]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcutree_plugin.h
rcu: Clean up code based on review feedback from Josh Triplett, part 2
[mirror_ubuntu-bionic-kernel.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28 #ifdef CONFIG_TREE_PREEMPT_RCU
29
30 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33 /*
34 * Tell them what RCU they are running.
35 */
36 static inline void rcu_bootup_announce(void)
37 {
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40 }
41
42 /*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46 long rcu_batches_completed_preempt(void)
47 {
48 return rcu_preempt_state.completed;
49 }
50 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52 /*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55 long rcu_batches_completed(void)
56 {
57 return rcu_batches_completed_preempt();
58 }
59 EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61 /*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67 static void rcu_preempt_qs(int cpu)
68 {
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc_completed = rdp->completed;
71 barrier();
72 rdp->passed_quiesc = 1;
73 }
74
75 /*
76 * We have entered the scheduler, and the current task might soon be
77 * context-switched away from. If this task is in an RCU read-side
78 * critical section, we will no longer be able to rely on the CPU to
79 * record that fact, so we enqueue the task on the appropriate entry
80 * of the blocked_tasks[] array. The task will dequeue itself when
81 * it exits the outermost enclosing RCU read-side critical section.
82 * Therefore, the current grace period cannot be permitted to complete
83 * until the blocked_tasks[] entry indexed by the low-order bit of
84 * rnp->gpnum empties.
85 *
86 * Caller must disable preemption.
87 */
88 static void rcu_preempt_note_context_switch(int cpu)
89 {
90 struct task_struct *t = current;
91 unsigned long flags;
92 int phase;
93 struct rcu_data *rdp;
94 struct rcu_node *rnp;
95
96 if (t->rcu_read_lock_nesting &&
97 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
98
99 /* Possibly blocking in an RCU read-side critical section. */
100 rdp = rcu_preempt_state.rda[cpu];
101 rnp = rdp->mynode;
102 spin_lock_irqsave(&rnp->lock, flags);
103 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
104 t->rcu_blocked_node = rnp;
105
106 /*
107 * If this CPU has already checked in, then this task
108 * will hold up the next grace period rather than the
109 * current grace period. Queue the task accordingly.
110 * If the task is queued for the current grace period
111 * (i.e., this CPU has not yet passed through a quiescent
112 * state for the current grace period), then as long
113 * as that task remains queued, the current grace period
114 * cannot end.
115 *
116 * But first, note that the current CPU must still be
117 * on line!
118 */
119 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
120 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
121 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
122 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
123 spin_unlock_irqrestore(&rnp->lock, flags);
124 }
125
126 /*
127 * Either we were not in an RCU read-side critical section to
128 * begin with, or we have now recorded that critical section
129 * globally. Either way, we can now note a quiescent state
130 * for this CPU. Again, if we were in an RCU read-side critical
131 * section, and if that critical section was blocking the current
132 * grace period, then the fact that the task has been enqueued
133 * means that we continue to block the current grace period.
134 */
135 rcu_preempt_qs(cpu);
136 local_irq_save(flags);
137 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
138 local_irq_restore(flags);
139 }
140
141 /*
142 * Tree-preemptable RCU implementation for rcu_read_lock().
143 * Just increment ->rcu_read_lock_nesting, shared state will be updated
144 * if we block.
145 */
146 void __rcu_read_lock(void)
147 {
148 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
149 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
150 }
151 EXPORT_SYMBOL_GPL(__rcu_read_lock);
152
153 /*
154 * Check for preempted RCU readers blocking the current grace period
155 * for the specified rcu_node structure. If the caller needs a reliable
156 * answer, it must hold the rcu_node's ->lock.
157 */
158 static int rcu_preempted_readers(struct rcu_node *rnp)
159 {
160 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
161 }
162
163 static void rcu_read_unlock_special(struct task_struct *t)
164 {
165 int empty;
166 unsigned long flags;
167 unsigned long mask;
168 struct rcu_node *rnp;
169 int special;
170
171 /* NMI handlers cannot block and cannot safely manipulate state. */
172 if (in_nmi())
173 return;
174
175 local_irq_save(flags);
176
177 /*
178 * If RCU core is waiting for this CPU to exit critical section,
179 * let it know that we have done so.
