]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/rcutree_plugin.h
doc: capitalization and other minor fixes in pnp doc
[mirror_ubuntu-zesty-kernel.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 #ifdef CONFIG_TREE_PREEMPT_RCU
30
31 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
32 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
33
34 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
35
36 /*
37 * Tell them what RCU they are running.
38 */
39 static void __init rcu_bootup_announce(void)
40 {
41 printk(KERN_INFO
42 "Experimental preemptable hierarchical RCU implementation.\n");
43 }
44
45 /*
46 * Return the number of RCU-preempt batches processed thus far
47 * for debug and statistics.
48 */
49 long rcu_batches_completed_preempt(void)
50 {
51 return rcu_preempt_state.completed;
52 }
53 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
54
55 /*
56 * Return the number of RCU batches processed thus far for debug & stats.
57 */
58 long rcu_batches_completed(void)
59 {
60 return rcu_batches_completed_preempt();
61 }
62 EXPORT_SYMBOL_GPL(rcu_batches_completed);
63
64 /*
65 * Record a preemptable-RCU quiescent state for the specified CPU. Note
66 * that this just means that the task currently running on the CPU is
67 * not in a quiescent state. There might be any number of tasks blocked
68 * while in an RCU read-side critical section.
69 */
70 static void rcu_preempt_qs(int cpu)
71 {
72 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
73 rdp->passed_quiesc_completed = rdp->gpnum - 1;
74 barrier();
75 rdp->passed_quiesc = 1;
76 }
77
78 /*
79 * We have entered the scheduler, and the current task might soon be
80 * context-switched away from. If this task is in an RCU read-side
81 * critical section, we will no longer be able to rely on the CPU to
82 * record that fact, so we enqueue the task on the appropriate entry
83 * of the blocked_tasks[] array. The task will dequeue itself when
84 * it exits the outermost enclosing RCU read-side critical section.
85 * Therefore, the current grace period cannot be permitted to complete
86 * until the blocked_tasks[] entry indexed by the low-order bit of
87 * rnp->gpnum empties.
88 *
89 * Caller must disable preemption.
90 */
91 static void rcu_preempt_note_context_switch(int cpu)
92 {
93 struct task_struct *t = current;
94 unsigned long flags;
95 int phase;
96 struct rcu_data *rdp;
97 struct rcu_node *rnp;
98
99 if (t->rcu_read_lock_nesting &&
100 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
101
102 /* Possibly blocking in an RCU read-side critical section. */
103 rdp = rcu_preempt_state.rda[cpu];
104 rnp = rdp->mynode;
105 spin_lock_irqsave(&rnp->lock, flags);
106 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
107 t->rcu_blocked_node = rnp;
108
109 /*
110 * If this CPU has already checked in, then this task
111 * will hold up the next grace period rather than the
112 * current grace period. Queue the task accordingly.
113 * If the task is queued for the current grace period
114 * (i.e., this CPU has not yet passed through a quiescent
115 * state for the current grace period), then as long
116 * as that task remains queued, the current grace period
117 * cannot end.
118 *
119 * But first, note that the current CPU must still be
120 * on line!
121 */
122 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
123 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
124 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
125 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
126 spin_unlock_irqrestore(&rnp->lock, flags);
127 }
128
129 /*
130 * Either we were not in an RCU read-side critical section to
131 * begin with, or we have now recorded that critical section
132 * globally. Either way, we can now note a quiescent state
133 * for this CPU. Again, if we were in an RCU read-side critical
134 * section, and if that critical section was blocking the current
135 * grace period, then the fact that the task has been enqueued
136 * means that we continue to block the current grace period.
137 */
138 rcu_preempt_qs(cpu);
139 local_irq_save(flags);
140 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
141 local_irq_restore(flags);
142 }
143
144 /*
145 * Tree-preemptable RCU implementation for rcu_read_lock().
146 * Just increment ->rcu_read_lock_nesting, shared state will be updated
147 * if we block.
148 */
149 void __rcu_read_lock(void)
150 {
151 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
152 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
153 }
154 EXPORT_SYMBOL_GPL(__rcu_read_lock);
155
156 /*
157 * Check for preempted RCU readers blocking the current grace period
158 * for the specified rcu_node structure. If the caller needs a reliable
159 * answer, it must hold the rcu_node's ->lock.
