]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcutree.c
Merge branch 'core-futexes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49
50 #ifdef CONFIG_DEBUG_LOCK_ALLOC
51 static struct lock_class_key rcu_lock_key;
52 struct lockdep_map rcu_lock_map =
53 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
54 EXPORT_SYMBOL_GPL(rcu_lock_map);
55 #endif
56
57 /* Data structures. */
58
59 #define RCU_STATE_INITIALIZER(name) { \
60 .level = { &name.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
66 }, \
67 .signaled = RCU_SIGNAL_INIT, \
68 .gpnum = -300, \
69 .completed = -300, \
70 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
71 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
72 .n_force_qs = 0, \
73 .n_force_qs_ngp = 0, \
74 }
75
76 struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state);
77 DEFINE_PER_CPU(struct rcu_data, rcu_data);
78
79 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
81
82 /*
83 * Increment the quiescent state counter.
84 * The counter is a bit degenerated: We do not need to know
85 * how many quiescent states passed, just if there was at least
86 * one since the start of the grace period. Thus just a flag.
87 */
88 void rcu_qsctr_inc(int cpu)
89 {
90 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
91 rdp->passed_quiesc = 1;
92 rdp->passed_quiesc_completed = rdp->completed;
93 }
94
95 void rcu_bh_qsctr_inc(int cpu)
96 {
97 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
98 rdp->passed_quiesc = 1;
99 rdp->passed_quiesc_completed = rdp->completed;
100 }
101
102 #ifdef CONFIG_NO_HZ
103 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
104 .dynticks_nesting = 1,
105 .dynticks = 1,
106 };
107 #endif /* #ifdef CONFIG_NO_HZ */
108
109 static int blimit = 10; /* Maximum callbacks per softirq. */
110 static int qhimark = 10000; /* If this many pending, ignore blimit. */
111 static int qlowmark = 100; /* Once only this many pending, use blimit. */
112
113 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
114
115 /*
116 * Return the number of RCU batches processed thus far for debug & stats.
117 */
118 long rcu_batches_completed(void)
119 {
120 return rcu_state.completed;
121 }
122 EXPORT_SYMBOL_GPL(rcu_batches_completed);
123
124 /*
125 * Return the number of RCU BH batches processed thus far for debug & stats.
126 */
127 long rcu_batches_completed_bh(void)
128 {
129 return rcu_bh_state.completed;
130 }
131 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
132
133 /*
134 * Does the CPU have callbacks ready to be invoked?
135 */
136 static int
137 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
138 {
139 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
140 }
141
142 /*
143 * Does the current CPU require a yet-as-unscheduled grace period?
144 */
145 static int
146 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
147 {
148 /* ACCESS_ONCE() because we are accessing outside of lock. */
149 return *rdp->nxttail[RCU_DONE_TAIL] &&
150 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
151 }
152
153 /*
154 * Return the root node of the specified rcu_state structure.
155 */
156 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
157 {
158 return &rsp->node[0];
159 }
160
161 #ifdef CONFIG_SMP
162
163 /*
164 * If the specified CPU is offline, tell the caller that it is in
165 * a quiescent state. Otherwise, whack it with a reschedule IPI.
166 * Grace periods can end up waiting on an offline CPU when that
167 * CPU is in the process of coming online -- it will be added to the
168 * rcu_node bitmasks before it actually makes it online. The same thing
169 * can happen while a CPU is in the process of coming online. Because this
170 * race is quite rare, we check for it after detecting that the grace
171 * period has been delayed rather than checking each and every CPU
172 * each and every time we start a new grace period.
173 */
174 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
175 {
176 /*
177 * If the CPU is offline, it is in a quiescent state. We can
178 * trust its state not to change because interrupts are disabled.
179 */
180 if (cpu_is_offline(rdp->cpu)) {
181 rdp->offline_fqs++;
182 return 1;
183 }
184
185 /* The CPU is online, so send it a reschedule IPI. */
186 if (rdp->cpu != smp_processor_id())
187 smp_send_reschedule(rdp->cpu);
188 else
189 set_need_resched();
190 rdp->resched_ipi++;
191 return 0;
192 }
193
194 #endif /* #ifdef CONFIG_SMP */
195
196 #ifdef CONFIG_NO_HZ
197 static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
198
199 /**
200 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
201 *
202 * Enter nohz mode, in other words, -leave- the mode in which RCU
203 * read-side critical sections can occur. (Though RCU read-side
204 * critical sections can occur in irq handlers in nohz mode, a possibility
205 * handled by rcu_irq_enter() and rcu_irq_exit()).
206 */
207 void rcu_enter_nohz(void)
208 {
209 unsigned long flags;
210 struct rcu_dynticks *rdtp;
211
212 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
213 local_irq_save(flags);
214 rdtp = &__get_cpu_var(rcu_dynticks);
215 rdtp->dynticks++;
216 rdtp->dynticks_nesting--;
217 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
218 local_irq_restore(flags);
219 }
220
221 /*
222 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
223 *
224 * Exit nohz mode, in other words, -enter- the mode in which RCU
225 * read-side critical sections normally occur.
226 */
227 void rcu_exit_nohz(void)
228 {
229 unsigned long flags;
230 struct rcu_dynticks *rdtp;
231
232 local_irq_save(flags);
233 rdtp = &__get_cpu_var(rcu_dynticks);
234 rdtp->dynticks++;
235 rdtp->dynticks_nesting++;
236 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
237 local_irq_restore(flags);
238 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
239 }
240
241 /**
242 * rcu_nmi_enter - inform RCU of entry to NMI context
243 *
244 * If the CPU was idle with dynamic ticks active, and there is no
245 * irq handler running, this updates rdtp->dynticks_nmi to let the
246 * RCU grace-period handling know that the CPU is active.
