]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/resource.c
Merge tag 'regmap-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-artful-kernel.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26
27
28 struct resource ioport_resource = {
29 .name = "PCI IO",
30 .start = 0,
31 .end = IO_SPACE_LIMIT,
32 .flags = IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35
36 struct resource iomem_resource = {
37 .name = "PCI mem",
38 .start = 0,
39 .end = -1,
40 .flags = IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 resource_size_t min, max, align;
47 resource_size_t (*alignf)(void *, const struct resource *,
48 resource_size_t, resource_size_t);
49 void *alignf_data;
50 };
51
52 static DEFINE_RWLOCK(resource_lock);
53
54 /*
55 * For memory hotplug, there is no way to free resource entries allocated
56 * by boot mem after the system is up. So for reusing the resource entry
57 * we need to remember the resource.
58 */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61
62 static struct resource *next_resource(struct resource *p, bool sibling_only)
63 {
64 /* Caller wants to traverse through siblings only */
65 if (sibling_only)
66 return p->sibling;
67
68 if (p->child)
69 return p->child;
70 while (!p->sibling && p->parent)
71 p = p->parent;
72 return p->sibling;
73 }
74
75 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
76 {
77 struct resource *p = v;
78 (*pos)++;
79 return (void *)next_resource(p, false);
80 }
81
82 #ifdef CONFIG_PROC_FS
83
84 enum { MAX_IORES_LEVEL = 5 };
85
86 static void *r_start(struct seq_file *m, loff_t *pos)
87 __acquires(resource_lock)
88 {
89 struct resource *p = m->private;
90 loff_t l = 0;
91 read_lock(&resource_lock);
92 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
93 ;
94 return p;
95 }
96
97 static void r_stop(struct seq_file *m, void *v)
98 __releases(resource_lock)
99 {
100 read_unlock(&resource_lock);
101 }
102
103 static int r_show(struct seq_file *m, void *v)
104 {
105 struct resource *root = m->private;
106 struct resource *r = v, *p;
107 int width = root->end < 0x10000 ? 4 : 8;
108 int depth;
109
110 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
111 if (p->parent == root)
112 break;
113 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
114 depth * 2, "",
115 width, (unsigned long long) r->start,
116 width, (unsigned long long) r->end,
117 r->name ? r->name : "<BAD>");
118 return 0;
119 }
120
121 static const struct seq_operations resource_op = {
122 .start = r_start,
123 .next = r_next,
124 .stop = r_stop,
125 .show = r_show,
126 };
127
128 static int ioports_open(struct inode *inode, struct file *file)
129 {
130 int res = seq_open(file, &resource_op);
131 if (!res) {
132 struct seq_file *m = file->private_data;
133 m->private = &ioport_resource;
134 }
135 return res;
136 }
137
138 static int iomem_open(struct inode *inode, struct file *file)
139 {
140 int res = seq_open(file, &resource_op);
141 if (!res) {
142 struct seq_file *m = file->private_data;
143 m->private = &iomem_resource;
144 }
145 return res;
146 }
147
148 static const struct file_operations proc_ioports_operations = {
149 .open = ioports_open,
150 .read = seq_read,
151 .llseek = seq_lseek,
152 .release = seq_release,
153 };
154
155 static const struct file_operations proc_iomem_operations = {
156 .open = iomem_open,
157 .read = seq_read,
158 .llseek = seq_lseek,
159 .release = seq_release,
160 };
161
162 static int __init ioresources_init(void)
163 {
164 proc_create("ioports", 0, NULL, &proc_ioports_operations);
165 proc_create("iomem", 0, NULL, &proc_iomem_operations);
166 return 0;
167 }
168 __initcall(ioresources_init);
169
170 #endif /* CONFIG_PROC_FS */
171
172 static void free_resource(struct resource *res)
173 {
174 if (!res)
175 return;
176
177 if (!PageSlab(virt_to_head_page(res))) {
178 spin_lock(&bootmem_resource_lock);
179 res->sibling = bootmem_resource_free;
180 bootmem_resource_free = res;
181 spin_unlock(&bootmem_resource_lock);
182 } else {
183 kfree(res);
184 }
185 }
186
187 static struct resource *alloc_resource(gfp_t flags)
188 {
189 struct resource *res = NULL;
190
191 spin_lock(&bootmem_resource_lock);
192 if (bootmem_resource_free) {
193 res = bootmem_resource_free;
194 bootmem_resource_free = res->sibling;
195 }
196 spin_unlock(&bootmem_resource_lock);
197
198 if (res)
199 memset(res, 0, sizeof(struct resource));
200 else
201 res = kzalloc(sizeof(struct resource), flags);
202
203 return res;
204 }
205