160 */
161 static int rcu_preempted_readers(struct rcu_node *rnp)
162 {
163 int phase = rnp->gpnum & 0x1;
164
165 return !list_empty(&rnp->blocked_tasks[phase]) ||
166 !list_empty(&rnp->blocked_tasks[phase + 2]);
167 }
168
169 /*
170 * Record a quiescent state for all tasks that were previously queued
171 * on the specified rcu_node structure and that were blocking the current
172 * RCU grace period. The caller must hold the specified rnp->lock with
173 * irqs disabled, and this lock is released upon return, but irqs remain
174 * disabled.
175 */
176 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
177 __releases(rnp->lock)
178 {
179 unsigned long mask;
180 struct rcu_node *rnp_p;
181
182 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
183 spin_unlock_irqrestore(&rnp->lock, flags);
184 return; /* Still need more quiescent states! */
185 }
186
187 rnp_p = rnp->parent;
188 if (rnp_p == NULL) {
189 /*
190 * Either there is only one rcu_node in the tree,
191 * or tasks were kicked up to root rcu_node due to
192 * CPUs going offline.
193 */
194 rcu_report_qs_rsp(&rcu_preempt_state, flags);
195 return;
196 }
197
198 /* Report up the rest of the hierarchy. */
199 mask = rnp->grpmask;
200 spin_unlock(&rnp->lock); /* irqs remain disabled. */
201 spin_lock(&rnp_p->lock); /* irqs already disabled. */
202 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
203 }
204
205 /*
206 * Handle special cases during rcu_read_unlock(), such as needing to
207 * notify RCU core processing or task having blocked during the RCU
208 * read-side critical section.
209 */
210 static void rcu_read_unlock_special(struct task_struct *t)
211 {
212 int empty;
213 int empty_exp;
214 unsigned long flags;
215 struct rcu_node *rnp;
216 int special;
217
218 /* NMI handlers cannot block and cannot safely manipulate state. */
219 if (in_nmi())
220 return;
221
222 local_irq_save(flags);
223
224 /*
225 * If RCU core is waiting for this CPU to exit critical section,
226 * let it know that we have done so.
227 */
228 special = t->rcu_read_unlock_special;
229 if (special & RCU_READ_UNLOCK_NEED_QS) {
230 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
231 rcu_preempt_qs(smp_processor_id());
232 }
233
234 /* Hardware IRQ handlers cannot block. */
235 if (in_irq()) {
236 local_irq_restore(flags);
237 return;
238 }
239
240 /* Clean up if blocked during RCU read-side critical section. */
241 if (special & RCU_READ_UNLOCK_BLOCKED) {
242 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
243
244 /*
245 * Remove this task from the list it blocked on. The
246 * task can migrate while we acquire the lock, but at
247 * most one time. So at most two passes through loop.
248 */
249 for (;;) {
250 rnp = t->rcu_blocked_node;
251 spin_lock(&rnp->lock); /* irqs already disabled. */
252 if (rnp == t->rcu_blocked_node)
253 break;
254 spin_unlock(&rnp->lock); /* irqs remain disabled. */
255 }
256 empty = !rcu_preempted_readers(rnp);
257 empty_exp = !rcu_preempted_readers_exp(rnp);
258 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
259 list_del_init(&t->rcu_node_entry);
260 t->rcu_blocked_node = NULL;
261
262 /*
263 * If this was the last task on the current list, and if
264 * we aren't waiting on any CPUs, report the quiescent state.
265 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
266 */
267 if (empty)
268 spin_unlock_irqrestore(&rnp->lock, flags);
269 else
270 rcu_report_unblock_qs_rnp(rnp, flags);
271
272 /*
273 * If this was the last task on the expedited lists,
274 * then we need to report up the rcu_node hierarchy.
275 */
276 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
277 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
278 } else {
279 local_irq_restore(flags);
280 }
281 }
282
283 /*
284 * Tree-preemptable RCU implementation for rcu_read_unlock().
285 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
286 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
287 * invoke rcu_read_unlock_special() to clean up after a context switch
288 * in an RCU read-side critical section and other special cases.
289 */
290 void __rcu_read_unlock(void)
291 {
292 struct task_struct *t = current;
293
294 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
295 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
296 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
297 rcu_read_unlock_special(t);
298 }
299 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
300
301 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
302
303 /*
304 * Scan the current list of tasks blocked within RCU read-side critical
305 * sections, printing out the tid of each.