180 */
181 special = t->rcu_read_unlock_special;
182 if (special & RCU_READ_UNLOCK_NEED_QS) {
183 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
184 rcu_preempt_qs(smp_processor_id());
185 }
186
187 /* Hardware IRQ handlers cannot block. */
188 if (in_irq()) {
189 local_irq_restore(flags);
190 return;
191 }
192
193 /* Clean up if blocked during RCU read-side critical section. */
194 if (special & RCU_READ_UNLOCK_BLOCKED) {
195 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
196
197 /*
198 * Remove this task from the list it blocked on. The
199 * task can migrate while we acquire the lock, but at
200 * most one time. So at most two passes through loop.
201 */
202 for (;;) {
203 rnp = t->rcu_blocked_node;
204 spin_lock(&rnp->lock); /* irqs already disabled. */
205 if (rnp == t->rcu_blocked_node)
206 break;
207 spin_unlock(&rnp->lock); /* irqs remain disabled. */
208 }
209 empty = !rcu_preempted_readers(rnp);
210 list_del_init(&t->rcu_node_entry);
211 t->rcu_blocked_node = NULL;
212
213 /*
214 * If this was the last task on the current list, and if
215 * we aren't waiting on any CPUs, report the quiescent state.
216 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
217 * drop rnp->lock and restore irq.
218 */
219 if (!empty && rnp->qsmask == 0 &&
220 !rcu_preempted_readers(rnp)) {
221 struct rcu_node *rnp_p;
222
223 if (rnp->parent == NULL) {
224 /* Only one rcu_node in the tree. */
225 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
226 return;
227 }
228 /* Report up the rest of the hierarchy. */
229 mask = rnp->grpmask;
230 spin_unlock_irqrestore(&rnp->lock, flags);
231 rnp_p = rnp->parent;
232 spin_lock_irqsave(&rnp_p->lock, flags);
233 WARN_ON_ONCE(rnp->qsmask);
234 cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
235 return;
236 }
237 spin_unlock(&rnp->lock);
238 }
239 local_irq_restore(flags);
240 }
241
242 /*
243 * Tree-preemptable RCU implementation for rcu_read_unlock().
244 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
245 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
246 * invoke rcu_read_unlock_special() to clean up after a context switch
247 * in an RCU read-side critical section and other special cases.
248 */
249 void __rcu_read_unlock(void)
250 {
251 struct task_struct *t = current;
252
253 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
254 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
255 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
256 rcu_read_unlock_special(t);
257 }
258 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
259
260 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
261
262 /*
263 * Scan the current list of tasks blocked within RCU read-side critical
264 * sections, printing out the tid of each.
265 */
266 static void rcu_print_task_stall(struct rcu_node *rnp)
267 {
268 unsigned long flags;
269 struct list_head *lp;
270 int phase;
271 struct task_struct *t;
272
273 if (rcu_preempted_readers(rnp)) {
274 spin_lock_irqsave(&rnp->lock, flags);
275 phase = rnp->gpnum & 0x1;
276 lp = &rnp->blocked_tasks[phase];
277 list_for_each_entry(t, lp, rcu_node_entry)
278 printk(" P%d", t->pid);
279 spin_unlock_irqrestore(&rnp->lock, flags);
280 }
281 }
282
283 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
284
285 /*
286 * Check that the list of blocked tasks for the newly completed grace
287 * period is in fact empty. It is a serious bug to complete a grace
288 * period that still has RCU readers blocked! This function must be
289 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
290 * must be held by the caller.