206 /* Return the conflict entry if you can't request it */
207 static struct resource * __request_resource(struct resource *root, struct resource *new)
208 {
209 resource_size_t start = new->start;
210 resource_size_t end = new->end;
211 struct resource *tmp, **p;
212
213 if (end < start)
214 return root;
215 if (start < root->start)
216 return root;
217 if (end > root->end)
218 return root;
219 p = &root->child;
220 for (;;) {
221 tmp = *p;
222 if (!tmp || tmp->start > end) {
223 new->sibling = tmp;
224 *p = new;
225 new->parent = root;
226 return NULL;
227 }
228 p = &tmp->sibling;
229 if (tmp->end < start)
230 continue;
231 return tmp;
232 }
233 }
234
235 static int __release_resource(struct resource *old)
236 {
237 struct resource *tmp, **p;
238
239 p = &old->parent->child;
240 for (;;) {
241 tmp = *p;
242 if (!tmp)
243 break;
244 if (tmp == old) {
245 *p = tmp->sibling;
246 old->parent = NULL;
247 return 0;
248 }
249 p = &tmp->sibling;
250 }
251 return -EINVAL;
252 }
253
254 static void __release_child_resources(struct resource *r)
255 {
256 struct resource *tmp, *p;
257 resource_size_t size;
258
259 p = r->child;
260 r->child = NULL;
261 while (p) {
262 tmp = p;
263 p = p->sibling;
264
265 tmp->parent = NULL;
266 tmp->sibling = NULL;
267 __release_child_resources(tmp);
268
269 printk(KERN_DEBUG "release child resource %pR\n", tmp);
270 /* need to restore size, and keep flags */
271 size = resource_size(tmp);
272 tmp->start = 0;
273 tmp->end = size - 1;
274 }
275 }
276
277 void release_child_resources(struct resource *r)
278 {
279 write_lock(&resource_lock);
280 __release_child_resources(r);
281 write_unlock(&resource_lock);
282 }
283
284 /**
285 * request_resource_conflict - request and reserve an I/O or memory resource
286 * @root: root resource descriptor
287 * @new: resource descriptor desired by caller
288 *
289 * Returns 0 for success, conflict resource on error.
290 */
291 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
292 {
293 struct resource *conflict;
294
295 write_lock(&resource_lock);
296 conflict = __request_resource(root, new);
297 write_unlock(&resource_lock);
298 return conflict;
299 }
300
301 /**
302 * request_resource - request and reserve an I/O or memory resource
303 * @root: root resource descriptor
304 * @new: resource descriptor desired by caller
305 *
306 * Returns 0 for success, negative error code on error.
307 */
308 int request_resource(struct resource *root, struct resource *new)
309 {
310 struct resource *conflict;
311
312 conflict = request_resource_conflict(root, new);
313 return conflict ? -EBUSY : 0;
314 }
315
316 EXPORT_SYMBOL(request_resource);
317
318 /**
319 * release_resource - release a previously reserved resource
320 * @old: resource pointer
321 */
322 int release_resource(struct resource *old)
323 {
324 int retval;
325
326 write_lock(&resource_lock);
327 retval = __release_resource(old);
328 write_unlock(&resource_lock);
329 return retval;
330 }
331
332 EXPORT_SYMBOL(release_resource);
333
334 /*
335 * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
336 * the caller must specify res->start, res->end, res->flags and "name".
337 * If found, returns 0, res is overwritten, if not found, returns -1.
338 * This walks through whole tree and not just first level children
339 * until and unless first_level_children_only is true.
340 */
341 static int find_next_iomem_res(struct resource *res, char *name,
342 bool first_level_children_only)
343 {
344 resource_size_t start, end;
345 struct resource *p;
346 bool sibling_only = false;
347
348 BUG_ON(!res);
349
350 start = res->start;
351 end = res->end;
352 BUG_ON(start >= end);
353
354 if (first_level_children_only)
355 sibling_only = true;
356
357 read_lock(&resource_lock);
358
359 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
360 if (p->flags != res->flags)
361 continue;
362 if (name && strcmp(p->name, name))
363 continue;
364 if (p->start > end) {
365 p = NULL;
366 break;
367 }
368 if ((p->end >= start) && (p->start < end))
369 break;
370 }
371
372 read_unlock(&resource_lock);
373 if (!p)
374 return -1;
375 /* copy data */
376 if (res->start < p->start)
377 res->start = p->start;
378 if (res->end > p->end)
379 res->end = p->end;
380 return 0;
381 }
382
383 /*
384 * Walks through iomem resources and calls func() with matching resource
385 * ranges. This walks through whole tree and not just first level children.
386 * All the memory ranges which overlap start,end and also match flags and
387 * name are valid candidates.
388 *
389 * @name: name of resource
390 * @flags: resource flags
391 * @start: start addr
392 * @end: end addr
393 */
394 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
395 void *arg, int (*func)(u64, u64, void *))
396 {
397 struct resource res;
398 u64 orig_end;
399 int ret = -1;
400
401 res.start = start;
402 res.end = end;
403 res.flags = flags;
404 orig_end = res.end;
405 while ((res.start < res.end) &&
406 (!find_next_iomem_res(&res, name, false))) {
407 ret = (*func)(res.start, res.end, arg);
408 if (ret)
409 break;
410 res.start = res.end + 1;
411 res.end = orig_end;
412 }
413 return ret;
414 }
415
416 /*
417 * This function calls callback against all memory range of "System RAM"
418 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
419 * Now, this function is only for "System RAM". This function deals with
420 * full ranges and not pfn. If resources are not pfn aligned, dealing
421 * with pfn can truncate ranges.
422 */
423 int walk_system_ram_res(u64 start, u64 end, void *arg,
424 int (*func)(u64, u64, void *))
425 {
426 struct resource res;
427 u64 orig_end;
428 int ret = -1;
429
430 res.start = start;
431 res.end = end;
432 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
433 orig_end = res.end;
434 while ((res.start < res.end) &&
435 (!find_next_iomem_res(&res, "System RAM", true))) {
436 ret = (*func)(res.start, res.end, arg);
437 if (ret)
438 break;
439 res.start = res.end + 1;
440 res.end = orig_end;
441 }
442 return ret;
443 }
444
445 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
446
447 /*
448 * This function calls callback against all memory range of "System RAM"
449 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
450 * Now, this function is only for "System RAM".
451 */
452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 struct resource res;
456 unsigned long pfn, end_pfn;
457 u64 orig_end;
458 int ret = -1;
459
460 res.start = (u64) start_pfn << PAGE_SHIFT;
461 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
462 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
463 orig_end = res.end;
464 while ((res.start < res.end) &&
465 (find_next_iomem_res(&res, "System RAM", true) >= 0)) {
466 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
467 end_pfn = (res.end + 1) >> PAGE_SHIFT;
468 if (end_pfn > pfn)
469 ret = (*func)(pfn, end_pfn - pfn, arg);
470 if (ret)
471 break;
472 res.start = res.end + 1;
473 res.end = orig_end;
474 }
475 return ret;
476 }
477
478 #endif
479
480 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
481 {
482 return 1;
483 }
484 /*
485 * This generic page_is_ram() returns true if specified address is
486 * registered as "System RAM" in iomem_resource list.
487 */
488 int __weak page_is_ram(unsigned long pfn)
489 {
490 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
491 }
492 EXPORT_SYMBOL_GPL(page_is_ram);
493
494 void __weak arch_remove_reservations(struct resource *avail)
495 {
496 }
497
498 static resource_size_t simple_align_resource(void *data,
499 const struct resource *avail,
500 resource_size_t size,
501 resource_size_t align)
502 {
503 return avail->start;
504 }
505
506 static void resource_clip(struct resource *res, resource_size_t min,
507 resource_size_t max)
508 {
509 if (res->start < min)
510 res->start = min;
511 if (res->end > max)
512 res->end = max;
513 }
514
515 /*
516 * Find empty slot in the resource tree with the given range and
517 * alignment constraints
518 */
519 static int __find_resource(struct resource *root, struct resource *old,
520 struct resource *new,
521 resource_size_t size,
522 struct resource_constraint *constraint)
523 {
524 struct resource *this = root->child;
525 struct resource tmp = *new, avail, alloc;
526
527 tmp.start = root->start;
528 /*
529 * Skip past an allocated resource that starts at 0, since the assignment
530 * of this->start - 1 to tmp->end below would cause an underflow.
531 */
532 if (this && this->start == root->start) {
533 tmp.start = (this == old) ? old->start : this->end + 1;
534 this = this->sibling;
535 }
536 for(;;) {
537 if (this)
538 tmp.end = (this == old) ? this->end : this->start - 1;
539 else
540 tmp.end = root->end;
541
542 if (tmp.end < tmp.start)
543 goto next;
544
545 resource_clip(&tmp, constraint->min, constraint->max);
546 arch_remove_reservations(&tmp);
547
548 /* Check for overflow after ALIGN() */
549 avail.start = ALIGN(tmp.start, constraint->align);
550 avail.end = tmp.end;
551 avail.flags = new->flags & ~IORESOURCE_UNSET;
552 if (avail.start >= tmp.start) {
553 alloc.flags = avail.flags;
554 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
555 size, constraint->align);
556 alloc.end = alloc.start + size - 1;
557 if (resource_contains(&avail, &alloc)) {
558 new->start = alloc.start;
559 new->end = alloc.end;
560 return 0;
561 }
562 }
563
564 next: if (!this || this->end == root->end)
565 break;
566
567 if (this != old)
568 tmp.start = this->end + 1;
569 this = this->sibling;
570 }
571 return -EBUSY;
572 }
573
574 /*
575 * Find empty slot in the resource tree given range and alignment.
576 */
577 static int find_resource(struct resource *root, struct resource *new,
578 resource_size_t size,
579 struct resource_constraint *constraint)
580 {
581 return __find_resource(root, NULL, new, size, constraint);
582 }
583
584 /**
585 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
586 * The resource will be relocated if the new size cannot be reallocated in the
587 * current location.
588 *
589 * @root: root resource descriptor
590 * @old: resource descriptor desired by caller
591 * @newsize: new size of the resource descriptor
592 * @constraint: the size and alignment constraints to be met.
593 */
594 static int reallocate_resource(struct resource *root, struct resource *old,
595 resource_size_t newsize,
596 struct resource_constraint *constraint)
597 {
598 int err=0;
599 struct resource new = *old;
600 struct resource *conflict;
601
602 write_lock(&resource_lock);
603
604 if ((err = __find_resource(root, old, &new, newsize, constraint)))
605 goto out;
606
607 if (resource_contains(&new, old)) {
608 old->start = new.start;
609 old->end = new.end;
610 goto out;
611 }
612
613 if (old->child) {
614 err = -EBUSY;
615 goto out;
616 }
617
618 if (resource_contains(old, &new)) {
619 old->start = new.start;
620 old->end = new.end;
621 } else {
622 __release_resource(old);
623 *old = new;
624 conflict = __request_resource(root, old);
625 BUG_ON(conflict);
626 }
627 out:
628 write_unlock(&resource_lock);
629 return err;
630 }
631
632
633 /**
634 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
635 * The resource will be reallocated with a new size if it was already allocated
636 * @root: root resource descriptor
637 * @new: resource descriptor desired by caller
638 * @size: requested resource region size
639 * @min: minimum boundary to allocate
640 * @max: maximum boundary to allocate
641 * @align: alignment requested, in bytes
642 * @alignf: alignment function, optional, called if not NULL
643 * @alignf_data: arbitrary data to pass to the @alignf function
644 */
645 int allocate_resource(struct resource *root, struct resource *new,
646 resource_size_t size, resource_size_t min,
647 resource_size_t max, resource_size_t align,
648 resource_size_t (*alignf)(void *,
649 const struct resource *,
650 resource_size_t,
651 resource_size_t),
652 void *alignf_data)
653 {
654 int err;
655 struct resource_constraint constraint;
656
657 if (!alignf)
658 alignf = simple_align_resource;
659
660 constraint.min = min;
661 constraint.max = max;
662 constraint.align = align;
663 constraint.alignf = alignf;
664 constraint.alignf_data = alignf_data;
665
666 if ( new->parent ) {
667 /* resource is already allocated, try reallocating with
668 the new constraints */
669 return reallocate_resource(root, new, size, &constraint);
670 }
671
672 write_lock(&resource_lock);
673 err = find_resource(root, new, size, &constraint);
674 if (err >= 0 && __request_resource(root, new))
675 err = -EBUSY;
676 write_unlock(&resource_lock);
677 return err;
678 }
679
680 EXPORT_SYMBOL(allocate_resource);
681
682 /**
683 * lookup_resource - find an existing resource by a resource start address
684 * @root: root resource descriptor
685 * @start: resource start address
686 *
687 * Returns a pointer to the resource if found, NULL otherwise
688 */
689 struct resource *lookup_resource(struct resource *root, resource_size_t start)
690 {
691 struct resource *res;
692
693 read_lock(&resource_lock);
694 for (res = root->child; res; res = res->sibling) {
695 if (res->start == start)
696 break;
697 }
698 read_unlock(&resource_lock);
699
700 return res;
701 }
702
703 /*
704 * Insert a resource into the resource tree. If successful, return NULL,
705 * otherwise return the conflicting resource (compare to __request_resource())
706 */
707 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
708 {
709 struct resource *first, *next;
710
711 for (;; parent = first) {
712 first = __request_resource(parent, new);
713 if (!first)
714 return first;
715
716 if (first == parent)
717 return first;
718 if (WARN_ON(first == new)) /* duplicated insertion */
719 return first;
720
721 if ((first->start > new->start) || (first->end < new->end))
722 break;
723 if ((first->start == new->start) && (first->end == new->end))
724 break;
725 }
726
727 for (next = first; ; next = next->sibling) {
728 /* Partial overlap? Bad, and unfixable */
729 if (next->start < new->start || next->end > new->end)
730 return next;
731 if (!next->sibling)
732 break;
733 if (next->sibling->start > new->end)
734 break;
735 }
736
737 new->parent = parent;
738 new->sibling = next->sibling;
739 new->child = first;
740
741 next->sibling = NULL;
742 for (next = first; next; next = next->sibling)
743 next->parent = new;
744
745 if (parent->child == first) {
746 parent->child = new;
747 } else {
748 next = parent->child;
749 while (next->sibling != first)
750 next = next->sibling;
751 next->sibling = new;
752 }
753 return NULL;
754 }
755
756 /**
757 * insert_resource_conflict - Inserts resource in the resource tree
758 * @parent: parent of the new resource
759 * @new: new resource to insert
760 *
761 * Returns 0 on success, conflict resource if the resource can't be inserted.
762 *
763 * This function is equivalent to request_resource_conflict when no conflict
764 * happens. If a conflict happens, and the conflicting resources
765 * entirely fit within the range of the new resource, then the new
766 * resource is inserted and the conflicting resources become children of
767 * the new resource.
768 */
769 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
770 {
771 struct resource *conflict;
772
773 write_lock(&resource_lock);
774 conflict = __insert_resource(parent, new);
775 write_unlock(&resource_lock);
776 return conflict;
777 }
778
779 /**
780 * insert_resource - Inserts a resource in the resource tree
781 * @parent: parent of the new resource
782 * @new: new resource to insert
783 *
784 * Returns 0 on success, -EBUSY if the resource can't be inserted.
785 */
786 int insert_resource(struct resource *parent, struct resource *new)
787 {
788 struct resource *conflict;
789
790 conflict = insert_resource_conflict(parent, new);
791 return conflict ? -EBUSY : 0;
792 }
793
794 /**
795 * insert_resource_expand_to_fit - Insert a resource into the resource tree
796 * @root: root resource descriptor
797 * @new: new resource to insert
798 *
799 * Insert a resource into the resource tree, possibly expanding it in order
800 * to make it encompass any conflicting resources.
801 */
802 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
803 {
804 if (new->parent)
805 return;
806
807 write_lock(&resource_lock);
808 for (;;) {
809 struct resource *conflict;
810
811 conflict = __insert_resource(root, new);
812 if (!conflict)
813 break;
814 if (conflict == root)
815 break;
816
817 /* Ok, expand resource to cover the conflict, then try again .. */
818 if (conflict->start < new->start)
819 new->start = conflict->start;
820 if (conflict->end > new->end)
821 new->end = conflict->end;
822
823 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
824 }
825 write_unlock(&resource_lock);
826 }
827
828 static int __adjust_resource(struct resource *res, resource_size_t start,
829 resource_size_t size)
830 {
831 struct resource *tmp, *parent = res->parent;
832 resource_size_t end = start + size - 1;
833 int result = -EBUSY;
834
835 if (!parent)
836 goto skip;
837
838 if ((start < parent->start) || (end > parent->end))
839 goto out;
840
841 if (res->sibling && (res->sibling->start <= end))
842 goto out;
843
844 tmp = parent->child;
845 if (tmp != res) {
846 while (tmp->sibling != res)
847 tmp = tmp->sibling;
848 if (start <= tmp->end)
849 goto out;
850 }
851
852 skip:
853 for (tmp = res->child; tmp; tmp = tmp->sibling)
854 if ((tmp->start < start) || (tmp->end > end))
855 goto out;
856
857 res->start = start;
858 res->end = end;
859 result = 0;
860
861 out:
862 return result;
863 }
864
865 /**
866 * adjust_resource - modify a resource's start and size
867 * @res: resource to modify
868 * @start: new start value
869 * @size: new size
870 *
871 * Given an existing resource, change its start and size to match the
872 * arguments. Returns 0 on success, -EBUSY if it can't fit.
873 * Existing children of the resource are assumed to be immutable.
874 */
875 int adjust_resource(struct resource *res, resource_size_t start,
876 resource_size_t size)
877 {
878 int result;
879
880 write_lock(&resource_lock);
881 result = __adjust_resource(res, start, size);
882 write_unlock(&resource_lock);
883 return result;
884 }
885 EXPORT_SYMBOL(adjust_resource);
886
887 static void __init __reserve_region_with_split(struct resource *root,
888 resource_size_t start, resource_size_t end,
889 const char *name)
890 {
891 struct resource *parent = root;
892 struct resource *conflict;
893 struct resource *res = alloc_resource(GFP_ATOMIC);
894 struct resource *next_res = NULL;
895
896 if (!res)
897 return;
898
899 res->name = name;
900 res->start = start;
901 res->end = end;
902 res->flags = IORESOURCE_BUSY;
903
904 while (1) {
905
906 conflict = __request_resource(parent, res);
907 if (!conflict) {
908 if (!next_res)
909 break;
910 res = next_res;
911 next_res = NULL;
912 continue;
913 }
914
915 /* conflict covered whole area */
916 if (conflict->start <= res->start &&
917 conflict->end >= res->end) {
918 free_resource(res);
919 WARN_ON(next_res);
920 break;
921 }
922
923 /* failed, split and try again */
924 if (conflict->start > res->start) {
925 end = res->end;
926 res->end = conflict->start - 1;
927 if (conflict->end < end) {
928 next_res = alloc_resource(GFP_ATOMIC);
929 if (!next_res) {
930 free_resource(res);
931 break;
932 }
933 next_res->name = name;
934 next_res->start = conflict->end + 1;
935 next_res->end = end;
936 next_res->flags = IORESOURCE_BUSY;
937 }
938 } else {
939 res->start = conflict->end + 1;
940 }
941 }
942
943 }
944
945 void __init reserve_region_with_split(struct resource *root,
946 resource_size_t start, resource_size_t end,
947 const char *name)
948 {
949 int abort = 0;
950
951 write_lock(&resource_lock);
952 if (root->start > start || root->end < end) {
953 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
954 (unsigned long long)start, (unsigned long long)end,
955 root);
956 if (start > root->end || end < root->start)
957 abort = 1;
958 else {
959 if (end > root->end)
960 end = root->end;
961 if (start < root->start)
962 start = root->start;
963 pr_err("fixing request to [0x%llx-0x%llx]\n",
964 (unsigned long long)start,
965 (unsigned long long)end);
966 }
967 dump_stack();
968 }
969 if (!abort)
970 __reserve_region_with_split(root, start, end, name);
971 write_unlock(&resource_lock);
972 }
973
974 /**
975 * resource_alignment - calculate resource's alignment
976 * @res: resource pointer
977 *
978 * Returns alignment on success, 0 (invalid alignment) on failure.
979 */
980 resource_size_t resource_alignment(struct resource *res)
981 {
982 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
983 case IORESOURCE_SIZEALIGN:
984 return resource_size(res);
985 case IORESOURCE_STARTALIGN:
986 return res->start;
987 default:
988 return 0;
989 }
990 }
991
992 /*
993 * This is compatibility stuff for IO resources.
994 *
995 * Note how this, unlike the above, knows about
996 * the IO flag meanings (busy etc).
997 *
998 * request_region creates a new busy region.
999 *
1000 * check_region returns non-zero if the area is already busy.
1001 *
1002 * release_region releases a matching busy region.
1003 */
1004
1005 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1006
1007 /**
1008 * __request_region - create a new busy resource region
1009 * @parent: parent resource descriptor
1010 * @start: resource start address
1011 * @n: resource region size
1012 * @name: reserving caller's ID string
1013 * @flags: IO resource flags
1014 */
1015 struct resource * __request_region(struct resource *parent,
1016 resource_size_t start, resource_size_t n,
1017 const char *name, int flags)
1018 {
1019 DECLARE_WAITQUEUE(wait, current);
1020 struct resource *res = alloc_resource(GFP_KERNEL);
1021
1022 if (!res)
1023 return NULL;
1024
1025 res->name = name;
1026 res->start = start;
1027 res->end = start + n - 1;
1028 res->flags = resource_type(parent);
1029 res->flags |= IORESOURCE_BUSY | flags;
1030
1031 write_lock(&resource_lock);
1032
1033 for (;;) {
1034 struct resource *conflict;
1035
1036 conflict = __request_resource(parent, res);
1037 if (!conflict)
1038 break;
1039 if (conflict != parent) {
1040 parent = conflict;
1041 if (!(conflict->flags & IORESOURCE_BUSY))
1042 continue;
1043 }
1044 if (conflict->flags & flags & IORESOURCE_MUXED) {
1045 add_wait_queue(&muxed_resource_wait, &wait);
1046 write_unlock(&resource_lock);
1047 set_current_state(TASK_UNINTERRUPTIBLE);
1048 schedule();
1049 remove_wait_queue(&muxed_resource_wait, &wait);
1050 write_lock(&resource_lock);
1051 continue;
1052 }
1053 /* Uhhuh, that didn't work out.. */
1054 free_resource(res);
1055 res = NULL;
1056 break;
1057 }
1058 write_unlock(&resource_lock);
1059 return res;
1060 }
1061 EXPORT_SYMBOL(__request_region);
1062
1063 /**
1064 * __check_region - check if a resource region is busy or free
1065 * @parent: parent resource descriptor
1066 * @start: resource start address
1067 * @n: resource region size
1068 *
1069 * Returns 0 if the region is free at the moment it is checked,
1070 * returns %-EBUSY if the region is busy.
1071 *
1072 * NOTE:
1073 * This function is deprecated because its use is racy.
1074 * Even if it returns 0, a subsequent call to request_region()
1075 * may fail because another driver etc. just allocated the region.
1076 * Do NOT use it. It will be removed from the kernel.
1077 */
1078 int __check_region(struct resource *parent, resource_size_t start,
1079 resource_size_t n)
1080 {
1081 struct resource * res;
1082
1083 res = __request_region(parent, start, n, "check-region", 0);
1084 if (!res)
1085 return -EBUSY;
1086
1087 release_resource(res);
1088 free_resource(res);
1089 return 0;
1090 }
1091 EXPORT_SYMBOL(__check_region);
1092
1093 /**
1094 * __release_region - release a previously reserved resource region
1095 * @parent: parent resource descriptor
1096 * @start: resource start address
1097 * @n: resource region size
1098 *
1099 * The described resource region must match a currently busy region.
1100 */
1101 void __release_region(struct resource *parent, resource_size_t start,
1102 resource_size_t n)
1103 {
1104 struct resource **p;
1105 resource_size_t end;
1106
1107 p = &parent->child;
1108 end = start + n - 1;
1109
1110 write_lock(&resource_lock);
1111
1112 for (;;) {
1113 struct resource *res = *p;
1114
1115 if (!res)
1116 break;
1117 if (res->start <= start && res->end >= end) {
1118 if (!(res->flags & IORESOURCE_BUSY)) {
1119 p = &res->child;
1120 continue;
1121 }
1122 if (res->start != start || res->end != end)
1123 break;
1124 *p = res->sibling;
1125 write_unlock(&resource_lock);
1126 if (res->flags & IORESOURCE_MUXED)
1127 wake_up(&muxed_resource_wait);
1128 free_resource(res);
1129 return;
1130 }
1131 p = &res->sibling;
1132 }
1133
1134 write_unlock(&resource_lock);
1135
1136 printk(KERN_WARNING "Trying to free nonexistent resource "
1137 "<%016llx-%016llx>\n", (unsigned long long)start,
1138 (unsigned long long)end);
1139 }
1140 EXPORT_SYMBOL(__release_region);
1141
1142 #ifdef CONFIG_MEMORY_HOTREMOVE
1143 /**
1144 * release_mem_region_adjustable - release a previously reserved memory region
1145 * @parent: parent resource descriptor
1146 * @start: resource start address
1147 * @size: resource region size
1148 *
1149 * This interface is intended for memory hot-delete. The requested region
1150 * is released from a currently busy memory resource. The requested region
1151 * must either match exactly or fit into a single busy resource entry. In
1152 * the latter case, the remaining resource is adjusted accordingly.
1153 * Existing children of the busy memory resource must be immutable in the
1154 * request.
1155 *
1156 * Note:
1157 * - Additional release conditions, such as overlapping region, can be
1158 * supported after they are confirmed as valid cases.
1159 * - When a busy memory resource gets split into two entries, the code
1160 * assumes that all children remain in the lower address entry for
1161 * simplicity. Enhance this logic when necessary.
1162 */
1163 int release_mem_region_adjustable(struct resource *parent,
1164 resource_size_t start, resource_size_t size)
1165 {
1166 struct resource **p;
1167 struct resource *res;
1168 struct resource *new_res;
1169 resource_size_t end;
1170 int ret = -EINVAL;
1171
1172 end = start + size - 1;
1173 if ((start < parent->start) || (end > parent->end))
1174 return ret;
1175
1176 /* The alloc_resource() result gets checked later */
1177 new_res = alloc_resource(GFP_KERNEL);
1178
1179 p = &parent->child;
1180 write_lock(&resource_lock);
1181
1182 while ((res = *p)) {
1183 if (res->start >= end)
1184 break;
1185
1186 /* look for the next resource if it does not fit into */
1187 if (res->start > start || res->end < end) {
1188 p = &res->sibling;
1189 continue;
1190 }
1191
1192 if (!(res->flags & IORESOURCE_MEM))
1193 break;
1194
1195 if (!(res->flags & IORESOURCE_BUSY)) {
1196 p = &res->child;
1197 continue;
1198 }
1199
1200 /* found the target resource; let's adjust accordingly */
1201 if (res->start == start && res->end == end) {
1202 /* free the whole entry */
1203 *p = res->sibling;
1204 free_resource(res);
1205 ret = 0;
1206 } else if (res->start == start && res->end != end) {
1207 /* adjust the start */
1208 ret = __adjust_resource(res, end + 1,
1209 res->end - end);
1210 } else if (res->start != start && res->end == end) {
1211 /* adjust the end */
1212 ret = __adjust_resource(res, res->start,
1213 start - res->start);
1214 } else {
1215 /* split into two entries */
1216 if (!new_res) {
1217 ret = -ENOMEM;
1218 break;
1219 }
1220 new_res->name = res->name;
1221 new_res->start = end + 1;
1222 new_res->end = res->end;
1223 new_res->flags = res->flags;
1224 new_res->parent = res->parent;
1225 new_res->sibling = res->sibling;
1226 new_res->child = NULL;
1227
1228 ret = __adjust_resource(res, res->start,
1229 start - res->start);
1230 if (ret)
1231 break;
1232 res->sibling = new_res;
1233 new_res = NULL;
1234 }
1235
1236 break;
1237 }
1238
1239 write_unlock(&resource_lock);
1240 free_resource(new_res);
1241 return ret;
1242 }
1243 #endif /* CONFIG_MEMORY_HOTREMOVE */
1244
1245 /*
1246 * Managed region resource
1247 */
1248 struct region_devres {
1249 struct resource *parent;
1250 resource_size_t start;
1251 resource_size_t n;
1252 };
1253
1254 static void devm_region_release(struct device *dev, void *res)
1255 {
1256 struct region_devres *this = res;
1257
1258 __release_region(this->parent, this->start, this->n);
1259 }
1260
1261 static int devm_region_match(struct device *dev, void *res, void *match_data)
1262 {
1263 struct region_devres *this = res, *match = match_data;
1264
1265 return this->parent == match->parent &&
1266 this->start == match->start && this->n == match->n;
1267 }
1268
1269 struct resource * __devm_request_region(struct device *dev,
1270 struct resource *parent, resource_size_t start,
1271 resource_size_t n, const char *name)
1272 {
1273 struct region_devres *dr = NULL;
1274 struct resource *res;
1275
1276 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1277 GFP_KERNEL);
1278 if (!dr)
1279 return NULL;
1280
1281 dr->parent = parent;
1282 dr->start = start;
1283 dr->n = n;
1284
1285 res = __request_region(parent, start, n, name, 0);
1286 if (res)
1287 devres_add(dev, dr);
1288 else
1289 devres_free(dr);
1290
1291 return res;
1292 }
1293 EXPORT_SYMBOL(__devm_request_region);
1294
1295 void __devm_release_region(struct device *dev, struct resource *parent,
1296 resource_size_t start, resource_size_t n)
1297 {
1298 struct region_devres match_data = { parent, start, n };
1299
1300 __release_region(parent, start, n);
1301 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1302 &match_data));
1303 }
1304 EXPORT_SYMBOL(__devm_release_region);
1305
1306 /*
1307 * Called from init/main.c to reserve IO ports.
1308 */
1309 #define MAXRESERVE 4
1310 static int __init reserve_setup(char *str)
1311 {
1312 static int reserved;
1313 static struct resource reserve[MAXRESERVE];
1314
1315 for (;;) {
1316 unsigned int io_start, io_num;
1317 int x = reserved;
1318
1319 if (get_option (&str, &io_start) != 2)
1320 break;
1321 if (get_option (&str, &io_num) == 0)
1322 break;
1323 if (x < MAXRESERVE) {
1324 struct resource *res = reserve + x;
1325 res->name = "reserved";
1326 res->start = io_start;
1327 res->end = io_start + io_num - 1;
1328 res->flags = IORESOURCE_BUSY;
1329 res->child = NULL;
1330 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1331 reserved = x+1;
1332 }
1333 }
1334 return 1;
1335 }
1336
1337 __setup("reserve=", reserve_setup);
1338
1339 /*
1340 * Check if the requested addr and size spans more than any slot in the
1341 * iomem resource tree.
1342 */
1343 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1344 {
1345 struct resource *p = &iomem_resource;
1346 int err = 0;
1347 loff_t l;
1348
1349 read_lock(&resource_lock);
1350 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1351 /*
1352 * We can probably skip the resources without
1353 * IORESOURCE_IO attribute?
1354 */
1355 if (p->start >= addr + size)
1356 continue;
1357 if (p->end < addr)
1358 continue;
1359 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1360 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1361 continue;
1362 /*
1363 * if a resource is "BUSY", it's not a hardware resource
1364 * but a driver mapping of such a resource; we don't want
1365 * to warn for those; some drivers legitimately map only
1366 * partial hardware resources. (example: vesafb)
1367 */
1368 if (p->flags & IORESOURCE_BUSY)
1369 continue;
1370
1371 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1372 (unsigned long long)addr,
1373 (unsigned long long)(addr + size - 1),
1374 p->name, p);
1375 err = -1;
1376 break;
1377 }
1378 read_unlock(&resource_lock);
1379
1380 return err;
1381 }
1382
1383 #ifdef CONFIG_STRICT_DEVMEM
1384 static int strict_iomem_checks = 1;
1385 #else
1386 static int strict_iomem_checks;
1387 #endif
1388
1389 /*
1390 * check if an address is reserved in the iomem resource tree
1391 * returns 1 if reserved, 0 if not reserved.
1392 */
1393 int iomem_is_exclusive(u64 addr)
1394 {
1395 struct resource *p = &iomem_resource;
1396 int err = 0;
1397 loff_t l;
1398 int size = PAGE_SIZE;
1399
1400 if (!strict_iomem_checks)
1401 return 0;
1402
1403 addr = addr & PAGE_MASK;
1404
1405 read_lock(&resource_lock);
1406 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1407 /*
1408 * We can probably skip the resources without
1409 * IORESOURCE_IO attribute?
1410 */
1411 if (p->start >= addr + size)
1412 break;
1413 if (p->end < addr)
1414 continue;
1415 if (p->flags & IORESOURCE_BUSY &&
1416 p->flags & IORESOURCE_EXCLUSIVE) {
1417 err = 1;
1418 break;
1419 }
1420 }
1421 read_unlock(&resource_lock);
1422
1423 return err;
1424 }
1425
1426 static int __init strict_iomem(char *str)
1427 {
1428 if (strstr(str, "relaxed"))
1429 strict_iomem_checks = 0;
1430 if (strstr(str, "strict"))
1431 strict_iomem_checks = 1;
1432 return 1;
1433 }
1434
1435 __setup("iomem=", strict_iomem);