306 */
307 static void rcu_print_task_stall(struct rcu_node *rnp)
308 {
309 unsigned long flags;
310 struct list_head *lp;
311 int phase;
312 struct task_struct *t;
313
314 if (rcu_preempted_readers(rnp)) {
315 spin_lock_irqsave(&rnp->lock, flags);
316 phase = rnp->gpnum & 0x1;
317 lp = &rnp->blocked_tasks[phase];
318 list_for_each_entry(t, lp, rcu_node_entry)
319 printk(" P%d", t->pid);
320 spin_unlock_irqrestore(&rnp->lock, flags);
321 }
322 }
323
324 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
325
326 /*
327 * Check that the list of blocked tasks for the newly completed grace
328 * period is in fact empty. It is a serious bug to complete a grace
329 * period that still has RCU readers blocked! This function must be
330 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
331 * must be held by the caller.
332 */
333 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
334 {
335 WARN_ON_ONCE(rcu_preempted_readers(rnp));
336 WARN_ON_ONCE(rnp->qsmask);
337 }
338
339 #ifdef CONFIG_HOTPLUG_CPU
340
341 /*
342 * Handle tasklist migration for case in which all CPUs covered by the
343 * specified rcu_node have gone offline. Move them up to the root
344 * rcu_node. The reason for not just moving them to the immediate
345 * parent is to remove the need for rcu_read_unlock_special() to
346 * make more than two attempts to acquire the target rcu_node's lock.
347 * Returns true if there were tasks blocking the current RCU grace
348 * period.
349 *
350 * Returns 1 if there was previously a task blocking the current grace
351 * period on the specified rcu_node structure.
352 *
353 * The caller must hold rnp->lock with irqs disabled.
354 */
355 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
356 struct rcu_node *rnp,
357 struct rcu_data *rdp)
358 {
359 int i;
360 struct list_head *lp;
361 struct list_head *lp_root;
362 int retval = 0;
363 struct rcu_node *rnp_root = rcu_get_root(rsp);
364 struct task_struct *tp;
365
366 if (rnp == rnp_root) {
367 WARN_ONCE(1, "Last CPU thought to be offlined?");
368 return 0; /* Shouldn't happen: at least one CPU online. */
369 }
370 WARN_ON_ONCE(rnp != rdp->mynode &&
371 (!list_empty(&rnp->blocked_tasks[0]) ||
372 !list_empty(&rnp->blocked_tasks[1]) ||
373 !list_empty(&rnp->blocked_tasks[2]) ||
374 !list_empty(&rnp->blocked_tasks[3])));
375
376 /*
377 * Move tasks up to root rcu_node. Rely on the fact that the
378 * root rcu_node can be at most one ahead of the rest of the
379 * rcu_nodes in terms of gp_num value. This fact allows us to
380 * move the blocked_tasks[] array directly, element by element.
381 */
382 if (rcu_preempted_readers(rnp))
383 retval |= RCU_OFL_TASKS_NORM_GP;
384 if (rcu_preempted_readers_exp(rnp))
385 retval |= RCU_OFL_TASKS_EXP_GP;
386 for (i = 0; i < 4; i++) {
387 lp = &rnp->blocked_tasks[i];
388 lp_root = &rnp_root->blocked_tasks[i];
389 while (!list_empty(lp)) {
390 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
391 spin_lock(&rnp_root->lock); /* irqs already disabled */
392 list_del(&tp->rcu_node_entry);
393 tp->rcu_blocked_node = rnp_root;
394 list_add(&tp->rcu_node_entry, lp_root);
395 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
396 }
397 }
398 return retval;
399 }
400
401 /*
402 * Do CPU-offline processing for preemptable RCU.
403 */
404 static void rcu_preempt_offline_cpu(int cpu)
405 {
406 __rcu_offline_cpu(cpu, &rcu_preempt_state);
407 }
408
409 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
410
411 /*
412 * Check for a quiescent state from the current CPU. When a task blocks,
413 * the task is recorded in the corresponding CPU's rcu_node structure,
414 * which is checked elsewhere.
415 *
416 * Caller must disable hard irqs.
417 */
418 static void rcu_preempt_check_callbacks(int cpu)
419 {
420 struct task_struct *t = current;
421
422 if (t->rcu_read_lock_nesting == 0) {
423 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
424 rcu_preempt_qs(cpu);
425 return;
426 }
427 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
428 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
429 }
430
431 /*
432 * Process callbacks for preemptable RCU.