247 */
248 void rcu_nmi_enter(void)
249 {
250 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
251
252 if (rdtp->dynticks & 0x1)
253 return;
254 rdtp->dynticks_nmi++;
255 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
256 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
257 }
258
259 /**
260 * rcu_nmi_exit - inform RCU of exit from NMI context
261 *
262 * If the CPU was idle with dynamic ticks active, and there is no
263 * irq handler running, this updates rdtp->dynticks_nmi to let the
264 * RCU grace-period handling know that the CPU is no longer active.
265 */
266 void rcu_nmi_exit(void)
267 {
268 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
269
270 if (rdtp->dynticks & 0x1)
271 return;
272 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
273 rdtp->dynticks_nmi++;
274 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
275 }
276
277 /**
278 * rcu_irq_enter - inform RCU of entry to hard irq context
279 *
280 * If the CPU was idle with dynamic ticks active, this updates the
281 * rdtp->dynticks to let the RCU handling know that the CPU is active.
282 */
283 void rcu_irq_enter(void)
284 {
285 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286
287 if (rdtp->dynticks_nesting++)
288 return;
289 rdtp->dynticks++;
290 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292 }
293
294 /**
295 * rcu_irq_exit - inform RCU of exit from hard irq context
296 *
297 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
298 * to put let the RCU handling be aware that the CPU is going back to idle
299 * with no ticks.
300 */
301 void rcu_irq_exit(void)
302 {
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (--rdtp->dynticks_nesting)
306 return;
307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 rdtp->dynticks++;
309 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
310
311 /* If the interrupt queued a callback, get out of dyntick mode. */
312 if (__get_cpu_var(rcu_data).nxtlist ||
313 __get_cpu_var(rcu_bh_data).nxtlist)
314 set_need_resched();
315 }
316
317 /*
318 * Record the specified "completed" value, which is later used to validate
319 * dynticks counter manipulations. Specify "rsp->completed - 1" to
320 * unconditionally invalidate any future dynticks manipulations (which is
321 * useful at the beginning of a grace period).
322 */
323 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
324 {
325 rsp->dynticks_completed = comp;
326 }
327
328 #ifdef CONFIG_SMP
329
330 /*
331 * Recall the previously recorded value of the completion for dynticks.
332 */
333 static long dyntick_recall_completed(struct rcu_state *rsp)
334 {
335 return rsp->dynticks_completed;
336 }
337
338 /*
339 * Snapshot the specified CPU's dynticks counter so that we can later
340 * credit them with an implicit quiescent state. Return 1 if this CPU
341 * is already in a quiescent state courtesy of dynticks idle mode.
342 */
343 static int dyntick_save_progress_counter(struct rcu_data *rdp)
344 {
345 int ret;
346 int snap;
347 int snap_nmi;
348
349 snap = rdp->dynticks->dynticks;
350 snap_nmi = rdp->dynticks->dynticks_nmi;
351 smp_mb(); /* Order sampling of snap with end of grace period. */
352 rdp->dynticks_snap = snap;
353 rdp->dynticks_nmi_snap = snap_nmi;
354 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
355 if (ret)
356 rdp->dynticks_fqs++;
357 return ret;
358 }
359
360 /*
361 * Return true if the specified CPU has passed through a quiescent
362 * state by virtue of being in or having passed through an dynticks
363 * idle state since the last call to dyntick_save_progress_counter()
364 * for this same CPU.
365 */
366 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
367 {
368 long curr;
369 long curr_nmi;
370 long snap;
371 long snap_nmi;
372
373 curr = rdp->dynticks->dynticks;
374 snap = rdp->dynticks_snap;
375 curr_nmi = rdp->dynticks->dynticks_nmi;
376 snap_nmi = rdp->dynticks_nmi_snap;
377 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
378
379 /*
380 * If the CPU passed through or entered a dynticks idle phase with
381 * no active irq/NMI handlers, then we can safely pretend that the CPU
382 * already acknowledged the request to pass through a quiescent
383 * state. Either way, that CPU cannot possibly be in an RCU
384 * read-side critical section that started before the beginning
385 * of the current RCU grace period.
386 */
387 if ((curr != snap || (curr & 0x1) == 0) &&
388 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
389 rdp->dynticks_fqs++;
390 return 1;
391 }
392
393 /* Go check for the CPU being offline. */
394 return rcu_implicit_offline_qs(rdp);
395 }
396
397 #endif /* #ifdef CONFIG_SMP */
398
399 #else /* #ifdef CONFIG_NO_HZ */
400
401 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
402 {
403 }
404
405 #ifdef CONFIG_SMP
406
407 /*
408 * If there are no dynticks, then the only way that a CPU can passively
409 * be in a quiescent state is to be offline. Unlike dynticks idle, which
410 * is a point in time during the prior (already finished) grace period,
411 * an offline CPU is always in a quiescent state, and thus can be
412 * unconditionally applied. So just return the current value of completed.
413 */
414 static long dyntick_recall_completed(struct rcu_state *rsp)
415 {
416 return rsp->completed;
417 }
418
419 static int dyntick_save_progress_counter(struct rcu_data *rdp)
420 {
421 return 0;
422 }
423
424 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
425 {
426 return rcu_implicit_offline_qs(rdp);
427 }
428
429 #endif /* #ifdef CONFIG_SMP */
430
431 #endif /* #else #ifdef CONFIG_NO_HZ */
432
433 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
434
435 static void record_gp_stall_check_time(struct rcu_state *rsp)
436 {
437 rsp->gp_start = jiffies;
438 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
439 }
440
441 static void print_other_cpu_stall(struct rcu_state *rsp)
442 {
443 int cpu;
444 long delta;
445 unsigned long flags;
446 struct rcu_node *rnp = rcu_get_root(rsp);
447 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
448 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
449
450 /* Only let one CPU complain about others per time interval. */
451
452 spin_lock_irqsave(&rnp->lock, flags);
453 delta = jiffies - rsp->jiffies_stall;
454 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
455 spin_unlock_irqrestore(&rnp->lock, flags);
456 return;
457 }
458 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
459 spin_unlock_irqrestore(&rnp->lock, flags);
460
461 /* OK, time to rat on our buddy... */
462
463 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
464 for (; rnp_cur < rnp_end; rnp_cur++) {
465 if (rnp_cur->qsmask == 0)
466 continue;
467 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
468 if (rnp_cur->qsmask & (1UL << cpu))
469 printk(" %d", rnp_cur->grplo + cpu);
470 }
471 printk(" (detected by %d, t=%ld jiffies)\n",
472 smp_processor_id(), (long)(jiffies - rsp->gp_start));
473 trigger_all_cpu_backtrace();
474
475 force_quiescent_state(rsp, 0); /* Kick them all. */
476 }
477
478 static void print_cpu_stall(struct rcu_state *rsp)
479 {
480 unsigned long flags;
481 struct rcu_node *rnp = rcu_get_root(rsp);
482
483 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
484 smp_processor_id(), jiffies - rsp->gp_start);
485 trigger_all_cpu_backtrace();
486
487 spin_lock_irqsave(&rnp->lock, flags);
488 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
489 rsp->jiffies_stall =
490 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
491 spin_unlock_irqrestore(&rnp->lock, flags);
492
493 set_need_resched(); /* kick ourselves to get things going. */
494 }
495
496 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
497 {
498 long delta;
499 struct rcu_node *rnp;
500
501 delta = jiffies - rsp->jiffies_stall;
502 rnp = rdp->mynode;
503 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
504
505 /* We haven't checked in, so go dump stack. */
506 print_cpu_stall(rsp);
507
508 } else if (rsp->gpnum != rsp->completed &&
509 delta >= RCU_STALL_RAT_DELAY) {
510
511 /* They had two time units to dump stack, so complain. */
512 print_other_cpu_stall(rsp);
513 }
514 }
515
516 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
517
518 static void record_gp_stall_check_time(struct rcu_state *rsp)
519 {
520 }
521
522 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
523 {
524 }
525
526 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
527
528 /*
529 * Update CPU-local rcu_data state to record the newly noticed grace period.
530 * This is used both when we started the grace period and when we notice
531 * that someone else started the grace period.
532 */
533 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
534 {
535 rdp->qs_pending = 1;
536 rdp->passed_quiesc = 0;
537 rdp->gpnum = rsp->gpnum;
538 }
539
540 /*
541 * Did someone else start a new RCU grace period start since we last
542 * checked? Update local state appropriately if so. Must be called
543 * on the CPU corresponding to rdp.
544 */
545 static int
546 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
547 {
548 unsigned long flags;
549 int ret = 0;
550
551 local_irq_save(flags);
552 if (rdp->gpnum != rsp->gpnum) {
553 note_new_gpnum(rsp, rdp);
554 ret = 1;
555 }
556 local_irq_restore(flags);
557 return ret;
558 }
559
560 /*
561 * Start a new RCU grace period if warranted, re-initializing the hierarchy
562 * in preparation for detecting the next grace period. The caller must hold
563 * the root node's ->lock, which is released before return. Hard irqs must
564 * be disabled.
565 */
566 static void
567 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
568 __releases(rcu_get_root(rsp)->lock)
569 {
570 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
571 struct rcu_node *rnp = rcu_get_root(rsp);
572 struct rcu_node *rnp_cur;
573 struct rcu_node *rnp_end;
574
575 if (!cpu_needs_another_gp(rsp, rdp)) {
576 spin_unlock_irqrestore(&rnp->lock, flags);
577 return;
578 }
579
580 /* Advance to a new grace period and initialize state. */
581 rsp->gpnum++;
582 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
583 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
584 record_gp_stall_check_time(rsp);
585 dyntick_record_completed(rsp, rsp->completed - 1);
586 note_new_gpnum(rsp, rdp);
587
588 /*
589 * Because we are first, we know that all our callbacks will
590 * be covered by this upcoming grace period, even the ones
591 * that were registered arbitrarily recently.
592 */
593 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
594 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
595
596 /* Special-case the common single-level case. */
597 if (NUM_RCU_NODES == 1) {
598 rnp->qsmask = rnp->qsmaskinit;
599 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
600 spin_unlock_irqrestore(&rnp->lock, flags);
601 return;
602 }
603
604 spin_unlock(&rnp->lock); /* leave irqs disabled. */
605
606
607 /* Exclude any concurrent CPU-hotplug operations. */
608 spin_lock(&rsp->onofflock); /* irqs already disabled. */
609
610 /*
611 * Set the quiescent-state-needed bits in all the non-leaf RCU
612 * nodes for all currently online CPUs. This operation relies
613 * on the layout of the hierarchy within the rsp->node[] array.
614 * Note that other CPUs will access only the leaves of the
615 * hierarchy, which still indicate that no grace period is in
616 * progress. In addition, we have excluded CPU-hotplug operations.
617 *
618 * We therefore do not need to hold any locks. Any required
619 * memory barriers will be supplied by the locks guarding the
620 * leaf rcu_nodes in the hierarchy.
621 */
622
623 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
624 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
625 rnp_cur->qsmask = rnp_cur->qsmaskinit;
626
627 /*
628 * Now set up the leaf nodes. Here we must be careful. First,
629 * we need to hold the lock in order to exclude other CPUs, which
630 * might be contending for the leaf nodes' locks. Second, as
631 * soon as we initialize a given leaf node, its CPUs might run
632 * up the rest of the hierarchy. We must therefore acquire locks
633 * for each node that we touch during this stage. (But we still
634 * are excluding CPU-hotplug operations.)
635 *
636 * Note that the grace period cannot complete until we finish
637 * the initialization process, as there will be at least one
638 * qsmask bit set in the root node until that time, namely the
639 * one corresponding to this CPU.
640 */
641 rnp_end = &rsp->node[NUM_RCU_NODES];
642 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
643 for (; rnp_cur < rnp_end; rnp_cur++) {
644 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
645 rnp_cur->qsmask = rnp_cur->qsmaskinit;
646 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
647 }
648
649 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
650 spin_unlock_irqrestore(&rsp->onofflock, flags);
651 }
652
653 /*
654 * Advance this CPU's callbacks, but only if the current grace period
655 * has ended. This may be called only from the CPU to whom the rdp
656 * belongs.
657 */
658 static void
659 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
660 {
661 long completed_snap;
662 unsigned long flags;
663
664 local_irq_save(flags);
665 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
666
667 /* Did another grace period end? */
668 if (rdp->completed != completed_snap) {
669
670 /* Advance callbacks. No harm if list empty. */
671 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
672 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
673 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
674
675 /* Remember that we saw this grace-period completion. */
676 rdp->completed = completed_snap;
677 }
678 local_irq_restore(flags);
679 }
680
681 /*
682 * Similar to cpu_quiet(), for which it is a helper function. Allows
683 * a group of CPUs to be quieted at one go, though all the CPUs in the
684 * group must be represented by the same leaf rcu_node structure.
685 * That structure's lock must be held upon entry, and it is released
686 * before return.
687 */
688 static void
689 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
690 unsigned long flags)
691 __releases(rnp->lock)
692 {
693 /* Walk up the rcu_node hierarchy. */
694 for (;;) {
695 if (!(rnp->qsmask & mask)) {
696
697 /* Our bit has already been cleared, so done. */
698 spin_unlock_irqrestore(&rnp->lock, flags);
699 return;
700 }
701 rnp->qsmask &= ~mask;
702 if (rnp->qsmask != 0) {
703
704 /* Other bits still set at this level, so done. */
705 spin_unlock_irqrestore(&rnp->lock, flags);
706 return;
707 }
708 mask = rnp->grpmask;
709 if (rnp->parent == NULL) {
710
711 /* No more levels. Exit loop holding root lock. */
712
713 break;
714 }
715 spin_unlock_irqrestore(&rnp->lock, flags);
716 rnp = rnp->parent;
717 spin_lock_irqsave(&rnp->lock, flags);
718 }
719
720 /*
721 * Get here if we are the last CPU to pass through a quiescent
722 * state for this grace period. Clean up and let rcu_start_gp()
723 * start up the next grace period if one is needed. Note that
724 * we still hold rnp->lock, as required by rcu_start_gp(), which
725 * will release it.
726 */
727 rsp->completed = rsp->gpnum;
728 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
729 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
730 }
731
732 /*
733 * Record a quiescent state for the specified CPU, which must either be
734 * the current CPU or an offline CPU. The lastcomp argument is used to
735 * make sure we are still in the grace period of interest. We don't want
736 * to end the current grace period based on quiescent states detected in
737 * an earlier grace period!
738 */
739 static void
740 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
741 {
742 unsigned long flags;
743 unsigned long mask;
744 struct rcu_node *rnp;
745
746 rnp = rdp->mynode;
747 spin_lock_irqsave(&rnp->lock, flags);
748 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
749
750 /*
751 * Someone beat us to it for this grace period, so leave.
752 * The race with GP start is resolved by the fact that we
753 * hold the leaf rcu_node lock, so that the per-CPU bits
754 * cannot yet be initialized -- so we would simply find our
755 * CPU's bit already cleared in cpu_quiet_msk() if this race
756 * occurred.
757 */
758 rdp->passed_quiesc = 0; /* try again later! */
759 spin_unlock_irqrestore(&rnp->lock, flags);
760 return;
761 }
762 mask = rdp->grpmask;
763 if ((rnp->qsmask & mask) == 0) {
764 spin_unlock_irqrestore(&rnp->lock, flags);
765 } else {
766 rdp->qs_pending = 0;
767
768 /*
769 * This GP can't end until cpu checks in, so all of our
770 * callbacks can be processed during the next GP.
771 */
772 rdp = rsp->rda[smp_processor_id()];
773 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
774
775 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
776 }
777 }
778
779 /*
780 * Check to see if there is a new grace period of which this CPU
781 * is not yet aware, and if so, set up local rcu_data state for it.
782 * Otherwise, see if this CPU has just passed through its first
783 * quiescent state for this grace period, and record that fact if so.
784 */
785 static void
786 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
787 {
788 /* If there is now a new grace period, record and return. */
789 if (check_for_new_grace_period(rsp, rdp))
790 return;
791
792 /*
793 * Does this CPU still need to do its part for current grace period?
794 * If no, return and let the other CPUs do their part as well.
795 */
796 if (!rdp->qs_pending)
797 return;
798
799 /*
800 * Was there a quiescent state since the beginning of the grace
801 * period? If no, then exit and wait for the next call.
802 */
803 if (!rdp->passed_quiesc)
804 return;
805
806 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
807 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
808 }
809
810 #ifdef CONFIG_HOTPLUG_CPU
811
812 /*
813 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
814 * and move all callbacks from the outgoing CPU to the current one.
