]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcutree.c
rcu: Control grace-period duration from sysfs
[mirror_ubuntu-artful-kernel.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58
59 #include "rcu.h"
60
61 /* Data structures. */
62
63 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
65
66 #define RCU_STATE_INITIALIZER(sname, cr) { \
67 .level = { &sname##_state.node[0] }, \
68 .call = cr, \
69 .fqs_state = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
73 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
74 .orphan_donetail = &sname##_state.orphan_donelist, \
75 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
76 .name = #sname, \
77 }
78
79 struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82
83 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85
86 static struct rcu_state *rcu_state;
87 LIST_HEAD(rcu_struct_flavors);
88
89 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91 module_param(rcu_fanout_leaf, int, 0);
92 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99 };
100 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
102 /*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
111 int rcu_scheduler_active __read_mostly;
112 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
114 /*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126 static int rcu_scheduler_fully_active __read_mostly;
127
128 #ifdef CONFIG_RCU_BOOST
129
130 /*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138 DEFINE_PER_CPU(char, rcu_cpu_has_work);
139
140 #endif /* #ifdef CONFIG_RCU_BOOST */
141
142 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143 static void invoke_rcu_core(void);
144 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145
146 /*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155 unsigned long rcutorture_testseq;
156 unsigned long rcutorture_vernum;
157
158 /*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163 static int rcu_gp_in_progress(struct rcu_state *rsp)
164 {
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166 }
167
168 /*
169 * Note a quiescent state. Because we do not need to know
170 * how many quiescent states passed, just if there was at least
171 * one since the start of the grace period, this just sets a flag.
172 * The caller must have disabled preemption.
173 */
174 void rcu_sched_qs(int cpu)
175 {
176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177
178 rdp->passed_quiesce_gpnum = rdp->gpnum;
179 barrier();
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183 }
184
185 void rcu_bh_qs(int cpu)
186 {
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 rdp->passed_quiesce_gpnum = rdp->gpnum;
190 barrier();
191 if (rdp->passed_quiesce == 0)
192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193 rdp->passed_quiesce = 1;
194 }
195
196 /*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
199 * The caller must have disabled preemption.
200 */
201 void rcu_note_context_switch(int cpu)
202 {
203 trace_rcu_utilization("Start context switch");
204 rcu_sched_qs(cpu);
205 rcu_preempt_note_context_switch(cpu);
206 trace_rcu_utilization("End context switch");
207 }
208 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209
210 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212 .dynticks = ATOMIC_INIT(1),
213 };
214
215 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static int qhimark = 10000; /* If this many pending, ignore blimit. */
217 static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
219 module_param(blimit, int, 0);
220 module_param(qhimark, int, 0);
221 module_param(qlowmark, int, 0);
222
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228
229 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231
232 module_param(jiffies_till_first_fqs, ulong, 0644);
233 module_param(jiffies_till_next_fqs, ulong, 0644);
234
235 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236 static void force_quiescent_state(struct rcu_state *rsp);
237 static int rcu_pending(int cpu);
238
239 /*
240 * Return the number of RCU-sched batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_sched(void)
243 {
244 return rcu_sched_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247
248 /*
249 * Return the number of RCU BH batches processed thus far for debug & stats.
250 */
251 long rcu_batches_completed_bh(void)
252 {
253 return rcu_bh_state.completed;
254 }
255 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256
257 /*
258 * Force a quiescent state for RCU BH.
259 */
260 void rcu_bh_force_quiescent_state(void)
261 {
262 force_quiescent_state(&rcu_bh_state);
263 }
264 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265
266 /*
267 * Record the number of times rcutorture tests have been initiated and
268 * terminated. This information allows the debugfs tracing stats to be
269 * correlated to the rcutorture messages, even when the rcutorture module
270 * is being repeatedly loaded and unloaded. In other words, we cannot
271 * store this state in rcutorture itself.
272 */
273 void rcutorture_record_test_transition(void)
274 {
275 rcutorture_testseq++;
276 rcutorture_vernum = 0;
277 }
278 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
279
280 /*
281 * Record the number of writer passes through the current rcutorture test.
282 * This is also used to correlate debugfs tracing stats with the rcutorture
283 * messages.
284 */
285 void rcutorture_record_progress(unsigned long vernum)
286 {
287 rcutorture_vernum++;
288 }
289 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
290
291 /*
292 * Force a quiescent state for RCU-sched.
293 */
294 void rcu_sched_force_quiescent_state(void)
295 {
296 force_quiescent_state(&rcu_sched_state);
297 }
298 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299
300 /*
301 * Does the CPU have callbacks ready to be invoked?
302 */
303 static int
304 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305 {
306 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
307 }
308
309 /*
310 * Does the current CPU require a yet-as-unscheduled grace period?
311 */
312 static int
313 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314 {
315 return *rdp->nxttail[RCU_DONE_TAIL +
316 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
317 !rcu_gp_in_progress(rsp);
318 }
319
320 /*
321 * Return the root node of the specified rcu_state structure.
322 */
323 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
324 {
325 return &rsp->node[0];
326 }
327
328 /*
329 * If the specified CPU is offline, tell the caller that it is in
330 * a quiescent state. Otherwise, whack it with a reschedule IPI.
331 * Grace periods can end up waiting on an offline CPU when that
332 * CPU is in the process of coming online -- it will be added to the
333 * rcu_node bitmasks before it actually makes it online. The same thing
334 * can happen while a CPU is in the process of coming online. Because this
335 * race is quite rare, we check for it after detecting that the grace
336 * period has been delayed rather than checking each and every CPU
337 * each and every time we start a new grace period.
338 */
339 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
340 {
341 /*
342 * If the CPU is offline for more than a jiffy, it is in a quiescent
343 * state. We can trust its state not to change because interrupts
344 * are disabled. The reason for the jiffy's worth of slack is to
345 * handle CPUs initializing on the way up and finding their way
346 * to the idle loop on the way down.
347 */
348 if (cpu_is_offline(rdp->cpu) &&
349 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
350 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
351 rdp->offline_fqs++;
352 return 1;
353 }
354 return 0;
355 }
356
357 /*
358 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
359 *
360 * If the new value of the ->dynticks_nesting counter now is zero,
361 * we really have entered idle, and must do the appropriate accounting.
362 * The caller must have disabled interrupts.
363 */
364 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
365 {
366 trace_rcu_dyntick("Start", oldval, 0);
367 if (!is_idle_task(current)) {
368 struct task_struct *idle = idle_task(smp_processor_id());
369
370 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
371 ftrace_dump(DUMP_ORIG);
372 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
373 current->pid, current->comm,
374 idle->pid, idle->comm); /* must be idle task! */
375 }
376 rcu_prepare_for_idle(smp_processor_id());
377 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
378 smp_mb__before_atomic_inc(); /* See above. */
379 atomic_inc(&rdtp->dynticks);
380 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
381 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
382
383 /*
384 * The idle task is not permitted to enter the idle loop while
385 * in an RCU read-side critical section.
386 */
387 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
388 "Illegal idle entry in RCU read-side critical section.");
389 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
390 "Illegal idle entry in RCU-bh read-side critical section.");
391 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
392 "Illegal idle entry in RCU-sched read-side critical section.");
393 }
394
395 /**
396 * rcu_idle_enter - inform RCU that current CPU is entering idle
397 *
398 * Enter idle mode, in other words, -leave- the mode in which RCU
399 * read-side critical sections can occur. (Though RCU read-side
400 * critical sections can occur in irq handlers in idle, a possibility
401 * handled by irq_enter() and irq_exit().)
402 *
403 * We crowbar the ->dynticks_nesting field to zero to allow for
404 * the possibility of usermode upcalls having messed up our count
405 * of interrupt nesting level during the prior busy period.
406 */
407 void rcu_idle_enter(void)
408 {
409 unsigned long flags;
410 long long oldval;
411 struct rcu_dynticks *rdtp;
412
413 local_irq_save(flags);
414 rdtp = &__get_cpu_var(rcu_dynticks);
415 oldval = rdtp->dynticks_nesting;
416 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
417 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
418 rdtp->dynticks_nesting = 0;
419 else
420 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
421 rcu_idle_enter_common(rdtp, oldval);
422 local_irq_restore(flags);
423 }
424 EXPORT_SYMBOL_GPL(rcu_idle_enter);
425
426 /**
427 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
428 *
429 * Exit from an interrupt handler, which might possibly result in entering
430 * idle mode, in other words, leaving the mode in which read-side critical
431 * sections can occur.
432 *
433 * This code assumes that the idle loop never does anything that might
434 * result in unbalanced calls to irq_enter() and irq_exit(). If your
435 * architecture violates this assumption, RCU will give you what you
436 * deserve, good and hard. But very infrequently and irreproducibly.
437 *
438 * Use things like work queues to work around this limitation.
439 *
440 * You have been warned.
441 */
442 void rcu_irq_exit(void)
443 {
444 unsigned long flags;
445 long long oldval;
446 struct rcu_dynticks *rdtp;
447
448 local_irq_save(flags);
449 rdtp = &__get_cpu_var(rcu_dynticks);
450 oldval = rdtp->dynticks_nesting;
451 rdtp->dynticks_nesting--;
452 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
453 if (rdtp->dynticks_nesting)
454 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
455 else
456 rcu_idle_enter_common(rdtp, oldval);
457 local_irq_restore(flags);
458 }
459
460 /*
461 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
462 *
463 * If the new value of the ->dynticks_nesting counter was previously zero,
464 * we really have exited idle, and must do the appropriate accounting.
465 * The caller must have disabled interrupts.
466 */
467 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
468 {
469 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
470 atomic_inc(&rdtp->dynticks);
471 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
472 smp_mb__after_atomic_inc(); /* See above. */
473 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
474 rcu_cleanup_after_idle(smp_processor_id());
475 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
476 if (!is_idle_task(current)) {
477 struct task_struct *idle = idle_task(smp_processor_id());
478
479 trace_rcu_dyntick("Error on exit: not idle task",
480 oldval, rdtp->dynticks_nesting);
481 ftrace_dump(DUMP_ORIG);
482 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
483 current->pid, current->comm,
484 idle->pid, idle->comm); /* must be idle task! */
485 }
486 }
487
488 /**
489 * rcu_idle_exit - inform RCU that current CPU is leaving idle
490 *
491 * Exit idle mode, in other words, -enter- the mode in which RCU
492 * read-side critical sections can occur.
493 *
494 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
495 * allow for the possibility of usermode upcalls messing up our count
496 * of interrupt nesting level during the busy period that is just
497 * now starting.