433 */
434 static void rcu_preempt_process_callbacks(void)
435 {
436 __rcu_process_callbacks(&rcu_preempt_state,
437 &__get_cpu_var(rcu_preempt_data));
438 }
439
440 /*
441 * Queue a preemptable-RCU callback for invocation after a grace period.
442 */
443 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
444 {
445 __call_rcu(head, func, &rcu_preempt_state);
446 }
447 EXPORT_SYMBOL_GPL(call_rcu);
448
449 /**
450 * synchronize_rcu - wait until a grace period has elapsed.
451 *
452 * Control will return to the caller some time after a full grace
453 * period has elapsed, in other words after all currently executing RCU
454 * read-side critical sections have completed. RCU read-side critical
455 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
456 * and may be nested.
457 */
458 void synchronize_rcu(void)
459 {
460 struct rcu_synchronize rcu;
461
462 if (!rcu_scheduler_active)
463 return;
464
465 init_completion(&rcu.completion);
466 /* Will wake me after RCU finished. */
467 call_rcu(&rcu.head, wakeme_after_rcu);
468 /* Wait for it. */
469 wait_for_completion(&rcu.completion);
470 }
471 EXPORT_SYMBOL_GPL(synchronize_rcu);
472
473 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
474 static long sync_rcu_preempt_exp_count;
475 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
476
477 /*
478 * Return non-zero if there are any tasks in RCU read-side critical
479 * sections blocking the current preemptible-RCU expedited grace period.
480 * If there is no preemptible-RCU expedited grace period currently in
481 * progress, returns zero unconditionally.
482 */
483 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
484 {
485 return !list_empty(&rnp->blocked_tasks[2]) ||
486 !list_empty(&rnp->blocked_tasks[3]);
487 }
488
489 /*
490 * return non-zero if there is no RCU expedited grace period in progress
491 * for the specified rcu_node structure, in other words, if all CPUs and
492 * tasks covered by the specified rcu_node structure have done their bit
493 * for the current expedited grace period. Works only for preemptible
494 * RCU -- other RCU implementation use other means.
495 *
496 * Caller must hold sync_rcu_preempt_exp_mutex.
497 */
498 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
499 {
500 return !rcu_preempted_readers_exp(rnp) &&
501 ACCESS_ONCE(rnp->expmask) == 0;
502 }
503
504 /*
505 * Report the exit from RCU read-side critical section for the last task
506 * that queued itself during or before the current expedited preemptible-RCU
507 * grace period. This event is reported either to the rcu_node structure on
508 * which the task was queued or to one of that rcu_node structure's ancestors,
509 * recursively up the tree. (Calm down, calm down, we do the recursion
510 * iteratively!)
511 *
512 * Caller must hold sync_rcu_preempt_exp_mutex.
513 */
514 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
515 {
516 unsigned long flags;
517 unsigned long mask;
518
519 spin_lock_irqsave(&rnp->lock, flags);
520 for (;;) {
521 if (!sync_rcu_preempt_exp_done(rnp))
522 break;
523 if (rnp->parent == NULL) {
524 wake_up(&sync_rcu_preempt_exp_wq);
525 break;
526 }
527 mask = rnp->grpmask;
528 spin_unlock(&rnp->lock); /* irqs remain disabled */
529 rnp = rnp->parent;
530 spin_lock(&rnp->lock); /* irqs already disabled */
531 rnp->expmask &= ~mask;
532 }
533 spin_unlock_irqrestore(&rnp->lock, flags);
534 }
535
536 /*
537 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
538 * grace period for the specified rcu_node structure. If there are no such
539 * tasks, report it up the rcu_node hierarchy.
540 *
541 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
542 */
543 static void
544 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
545 {
546 int must_wait;
547
548 spin_lock(&rnp->lock); /* irqs already disabled */
549 list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]);
550 list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]);
551 must_wait = rcu_preempted_readers_exp(rnp);
552 spin_unlock(&rnp->lock); /* irqs remain disabled */
553 if (!must_wait)
554 rcu_report_exp_rnp(rsp, rnp);
555 }
556
557 /*
558 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
559 * is to invoke synchronize_sched_expedited() to push all the tasks to
560 * the ->blocked_tasks[] lists, move all entries from the first set of
561 * ->blocked_tasks[] lists to the second set, and finally wait for this
562 * second set to drain.