815 */
816 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
817 {
818 int i;
819 unsigned long flags;
820 long lastcomp;
821 unsigned long mask;
822 struct rcu_data *rdp = rsp->rda[cpu];
823 struct rcu_data *rdp_me;
824 struct rcu_node *rnp;
825
826 /* Exclude any attempts to start a new grace period. */
827 spin_lock_irqsave(&rsp->onofflock, flags);
828
829 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
830 rnp = rdp->mynode;
831 mask = rdp->grpmask; /* rnp->grplo is constant. */
832 do {
833 spin_lock(&rnp->lock); /* irqs already disabled. */
834 rnp->qsmaskinit &= ~mask;
835 if (rnp->qsmaskinit != 0) {
836 spin_unlock(&rnp->lock); /* irqs already disabled. */
837 break;
838 }
839 mask = rnp->grpmask;
840 spin_unlock(&rnp->lock); /* irqs already disabled. */
841 rnp = rnp->parent;
842 } while (rnp != NULL);
843 lastcomp = rsp->completed;
844
845 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
846
847 /* Being offline is a quiescent state, so go record it. */
848 cpu_quiet(cpu, rsp, rdp, lastcomp);
849
850 /*
851 * Move callbacks from the outgoing CPU to the running CPU.
852 * Note that the outgoing CPU is now quiscent, so it is now
853 * (uncharacteristically) safe to access it rcu_data structure.
854 * Note also that we must carefully retain the order of the
855 * outgoing CPU's callbacks in order for rcu_barrier() to work
856 * correctly. Finally, note that we start all the callbacks
857 * afresh, even those that have passed through a grace period
858 * and are therefore ready to invoke. The theory is that hotplug
859 * events are rare, and that if they are frequent enough to
860 * indefinitely delay callbacks, you have far worse things to
861 * be worrying about.
862 */
863 rdp_me = rsp->rda[smp_processor_id()];
864 if (rdp->nxtlist != NULL) {
865 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
866 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
867 rdp->nxtlist = NULL;
868 for (i = 0; i < RCU_NEXT_SIZE; i++)
869 rdp->nxttail[i] = &rdp->nxtlist;
870 rdp_me->qlen += rdp->qlen;
871 rdp->qlen = 0;
872 }
873 local_irq_restore(flags);
874 }
875
876 /*
877 * Remove the specified CPU from the RCU hierarchy and move any pending
878 * callbacks that it might have to the current CPU. This code assumes
879 * that at least one CPU in the system will remain running at all times.
880 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
881 */
882 static void rcu_offline_cpu(int cpu)
883 {
884 __rcu_offline_cpu(cpu, &rcu_state);
885 __rcu_offline_cpu(cpu, &rcu_bh_state);
886 }
887
888 #else /* #ifdef CONFIG_HOTPLUG_CPU */
889
890 static void rcu_offline_cpu(int cpu)
891 {
892 }
893
894 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
895
896 /*
897 * Invoke any RCU callbacks that have made it to the end of their grace
898 * period. Thottle as specified by rdp->blimit.
899 */
900 static void rcu_do_batch(struct rcu_data *rdp)
901 {
902 unsigned long flags;
903 struct rcu_head *next, *list, **tail;
904 int count;
905
906 /* If no callbacks are ready, just return.*/
907 if (!cpu_has_callbacks_ready_to_invoke(rdp))
908 return;
909
910 /*
911 * Extract the list of ready callbacks, disabling to prevent
912 * races with call_rcu() from interrupt handlers.
913 */
914 local_irq_save(flags);
915 list = rdp->nxtlist;
916 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
917 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
918 tail = rdp->nxttail[RCU_DONE_TAIL];
919 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
920 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
921 rdp->nxttail[count] = &rdp->nxtlist;
922 local_irq_restore(flags);
923
924 /* Invoke callbacks. */
925 count = 0;
926 while (list) {
927 next = list->next;
928 prefetch(next);
929 list->func(list);
930 list = next;
931 if (++count >= rdp->blimit)
932 break;
933 }
934
935 local_irq_save(flags);
936
937 /* Update count, and requeue any remaining callbacks. */
938 rdp->qlen -= count;
939 if (list != NULL) {
940 *tail = rdp->nxtlist;
941 rdp->nxtlist = list;
942 for (count = 0; count < RCU_NEXT_SIZE; count++)
943 if (&rdp->nxtlist == rdp->nxttail[count])
944 rdp->nxttail[count] = tail;
945 else
946 break;
947 }
948
949 /* Reinstate batch limit if we have worked down the excess. */
950 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
951 rdp->blimit = blimit;
952
953 local_irq_restore(flags);
954
955 /* Re-raise the RCU softirq if there are callbacks remaining. */
956 if (cpu_has_callbacks_ready_to_invoke(rdp))
957 raise_softirq(RCU_SOFTIRQ);
958 }
959
960 /*
961 * Check to see if this CPU is in a non-context-switch quiescent state
962 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
963 * Also schedule the RCU softirq handler.
964 *
965 * This function must be called with hardirqs disabled. It is normally
966 * invoked from the scheduling-clock interrupt. If rcu_pending returns
967 * false, there is no point in invoking rcu_check_callbacks().
968 */
969 void rcu_check_callbacks(int cpu, int user)
970 {
971 if (user ||
972 (idle_cpu(cpu) && rcu_scheduler_active &&
973 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
974
975 /*
976 * Get here if this CPU took its interrupt from user
977 * mode or from the idle loop, and if this is not a
978 * nested interrupt. In this case, the CPU is in
979 * a quiescent state, so count it.
980 *
981 * No memory barrier is required here because both
982 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
983 * only CPU-local variables that other CPUs neither
984 * access nor modify, at least not while the corresponding
985 * CPU is online.
986 */
987
988 rcu_qsctr_inc(cpu);
989 rcu_bh_qsctr_inc(cpu);
990
991 } else if (!in_softirq()) {
992
993 /*
994 * Get here if this CPU did not take its interrupt from
995 * softirq, in other words, if it is not interrupting
996 * a rcu_bh read-side critical section. This is an _bh
997 * critical section, so count it.
998 */
999
1000 rcu_bh_qsctr_inc(cpu);
1001 }
1002 raise_softirq(RCU_SOFTIRQ);
1003 }
1004
1005 #ifdef CONFIG_SMP
1006
1007 /*
1008 * Scan the leaf rcu_node structures, processing dyntick state for any that
1009 * have not yet encountered a quiescent state, using the function specified.
1010 * Returns 1 if the current grace period ends while scanning (possibly
1011 * because we made it end).
1012 */
1013 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1014 int (*f)(struct rcu_data *))
1015 {
1016 unsigned long bit;
1017 int cpu;
1018 unsigned long flags;
1019 unsigned long mask;
1020 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1021 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1022
1023 for (; rnp_cur < rnp_end; rnp_cur++) {
1024 mask = 0;
1025 spin_lock_irqsave(&rnp_cur->lock, flags);
1026 if (rsp->completed != lastcomp) {
1027 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1028 return 1;
1029 }
1030 if (rnp_cur->qsmask == 0) {
1031 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1032 continue;
1033 }
1034 cpu = rnp_cur->grplo;
1035 bit = 1;
1036 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1037 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1038 mask |= bit;
1039 }
1040 if (mask != 0 && rsp->completed == lastcomp) {
1041
1042 /* cpu_quiet_msk() releases rnp_cur->lock. */
1043 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1044 continue;
1045 }
1046 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1047 }
1048 return 0;
1049 }
1050
1051 /*
1052 * Force quiescent states on reluctant CPUs, and also detect which
1053 * CPUs are in dyntick-idle mode.
1054 */
1055 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1056 {
1057 unsigned long flags;
1058 long lastcomp;
1059 struct rcu_node *rnp = rcu_get_root(rsp);
1060 u8 signaled;
1061
1062 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1063 return; /* No grace period in progress, nothing to force. */
1064 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1065 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1066 return; /* Someone else is already on the job. */
1067 }
1068 if (relaxed &&
1069 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
1070 goto unlock_ret; /* no emergency and done recently. */
1071 rsp->n_force_qs++;
1072 spin_lock(&rnp->lock);
1073 lastcomp = rsp->completed;
1074 signaled = rsp->signaled;
1075 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1076 if (lastcomp == rsp->gpnum) {
1077 rsp->n_force_qs_ngp++;
1078 spin_unlock(&rnp->lock);
1079 goto unlock_ret; /* no GP in progress, time updated. */
1080 }
1081 spin_unlock(&rnp->lock);
1082 switch (signaled) {
1083 case RCU_GP_INIT:
1084
1085 break; /* grace period still initializing, ignore. */
1086
1087 case RCU_SAVE_DYNTICK:
1088
1089 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1090 break; /* So gcc recognizes the dead code. */
1091
1092 /* Record dyntick-idle state. */
1093 if (rcu_process_dyntick(rsp, lastcomp,
1094 dyntick_save_progress_counter))
1095 goto unlock_ret;
1096
1097 /* Update state, record completion counter. */
1098 spin_lock(&rnp->lock);
1099 if (lastcomp == rsp->completed) {
1100 rsp->signaled = RCU_FORCE_QS;
1101 dyntick_record_completed(rsp, lastcomp);
1102 }
1103 spin_unlock(&rnp->lock);
1104 break;
1105
1106 case RCU_FORCE_QS:
1107
1108 /* Check dyntick-idle state, send IPI to laggarts. */
1109 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1110 rcu_implicit_dynticks_qs))
1111 goto unlock_ret;
1112
1113 /* Leave state in case more forcing is required. */
1114
1115 break;
1116 }
1117 unlock_ret:
1118 spin_unlock_irqrestore(&rsp->fqslock, flags);
1119 }
1120
1121 #else /* #ifdef CONFIG_SMP */
1122
1123 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1124 {
1125 set_need_resched();
1126 }
1127
1128 #endif /* #else #ifdef CONFIG_SMP */
1129
1130 /*
1131 * This does the RCU processing work from softirq context for the
1132 * specified rcu_state and rcu_data structures. This may be called
1133 * only from the CPU to whom the rdp belongs.
1134 */
1135 static void
1136 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1137 {
1138 unsigned long flags;
1139
1140 /*
1141 * If an RCU GP has gone long enough, go check for dyntick
1142 * idle CPUs and, if needed, send resched IPIs.
1143 */
1144 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1145 force_quiescent_state(rsp, 1);
1146
1147 /*
1148 * Advance callbacks in response to end of earlier grace
1149 * period that some other CPU ended.
1150 */
1151 rcu_process_gp_end(rsp, rdp);
1152
1153 /* Update RCU state based on any recent quiescent states. */
1154 rcu_check_quiescent_state(rsp, rdp);
1155
1156 /* Does this CPU require a not-yet-started grace period? */
1157 if (cpu_needs_another_gp(rsp, rdp)) {
1158 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1159 rcu_start_gp(rsp, flags); /* releases above lock */
1160 }
1161
1162 /* If there are callbacks ready, invoke them. */
1163 rcu_do_batch(rdp);
1164 }
1165
1166 /*
1167 * Do softirq processing for the current CPU.
1168 */
1169 static void rcu_process_callbacks(struct softirq_action *unused)
1170 {
1171 /*
1172 * Memory references from any prior RCU read-side critical sections
1173 * executed by the interrupted code must be seen before any RCU
1174 * grace-period manipulations below.
1175 */
1176 smp_mb(); /* See above block comment. */
1177
1178 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data));
1179 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1180
1181 /*
1182 * Memory references from any later RCU read-side critical sections
1183 * executed by the interrupted code must be seen after any RCU
1184 * grace-period manipulations above.
1185 */
1186 smp_mb(); /* See above block comment. */
1187 }
1188
1189 static void
1190 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1191 struct rcu_state *rsp)
1192 {
1193 unsigned long flags;
1194 struct rcu_data *rdp;
1195
1196 head->func = func;
1197 head->next = NULL;
1198
1199 smp_mb(); /* Ensure RCU update seen before callback registry. */
1200
1201 /*
1202 * Opportunistically note grace-period endings and beginnings.
1203 * Note that we might see a beginning right after we see an
1204 * end, but never vice versa, since this CPU has to pass through
1205 * a quiescent state betweentimes.
1206 */
1207 local_irq_save(flags);
1208 rdp = rsp->rda[smp_processor_id()];
1209 rcu_process_gp_end(rsp, rdp);
1210 check_for_new_grace_period(rsp, rdp);
1211
1212 /* Add the callback to our list. */
1213 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1214 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1215
1216 /* Start a new grace period if one not already started. */
1217 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1218 unsigned long nestflag;
1219 struct rcu_node *rnp_root = rcu_get_root(rsp);
1220
1221 spin_lock_irqsave(&rnp_root->lock, nestflag);
1222 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1223 }
1224
1225 /* Force the grace period if too many callbacks or too long waiting. */
1226 if (unlikely(++rdp->qlen > qhimark)) {
1227 rdp->blimit = LONG_MAX;
1228 force_quiescent_state(rsp, 0);
1229 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
1230 force_quiescent_state(rsp, 1);
1231 local_irq_restore(flags);
1232 }
1233
1234 /*
1235 * Queue an RCU callback for invocation after a grace period.
1236 */
1237 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1238 {
1239 __call_rcu(head, func, &rcu_state);
1240 }
1241 EXPORT_SYMBOL_GPL(call_rcu);
1242
1243 /*
1244 * Queue an RCU for invocation after a quicker grace period.
1245 */
1246 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1247 {
1248 __call_rcu(head, func, &rcu_bh_state);
1249 }
1250 EXPORT_SYMBOL_GPL(call_rcu_bh);
1251
1252 /*
1253 * Check to see if there is any immediate RCU-related work to be done
1254 * by the current CPU, for the specified type of RCU, returning 1 if so.
1255 * The checks are in order of increasing expense: checks that can be
1256 * carried out against CPU-local state are performed first. However,
1257 * we must check for CPU stalls first, else we might not get a chance.
1258 */
1259 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1260 {
1261 rdp->n_rcu_pending++;
1262
1263 /* Check for CPU stalls, if enabled. */
1264 check_cpu_stall(rsp, rdp);
1265
1266 /* Is the RCU core waiting for a quiescent state from this CPU? */
1267 if (rdp->qs_pending) {
1268 rdp->n_rp_qs_pending++;
1269 return 1;
1270 }
1271
1272 /* Does this CPU have callbacks ready to invoke? */
1273 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1274 rdp->n_rp_cb_ready++;
1275 return 1;
1276 }
1277
1278 /* Has RCU gone idle with this CPU needing another grace period? */
1279 if (cpu_needs_another_gp(rsp, rdp)) {
1280 rdp->n_rp_cpu_needs_gp++;
1281 return 1;
1282 }
1283
1284 /* Has another RCU grace period completed? */
1285 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1286 rdp->n_rp_gp_completed++;
1287 return 1;
1288 }
1289
1290 /* Has a new RCU grace period started? */
1291 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1292 rdp->n_rp_gp_started++;
1293 return 1;
1294 }
1295
1296 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1297 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1298 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1299 rdp->n_rp_need_fqs++;
1300 return 1;
1301 }
1302
1303 /* nothing to do */
1304 rdp->n_rp_need_nothing++;
1305 return 0;
1306 }
1307
1308 /*
1309 * Check to see if there is any immediate RCU-related work to be done
1310 * by the current CPU, returning 1 if so. This function is part of the
1311 * RCU implementation; it is -not- an exported member of the RCU API.
1312 */
1313 int rcu_pending(int cpu)
1314 {
1315 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) ||
1316 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1317 }
1318
1319 /*
1320 * Check to see if any future RCU-related work will need to be done
1321 * by the current CPU, even if none need be done immediately, returning
1322 * 1 if so. This function is part of the RCU implementation; it is -not-
1323 * an exported member of the RCU API.
1324 */
1325 int rcu_needs_cpu(int cpu)
1326 {
1327 /* RCU callbacks either ready or pending? */
1328 return per_cpu(rcu_data, cpu).nxtlist ||
1329 per_cpu(rcu_bh_data, cpu).nxtlist;
1330 }
1331
1332 /*
1333 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1334 * approach so that we don't have to worry about how long the CPU has
1335 * been gone, or whether it ever was online previously. We do trust the
1336 * ->mynode field, as it is constant for a given struct rcu_data and
1337 * initialized during early boot.
1338 *
1339 * Note that only one online or offline event can be happening at a given
1340 * time. Note also that we can accept some slop in the rsp->completed
1341 * access due to the fact that this CPU cannot possibly have any RCU
1342 * callbacks in flight yet.
1343 */
1344 static void __cpuinit
1345 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1346 {
1347 unsigned long flags;
1348 int i;
1349 long lastcomp;
1350 unsigned long mask;
1351 struct rcu_data *rdp = rsp->rda[cpu];
1352 struct rcu_node *rnp = rcu_get_root(rsp);
1353
1354 /* Set up local state, ensuring consistent view of global state. */
1355 spin_lock_irqsave(&rnp->lock, flags);
1356 lastcomp = rsp->completed;
1357 rdp->completed = lastcomp;
1358 rdp->gpnum = lastcomp;
1359 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1360 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1361 rdp->beenonline = 1; /* We have now been online. */
1362 rdp->passed_quiesc_completed = lastcomp - 1;
1363 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1364 rdp->nxtlist = NULL;
1365 for (i = 0; i < RCU_NEXT_SIZE; i++)
1366 rdp->nxttail[i] = &rdp->nxtlist;
1367 rdp->qlen = 0;
1368 rdp->blimit = blimit;
1369 #ifdef CONFIG_NO_HZ
1370 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1371 #endif /* #ifdef CONFIG_NO_HZ */
1372 rdp->cpu = cpu;
1373 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1374
1375 /*
1376 * A new grace period might start here. If so, we won't be part
1377 * of it, but that is OK, as we are currently in a quiescent state.
1378 */
1379
1380 /* Exclude any attempts to start a new GP on large systems. */
1381 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1382
1383 /* Add CPU to rcu_node bitmasks. */
1384 rnp = rdp->mynode;
1385 mask = rdp->grpmask;
1386 do {
1387 /* Exclude any attempts to start a new GP on small systems. */
1388 spin_lock(&rnp->lock); /* irqs already disabled. */
1389 rnp->qsmaskinit |= mask;
1390 mask = rnp->grpmask;
1391 spin_unlock(&rnp->lock); /* irqs already disabled. */
1392 rnp = rnp->parent;
1393 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1394
1395 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1396
1397 /*
1398 * A new grace period might start here. If so, we will be part of
1399 * it, and its gpnum will be greater than ours, so we will
1400 * participate. It is also possible for the gpnum to have been
1401 * incremented before this function was called, and the bitmasks
1402 * to not be filled out until now, in which case we will also
1403 * participate due to our gpnum being behind.
1404 */
1405
1406 /* Since it is coming online, the CPU is in a quiescent state. */
1407 cpu_quiet(cpu, rsp, rdp, lastcomp);
1408 local_irq_restore(flags);
1409 }
1410
1411 static void __cpuinit rcu_online_cpu(int cpu)
1412 {
1413 rcu_init_percpu_data(cpu, &rcu_state);
1414 rcu_init_percpu_data(cpu, &rcu_bh_state);
1415 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1416 }
1417
1418 /*
1419 * Handle CPU online/offline notifcation events.
1420 */
1421 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1422 unsigned long action, void *hcpu)
1423 {
1424 long cpu = (long)hcpu;
1425
1426 switch (action) {
1427 case CPU_UP_PREPARE:
1428 case CPU_UP_PREPARE_FROZEN:
1429 rcu_online_cpu(cpu);
1430 break;
1431 case CPU_DEAD:
1432 case CPU_DEAD_FROZEN:
1433 case CPU_UP_CANCELED:
1434 case CPU_UP_CANCELED_FROZEN:
1435 rcu_offline_cpu(cpu);
1436 break;
1437 default:
1438 break;
1439 }
1440 return NOTIFY_OK;
1441 }
1442
1443 /*
1444 * Compute the per-level fanout, either using the exact fanout specified
1445 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1446 */
1447 #ifdef CONFIG_RCU_FANOUT_EXACT
1448 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1449 {
1450 int i;
1451
1452 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1453 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1454 }
1455 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1456 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1457 {
1458 int ccur;
1459 int cprv;
1460 int i;
1461
1462 cprv = NR_CPUS;
1463 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1464 ccur = rsp->levelcnt[i];
1465 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1466 cprv = ccur;
1467 }
1468 }
1469 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1470
1471 /*
1472 * Helper function for rcu_init() that initializes one rcu_state structure.
1473 */
1474 static void __init rcu_init_one(struct rcu_state *rsp)
1475 {
1476 int cpustride = 1;
1477 int i;
1478 int j;
1479 struct rcu_node *rnp;
1480
1481 /* Initialize the level-tracking arrays. */
1482
1483 for (i = 1; i < NUM_RCU_LVLS; i++)
1484 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1485 rcu_init_levelspread(rsp);
1486
1487 /* Initialize the elements themselves, starting from the leaves. */
1488
1489 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1490 cpustride *= rsp->levelspread[i];
1491 rnp = rsp->level[i];
1492 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1493 spin_lock_init(&rnp->lock);
1494 rnp->qsmask = 0;
1495 rnp->qsmaskinit = 0;
1496 rnp->grplo = j * cpustride;
1497 rnp->grphi = (j + 1) * cpustride - 1;
1498 if (rnp->grphi >= NR_CPUS)
1499 rnp->grphi = NR_CPUS - 1;
1500 if (i == 0) {
1501 rnp->grpnum = 0;
1502 rnp->grpmask = 0;
1503 rnp->parent = NULL;
1504 } else {
1505 rnp->grpnum = j % rsp->levelspread[i - 1];
1506 rnp->grpmask = 1UL << rnp->grpnum;
1507 rnp->parent = rsp->level[i - 1] +
1508 j / rsp->levelspread[i - 1];
1509 }
1510 rnp->level = i;
1511 }
1512 }
1513 }
1514
1515 /*
1516 * Helper macro for __rcu_init(). To be used nowhere else!
1517 * Assigns leaf node pointers into each CPU's rcu_data structure.
1518 */
1519 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1520 do { \
1521 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1522 j = 0; \
1523 for_each_possible_cpu(i) { \
1524 if (i > rnp[j].grphi) \
1525 j++; \
1526 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1527 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1528 } \
1529 } while (0)
1530
1531 static struct notifier_block __cpuinitdata rcu_nb = {
1532 .notifier_call = rcu_cpu_notify,
1533 };
1534
1535 void __init __rcu_init(void)
1536 {
1537 int i; /* All used by RCU_DATA_PTR_INIT(). */
1538 int j;
1539 struct rcu_node *rnp;
1540
1541 printk(KERN_INFO "Hierarchical RCU implementation.\n");
1542 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1543 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1544 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1545 rcu_init_one(&rcu_state);
1546 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
1547 rcu_init_one(&rcu_bh_state);
1548 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
1549
1550 for_each_online_cpu(i)
1551 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1552 /* Register notifier for non-boot CPUs */
1553 register_cpu_notifier(&rcu_nb);
1554 }
1555
1556 module_param(blimit, int, 0);
1557 module_param(qhimark, int, 0);
1558 module_param(qlowmark, int, 0);