498 */
499 void rcu_idle_exit(void)
500 {
501 unsigned long flags;
502 struct rcu_dynticks *rdtp;
503 long long oldval;
504
505 local_irq_save(flags);
506 rdtp = &__get_cpu_var(rcu_dynticks);
507 oldval = rdtp->dynticks_nesting;
508 WARN_ON_ONCE(oldval < 0);
509 if (oldval & DYNTICK_TASK_NEST_MASK)
510 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
511 else
512 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
513 rcu_idle_exit_common(rdtp, oldval);
514 local_irq_restore(flags);
515 }
516 EXPORT_SYMBOL_GPL(rcu_idle_exit);
517
518 /**
519 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
520 *
521 * Enter an interrupt handler, which might possibly result in exiting
522 * idle mode, in other words, entering the mode in which read-side critical
523 * sections can occur.
524 *
525 * Note that the Linux kernel is fully capable of entering an interrupt
526 * handler that it never exits, for example when doing upcalls to
527 * user mode! This code assumes that the idle loop never does upcalls to
528 * user mode. If your architecture does do upcalls from the idle loop (or
529 * does anything else that results in unbalanced calls to the irq_enter()
530 * and irq_exit() functions), RCU will give you what you deserve, good
531 * and hard. But very infrequently and irreproducibly.
532 *
533 * Use things like work queues to work around this limitation.
534 *
535 * You have been warned.
536 */
537 void rcu_irq_enter(void)
538 {
539 unsigned long flags;
540 struct rcu_dynticks *rdtp;
541 long long oldval;
542
543 local_irq_save(flags);
544 rdtp = &__get_cpu_var(rcu_dynticks);
545 oldval = rdtp->dynticks_nesting;
546 rdtp->dynticks_nesting++;
547 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
548 if (oldval)
549 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
550 else
551 rcu_idle_exit_common(rdtp, oldval);
552 local_irq_restore(flags);
553 }
554
555 /**
556 * rcu_nmi_enter - inform RCU of entry to NMI context
557 *
558 * If the CPU was idle with dynamic ticks active, and there is no
559 * irq handler running, this updates rdtp->dynticks_nmi to let the
560 * RCU grace-period handling know that the CPU is active.
561 */
562 void rcu_nmi_enter(void)
563 {
564 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
565
566 if (rdtp->dynticks_nmi_nesting == 0 &&
567 (atomic_read(&rdtp->dynticks) & 0x1))
568 return;
569 rdtp->dynticks_nmi_nesting++;
570 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
571 atomic_inc(&rdtp->dynticks);
572 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
573 smp_mb__after_atomic_inc(); /* See above. */
574 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
575 }
576
577 /**
578 * rcu_nmi_exit - inform RCU of exit from NMI context
579 *
580 * If the CPU was idle with dynamic ticks active, and there is no
581 * irq handler running, this updates rdtp->dynticks_nmi to let the
582 * RCU grace-period handling know that the CPU is no longer active.
583 */
584 void rcu_nmi_exit(void)
585 {
586 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
587
588 if (rdtp->dynticks_nmi_nesting == 0 ||
589 --rdtp->dynticks_nmi_nesting != 0)
590 return;
591 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
592 smp_mb__before_atomic_inc(); /* See above. */
593 atomic_inc(&rdtp->dynticks);
594 smp_mb__after_atomic_inc(); /* Force delay to next write. */
595 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
596 }
597
598 /**
599 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
600 *
601 * If the current CPU is in its idle loop and is neither in an interrupt
602 * or NMI handler, return true.
603 */
604 int rcu_is_cpu_idle(void)
605 {
606 int ret;
607
608 preempt_disable();
609 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
610 preempt_enable();
611 return ret;
612 }
613 EXPORT_SYMBOL(rcu_is_cpu_idle);
614
615 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
616
617 /*
618 * Is the current CPU online? Disable preemption to avoid false positives
619 * that could otherwise happen due to the current CPU number being sampled,
620 * this task being preempted, its old CPU being taken offline, resuming
621 * on some other CPU, then determining that its old CPU is now offline.
622 * It is OK to use RCU on an offline processor during initial boot, hence
623 * the check for rcu_scheduler_fully_active. Note also that it is OK
624 * for a CPU coming online to use RCU for one jiffy prior to marking itself
625 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
626 * offline to continue to use RCU for one jiffy after marking itself
627 * offline in the cpu_online_mask. This leniency is necessary given the
628 * non-atomic nature of the online and offline processing, for example,
629 * the fact that a CPU enters the scheduler after completing the CPU_DYING
630 * notifiers.
631 *
632 * This is also why RCU internally marks CPUs online during the
633 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
634 *
635 * Disable checking if in an NMI handler because we cannot safely report
636 * errors from NMI handlers anyway.
637 */
638 bool rcu_lockdep_current_cpu_online(void)
639 {
640 struct rcu_data *rdp;
641 struct rcu_node *rnp;
642 bool ret;
643
644 if (in_nmi())
645 return 1;
646 preempt_disable();
647 rdp = &__get_cpu_var(rcu_sched_data);
648 rnp = rdp->mynode;
649 ret = (rdp->grpmask & rnp->qsmaskinit) ||
650 !rcu_scheduler_fully_active;
651 preempt_enable();
652 return ret;
653 }
654 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
655
656 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
657
658 /**
659 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
660 *
661 * If the current CPU is idle or running at a first-level (not nested)
662 * interrupt from idle, return true. The caller must have at least
663 * disabled preemption.
664 */
665 int rcu_is_cpu_rrupt_from_idle(void)
666 {
667 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
668 }
669
670 /*
671 * Snapshot the specified CPU's dynticks counter so that we can later
672 * credit them with an implicit quiescent state. Return 1 if this CPU
673 * is in dynticks idle mode, which is an extended quiescent state.
674 */
675 static int dyntick_save_progress_counter(struct rcu_data *rdp)
676 {
677 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
678 return (rdp->dynticks_snap & 0x1) == 0;
679 }
680
681 /*
682 * Return true if the specified CPU has passed through a quiescent
683 * state by virtue of being in or having passed through an dynticks
684 * idle state since the last call to dyntick_save_progress_counter()
685 * for this same CPU.
686 */
687 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
688 {
689 unsigned int curr;
690 unsigned int snap;
691
692 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
693 snap = (unsigned int)rdp->dynticks_snap;
694
695 /*
696 * If the CPU passed through or entered a dynticks idle phase with
697 * no active irq/NMI handlers, then we can safely pretend that the CPU
698 * already acknowledged the request to pass through a quiescent
699 * state. Either way, that CPU cannot possibly be in an RCU
700 * read-side critical section that started before the beginning
701 * of the current RCU grace period.
702 */
703 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
704 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
705 rdp->dynticks_fqs++;
706 return 1;
707 }
708
709 /* Go check for the CPU being offline. */
710 return rcu_implicit_offline_qs(rdp);
711 }
712
713 static int jiffies_till_stall_check(void)
714 {
715 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
716
717 /*
718 * Limit check must be consistent with the Kconfig limits
719 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
720 */
721 if (till_stall_check < 3) {
722 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
723 till_stall_check = 3;
724 } else if (till_stall_check > 300) {
725 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
726 till_stall_check = 300;
727 }
728 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
729 }
730
731 static void record_gp_stall_check_time(struct rcu_state *rsp)
732 {
733 rsp->gp_start = jiffies;
734 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
735 }
736
737 static void print_other_cpu_stall(struct rcu_state *rsp)
738 {
739 int cpu;
740 long delta;
741 unsigned long flags;
742 int ndetected = 0;
743 struct rcu_node *rnp = rcu_get_root(rsp);
744
745 /* Only let one CPU complain about others per time interval. */
746
747 raw_spin_lock_irqsave(&rnp->lock, flags);
748 delta = jiffies - rsp->jiffies_stall;
749 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
751 return;
752 }
753 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
754 raw_spin_unlock_irqrestore(&rnp->lock, flags);
755
756 /*
757 * OK, time to rat on our buddy...
758 * See Documentation/RCU/stallwarn.txt for info on how to debug
759 * RCU CPU stall warnings.
760 */
761 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
762 rsp->name);
763 print_cpu_stall_info_begin();
764 rcu_for_each_leaf_node(rsp, rnp) {
765 raw_spin_lock_irqsave(&rnp->lock, flags);
766 ndetected += rcu_print_task_stall(rnp);
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
768 if (rnp->qsmask == 0)
769 continue;
770 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
771 if (rnp->qsmask & (1UL << cpu)) {
772 print_cpu_stall_info(rsp, rnp->grplo + cpu);
773 ndetected++;
774 }
775 }
776
777 /*
778 * Now rat on any tasks that got kicked up to the root rcu_node
779 * due to CPU offlining.
780 */
781 rnp = rcu_get_root(rsp);
782 raw_spin_lock_irqsave(&rnp->lock, flags);
783 ndetected += rcu_print_task_stall(rnp);
784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
785
786 print_cpu_stall_info_end();
787 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
788 smp_processor_id(), (long)(jiffies - rsp->gp_start));
789 if (ndetected == 0)
790 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
791 else if (!trigger_all_cpu_backtrace())
792 dump_stack();
793
794 /* Complain about tasks blocking the grace period. */
795
796 rcu_print_detail_task_stall(rsp);
797
798 force_quiescent_state(rsp); /* Kick them all. */
799 }
800
801 static void print_cpu_stall(struct rcu_state *rsp)
802 {
803 unsigned long flags;
804 struct rcu_node *rnp = rcu_get_root(rsp);
805
806 /*
807 * OK, time to rat on ourselves...
808 * See Documentation/RCU/stallwarn.txt for info on how to debug
809 * RCU CPU stall warnings.
810 */
811 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
812 print_cpu_stall_info_begin();
813 print_cpu_stall_info(rsp, smp_processor_id());
814 print_cpu_stall_info_end();
815 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
816 if (!trigger_all_cpu_backtrace())
817 dump_stack();
818
819 raw_spin_lock_irqsave(&rnp->lock, flags);
820 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
821 rsp->jiffies_stall = jiffies +
822 3 * jiffies_till_stall_check() + 3;
823 raw_spin_unlock_irqrestore(&rnp->lock, flags);
824
825 set_need_resched(); /* kick ourselves to get things going. */
826 }
827
828 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
829 {
830 unsigned long j;
831 unsigned long js;
832 struct rcu_node *rnp;
833
834 if (rcu_cpu_stall_suppress)
835 return;
836 j = ACCESS_ONCE(jiffies);
837 js = ACCESS_ONCE(rsp->jiffies_stall);
838 rnp = rdp->mynode;
839 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
840
841 /* We haven't checked in, so go dump stack. */
842 print_cpu_stall(rsp);
843
844 } else if (rcu_gp_in_progress(rsp) &&
845 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
846
847 /* They had a few time units to dump stack, so complain. */
848 print_other_cpu_stall(rsp);
849 }
850 }
851
852 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
853 {
854 rcu_cpu_stall_suppress = 1;
855 return NOTIFY_DONE;
856 }
857
858 /**
859 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
860 *
861 * Set the stall-warning timeout way off into the future, thus preventing
862 * any RCU CPU stall-warning messages from appearing in the current set of
863 * RCU grace periods.
864 *
865 * The caller must disable hard irqs.
866 */
867 void rcu_cpu_stall_reset(void)
868 {
869 struct rcu_state *rsp;
870
871 for_each_rcu_flavor(rsp)
872 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
873 }
874
875 static struct notifier_block rcu_panic_block = {
876 .notifier_call = rcu_panic,
877 };
878
879 static void __init check_cpu_stall_init(void)
880 {
881 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
882 }
883
884 /*
885 * Update CPU-local rcu_data state to record the newly noticed grace period.
886 * This is used both when we started the grace period and when we notice
887 * that someone else started the grace period. The caller must hold the
888 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
889 * and must have irqs disabled.
890 */
891 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
892 {
893 if (rdp->gpnum != rnp->gpnum) {
894 /*
895 * If the current grace period is waiting for this CPU,
896 * set up to detect a quiescent state, otherwise don't
897 * go looking for one.
898 */
899 rdp->gpnum = rnp->gpnum;
900 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
901 if (rnp->qsmask & rdp->grpmask) {
902 rdp->qs_pending = 1;
903 rdp->passed_quiesce = 0;
904 } else {
905 rdp->qs_pending = 0;
906 }
907 zero_cpu_stall_ticks(rdp);
908 }
909 }
910
911 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
912 {
913 unsigned long flags;
914 struct rcu_node *rnp;
915
916 local_irq_save(flags);
917 rnp = rdp->mynode;
918 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
919 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
920 local_irq_restore(flags);
921 return;
922 }
923 __note_new_gpnum(rsp, rnp, rdp);
924 raw_spin_unlock_irqrestore(&rnp->lock, flags);
925 }
926
927 /*
928 * Did someone else start a new RCU grace period start since we last
929 * checked? Update local state appropriately if so. Must be called
930 * on the CPU corresponding to rdp.
931 */
932 static int
933 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
934 {
935 unsigned long flags;
936 int ret = 0;
937
938 local_irq_save(flags);
939 if (rdp->gpnum != rsp->gpnum) {
940 note_new_gpnum(rsp, rdp);
941 ret = 1;
942 }
943 local_irq_restore(flags);
944 return ret;
945 }
946
947 /*
948 * Initialize the specified rcu_data structure's callback list to empty.
949 */
950 static void init_callback_list(struct rcu_data *rdp)
951 {
952 int i;
953
954 rdp->nxtlist = NULL;
955 for (i = 0; i < RCU_NEXT_SIZE; i++)
956 rdp->nxttail[i] = &rdp->nxtlist;
957 }
958
959 /*
960 * Advance this CPU's callbacks, but only if the current grace period
961 * has ended. This may be called only from the CPU to whom the rdp
962 * belongs. In addition, the corresponding leaf rcu_node structure's
963 * ->lock must be held by the caller, with irqs disabled.
964 */
965 static void
966 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
967 {
968 /* Did another grace period end? */
969 if (rdp->completed != rnp->completed) {
970
971 /* Advance callbacks. No harm if list empty. */
972 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
973 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
974 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
975
976 /* Remember that we saw this grace-period completion. */
977 rdp->completed = rnp->completed;
978 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
979
980 /*
981 * If we were in an extended quiescent state, we may have
982 * missed some grace periods that others CPUs handled on
983 * our behalf. Catch up with this state to avoid noting
984 * spurious new grace periods. If another grace period
985 * has started, then rnp->gpnum will have advanced, so
986 * we will detect this later on.
987 */
988 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
989 rdp->gpnum = rdp->completed;
990
991 /*
992 * If RCU does not need a quiescent state from this CPU,
993 * then make sure that this CPU doesn't go looking for one.
994 */
995 if ((rnp->qsmask & rdp->grpmask) == 0)
996 rdp->qs_pending = 0;
997 }
998 }
999
1000 /*
1001 * Advance this CPU's callbacks, but only if the current grace period
1002 * has ended. This may be called only from the CPU to whom the rdp
1003 * belongs.
1004 */
1005 static void
1006 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1007 {
1008 unsigned long flags;
1009 struct rcu_node *rnp;
1010
1011 local_irq_save(flags);
1012 rnp = rdp->mynode;
1013 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1014 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1015 local_irq_restore(flags);
1016 return;
1017 }
1018 __rcu_process_gp_end(rsp, rnp, rdp);
1019 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1020 }
1021
1022 /*
1023 * Do per-CPU grace-period initialization for running CPU. The caller
1024 * must hold the lock of the leaf rcu_node structure corresponding to
1025 * this CPU.
1026 */
1027 static void
1028 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1029 {
1030 /* Prior grace period ended, so advance callbacks for current CPU. */
1031 __rcu_process_gp_end(rsp, rnp, rdp);
1032
1033 /* Set state so that this CPU will detect the next quiescent state. */
1034 __note_new_gpnum(rsp, rnp, rdp);
1035 }
1036
1037 /*
1038 * Initialize a new grace period.
1039 */
1040 static int rcu_gp_init(struct rcu_state *rsp)
1041 {
1042 struct rcu_data *rdp;
1043 struct rcu_node *rnp = rcu_get_root(rsp);
1044
1045 raw_spin_lock_irq(&rnp->lock);
1046 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1047
1048 if (rcu_gp_in_progress(rsp)) {
1049 /* Grace period already in progress, don't start another. */
1050 raw_spin_unlock_irq(&rnp->lock);
1051 return 0;
1052 }
1053
1054 /* Advance to a new grace period and initialize state. */
1055 rsp->gpnum++;
1056 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1057 record_gp_stall_check_time(rsp);
1058 raw_spin_unlock_irq(&rnp->lock);
1059
1060 /* Exclude any concurrent CPU-hotplug operations. */
1061 get_online_cpus();
1062
1063 /*
1064 * Set the quiescent-state-needed bits in all the rcu_node
1065 * structures for all currently online CPUs in breadth-first order,
1066 * starting from the root rcu_node structure, relying on the layout
1067 * of the tree within the rsp->node[] array. Note that other CPUs
1068 * will access only the leaves of the hierarchy, thus seeing that no
1069 * grace period is in progress, at least until the corresponding
1070 * leaf node has been initialized. In addition, we have excluded
1071 * CPU-hotplug operations.
1072 *
1073 * The grace period cannot complete until the initialization
1074 * process finishes, because this kthread handles both.
1075 */
1076 rcu_for_each_node_breadth_first(rsp, rnp) {
1077 raw_spin_lock_irq(&rnp->lock);
1078 rdp = this_cpu_ptr(rsp->rda);
1079 rcu_preempt_check_blocked_tasks(rnp);
1080 rnp->qsmask = rnp->qsmaskinit;
1081 rnp->gpnum = rsp->gpnum;
1082 rnp->completed = rsp->completed;
1083 if (rnp == rdp->mynode)
1084 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1085 rcu_preempt_boost_start_gp(rnp);
1086 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1087 rnp->level, rnp->grplo,
1088 rnp->grphi, rnp->qsmask);
1089 raw_spin_unlock_irq(&rnp->lock);
1090 cond_resched();
1091 }
1092
1093 put_online_cpus();
1094 return 1;
1095 }
1096
1097 /*
1098 * Do one round of quiescent-state forcing.
1099 */
1100 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1101 {
1102 int fqs_state = fqs_state_in;
1103 struct rcu_node *rnp = rcu_get_root(rsp);
1104
1105 rsp->n_force_qs++;
1106 if (fqs_state == RCU_SAVE_DYNTICK) {
1107 /* Collect dyntick-idle snapshots. */
1108 force_qs_rnp(rsp, dyntick_save_progress_counter);
1109 fqs_state = RCU_FORCE_QS;
1110 } else {
1111 /* Handle dyntick-idle and offline CPUs. */
1112 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1113 }
1114 /* Clear flag to prevent immediate re-entry. */
1115 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1116 raw_spin_lock_irq(&rnp->lock);
1117 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1118 raw_spin_unlock_irq(&rnp->lock);
1119 }
1120 return fqs_state;
1121 }
1122
1123 /*
1124 * Clean up after the old grace period.
1125 */
1126 static void rcu_gp_cleanup(struct rcu_state *rsp)
1127 {
1128 unsigned long gp_duration;
1129 struct rcu_data *rdp;
1130 struct rcu_node *rnp = rcu_get_root(rsp);
1131
1132 raw_spin_lock_irq(&rnp->lock);
1133 gp_duration = jiffies - rsp->gp_start;
1134 if (gp_duration > rsp->gp_max)
1135 rsp->gp_max = gp_duration;
1136
1137 /*
1138 * We know the grace period is complete, but to everyone else
1139 * it appears to still be ongoing. But it is also the case
1140 * that to everyone else it looks like there is nothing that
1141 * they can do to advance the grace period. It is therefore
1142 * safe for us to drop the lock in order to mark the grace
1143 * period as completed in all of the rcu_node structures.
1144 *
1145 * But if this CPU needs another grace period, it will take
1146 * care of this while initializing the next grace period.
1147 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1148 * because the callbacks have not yet been advanced: Those
1149 * callbacks are waiting on the grace period that just now
1150 * completed.
1151 */
1152 rdp = this_cpu_ptr(rsp->rda);
1153 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1154 raw_spin_unlock_irq(&rnp->lock);
1155
1156 /*
1157 * Propagate new ->completed value to rcu_node
1158 * structures so that other CPUs don't have to
1159 * wait until the start of the next grace period
1160 * to process their callbacks.
1161 */
1162 rcu_for_each_node_breadth_first(rsp, rnp) {
1163 raw_spin_lock_irq(&rnp->lock);
1164 rnp->completed = rsp->gpnum;
1165 raw_spin_unlock_irq(&rnp->lock);
1166 cond_resched();
1167 }
1168 rnp = rcu_get_root(rsp);
1169 raw_spin_lock_irq(&rnp->lock);
1170 }
1171
1172 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1173 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1174 rsp->fqs_state = RCU_GP_IDLE;
1175 if (cpu_needs_another_gp(rsp, rdp))
1176 rsp->gp_flags = 1;
1177 raw_spin_unlock_irq(&rnp->lock);
1178 }
1179
1180 /*
1181 * Body of kthread that handles grace periods.
1182 */
1183 static int __noreturn rcu_gp_kthread(void *arg)
1184 {
1185 int fqs_state;
1186 unsigned long j;
1187 int ret;
1188 struct rcu_state *rsp = arg;
1189 struct rcu_node *rnp = rcu_get_root(rsp);
1190
1191 for (;;) {
1192
1193 /* Handle grace-period start. */
1194 for (;;) {
1195 wait_event_interruptible(rsp->gp_wq,
1196 rsp->gp_flags &
1197 RCU_GP_FLAG_INIT);
1198 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1199 rcu_gp_init(rsp))
1200 break;
1201 cond_resched();
1202 flush_signals(current);
1203 }
1204
1205 /* Handle quiescent-state forcing. */
1206 fqs_state = RCU_SAVE_DYNTICK;
1207 j = jiffies_till_first_fqs;
1208 if (j > HZ) {
1209 j = HZ;
1210 jiffies_till_first_fqs = HZ;
1211 }
1212 for (;;) {
1213 rsp->jiffies_force_qs = jiffies + j;
1214 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1215 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1216 (!ACCESS_ONCE(rnp->qsmask) &&
1217 !rcu_preempt_blocked_readers_cgp(rnp)),
1218 j);
1219 /* If grace period done, leave loop. */
1220 if (!ACCESS_ONCE(rnp->qsmask) &&
1221 !rcu_preempt_blocked_readers_cgp(rnp))
1222 break;
1223 /* If time for quiescent-state forcing, do it. */
1224 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1225 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1226 cond_resched();
1227 } else {
1228 /* Deal with stray signal. */
1229 cond_resched();
1230 flush_signals(current);
1231 }
1232 j = jiffies_till_next_fqs;
1233 if (j > HZ) {
1234 j = HZ;
1235 jiffies_till_next_fqs = HZ;
1236 } else if (j < 1) {
1237 j = 1;
1238 jiffies_till_next_fqs = 1;
1239 }
1240 }
1241
1242 /* Handle grace-period end. */
1243 rcu_gp_cleanup(rsp);
1244 }
1245 }
1246
1247 /*
1248 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1249 * in preparation for detecting the next grace period. The caller must hold
1250 * the root node's ->lock, which is released before return. Hard irqs must
1251 * be disabled.
1252 *
1253 * Note that it is legal for a dying CPU (which is marked as offline) to
1254 * invoke this function. This can happen when the dying CPU reports its
1255 * quiescent state.
1256 */
1257 static void
1258 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1259 __releases(rcu_get_root(rsp)->lock)
1260 {
1261 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1262 struct rcu_node *rnp = rcu_get_root(rsp);
1263
1264 if (!rsp->gp_kthread ||
1265 !cpu_needs_another_gp(rsp, rdp)) {
1266 /*
1267 * Either we have not yet spawned the grace-period
1268 * task or this CPU does not need another grace period.
1269 * Either way, don't start a new grace period.
1270 */
1271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 return;
1273 }
1274
1275 rsp->gp_flags = RCU_GP_FLAG_INIT;
1276 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1277 wake_up(&rsp->gp_wq);
1278 }
1279
1280 /*
1281 * Report a full set of quiescent states to the specified rcu_state
1282 * data structure. This involves cleaning up after the prior grace
1283 * period and letting rcu_start_gp() start up the next grace period
1284 * if one is needed. Note that the caller must hold rnp->lock, as
1285 * required by rcu_start_gp(), which will release it.
1286 */
1287 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1288 __releases(rcu_get_root(rsp)->lock)
1289 {
1290 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1291 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1292 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1293 }
1294
1295 /*
1296 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1297 * Allows quiescent states for a group of CPUs to be reported at one go
1298 * to the specified rcu_node structure, though all the CPUs in the group
1299 * must be represented by the same rcu_node structure (which need not be
1300 * a leaf rcu_node structure, though it often will be). That structure's
1301 * lock must be held upon entry, and it is released before return.
1302 */
1303 static void
1304 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1305 struct rcu_node *rnp, unsigned long flags)
1306 __releases(rnp->lock)
1307 {
1308 struct rcu_node *rnp_c;
1309
1310 /* Walk up the rcu_node hierarchy. */
1311 for (;;) {
1312 if (!(rnp->qsmask & mask)) {
1313
1314 /* Our bit has already been cleared, so done. */
1315 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1316 return;
1317 }
1318 rnp->qsmask &= ~mask;
1319 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1320 mask, rnp->qsmask, rnp->level,
1321 rnp->grplo, rnp->grphi,
1322 !!rnp->gp_tasks);
1323 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1324
1325 /* Other bits still set at this level, so done. */
1326 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1327 return;
1328 }
1329 mask = rnp->grpmask;
1330 if (rnp->parent == NULL) {
1331
1332 /* No more levels. Exit loop holding root lock. */
1333
1334 break;
1335 }
1336 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1337 rnp_c = rnp;
1338 rnp = rnp->parent;
1339 raw_spin_lock_irqsave(&rnp->lock, flags);
1340 WARN_ON_ONCE(rnp_c->qsmask);
1341 }
1342
1343 /*
1344 * Get here if we are the last CPU to pass through a quiescent
1345 * state for this grace period. Invoke rcu_report_qs_rsp()
1346 * to clean up and start the next grace period if one is needed.
1347 */
1348 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1349 }
1350
1351 /*
1352 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1353 * structure. This must be either called from the specified CPU, or
1354 * called when the specified CPU is known to be offline (and when it is
1355 * also known that no other CPU is concurrently trying to help the offline
1356 * CPU). The lastcomp argument is used to make sure we are still in the
1357 * grace period of interest. We don't want to end the current grace period
1358 * based on quiescent states detected in an earlier grace period!
1359 */
1360 static void
1361 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1362 {
1363 unsigned long flags;
1364 unsigned long mask;
1365 struct rcu_node *rnp;
1366
1367 rnp = rdp->mynode;
1368 raw_spin_lock_irqsave(&rnp->lock, flags);
1369 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1370
1371 /*
1372 * The grace period in which this quiescent state was
1373 * recorded has ended, so don't report it upwards.
1374 * We will instead need a new quiescent state that lies
1375 * within the current grace period.
1376 */
1377 rdp->passed_quiesce = 0; /* need qs for new gp. */
1378 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1379 return;
1380 }
1381 mask = rdp->grpmask;
1382 if ((rnp->qsmask & mask) == 0) {
1383 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1384 } else {
1385 rdp->qs_pending = 0;
1386
1387 /*
1388 * This GP can't end until cpu checks in, so all of our
1389 * callbacks can be processed during the next GP.
1390 */
1391 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1392
1393 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1394 }
1395 }
1396
1397 /*
1398 * Check to see if there is a new grace period of which this CPU
1399 * is not yet aware, and if so, set up local rcu_data state for it.
1400 * Otherwise, see if this CPU has just passed through its first
1401 * quiescent state for this grace period, and record that fact if so.
1402 */
1403 static void
1404 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1405 {
1406 /* If there is now a new grace period, record and return. */
1407 if (check_for_new_grace_period(rsp, rdp))
1408 return;
1409
1410 /*
1411 * Does this CPU still need to do its part for current grace period?
1412 * If no, return and let the other CPUs do their part as well.
1413 */
1414 if (!rdp->qs_pending)
1415 return;
1416
1417 /*
1418 * Was there a quiescent state since the beginning of the grace
1419 * period? If no, then exit and wait for the next call.
1420 */
1421 if (!rdp->passed_quiesce)
1422 return;
1423
1424 /*
1425 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1426 * judge of that).
1427 */
1428 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1429 }
1430
1431 #ifdef CONFIG_HOTPLUG_CPU
1432
1433 /*
1434 * Send the specified CPU's RCU callbacks to the orphanage. The
1435 * specified CPU must be offline, and the caller must hold the
1436 * ->onofflock.
1437 */
1438 static void
1439 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1440 struct rcu_node *rnp, struct rcu_data *rdp)
1441 {
1442 /*
1443 * Orphan the callbacks. First adjust the counts. This is safe
1444 * because ->onofflock excludes _rcu_barrier()'s adoption of
1445 * the callbacks, thus no memory barrier is required.
1446 */
1447 if (rdp->nxtlist != NULL) {
1448 rsp->qlen_lazy += rdp->qlen_lazy;
1449 rsp->qlen += rdp->qlen;
1450 rdp->n_cbs_orphaned += rdp->qlen;
1451 rdp->qlen_lazy = 0;
1452 ACCESS_ONCE(rdp->qlen) = 0;
1453 }
1454
1455 /*
1456 * Next, move those callbacks still needing a grace period to
1457 * the orphanage, where some other CPU will pick them up.
1458 * Some of the callbacks might have gone partway through a grace
1459 * period, but that is too bad. They get to start over because we
1460 * cannot assume that grace periods are synchronized across CPUs.
1461 * We don't bother updating the ->nxttail[] array yet, instead
1462 * we just reset the whole thing later on.
1463 */
1464 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1465 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1466 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1467 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1468 }
1469
1470 /*
1471 * Then move the ready-to-invoke callbacks to the orphanage,
1472 * where some other CPU will pick them up. These will not be
1473 * required to pass though another grace period: They are done.
1474 */
1475 if (rdp->nxtlist != NULL) {
1476 *rsp->orphan_donetail = rdp->nxtlist;
1477 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1478 }
1479
1480 /* Finally, initialize the rcu_data structure's list to empty. */
1481 init_callback_list(rdp);
1482 }
1483
1484 /*
1485 * Adopt the RCU callbacks from the specified rcu_state structure's
1486 * orphanage. The caller must hold the ->onofflock.
1487 */
1488 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1489 {
1490 int i;
1491 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1492
1493 /*
1494 * If there is an rcu_barrier() operation in progress, then
1495 * only the task doing that operation is permitted to adopt
1496 * callbacks. To do otherwise breaks rcu_barrier() and friends
1497 * by causing them to fail to wait for the callbacks in the
1498 * orphanage.
1499 */
1500 if (rsp->rcu_barrier_in_progress &&
1501 rsp->rcu_barrier_in_progress != current)
1502 return;
1503
1504 /* Do the accounting first. */
1505 rdp->qlen_lazy += rsp->qlen_lazy;
1506 rdp->qlen += rsp->qlen;
1507 rdp->n_cbs_adopted += rsp->qlen;
1508 if (rsp->qlen_lazy != rsp->qlen)
1509 rcu_idle_count_callbacks_posted();
1510 rsp->qlen_lazy = 0;
1511 rsp->qlen = 0;
1512
1513 /*
1514 * We do not need a memory barrier here because the only way we
1515 * can get here if there is an rcu_barrier() in flight is if
1516 * we are the task doing the rcu_barrier().
1517 */
1518
1519 /* First adopt the ready-to-invoke callbacks. */
1520 if (rsp->orphan_donelist != NULL) {
1521 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1522 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1523 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1524 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1525 rdp->nxttail[i] = rsp->orphan_donetail;
1526 rsp->orphan_donelist = NULL;
1527 rsp->orphan_donetail = &rsp->orphan_donelist;
1528 }
1529
1530 /* And then adopt the callbacks that still need a grace period. */
1531 if (rsp->orphan_nxtlist != NULL) {
1532 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1533 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1534 rsp->orphan_nxtlist = NULL;
1535 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1536 }
1537 }
1538
1539 /*
1540 * Trace the fact that this CPU is going offline.
1541 */
1542 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1543 {
1544 RCU_TRACE(unsigned long mask);
1545 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1546 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1547
1548 RCU_TRACE(mask = rdp->grpmask);
1549 trace_rcu_grace_period(rsp->name,
1550 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1551 "cpuofl");
1552 }
1553
1554 /*
1555 * The CPU has been completely removed, and some other CPU is reporting
1556 * this fact from process context. Do the remainder of the cleanup,
1557 * including orphaning the outgoing CPU's RCU callbacks, and also
1558 * adopting them, if there is no _rcu_barrier() instance running.
1559 * There can only be one CPU hotplug operation at a time, so no other
1560 * CPU can be attempting to update rcu_cpu_kthread_task.
1561 */
1562 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1563 {
1564 unsigned long flags;
1565 unsigned long mask;
1566 int need_report = 0;
1567 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1568 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1569
1570 /* Adjust any no-longer-needed kthreads. */
1571 rcu_stop_cpu_kthread(cpu);
1572 rcu_node_kthread_setaffinity(rnp, -1);
1573
1574 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1575
1576 /* Exclude any attempts to start a new grace period. */
1577 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1578
1579 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1580 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1581 rcu_adopt_orphan_cbs(rsp);
1582
1583 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1584 mask = rdp->grpmask; /* rnp->grplo is constant. */
1585 do {
1586 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1587 rnp->qsmaskinit &= ~mask;
1588 if (rnp->qsmaskinit != 0) {
1589 if (rnp != rdp->mynode)
1590 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1591 break;
1592 }
1593 if (rnp == rdp->mynode)
1594 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1595 else
1596 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1597 mask = rnp->grpmask;
1598 rnp = rnp->parent;
1599 } while (rnp != NULL);
1600
1601 /*
1602 * We still hold the leaf rcu_node structure lock here, and
1603 * irqs are still disabled. The reason for this subterfuge is
1604 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1605 * held leads to deadlock.
1606 */
1607 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1608 rnp = rdp->mynode;
1609 if (need_report & RCU_OFL_TASKS_NORM_GP)
1610 rcu_report_unblock_qs_rnp(rnp, flags);
1611 else
1612 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1613 if (need_report & RCU_OFL_TASKS_EXP_GP)
1614 rcu_report_exp_rnp(rsp, rnp, true);
1615 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1616 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1617 cpu, rdp->qlen, rdp->nxtlist);
1618 }
1619
1620 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1621
1622 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1623 {
1624 }
1625
1626 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1627 {
1628 }
1629
1630 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1631 {
1632 }
1633
1634 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1635
1636 /*
1637 * Invoke any RCU callbacks that have made it to the end of their grace
1638 * period. Thottle as specified by rdp->blimit.
1639 */
1640 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1641 {
1642 unsigned long flags;
1643 struct rcu_head *next, *list, **tail;
1644 int bl, count, count_lazy, i;
1645
1646 /* If no callbacks are ready, just return.*/
1647 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1648 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1649 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1650 need_resched(), is_idle_task(current),
1651 rcu_is_callbacks_kthread());
1652 return;
1653 }
1654
1655 /*
1656 * Extract the list of ready callbacks, disabling to prevent
1657 * races with call_rcu() from interrupt handlers.
1658 */
1659 local_irq_save(flags);
1660 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1661 bl = rdp->blimit;
1662 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1663 list = rdp->nxtlist;
1664 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1665 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1666 tail = rdp->nxttail[RCU_DONE_TAIL];
1667 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1668 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1669 rdp->nxttail[i] = &rdp->nxtlist;
1670 local_irq_restore(flags);
1671
1672 /* Invoke callbacks. */
1673 count = count_lazy = 0;
1674 while (list) {
1675 next = list->next;
1676 prefetch(next);
1677 debug_rcu_head_unqueue(list);
1678 if (__rcu_reclaim(rsp->name, list))
1679 count_lazy++;
1680 list = next;
1681 /* Stop only if limit reached and CPU has something to do. */
1682 if (++count >= bl &&
1683 (need_resched() ||
1684 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1685 break;
1686 }
1687
1688 local_irq_save(flags);
1689 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1690 is_idle_task(current),
1691 rcu_is_callbacks_kthread());
1692
1693 /* Update count, and requeue any remaining callbacks. */
1694 if (list != NULL) {
1695 *tail = rdp->nxtlist;
1696 rdp->nxtlist = list;
1697 for (i = 0; i < RCU_NEXT_SIZE; i++)
1698 if (&rdp->nxtlist == rdp->nxttail[i])
1699 rdp->nxttail[i] = tail;
1700 else
1701 break;
1702 }
1703 smp_mb(); /* List handling before counting for rcu_barrier(). */
1704 rdp->qlen_lazy -= count_lazy;
1705 ACCESS_ONCE(rdp->qlen) -= count;
1706 rdp->n_cbs_invoked += count;
1707
1708 /* Reinstate batch limit if we have worked down the excess. */
1709 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1710 rdp->blimit = blimit;
1711
1712 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1713 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1714 rdp->qlen_last_fqs_check = 0;
1715 rdp->n_force_qs_snap = rsp->n_force_qs;
1716 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1717 rdp->qlen_last_fqs_check = rdp->qlen;
1718 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1719
1720 local_irq_restore(flags);
1721
1722 /* Re-invoke RCU core processing if there are callbacks remaining. */
1723 if (cpu_has_callbacks_ready_to_invoke(rdp))
1724 invoke_rcu_core();
1725 }
1726
1727 /*
1728 * Check to see if this CPU is in a non-context-switch quiescent state
1729 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1730 * Also schedule RCU core processing.
1731 *
1732 * This function must be called from hardirq context. It is normally
1733 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1734 * false, there is no point in invoking rcu_check_callbacks().
1735 */
1736 void rcu_check_callbacks(int cpu, int user)
1737 {
1738 trace_rcu_utilization("Start scheduler-tick");
1739 increment_cpu_stall_ticks();
1740 if (user || rcu_is_cpu_rrupt_from_idle()) {
1741
1742 /*
1743 * Get here if this CPU took its interrupt from user
1744 * mode or from the idle loop, and if this is not a
1745 * nested interrupt. In this case, the CPU is in
1746 * a quiescent state, so note it.
1747 *
1748 * No memory barrier is required here because both
1749 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1750 * variables that other CPUs neither access nor modify,
1751 * at least not while the corresponding CPU is online.
1752 */
1753
1754 rcu_sched_qs(cpu);
1755 rcu_bh_qs(cpu);
1756
1757 } else if (!in_softirq()) {
1758
1759 /*
1760 * Get here if this CPU did not take its interrupt from
1761 * softirq, in other words, if it is not interrupting
1762 * a rcu_bh read-side critical section. This is an _bh
1763 * critical section, so note it.
1764 */
1765
1766 rcu_bh_qs(cpu);
1767 }
1768 rcu_preempt_check_callbacks(cpu);
1769 if (rcu_pending(cpu))
1770 invoke_rcu_core();
1771 trace_rcu_utilization("End scheduler-tick");
1772 }
1773
1774 /*
1775 * Scan the leaf rcu_node structures, processing dyntick state for any that
1776 * have not yet encountered a quiescent state, using the function specified.
1777 * Also initiate boosting for any threads blocked on the root rcu_node.
1778 *
1779 * The caller must have suppressed start of new grace periods.
1780 */
1781 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1782 {
1783 unsigned long bit;
1784 int cpu;
1785 unsigned long flags;
1786 unsigned long mask;
1787 struct rcu_node *rnp;
1788
1789 rcu_for_each_leaf_node(rsp, rnp) {
1790 cond_resched();
1791 mask = 0;
1792 raw_spin_lock_irqsave(&rnp->lock, flags);
1793 if (!rcu_gp_in_progress(rsp)) {
1794 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1795 return;
1796 }
1797 if (rnp->qsmask == 0) {
1798 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1799 continue;
1800 }
1801 cpu = rnp->grplo;
1802 bit = 1;
1803 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1804 if ((rnp->qsmask & bit) != 0 &&
1805 f(per_cpu_ptr(rsp->rda, cpu)))
1806 mask |= bit;
1807 }
1808 if (mask != 0) {
1809
1810 /* rcu_report_qs_rnp() releases rnp->lock. */
1811 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1812 continue;
1813 }
1814 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1815 }
1816 rnp = rcu_get_root(rsp);
1817 if (rnp->qsmask == 0) {
1818 raw_spin_lock_irqsave(&rnp->lock, flags);
1819 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1820 }
1821 }
1822
1823 /*
1824 * Force quiescent states on reluctant CPUs, and also detect which
1825 * CPUs are in dyntick-idle mode.
1826 */
1827 static void force_quiescent_state(struct rcu_state *rsp)
1828 {
1829 unsigned long flags;
1830 bool ret;
1831 struct rcu_node *rnp;
1832 struct rcu_node *rnp_old = NULL;
1833
1834 /* Funnel through hierarchy to reduce memory contention. */
1835 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1836 for (; rnp != NULL; rnp = rnp->parent) {
1837 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1838 !raw_spin_trylock(&rnp->fqslock);
1839 if (rnp_old != NULL)
1840 raw_spin_unlock(&rnp_old->fqslock);
1841 if (ret) {
1842 rsp->n_force_qs_lh++;
1843 return;
1844 }
1845 rnp_old = rnp;
1846 }
1847 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1848
1849 /* Reached the root of the rcu_node tree, acquire lock. */
1850 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1851 raw_spin_unlock(&rnp_old->fqslock);
1852 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1853 rsp->n_force_qs_lh++;
1854 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1855 return; /* Someone beat us to it. */
1856 }
1857 rsp->gp_flags |= RCU_GP_FLAG_FQS;
1858 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1859 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1860 }
1861
1862 /*
1863 * This does the RCU core processing work for the specified rcu_state
1864 * and rcu_data structures. This may be called only from the CPU to
1865 * whom the rdp belongs.
1866 */
1867 static void
1868 __rcu_process_callbacks(struct rcu_state *rsp)
1869 {
1870 unsigned long flags;
1871 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1872
1873 WARN_ON_ONCE(rdp->beenonline == 0);
1874
1875 /*
1876 * Advance callbacks in response to end of earlier grace
1877 * period that some other CPU ended.
1878 */
1879 rcu_process_gp_end(rsp, rdp);
1880
1881 /* Update RCU state based on any recent quiescent states. */
1882 rcu_check_quiescent_state(rsp, rdp);
1883
1884 /* Does this CPU require a not-yet-started grace period? */
1885 if (cpu_needs_another_gp(rsp, rdp)) {
1886 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1887 rcu_start_gp(rsp, flags); /* releases above lock */
1888 }
1889
1890 /* If there are callbacks ready, invoke them. */
1891 if (cpu_has_callbacks_ready_to_invoke(rdp))
1892 invoke_rcu_callbacks(rsp, rdp);
1893 }
1894
1895 /*
1896 * Do RCU core processing for the current CPU.
1897 */
1898 static void rcu_process_callbacks(struct softirq_action *unused)
1899 {
1900 struct rcu_state *rsp;
1901
1902 if (cpu_is_offline(smp_processor_id()))
1903 return;
1904 trace_rcu_utilization("Start RCU core");
1905 for_each_rcu_flavor(rsp)
1906 __rcu_process_callbacks(rsp);
1907 trace_rcu_utilization("End RCU core");
1908 }
1909
1910 /*
1911 * Schedule RCU callback invocation. If the specified type of RCU
1912 * does not support RCU priority boosting, just do a direct call,
1913 * otherwise wake up the per-CPU kernel kthread. Note that because we
1914 * are running on the current CPU with interrupts disabled, the
1915 * rcu_cpu_kthread_task cannot disappear out from under us.
1916 */
1917 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1918 {
1919 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1920 return;
1921 if (likely(!rsp->boost)) {
1922 rcu_do_batch(rsp, rdp);
1923 return;
1924 }
1925 invoke_rcu_callbacks_kthread();
1926 }
1927
1928 static void invoke_rcu_core(void)
1929 {
1930 raise_softirq(RCU_SOFTIRQ);
1931 }
1932
1933 /*
1934 * Handle any core-RCU processing required by a call_rcu() invocation.
1935 */
1936 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1937 struct rcu_head *head, unsigned long flags)
1938 {
1939 /*
1940 * If called from an extended quiescent state, invoke the RCU
1941 * core in order to force a re-evaluation of RCU's idleness.
1942 */
1943 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1944 invoke_rcu_core();
1945
1946 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1947 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1948 return;
1949
1950 /*
1951 * Force the grace period if too many callbacks or too long waiting.
1952 * Enforce hysteresis, and don't invoke force_quiescent_state()
1953 * if some other CPU has recently done so. Also, don't bother
1954 * invoking force_quiescent_state() if the newly enqueued callback
1955 * is the only one waiting for a grace period to complete.
1956 */
1957 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1958
1959 /* Are we ignoring a completed grace period? */
1960 rcu_process_gp_end(rsp, rdp);
1961 check_for_new_grace_period(rsp, rdp);
1962
1963 /* Start a new grace period if one not already started. */
1964 if (!rcu_gp_in_progress(rsp)) {
1965 unsigned long nestflag;
1966 struct rcu_node *rnp_root = rcu_get_root(rsp);
1967
1968 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1969 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1970 } else {
1971 /* Give the grace period a kick. */
1972 rdp->blimit = LONG_MAX;
1973 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1974 *rdp->nxttail[RCU_DONE_TAIL] != head)
1975 force_quiescent_state(rsp);
1976 rdp->n_force_qs_snap = rsp->n_force_qs;
1977 rdp->qlen_last_fqs_check = rdp->qlen;
1978 }
1979 }
1980 }
1981
1982 static void
1983 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1984 struct rcu_state *rsp, bool lazy)
1985 {
1986 unsigned long flags;
1987 struct rcu_data *rdp;
1988
1989 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1990 debug_rcu_head_queue(head);
1991 head->func = func;
1992 head->next = NULL;
1993
1994 smp_mb(); /* Ensure RCU update seen before callback registry. */
1995
1996 /*
1997 * Opportunistically note grace-period endings and beginnings.
1998 * Note that we might see a beginning right after we see an
1999 * end, but never vice versa, since this CPU has to pass through
2000 * a quiescent state betweentimes.
2001 */
2002 local_irq_save(flags);
2003 rdp = this_cpu_ptr(rsp->rda);
2004
2005 /* Add the callback to our list. */
2006 ACCESS_ONCE(rdp->qlen)++;
2007 if (lazy)
2008 rdp->qlen_lazy++;
2009 else
2010 rcu_idle_count_callbacks_posted();
2011 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2012 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2013 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2014
2015 if (__is_kfree_rcu_offset((unsigned long)func))
2016 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2017 rdp->qlen_lazy, rdp->qlen);
2018 else
2019 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2020
2021 /* Go handle any RCU core processing required. */
2022 __call_rcu_core(rsp, rdp, head, flags);
2023 local_irq_restore(flags);
2024 }
2025
2026 /*
2027 * Queue an RCU-sched callback for invocation after a grace period.
2028 */
2029 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2030 {
2031 __call_rcu(head, func, &rcu_sched_state, 0);
2032 }
2033 EXPORT_SYMBOL_GPL(call_rcu_sched);
2034
2035 /*
2036 * Queue an RCU callback for invocation after a quicker grace period.
2037 */
2038 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2039 {
2040 __call_rcu(head, func, &rcu_bh_state, 0);
2041 }
2042 EXPORT_SYMBOL_GPL(call_rcu_bh);
2043
2044 /*
2045 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2046 * any blocking grace-period wait automatically implies a grace period
2047 * if there is only one CPU online at any point time during execution
2048 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2049 * occasionally incorrectly indicate that there are multiple CPUs online
2050 * when there was in fact only one the whole time, as this just adds
2051 * some overhead: RCU still operates correctly.
2052 */
2053 static inline int rcu_blocking_is_gp(void)
2054 {
2055 int ret;
2056
2057 might_sleep(); /* Check for RCU read-side critical section. */
2058 preempt_disable();
2059 ret = num_online_cpus() <= 1;
2060 preempt_enable();
2061 return ret;
2062 }
2063
2064 /**
2065 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2066 *
2067 * Control will return to the caller some time after a full rcu-sched
2068 * grace period has elapsed, in other words after all currently executing
2069 * rcu-sched read-side critical sections have completed. These read-side
2070 * critical sections are delimited by rcu_read_lock_sched() and
2071 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2072 * local_irq_disable(), and so on may be used in place of
2073 * rcu_read_lock_sched().
2074 *
2075 * This means that all preempt_disable code sequences, including NMI and
2076 * hardware-interrupt handlers, in progress on entry will have completed
2077 * before this primitive returns. However, this does not guarantee that
2078 * softirq handlers will have completed, since in some kernels, these
2079 * handlers can run in process context, and can block.
2080 *
2081 * This primitive provides the guarantees made by the (now removed)
2082 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2083 * guarantees that rcu_read_lock() sections will have completed.
2084 * In "classic RCU", these two guarantees happen to be one and
2085 * the same, but can differ in realtime RCU implementations.
2086 */
2087 void synchronize_sched(void)
2088 {
2089 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2090 !lock_is_held(&rcu_lock_map) &&
2091 !lock_is_held(&rcu_sched_lock_map),
2092 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2093 if (rcu_blocking_is_gp())
2094 return;
2095 wait_rcu_gp(call_rcu_sched);
2096 }
2097 EXPORT_SYMBOL_GPL(synchronize_sched);
2098
2099 /**
2100 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2101 *
2102 * Control will return to the caller some time after a full rcu_bh grace
2103 * period has elapsed, in other words after all currently executing rcu_bh
2104 * read-side critical sections have completed. RCU read-side critical
2105 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2106 * and may be nested.
2107 */
2108 void synchronize_rcu_bh(void)
2109 {
2110 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2111 !lock_is_held(&rcu_lock_map) &&
2112 !lock_is_held(&rcu_sched_lock_map),
2113 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2114 if (rcu_blocking_is_gp())
2115 return;
2116 wait_rcu_gp(call_rcu_bh);
2117 }
2118 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2119
2120 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2121 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2122
2123 static int synchronize_sched_expedited_cpu_stop(void *data)
2124 {
2125 /*
2126 * There must be a full memory barrier on each affected CPU
2127 * between the time that try_stop_cpus() is called and the
2128 * time that it returns.
2129 *
2130 * In the current initial implementation of cpu_stop, the
2131 * above condition is already met when the control reaches
2132 * this point and the following smp_mb() is not strictly
2133 * necessary. Do smp_mb() anyway for documentation and
2134 * robustness against future implementation changes.
2135 */
2136 smp_mb(); /* See above comment block. */
2137 return 0;
2138 }
2139
2140 /**
2141 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2142 *
2143 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2144 * approach to force the grace period to end quickly. This consumes
2145 * significant time on all CPUs and is unfriendly to real-time workloads,
2146 * so is thus not recommended for any sort of common-case code. In fact,
2147 * if you are using synchronize_sched_expedited() in a loop, please
2148 * restructure your code to batch your updates, and then use a single
2149 * synchronize_sched() instead.
2150 *
2151 * Note that it is illegal to call this function while holding any lock
2152 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2153 * to call this function from a CPU-hotplug notifier. Failing to observe
2154 * these restriction will result in deadlock.
2155 *
2156 * This implementation can be thought of as an application of ticket
2157 * locking to RCU, with sync_sched_expedited_started and
2158 * sync_sched_expedited_done taking on the roles of the halves
2159 * of the ticket-lock word. Each task atomically increments
2160 * sync_sched_expedited_started upon entry, snapshotting the old value,
2161 * then attempts to stop all the CPUs. If this succeeds, then each
2162 * CPU will have executed a context switch, resulting in an RCU-sched
2163 * grace period. We are then done, so we use atomic_cmpxchg() to
2164 * update sync_sched_expedited_done to match our snapshot -- but
2165 * only if someone else has not already advanced past our snapshot.
2166 *
2167 * On the other hand, if try_stop_cpus() fails, we check the value
2168 * of sync_sched_expedited_done. If it has advanced past our
2169 * initial snapshot, then someone else must have forced a grace period
2170 * some time after we took our snapshot. In this case, our work is
2171 * done for us, and we can simply return. Otherwise, we try again,
2172 * but keep our initial snapshot for purposes of checking for someone
2173 * doing our work for us.
2174 *
2175 * If we fail too many times in a row, we fall back to synchronize_sched().
2176 */
2177 void synchronize_sched_expedited(void)
2178 {
2179 int firstsnap, s, snap, trycount = 0;
2180
2181 /* Note that atomic_inc_return() implies full memory barrier. */
2182 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2183 get_online_cpus();
2184 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2185
2186 /*
2187 * Each pass through the following loop attempts to force a
2188 * context switch on each CPU.
2189 */
2190 while (try_stop_cpus(cpu_online_mask,
2191 synchronize_sched_expedited_cpu_stop,
2192 NULL) == -EAGAIN) {
2193 put_online_cpus();
2194
2195 /* No joy, try again later. Or just synchronize_sched(). */
2196 if (trycount++ < 10) {
2197 udelay(trycount * num_online_cpus());
2198 } else {
2199 synchronize_sched();
2200 return;
2201 }
2202
2203 /* Check to see if someone else did our work for us. */
2204 s = atomic_read(&sync_sched_expedited_done);
2205 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2206 smp_mb(); /* ensure test happens before caller kfree */
2207 return;
2208 }
2209
2210 /*
2211 * Refetching sync_sched_expedited_started allows later
2212 * callers to piggyback on our grace period. We subtract
2213 * 1 to get the same token that the last incrementer got.
2214 * We retry after they started, so our grace period works
2215 * for them, and they started after our first try, so their
2216 * grace period works for us.
2217 */
2218 get_online_cpus();
2219 snap = atomic_read(&sync_sched_expedited_started);
2220 smp_mb(); /* ensure read is before try_stop_cpus(). */
2221 }
2222
2223 /*
2224 * Everyone up to our most recent fetch is covered by our grace
2225 * period. Update the counter, but only if our work is still
2226 * relevant -- which it won't be if someone who started later
2227 * than we did beat us to the punch.
2228 */
2229 do {
2230 s = atomic_read(&sync_sched_expedited_done);
2231 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2232 smp_mb(); /* ensure test happens before caller kfree */
2233 break;
2234 }
2235 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2236
2237 put_online_cpus();
2238 }
2239 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2240
2241 /*
2242 * Check to see if there is any immediate RCU-related work to be done
2243 * by the current CPU, for the specified type of RCU, returning 1 if so.
2244 * The checks are in order of increasing expense: checks that can be
2245 * carried out against CPU-local state are performed first. However,
2246 * we must check for CPU stalls first, else we might not get a chance.
2247 */
2248 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2249 {
2250 struct rcu_node *rnp = rdp->mynode;
2251
2252 rdp->n_rcu_pending++;
2253
2254 /* Check for CPU stalls, if enabled. */
2255 check_cpu_stall(rsp, rdp);
2256
2257 /* Is the RCU core waiting for a quiescent state from this CPU? */
2258 if (rcu_scheduler_fully_active &&
2259 rdp->qs_pending && !rdp->passed_quiesce) {
2260 rdp->n_rp_qs_pending++;
2261 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2262 rdp->n_rp_report_qs++;
2263 return 1;
2264 }
2265
2266 /* Does this CPU have callbacks ready to invoke? */
2267 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2268 rdp->n_rp_cb_ready++;
2269 return 1;
2270 }
2271
2272 /* Has RCU gone idle with this CPU needing another grace period? */
2273 if (cpu_needs_another_gp(rsp, rdp)) {
2274 rdp->n_rp_cpu_needs_gp++;
2275 return 1;
2276 }
2277
2278 /* Has another RCU grace period completed? */
2279 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2280 rdp->n_rp_gp_completed++;
2281 return 1;
2282 }
2283
2284 /* Has a new RCU grace period started? */
2285 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2286 rdp->n_rp_gp_started++;
2287 return 1;
2288 }
2289
2290 /* nothing to do */
2291 rdp->n_rp_need_nothing++;
2292 return 0;
2293 }
2294
2295 /*
2296 * Check to see if there is any immediate RCU-related work to be done
2297 * by the current CPU, returning 1 if so. This function is part of the
2298 * RCU implementation; it is -not- an exported member of the RCU API.
2299 */
2300 static int rcu_pending(int cpu)
2301 {
2302 struct rcu_state *rsp;
2303
2304 for_each_rcu_flavor(rsp)
2305 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2306 return 1;
2307 return 0;
2308 }
2309
2310 /*
2311 * Check to see if any future RCU-related work will need to be done
2312 * by the current CPU, even if none need be done immediately, returning
2313 * 1 if so.
2314 */
2315 static int rcu_cpu_has_callbacks(int cpu)
2316 {
2317 struct rcu_state *rsp;
2318
2319 /* RCU callbacks either ready or pending? */
2320 for_each_rcu_flavor(rsp)
2321 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /*
2327 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2328 * the compiler is expected to optimize this away.
2329 */
2330 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2331 int cpu, unsigned long done)
2332 {
2333 trace_rcu_barrier(rsp->name, s, cpu,
2334 atomic_read(&rsp->barrier_cpu_count), done);
2335 }
2336
2337 /*
2338 * RCU callback function for _rcu_barrier(). If we are last, wake
2339 * up the task executing _rcu_barrier().
2340 */
2341 static void rcu_barrier_callback(struct rcu_head *rhp)
2342 {
2343 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2344 struct rcu_state *rsp = rdp->rsp;
2345
2346 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2347 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2348 complete(&rsp->barrier_completion);
2349 } else {
2350 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2351 }
2352 }
2353
2354 /*
2355 * Called with preemption disabled, and from cross-cpu IRQ context.
2356 */
2357 static void rcu_barrier_func(void *type)
2358 {
2359 struct rcu_state *rsp = type;
2360 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2361
2362 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2363 atomic_inc(&rsp->barrier_cpu_count);
2364 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2365 }
2366
2367 /*
2368 * Orchestrate the specified type of RCU barrier, waiting for all
2369 * RCU callbacks of the specified type to complete.
2370 */
2371 static void _rcu_barrier(struct rcu_state *rsp)
2372 {
2373 int cpu;
2374 unsigned long flags;
2375 struct rcu_data *rdp;
2376 struct rcu_data rd;
2377 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2378 unsigned long snap_done;
2379
2380 init_rcu_head_on_stack(&rd.barrier_head);
2381 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2382
2383 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2384 mutex_lock(&rsp->barrier_mutex);
2385
2386 /*
2387 * Ensure that all prior references, including to ->n_barrier_done,
2388 * are ordered before the _rcu_barrier() machinery.
2389 */
2390 smp_mb(); /* See above block comment. */
2391
2392 /*
2393 * Recheck ->n_barrier_done to see if others did our work for us.
2394 * This means checking ->n_barrier_done for an even-to-odd-to-even
2395 * transition. The "if" expression below therefore rounds the old
2396 * value up to the next even number and adds two before comparing.
2397 */
2398 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2399 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2400 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2401 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2402 smp_mb(); /* caller's subsequent code after above check. */
2403 mutex_unlock(&rsp->barrier_mutex);
2404 return;
2405 }
2406
2407 /*
2408 * Increment ->n_barrier_done to avoid duplicate work. Use
2409 * ACCESS_ONCE() to prevent the compiler from speculating
2410 * the increment to precede the early-exit check.
2411 */
2412 ACCESS_ONCE(rsp->n_barrier_done)++;
2413 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2414 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2415 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2416
2417 /*
2418 * Initialize the count to one rather than to zero in order to
2419 * avoid a too-soon return to zero in case of a short grace period
2420 * (or preemption of this task). Also flag this task as doing
2421 * an rcu_barrier(). This will prevent anyone else from adopting
2422 * orphaned callbacks, which could cause otherwise failure if a
2423 * CPU went offline and quickly came back online. To see this,
2424 * consider the following sequence of events:
2425 *
2426 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2427 * 2. CPU 1 goes offline, orphaning its callbacks.
2428 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2429 * 4. CPU 1 comes back online.
2430 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2431 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2432 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2433 */
2434 init_completion(&rsp->barrier_completion);
2435 atomic_set(&rsp->barrier_cpu_count, 1);
2436 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2437 rsp->rcu_barrier_in_progress = current;
2438 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2439
2440 /*
2441 * Force every CPU with callbacks to register a new callback
2442 * that will tell us when all the preceding callbacks have
2443 * been invoked. If an offline CPU has callbacks, wait for
2444 * it to either come back online or to finish orphaning those
2445 * callbacks.
2446 */
2447 for_each_possible_cpu(cpu) {
2448 preempt_disable();
2449 rdp = per_cpu_ptr(rsp->rda, cpu);
2450 if (cpu_is_offline(cpu)) {
2451 _rcu_barrier_trace(rsp, "Offline", cpu,
2452 rsp->n_barrier_done);
2453 preempt_enable();
2454 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2455 schedule_timeout_interruptible(1);
2456 } else if (ACCESS_ONCE(rdp->qlen)) {
2457 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2458 rsp->n_barrier_done);
2459 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2460 preempt_enable();
2461 } else {
2462 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2463 rsp->n_barrier_done);
2464 preempt_enable();
2465 }
2466 }
2467
2468 /*
2469 * Now that all online CPUs have rcu_barrier_callback() callbacks
2470 * posted, we can adopt all of the orphaned callbacks and place
2471 * an rcu_barrier_callback() callback after them. When that is done,
2472 * we are guaranteed to have an rcu_barrier_callback() callback
2473 * following every callback that could possibly have been
2474 * registered before _rcu_barrier() was called.
2475 */
2476 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2477 rcu_adopt_orphan_cbs(rsp);
2478 rsp->rcu_barrier_in_progress = NULL;
2479 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2480 atomic_inc(&rsp->barrier_cpu_count);
2481 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2482 rd.rsp = rsp;
2483 rsp->call(&rd.barrier_head, rcu_barrier_callback);
2484
2485 /*
2486 * Now that we have an rcu_barrier_callback() callback on each
2487 * CPU, and thus each counted, remove the initial count.
2488 */
2489 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2490 complete(&rsp->barrier_completion);
2491
2492 /* Increment ->n_barrier_done to prevent duplicate work. */
2493 smp_mb(); /* Keep increment after above mechanism. */
2494 ACCESS_ONCE(rsp->n_barrier_done)++;
2495 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2496 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2497 smp_mb(); /* Keep increment before caller's subsequent code. */
2498
2499 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2500 wait_for_completion(&rsp->barrier_completion);
2501
2502 /* Other rcu_barrier() invocations can now safely proceed. */
2503 mutex_unlock(&rsp->barrier_mutex);
2504
2505 destroy_rcu_head_on_stack(&rd.barrier_head);
2506 }
2507
2508 /**
2509 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2510 */
2511 void rcu_barrier_bh(void)
2512 {
2513 _rcu_barrier(&rcu_bh_state);
2514 }
2515 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2516
2517 /**
2518 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2519 */
2520 void rcu_barrier_sched(void)
2521 {
2522 _rcu_barrier(&rcu_sched_state);
2523 }
2524 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2525
2526 /*
2527 * Do boot-time initialization of a CPU's per-CPU RCU data.
2528 */
2529 static void __init
2530 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2531 {
2532 unsigned long flags;
2533 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2534 struct rcu_node *rnp = rcu_get_root(rsp);
2535
2536 /* Set up local state, ensuring consistent view of global state. */
2537 raw_spin_lock_irqsave(&rnp->lock, flags);
2538 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2539 init_callback_list(rdp);
2540 rdp->qlen_lazy = 0;
2541 ACCESS_ONCE(rdp->qlen) = 0;
2542 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2543 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2544 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2545 rdp->cpu = cpu;
2546 rdp->rsp = rsp;
2547 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2548 }
2549
2550 /*
2551 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2552 * offline event can be happening at a given time. Note also that we
2553 * can accept some slop in the rsp->completed access due to the fact
2554 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2555 */
2556 static void __cpuinit
2557 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2558 {
2559 unsigned long flags;
2560 unsigned long mask;
2561 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2562 struct rcu_node *rnp = rcu_get_root(rsp);
2563
2564 /* Set up local state, ensuring consistent view of global state. */
2565 raw_spin_lock_irqsave(&rnp->lock, flags);
2566 rdp->beenonline = 1; /* We have now been online. */
2567 rdp->preemptible = preemptible;
2568 rdp->qlen_last_fqs_check = 0;
2569 rdp->n_force_qs_snap = rsp->n_force_qs;
2570 rdp->blimit = blimit;
2571 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2572 atomic_set(&rdp->dynticks->dynticks,
2573 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2574 rcu_prepare_for_idle_init(cpu);
2575 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2576
2577 /*
2578 * A new grace period might start here. If so, we won't be part
2579 * of it, but that is OK, as we are currently in a quiescent state.
2580 */
2581
2582 /* Exclude any attempts to start a new GP on large systems. */
2583 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2584
2585 /* Add CPU to rcu_node bitmasks. */
2586 rnp = rdp->mynode;
2587 mask = rdp->grpmask;
2588 do {
2589 /* Exclude any attempts to start a new GP on small systems. */
2590 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2591 rnp->qsmaskinit |= mask;
2592 mask = rnp->grpmask;
2593 if (rnp == rdp->mynode) {
2594 /*
2595 * If there is a grace period in progress, we will
2596 * set up to wait for it next time we run the
2597 * RCU core code.
2598 */
2599 rdp->gpnum = rnp->completed;
2600 rdp->completed = rnp->completed;
2601 rdp->passed_quiesce = 0;
2602 rdp->qs_pending = 0;
2603 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2604 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2605 }
2606 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2607 rnp = rnp->parent;
2608 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2609
2610 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2611 }
2612
2613 static void __cpuinit rcu_prepare_cpu(int cpu)
2614 {
2615 struct rcu_state *rsp;
2616
2617 for_each_rcu_flavor(rsp)
2618 rcu_init_percpu_data(cpu, rsp,
2619 strcmp(rsp->name, "rcu_preempt") == 0);
2620 }
2621
2622 /*
2623 * Handle CPU online/offline notification events.
2624 */
2625 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2626 unsigned long action, void *hcpu)
2627 {
2628 long cpu = (long)hcpu;
2629 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2630 struct rcu_node *rnp = rdp->mynode;
2631 struct rcu_state *rsp;
2632
2633 trace_rcu_utilization("Start CPU hotplug");
2634 switch (action) {
2635 case CPU_UP_PREPARE:
2636 case CPU_UP_PREPARE_FROZEN:
2637 rcu_prepare_cpu(cpu);
2638 rcu_prepare_kthreads(cpu);
2639 break;
2640 case CPU_ONLINE:
2641 case CPU_DOWN_FAILED:
2642 rcu_node_kthread_setaffinity(rnp, -1);
2643 rcu_cpu_kthread_setrt(cpu, 1);
2644 break;
2645 case CPU_DOWN_PREPARE:
2646 rcu_node_kthread_setaffinity(rnp, cpu);
2647 rcu_cpu_kthread_setrt(cpu, 0);
2648 break;
2649 case CPU_DYING:
2650 case CPU_DYING_FROZEN:
2651 /*
2652 * The whole machine is "stopped" except this CPU, so we can
2653 * touch any data without introducing corruption. We send the
2654 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2655 */
2656 for_each_rcu_flavor(rsp)
2657 rcu_cleanup_dying_cpu(rsp);
2658 rcu_cleanup_after_idle(cpu);
2659 break;
2660 case CPU_DEAD:
2661 case CPU_DEAD_FROZEN:
2662 case CPU_UP_CANCELED:
2663 case CPU_UP_CANCELED_FROZEN:
2664 for_each_rcu_flavor(rsp)
2665 rcu_cleanup_dead_cpu(cpu, rsp);
2666 break;
2667 default:
2668 break;
2669 }
2670 trace_rcu_utilization("End CPU hotplug");
2671 return NOTIFY_OK;
2672 }
2673
2674 /*
2675 * Spawn the kthread that handles this RCU flavor's grace periods.
2676 */
2677 static int __init rcu_spawn_gp_kthread(void)
2678 {
2679 unsigned long flags;
2680 struct rcu_node *rnp;
2681 struct rcu_state *rsp;
2682 struct task_struct *t;
2683
2684 for_each_rcu_flavor(rsp) {
2685 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2686 BUG_ON(IS_ERR(t));
2687 rnp = rcu_get_root(rsp);
2688 raw_spin_lock_irqsave(&rnp->lock, flags);
2689 rsp->gp_kthread = t;
2690 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2691 }
2692 return 0;
2693 }
2694 early_initcall(rcu_spawn_gp_kthread);
2695
2696 /*
2697 * This function is invoked towards the end of the scheduler's initialization
2698 * process. Before this is called, the idle task might contain
2699 * RCU read-side critical sections (during which time, this idle
2700 * task is booting the system). After this function is called, the
2701 * idle tasks are prohibited from containing RCU read-side critical
2702 * sections. This function also enables RCU lockdep checking.
2703 */
2704 void rcu_scheduler_starting(void)
2705 {
2706 WARN_ON(num_online_cpus() != 1);
2707 WARN_ON(nr_context_switches() > 0);
2708 rcu_scheduler_active = 1;
2709 }
2710
2711 /*
2712 * Compute the per-level fanout, either using the exact fanout specified
2713 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2714 */
2715 #ifdef CONFIG_RCU_FANOUT_EXACT
2716 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2717 {
2718 int i;
2719
2720 for (i = rcu_num_lvls - 1; i > 0; i--)
2721 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2722 rsp->levelspread[0] = rcu_fanout_leaf;
2723 }
2724 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2725 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2726 {
2727 int ccur;
2728 int cprv;
2729 int i;
2730
2731 cprv = NR_CPUS;
2732 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2733 ccur = rsp->levelcnt[i];
2734 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2735 cprv = ccur;
2736 }
2737 }
2738 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2739
2740 /*
2741 * Helper function for rcu_init() that initializes one rcu_state structure.
2742 */
2743 static void __init rcu_init_one(struct rcu_state *rsp,
2744 struct rcu_data __percpu *rda)
2745 {
2746 static char *buf[] = { "rcu_node_0",
2747 "rcu_node_1",
2748 "rcu_node_2",
2749 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2750 static char *fqs[] = { "rcu_node_fqs_0",
2751 "rcu_node_fqs_1",
2752 "rcu_node_fqs_2",
2753 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2754 int cpustride = 1;
2755 int i;
2756 int j;
2757 struct rcu_node *rnp;
2758
2759 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2760
2761 /* Initialize the level-tracking arrays. */
2762
2763 for (i = 0; i < rcu_num_lvls; i++)
2764 rsp->levelcnt[i] = num_rcu_lvl[i];
2765 for (i = 1; i < rcu_num_lvls; i++)
2766 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2767 rcu_init_levelspread(rsp);
2768
2769 /* Initialize the elements themselves, starting from the leaves. */
2770
2771 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2772 cpustride *= rsp->levelspread[i];
2773 rnp = rsp->level[i];
2774 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2775 raw_spin_lock_init(&rnp->lock);
2776 lockdep_set_class_and_name(&rnp->lock,
2777 &rcu_node_class[i], buf[i]);
2778 raw_spin_lock_init(&rnp->fqslock);
2779 lockdep_set_class_and_name(&rnp->fqslock,
2780 &rcu_fqs_class[i], fqs[i]);
2781 rnp->gpnum = 0;
2782 rnp->qsmask = 0;
2783 rnp->qsmaskinit = 0;
2784 rnp->grplo = j * cpustride;
2785 rnp->grphi = (j + 1) * cpustride - 1;
2786 if (rnp->grphi >= NR_CPUS)
2787 rnp->grphi = NR_CPUS - 1;
2788 if (i == 0) {
2789 rnp->grpnum = 0;
2790 rnp->grpmask = 0;
2791 rnp->parent = NULL;
2792 } else {
2793 rnp->grpnum = j % rsp->levelspread[i - 1];
2794 rnp->grpmask = 1UL << rnp->grpnum;
2795 rnp->parent = rsp->level[i - 1] +
2796 j / rsp->levelspread[i - 1];
2797 }
2798 rnp->level = i;
2799 INIT_LIST_HEAD(&rnp->blkd_tasks);
2800 }
2801 }
2802
2803 rsp->rda = rda;
2804 init_waitqueue_head(&rsp->gp_wq);
2805 rnp = rsp->level[rcu_num_lvls - 1];
2806 for_each_possible_cpu(i) {
2807 while (i > rnp->grphi)
2808 rnp++;
2809 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2810 rcu_boot_init_percpu_data(i, rsp);
2811 }
2812 list_add(&rsp->flavors, &rcu_struct_flavors);
2813 }
2814
2815 /*
2816 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2817 * replace the definitions in rcutree.h because those are needed to size
2818 * the ->node array in the rcu_state structure.
2819 */
2820 static void __init rcu_init_geometry(void)
2821 {
2822 int i;
2823 int j;
2824 int n = nr_cpu_ids;
2825 int rcu_capacity[MAX_RCU_LVLS + 1];
2826
2827 /* If the compile-time values are accurate, just leave. */
2828 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2829 return;
2830
2831 /*
2832 * Compute number of nodes that can be handled an rcu_node tree
2833 * with the given number of levels. Setting rcu_capacity[0] makes
2834 * some of the arithmetic easier.
2835 */
2836 rcu_capacity[0] = 1;
2837 rcu_capacity[1] = rcu_fanout_leaf;
2838 for (i = 2; i <= MAX_RCU_LVLS; i++)
2839 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2840
2841 /*
2842 * The boot-time rcu_fanout_leaf parameter is only permitted
2843 * to increase the leaf-level fanout, not decrease it. Of course,
2844 * the leaf-level fanout cannot exceed the number of bits in
2845 * the rcu_node masks. Finally, the tree must be able to accommodate
2846 * the configured number of CPUs. Complain and fall back to the
2847 * compile-time values if these limits are exceeded.
2848 */
2849 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2850 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2851 n > rcu_capacity[MAX_RCU_LVLS]) {
2852 WARN_ON(1);
2853 return;
2854 }
2855
2856 /* Calculate the number of rcu_nodes at each level of the tree. */
2857 for (i = 1; i <= MAX_RCU_LVLS; i++)
2858 if (n <= rcu_capacity[i]) {
2859 for (j = 0; j <= i; j++)
2860 num_rcu_lvl[j] =
2861 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2862 rcu_num_lvls = i;
2863 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2864 num_rcu_lvl[j] = 0;
2865 break;
2866 }
2867
2868 /* Calculate the total number of rcu_node structures. */
2869 rcu_num_nodes = 0;
2870 for (i = 0; i <= MAX_RCU_LVLS; i++)
2871 rcu_num_nodes += num_rcu_lvl[i];
2872 rcu_num_nodes -= n;
2873 }
2874
2875 void __init rcu_init(void)
2876 {
2877 int cpu;
2878
2879 rcu_bootup_announce();
2880 rcu_init_geometry();
2881 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2882 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2883 __rcu_init_preempt();
2884 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2885
2886 /*
2887 * We don't need protection against CPU-hotplug here because
2888 * this is called early in boot, before either interrupts
2889 * or the scheduler are operational.
2890 */
2891 cpu_notifier(rcu_cpu_notify, 0);
2892 for_each_online_cpu(cpu)
2893 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2894 check_cpu_stall_init();
2895 }
2896
2897 #include "rcutree_plugin.h"