563 */
564 void synchronize_rcu_expedited(void)
565 {
566 unsigned long flags;
567 struct rcu_node *rnp;
568 struct rcu_state *rsp = &rcu_preempt_state;
569 long snap;
570 int trycount = 0;
571
572 smp_mb(); /* Caller's modifications seen first by other CPUs. */
573 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
574 smp_mb(); /* Above access cannot bleed into critical section. */
575
576 /*
577 * Acquire lock, falling back to synchronize_rcu() if too many
578 * lock-acquisition failures. Of course, if someone does the
579 * expedited grace period for us, just leave.
580 */
581 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
582 if (trycount++ < 10)
583 udelay(trycount * num_online_cpus());
584 else {
585 synchronize_rcu();
586 return;
587 }
588 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
589 goto mb_ret; /* Others did our work for us. */
590 }
591 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
592 goto unlock_mb_ret; /* Others did our work for us. */
593
594 /* force all RCU readers onto blocked_tasks[]. */
595 synchronize_sched_expedited();
596
597 spin_lock_irqsave(&rsp->onofflock, flags);
598
599 /* Initialize ->expmask for all non-leaf rcu_node structures. */
600 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
601 spin_lock(&rnp->lock); /* irqs already disabled. */
602 rnp->expmask = rnp->qsmaskinit;
603 spin_unlock(&rnp->lock); /* irqs remain disabled. */
604 }
605
606 /* Snapshot current state of ->blocked_tasks[] lists. */
607 rcu_for_each_leaf_node(rsp, rnp)
608 sync_rcu_preempt_exp_init(rsp, rnp);
609 if (NUM_RCU_NODES > 1)
610 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
611
612 spin_unlock_irqrestore(&rsp->onofflock, flags);
613
614 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
615 rnp = rcu_get_root(rsp);
616 wait_event(sync_rcu_preempt_exp_wq,
617 sync_rcu_preempt_exp_done(rnp));
618
619 /* Clean up and exit. */
620 smp_mb(); /* ensure expedited GP seen before counter increment. */
621 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
622 unlock_mb_ret:
623 mutex_unlock(&sync_rcu_preempt_exp_mutex);
624 mb_ret:
625 smp_mb(); /* ensure subsequent action seen after grace period. */
626 }
627 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
628
629 /*
630 * Check to see if there is any immediate preemptable-RCU-related work
631 * to be done.
632 */
633 static int rcu_preempt_pending(int cpu)
634 {
635 return __rcu_pending(&rcu_preempt_state,
636 &per_cpu(rcu_preempt_data, cpu));
637 }
638
639 /*
640 * Does preemptable RCU need the CPU to stay out of dynticks mode?
641 */
642 static int rcu_preempt_needs_cpu(int cpu)
643 {
644 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
645 }
646
647 /**
648 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
649 */
650 void rcu_barrier(void)
651 {
652 _rcu_barrier(&rcu_preempt_state, call_rcu);
653 }
654 EXPORT_SYMBOL_GPL(rcu_barrier);
655
656 /*
657 * Initialize preemptable RCU's per-CPU data.
658 */
659 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
660 {
661 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
662 }
663
664 /*
665 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
666 */
667 static void rcu_preempt_send_cbs_to_orphanage(void)
668 {
669 rcu_send_cbs_to_orphanage(&rcu_preempt_state);
670 }
671
672 /*
673 * Initialize preemptable RCU's state structures.
674 */
675 static void __init __rcu_init_preempt(void)
676 {
677 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
678 }
679
680 /*
681 * Check for a task exiting while in a preemptable-RCU read-side
682 * critical section, clean up if so. No need to issue warnings,
683 * as debug_check_no_locks_held() already does this if lockdep
684 * is enabled.
685 */
686 void exit_rcu(void)
687 {
688 struct task_struct *t = current;
689
690 if (t->rcu_read_lock_nesting == 0)
691 return;
692 t->rcu_read_lock_nesting = 1;
693 rcu_read_unlock();
694 }
695
696 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
697
698 /*
699 * Tell them what RCU they are running.
700 */
701 static void __init rcu_bootup_announce(void)
702 {
703 printk(KERN_INFO "Hierarchical RCU implementation.\n");
704 }
705
706 /*
707 * Return the number of RCU batches processed thus far for debug & stats.
708 */
709 long rcu_batches_completed(void)
710 {
711 return rcu_batches_completed_sched();
712 }
713 EXPORT_SYMBOL_GPL(rcu_batches_completed);
714
715 /*
716 * Because preemptable RCU does not exist, we never have to check for
717 * CPUs being in quiescent states.
718 */
719 static void rcu_preempt_note_context_switch(int cpu)
720 {
721 }
722
723 /*
724 * Because preemptable RCU does not exist, there are never any preempted
725 * RCU readers.
726 */
727 static int rcu_preempted_readers(struct rcu_node *rnp)
728 {
729 return 0;
730 }
731
732 #ifdef CONFIG_HOTPLUG_CPU
733
734 /* Because preemptible RCU does not exist, no quieting of tasks. */
735 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
736 {
737 spin_unlock_irqrestore(&rnp->lock, flags);
738 }
739
740 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
741
742 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
743
744 /*
745 * Because preemptable RCU does not exist, we never have to check for
746 * tasks blocked within RCU read-side critical sections.
747 */
748 static void rcu_print_task_stall(struct rcu_node *rnp)
749 {
750 }
751
752 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
753
754 /*
755 * Because there is no preemptable RCU, there can be no readers blocked,
756 * so there is no need to check for blocked tasks. So check only for
757 * bogus qsmask values.
758 */
759 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
760 {
761 WARN_ON_ONCE(rnp->qsmask);
762 }
763
764 #ifdef CONFIG_HOTPLUG_CPU
765
766 /*
767 * Because preemptable RCU does not exist, it never needs to migrate
768 * tasks that were blocked within RCU read-side critical sections, and
769 * such non-existent tasks cannot possibly have been blocking the current
770 * grace period.
771 */
772 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
773 struct rcu_node *rnp,
774 struct rcu_data *rdp)
775 {
776 return 0;
777 }
778
779 /*
780 * Because preemptable RCU does not exist, it never needs CPU-offline
781 * processing.
782 */
783 static void rcu_preempt_offline_cpu(int cpu)
784 {
785 }
786
787 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
788
789 /*
790 * Because preemptable RCU does not exist, it never has any callbacks
791 * to check.
792 */
793 static void rcu_preempt_check_callbacks(int cpu)
794 {
795 }
796
797 /*
798 * Because preemptable RCU does not exist, it never has any callbacks
799 * to process.
800 */
801 static void rcu_preempt_process_callbacks(void)
802 {
803 }
804
805 /*
806 * In classic RCU, call_rcu() is just call_rcu_sched().
807 */
808 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
809 {
810 call_rcu_sched(head, func);
811 }
812 EXPORT_SYMBOL_GPL(call_rcu);
813
814 /*
815 * Wait for an rcu-preempt grace period, but make it happen quickly.
816 * But because preemptable RCU does not exist, map to rcu-sched.
817 */
818 void synchronize_rcu_expedited(void)
819 {
820 synchronize_sched_expedited();
821 }
822 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
823
824 #ifdef CONFIG_HOTPLUG_CPU
825
826 /*
827 * Because preemptable RCU does not exist, there is never any need to
828 * report on tasks preempted in RCU read-side critical sections during
829 * expedited RCU grace periods.
830 */
831 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
832 {
833 return;
834 }
835
836 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
837
838 /*
839 * Because preemptable RCU does not exist, it never has any work to do.
840 */
841 static int rcu_preempt_pending(int cpu)
842 {
843 return 0;
844 }
845
846 /*
847 * Because preemptable RCU does not exist, it never needs any CPU.
848 */
849 static int rcu_preempt_needs_cpu(int cpu)
850 {
851 return 0;
852 }
853
854 /*
855 * Because preemptable RCU does not exist, rcu_barrier() is just
856 * another name for rcu_barrier_sched().
857 */
858 void rcu_barrier(void)
859 {
860 rcu_barrier_sched();
861 }
862 EXPORT_SYMBOL_GPL(rcu_barrier);
863
864 /*
865 * Because preemptable RCU does not exist, there is no per-CPU
866 * data to initialize.
867 */
868 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
869 {
870 }
871
872 /*
873 * Because there is no preemptable RCU, there are no callbacks to move.
874 */
875 static void rcu_preempt_send_cbs_to_orphanage(void)
876 {
877 }
878
879 /*
880 * Because preemptable RCU does not exist, it need not be initialized.
881 */
882 static void __init __rcu_init_preempt(void)
883 {
884 }
885
886 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */