]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcutree_plugin.h
Merge branch 'fortglx/3.7/time' of git://git.linaro.org/people/jstultz/linux into...
[mirror_ubuntu-artful-kernel.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 #define RCU_KTHREAD_PRIO 1
30
31 #ifdef CONFIG_RCU_BOOST
32 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33 #else
34 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35 #endif
36
37 /*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42 static void __init rcu_bootup_announce_oddness(void)
43 {
44 #ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46 #endif
47 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50 #endif
51 #ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57 #endif
58 #ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60 #endif
61 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63 #endif
64 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66 #endif
67 #if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
69 #endif
70 #if NUM_RCU_LVL_4 != 0
71 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
72 #endif
73 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
74 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
75 if (nr_cpu_ids != NR_CPUS)
76 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
77 }
78
79 #ifdef CONFIG_TREE_PREEMPT_RCU
80
81 struct rcu_state rcu_preempt_state =
82 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
83 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
84 static struct rcu_state *rcu_state = &rcu_preempt_state;
85
86 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
87
88 /*
89 * Tell them what RCU they are running.
90 */
91 static void __init rcu_bootup_announce(void)
92 {
93 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
94 rcu_bootup_announce_oddness();
95 }
96
97 /*
98 * Return the number of RCU-preempt batches processed thus far
99 * for debug and statistics.
100 */
101 long rcu_batches_completed_preempt(void)
102 {
103 return rcu_preempt_state.completed;
104 }
105 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
106
107 /*
108 * Return the number of RCU batches processed thus far for debug & stats.
109 */
110 long rcu_batches_completed(void)
111 {
112 return rcu_batches_completed_preempt();
113 }
114 EXPORT_SYMBOL_GPL(rcu_batches_completed);
115
116 /*
117 * Force a quiescent state for preemptible RCU.
118 */
119 void rcu_force_quiescent_state(void)
120 {
121 force_quiescent_state(&rcu_preempt_state, 0);
122 }
123 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
124
125 /*
126 * Record a preemptible-RCU quiescent state for the specified CPU. Note
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state. There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
130 *
131 * Unlike the other rcu_*_qs() functions, callers to this function
132 * must disable irqs in order to protect the assignment to
133 * ->rcu_read_unlock_special.
134 */
135 static void rcu_preempt_qs(int cpu)
136 {
137 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
138
139 rdp->passed_quiesce_gpnum = rdp->gpnum;
140 barrier();
141 if (rdp->passed_quiesce == 0)
142 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
143 rdp->passed_quiesce = 1;
144 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
145 }
146
147 /*
148 * We have entered the scheduler, and the current task might soon be
149 * context-switched away from. If this task is in an RCU read-side
150 * critical section, we will no longer be able to rely on the CPU to
151 * record that fact, so we enqueue the task on the blkd_tasks list.
152 * The task will dequeue itself when it exits the outermost enclosing
153 * RCU read-side critical section. Therefore, the current grace period
154 * cannot be permitted to complete until the blkd_tasks list entries
155 * predating the current grace period drain, in other words, until
156 * rnp->gp_tasks becomes NULL.
157 *
158 * Caller must disable preemption.
159 */
160 static void rcu_preempt_note_context_switch(int cpu)
161 {
162 struct task_struct *t = current;
163 unsigned long flags;
164 struct rcu_data *rdp;
165 struct rcu_node *rnp;
166
167 if (t->rcu_read_lock_nesting > 0 &&
168 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
169
170 /* Possibly blocking in an RCU read-side critical section. */
171 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
172 rnp = rdp->mynode;
173 raw_spin_lock_irqsave(&rnp->lock, flags);
174 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
175 t->rcu_blocked_node = rnp;
176
177 /*
178 * If this CPU has already checked in, then this task
179 * will hold up the next grace period rather than the
180 * current grace period. Queue the task accordingly.
181 * If the task is queued for the current grace period
182 * (i.e., this CPU has not yet passed through a quiescent
183 * state for the current grace period), then as long
184 * as that task remains queued, the current grace period
185 * cannot end. Note that there is some uncertainty as
186 * to exactly when the current grace period started.
187 * We take a conservative approach, which can result
188 * in unnecessarily waiting on tasks that started very
189 * slightly after the current grace period began. C'est
190 * la vie!!!
191 *
192 * But first, note that the current CPU must still be
193 * on line!
194 */
195 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199 rnp->gp_tasks = &t->rcu_node_entry;
200 #ifdef CONFIG_RCU_BOOST
201 if (rnp->boost_tasks != NULL)
202 rnp->boost_tasks = rnp->gp_tasks;
203 #endif /* #ifdef CONFIG_RCU_BOOST */
204 } else {
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 if (rnp->qsmask & rdp->grpmask)
207 rnp->gp_tasks = &t->rcu_node_entry;
208 }
209 trace_rcu_preempt_task(rdp->rsp->name,
210 t->pid,
211 (rnp->qsmask & rdp->grpmask)
212 ? rnp->gpnum
213 : rnp->gpnum + 1);
214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
215 } else if (t->rcu_read_lock_nesting < 0 &&
216 t->rcu_read_unlock_special) {
217
218 /*
219 * Complete exit from RCU read-side critical section on
220 * behalf of preempted instance of __rcu_read_unlock().
221 */
222 rcu_read_unlock_special(t);
223 }
224
225 /*
226 * Either we were not in an RCU read-side critical section to
227 * begin with, or we have now recorded that critical section
228 * globally. Either way, we can now note a quiescent state
229 * for this CPU. Again, if we were in an RCU read-side critical
230 * section, and if that critical section was blocking the current
231 * grace period, then the fact that the task has been enqueued
232 * means that we continue to block the current grace period.
233 */
234 local_irq_save(flags);
235 rcu_preempt_qs(cpu);
236 local_irq_restore(flags);
237 }
238
239 /*
240 * Check for preempted RCU readers blocking the current grace period
241 * for the specified rcu_node structure. If the caller needs a reliable
242 * answer, it must hold the rcu_node's ->lock.
243 */
244 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
245 {
246 return rnp->gp_tasks != NULL;
247 }
248
249 /*
250 * Record a quiescent state for all tasks that were previously queued
251 * on the specified rcu_node structure and that were blocking the current
252 * RCU grace period. The caller must hold the specified rnp->lock with
253 * irqs disabled, and this lock is released upon return, but irqs remain
254 * disabled.
255 */
256 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
257 __releases(rnp->lock)
258 {
259 unsigned long mask;
260 struct rcu_node *rnp_p;
261
262 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
264 return; /* Still need more quiescent states! */
265 }
266
267 rnp_p = rnp->parent;
268 if (rnp_p == NULL) {
269 /*
270 * Either there is only one rcu_node in the tree,
271 * or tasks were kicked up to root rcu_node due to
272 * CPUs going offline.
273 */
274 rcu_report_qs_rsp(&rcu_preempt_state, flags);
275 return;
276 }
277
278 /* Report up the rest of the hierarchy. */
279 mask = rnp->grpmask;
280 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
281 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
282 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283 }
284
285 /*
286 * Advance a ->blkd_tasks-list pointer to the next entry, instead
287 * returning NULL if at the end of the list.
288 */
289 static struct list_head *rcu_next_node_entry(struct task_struct *t,
290 struct rcu_node *rnp)
291 {
292 struct list_head *np;
293
294 np = t->rcu_node_entry.next;
295 if (np == &rnp->blkd_tasks)
296 np = NULL;
297 return np;
298 }
299
300 /*
301 * Handle special cases during rcu_read_unlock(), such as needing to
302 * notify RCU core processing or task having blocked during the RCU
303 * read-side critical section.
304 */
305 void rcu_read_unlock_special(struct task_struct *t)
306 {
307 int empty;
308 int empty_exp;
309 int empty_exp_now;
310 unsigned long flags;
311 struct list_head *np;
312 #ifdef CONFIG_RCU_BOOST
313 struct rt_mutex *rbmp = NULL;
314 #endif /* #ifdef CONFIG_RCU_BOOST */
315 struct rcu_node *rnp;
316 int special;
317
318 /* NMI handlers cannot block and cannot safely manipulate state. */
319 if (in_nmi())
320 return;
321
322 local_irq_save(flags);
323
324 /*
325 * If RCU core is waiting for this CPU to exit critical section,
326 * let it know that we have done so.
327 */
328 special = t->rcu_read_unlock_special;
329 if (special & RCU_READ_UNLOCK_NEED_QS) {
330 rcu_preempt_qs(smp_processor_id());
331 }
332
333 /* Hardware IRQ handlers cannot block. */
334 if (in_irq() || in_serving_softirq()) {
335 local_irq_restore(flags);
336 return;
337 }
338
339 /* Clean up if blocked during RCU read-side critical section. */
340 if (special & RCU_READ_UNLOCK_BLOCKED) {
341 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
342
343 /*
344 * Remove this task from the list it blocked on. The
345 * task can migrate while we acquire the lock, but at
346 * most one time. So at most two passes through loop.
347 */
348 for (;;) {
349 rnp = t->rcu_blocked_node;
350 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
351 if (rnp == t->rcu_blocked_node)
352 break;
353 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
354 }
355 empty = !rcu_preempt_blocked_readers_cgp(rnp);
356 empty_exp = !rcu_preempted_readers_exp(rnp);
357 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
358 np = rcu_next_node_entry(t, rnp);
359 list_del_init(&t->rcu_node_entry);
360 t->rcu_blocked_node = NULL;
361 trace_rcu_unlock_preempted_task("rcu_preempt",
362 rnp->gpnum, t->pid);
363 if (&t->rcu_node_entry == rnp->gp_tasks)
364 rnp->gp_tasks = np;
365 if (&t->rcu_node_entry == rnp->exp_tasks)
366 rnp->exp_tasks = np;
367 #ifdef CONFIG_RCU_BOOST
368 if (&t->rcu_node_entry == rnp->boost_tasks)
369 rnp->boost_tasks = np;
370 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
371 if (t->rcu_boost_mutex) {
372 rbmp = t->rcu_boost_mutex;
373 t->rcu_boost_mutex = NULL;
374 }
375 #endif /* #ifdef CONFIG_RCU_BOOST */
376
377 /*
378 * If this was the last task on the current list, and if
379 * we aren't waiting on any CPUs, report the quiescent state.
380 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
381 * so we must take a snapshot of the expedited state.
382 */
383 empty_exp_now = !rcu_preempted_readers_exp(rnp);
384 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
385 trace_rcu_quiescent_state_report("preempt_rcu",
386 rnp->gpnum,
387 0, rnp->qsmask,
388 rnp->level,
389 rnp->grplo,
390 rnp->grphi,
391 !!rnp->gp_tasks);
392 rcu_report_unblock_qs_rnp(rnp, flags);
393 } else {
394 raw_spin_unlock_irqrestore(&rnp->lock, flags);
395 }
396
397 #ifdef CONFIG_RCU_BOOST
398 /* Unboost if we were boosted. */
399 if (rbmp)
400 rt_mutex_unlock(rbmp);
401 #endif /* #ifdef CONFIG_RCU_BOOST */
402
403 /*
404 * If this was the last task on the expedited lists,
405 * then we need to report up the rcu_node hierarchy.
406 */
407 if (!empty_exp && empty_exp_now)
408 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
409 } else {
410 local_irq_restore(flags);
411 }
412 }
413
414 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
415
416 /*
417 * Dump detailed information for all tasks blocking the current RCU
418 * grace period on the specified rcu_node structure.
419 */
420 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
421 {
422 unsigned long flags;
423 struct task_struct *t;
424
425 if (!rcu_preempt_blocked_readers_cgp(rnp))
426 return;
427 raw_spin_lock_irqsave(&rnp->lock, flags);
428 t = list_entry(rnp->gp_tasks,
429 struct task_struct, rcu_node_entry);
430 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
431 sched_show_task(t);
432 raw_spin_unlock_irqrestore(&rnp->lock, flags);
433 }
434
435 /*
436 * Dump detailed information for all tasks blocking the current RCU
437 * grace period.
438 */
439 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
440 {
441 struct rcu_node *rnp = rcu_get_root(rsp);
442
443 rcu_print_detail_task_stall_rnp(rnp);
444 rcu_for_each_leaf_node(rsp, rnp)
445 rcu_print_detail_task_stall_rnp(rnp);
446 }
447
448 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
449
450 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
451 {
452 }
453
454 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456 #ifdef CONFIG_RCU_CPU_STALL_INFO
457
458 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
459 {
460 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
461 rnp->level, rnp->grplo, rnp->grphi);
462 }
463
464 static void rcu_print_task_stall_end(void)
465 {
466 printk(KERN_CONT "\n");
467 }
468
469 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
470
471 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
472 {
473 }
474
475 static void rcu_print_task_stall_end(void)
476 {
477 }
478
479 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
480
481 /*
482 * Scan the current list of tasks blocked within RCU read-side critical
483 * sections, printing out the tid of each.
484 */
485 static int rcu_print_task_stall(struct rcu_node *rnp)
486 {
487 struct task_struct *t;
488 int ndetected = 0;
489
490 if (!rcu_preempt_blocked_readers_cgp(rnp))
491 return 0;
492 rcu_print_task_stall_begin(rnp);
493 t = list_entry(rnp->gp_tasks,
494 struct task_struct, rcu_node_entry);
495 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
496 printk(KERN_CONT " P%d", t->pid);
497 ndetected++;
498 }
499 rcu_print_task_stall_end();
500 return ndetected;
501 }
502
503 /*
504 * Check that the list of blocked tasks for the newly completed grace
505 * period is in fact empty. It is a serious bug to complete a grace
506 * period that still has RCU readers blocked! This function must be
507 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
508 * must be held by the caller.
509 *
510 * Also, if there are blocked tasks on the list, they automatically
511 * block the newly created grace period, so set up ->gp_tasks accordingly.
512 */
513 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
514 {
515 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
516 if (!list_empty(&rnp->blkd_tasks))
517 rnp->gp_tasks = rnp->blkd_tasks.next;
518 WARN_ON_ONCE(rnp->qsmask);
519 }
520
521 #ifdef CONFIG_HOTPLUG_CPU
522
523 /*
524 * Handle tasklist migration for case in which all CPUs covered by the
525 * specified rcu_node have gone offline. Move them up to the root
526 * rcu_node. The reason for not just moving them to the immediate
527 * parent is to remove the need for rcu_read_unlock_special() to
528 * make more than two attempts to acquire the target rcu_node's lock.
529 * Returns true if there were tasks blocking the current RCU grace
530 * period.
531 *
532 * Returns 1 if there was previously a task blocking the current grace
533 * period on the specified rcu_node structure.
534 *
535 * The caller must hold rnp->lock with irqs disabled.
536 */
537 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
538 struct rcu_node *rnp,
539 struct rcu_data *rdp)
540 {
541 struct list_head *lp;
542 struct list_head *lp_root;
543 int retval = 0;
544 struct rcu_node *rnp_root = rcu_get_root(rsp);
545 struct task_struct *t;
546
547 if (rnp == rnp_root) {
548 WARN_ONCE(1, "Last CPU thought to be offlined?");
549 return 0; /* Shouldn't happen: at least one CPU online. */
550 }
551
552 /* If we are on an internal node, complain bitterly. */
553 WARN_ON_ONCE(rnp != rdp->mynode);
554
555 /*
556 * Move tasks up to root rcu_node. Don't try to get fancy for
557 * this corner-case operation -- just put this node's tasks
558 * at the head of the root node's list, and update the root node's
559 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
560 * if non-NULL. This might result in waiting for more tasks than
561 * absolutely necessary, but this is a good performance/complexity
562 * tradeoff.
563 */
564 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
565 retval |= RCU_OFL_TASKS_NORM_GP;
566 if (rcu_preempted_readers_exp(rnp))
567 retval |= RCU_OFL_TASKS_EXP_GP;
568 lp = &rnp->blkd_tasks;
569 lp_root = &rnp_root->blkd_tasks;
570 while (!list_empty(lp)) {
571 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
572 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
573 list_del(&t->rcu_node_entry);
574 t->rcu_blocked_node = rnp_root;
575 list_add(&t->rcu_node_entry, lp_root);
576 if (&t->rcu_node_entry == rnp->gp_tasks)
577 rnp_root->gp_tasks = rnp->gp_tasks;
578 if (&t->rcu_node_entry == rnp->exp_tasks)
579 rnp_root->exp_tasks = rnp->exp_tasks;
580 #ifdef CONFIG_RCU_BOOST
581 if (&t->rcu_node_entry == rnp->boost_tasks)
582 rnp_root->boost_tasks = rnp->boost_tasks;
583 #endif /* #ifdef CONFIG_RCU_BOOST */
584 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
585 }
586
587 #ifdef CONFIG_RCU_BOOST
588 /* In case root is being boosted and leaf is not. */
589 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
590 if (rnp_root->boost_tasks != NULL &&
591 rnp_root->boost_tasks != rnp_root->gp_tasks)
592 rnp_root->boost_tasks = rnp_root->gp_tasks;
593 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
594 #endif /* #ifdef CONFIG_RCU_BOOST */
595
596 rnp->gp_tasks = NULL;
597 rnp->exp_tasks = NULL;
598 return retval;
599 }
600
601 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
602
603 /*
604 * Check for a quiescent state from the current CPU. When a task blocks,
605 * the task is recorded in the corresponding CPU's rcu_node structure,
606 * which is checked elsewhere.
607 *
608 * Caller must disable hard irqs.
609 */
610 static void rcu_preempt_check_callbacks(int cpu)
611 {
612 struct task_struct *t = current;
613
614 if (t->rcu_read_lock_nesting == 0) {
615 rcu_preempt_qs(cpu);
616 return;
617 }
618 if (t->rcu_read_lock_nesting > 0 &&
619 per_cpu(rcu_preempt_data, cpu).qs_pending)
620 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
621 }
622
623 #ifdef CONFIG_RCU_BOOST
624
625 static void rcu_preempt_do_callbacks(void)
626 {
627 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
628 }
629
630 #endif /* #ifdef CONFIG_RCU_BOOST */
631
632 /*
633 * Queue a preemptible-RCU callback for invocation after a grace period.
634 */
635 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
636 {
637 __call_rcu(head, func, &rcu_preempt_state, 0);
638 }
639 EXPORT_SYMBOL_GPL(call_rcu);
640
641 /*
642 * Queue an RCU callback for lazy invocation after a grace period.
643 * This will likely be later named something like "call_rcu_lazy()",
644 * but this change will require some way of tagging the lazy RCU
645 * callbacks in the list of pending callbacks. Until then, this
646 * function may only be called from __kfree_rcu().
647 */
648 void kfree_call_rcu(struct rcu_head *head,
649 void (*func)(struct rcu_head *rcu))
650 {
651 __call_rcu(head, func, &rcu_preempt_state, 1);
652 }
653 EXPORT_SYMBOL_GPL(kfree_call_rcu);
654
655 /**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed. Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting. RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665 */
666 void synchronize_rcu(void)
667 {
668 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
669 !lock_is_held(&rcu_lock_map) &&
670 !lock_is_held(&rcu_sched_lock_map),
671 "Illegal synchronize_rcu() in RCU read-side critical section");
672 if (!rcu_scheduler_active)
673 return;
674 wait_rcu_gp(call_rcu);
675 }
676 EXPORT_SYMBOL_GPL(synchronize_rcu);
677
678 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
679 static long sync_rcu_preempt_exp_count;
680 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
681
682 /*
683 * Return non-zero if there are any tasks in RCU read-side critical
684 * sections blocking the current preemptible-RCU expedited grace period.
685 * If there is no preemptible-RCU expedited grace period currently in
686 * progress, returns zero unconditionally.
687 */
688 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
689 {
690 return rnp->exp_tasks != NULL;
691 }
692
693 /*
694 * return non-zero if there is no RCU expedited grace period in progress
695 * for the specified rcu_node structure, in other words, if all CPUs and
696 * tasks covered by the specified rcu_node structure have done their bit
697 * for the current expedited grace period. Works only for preemptible
698 * RCU -- other RCU implementation use other means.
699 *
700 * Caller must hold sync_rcu_preempt_exp_mutex.
701 */
702 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
703 {
704 return !rcu_preempted_readers_exp(rnp) &&
705 ACCESS_ONCE(rnp->expmask) == 0;
706 }
707
708 /*
709 * Report the exit from RCU read-side critical section for the last task
710 * that queued itself during or before the current expedited preemptible-RCU
711 * grace period. This event is reported either to the rcu_node structure on
712 * which the task was queued or to one of that rcu_node structure's ancestors,
713 * recursively up the tree. (Calm down, calm down, we do the recursion
714 * iteratively!)
715 *
716 * Most callers will set the "wake" flag, but the task initiating the
717 * expedited grace period need not wake itself.
718 *
719 * Caller must hold sync_rcu_preempt_exp_mutex.
720 */
721 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
722 bool wake)
723 {
724 unsigned long flags;
725 unsigned long mask;
726
727 raw_spin_lock_irqsave(&rnp->lock, flags);
728 for (;;) {
729 if (!sync_rcu_preempt_exp_done(rnp)) {
730 raw_spin_unlock_irqrestore(&rnp->lock, flags);
731 break;
732 }
733 if (rnp->parent == NULL) {
734 raw_spin_unlock_irqrestore(&rnp->lock, flags);
735 if (wake)
736 wake_up(&sync_rcu_preempt_exp_wq);
737 break;
738 }
739 mask = rnp->grpmask;
740 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
741 rnp = rnp->parent;
742 raw_spin_lock(&rnp->lock); /* irqs already disabled */
743 rnp->expmask &= ~mask;
744 }
745 }
746
747 /*
748 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
749 * grace period for the specified rcu_node structure. If there are no such
750 * tasks, report it up the rcu_node hierarchy.
751 *
752 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
753 */
754 static void
755 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
756 {
757 unsigned long flags;
758 int must_wait = 0;
759
760 raw_spin_lock_irqsave(&rnp->lock, flags);
761 if (list_empty(&rnp->blkd_tasks)) {
762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
763 } else {
764 rnp->exp_tasks = rnp->blkd_tasks.next;
765 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
766 must_wait = 1;
767 }
768 if (!must_wait)
769 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
770 }
771
772 /**
773 * synchronize_rcu_expedited - Brute-force RCU grace period
774 *
775 * Wait for an RCU-preempt grace period, but expedite it. The basic
776 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
777 * the ->blkd_tasks lists and wait for this list to drain. This consumes
778 * significant time on all CPUs and is unfriendly to real-time workloads,
779 * so is thus not recommended for any sort of common-case code.
780 * In fact, if you are using synchronize_rcu_expedited() in a loop,
781 * please restructure your code to batch your updates, and then Use a
782 * single synchronize_rcu() instead.
783 *
784 * Note that it is illegal to call this function while holding any lock
785 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
786 * to call this function from a CPU-hotplug notifier. Failing to observe
787 * these restriction will result in deadlock.
788 */
789 void synchronize_rcu_expedited(void)
790 {
791 unsigned long flags;
792 struct rcu_node *rnp;
793 struct rcu_state *rsp = &rcu_preempt_state;
794 long snap;
795 int trycount = 0;
796
797 smp_mb(); /* Caller's modifications seen first by other CPUs. */
798 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
799 smp_mb(); /* Above access cannot bleed into critical section. */
800
801 /*
802 * Acquire lock, falling back to synchronize_rcu() if too many
803 * lock-acquisition failures. Of course, if someone does the
804 * expedited grace period for us, just leave.
805 */
806 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
807 if (trycount++ < 10) {
808 udelay(trycount * num_online_cpus());
809 } else {
810 synchronize_rcu();
811 return;
812 }
813 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
814 goto mb_ret; /* Others did our work for us. */
815 }
816 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
817 goto unlock_mb_ret; /* Others did our work for us. */
818
819 /* force all RCU readers onto ->blkd_tasks lists. */
820 synchronize_sched_expedited();
821
822 raw_spin_lock_irqsave(&rsp->onofflock, flags);
823
824 /* Initialize ->expmask for all non-leaf rcu_node structures. */
825 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
826 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
827 rnp->expmask = rnp->qsmaskinit;
828 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
829 }
830
831 /* Snapshot current state of ->blkd_tasks lists. */
832 rcu_for_each_leaf_node(rsp, rnp)
833 sync_rcu_preempt_exp_init(rsp, rnp);
834 if (NUM_RCU_NODES > 1)
835 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
836
837 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
838
839 /* Wait for snapshotted ->blkd_tasks lists to drain. */
840 rnp = rcu_get_root(rsp);
841 wait_event(sync_rcu_preempt_exp_wq,
842 sync_rcu_preempt_exp_done(rnp));
843
844 /* Clean up and exit. */
845 smp_mb(); /* ensure expedited GP seen before counter increment. */
846 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
847 unlock_mb_ret:
848 mutex_unlock(&sync_rcu_preempt_exp_mutex);
849 mb_ret:
850 smp_mb(); /* ensure subsequent action seen after grace period. */
851 }
852 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
853
854 /**
855 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
856 */
857 void rcu_barrier(void)
858 {
859 _rcu_barrier(&rcu_preempt_state);
860 }
861 EXPORT_SYMBOL_GPL(rcu_barrier);
862
863 /*
864 * Initialize preemptible RCU's state structures.
865 */
866 static void __init __rcu_init_preempt(void)
867 {
868 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
869 }
870
871 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
872
873 static struct rcu_state *rcu_state = &rcu_sched_state;
874
875 /*
876 * Tell them what RCU they are running.
877 */
878 static void __init rcu_bootup_announce(void)
879 {
880 printk(KERN_INFO "Hierarchical RCU implementation.\n");
881 rcu_bootup_announce_oddness();
882 }
883
884 /*
885 * Return the number of RCU batches processed thus far for debug & stats.
886 */
887 long rcu_batches_completed(void)
888 {
889 return rcu_batches_completed_sched();
890 }
891 EXPORT_SYMBOL_GPL(rcu_batches_completed);
892
893 /*
894 * Force a quiescent state for RCU, which, because there is no preemptible
895 * RCU, becomes the same as rcu-sched.
896 */
897 void rcu_force_quiescent_state(void)
898 {
899 rcu_sched_force_quiescent_state();
900 }
901 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
902
903 /*
904 * Because preemptible RCU does not exist, we never have to check for
905 * CPUs being in quiescent states.
906 */
907 static void rcu_preempt_note_context_switch(int cpu)
908 {
909 }
910
911 /*
912 * Because preemptible RCU does not exist, there are never any preempted
913 * RCU readers.
914 */
915 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
916 {
917 return 0;
918 }
919
920 #ifdef CONFIG_HOTPLUG_CPU
921
922 /* Because preemptible RCU does not exist, no quieting of tasks. */
923 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
924 {
925 raw_spin_unlock_irqrestore(&rnp->lock, flags);
926 }
927
928 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
929
930 /*
931 * Because preemptible RCU does not exist, we never have to check for
932 * tasks blocked within RCU read-side critical sections.
933 */
934 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
935 {
936 }
937
938 /*
939 * Because preemptible RCU does not exist, we never have to check for
940 * tasks blocked within RCU read-side critical sections.
941 */
942 static int rcu_print_task_stall(struct rcu_node *rnp)
943 {
944 return 0;
945 }
946
947 /*
948 * Because there is no preemptible RCU, there can be no readers blocked,
949 * so there is no need to check for blocked tasks. So check only for
950 * bogus qsmask values.
951 */
952 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
953 {
954 WARN_ON_ONCE(rnp->qsmask);
955 }
956
957 #ifdef CONFIG_HOTPLUG_CPU
958
959 /*
960 * Because preemptible RCU does not exist, it never needs to migrate
961 * tasks that were blocked within RCU read-side critical sections, and
962 * such non-existent tasks cannot possibly have been blocking the current
963 * grace period.
964 */
965 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
966 struct rcu_node *rnp,
967 struct rcu_data *rdp)
968 {
969 return 0;
970 }
971
972 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
973
974 /*
975 * Because preemptible RCU does not exist, it never has any callbacks
976 * to check.
977 */
978 static void rcu_preempt_check_callbacks(int cpu)
979 {
980 }
981
982 /*
983 * Queue an RCU callback for lazy invocation after a grace period.
984 * This will likely be later named something like "call_rcu_lazy()",
985 * but this change will require some way of tagging the lazy RCU
986 * callbacks in the list of pending callbacks. Until then, this
987 * function may only be called from __kfree_rcu().
988 *
989 * Because there is no preemptible RCU, we use RCU-sched instead.
990 */
991 void kfree_call_rcu(struct rcu_head *head,
992 void (*func)(struct rcu_head *rcu))
993 {
994 __call_rcu(head, func, &rcu_sched_state, 1);
995 }
996 EXPORT_SYMBOL_GPL(kfree_call_rcu);
997
998 /*
999 * Wait for an rcu-preempt grace period, but make it happen quickly.
1000 * But because preemptible RCU does not exist, map to rcu-sched.
1001 */
1002 void synchronize_rcu_expedited(void)
1003 {
1004 synchronize_sched_expedited();
1005 }
1006 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1007
1008 #ifdef CONFIG_HOTPLUG_CPU
1009
1010 /*
1011 * Because preemptible RCU does not exist, there is never any need to
1012 * report on tasks preempted in RCU read-side critical sections during
1013 * expedited RCU grace periods.
1014 */
1015 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1016 bool wake)
1017 {
1018 }
1019
1020 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1021
1022 /*
1023 * Because preemptible RCU does not exist, rcu_barrier() is just
1024 * another name for rcu_barrier_sched().
1025 */
1026 void rcu_barrier(void)
1027 {
1028 rcu_barrier_sched();
1029 }
1030 EXPORT_SYMBOL_GPL(rcu_barrier);
1031
1032 /*
1033 * Because preemptible RCU does not exist, it need not be initialized.
1034 */
1035 static void __init __rcu_init_preempt(void)
1036 {
1037 }
1038
1039 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1040
1041 #ifdef CONFIG_RCU_BOOST
1042
1043 #include "rtmutex_common.h"
1044
1045 #ifdef CONFIG_RCU_TRACE
1046
1047 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1048 {
1049 if (list_empty(&rnp->blkd_tasks))
1050 rnp->n_balk_blkd_tasks++;
1051 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1052 rnp->n_balk_exp_gp_tasks++;
1053 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1054 rnp->n_balk_boost_tasks++;
1055 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1056 rnp->n_balk_notblocked++;
1057 else if (rnp->gp_tasks != NULL &&
1058 ULONG_CMP_LT(jiffies, rnp->boost_time))
1059 rnp->n_balk_notyet++;
1060 else
1061 rnp->n_balk_nos++;
1062 }
1063
1064 #else /* #ifdef CONFIG_RCU_TRACE */
1065
1066 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1067 {
1068 }
1069
1070 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1071
1072 /*
1073 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1074 * or ->boost_tasks, advancing the pointer to the next task in the
1075 * ->blkd_tasks list.
1076 *
1077 * Note that irqs must be enabled: boosting the task can block.
1078 * Returns 1 if there are more tasks needing to be boosted.
1079 */
1080 static int rcu_boost(struct rcu_node *rnp)
1081 {
1082 unsigned long flags;
1083 struct rt_mutex mtx;
1084 struct task_struct *t;
1085 struct list_head *tb;
1086
1087 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1088 return 0; /* Nothing left to boost. */
1089
1090 raw_spin_lock_irqsave(&rnp->lock, flags);
1091
1092 /*
1093 * Recheck under the lock: all tasks in need of boosting
1094 * might exit their RCU read-side critical sections on their own.
1095 */
1096 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 return 0;
1099 }
1100
1101 /*
1102 * Preferentially boost tasks blocking expedited grace periods.
1103 * This cannot starve the normal grace periods because a second
1104 * expedited grace period must boost all blocked tasks, including
1105 * those blocking the pre-existing normal grace period.
1106 */
1107 if (rnp->exp_tasks != NULL) {
1108 tb = rnp->exp_tasks;
1109 rnp->n_exp_boosts++;
1110 } else {
1111 tb = rnp->boost_tasks;
1112 rnp->n_normal_boosts++;
1113 }
1114 rnp->n_tasks_boosted++;
1115
1116 /*
1117 * We boost task t by manufacturing an rt_mutex that appears to
1118 * be held by task t. We leave a pointer to that rt_mutex where
1119 * task t can find it, and task t will release the mutex when it
1120 * exits its outermost RCU read-side critical section. Then
1121 * simply acquiring this artificial rt_mutex will boost task
1122 * t's priority. (Thanks to tglx for suggesting this approach!)
1123 *
1124 * Note that task t must acquire rnp->lock to remove itself from
1125 * the ->blkd_tasks list, which it will do from exit() if from
1126 * nowhere else. We therefore are guaranteed that task t will
1127 * stay around at least until we drop rnp->lock. Note that
1128 * rnp->lock also resolves races between our priority boosting
1129 * and task t's exiting its outermost RCU read-side critical
1130 * section.
