]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/resource.c
KVM: x86: Clear DR6[0:3] on #DB during handle_dr
[mirror_ubuntu-bionic-kernel.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26
27
28 struct resource ioport_resource = {
29 .name = "PCI IO",
30 .start = 0,
31 .end = IO_SPACE_LIMIT,
32 .flags = IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35
36 struct resource iomem_resource = {
37 .name = "PCI mem",
38 .start = 0,
39 .end = -1,
40 .flags = IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 resource_size_t min, max, align;
47 resource_size_t (*alignf)(void *, const struct resource *,
48 resource_size_t, resource_size_t);
49 void *alignf_data;
50 };
51
52 static DEFINE_RWLOCK(resource_lock);
53
54 /*
55 * For memory hotplug, there is no way to free resource entries allocated
56 * by boot mem after the system is up. So for reusing the resource entry
57 * we need to remember the resource.
58 */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61
62 static struct resource *next_resource(struct resource *p, bool sibling_only)
63 {
64 /* Caller wants to traverse through siblings only */
65 if (sibling_only)
66 return p->sibling;
67
68 if (p->child)
69 return p->child;
70 while (!p->sibling && p->parent)
71 p = p->parent;
72 return p->sibling;
73 }
74
75 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
76 {
77 struct resource *p = v;
78 (*pos)++;
79 return (void *)next_resource(p, false);
80 }
81
82 #ifdef CONFIG_PROC_FS
83
84 enum { MAX_IORES_LEVEL = 5 };
85
86 static void *r_start(struct seq_file *m, loff_t *pos)
87 __acquires(resource_lock)
88 {
89 struct resource *p = m->private;
90 loff_t l = 0;
91 read_lock(&resource_lock);
92 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
93 ;
94 return p;
95 }
96
97 static void r_stop(struct seq_file *m, void *v)
98 __releases(resource_lock)
99 {
100 read_unlock(&resource_lock);
101 }
102
103 static int r_show(struct seq_file *m, void *v)
104 {
105 struct resource *root = m->private;
106 struct resource *r = v, *p;
107 int width = root->end < 0x10000 ? 4 : 8;
108 int depth;
109
110 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
111 if (p->parent == root)
112 break;
113 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
114 depth * 2, "",
115 width, (unsigned long long) r->start,
116 width, (unsigned long long) r->end,
117 r->name ? r->name : "<BAD>");
118 return 0;
119 }
120
121 static const struct seq_operations resource_op = {
122 .start = r_start,
123 .next = r_next,
124 .stop = r_stop,
125 .show = r_show,
126 };
127
128 static int ioports_open(struct inode *inode, struct file *file)
129 {
130 int res = seq_open(file, &resource_op);
131 if (!res) {
132 struct seq_file *m = file->private_data;
133 m->private = &ioport_resource;
134 }
135 return res;
136 }
137
138 static int iomem_open(struct inode *inode, struct file *file)
139 {
140 int res = seq_open(file, &resource_op);
141 if (!res) {
142 struct seq_file *m = file->private_data;
143 m->private = &iomem_resource;
144 }
145 return res;
146 }
147
148 static const struct file_operations proc_ioports_operations = {
149 .open = ioports_open,
150 .read = seq_read,
151 .llseek = seq_lseek,
152 .release = seq_release,
153 };
154
155 static const struct file_operations proc_iomem_operations = {
156 .open = iomem_open,
157 .read = seq_read,
158 .llseek = seq_lseek,
159 .release = seq_release,
160 };
161
162 static int __init ioresources_init(void)
163 {
164 proc_create("ioports", 0, NULL, &proc_ioports_operations);
165 proc_create("iomem", 0, NULL, &proc_iomem_operations);
166 return 0;
167 }
168 __initcall(ioresources_init);
169
170 #endif /* CONFIG_PROC_FS */
171
172 static void free_resource(struct resource *res)
173 {
174 if (!res)
175 return;
176
177 if (!PageSlab(virt_to_head_page(res))) {
178 spin_lock(&bootmem_resource_lock);
179 res->sibling = bootmem_resource_free;
180 bootmem_resource_free = res;
181 spin_unlock(&bootmem_resource_lock);
182 } else {
183 kfree(res);
184 }
185 }
186
187 static struct resource *alloc_resource(gfp_t flags)
188 {
189 struct resource *res = NULL;
190
191 spin_lock(&bootmem_resource_lock);
192 if (bootmem_resource_free) {
193 res = bootmem_resource_free;
194 bootmem_resource_free = res->sibling;
195 }
196 spin_unlock(&bootmem_resource_lock);
197
198 if (res)
199 memset(res, 0, sizeof(struct resource));
200 else
201 res = kzalloc(sizeof(struct resource), flags);
202
203 return res;
204 }
205
206 /* Return the conflict entry if you can't request it */
207 static struct resource * __request_resource(struct resource *root, struct resource *new)
208 {
209 resource_size_t start = new->start;
210 resource_size_t end = new->end;
211 struct resource *tmp, **p;
212
213 if (end < start)
214 return root;
215 if (start < root->start)
216 return root;
217 if (end > root->end)
218 return root;
219 p = &root->child;
220 for (;;) {
221 tmp = *p;
222 if (!tmp || tmp->start > end) {
223 new->sibling = tmp;
224 *p = new;
225 new->parent = root;
226 return NULL;
227 }
228 p = &tmp->sibling;
229 if (tmp->end < start)
230 continue;
231 return tmp;
232 }
233 }
234
235 static int __release_resource(struct resource *old)
236 {
237 struct resource *tmp, **p;
238
239 p = &old->parent->child;
240 for (;;) {
241 tmp = *p;
242 if (!tmp)
243 break;
244 if (tmp == old) {
245 *p = tmp->sibling;
246 old->parent = NULL;
247 return 0;
248 }
249 p = &tmp->sibling;
250 }
251 return -EINVAL;
252 }
253
254 static void __release_child_resources(struct resource *r)
255 {
256 struct resource *tmp, *p;
257 resource_size_t size;
258
259 p = r->child;
260 r->child = NULL;
261 while (p) {
262 tmp = p;
263 p = p->sibling;
264
265 tmp->parent = NULL;
266 tmp->sibling = NULL;
267 __release_child_resources(tmp);
268
269 printk(KERN_DEBUG "release child resource %pR\n", tmp);
270 /* need to restore size, and keep flags */
271 size = resource_size(tmp);
272 tmp->start = 0;
273 tmp->end = size - 1;
274 }
275 }
276
277 void release_child_resources(struct resource *r)
278 {
279 write_lock(&resource_lock);
280 __release_child_resources(r);
281 write_unlock(&resource_lock);
282 }
283
284 /**
285 * request_resource_conflict - request and reserve an I/O or memory resource
286 * @root: root resource descriptor
287 * @new: resource descriptor desired by caller
288 *
289 * Returns 0 for success, conflict resource on error.
290 */
291 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
292 {
293 struct resource *conflict;
294
295 write_lock(&resource_lock);
296 conflict = __request_resource(root, new);
297 write_unlock(&resource_lock);
298 return conflict;
299 }
300
301 /**
302 * request_resource - request and reserve an I/O or memory resource
303 * @root: root resource descriptor
304 * @new: resource descriptor desired by caller
305 *
306 * Returns 0 for success, negative error code on error.
307 */
308 int request_resource(struct resource *root, struct resource *new)
309 {
310 struct resource *conflict;
311
312 conflict = request_resource_conflict(root, new);
313 return conflict ? -EBUSY : 0;
314 }
315
316 EXPORT_SYMBOL(request_resource);
317
318 /**
319 * release_resource - release a previously reserved resource
320 * @old: resource pointer
321 */
322 int release_resource(struct resource *old)
323 {
324 int retval;
325
326 write_lock(&resource_lock);
327 retval = __release_resource(old);
328 write_unlock(&resource_lock);
329 return retval;
330 }
331
332 EXPORT_SYMBOL(release_resource);
333
334 /*
335 * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
336 * the caller must specify res->start, res->end, res->flags and "name".
337 * If found, returns 0, res is overwritten, if not found, returns -1.
338 * This walks through whole tree and not just first level children
339 * until and unless first_level_children_only is true.
340 */
341 static int find_next_iomem_res(struct resource *res, char *name,
342 bool first_level_children_only)
343 {
344 resource_size_t start, end;
345 struct resource *p;
346 bool sibling_only = false;
347
348 BUG_ON(!res);
349
350 start = res->start;
351 end = res->end;
352 BUG_ON(start >= end);
353
354 if (first_level_children_only)
355 sibling_only = true;
356
357 read_lock(&resource_lock);
358
359 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
360 if (p->flags != res->flags)
361 continue;
362 if (name && strcmp(p->name, name))
363 continue;
364 if (p->start > end) {
365 p = NULL;
366 break;
367 }
368 if ((p->end >= start) && (p->start < end))
369 break;
370 }
371
372 read_unlock(&resource_lock);
373 if (!p)
374 return -1;
375 /* copy data */
376 if (res->start < p->start)
377 res->start = p->start;
378 if (res->end > p->end)
379 res->end = p->end;
380 return 0;
381 }
382
383 /*
384 * Walks through iomem resources and calls func() with matching resource
385 * ranges. This walks through whole tree and not just first level children.
386 * All the memory ranges which overlap start,end and also match flags and
387 * name are valid candidates.
388 *
389 * @name: name of resource
390 * @flags: resource flags
391 * @start: start addr
392 * @end: end addr
393 */
394 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
395 void *arg, int (*func)(u64, u64, void *))
396 {
397 struct resource res;
398 u64 orig_end;
399 int ret = -1;
400
401 res.start = start;
402 res.end = end;
403 res.flags = flags;
404 orig_end = res.end;
405 while ((res.start < res.end) &&
406 (!find_next_iomem_res(&res, name, false))) {
407 ret = (*func)(res.start, res.end, arg);
408 if (ret)
409 break;
410 res.start = res.end + 1;
411 res.end = orig_end;
412 }
413 return ret;
414 }
415
416 /*
417 * This function calls callback against all memory range of "System RAM"
418 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
419 * Now, this function is only for "System RAM". This function deals with
420 * full ranges and not pfn. If resources are not pfn aligned, dealing
421 * with pfn can truncate ranges.
422 */
423 int walk_system_ram_res(u64 start, u64 end, void *arg,
424 int (*func)(u64, u64, void *))
425 {
426 struct resource res;
427 u64 orig_end;
428 int ret = -1;
429
430 res.start = start;
431 res.end = end;
432 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
433 orig_end = res.end;
434 while ((res.start < res.end) &&
435 (!find_next_iomem_res(&res, "System RAM", true))) {
436 ret = (*func)(res.start, res.end, arg);
437 if (ret)
438 break;
439 res.start = res.end + 1;
440 res.end = orig_end;
441 }
442 return ret;
443 }
444
445 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
446
447 /*
448 * This function calls callback against all memory range of "System RAM"
449 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
450 * Now, this function is only for "System RAM".
451 */
452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 struct resource res;
456 unsigned long pfn, end_pfn;
457 u64 orig_end;
458 int ret = -1;
459
460 res.start = (u64) start_pfn << PAGE_SHIFT;
461 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
462 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
463 orig_end = res.end;
464 while ((res.start < res.end) &&
465 (find_next_iomem_res(&res, "System RAM", true) >= 0)) {
466 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
467 end_pfn = (res.end + 1) >> PAGE_SHIFT;
468 if (end_pfn > pfn)
469 ret = (*func)(pfn, end_pfn - pfn, arg);
470 if (ret)
471 break;
472 res.start = res.end + 1;
473 res.end = orig_end;
474 }
475 return ret;
476 }
477
478 #endif
479
480 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
481 {
482 return 1;
483 }
484 /*
485 * This generic page_is_ram() returns true if specified address is
486 * registered as "System RAM" in iomem_resource list.
487 */
488 int __weak page_is_ram(unsigned long pfn)
489 {
490 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
491 }
492 EXPORT_SYMBOL_GPL(page_is_ram);
493
494 /*
495 * Search for a resouce entry that fully contains the specified region.
496 * If found, return 1 if it is RAM, 0 if not.
497 * If not found, or region is not fully contained, return -1
498 *
499 * Used by the ioremap functions to ensure the user is not remapping RAM and is
500 * a vast speed up over walking through the resource table page by page.
501 */
502 int region_is_ram(resource_size_t start, unsigned long size)
503 {
504 struct resource *p;
505 resource_size_t end = start + size - 1;
506 int flags = IORESOURCE_MEM | IORESOURCE_BUSY;
507 const char *name = "System RAM";
508 int ret = -1;
509
510 read_lock(&resource_lock);
511 for (p = iomem_resource.child; p ; p = p->sibling) {
512 if (end < p->start)
513 continue;
514
515 if (p->start <= start && end <= p->end) {
516 /* resource fully contains region */
517 if ((p->flags != flags) || strcmp(p->name, name))
518 ret = 0;
519 else
520 ret = 1;
521 break;
522 }
523 if (p->end < start)
524 break; /* not found */
525 }
526 read_unlock(&resource_lock);
527 return ret;
528 }
529
530 void __weak arch_remove_reservations(struct resource *avail)
531 {
532 }
533
534 static resource_size_t simple_align_resource(void *data,
535 const struct resource *avail,
536 resource_size_t size,
537 resource_size_t align)
538 {
539 return avail->start;
540 }
541
542 static void resource_clip(struct resource *res, resource_size_t min,
543 resource_size_t max)
544 {
545 if (res->start < min)
546 res->start = min;
547 if (res->end > max)
548 res->end = max;
549 }
550
551 /*
552 * Find empty slot in the resource tree with the given range and
553 * alignment constraints
554 */
555 static int __find_resource(struct resource *root, struct resource *old,
556 struct resource *new,
557 resource_size_t size,
558 struct resource_constraint *constraint)
559 {
560 struct resource *this = root->child;
561 struct resource tmp = *new, avail, alloc;
562
563 tmp.start = root->start;
564 /*
565 * Skip past an allocated resource that starts at 0, since the assignment
566 * of this->start - 1 to tmp->end below would cause an underflow.
567 */
568 if (this && this->start == root->start) {
569 tmp.start = (this == old) ? old->start : this->end + 1;
570 this = this->sibling;
571 }
572 for(;;) {
573 if (this)
574 tmp.end = (this == old) ? this->end : this->start - 1;
575 else
576 tmp.end = root->end;
577
578 if (tmp.end < tmp.start)
579 goto next;
580
581 resource_clip(&tmp, constraint->min, constraint->max);
582 arch_remove_reservations(&tmp);
583
584 /* Check for overflow after ALIGN() */
585 avail.start = ALIGN(tmp.start, constraint->align);
586 avail.end = tmp.end;
587 avail.flags = new->flags & ~IORESOURCE_UNSET;
588 if (avail.start >= tmp.start) {
589 alloc.flags = avail.flags;
590 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
591 size, constraint->align);
592 alloc.end = alloc.start + size - 1;
593 if (resource_contains(&avail, &alloc)) {
594 new->start = alloc.start;
595 new->end = alloc.end;
596 return 0;
597 }
598 }
599
600 next: if (!this || this->end == root->end)
601 break;
602
603 if (this != old)
604 tmp.start = this->end + 1;
605 this = this->sibling;
606 }
607 return -EBUSY;
608 }
609
610 /*
611 * Find empty slot in the resource tree given range and alignment.
612 */
613 static int find_resource(struct resource *root, struct resource *new,
614 resource_size_t size,
615 struct resource_constraint *constraint)
616 {
617 return __find_resource(root, NULL, new, size, constraint);
618 }
619
620 /**
621 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
622 * The resource will be relocated if the new size cannot be reallocated in the
623 * current location.
624 *
625 * @root: root resource descriptor
626 * @old: resource descriptor desired by caller
627 * @newsize: new size of the resource descriptor
628 * @constraint: the size and alignment constraints to be met.
629 */
630 static int reallocate_resource(struct resource *root, struct resource *old,
631 resource_size_t newsize,
632 struct resource_constraint *constraint)
633 {
634 int err=0;
635 struct resource new = *old;
636 struct resource *conflict;
637
638 write_lock(&resource_lock);
639
640 if ((err = __find_resource(root, old, &new, newsize, constraint)))
641 goto out;
642
643 if (resource_contains(&new, old)) {
644 old->start = new.start;
645 old->end = new.end;
646 goto out;
647 }
648
649 if (old->child) {
650 err = -EBUSY;
651 goto out;
652 }
653
654 if (resource_contains(old, &new)) {
655 old->start = new.start;
656 old->end = new.end;
657 } else {
658 __release_resource(old);
659 *old = new;
660 conflict = __request_resource(root, old);
661 BUG_ON(conflict);
662 }
663 out:
664 write_unlock(&resource_lock);
665 return err;
666 }
667
668
669 /**
670 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
671 * The resource will be reallocated with a new size if it was already allocated
672 * @root: root resource descriptor
673 * @new: resource descriptor desired by caller
674 * @size: requested resource region size
675 * @min: minimum boundary to allocate
676 * @max: maximum boundary to allocate
677 * @align: alignment requested, in bytes
678 * @alignf: alignment function, optional, called if not NULL
679 * @alignf_data: arbitrary data to pass to the @alignf function
680 */
681 int allocate_resource(struct resource *root, struct resource *new,
682 resource_size_t size, resource_size_t min,
683 resource_size_t max, resource_size_t align,
684 resource_size_t (*alignf)(void *,
685 const struct resource *,
686 resource_size_t,
687 resource_size_t),
688 void *alignf_data)
689 {
690 int err;
691 struct resource_constraint constraint;
692
693 if (!alignf)
694 alignf = simple_align_resource;
695
696 constraint.min = min;
697 constraint.max = max;
698 constraint.align = align;
699 constraint.alignf = alignf;
700 constraint.alignf_data = alignf_data;
701
702 if ( new->parent ) {
703 /* resource is already allocated, try reallocating with
704 the new constraints */
705 return reallocate_resource(root, new, size, &constraint);
706 }
707
708 write_lock(&resource_lock);
709 err = find_resource(root, new, size, &constraint);
710 if (err >= 0 && __request_resource(root, new))
711 err = -EBUSY;
712 write_unlock(&resource_lock);
713 return err;
714 }
715
716 EXPORT_SYMBOL(allocate_resource);
717
718 /**
719 * lookup_resource - find an existing resource by a resource start address
720 * @root: root resource descriptor
721 * @start: resource start address
722 *
723 * Returns a pointer to the resource if found, NULL otherwise
724 */
725 struct resource *lookup_resource(struct resource *root, resource_size_t start)
726 {
727 struct resource *res;
728
729 read_lock(&resource_lock);
730 for (res = root->child; res; res = res->sibling) {
731 if (res->start == start)
732 break;
733 }
734 read_unlock(&resource_lock);
735
736 return res;
737 }
738
739 /*
740 * Insert a resource into the resource tree. If successful, return NULL,
741 * otherwise return the conflicting resource (compare to __request_resource())
742 */
743 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
744 {
745 struct resource *first, *next;
746
747 for (;; parent = first) {
748 first = __request_resource(parent, new);
749 if (!first)
750 return first;
751
752 if (first == parent)
753 return first;
754 if (WARN_ON(first == new)) /* duplicated insertion */
755 return first;
756
757 if ((first->start > new->start) || (first->end < new->end))
758 break;
759 if ((first->start == new->start) && (first->end == new->end))
760 break;
761 }
762
763 for (next = first; ; next = next->sibling) {
764 /* Partial overlap? Bad, and unfixable */
765 if (next->start < new->start || next->end > new->end)
766 return next;
767 if (!next->sibling)
768 break;
769 if (next->sibling->start > new->end)
770 break;
771 }
772
773 new->parent = parent;
774 new->sibling = next->sibling;
775 new->child = first;
776
777 next->sibling = NULL;
778 for (next = first; next; next = next->sibling)
779 next->parent = new;
780
781 if (parent->child == first) {
782 parent->child = new;
783 } else {
784 next = parent->child;
785 while (next->sibling != first)
786 next = next->sibling;
787 next->sibling = new;
788 }
789 return NULL;
790 }
791
792 /**
793 * insert_resource_conflict - Inserts resource in the resource tree
794 * @parent: parent of the new resource
795 * @new: new resource to insert
796 *
797 * Returns 0 on success, conflict resource if the resource can't be inserted.
798 *
799 * This function is equivalent to request_resource_conflict when no conflict
800 * happens. If a conflict happens, and the conflicting resources
801 * entirely fit within the range of the new resource, then the new
802 * resource is inserted and the conflicting resources become children of
803 * the new resource.
804 */
805 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
806 {
807 struct resource *conflict;
808
809 write_lock(&resource_lock);
810 conflict = __insert_resource(parent, new);
811 write_unlock(&resource_lock);
812 return conflict;
813 }
814
815 /**
816 * insert_resource - Inserts a resource in the resource tree
817 * @parent: parent of the new resource
818 * @new: new resource to insert
819 *
820 * Returns 0 on success, -EBUSY if the resource can't be inserted.
821 */
822 int insert_resource(struct resource *parent, struct resource *new)
823 {
824 struct resource *conflict;
825
826 conflict = insert_resource_conflict(parent, new);
827 return conflict ? -EBUSY : 0;
828 }
829
830 /**
831 * insert_resource_expand_to_fit - Insert a resource into the resource tree
832 * @root: root resource descriptor
833 * @new: new resource to insert
834 *
835 * Insert a resource into the resource tree, possibly expanding it in order
836 * to make it encompass any conflicting resources.
837 */
838 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
839 {
840 if (new->parent)
841 return;
842
843 write_lock(&resource_lock);
844 for (;;) {
845 struct resource *conflict;
846
847 conflict = __insert_resource(root, new);
848 if (!conflict)
849 break;
850 if (conflict == root)
851 break;
852
853 /* Ok, expand resource to cover the conflict, then try again .. */
854 if (conflict->start < new->start)
855 new->start = conflict->start;
856 if (conflict->end > new->end)
857 new->end = conflict->end;
858
859 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
860 }
861 write_unlock(&resource_lock);
862 }
863
864 static int __adjust_resource(struct resource *res, resource_size_t start,
865 resource_size_t size)
866 {
867 struct resource *tmp, *parent = res->parent;
868 resource_size_t end = start + size - 1;
869 int result = -EBUSY;
870
871 if (!parent)
872 goto skip;
873
874 if ((start < parent->start) || (end > parent->end))
875 goto out;
876
877 if (res->sibling && (res->sibling->start <= end))
878 goto out;
879
880 tmp = parent->child;
881 if (tmp != res) {
882 while (tmp->sibling != res)
883 tmp = tmp->sibling;
884 if (start <= tmp->end)
885 goto out;
886 }
887
888 skip:
889 for (tmp = res->child; tmp; tmp = tmp->sibling)
890 if ((tmp->start < start) || (tmp->end > end))
891 goto out;
892
893 res->start = start;
894 res->end = end;
895 result = 0;
896
897 out:
898 return result;
899 }
900
901 /**
902 * adjust_resource - modify a resource's start and size
903 * @res: resource to modify
904 * @start: new start value
905 * @size: new size
906 *
907 * Given an existing resource, change its start and size to match the
908 * arguments. Returns 0 on success, -EBUSY if it can't fit.
909 * Existing children of the resource are assumed to be immutable.
910 */
911 int adjust_resource(struct resource *res, resource_size_t start,
912 resource_size_t size)
913 {
914 int result;
915
916 write_lock(&resource_lock);
917 result = __adjust_resource(res, start, size);
918 write_unlock(&resource_lock);
919 return result;
920 }
921 EXPORT_SYMBOL(adjust_resource);
922
923 static void __init __reserve_region_with_split(struct resource *root,
924 resource_size_t start, resource_size_t end,
925 const char *name)
926 {
927 struct resource *parent = root;
928 struct resource *conflict;
929 struct resource *res = alloc_resource(GFP_ATOMIC);
930 struct resource *next_res = NULL;
931
932 if (!res)
933 return;
934
935 res->name = name;
936 res->start = start;
937 res->end = end;
938 res->flags = IORESOURCE_BUSY;
939
940 while (1) {
941
942 conflict = __request_resource(parent, res);
943 if (!conflict) {
944 if (!next_res)
945 break;
946 res = next_res;
947 next_res = NULL;
948 continue;
949 }
950
951 /* conflict covered whole area */
952 if (conflict->start <= res->start &&
953 conflict->end >= res->end) {
954 free_resource(res);
955 WARN_ON(next_res);
956 break;
957 }
958
959 /* failed, split and try again */
960 if (conflict->start > res->start) {
961 end = res->end;
962 res->end = conflict->start - 1;
963 if (conflict->end < end) {
964 next_res = alloc_resource(GFP_ATOMIC);
965 if (!next_res) {
966 free_resource(res);
967 break;
968 }
969 next_res->name = name;
970 next_res->start = conflict->end + 1;
971 next_res->end = end;
972 next_res->flags = IORESOURCE_BUSY;
973 }
974 } else {
975 res->start = conflict->end + 1;
976 }
977 }
978
979 }
980
981 void __init reserve_region_with_split(struct resource *root,
982 resource_size_t start, resource_size_t end,
983 const char *name)
984 {
985 int abort = 0;
986
987 write_lock(&resource_lock);
988 if (root->start > start || root->end < end) {
989 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
990 (unsigned long long)start, (unsigned long long)end,
991 root);
992 if (start > root->end || end < root->start)
993 abort = 1;
994 else {
995 if (end > root->end)
996 end = root->end;
997 if (start < root->start)
998 start = root->start;
999 pr_err("fixing request to [0x%llx-0x%llx]\n",
1000 (unsigned long long)start,
1001 (unsigned long long)end);
1002 }
1003 dump_stack();
1004 }
1005 if (!abort)
1006 __reserve_region_with_split(root, start, end, name);
1007 write_unlock(&resource_lock);
1008 }
1009
1010 /**
1011 * resource_alignment - calculate resource's alignment
1012 * @res: resource pointer
1013 *
1014 * Returns alignment on success, 0 (invalid alignment) on failure.
1015 */
1016 resource_size_t resource_alignment(struct resource *res)
1017 {
1018 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1019 case IORESOURCE_SIZEALIGN:
1020 return resource_size(res);
1021 case IORESOURCE_STARTALIGN:
1022 return res->start;
1023 default:
1024 return 0;
1025 }
1026 }
1027
1028 /*
1029 * This is compatibility stuff for IO resources.
1030 *
1031 * Note how this, unlike the above, knows about
1032 * the IO flag meanings (busy etc).
1033 *
1034 * request_region creates a new busy region.
1035 *
1036 * check_region returns non-zero if the area is already busy.
1037 *
1038 * release_region releases a matching busy region.
1039 */
1040
1041 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1042
1043 /**
1044 * __request_region - create a new busy resource region
1045 * @parent: parent resource descriptor
1046 * @start: resource start address
1047 * @n: resource region size
1048 * @name: reserving caller's ID string
1049 * @flags: IO resource flags
1050 */
1051 struct resource * __request_region(struct resource *parent,
1052 resource_size_t start, resource_size_t n,
1053 const char *name, int flags)
1054 {
1055 DECLARE_WAITQUEUE(wait, current);
1056 struct resource *res = alloc_resource(GFP_KERNEL);
1057
1058 if (!res)
1059 return NULL;
1060
1061 res->name = name;
1062 res->start = start;
1063 res->end = start + n - 1;
1064 res->flags = resource_type(parent);
1065 res->flags |= IORESOURCE_BUSY | flags;
1066
1067 write_lock(&resource_lock);
1068
1069 for (;;) {
1070 struct resource *conflict;
1071
1072 conflict = __request_resource(parent, res);
1073 if (!conflict)
1074 break;
1075 if (conflict != parent) {
1076 parent = conflict;
1077 if (!(conflict->flags & IORESOURCE_BUSY))
1078 continue;
1079 }
1080 if (conflict->flags & flags & IORESOURCE_MUXED) {
1081 add_wait_queue(&muxed_resource_wait, &wait);
1082 write_unlock(&resource_lock);
1083 set_current_state(TASK_UNINTERRUPTIBLE);
1084 schedule();
1085 remove_wait_queue(&muxed_resource_wait, &wait);
1086 write_lock(&resource_lock);
1087 continue;
1088 }
1089 /* Uhhuh, that didn't work out.. */
1090 free_resource(res);
1091 res = NULL;
1092 break;
1093 }
1094 write_unlock(&resource_lock);
1095 return res;
1096 }
1097 EXPORT_SYMBOL(__request_region);
1098
1099 /**
1100 * __check_region - check if a resource region is busy or free
1101 * @parent: parent resource descriptor
1102 * @start: resource start address
1103 * @n: resource region size
1104 *
1105 * Returns 0 if the region is free at the moment it is checked,
1106 * returns %-EBUSY if the region is busy.
1107 *
1108 * NOTE:
1109 * This function is deprecated because its use is racy.
1110 * Even if it returns 0, a subsequent call to request_region()
1111 * may fail because another driver etc. just allocated the region.
1112 * Do NOT use it. It will be removed from the kernel.
1113 */
1114 int __check_region(struct resource *parent, resource_size_t start,
1115 resource_size_t n)
1116 {
1117 struct resource * res;
1118
1119 res = __request_region(parent, start, n, "check-region", 0);
1120 if (!res)
1121 return -EBUSY;
1122
1123 release_resource(res);
1124 free_resource(res);
1125 return 0;
1126 }
1127 EXPORT_SYMBOL(__check_region);
1128
1129 /**
1130 * __release_region - release a previously reserved resource region
1131 * @parent: parent resource descriptor
1132 * @start: resource start address
1133 * @n: resource region size
1134 *
1135 * The described resource region must match a currently busy region.
1136 */
1137 void __release_region(struct resource *parent, resource_size_t start,
1138 resource_size_t n)
1139 {
1140 struct resource **p;
1141 resource_size_t end;
1142
1143 p = &parent->child;
1144 end = start + n - 1;
1145
1146 write_lock(&resource_lock);
1147
1148 for (;;) {
1149 struct resource *res = *p;
1150
1151 if (!res)
1152 break;
1153 if (res->start <= start && res->end >= end) {
1154 if (!(res->flags & IORESOURCE_BUSY)) {
1155 p = &res->child;
1156 continue;
1157 }
1158 if (res->start != start || res->end != end)
1159 break;
1160 *p = res->sibling;
1161 write_unlock(&resource_lock);
1162 if (res->flags & IORESOURCE_MUXED)
1163 wake_up(&muxed_resource_wait);
1164 free_resource(res);
1165 return;
1166 }
1167 p = &res->sibling;
1168 }
1169
1170 write_unlock(&resource_lock);
1171
1172 printk(KERN_WARNING "Trying to free nonexistent resource "
1173 "<%016llx-%016llx>\n", (unsigned long long)start,
1174 (unsigned long long)end);
1175 }
1176 EXPORT_SYMBOL(__release_region);
1177
1178 #ifdef CONFIG_MEMORY_HOTREMOVE
1179 /**
1180 * release_mem_region_adjustable - release a previously reserved memory region
1181 * @parent: parent resource descriptor
1182 * @start: resource start address
1183 * @size: resource region size
1184 *
1185 * This interface is intended for memory hot-delete. The requested region
1186 * is released from a currently busy memory resource. The requested region
1187 * must either match exactly or fit into a single busy resource entry. In
1188 * the latter case, the remaining resource is adjusted accordingly.
1189 * Existing children of the busy memory resource must be immutable in the
1190 * request.
1191 *
1192 * Note:
1193 * - Additional release conditions, such as overlapping region, can be
1194 * supported after they are confirmed as valid cases.
1195 * - When a busy memory resource gets split into two entries, the code
1196 * assumes that all children remain in the lower address entry for
1197 * simplicity. Enhance this logic when necessary.
1198 */
1199 int release_mem_region_adjustable(struct resource *parent,
1200 resource_size_t start, resource_size_t size)
1201 {
1202 struct resource **p;
1203 struct resource *res;
1204 struct resource *new_res;
1205 resource_size_t end;
1206 int ret = -EINVAL;
1207
1208 end = start + size - 1;
1209 if ((start < parent->start) || (end > parent->end))
1210 return ret;
1211
1212 /* The alloc_resource() result gets checked later */
1213 new_res = alloc_resource(GFP_KERNEL);
1214
1215 p = &parent->child;
1216 write_lock(&resource_lock);
1217
1218 while ((res = *p)) {
1219 if (res->start >= end)
1220 break;
1221
1222 /* look for the next resource if it does not fit into */
1223 if (res->start > start || res->end < end) {
1224 p = &res->sibling;
1225 continue;
1226 }
1227
1228 if (!(res->flags & IORESOURCE_MEM))
1229 break;
1230
1231 if (!(res->flags & IORESOURCE_BUSY)) {
1232 p = &res->child;
1233 continue;
1234 }
1235
1236 /* found the target resource; let's adjust accordingly */
1237 if (res->start == start && res->end == end) {
1238 /* free the whole entry */
1239 *p = res->sibling;
1240 free_resource(res);
1241 ret = 0;
1242 } else if (res->start == start && res->end != end) {
1243 /* adjust the start */
1244 ret = __adjust_resource(res, end + 1,
1245 res->end - end);
1246 } else if (res->start != start && res->end == end) {
1247 /* adjust the end */
1248 ret = __adjust_resource(res, res->start,
1249 start - res->start);
1250 } else {
1251 /* split into two entries */
1252 if (!new_res) {
1253 ret = -ENOMEM;
1254 break;
1255 }
1256 new_res->name = res->name;
1257 new_res->start = end + 1;
1258 new_res->end = res->end;
1259 new_res->flags = res->flags;
1260 new_res->parent = res->parent;
1261 new_res->sibling = res->sibling;
1262 new_res->child = NULL;
1263
1264 ret = __adjust_resource(res, res->start,
1265 start - res->start);
1266 if (ret)
1267 break;
1268 res->sibling = new_res;
1269 new_res = NULL;
1270 }
1271
1272 break;
1273 }
1274
1275 write_unlock(&resource_lock);
1276 free_resource(new_res);
1277 return ret;
1278 }
1279 #endif /* CONFIG_MEMORY_HOTREMOVE */
1280
1281 /*
1282 * Managed region resource
1283 */
1284 static void devm_resource_release(struct device *dev, void *ptr)
1285 {
1286 struct resource **r = ptr;
1287
1288 release_resource(*r);
1289 }
1290
1291 /**
1292 * devm_request_resource() - request and reserve an I/O or memory resource
1293 * @dev: device for which to request the resource
1294 * @root: root of the resource tree from which to request the resource
1295 * @new: descriptor of the resource to request
1296 *
1297 * This is a device-managed version of request_resource(). There is usually
1298 * no need to release resources requested by this function explicitly since
1299 * that will be taken care of when the device is unbound from its driver.
1300 * If for some reason the resource needs to be released explicitly, because
1301 * of ordering issues for example, drivers must call devm_release_resource()
1302 * rather than the regular release_resource().
1303 *
1304 * When a conflict is detected between any existing resources and the newly
1305 * requested resource, an error message will be printed.
1306 *
1307 * Returns 0 on success or a negative error code on failure.
1308 */
1309 int devm_request_resource(struct device *dev, struct resource *root,
1310 struct resource *new)
1311 {
1312 struct resource *conflict, **ptr;
1313
1314 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1315 if (!ptr)
1316 return -ENOMEM;
1317
1318 *ptr = new;
1319
1320 conflict = request_resource_conflict(root, new);
1321 if (conflict) {
1322 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1323 new, conflict->name, conflict);
1324 devres_free(ptr);
1325 return -EBUSY;
1326 }
1327
1328 devres_add(dev, ptr);
1329 return 0;
1330 }
1331 EXPORT_SYMBOL(devm_request_resource);
1332
1333 static int devm_resource_match(struct device *dev, void *res, void *data)
1334 {
1335 struct resource **ptr = res;
1336
1337 return *ptr == data;
1338 }
1339
1340 /**
1341 * devm_release_resource() - release a previously requested resource
1342 * @dev: device for which to release the resource
1343 * @new: descriptor of the resource to release
1344 *
1345 * Releases a resource previously requested using devm_request_resource().
1346 */
1347 void devm_release_resource(struct device *dev, struct resource *new)
1348 {
1349 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1350 new));
1351 }
1352 EXPORT_SYMBOL(devm_release_resource);
1353
1354 struct region_devres {
1355 struct resource *parent;
1356 resource_size_t start;
1357 resource_size_t n;
1358 };
1359
1360 static void devm_region_release(struct device *dev, void *res)
1361 {
1362 struct region_devres *this = res;
1363
1364 __release_region(this->parent, this->start, this->n);
1365 }
1366
1367 static int devm_region_match(struct device *dev, void *res, void *match_data)
1368 {
1369 struct region_devres *this = res, *match = match_data;
1370
1371 return this->parent == match->parent &&
1372 this->start == match->start && this->n == match->n;
1373 }
1374
1375 struct resource * __devm_request_region(struct device *dev,
1376 struct resource *parent, resource_size_t start,
1377 resource_size_t n, const char *name)
1378 {
1379 struct region_devres *dr = NULL;
1380 struct resource *res;
1381
1382 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1383 GFP_KERNEL);
1384 if (!dr)
1385 return NULL;
1386
1387 dr->parent = parent;
1388 dr->start = start;
1389 dr->n = n;
1390
1391 res = __request_region(parent, start, n, name, 0);
1392 if (res)
1393 devres_add(dev, dr);
1394 else
1395 devres_free(dr);
1396
1397 return res;
1398 }
1399 EXPORT_SYMBOL(__devm_request_region);
1400
1401 void __devm_release_region(struct device *dev, struct resource *parent,
1402 resource_size_t start, resource_size_t n)
1403 {
1404 struct region_devres match_data = { parent, start, n };
1405
1406 __release_region(parent, start, n);
1407 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1408 &match_data));
1409 }
1410 EXPORT_SYMBOL(__devm_release_region);
1411
1412 /*
1413 * Called from init/main.c to reserve IO ports.
1414 */
1415 #define MAXRESERVE 4
1416 static int __init reserve_setup(char *str)
1417 {
1418 static int reserved;
1419 static struct resource reserve[MAXRESERVE];
1420
1421 for (;;) {
1422 unsigned int io_start, io_num;
1423 int x = reserved;
1424
1425 if (get_option (&str, &io_start) != 2)
1426 break;
1427 if (get_option (&str, &io_num) == 0)
1428 break;
1429 if (x < MAXRESERVE) {
1430 struct resource *res = reserve + x;
1431 res->name = "reserved";
1432 res->start = io_start;
1433 res->end = io_start + io_num - 1;
1434 res->flags = IORESOURCE_BUSY;
1435 res->child = NULL;
1436 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1437 reserved = x+1;
1438 }
1439 }
1440 return 1;
1441 }
1442
1443 __setup("reserve=", reserve_setup);
1444
1445 /*
1446 * Check if the requested addr and size spans more than any slot in the
1447 * iomem resource tree.
1448 */
1449 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1450 {
1451 struct resource *p = &iomem_resource;
1452 int err = 0;
1453 loff_t l;
1454
1455 read_lock(&resource_lock);
1456 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1457 /*
1458 * We can probably skip the resources without
1459 * IORESOURCE_IO attribute?
1460 */
1461 if (p->start >= addr + size)
1462 continue;
1463 if (p->end < addr)
1464 continue;
1465 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1466 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1467 continue;
1468 /*
1469 * if a resource is "BUSY", it's not a hardware resource
1470 * but a driver mapping of such a resource; we don't want
1471 * to warn for those; some drivers legitimately map only
1472 * partial hardware resources. (example: vesafb)
1473 */
1474 if (p->flags & IORESOURCE_BUSY)
1475 continue;
1476
1477 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1478 (unsigned long long)addr,
1479 (unsigned long long)(addr + size - 1),
1480 p->name, p);
1481 err = -1;
1482 break;
1483 }
1484 read_unlock(&resource_lock);
1485
1486 return err;
1487 }
1488
1489 #ifdef CONFIG_STRICT_DEVMEM
1490 static int strict_iomem_checks = 1;
1491 #else
1492 static int strict_iomem_checks;
1493 #endif
1494
1495 /*
1496 * check if an address is reserved in the iomem resource tree
1497 * returns 1 if reserved, 0 if not reserved.
1498 */
1499 int iomem_is_exclusive(u64 addr)
1500 {
1501 struct resource *p = &iomem_resource;
1502 int err = 0;
1503 loff_t l;
1504 int size = PAGE_SIZE;
1505
1506 if (!strict_iomem_checks)
1507 return 0;
1508
1509 addr = addr & PAGE_MASK;
1510
1511 read_lock(&resource_lock);
1512 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1513 /*
1514 * We can probably skip the resources without
1515 * IORESOURCE_IO attribute?
1516 */
1517 if (p->start >= addr + size)
1518 break;
1519 if (p->end < addr)
1520 continue;
1521 if (p->flags & IORESOURCE_BUSY &&
1522 p->flags & IORESOURCE_EXCLUSIVE) {
1523 err = 1;
1524 break;
1525 }
1526 }
1527 read_unlock(&resource_lock);
1528
1529 return err;
1530 }
1531
1532 static int __init strict_iomem(char *str)
1533 {
1534 if (strstr(str, "relaxed"))
1535 strict_iomem_checks = 0;
1536 if (strstr(str, "strict"))
1537 strict_iomem_checks = 1;
1538 return 1;
1539 }
1540
1541 __setup("iomem=", strict_iomem);