291 */
292 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
293 {
294 WARN_ON_ONCE(rcu_preempted_readers(rnp));
295 WARN_ON_ONCE(rnp->qsmask);
296 }
297
298 #ifdef CONFIG_HOTPLUG_CPU
299
300 /*
301 * Handle tasklist migration for case in which all CPUs covered by the
302 * specified rcu_node have gone offline. Move them up to the root
303 * rcu_node. The reason for not just moving them to the immediate
304 * parent is to remove the need for rcu_read_unlock_special() to
305 * make more than two attempts to acquire the target rcu_node's lock.
306 *
307 * The caller must hold rnp->lock with irqs disabled.
308 */
309 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
310 struct rcu_node *rnp,
311 struct rcu_data *rdp)
312 {
313 int i;
314 struct list_head *lp;
315 struct list_head *lp_root;
316 struct rcu_node *rnp_root = rcu_get_root(rsp);
317 struct task_struct *tp;
318
319 if (rnp == rnp_root) {
320 WARN_ONCE(1, "Last CPU thought to be offlined?");
321 return; /* Shouldn't happen: at least one CPU online. */
322 }
323 WARN_ON_ONCE(rnp != rdp->mynode &&
324 (!list_empty(&rnp->blocked_tasks[0]) ||
325 !list_empty(&rnp->blocked_tasks[1])));
326
327 /*
328 * Move tasks up to root rcu_node. Rely on the fact that the
329 * root rcu_node can be at most one ahead of the rest of the
330 * rcu_nodes in terms of gp_num value. This fact allows us to
331 * move the blocked_tasks[] array directly, element by element.
332 */
333 for (i = 0; i < 2; i++) {
334 lp = &rnp->blocked_tasks[i];
335 lp_root = &rnp_root->blocked_tasks[i];
336 while (!list_empty(lp)) {
337 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
338 spin_lock(&rnp_root->lock); /* irqs already disabled */
339 list_del(&tp->rcu_node_entry);
340 tp->rcu_blocked_node = rnp_root;
341 list_add(&tp->rcu_node_entry, lp_root);
342 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
343 }
344 }
345 }
346
347 /*
348 * Do CPU-offline processing for preemptable RCU.
349 */
350 static void rcu_preempt_offline_cpu(int cpu)
351 {
352 __rcu_offline_cpu(cpu, &rcu_preempt_state);
353 }
354
355 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
356
357 /*
358 * Check for a quiescent state from the current CPU. When a task blocks,
359 * the task is recorded in the corresponding CPU's rcu_node structure,
360 * which is checked elsewhere.
361 *
362 * Caller must disable hard irqs.
363 */
364 static void rcu_preempt_check_callbacks(int cpu)
365 {
366 struct task_struct *t = current;
367
368 if (t->rcu_read_lock_nesting == 0) {
369 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
370 rcu_preempt_qs(cpu);
371 return;
372 }
373 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
374 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
375 }
376
377 /*
378 * Process callbacks for preemptable RCU.
379 */
380 static void rcu_preempt_process_callbacks(void)
381 {
382 __rcu_process_callbacks(&rcu_preempt_state,
383 &__get_cpu_var(rcu_preempt_data));
384 }
385
386 /*
387 * Queue a preemptable-RCU callback for invocation after a grace period.
388 */
389 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
390 {
391 __call_rcu(head, func, &rcu_preempt_state);
392 }
393 EXPORT_SYMBOL_GPL(call_rcu);
394
395 /*
396 * Check to see if there is any immediate preemptable-RCU-related work
397 * to be done.
398 */
399 static int rcu_preempt_pending(int cpu)
400 {
401 return __rcu_pending(&rcu_preempt_state,
402 &per_cpu(rcu_preempt_data, cpu));
403 }
404
405 /*
406 * Does preemptable RCU need the CPU to stay out of dynticks mode?
407 */
408 static int rcu_preempt_needs_cpu(int cpu)
409 {
410 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
411 }
412
413 /*
414 * Initialize preemptable RCU's per-CPU data.
415 */
416 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
417 {
418 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
419 }
420
421 /*
422 * Initialize preemptable RCU's state structures.
423 */
424 static void __init __rcu_init_preempt(void)
425 {
426 int i; /* All used by RCU_INIT_FLAVOR(). */
427 int j;
428 struct rcu_node *rnp;
429
430 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
431 }
432
433 /*
434 * Check for a task exiting while in a preemptable-RCU read-side
435 * critical section, clean up if so. No need to issue warnings,
436 * as debug_check_no_locks_held() already does this if lockdep
437 * is enabled.
438 */
439 void exit_rcu(void)
440 {
441 struct task_struct *t = current;
442
443 if (t->rcu_read_lock_nesting == 0)
444 return;
445 t->rcu_read_lock_nesting = 1;
446 rcu_read_unlock();
447 }
448
449 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
450
451 /*
452 * Tell them what RCU they are running.
453 */
454 static inline void rcu_bootup_announce(void)
455 {
456 printk(KERN_INFO "Hierarchical RCU implementation.\n");
457 }
458
459 /*
460 * Return the number of RCU batches processed thus far for debug & stats.
461 */
462 long rcu_batches_completed(void)
463 {
464 return rcu_batches_completed_sched();
465 }
466 EXPORT_SYMBOL_GPL(rcu_batches_completed);
467
468 /*
469 * Because preemptable RCU does not exist, we never have to check for
470 * CPUs being in quiescent states.
471 */
472 static void rcu_preempt_note_context_switch(int cpu)
473 {
474 }
475
476 /*
477 * Because preemptable RCU does not exist, there are never any preempted
478 * RCU readers.
479 */
480 static int rcu_preempted_readers(struct rcu_node *rnp)
481 {
482 return 0;
483 }
484
485 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
486
487 /*
488 * Because preemptable RCU does not exist, we never have to check for
489 * tasks blocked within RCU read-side critical sections.
490 */
491 static void rcu_print_task_stall(struct rcu_node *rnp)
492 {
493 }
494
495 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
496
497 /*
498 * Because there is no preemptable RCU, there can be no readers blocked,
499 * so there is no need to check for blocked tasks. So check only for
500 * bogus qsmask values.
501 */
502 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
503 {
504 WARN_ON_ONCE(rnp->qsmask);
505 }
506
507 #ifdef CONFIG_HOTPLUG_CPU
508
509 /*
510 * Because preemptable RCU does not exist, it never needs to migrate
511 * tasks that were blocked within RCU read-side critical sections.
512 */
513 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
514 struct rcu_node *rnp,
515 struct rcu_data *rdp)
516 {
517 }
518
519 /*
520 * Because preemptable RCU does not exist, it never needs CPU-offline
521 * processing.
522 */
523 static void rcu_preempt_offline_cpu(int cpu)
524 {
525 }
526
527 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
528
529 /*
530 * Because preemptable RCU does not exist, it never has any callbacks
531 * to check.
532 */
533 static void rcu_preempt_check_callbacks(int cpu)
534 {
535 }
536
537 /*
538 * Because preemptable RCU does not exist, it never has any callbacks
539 * to process.
540 */
541 static void rcu_preempt_process_callbacks(void)
542 {
543 }
544
545 /*
546 * In classic RCU, call_rcu() is just call_rcu_sched().
547 */
548 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
549 {
550 call_rcu_sched(head, func);
551 }
552 EXPORT_SYMBOL_GPL(call_rcu);
553
554 /*
555 * Because preemptable RCU does not exist, it never has any work to do.
556 */
557 static int rcu_preempt_pending(int cpu)
558 {
559 return 0;
560 }
561
562 /*
563 * Because preemptable RCU does not exist, it never needs any CPU.
564 */
565 static int rcu_preempt_needs_cpu(int cpu)
566 {
567 return 0;
568 }
569
570 /*
571 * Because preemptable RCU does not exist, there is no per-CPU
572 * data to initialize.
573 */
574 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
575 {
576 }
577
578 /*
579 * Because preemptable RCU does not exist, it need not be initialized.
580 */
581 static void __init __rcu_init_preempt(void)
582 {
583 }
584
585 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */