 * due to CPU offlining.
471 */
472 rcu_print_task_stall(rnp);
473 raw_spin_unlock_irqrestore(&rnp->lock, flags);
474
475 /* OK, time to rat on our buddy... */
476
477 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
478 rcu_for_each_leaf_node(rsp, rnp) {
479 raw_spin_lock_irqsave(&rnp->lock, flags);
480 rcu_print_task_stall(rnp);
481 raw_spin_unlock_irqrestore(&rnp->lock, flags);
482 if (rnp->qsmask == 0)
483 continue;
484 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
485 if (rnp->qsmask & (1UL << cpu))
486 printk(" %d", rnp->grplo + cpu);
487 }
488 printk(" (detected by %d, t=%ld jiffies)\n",
489 smp_processor_id(), (long)(jiffies - rsp->gp_start));
490 trigger_all_cpu_backtrace();
491
492 /* If so configured, complain about tasks blocking the grace period. */
493
494 rcu_print_detail_task_stall(rsp);
495
496 force_quiescent_state(rsp, 0); /* Kick them all. */
497 }
498
499 static void print_cpu_stall(struct rcu_state *rsp)
500 {
501 unsigned long flags;
502 struct rcu_node *rnp = rcu_get_root(rsp);
503
504 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
505 smp_processor_id(), jiffies - rsp->gp_start);
506 trigger_all_cpu_backtrace();
507
508 raw_spin_lock_irqsave(&rnp->lock, flags);
509 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
510 rsp->jiffies_stall =
511 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
512 raw_spin_unlock_irqrestore(&rnp->lock, flags);
513
514 set_need_resched(); /* kick ourselves to get things going. */
515 }
516
517 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
518 {
519 long delta;
520 struct rcu_node *rnp;
521
522 delta = jiffies - rsp->jiffies_stall;
523 rnp = rdp->mynode;
524 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
525
526 /* We haven't checked in, so go dump stack. */
527 print_cpu_stall(rsp);
528
529 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
530
531 /* They had two time units to dump stack, so complain. */
532 print_other_cpu_stall(rsp);
533 }
534 }
535
536 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
537
538 static void record_gp_stall_check_time(struct rcu_state *rsp)
539 {
540 }
541
542 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
543 {
544 }
545
546 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
547
548 /*
549 * Update CPU-local rcu_data state to record the newly noticed grace period.
550 * This is used both when we started the grace period and when we notice
551 * that someone else started the grace period. The caller must hold the
552 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
553 * and must have irqs disabled.
554 */
555 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
556 {
557 if (rdp->gpnum != rnp->gpnum) {
558 rdp->qs_pending = 1;
559 rdp->passed_quiesc = 0;
560 rdp->gpnum = rnp->gpnum;
561 }
562 }
563
564 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
565 {
566 unsigned long flags;
567 struct rcu_node *rnp;
568
569 local_irq_save(flags);
570 rnp = rdp->mynode;
571 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
572 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
573 local_irq_restore(flags);
574 return;
575 }
576 __note_new_gpnum(rsp, rnp, rdp);
577 raw_spin_unlock_irqrestore(&rnp->lock, flags);
578 }
579
580 /*
581 * Did someone else start a new RCU grace period start since we last
582 * checked? Update local state appropriately if so. Must be called
583 * on the CPU corresponding to rdp.
584 */
585 static int
586 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
587 {
588 unsigned long flags;
589 int ret = 0;
590
591 local_irq_save(flags);
592 if (rdp->gpnum != rsp->gpnum) {
593 note_new_gpnum(rsp, rdp);
594 ret = 1;
595 }
596 local_irq_restore(flags);
597 return ret;
598 }
599
600 /*
601 * Advance this CPU's callbacks, but only if the current grace period
602 * has ended. This may be called only from the CPU to whom the rdp
603 * belongs. In addition, the corresponding leaf rcu_node structure's
604 * ->lock must be held by the caller, with irqs disabled.
605 */
606 static void
607 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
608 {
609 /* Did another grace period end? */
610 if (rdp->completed != rnp->completed) {
611
612 /* Advance callbacks. No harm if list empty. */
613 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
614 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
615 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
616
617 /* Remember that we saw this grace-period completion. */
618 rdp->completed = rnp->completed;
619 }
620 }
621
622 /*
623 * Advance this CPU's callbacks, but only if the current grace period
624 * has ended. This may be called only from the CPU to whom the rdp
625 * belongs.
626 */
627 static void
628 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
629 {
630 unsigned long flags;
631 struct rcu_node *rnp;
632
633 local_irq_save(flags);
634 rnp = rdp->mynode;
635 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
636 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
637 local_irq_restore(flags);
638 return;
639 }
640 __rcu_process_gp_end(rsp, rnp, rdp);
641 raw_spin_unlock_irqrestore(&rnp->lock, flags);
642 }
643
644 /*
645 * Do per-CPU grace-period initialization for running CPU. The caller
646 * must hold the lock of the leaf rcu_node structure corresponding to
647 * this CPU.
648 */
649 static void
650 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
651 {
652 /* Prior grace period ended, so advance callbacks for current CPU. */
653 __rcu_process_gp_end(rsp, rnp, rdp);
654
655 /*
656 * Because this CPU just now started the new grace period, we know
657 * that all of its callbacks will be covered by this upcoming grace
658 * period, even the ones that were registered arbitrarily recently.
659 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
660 *
661 * Other CPUs cannot be sure exactly when the grace period started.
662 * Therefore, their recently registered callbacks must pass through
663 * an additional RCU_NEXT_READY stage, so that they will be handled
664 * by the next RCU grace period.
665 */
666 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
667 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
668
669 /* Set state so that this CPU will detect the next quiescent state. */
670 __note_new_gpnum(rsp, rnp, rdp);
671 }
672
673 /*
674 * Start a new RCU grace period if warranted, re-initializing the hierarchy
675 * in preparation for detecting the next grace period. The caller must hold
676 * the root node's ->lock, which is released before return. Hard irqs must
677 * be disabled.
678 */
679 static void
680 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
681 __releases(rcu_get_root(rsp)->lock)
682 {
683 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
684 struct rcu_node *rnp = rcu_get_root(rsp);
685
686 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
687 if (cpu_needs_another_gp(rsp, rdp))
688 rsp->fqs_need_gp = 1;
689 if (rnp->completed == rsp->completed) {
690 raw_spin_unlock_irqrestore(&rnp->lock, flags);
691 return;
692 }
693 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
694
695 /*
696 * Propagate new ->completed value to rcu_node structures
697 * so that other CPUs don't have to wait until the start
698 * of the next grace period to process their callbacks.
699 */
700 rcu_for_each_node_breadth_first(rsp, rnp) {
701 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
702 rnp->completed = rsp->completed;
703 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
704 }
705 local_irq_restore(flags);
706 return;
707 }
708
709 /* Advance to a new grace period and initialize state. */
710 rsp->gpnum++;
711 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
712 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
713 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
714 record_gp_stall_check_time(rsp);
715
716 /* Special-case the common single-level case. */
717 if (NUM_RCU_NODES == 1) {
718 rcu_preempt_check_blocked_tasks(rnp);
719 rnp->qsmask = rnp->qsmaskinit;
720 rnp->gpnum = rsp->gpnum;
721 rnp->completed = rsp->completed;
722 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
723 rcu_start_gp_per_cpu(rsp, rnp, rdp);
724 raw_spin_unlock_irqrestore(&rnp->lock, flags);
725 return;
726 }
727
728 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
729
730
731 /* Exclude any concurrent CPU-hotplug operations. */
732 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
733
734 /*
735 * Set the quiescent-state-needed bits in all the rcu_node
736 * structures for all currently online CPUs in breadth-first
737 * order, starting from the root rcu_node structure. This
738 * operation relies on the layout of the hierarchy within the
739 * rsp->node[] array. Note that other CPUs will access only
740 * the leaves of the hierarchy, which still indicate that no
741 * grace period is in progress, at least until the corresponding
742 * leaf node has been initialized. In addition, we have excluded
743 * CPU-hotplug operations.
744 *
745 * Note that the grace period cannot complete until we finish
746 * the initialization process, as there will be at least one
747 * qsmask bit set in the root node until that time, namely the
748 * one corresponding to this CPU, due to the fact that we have
749 * irqs disabled.
750 */
751 rcu_for_each_node_breadth_first(rsp, rnp) {
752 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
753 rcu_preempt_check_blocked_tasks(rnp);
754 rnp->qsmask = rnp->qsmaskinit;
755 rnp->gpnum = rsp->gpnum;
756 rnp->completed = rsp->completed;
757 if (rnp == rdp->mynode)
758 rcu_start_gp_per_cpu(rsp, rnp, rdp);
759 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
760 }
761
762 rnp = rcu_get_root(rsp);
763 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
764 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
765 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
766 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
767 }
768
769 /*
770 * Report a full set of quiescent states to the specified rcu_state
771 * data structure. This involves cleaning up after the prior grace
772 * period and letting rcu_start_gp() start up the next grace period
773 * if one is needed. Note that the caller must hold rnp->lock, as
774 * required by rcu_start_gp(), which will release it.
775 */
776 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
777 __releases(rcu_get_root(rsp)->lock)
778 {
779 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
780 rsp->completed = rsp->gpnum;
781 rsp->signaled = RCU_GP_IDLE;
782 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
783 }
784
785 /*
786 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
787 * Allows quiescent states for a group of CPUs to be reported at one go
788 * to the specified rcu_node structure, though all the CPUs in the group
789 * must be represented by the same rcu_node structure (which need not be
790 * a leaf rcu_node structure, though it often will be). That structure's
791 * lock must be held upon entry, and it is released before return.
792 */
793 static void
794 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
795 struct rcu_node *rnp, unsigned long flags)
796 __releases(rnp->lock)
797 {
798 struct rcu_node *rnp_c;
799
800 /* Walk up the rcu_node hierarchy. */
801 for (;;) {
802 if (!(rnp->qsmask & mask)) {
803
804 /* Our bit has already been cleared, so done. */
805 raw_spin_unlock_irqrestore(&rnp->lock, flags);
806 return;
807 }
808 rnp->qsmask &= ~mask;
809 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
810
811 /* Other bits still set at this level, so done. */
812 raw_spin_unlock_irqrestore(&rnp->lock, flags);
813 return;
814 }
815 mask = rnp->grpmask;
816 if (rnp->parent == NULL) {
817
818 /* No more levels. Exit loop holding root lock. */
819
820 break;
821 }
822 raw_spin_unlock_irqrestore(&rnp->lock, flags);
823 rnp_c = rnp;
824 rnp = rnp->parent;
825 raw_spin_lock_irqsave(&rnp->lock, flags);
826 WARN_ON_ONCE(rnp_c->qsmask);
827 }
828
829 /*
830 * Get here if we are the last CPU to pass through a quiescent
831 * state for this grace period. Invoke rcu_report_qs_rsp()
832 * to clean up and start the next grace period if one is needed.
833 */
834 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
835 }
836
837 /*
838 * Record a quiescent state for the specified CPU to that CPU's rcu_data
839 * structure. This must be either called from the specified CPU, or
840 * called when the specified CPU is known to be offline (and when it is
841 * also known that no other CPU is concurrently trying to help the offline
842 * CPU). The lastcomp argument is used to make sure we are still in the
843 * grace period of interest. We don't want to end the current grace period
844 * based on quiescent states detected in an earlier grace period!
845 */
846 static void
847 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
848 {
849 unsigned long flags;
850 unsigned long mask;
851 struct rcu_node *rnp;
852
853 rnp = rdp->mynode;
854 raw_spin_lock_irqsave(&rnp->lock, flags);
855 if (lastcomp != rnp->completed) {
856
857 /*
858 * Someone beat us to it for this grace period, so leave.
859 * The race with GP start is resolved by the fact that we
860 * hold the leaf rcu_node lock, so that the per-CPU bits
861 * cannot yet be initialized -- so we would simply find our
862 * CPU's bit already cleared in rcu_report_qs_rnp() if this
863 * race occurred.
864 */
865 rdp->passed_quiesc = 0; /* try again later! */
866 raw_spin_unlock_irqrestore(&rnp->lock, flags);
867 return;
868 }
869 mask = rdp->grpmask;
870 if ((rnp->qsmask & mask) == 0) {
871 raw_spin_unlock_irqrestore(&rnp->lock, flags);
872 } else {
873 rdp->qs_pending = 0;
874
875 /*
876 * This GP can't end until cpu checks in, so all of our
877 * callbacks can be processed during the next GP.
878 */
879 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
880
881 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
882 }
883 }
884
885 /*
886 * Check to see if there is a new grace period of which this CPU
887 * is not yet aware, and if so, set up local rcu_data state for it.
888 * Otherwise, see if this CPU has just passed through its first
889 * quiescent state for this grace period, and record that fact if so.
890 */
891 static void
892 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
893 {
894 /* If there is now a new grace period, record and return. */
895 if (check_for_new_grace_period(rsp, rdp))
896 return;
897
898 /*
899 * Does this CPU still need to do its part for current grace period?
900 * If no, return and let the other CPUs do their part as well.
901 */
902 if (!rdp->qs_pending)
903 return;
904
905 /*
906 * Was there a quiescent state since the beginning of the grace
907 * period? If no, then exit and wait for the next call.
908 */
909 if (!rdp->passed_quiesc)
910 return;
911
912 /*
913 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
914 * judge of that).
915 */
916 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
917 }
918
919 #ifdef CONFIG_HOTPLUG_CPU
920
921 /*
922 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
923 * specified flavor of RCU. The callbacks will be adopted by the next
924 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
925 * comes first. Because this is invoked from the CPU_DYING notifier,
926 * irqs are already disabled.
927 */
928 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
929 {
930 int i;
931 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
932
933 if (rdp->nxtlist == NULL)
934 return; /* irqs disabled, so comparison is stable. */
935 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
936 *rsp->orphan_cbs_tail = rdp->nxtlist;
937 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
938 rdp->nxtlist = NULL;
939 for (i = 0; i < RCU_NEXT_SIZE; i++)
940 rdp->nxttail[i] = &rdp->nxtlist;
941 rsp->orphan_qlen += rdp->qlen;
942 rdp->qlen = 0;
943 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
944 }
945
946 /*
947 * Adopt previously orphaned RCU callbacks.
948 */
949 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
950 {
951 unsigned long flags;
952 struct rcu_data *rdp;
953
954 raw_spin_lock_irqsave(&rsp->onofflock, flags);
955 rdp = rsp->rda[smp_processor_id()];
956 if (rsp->orphan_cbs_list == NULL) {
957 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
958 return;
959 }
960 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
961 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
962 rdp->qlen += rsp->orphan_qlen;
963 rsp->orphan_cbs_list = NULL;
964 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
965 rsp->orphan_qlen = 0;
966 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
967 }
968
969 /*
970 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
971 * and move all callbacks from the outgoing CPU to the current one.
972 */
973 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
974 {
975 unsigned long flags;
976 unsigned long mask;
977 int need_report = 0;
978 struct rcu_data *rdp = rsp->rda[cpu];
979 struct rcu_node *rnp;
980
981 /* Exclude any attempts to start a new grace period. */
982 raw_spin_lock_irqsave(&rsp->onofflock, flags);
983
984 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
985 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
986 mask = rdp->grpmask; /* rnp->grplo is constant. */
987 do {
988 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
989 rnp->qsmaskinit &= ~mask;
990 if (rnp->qsmaskinit != 0) {
991 if (rnp != rdp->mynode)
992 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
993 break;
994 }
995 if (rnp == rdp->mynode)
996 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
997 else
998 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
999 mask = rnp->grpmask;
1000 rnp = rnp->parent;
1001 } while (rnp != NULL);
1002
1003 /*
1004 * We still hold the leaf rcu_node structure lock here, and
1005 * irqs are still disabled. The reason for this subterfuge is
1006 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1007 * held leads to deadlock.
1008 */
1009 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1010 rnp = rdp->mynode;
1011 if (need_report & RCU_OFL_TASKS_NORM_GP)
1012 rcu_report_unblock_qs_rnp(rnp, flags);
1013 else
1014 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1015 if (need_report & RCU_OFL_TASKS_EXP_GP)
1016 rcu_report_exp_rnp(rsp, rnp);
1017
1018 rcu_adopt_orphan_cbs(rsp);
1019 }
1020
1021 /*
1022 * Remove the specified CPU from the RCU hierarchy and move any pending
1023 * callbacks that it might have to the current CPU. This code assumes
1024 * that at least one CPU in the system will remain running at all times.
1025 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1026 */
1027 static void rcu_offline_cpu(int cpu)
1028 {
1029 __rcu_offline_cpu(cpu, &rcu_sched_state);
1030 __rcu_offline_cpu(cpu, &rcu_bh_state);
1031 rcu_preempt_offline_cpu(cpu);
1032 }
1033
1034 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1035
1036 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1037 {
1038 }
1039
1040 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1041 {
1042 }
1043
1044 static void rcu_offline_cpu(int cpu)
1045 {
1046 }
1047
1048 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1049
1050 /*
1051 * Invoke any RCU callbacks that have made it to the end of their grace
1052 * period. Thottle as specified by rdp->blimit.
1053 */
1054 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1055 {
1056 unsigned long flags;
1057 struct rcu_head *next, *list, **tail;
1058 int count;
1059
1060 /* If no callbacks are ready, just return.*/
1061 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1062 return;
1063
1064 /*
1065 * Extract the list of ready callbacks, disabling to prevent
1066 * races with call_rcu() from interrupt handlers.
1067 */
1068 local_irq_save(flags);
1069 list = rdp->nxtlist;
1070 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1071 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1072 tail = rdp->nxttail[RCU_DONE_TAIL];
1073 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1074 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1075 rdp->nxttail[count] = &rdp->nxtlist;
1076 local_irq_restore(flags);
1077
1078 /* Invoke callbacks. */
1079 count = 0;
1080 while (list) {
1081 next = list->next;
1082 prefetch(next);
1083 list->func(list);
1084 list = next;
1085 if (++count >= rdp->blimit)
1086 break;
1087 }
1088
1089 local_irq_save(flags);
1090
1091 /* Update count, and requeue any remaining callbacks. */
1092 rdp->qlen -= count;
1093 if (list != NULL) {
1094 *tail = rdp->nxtlist;
1095 rdp->nxtlist = list;
1096 for (count = 0; count < RCU_NEXT_SIZE; count++)
1097 if (&rdp->nxtlist == rdp->nxttail[count])
1098 rdp->nxttail[count] = tail;
1099 else
1100 break;
1101 }
1102
1103 /* Reinstate batch limit if we have worked down the excess. */
1104 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1105 rdp->blimit = blimit;
1106
1107 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1108 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1109 rdp->qlen_last_fqs_check = 0;
1110 rdp->n_force_qs_snap = rsp->n_force_qs;
1111 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1112 rdp->qlen_last_fqs_check = rdp->qlen;
1113
1114 local_irq_restore(flags);
1115
1116 /* Re-raise the RCU softirq if there are callbacks remaining. */
1117 if (cpu_has_callbacks_ready_to_invoke(rdp))
1118 raise_softirq(RCU_SOFTIRQ);
1119 }
1120
1121 /*
1122 * Check to see if this CPU is in a non-context-switch quiescent state
1123 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1124 * Also schedule the RCU softirq handler.
1125 *
1126 * This function must be called with hardirqs disabled. It is normally
1127 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1128 * false, there is no point in invoking rcu_check_callbacks().
1129 */
1130 void rcu_check_callbacks(int cpu, int user)
1131 {
1132 if (!rcu_pending(cpu))
1133 return; /* if nothing for RCU to do. */
1134 if (user ||
1135 (idle_cpu(cpu) && rcu_scheduler_active &&
1136 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1137
1138 /*
1139 * Get here if this CPU took its interrupt from user
1140 * mode or from the idle loop, and if this is not a
1141 * nested interrupt. In this case, the CPU is in
1142 * a quiescent state, so note it.
1143 *
1144 * No memory barrier is required here because both
1145 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1146 * variables that other CPUs neither access nor modify,
1147 * at least not while the corresponding CPU is online.
1148 */
1149
1150 rcu_sched_qs(cpu);
1151 rcu_bh_qs(cpu);
1152
1153 } else if (!in_softirq()) {
1154
1155 /*
1156 * Get here if this CPU did not take its interrupt from
1157 * softirq, in other words, if it is not interrupting
1158 * a rcu_bh read-side critical section. This is an _bh
1159 * critical section, so note it.
1160 */
1161
1162 rcu_bh_qs(cpu);
1163 }
1164 rcu_preempt_check_callbacks(cpu);
1165 raise_softirq(RCU_SOFTIRQ);
1166 }
1167
1168 #ifdef CONFIG_SMP
1169
1170 /*
1171 * Scan the leaf rcu_node structures, processing dyntick state for any that
1172 * have not yet encountered a quiescent state, using the function specified.
1173 * The caller must have suppressed start of new grace periods.
1174 */
1175 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1176 {
1177 unsigned long bit;
1178 int cpu;
1179 unsigned long flags;
1180 unsigned long mask;
1181 struct rcu_node *rnp;
1182
1183 rcu_for_each_leaf_node(rsp, rnp) {
1184 mask = 0;
1185 raw_spin_lock_irqsave(&rnp->lock, flags);
1186 if (!rcu_gp_in_progress(rsp)) {
1187 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1188 return;
1189 }
1190 if (rnp->qsmask == 0) {
1191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 continue;
1193 }
1194 cpu = rnp->grplo;
1195 bit = 1;
1196 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1197 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1198 mask |= bit;
1199 }
1200 if (mask != 0) {
1201
1202 /* rcu_report_qs_rnp() releases rnp->lock. */
1203 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1204 continue;
1205 }
1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207 }
1208 }
1209
1210 /*
1211 * Force quiescent states on reluctant CPUs, and also detect which
1212 * CPUs are in dyntick-idle mode.
1213 */
1214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1215 {
1216 unsigned long flags;
1217 struct rcu_node *rnp = rcu_get_root(rsp);
1218
1219 if (!rcu_gp_in_progress(rsp))
1220 return; /* No grace period in progress, nothing to force. */
1221 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1222 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1223 return; /* Someone else is already on the job. */
1224 }
1225 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1226 goto unlock_fqs_ret; /* no emergency and done recently. */
1227 rsp->n_force_qs++;
1228 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1229 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1230 if(!rcu_gp_in_progress(rsp)) {
1231 rsp->n_force_qs_ngp++;
1232 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1233 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1234 }
1235 rsp->fqs_active = 1;
1236 switch (rsp->signaled) {
1237 case RCU_GP_IDLE:
1238 case RCU_GP_INIT:
1239
1240 break; /* grace period idle or initializing, ignore. */
1241
1242 case RCU_SAVE_DYNTICK:
1243
1244 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1245 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1246 break; /* So gcc recognizes the dead code. */
1247
1248 /* Record dyntick-idle state. */
1249 force_qs_rnp(rsp, dyntick_save_progress_counter);
1250 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1251 if (rcu_gp_in_progress(rsp))
1252 rsp->signaled = RCU_FORCE_QS;
1253 break;
1254
1255 case RCU_FORCE_QS:
1256
1257 /* Check dyntick-idle state, send IPI to laggarts. */
1258 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1259 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1260
1261 /* Leave state in case more forcing is required. */
1262
1263 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1264 break;
1265 }
1266 rsp->fqs_active = 0;
1267 if (rsp->fqs_need_gp) {
1268 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1269 rsp->fqs_need_gp = 0;
1270 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1271 return;
1272 }
1273 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1274 unlock_fqs_ret:
1275 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1276 }
1277
1278 #else /* #ifdef CONFIG_SMP */
1279
1280 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1281 {
1282 set_need_resched();
1283 }
1284
1285 #endif /* #else #ifdef CONFIG_SMP */
1286
1287 /*
1288 * This does the RCU processing work from softirq context for the
1289 * specified rcu_state and rcu_data structures. This may be called
1290 * only from the CPU to whom the rdp belongs.
1291 */
1292 static void
1293 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1294 {
1295 unsigned long flags;
1296
1297 WARN_ON_ONCE(rdp->beenonline == 0);
1298
1299 /*
1300 * If an RCU GP has gone long enough, go check for dyntick
1301 * idle CPUs and, if needed, send resched IPIs.
1302 */
1303 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1304 force_quiescent_state(rsp, 1);
1305
1306 /*
1307 * Advance callbacks in response to end of earlier grace
1308 * period that some other CPU ended.
1309 */
1310 rcu_process_gp_end(rsp, rdp);
1311
1312 /* Update RCU state based on any recent quiescent states. */
1313 rcu_check_quiescent_state(rsp, rdp);
1314
1315 /* Does this CPU require a not-yet-started grace period? */
1316 if (cpu_needs_another_gp(rsp, rdp)) {
1317 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1318 rcu_start_gp(rsp, flags); /* releases above lock */
1319 }
1320
1321 /* If there are callbacks ready, invoke them. */
1322 rcu_do_batch(rsp, rdp);
1323 }
1324
1325 /*
1326 * Do softirq processing for the current CPU.
1327 */
1328 static void rcu_process_callbacks(struct softirq_action *unused)
1329 {
1330 /*
1331 * Memory references from any prior RCU read-side critical sections
1332 * executed by the interrupted code must be seen before any RCU
1333 * grace-period manipulations below.
1334 */
1335 smp_mb(); /* See above block comment. */
1336
1337 __rcu_process_callbacks(&rcu_sched_state,
1338 &__get_cpu_var(rcu_sched_data));
1339 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1340 rcu_preempt_process_callbacks();
1341
1342 /*
1343 * Memory references from any later RCU read-side critical sections
1344 * executed by the interrupted code must be seen after any RCU
1345 * grace-period manipulations above.
1346 */
1347 smp_mb(); /* See above block comment. */
1348 }
1349
1350 static void
1351 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1352 struct rcu_state *rsp)
1353 {
1354 unsigned long flags;
1355 struct rcu_data *rdp;
1356
1357 head->func = func;
1358 head->next = NULL;
1359
1360 smp_mb(); /* Ensure RCU update seen before callback registry. */
1361
1362 /*
1363 * Opportunistically note grace-period endings and beginnings.
1364 * Note that we might see a beginning right after we see an
1365 * end, but never vice versa, since this CPU has to pass through
1366 * a quiescent state betweentimes.
1367 */
1368 local_irq_save(flags);
1369 rdp = rsp->rda[smp_processor_id()];
1370 rcu_process_gp_end(rsp, rdp);
1371 check_for_new_grace_period(rsp, rdp);
1372
1373 /* Add the callback to our list. */
1374 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1375 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1376
1377 /* Start a new grace period if one not already started. */
1378 if (!rcu_gp_in_progress(rsp)) {
1379 unsigned long nestflag;
1380 struct rcu_node *rnp_root = rcu_get_root(rsp);
1381
1382 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1383 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1384 }
1385
1386 /*
1387 * Force the grace period if too many callbacks or too long waiting.
1388 * Enforce hysteresis, and don't invoke force_quiescent_state()
1389 * if some other CPU has recently done so. Also, don't bother
1390 * invoking force_quiescent_state() if the newly enqueued callback
1391 * is the only one waiting for a grace period to complete.
1392 */
1393 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1394 rdp->blimit = LONG_MAX;
1395 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1396 *rdp->nxttail[RCU_DONE_TAIL] != head)
1397 force_quiescent_state(rsp, 0);
1398 rdp->n_force_qs_snap = rsp->n_force_qs;
1399 rdp->qlen_last_fqs_check = rdp->qlen;
1400 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1401 force_quiescent_state(rsp, 1);
1402 local_irq_restore(flags);
1403 }
1404
1405 /*
1406 * Queue an RCU-sched callback for invocation after a grace period.
1407 */
1408 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1409 {
1410 __call_rcu(head, func, &rcu_sched_state);
1411 }
1412 EXPORT_SYMBOL_GPL(call_rcu_sched);
1413
1414 /*
1415 * Queue an RCU for invocation after a quicker grace period.
1416 */
1417 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1418 {
1419 __call_rcu(head, func, &rcu_bh_state);
1420 }
1421 EXPORT_SYMBOL_GPL(call_rcu_bh);
1422
1423 /**
1424 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1425 *
1426 * Control will return to the caller some time after a full rcu-sched
1427 * grace period has elapsed, in other words after all currently executing
1428 * rcu-sched read-side critical sections have completed. These read-side
1429 * critical sections are delimited by rcu_read_lock_sched() and
1430 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1431 * local_irq_disable(), and so on may be used in place of
1432 * rcu_read_lock_sched().
1433 *
1434 * This means that all preempt_disable code sequences, including NMI and
1435 * hardware-interrupt handlers, in progress on entry will have completed
1436 * before this primitive returns. However, this does not guarantee that
1437 * softirq handlers will have completed, since in some kernels, these
1438 * handlers can run in process context, and can block.
1439 *
1440 * This primitive provides the guarantees made by the (now removed)
1441 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1442 * guarantees that rcu_read_lock() sections will have completed.
1443 * In "classic RCU", these two guarantees happen to be one and
1444 * the same, but can differ in realtime RCU implementations.
1445 */
1446 void synchronize_sched(void)
1447 {
1448 struct rcu_synchronize rcu;
1449
1450 if (rcu_blocking_is_gp())
1451 return;
1452
1453 init_completion(&rcu.completion);
1454 /* Will wake me after RCU finished. */
1455 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1456 /* Wait for it. */
1457 wait_for_completion(&rcu.completion);
1458 }
1459 EXPORT_SYMBOL_GPL(synchronize_sched);
1460
1461 /**
1462 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1463 *
1464 * Control will return to the caller some time after a full rcu_bh grace
1465 * period has elapsed, in other words after all currently executing rcu_bh
1466 * read-side critical sections have completed. RCU read-side critical
1467 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1468 * and may be nested.
1469 */
1470 void synchronize_rcu_bh(void)
1471 {
1472 struct rcu_synchronize rcu;
1473
1474 if (rcu_blocking_is_gp())
1475 return;
1476
1477 init_completion(&rcu.completion);
1478 /* Will wake me after RCU finished. */
1479 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1480 /* Wait for it. */
1481 wait_for_completion(&rcu.completion);
1482 }
1483 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1484
1485 /*
1486 * Check to see if there is any immediate RCU-related work to be done
1487 * by the current CPU, for the specified type of RCU, returning 1 if so.
1488 * The checks are in order of increasing expense: checks that can be
1489 * carried out against CPU-local state are performed first. However,
1490 * we must check for CPU stalls first, else we might not get a chance.
1491 */
1492 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1493 {
1494 struct rcu_node *rnp = rdp->mynode;
1495
1496 rdp->n_rcu_pending++;
1497
1498 /* Check for CPU stalls, if enabled. */
1499 check_cpu_stall(rsp, rdp);
1500
1501 /* Is the RCU core waiting for a quiescent state from this CPU? */
1502 if (rdp->qs_pending) {
1503 rdp->n_rp_qs_pending++;
1504 return 1;
1505 }
1506
1507 /* Does this CPU have callbacks ready to invoke? */
1508 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1509 rdp->n_rp_cb_ready++;
1510 return 1;
1511 }
1512
1513 /* Has RCU gone idle with this CPU needing another grace period? */
1514 if (cpu_needs_another_gp(rsp, rdp)) {
1515 rdp->n_rp_cpu_needs_gp++;
1516 return 1;
1517 }
1518
1519 /* Has another RCU grace period completed? */
1520 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1521 rdp->n_rp_gp_completed++;
1522 return 1;
1523 }
1524
1525 /* Has a new RCU grace period started? */
1526 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1527 rdp->n_rp_gp_started++;
1528 return 1;
1529 }
1530
1531 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1532 if (rcu_gp_in_progress(rsp) &&
1533 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1534 rdp->n_rp_need_fqs++;
1535 return 1;
1536 }
1537
1538 /* nothing to do */
1539 rdp->n_rp_need_nothing++;
1540 return 0;
1541 }
1542
1543 /*
1544 * Check to see if there is any immediate RCU-related work to be done
1545 * by the current CPU, returning 1 if so. This function is part of the
1546 * RCU implementation; it is -not- an exported member of the RCU API.
1547 */
1548 static int rcu_pending(int cpu)
1549 {
1550 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1551 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1552 rcu_preempt_pending(cpu);
1553 }
1554
1555 /*
1556 * Check to see if any future RCU-related work will need to be done
1557 * by the current CPU, even if none need be done immediately, returning
1558 * 1 if so.
1559 */
1560 static int rcu_needs_cpu_quick_check(int cpu)
1561 {
1562 /* RCU callbacks either ready or pending? */
1563 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1564 per_cpu(rcu_bh_data, cpu).nxtlist ||
1565 rcu_preempt_needs_cpu(cpu);
1566 }
1567
1568 /*
1569 * This function is invoked towards the end of the scheduler's initialization
1570 * process. Before this is called, the idle task might contain
1571 * RCU read-side critical sections (during which time, this idle
1572 * task is booting the system). After this function is called, the
1573 * idle tasks are prohibited from containing RCU read-side critical
1574 * sections.
1575 */
1576 void rcu_scheduler_starting(void)
1577 {
1578 WARN_ON(num_online_cpus() != 1);
1579 WARN_ON(nr_context_switches() > 0);
1580 rcu_scheduler_active = 1;
1581 }
1582
1583 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1584 static atomic_t rcu_barrier_cpu_count;
1585 static DEFINE_MUTEX(rcu_barrier_mutex);
1586 static struct completion rcu_barrier_completion;
1587
1588 static void rcu_barrier_callback(struct rcu_head *notused)
1589 {
1590 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1591 complete(&rcu_barrier_completion);
1592 }
1593
1594 /*
1595 * Called with preemption disabled, and from cross-cpu IRQ context.
1596 */
1597 static void rcu_barrier_func(void *type)
1598 {
1599 int cpu = smp_processor_id();
1600 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1601 void (*call_rcu_func)(struct rcu_head *head,
1602 void (*func)(struct rcu_head *head));
1603
1604 atomic_inc(&rcu_barrier_cpu_count);
1605 call_rcu_func = type;
1606 call_rcu_func(head, rcu_barrier_callback);
1607 }
1608
1609 /*
1610 * Orchestrate the specified type of RCU barrier, waiting for all
1611 * RCU callbacks of the specified type to complete.
1612 */
1613 static void _rcu_barrier(struct rcu_state *rsp,
1614 void (*call_rcu_func)(struct rcu_head *head,
1615 void (*func)(struct rcu_head *head)))
1616 {
1617 BUG_ON(in_interrupt());
1618 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1619 mutex_lock(&rcu_barrier_mutex);
1620 init_completion(&rcu_barrier_completion);
1621 /*
1622 * Initialize rcu_barrier_cpu_count to 1, then invoke
1623 * rcu_barrier_func() on each CPU, so that each CPU also has
1624 * incremented rcu_barrier_cpu_count. Only then is it safe to
1625 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1626 * might complete its grace period before all of the other CPUs
1627 * did their increment, causing this function to return too
1628 * early.
1629 */
1630 atomic_set(&rcu_barrier_cpu_count, 1);
1631 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1632 rcu_adopt_orphan_cbs(rsp);
1633 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1634 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1635 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1636 complete(&rcu_barrier_completion);
1637 wait_for_completion(&rcu_barrier_completion);
1638 mutex_unlock(&rcu_barrier_mutex);
1639 }
1640
1641 /**
1642 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1643 */
1644 void rcu_barrier_bh(void)
1645 {
1646 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1647 }
1648 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1649
1650 /**
1651 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1652 */
1653 void rcu_barrier_sched(void)
1654 {
1655 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1656 }
1657 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1658
1659 /*
1660 * Do boot-time initialization of a CPU's per-CPU RCU data.
1661 */
1662 static void __init
1663 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1664 {
1665 unsigned long flags;
1666 int i;
1667 struct rcu_data *rdp = rsp->rda[cpu];
1668 struct rcu_node *rnp = rcu_get_root(rsp);
1669
1670 /* Set up local state, ensuring consistent view of global state. */
1671 raw_spin_lock_irqsave(&rnp->lock, flags);
1672 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1673 rdp->nxtlist = NULL;
1674 for (i = 0; i < RCU_NEXT_SIZE; i++)
1675 rdp->nxttail[i] = &rdp->nxtlist;
1676 rdp->qlen = 0;
1677 #ifdef CONFIG_NO_HZ
1678 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1679 #endif /* #ifdef CONFIG_NO_HZ */
1680 rdp->cpu = cpu;
1681 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1682 }
1683
1684 /*
1685 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1686 * offline event can be happening at a given time. Note also that we
1687 * can accept some slop in the rsp->completed access due to the fact
1688 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1689 */
1690 static void __cpuinit
1691 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1692 {
1693 unsigned long flags;
1694 unsigned long mask;
1695 struct rcu_data *rdp = rsp->rda[cpu];
1696 struct rcu_node *rnp = rcu_get_root(rsp);
1697
1698 /* Set up local state, ensuring consistent view of global state. */
1699 raw_spin_lock_irqsave(&rnp->lock, flags);
1700 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1701 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1702 rdp->beenonline = 1; /* We have now been online. */
1703 rdp->preemptable = preemptable;
1704 rdp->qlen_last_fqs_check = 0;
1705 rdp->n_force_qs_snap = rsp->n_force_qs;
1706 rdp->blimit = blimit;
1707 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1708
1709 /*
1710 * A new grace period might start here. If so, we won't be part
1711 * of it, but that is OK, as we are currently in a quiescent state.
1712 */
1713
1714 /* Exclude any attempts to start a new GP on large systems. */
1715 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1716
1717 /* Add CPU to rcu_node bitmasks. */
1718 rnp = rdp->mynode;
1719 mask = rdp->grpmask;
1720 do {
1721 /* Exclude any attempts to start a new GP on small systems. */
1722 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1723 rnp->qsmaskinit |= mask;
1724 mask = rnp->grpmask;
1725 if (rnp == rdp->mynode) {
1726 rdp->gpnum = rnp->completed; /* if GP in progress... */
1727 rdp->completed = rnp->completed;
1728 rdp->passed_quiesc_completed = rnp->completed - 1;
1729 }
1730 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1731 rnp = rnp->parent;
1732 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1733
1734 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1735 }
1736
1737 static void __cpuinit rcu_online_cpu(int cpu)
1738 {
1739 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1740 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1741 rcu_preempt_init_percpu_data(cpu);
1742 }
1743
1744 /*
1745 * Handle CPU online/offline notification events.
1746 */
1747 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1748 unsigned long action, void *hcpu)
1749 {
1750 long cpu = (long)hcpu;
1751
1752 switch (action) {
1753 case CPU_UP_PREPARE:
1754 case CPU_UP_PREPARE_FROZEN:
1755 rcu_online_cpu(cpu);
1756 break;
1757 case CPU_DYING:
1758 case CPU_DYING_FROZEN:
1759 /*
1760 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1761 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1762 * returns, all online cpus have queued rcu_barrier_func().
1763 * The dying CPU clears its cpu_online_mask bit and
1764 * moves all of its RCU callbacks to ->orphan_cbs_list
1765 * in the context of stop_machine(), so subsequent calls
1766 * to _rcu_barrier() will adopt these callbacks and only
1767 * then queue rcu_barrier_func() on all remaining CPUs.
1768 */
1769 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1770 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1771 rcu_preempt_send_cbs_to_orphanage();
1772 break;
1773 case CPU_DEAD:
1774 case CPU_DEAD_FROZEN:
1775 case CPU_UP_CANCELED:
1776 case CPU_UP_CANCELED_FROZEN:
1777 rcu_offline_cpu(cpu);
1778 break;
1779 default:
1780 break;
1781 }
1782 return NOTIFY_OK;
1783 }
1784
1785 /*
1786 * Compute the per-level fanout, either using the exact fanout specified
1787 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1788 */
1789 #ifdef CONFIG_RCU_FANOUT_EXACT
1790 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1791 {
1792 int i;
1793
1794 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1795 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1796 }
1797 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1798 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1799 {
1800 int ccur;
1801 int cprv;
1802 int i;
1803
1804 cprv = NR_CPUS;
1805 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1806 ccur = rsp->levelcnt[i];
1807 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1808 cprv = ccur;
1809 }
1810 }
1811 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1812
1813 /*
1814 * Helper function for rcu_init() that initializes one rcu_state structure.
1815 */
1816 static void __init rcu_init_one(struct rcu_state *rsp)
1817 {
1818 static char *buf[] = { "rcu_node_level_0",
1819 "rcu_node_level_1",
1820 "rcu_node_level_2",
1821 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1822 int cpustride = 1;
1823 int i;
1824 int j;
1825 struct rcu_node *rnp;
1826
1827 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1828
1829 /* Initialize the level-tracking arrays. */
1830
1831 for (i = 1; i < NUM_RCU_LVLS; i++)
1832 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1833 rcu_init_levelspread(rsp);
1834
1835 /* Initialize the elements themselves, starting from the leaves. */
1836
1837 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1838 cpustride *= rsp->levelspread[i];
1839 rnp = rsp->level[i];
1840 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1841 raw_spin_lock_init(&rnp->lock);
1842 lockdep_set_class_and_name(&rnp->lock,
1843 &rcu_node_class[i], buf[i]);
1844 rnp->gpnum = 0;
1845 rnp->qsmask = 0;
1846 rnp->qsmaskinit = 0;
1847 rnp->grplo = j * cpustride;
1848 rnp->grphi = (j + 1) * cpustride - 1;
1849 if (rnp->grphi >= NR_CPUS)
1850 rnp->grphi = NR_CPUS - 1;
1851 if (i == 0) {
1852 rnp->grpnum = 0;
1853 rnp->grpmask = 0;
1854 rnp->parent = NULL;
1855 } else {
1856 rnp->grpnum = j % rsp->levelspread[i - 1];
1857 rnp->grpmask = 1UL << rnp->grpnum;
1858 rnp->parent = rsp->level[i - 1] +
1859 j / rsp->levelspread[i - 1];
1860 }
1861 rnp->level = i;
1862 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1863 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1864 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1865 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1866 }
1867 }
1868 }
1869
1870 /*
1871 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1872 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1873 * structure.
1874 */
1875 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1876 do { \
1877 int i; \
1878 int j; \
1879 struct rcu_node *rnp; \
1880 \
1881 rcu_init_one(rsp); \
1882 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1883 j = 0; \
1884 for_each_possible_cpu(i) { \
1885 if (i > rnp[j].grphi) \
1886 j++; \
1887 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1888 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1889 rcu_boot_init_percpu_data(i, rsp); \
1890 } \
1891 } while (0)
1892
1893 void __init rcu_init(void)
1894 {
1895 int cpu;
1896
1897 rcu_bootup_announce();
1898 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1899 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1900 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1901 #if NUM_RCU_LVL_4 != 0
1902 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1903 #endif /* #if NUM_RCU_LVL_4 != 0 */
1904 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1905 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1906 __rcu_init_preempt();
1907 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1908
1909 /*
1910 * We don't need protection against CPU-hotplug here because
1911 * this is called early in boot, before either interrupts
1912 * or the scheduler are operational.
1913 */
1914 cpu_notifier(rcu_cpu_notify, 0);
1915 for_each_online_cpu(cpu)
1916 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1917 }
1918
1919 #include "rcutree_plugin.h"