1131 */
1132 t = container_of(tb, struct task_struct, rcu_node_entry);
1133 rt_mutex_init_proxy_locked(&mtx, t);
1134 t->rcu_boost_mutex = &mtx;
1135 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1136 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1137 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1138
1139 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1140 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1141 }
1142
1143 /*
1144 * Timer handler to initiate waking up of boost kthreads that
1145 * have yielded the CPU due to excessive numbers of tasks to
1146 * boost. We wake up the per-rcu_node kthread, which in turn
1147 * will wake up the booster kthread.
1148 */
1149 static void rcu_boost_kthread_timer(unsigned long arg)
1150 {
1151 invoke_rcu_node_kthread((struct rcu_node *)arg);
1152 }
1153
1154 /*
1155 * Priority-boosting kthread. One per leaf rcu_node and one for the
1156 * root rcu_node.
1157 */
1158 static int rcu_boost_kthread(void *arg)
1159 {
1160 struct rcu_node *rnp = (struct rcu_node *)arg;
1161 int spincnt = 0;
1162 int more2boost;
1163
1164 trace_rcu_utilization("Start boost kthread@init");
1165 for (;;) {
1166 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1167 trace_rcu_utilization("End boost kthread@rcu_wait");
1168 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1169 trace_rcu_utilization("Start boost kthread@rcu_wait");
1170 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1171 more2boost = rcu_boost(rnp);
1172 if (more2boost)
1173 spincnt++;
1174 else
1175 spincnt = 0;
1176 if (spincnt > 10) {
1177 trace_rcu_utilization("End boost kthread@rcu_yield");
1178 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1179 trace_rcu_utilization("Start boost kthread@rcu_yield");
1180 spincnt = 0;
1181 }
1182 }
1183 /* NOTREACHED */
1184 trace_rcu_utilization("End boost kthread@notreached");
1185 return 0;
1186 }
1187
1188 /*
1189 * Check to see if it is time to start boosting RCU readers that are
1190 * blocking the current grace period, and, if so, tell the per-rcu_node
1191 * kthread to start boosting them. If there is an expedited grace
1192 * period in progress, it is always time to boost.
1193 *
1194 * The caller must hold rnp->lock, which this function releases,
1195 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1196 * so we don't need to worry about it going away.
1197 */
1198 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1199 {
1200 struct task_struct *t;
1201
1202 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1203 rnp->n_balk_exp_gp_tasks++;
1204 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1205 return;
1206 }
1207 if (rnp->exp_tasks != NULL ||
1208 (rnp->gp_tasks != NULL &&
1209 rnp->boost_tasks == NULL &&
1210 rnp->qsmask == 0 &&
1211 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1212 if (rnp->exp_tasks == NULL)
1213 rnp->boost_tasks = rnp->gp_tasks;
1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215 t = rnp->boost_kthread_task;
1216 if (t != NULL)
1217 wake_up_process(t);
1218 } else {
1219 rcu_initiate_boost_trace(rnp);
1220 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1221 }
1222 }
1223
1224 /*
1225 * Wake up the per-CPU kthread to invoke RCU callbacks.
1226 */
1227 static void invoke_rcu_callbacks_kthread(void)
1228 {
1229 unsigned long flags;
1230
1231 local_irq_save(flags);
1232 __this_cpu_write(rcu_cpu_has_work, 1);
1233 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1234 current != __this_cpu_read(rcu_cpu_kthread_task))
1235 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1236 local_irq_restore(flags);
1237 }
1238
1239 /*
1240 * Is the current CPU running the RCU-callbacks kthread?
1241 * Caller must have preemption disabled.
1242 */
1243 static bool rcu_is_callbacks_kthread(void)
1244 {
1245 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1246 }
1247
1248 /*
1249 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1250 * held, so no one should be messing with the existence of the boost
1251 * kthread.
1252 */
1253 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1254 cpumask_var_t cm)
1255 {
1256 struct task_struct *t;
1257
1258 t = rnp->boost_kthread_task;
1259 if (t != NULL)
1260 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1261 }
1262
1263 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1264
1265 /*
1266 * Do priority-boost accounting for the start of a new grace period.
1267 */
1268 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1269 {
1270 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1271 }
1272
1273 /*
1274 * Create an RCU-boost kthread for the specified node if one does not
1275 * already exist. We only create this kthread for preemptible RCU.
1276 * Returns zero if all is well, a negated errno otherwise.
1277 */
1278 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1279 struct rcu_node *rnp,
1280 int rnp_index)
1281 {
1282 unsigned long flags;
1283 struct sched_param sp;
1284 struct task_struct *t;
1285
1286 if (&rcu_preempt_state != rsp)
1287 return 0;
1288 rsp->boost = 1;
1289 if (rnp->boost_kthread_task != NULL)
1290 return 0;
1291 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1292 "rcub/%d", rnp_index);
1293 if (IS_ERR(t))
1294 return PTR_ERR(t);
1295 raw_spin_lock_irqsave(&rnp->lock, flags);
1296 rnp->boost_kthread_task = t;
1297 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1298 sp.sched_priority = RCU_BOOST_PRIO;
1299 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1300 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1301 return 0;
1302 }
1303
1304 #ifdef CONFIG_HOTPLUG_CPU
1305
1306 /*
1307 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1308 */
1309 static void rcu_stop_cpu_kthread(int cpu)
1310 {
1311 struct task_struct *t;
1312
1313 /* Stop the CPU's kthread. */
1314 t = per_cpu(rcu_cpu_kthread_task, cpu);
1315 if (t != NULL) {
1316 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1317 kthread_stop(t);
1318 }
1319 }
1320
1321 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1322
1323 static void rcu_kthread_do_work(void)
1324 {
1325 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1326 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1327 rcu_preempt_do_callbacks();
1328 }
1329
1330 /*
1331 * Wake up the specified per-rcu_node-structure kthread.
1332 * Because the per-rcu_node kthreads are immortal, we don't need
1333 * to do anything to keep them alive.
1334 */
1335 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1336 {
1337 struct task_struct *t;
1338
1339 t = rnp->node_kthread_task;
1340 if (t != NULL)
1341 wake_up_process(t);
1342 }
1343
1344 /*
1345 * Set the specified CPU's kthread to run RT or not, as specified by
1346 * the to_rt argument. The CPU-hotplug locks are held, so the task
1347 * is not going away.
1348 */
1349 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1350 {
1351 int policy;
1352 struct sched_param sp;
1353 struct task_struct *t;
1354
1355 t = per_cpu(rcu_cpu_kthread_task, cpu);
1356 if (t == NULL)
1357 return;
1358 if (to_rt) {
1359 policy = SCHED_FIFO;
1360 sp.sched_priority = RCU_KTHREAD_PRIO;
1361 } else {
1362 policy = SCHED_NORMAL;
1363 sp.sched_priority = 0;
1364 }
1365 sched_setscheduler_nocheck(t, policy, &sp);
1366 }
1367
1368 /*
1369 * Timer handler to initiate the waking up of per-CPU kthreads that
1370 * have yielded the CPU due to excess numbers of RCU callbacks.
1371 * We wake up the per-rcu_node kthread, which in turn will wake up
1372 * the booster kthread.
1373 */
1374 static void rcu_cpu_kthread_timer(unsigned long arg)
1375 {
1376 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1377 struct rcu_node *rnp = rdp->mynode;
1378
1379 atomic_or(rdp->grpmask, &rnp->wakemask);
1380 invoke_rcu_node_kthread(rnp);
1381 }
1382
1383 /*
1384 * Drop to non-real-time priority and yield, but only after posting a
1385 * timer that will cause us to regain our real-time priority if we
1386 * remain preempted. Either way, we restore our real-time priority
1387 * before returning.
1388 */
1389 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1390 {
1391 struct sched_param sp;
1392 struct timer_list yield_timer;
1393 int prio = current->rt_priority;
1394
1395 setup_timer_on_stack(&yield_timer, f, arg);
1396 mod_timer(&yield_timer, jiffies + 2);
1397 sp.sched_priority = 0;
1398 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1399 set_user_nice(current, 19);
1400 schedule();
1401 set_user_nice(current, 0);
1402 sp.sched_priority = prio;
1403 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1404 del_timer(&yield_timer);
1405 }
1406
1407 /*
1408 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1409 * This can happen while the corresponding CPU is either coming online
1410 * or going offline. We cannot wait until the CPU is fully online
1411 * before starting the kthread, because the various notifier functions
1412 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1413 * the corresponding CPU is online.
1414 *
1415 * Return 1 if the kthread needs to stop, 0 otherwise.
1416 *
1417 * Caller must disable bh. This function can momentarily enable it.
1418 */
1419 static int rcu_cpu_kthread_should_stop(int cpu)
1420 {
1421 while (cpu_is_offline(cpu) ||
1422 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1423 smp_processor_id() != cpu) {
1424 if (kthread_should_stop())
1425 return 1;
1426 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1427 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1428 local_bh_enable();
1429 schedule_timeout_uninterruptible(1);
1430 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1431 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1432 local_bh_disable();
1433 }
1434 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1435 return 0;
1436 }
1437
1438 /*
1439 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1440 * RCU softirq used in flavors and configurations of RCU that do not
1441 * support RCU priority boosting.
1442 */
1443 static int rcu_cpu_kthread(void *arg)
1444 {
1445 int cpu = (int)(long)arg;
1446 unsigned long flags;
1447 int spincnt = 0;
1448 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1449 char work;
1450 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1451
1452 trace_rcu_utilization("Start CPU kthread@init");
1453 for (;;) {
1454 *statusp = RCU_KTHREAD_WAITING;
1455 trace_rcu_utilization("End CPU kthread@rcu_wait");
1456 rcu_wait(*workp != 0 || kthread_should_stop());
1457 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1458 local_bh_disable();
1459 if (rcu_cpu_kthread_should_stop(cpu)) {
1460 local_bh_enable();
1461 break;
1462 }
1463 *statusp = RCU_KTHREAD_RUNNING;
1464 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1465 local_irq_save(flags);
1466 work = *workp;
1467 *workp = 0;
1468 local_irq_restore(flags);
1469 if (work)
1470 rcu_kthread_do_work();
1471 local_bh_enable();
1472 if (*workp != 0)
1473 spincnt++;
1474 else
1475 spincnt = 0;
1476 if (spincnt > 10) {
1477 *statusp = RCU_KTHREAD_YIELDING;
1478 trace_rcu_utilization("End CPU kthread@rcu_yield");
1479 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1480 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1481 spincnt = 0;
1482 }
1483 }
1484 *statusp = RCU_KTHREAD_STOPPED;
1485 trace_rcu_utilization("End CPU kthread@term");
1486 return 0;
1487 }
1488
1489 /*
1490 * Spawn a per-CPU kthread, setting up affinity and priority.
1491 * Because the CPU hotplug lock is held, no other CPU will be attempting
1492 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1493 * attempting to access it during boot, but the locking in kthread_bind()
1494 * will enforce sufficient ordering.
1495 *
1496 * Please note that we cannot simply refuse to wake up the per-CPU
1497 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1498 * which can result in softlockup complaints if the task ends up being
1499 * idle for more than a couple of minutes.
1500 *
1501 * However, please note also that we cannot bind the per-CPU kthread to its
1502 * CPU until that CPU is fully online. We also cannot wait until the
1503 * CPU is fully online before we create its per-CPU kthread, as this would
1504 * deadlock the system when CPU notifiers tried waiting for grace
1505 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1506 * is online. If its CPU is not yet fully online, then the code in
1507 * rcu_cpu_kthread() will wait until it is fully online, and then do
1508 * the binding.
1509 */
1510 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1511 {
1512 struct sched_param sp;
1513 struct task_struct *t;
1514
1515 if (!rcu_scheduler_fully_active ||
1516 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1517 return 0;
1518 t = kthread_create_on_node(rcu_cpu_kthread,
1519 (void *)(long)cpu,
1520 cpu_to_node(cpu),
1521 "rcuc/%d", cpu);
1522 if (IS_ERR(t))
1523 return PTR_ERR(t);
1524 if (cpu_online(cpu))
1525 kthread_bind(t, cpu);
1526 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1527 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1528 sp.sched_priority = RCU_KTHREAD_PRIO;
1529 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1530 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1531 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1532 return 0;
1533 }
1534
1535 /*
1536 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1537 * kthreads when needed. We ignore requests to wake up kthreads
1538 * for offline CPUs, which is OK because force_quiescent_state()
1539 * takes care of this case.
1540 */
1541 static int rcu_node_kthread(void *arg)
1542 {
1543 int cpu;
1544 unsigned long flags;
1545 unsigned long mask;
1546 struct rcu_node *rnp = (struct rcu_node *)arg;
1547 struct sched_param sp;
1548 struct task_struct *t;
1549
1550 for (;;) {
1551 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1552 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1553 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1554 raw_spin_lock_irqsave(&rnp->lock, flags);
1555 mask = atomic_xchg(&rnp->wakemask, 0);
1556 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1557 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1558 if ((mask & 0x1) == 0)
1559 continue;
1560 preempt_disable();
1561 t = per_cpu(rcu_cpu_kthread_task, cpu);
1562 if (!cpu_online(cpu) || t == NULL) {
1563 preempt_enable();
1564 continue;
1565 }
1566 per_cpu(rcu_cpu_has_work, cpu) = 1;
1567 sp.sched_priority = RCU_KTHREAD_PRIO;
1568 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1569 preempt_enable();
1570 }
1571 }
1572 /* NOTREACHED */
1573 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1574 return 0;
1575 }
1576
1577 /*
1578 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1579 * served by the rcu_node in question. The CPU hotplug lock is still
1580 * held, so the value of rnp->qsmaskinit will be stable.
1581 *
1582 * We don't include outgoingcpu in the affinity set, use -1 if there is
1583 * no outgoing CPU. If there are no CPUs left in the affinity set,
1584 * this function allows the kthread to execute on any CPU.
1585 */
1586 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1587 {
1588 cpumask_var_t cm;
1589 int cpu;
1590 unsigned long mask = rnp->qsmaskinit;
1591
1592 if (rnp->node_kthread_task == NULL)
1593 return;
1594 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1595 return;
1596 cpumask_clear(cm);
1597 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1598 if ((mask & 0x1) && cpu != outgoingcpu)
1599 cpumask_set_cpu(cpu, cm);
1600 if (cpumask_weight(cm) == 0) {
1601 cpumask_setall(cm);
1602 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1603 cpumask_clear_cpu(cpu, cm);
1604 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1605 }
1606 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1607 rcu_boost_kthread_setaffinity(rnp, cm);
1608 free_cpumask_var(cm);
1609 }
1610
1611 /*
1612 * Spawn a per-rcu_node kthread, setting priority and affinity.
1613 * Called during boot before online/offline can happen, or, if
1614 * during runtime, with the main CPU-hotplug locks held. So only
1615 * one of these can be executing at a time.
1616 */
1617 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1618 struct rcu_node *rnp)
1619 {
1620 unsigned long flags;
1621 int rnp_index = rnp - &rsp->node[0];
1622 struct sched_param sp;
1623 struct task_struct *t;
1624
1625 if (!rcu_scheduler_fully_active ||
1626 rnp->qsmaskinit == 0)
1627 return 0;
1628 if (rnp->node_kthread_task == NULL) {
1629 t = kthread_create(rcu_node_kthread, (void *)rnp,
1630 "rcun/%d", rnp_index);
1631 if (IS_ERR(t))
1632 return PTR_ERR(t);
1633 raw_spin_lock_irqsave(&rnp->lock, flags);
1634 rnp->node_kthread_task = t;
1635 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1636 sp.sched_priority = 99;
1637 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1638 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1639 }
1640 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1641 }
1642
1643 /*
1644 * Spawn all kthreads -- called as soon as the scheduler is running.
1645 */
1646 static int __init rcu_spawn_kthreads(void)
1647 {
1648 int cpu;
1649 struct rcu_node *rnp;
1650
1651 rcu_scheduler_fully_active = 1;
1652 for_each_possible_cpu(cpu) {
1653 per_cpu(rcu_cpu_has_work, cpu) = 0;
1654 if (cpu_online(cpu))
1655 (void)rcu_spawn_one_cpu_kthread(cpu);
1656 }
1657 rnp = rcu_get_root(rcu_state);
1658 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1659 if (NUM_RCU_NODES > 1) {
1660 rcu_for_each_leaf_node(rcu_state, rnp)
1661 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1662 }
1663 return 0;
1664 }
1665 early_initcall(rcu_spawn_kthreads);
1666
1667 static void __cpuinit rcu_prepare_kthreads(int cpu)
1668 {
1669 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1670 struct rcu_node *rnp = rdp->mynode;
1671
1672 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1673 if (rcu_scheduler_fully_active) {
1674 (void)rcu_spawn_one_cpu_kthread(cpu);
1675 if (rnp->node_kthread_task == NULL)
1676 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1677 }
1678 }
1679
1680 #else /* #ifdef CONFIG_RCU_BOOST */
1681
1682 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1683 {
1684 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1685 }
1686
1687 static void invoke_rcu_callbacks_kthread(void)
1688 {
1689 WARN_ON_ONCE(1);
1690 }
1691
1692 static bool rcu_is_callbacks_kthread(void)
1693 {
1694 return false;
1695 }
1696
1697 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1698 {
1699 }
1700
1701 #ifdef CONFIG_HOTPLUG_CPU
1702
1703 static void rcu_stop_cpu_kthread(int cpu)
1704 {
1705 }
1706
1707 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1708
1709 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1710 {
1711 }
1712
1713 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1714 {
1715 }
1716
1717 static int __init rcu_scheduler_really_started(void)
1718 {
1719 rcu_scheduler_fully_active = 1;
1720 return 0;
1721 }
1722 early_initcall(rcu_scheduler_really_started);
1723
1724 static void __cpuinit rcu_prepare_kthreads(int cpu)
1725 {
1726 }
1727
1728 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1729
1730 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1731
1732 /*
1733 * Check to see if any future RCU-related work will need to be done
1734 * by the current CPU, even if none need be done immediately, returning
1735 * 1 if so. This function is part of the RCU implementation; it is -not-
1736 * an exported member of the RCU API.
1737 *
1738 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1739 * any flavor of RCU.
1740 */
1741 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1742 {
1743 *delta_jiffies = ULONG_MAX;
1744 return rcu_cpu_has_callbacks(cpu);
1745 }
1746
1747 /*
1748 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1749 */
1750 static void rcu_prepare_for_idle_init(int cpu)
1751 {
1752 }
1753
1754 /*
1755 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1756 * after it.
1757 */
1758 static void rcu_cleanup_after_idle(int cpu)
1759 {
1760 }
1761
1762 /*
1763 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1764 * is nothing.
1765 */
1766 static void rcu_prepare_for_idle(int cpu)
1767 {
1768 }
1769
1770 /*
1771 * Don't bother keeping a running count of the number of RCU callbacks
1772 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1773 */
1774 static void rcu_idle_count_callbacks_posted(void)
1775 {
1776 }
1777
1778 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1779
1780 /*
1781 * This code is invoked when a CPU goes idle, at which point we want
1782 * to have the CPU do everything required for RCU so that it can enter
1783 * the energy-efficient dyntick-idle mode. This is handled by a
1784 * state machine implemented by rcu_prepare_for_idle() below.
1785 *
1786 * The following three proprocessor symbols control this state machine:
1787 *
1788 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1789 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1790 * scheduling-clock interrupt than to loop through the state machine
1791 * at full power.
1792 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1793 * optional if RCU does not need anything immediately from this
1794 * CPU, even if this CPU still has RCU callbacks queued. The first
1795 * times through the state machine are mandatory: we need to give
1796 * the state machine a chance to communicate a quiescent state
1797 * to the RCU core.
1798 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1799 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1800 * is sized to be roughly one RCU grace period. Those energy-efficiency
1801 * benchmarkers who might otherwise be tempted to set this to a large
1802 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1803 * system. And if you are -that- concerned about energy efficiency,
1804 * just power the system down and be done with it!
1805 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1806 * permitted to sleep in dyntick-idle mode with only lazy RCU
1807 * callbacks pending. Setting this too high can OOM your system.
1808 *
1809 * The values below work well in practice. If future workloads require
1810 * adjustment, they can be converted into kernel config parameters, though
1811 * making the state machine smarter might be a better option.
1812 */
1813 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1814 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1815 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1816 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1817
1818 extern int tick_nohz_enabled;
1819
1820 /*
1821 * Does the specified flavor of RCU have non-lazy callbacks pending on
1822 * the specified CPU? Both RCU flavor and CPU are specified by the
1823 * rcu_data structure.
1824 */
1825 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1826 {
1827 return rdp->qlen != rdp->qlen_lazy;
1828 }
1829
1830 #ifdef CONFIG_TREE_PREEMPT_RCU
1831
1832 /*
1833 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1834 * is no RCU-preempt in the kernel.)
1835 */
1836 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1837 {
1838 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1839
1840 return __rcu_cpu_has_nonlazy_callbacks(rdp);
1841 }
1842
1843 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1844
1845 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1846 {
1847 return 0;
1848 }
1849
1850 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1851
1852 /*
1853 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1854 */
1855 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1856 {
1857 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1858 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1859 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1860 }
1861
1862 /*
1863 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1864 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1865 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1866 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1867 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1868 * it is better to incur scheduling-clock interrupts than to spin
1869 * continuously for the same time duration!
1870 *
1871 * The delta_jiffies argument is used to store the time when RCU is
1872 * going to need the CPU again if it still has callbacks. The reason
1873 * for this is that rcu_prepare_for_idle() might need to post a timer,
1874 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1875 * the wakeup time for this CPU. This means that RCU's timer can be
1876 * delayed until the wakeup time, which defeats the purpose of posting
1877 * a timer.
1878 */
1879 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1880 {
1881 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1882
1883 /* Flag a new idle sojourn to the idle-entry state machine. */
1884 rdtp->idle_first_pass = 1;
1885 /* If no callbacks, RCU doesn't need the CPU. */
1886 if (!rcu_cpu_has_callbacks(cpu)) {
1887 *delta_jiffies = ULONG_MAX;
1888 return 0;
1889 }
1890 if (rdtp->dyntick_holdoff == jiffies) {
1891 /* RCU recently tried and failed, so don't try again. */
1892 *delta_jiffies = 1;
1893 return 1;
1894 }
1895 /* Set up for the possibility that RCU will post a timer. */
1896 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1897 *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1898 RCU_IDLE_GP_DELAY) - jiffies;
1899 } else {
1900 *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1901 *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1902 }
1903 return 0;
1904 }
1905
1906 /*
1907 * Handler for smp_call_function_single(). The only point of this
1908 * handler is to wake the CPU up, so the handler does only tracing.
1909 */
1910 void rcu_idle_demigrate(void *unused)
1911 {
1912 trace_rcu_prep_idle("Demigrate");
1913 }
1914
1915 /*
1916 * Timer handler used to force CPU to start pushing its remaining RCU
1917 * callbacks in the case where it entered dyntick-idle mode with callbacks
1918 * pending. The hander doesn't really need to do anything because the
1919 * real work is done upon re-entry to idle, or by the next scheduling-clock
1920 * interrupt should idle not be re-entered.
1921 *
1922 * One special case: the timer gets migrated without awakening the CPU
1923 * on which the timer was scheduled on. In this case, we must wake up
1924 * that CPU. We do so with smp_call_function_single().
1925 */
1926 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1927 {
1928 int cpu = (int)cpu_in;
1929
1930 trace_rcu_prep_idle("Timer");
1931 if (cpu != smp_processor_id())
1932 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1933 else
1934 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1935 }
1936
1937 /*
1938 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1939 */
1940 static void rcu_prepare_for_idle_init(int cpu)
1941 {
1942 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1943
1944 rdtp->dyntick_holdoff = jiffies - 1;
1945 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1946 rdtp->idle_gp_timer_expires = jiffies - 1;
1947 rdtp->idle_first_pass = 1;
1948 }
1949
1950 /*
1951 * Clean up for exit from idle. Because we are exiting from idle, there
1952 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1953 * do nothing if this timer is not active, so just cancel it unconditionally.
1954 */
1955 static void rcu_cleanup_after_idle(int cpu)
1956 {
1957 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1958
1959 del_timer(&rdtp->idle_gp_timer);
1960 trace_rcu_prep_idle("Cleanup after idle");
1961 rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1962 }
1963
1964 /*
1965 * Check to see if any RCU-related work can be done by the current CPU,
1966 * and if so, schedule a softirq to get it done. This function is part
1967 * of the RCU implementation; it is -not- an exported member of the RCU API.
1968 *
1969 * The idea is for the current CPU to clear out all work required by the
1970 * RCU core for the current grace period, so that this CPU can be permitted
1971 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1972 * at the end of the grace period by whatever CPU ends the grace period.
1973 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1974 * number of wakeups by a modest integer factor.
1975 *
1976 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1977 * disabled, we do one pass of force_quiescent_state(), then do a
1978 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1979 * later. The ->dyntick_drain field controls the sequencing.
1980 *
1981 * The caller must have disabled interrupts.
1982 */
1983 static void rcu_prepare_for_idle(int cpu)
1984 {
1985 struct timer_list *tp;
1986 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1987 int tne;
1988
1989 /* Handle nohz enablement switches conservatively. */
1990 tne = ACCESS_ONCE(tick_nohz_enabled);
1991 if (tne != rdtp->tick_nohz_enabled_snap) {
1992 if (rcu_cpu_has_callbacks(cpu))
1993 invoke_rcu_core(); /* force nohz to see update. */
1994 rdtp->tick_nohz_enabled_snap = tne;
1995 return;
1996 }
1997 if (!tne)
1998 return;
1999
2000 /*
2001 * If this is an idle re-entry, for example, due to use of
2002 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
2003 * loop, then don't take any state-machine actions, unless the
2004 * momentary exit from idle queued additional non-lazy callbacks.
2005 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
2006 * pending.
2007 */
2008 if (!rdtp->idle_first_pass &&
2009 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
2010 if (rcu_cpu_has_callbacks(cpu)) {
2011 tp = &rdtp->idle_gp_timer;
2012 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2013 }
2014 return;
2015 }
2016 rdtp->idle_first_pass = 0;
2017 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
2018
2019 /*
2020 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2021 * Also reset state to avoid prejudicing later attempts.
2022 */
2023 if (!rcu_cpu_has_callbacks(cpu)) {
2024 rdtp->dyntick_holdoff = jiffies - 1;
2025 rdtp->dyntick_drain = 0;
2026 trace_rcu_prep_idle("No callbacks");
2027 return;
2028 }
2029
2030 /*
2031 * If in holdoff mode, just return. We will presumably have
2032 * refrained from disabling the scheduling-clock tick.
2033 */
2034 if (rdtp->dyntick_holdoff == jiffies) {
2035 trace_rcu_prep_idle("In holdoff");
2036 return;
2037 }
2038
2039 /* Check and update the ->dyntick_drain sequencing. */
2040 if (rdtp->dyntick_drain <= 0) {
2041 /* First time through, initialize the counter. */
2042 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
2043 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
2044 !rcu_pending(cpu) &&
2045 !local_softirq_pending()) {
2046 /* Can we go dyntick-idle despite still having callbacks? */
2047 rdtp->dyntick_drain = 0;
2048 rdtp->dyntick_holdoff = jiffies;
2049 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
2050 trace_rcu_prep_idle("Dyntick with callbacks");
2051 rdtp->idle_gp_timer_expires =
2052 round_up(jiffies + RCU_IDLE_GP_DELAY,
2053 RCU_IDLE_GP_DELAY);
2054 } else {
2055 rdtp->idle_gp_timer_expires =
2056 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
2057 trace_rcu_prep_idle("Dyntick with lazy callbacks");
2058 }
2059 tp = &rdtp->idle_gp_timer;
2060 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2061 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
2062 return; /* Nothing more to do immediately. */
2063 } else if (--(rdtp->dyntick_drain) <= 0) {
2064 /* We have hit the limit, so time to give up. */
2065 rdtp->dyntick_holdoff = jiffies;
2066 trace_rcu_prep_idle("Begin holdoff");
2067 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2068 return;
2069 }
2070
2071 /*
2072 * Do one step of pushing the remaining RCU callbacks through
2073 * the RCU core state machine.
2074 */
2075 #ifdef CONFIG_TREE_PREEMPT_RCU
2076 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2077 rcu_preempt_qs(cpu);
2078 force_quiescent_state(&rcu_preempt_state, 0);
2079 }
2080 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2081 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2082 rcu_sched_qs(cpu);
2083 force_quiescent_state(&rcu_sched_state, 0);
2084 }
2085 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2086 rcu_bh_qs(cpu);
2087 force_quiescent_state(&rcu_bh_state, 0);
2088 }
2089
2090 /*
2091 * If RCU callbacks are still pending, RCU still needs this CPU.
2092 * So try forcing the callbacks through the grace period.
2093 */
2094 if (rcu_cpu_has_callbacks(cpu)) {
2095 trace_rcu_prep_idle("More callbacks");
2096 invoke_rcu_core();
2097 } else {
2098 trace_rcu_prep_idle("Callbacks drained");
2099 }
2100 }
2101
2102 /*
2103 * Keep a running count of the number of non-lazy callbacks posted
2104 * on this CPU. This running counter (which is never decremented) allows
2105 * rcu_prepare_for_idle() to detect when something out of the idle loop
2106 * posts a callback, even if an equal number of callbacks are invoked.
2107 * Of course, callbacks should only be posted from within a trace event
2108 * designed to be called from idle or from within RCU_NONIDLE().
2109 */
2110 static void rcu_idle_count_callbacks_posted(void)
2111 {
2112 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
2113 }
2114
2115 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2116
2117 #ifdef CONFIG_RCU_CPU_STALL_INFO
2118
2119 #ifdef CONFIG_RCU_FAST_NO_HZ
2120
2121 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2122 {
2123 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2124 struct timer_list *tltp = &rdtp->idle_gp_timer;
2125
2126 sprintf(cp, "drain=%d %c timer=%lu",
2127 rdtp->dyntick_drain,
2128 rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
2129 timer_pending(tltp) ? tltp->expires - jiffies : -1);
2130 }
2131
2132 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2133
2134 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2135 {
2136 *cp = '\0';
2137 }
2138
2139 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2140
2141 /* Initiate the stall-info list. */
2142 static void print_cpu_stall_info_begin(void)
2143 {
2144 printk(KERN_CONT "\n");
2145 }
2146
2147 /*
2148 * Print out diagnostic information for the specified stalled CPU.
2149 *
2150 * If the specified CPU is aware of the current RCU grace period
2151 * (flavor specified by rsp), then print the number of scheduling
2152 * clock interrupts the CPU has taken during the time that it has
2153 * been aware. Otherwise, print the number of RCU grace periods
2154 * that this CPU is ignorant of, for example, "1" if the CPU was
2155 * aware of the previous grace period.
2156 *
2157 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2158 */
2159 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2160 {
2161 char fast_no_hz[72];
2162 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2163 struct rcu_dynticks *rdtp = rdp->dynticks;
2164 char *ticks_title;
2165 unsigned long ticks_value;
2166
2167 if (rsp->gpnum == rdp->gpnum) {
2168 ticks_title = "ticks this GP";
2169 ticks_value = rdp->ticks_this_gp;
2170 } else {
2171 ticks_title = "GPs behind";
2172 ticks_value = rsp->gpnum - rdp->gpnum;
2173 }
2174 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2175 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2176 cpu, ticks_value, ticks_title,
2177 atomic_read(&rdtp->dynticks) & 0xfff,
2178 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2179 fast_no_hz);
2180 }
2181
2182 /* Terminate the stall-info list. */
2183 static void print_cpu_stall_info_end(void)
2184 {
2185 printk(KERN_ERR "\t");
2186 }
2187
2188 /* Zero ->ticks_this_gp for all flavors of RCU. */
2189 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2190 {
2191 rdp->ticks_this_gp = 0;
2192 }
2193
2194 /* Increment ->ticks_this_gp for all flavors of RCU. */
2195 static void increment_cpu_stall_ticks(void)
2196 {
2197 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2198 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2199 #ifdef CONFIG_TREE_PREEMPT_RCU
2200 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2201 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2202 }
2203
2204 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2205
2206 static void print_cpu_stall_info_begin(void)
2207 {
2208 printk(KERN_CONT " {");
2209 }
2210
2211 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2212 {
2213 printk(KERN_CONT " %d", cpu);
2214 }
2215
2216 static void print_cpu_stall_info_end(void)
2217 {
2218 printk(KERN_CONT "} ");
2219 }
2220
2221 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2222 {
2223 }
2224
2225 static void increment_cpu_stall_ticks(void)
2226 {
2227 }
2228
2229 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */