]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/resource.c
UBUNTU: [Config] updateconfigs after rebase to Ubuntu-4.10.0-17.19
[mirror_ubuntu-zesty-kernel.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27
28
29 struct resource ioport_resource = {
30 .name = "PCI IO",
31 .start = 0,
32 .end = IO_SPACE_LIMIT,
33 .flags = IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36
37 struct resource iomem_resource = {
38 .name = "PCI mem",
39 .start = 0,
40 .end = -1,
41 .flags = IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 resource_size_t min, max, align;
48 resource_size_t (*alignf)(void *, const struct resource *,
49 resource_size_t, resource_size_t);
50 void *alignf_data;
51 };
52
53 static DEFINE_RWLOCK(resource_lock);
54
55 /*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 /* Caller wants to traverse through siblings only */
66 if (sibling_only)
67 return p->sibling;
68
69 if (p->child)
70 return p->child;
71 while (!p->sibling && p->parent)
72 p = p->parent;
73 return p->sibling;
74 }
75
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 struct resource *p = v;
79 (*pos)++;
80 return (void *)next_resource(p, false);
81 }
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *p = m->private;
91 loff_t l = 0;
92 read_lock(&resource_lock);
93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 ;
95 return p;
96 }
97
98 static void r_stop(struct seq_file *m, void *v)
99 __releases(resource_lock)
100 {
101 read_unlock(&resource_lock);
102 }
103
104 static int r_show(struct seq_file *m, void *v)
105 {
106 struct resource *root = m->private;
107 struct resource *r = v, *p;
108 unsigned long long start, end;
109 int width = root->end < 0x10000 ? 4 : 8;
110 int depth;
111
112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 if (p->parent == root)
114 break;
115
116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 start = r->start;
118 end = r->end;
119 } else {
120 start = end = 0;
121 }
122
123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 depth * 2, "",
125 width, start,
126 width, end,
127 r->name ? r->name : "<BAD>");
128 return 0;
129 }
130
131 static const struct seq_operations resource_op = {
132 .start = r_start,
133 .next = r_next,
134 .stop = r_stop,
135 .show = r_show,
136 };
137
138 static int ioports_open(struct inode *inode, struct file *file)
139 {
140 int res = seq_open(file, &resource_op);
141 if (!res) {
142 struct seq_file *m = file->private_data;
143 m->private = &ioport_resource;
144 }
145 return res;
146 }
147
148 static int iomem_open(struct inode *inode, struct file *file)
149 {
150 int res = seq_open(file, &resource_op);
151 if (!res) {
152 struct seq_file *m = file->private_data;
153 m->private = &iomem_resource;
154 }
155 return res;
156 }
157
158 static const struct file_operations proc_ioports_operations = {
159 .open = ioports_open,
160 .read = seq_read,
161 .llseek = seq_lseek,
162 .release = seq_release,
163 };
164
165 static const struct file_operations proc_iomem_operations = {
166 .open = iomem_open,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = seq_release,
170 };
171
172 static int __init ioresources_init(void)
173 {
174 proc_create("ioports", 0, NULL, &proc_ioports_operations);
175 proc_create("iomem", 0, NULL, &proc_iomem_operations);
176 return 0;
177 }
178 __initcall(ioresources_init);
179
180 #endif /* CONFIG_PROC_FS */
181
182 static void free_resource(struct resource *res)
183 {
184 if (!res)
185 return;
186
187 if (!PageSlab(virt_to_head_page(res))) {
188 spin_lock(&bootmem_resource_lock);
189 res->sibling = bootmem_resource_free;
190 bootmem_resource_free = res;
191 spin_unlock(&bootmem_resource_lock);
192 } else {
193 kfree(res);
194 }
195 }
196
197 static struct resource *alloc_resource(gfp_t flags)
198 {
199 struct resource *res = NULL;
200
201 spin_lock(&bootmem_resource_lock);
202 if (bootmem_resource_free) {
203 res = bootmem_resource_free;
204 bootmem_resource_free = res->sibling;
205 }
206 spin_unlock(&bootmem_resource_lock);
207
208 if (res)
209 memset(res, 0, sizeof(struct resource));
210 else
211 res = kzalloc(sizeof(struct resource), flags);
212
213 return res;
214 }
215
216 /* Return the conflict entry if you can't request it */
217 static struct resource * __request_resource(struct resource *root, struct resource *new)
218 {
219 resource_size_t start = new->start;
220 resource_size_t end = new->end;
221 struct resource *tmp, **p;
222
223 if (end < start)
224 return root;
225 if (start < root->start)
226 return root;
227 if (end > root->end)
228 return root;
229 p = &root->child;
230 for (;;) {
231 tmp = *p;
232 if (!tmp || tmp->start > end) {
233 new->sibling = tmp;
234 *p = new;
235 new->parent = root;
236 return NULL;
237 }
238 p = &tmp->sibling;
239 if (tmp->end < start)
240 continue;
241 return tmp;
242 }
243 }
244
245 static int __release_resource(struct resource *old, bool release_child)
246 {
247 struct resource *tmp, **p, *chd;
248
249 if (!old->parent) {
250 WARN(old->sibling, "sibling but no parent");
251 if (old->sibling)
252 return -EINVAL;
253 return 0;
254 }
255 p = &old->parent->child;
256 for (;;) {
257 tmp = *p;
258 if (!tmp)
259 break;
260 if (tmp == old) {
261 if (release_child || !(tmp->child)) {
262 *p = tmp->sibling;
263 } else {
264 for (chd = tmp->child;; chd = chd->sibling) {
265 chd->parent = tmp->parent;
266 if (!(chd->sibling))
267 break;
268 }
269 *p = tmp->child;
270 chd->sibling = tmp->sibling;
271 }
272 old->parent = NULL;
273 return 0;
274 }
275 p = &tmp->sibling;
276 }
277 return -EINVAL;
278 }
279
280 static void __release_child_resources(struct resource *r)
281 {
282 struct resource *tmp, *p;
283 resource_size_t size;
284
285 p = r->child;
286 r->child = NULL;
287 while (p) {
288 tmp = p;
289 p = p->sibling;
290
291 tmp->parent = NULL;
292 tmp->sibling = NULL;
293 __release_child_resources(tmp);
294
295 printk(KERN_DEBUG "release child resource %pR\n", tmp);
296 /* need to restore size, and keep flags */
297 size = resource_size(tmp);
298 tmp->start = 0;
299 tmp->end = size - 1;
300 }
301 }
302
303 void release_child_resources(struct resource *r)
304 {
305 write_lock(&resource_lock);
306 __release_child_resources(r);
307 write_unlock(&resource_lock);
308 }
309
310 /**
311 * request_resource_conflict - request and reserve an I/O or memory resource
312 * @root: root resource descriptor
313 * @new: resource descriptor desired by caller
314 *
315 * Returns 0 for success, conflict resource on error.
316 */
317 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
318 {
319 struct resource *conflict;
320
321 write_lock(&resource_lock);
322 conflict = __request_resource(root, new);
323 write_unlock(&resource_lock);
324 return conflict;
325 }
326
327 /**
328 * request_resource - request and reserve an I/O or memory resource
329 * @root: root resource descriptor
330 * @new: resource descriptor desired by caller
331 *
332 * Returns 0 for success, negative error code on error.
333 */
334 int request_resource(struct resource *root, struct resource *new)
335 {
336 struct resource *conflict;
337
338 conflict = request_resource_conflict(root, new);
339 return conflict ? -EBUSY : 0;
340 }
341
342 EXPORT_SYMBOL(request_resource);
343
344 /**
345 * release_resource - release a previously reserved resource
346 * @old: resource pointer
347 */
348 int release_resource(struct resource *old)
349 {
350 int retval;
351
352 write_lock(&resource_lock);
353 retval = __release_resource(old, true);
354 write_unlock(&resource_lock);
355 return retval;
356 }
357
358 EXPORT_SYMBOL(release_resource);
359
360 /*
361 * Finds the lowest iomem resource existing within [res->start.res->end).
362 * The caller must specify res->start, res->end, res->flags, and optionally
363 * desc. If found, returns 0, res is overwritten, if not found, returns -1.
364 * This function walks the whole tree and not just first level children until
365 * and unless first_level_children_only is true.
366 */
367 static int find_next_iomem_res(struct resource *res, unsigned long desc,
368 bool first_level_children_only)
369 {
370 resource_size_t start, end;
371 struct resource *p;
372 bool sibling_only = false;
373
374 BUG_ON(!res);
375
376 start = res->start;
377 end = res->end;
378 BUG_ON(start >= end);
379
380 if (first_level_children_only)
381 sibling_only = true;
382
383 read_lock(&resource_lock);
384
385 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
386 if ((p->flags & res->flags) != res->flags)
387 continue;
388 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
389 continue;
390 if (p->start > end) {
391 p = NULL;
392 break;
393 }
394 if ((p->end >= start) && (p->start < end))
395 break;
396 }
397
398 read_unlock(&resource_lock);
399 if (!p)
400 return -1;
401 /* copy data */
402 if (res->start < p->start)
403 res->start = p->start;
404 if (res->end > p->end)
405 res->end = p->end;
406 return 0;
407 }
408
409 /*
410 * Walks through iomem resources and calls func() with matching resource
411 * ranges. This walks through whole tree and not just first level children.
412 * All the memory ranges which overlap start,end and also match flags and
413 * desc are valid candidates.
414 *
415 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
416 * @flags: I/O resource flags
417 * @start: start addr
418 * @end: end addr
419 *
420 * NOTE: For a new descriptor search, define a new IORES_DESC in
421 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
422 */
423 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
424 u64 end, void *arg, int (*func)(u64, u64, void *))
425 {
426 struct resource res;
427 u64 orig_end;
428 int ret = -1;
429
430 res.start = start;
431 res.end = end;
432 res.flags = flags;
433 orig_end = res.end;
434
435 while ((res.start < res.end) &&
436 (!find_next_iomem_res(&res, desc, false))) {
437
438 ret = (*func)(res.start, res.end, arg);
439 if (ret)
440 break;
441
442 res.start = res.end + 1;
443 res.end = orig_end;
444 }
445
446 return ret;
447 }
448
449 /*
450 * This function calls the @func callback against all memory ranges of type
451 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
452 * Now, this function is only for System RAM, it deals with full ranges and
453 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
454 * ranges.
455 */
456 int walk_system_ram_res(u64 start, u64 end, void *arg,
457 int (*func)(u64, u64, void *))
458 {
459 struct resource res;
460 u64 orig_end;
461 int ret = -1;
462
463 res.start = start;
464 res.end = end;
465 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
466 orig_end = res.end;
467 while ((res.start < res.end) &&
468 (!find_next_iomem_res(&res, IORES_DESC_NONE, true))) {
469 ret = (*func)(res.start, res.end, arg);
470 if (ret)
471 break;
472 res.start = res.end + 1;
473 res.end = orig_end;
474 }
475 return ret;
476 }
477
478 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
479
480 /*
481 * This function calls the @func callback against all memory ranges of type
482 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
483 * It is to be used only for System RAM.
484 */
485 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
486 void *arg, int (*func)(unsigned long, unsigned long, void *))
487 {
488 struct resource res;
489 unsigned long pfn, end_pfn;
490 u64 orig_end;
491 int ret = -1;
492
493 res.start = (u64) start_pfn << PAGE_SHIFT;
494 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
495 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
496 orig_end = res.end;
497 while ((res.start < res.end) &&
498 (find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
499 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
500 end_pfn = (res.end + 1) >> PAGE_SHIFT;
501 if (end_pfn > pfn)
502 ret = (*func)(pfn, end_pfn - pfn, arg);
503 if (ret)
504 break;
505 res.start = res.end + 1;
506 res.end = orig_end;
507 }
508 return ret;
509 }
510
511 #endif
512
513 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
514 {
515 return 1;
516 }
517 /*
518 * This generic page_is_ram() returns true if specified address is
519 * registered as System RAM in iomem_resource list.
520 */
521 int __weak page_is_ram(unsigned long pfn)
522 {
523 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
524 }
525 EXPORT_SYMBOL_GPL(page_is_ram);
526
527 /**
528 * region_intersects() - determine intersection of region with known resources
529 * @start: region start address
530 * @size: size of region
531 * @flags: flags of resource (in iomem_resource)
532 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
533 *
534 * Check if the specified region partially overlaps or fully eclipses a
535 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
536 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
537 * return REGION_MIXED if the region overlaps @flags/@desc and another
538 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
539 * and no other defined resource. Note that REGION_INTERSECTS is also
540 * returned in the case when the specified region overlaps RAM and undefined
541 * memory holes.
542 *
543 * region_intersect() is used by memory remapping functions to ensure
544 * the user is not remapping RAM and is a vast speed up over walking
545 * through the resource table page by page.
546 */
547 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
548 unsigned long desc)
549 {
550 resource_size_t end = start + size - 1;
551 int type = 0; int other = 0;
552 struct resource *p;
553
554 read_lock(&resource_lock);
555 for (p = iomem_resource.child; p ; p = p->sibling) {
556 bool is_type = (((p->flags & flags) == flags) &&
557 ((desc == IORES_DESC_NONE) ||
558 (desc == p->desc)));
559
560 if (start >= p->start && start <= p->end)
561 is_type ? type++ : other++;
562 if (end >= p->start && end <= p->end)
563 is_type ? type++ : other++;
564 if (p->start >= start && p->end <= end)
565 is_type ? type++ : other++;
566 }
567 read_unlock(&resource_lock);
568
569 if (other == 0)
570 return type ? REGION_INTERSECTS : REGION_DISJOINT;
571
572 if (type)
573 return REGION_MIXED;
574
575 return REGION_DISJOINT;
576 }
577 EXPORT_SYMBOL_GPL(region_intersects);
578
579 void __weak arch_remove_reservations(struct resource *avail)
580 {
581 }
582
583 static resource_size_t simple_align_resource(void *data,
584 const struct resource *avail,
585 resource_size_t size,
586 resource_size_t align)
587 {
588 return avail->start;
589 }
590
591 static void resource_clip(struct resource *res, resource_size_t min,
592 resource_size_t max)
593 {
594 if (res->start < min)
595 res->start = min;
596 if (res->end > max)
597 res->end = max;
598 }
599
600 /*
601 * Find empty slot in the resource tree with the given range and
602 * alignment constraints
603 */
604 static int __find_resource(struct resource *root, struct resource *old,
605 struct resource *new,
606 resource_size_t size,
607 struct resource_constraint *constraint)
608 {
609 struct resource *this = root->child;
610 struct resource tmp = *new, avail, alloc;
611
612 tmp.start = root->start;
613 /*
614 * Skip past an allocated resource that starts at 0, since the assignment
615 * of this->start - 1 to tmp->end below would cause an underflow.
616 */
617 if (this && this->start == root->start) {
618 tmp.start = (this == old) ? old->start : this->end + 1;
619 this = this->sibling;
620 }
621 for(;;) {
622 if (this)
623 tmp.end = (this == old) ? this->end : this->start - 1;
624 else
625 tmp.end = root->end;
626
627 if (tmp.end < tmp.start)
628 goto next;
629
630 resource_clip(&tmp, constraint->min, constraint->max);
631 arch_remove_reservations(&tmp);
632
633 /* Check for overflow after ALIGN() */
634 avail.start = ALIGN(tmp.start, constraint->align);
635 avail.end = tmp.end;
636 avail.flags = new->flags & ~IORESOURCE_UNSET;
637 if (avail.start >= tmp.start) {
638 alloc.flags = avail.flags;
639 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
640 size, constraint->align);
641 alloc.end = alloc.start + size - 1;
642 if (resource_contains(&avail, &alloc)) {
643 new->start = alloc.start;
644 new->end = alloc.end;
645 return 0;
646 }
647 }
648
649 next: if (!this || this->end == root->end)
650 break;
651
652 if (this != old)
653 tmp.start = this->end + 1;
654 this = this->sibling;
655 }
656 return -EBUSY;
657 }
658
659 /*
660 * Find empty slot in the resource tree given range and alignment.
661 */
662 static int find_resource(struct resource *root, struct resource *new,
663 resource_size_t size,
664 struct resource_constraint *constraint)
665 {
666 return __find_resource(root, NULL, new, size, constraint);
667 }
668
669 /**
670 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
671 * The resource will be relocated if the new size cannot be reallocated in the
672 * current location.
673 *
674 * @root: root resource descriptor
675 * @old: resource descriptor desired by caller
676 * @newsize: new size of the resource descriptor
677 * @constraint: the size and alignment constraints to be met.
678 */
679 static int reallocate_resource(struct resource *root, struct resource *old,
680 resource_size_t newsize,
681 struct resource_constraint *constraint)
682 {
683 int err=0;
684 struct resource new = *old;
685 struct resource *conflict;
686
687 write_lock(&resource_lock);
688
689 if ((err = __find_resource(root, old, &new, newsize, constraint)))
690 goto out;
691
692 if (resource_contains(&new, old)) {
693 old->start = new.start;
694 old->end = new.end;
695 goto out;
696 }
697
698 if (old->child) {
699 err = -EBUSY;
700 goto out;
701 }
702
703 if (resource_contains(old, &new)) {
704 old->start = new.start;
705 old->end = new.end;
706 } else {
707 __release_resource(old, true);
708 *old = new;
709 conflict = __request_resource(root, old);
710 BUG_ON(conflict);
711 }
712 out:
713 write_unlock(&resource_lock);
714 return err;
715 }
716
717
718 /**
719 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
720 * The resource will be reallocated with a new size if it was already allocated
721 * @root: root resource descriptor
722 * @new: resource descriptor desired by caller
723 * @size: requested resource region size
724 * @min: minimum boundary to allocate
725 * @max: maximum boundary to allocate
726 * @align: alignment requested, in bytes
727 * @alignf: alignment function, optional, called if not NULL
728 * @alignf_data: arbitrary data to pass to the @alignf function
729 */
730 int allocate_resource(struct resource *root, struct resource *new,
731 resource_size_t size, resource_size_t min,
732 resource_size_t max, resource_size_t align,
733 resource_size_t (*alignf)(void *,
734 const struct resource *,
735 resource_size_t,
736 resource_size_t),
737 void *alignf_data)
738 {
739 int err;
740 struct resource_constraint constraint;
741
742 if (!alignf)
743 alignf = simple_align_resource;
744
745 constraint.min = min;
746 constraint.max = max;
747 constraint.align = align;
748 constraint.alignf = alignf;
749 constraint.alignf_data = alignf_data;
750
751 if ( new->parent ) {
752 /* resource is already allocated, try reallocating with
753 the new constraints */
754 return reallocate_resource(root, new, size, &constraint);
755 }
756
757 write_lock(&resource_lock);
758 err = find_resource(root, new, size, &constraint);
759 if (err >= 0 && __request_resource(root, new))
760 err = -EBUSY;
761 write_unlock(&resource_lock);
762 return err;
763 }
764
765 EXPORT_SYMBOL(allocate_resource);
766
767 /**
768 * lookup_resource - find an existing resource by a resource start address
769 * @root: root resource descriptor
770 * @start: resource start address
771 *
772 * Returns a pointer to the resource if found, NULL otherwise
773 */
774 struct resource *lookup_resource(struct resource *root, resource_size_t start)
775 {
776 struct resource *res;
777
778 read_lock(&resource_lock);
779 for (res = root->child; res; res = res->sibling) {
780 if (res->start == start)
781 break;
782 }
783 read_unlock(&resource_lock);
784
785 return res;
786 }
787
788 /*
789 * Insert a resource into the resource tree. If successful, return NULL,
790 * otherwise return the conflicting resource (compare to __request_resource())
791 */
792 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
793 {
794 struct resource *first, *next;
795
796 for (;; parent = first) {
797 first = __request_resource(parent, new);
798 if (!first)
799 return first;
800
801 if (first == parent)
802 return first;
803 if (WARN_ON(first == new)) /* duplicated insertion */
804 return first;
805
806 if ((first->start > new->start) || (first->end < new->end))
807 break;
808 if ((first->start == new->start) && (first->end == new->end))
809 break;
810 }
811
812 for (next = first; ; next = next->sibling) {
813 /* Partial overlap? Bad, and unfixable */
814 if (next->start < new->start || next->end > new->end)
815 return next;
816 if (!next->sibling)
817 break;
818 if (next->sibling->start > new->end)
819 break;
820 }
821
822 new->parent = parent;
823 new->sibling = next->sibling;
824 new->child = first;
825
826 next->sibling = NULL;
827 for (next = first; next; next = next->sibling)
828 next->parent = new;
829
830 if (parent->child == first) {
831 parent->child = new;
832 } else {
833 next = parent->child;
834 while (next->sibling != first)
835 next = next->sibling;
836 next->sibling = new;
837 }
838 return NULL;
839 }
840
841 /**
842 * insert_resource_conflict - Inserts resource in the resource tree
843 * @parent: parent of the new resource
844 * @new: new resource to insert
845 *
846 * Returns 0 on success, conflict resource if the resource can't be inserted.
847 *
848 * This function is equivalent to request_resource_conflict when no conflict
849 * happens. If a conflict happens, and the conflicting resources
850 * entirely fit within the range of the new resource, then the new
851 * resource is inserted and the conflicting resources become children of
852 * the new resource.
853 *
854 * This function is intended for producers of resources, such as FW modules
855 * and bus drivers.
856 */
857 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
858 {
859 struct resource *conflict;
860
861 write_lock(&resource_lock);
862 conflict = __insert_resource(parent, new);
863 write_unlock(&resource_lock);
864 return conflict;
865 }
866
867 /**
868 * insert_resource - Inserts a resource in the resource tree
869 * @parent: parent of the new resource
870 * @new: new resource to insert
871 *
872 * Returns 0 on success, -EBUSY if the resource can't be inserted.
873 *
874 * This function is intended for producers of resources, such as FW modules
875 * and bus drivers.
876 */
877 int insert_resource(struct resource *parent, struct resource *new)
878 {
879 struct resource *conflict;
880
881 conflict = insert_resource_conflict(parent, new);
882 return conflict ? -EBUSY : 0;
883 }
884 EXPORT_SYMBOL_GPL(insert_resource);
885
886 /**
887 * insert_resource_expand_to_fit - Insert a resource into the resource tree
888 * @root: root resource descriptor
889 * @new: new resource to insert
890 *
891 * Insert a resource into the resource tree, possibly expanding it in order
892 * to make it encompass any conflicting resources.
893 */
894 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
895 {
896 if (new->parent)
897 return;
898
899 write_lock(&resource_lock);
900 for (;;) {
901 struct resource *conflict;
902
903 conflict = __insert_resource(root, new);
904 if (!conflict)
905 break;
906 if (conflict == root)
907 break;
908
909 /* Ok, expand resource to cover the conflict, then try again .. */
910 if (conflict->start < new->start)
911 new->start = conflict->start;
912 if (conflict->end > new->end)
913 new->end = conflict->end;
914
915 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
916 }
917 write_unlock(&resource_lock);
918 }
919
920 /**
921 * remove_resource - Remove a resource in the resource tree
922 * @old: resource to remove
923 *
924 * Returns 0 on success, -EINVAL if the resource is not valid.
925 *
926 * This function removes a resource previously inserted by insert_resource()
927 * or insert_resource_conflict(), and moves the children (if any) up to
928 * where they were before. insert_resource() and insert_resource_conflict()
929 * insert a new resource, and move any conflicting resources down to the
930 * children of the new resource.
931 *
932 * insert_resource(), insert_resource_conflict() and remove_resource() are
933 * intended for producers of resources, such as FW modules and bus drivers.
934 */
935 int remove_resource(struct resource *old)
936 {
937 int retval;
938
939 write_lock(&resource_lock);
940 retval = __release_resource(old, false);
941 write_unlock(&resource_lock);
942 return retval;
943 }
944 EXPORT_SYMBOL_GPL(remove_resource);
945
946 static int __adjust_resource(struct resource *res, resource_size_t start,
947 resource_size_t size)
948 {
949 struct resource *tmp, *parent = res->parent;
950 resource_size_t end = start + size - 1;
951 int result = -EBUSY;
952
953 if (!parent)
954 goto skip;
955
956 if ((start < parent->start) || (end > parent->end))
957 goto out;
958
959 if (res->sibling && (res->sibling->start <= end))
960 goto out;
961
962 tmp = parent->child;
963 if (tmp != res) {
964 while (tmp->sibling != res)
965 tmp = tmp->sibling;
966 if (start <= tmp->end)
967 goto out;
968 }
969
970 skip:
971 for (tmp = res->child; tmp; tmp = tmp->sibling)
972 if ((tmp->start < start) || (tmp->end > end))
973 goto out;
974
975 res->start = start;
976 res->end = end;
977 result = 0;
978
979 out:
980 return result;
981 }
982
983 /**
984 * adjust_resource - modify a resource's start and size
985 * @res: resource to modify
986 * @start: new start value
987 * @size: new size
988 *
989 * Given an existing resource, change its start and size to match the
990 * arguments. Returns 0 on success, -EBUSY if it can't fit.
991 * Existing children of the resource are assumed to be immutable.
992 */
993 int adjust_resource(struct resource *res, resource_size_t start,
994 resource_size_t size)
995 {
996 int result;
997
998 write_lock(&resource_lock);
999 result = __adjust_resource(res, start, size);
1000 write_unlock(&resource_lock);
1001 return result;
1002 }
1003 EXPORT_SYMBOL(adjust_resource);
1004
1005 static void __init __reserve_region_with_split(struct resource *root,
1006 resource_size_t start, resource_size_t end,
1007 const char *name)
1008 {
1009 struct resource *parent = root;
1010 struct resource *conflict;
1011 struct resource *res = alloc_resource(GFP_ATOMIC);
1012 struct resource *next_res = NULL;
1013
1014 if (!res)
1015 return;
1016
1017 res->name = name;
1018 res->start = start;
1019 res->end = end;
1020 res->flags = IORESOURCE_BUSY;
1021 res->desc = IORES_DESC_NONE;
1022
1023 while (1) {
1024
1025 conflict = __request_resource(parent, res);
1026 if (!conflict) {
1027 if (!next_res)
1028 break;
1029 res = next_res;
1030 next_res = NULL;
1031 continue;
1032 }
1033
1034 /* conflict covered whole area */
1035 if (conflict->start <= res->start &&
1036 conflict->end >= res->end) {
1037 free_resource(res);
1038 WARN_ON(next_res);
1039 break;
1040 }
1041
1042 /* failed, split and try again */
1043 if (conflict->start > res->start) {
1044 end = res->end;
1045 res->end = conflict->start - 1;
1046 if (conflict->end < end) {
1047 next_res = alloc_resource(GFP_ATOMIC);
1048 if (!next_res) {
1049 free_resource(res);
1050 break;
1051 }
1052 next_res->name = name;
1053 next_res->start = conflict->end + 1;
1054 next_res->end = end;
1055 next_res->flags = IORESOURCE_BUSY;
1056 next_res->desc = IORES_DESC_NONE;
1057 }
1058 } else {
1059 res->start = conflict->end + 1;
1060 }
1061 }
1062
1063 }
1064
1065 void __init reserve_region_with_split(struct resource *root,
1066 resource_size_t start, resource_size_t end,
1067 const char *name)
1068 {
1069 int abort = 0;
1070
1071 write_lock(&resource_lock);
1072 if (root->start > start || root->end < end) {
1073 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1074 (unsigned long long)start, (unsigned long long)end,
1075 root);
1076 if (start > root->end || end < root->start)
1077 abort = 1;
1078 else {
1079 if (end > root->end)
1080 end = root->end;
1081 if (start < root->start)
1082 start = root->start;
1083 pr_err("fixing request to [0x%llx-0x%llx]\n",
1084 (unsigned long long)start,
1085 (unsigned long long)end);
1086 }
1087 dump_stack();
1088 }
1089 if (!abort)
1090 __reserve_region_with_split(root, start, end, name);
1091 write_unlock(&resource_lock);
1092 }
1093
1094 /**
1095 * resource_alignment - calculate resource's alignment
1096 * @res: resource pointer
1097 *
1098 * Returns alignment on success, 0 (invalid alignment) on failure.
1099 */
1100 resource_size_t resource_alignment(struct resource *res)
1101 {
1102 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1103 case IORESOURCE_SIZEALIGN:
1104 return resource_size(res);
1105 case IORESOURCE_STARTALIGN:
1106 return res->start;
1107 default:
1108 return 0;
1109 }
1110 }
1111
1112 /*
1113 * This is compatibility stuff for IO resources.
1114 *
1115 * Note how this, unlike the above, knows about
1116 * the IO flag meanings (busy etc).
1117 *
1118 * request_region creates a new busy region.
1119 *
1120 * release_region releases a matching busy region.
1121 */
1122
1123 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1124
1125 /**
1126 * __request_region - create a new busy resource region
1127 * @parent: parent resource descriptor
1128 * @start: resource start address
1129 * @n: resource region size
1130 * @name: reserving caller's ID string
1131 * @flags: IO resource flags
1132 */
1133 struct resource * __request_region(struct resource *parent,
1134 resource_size_t start, resource_size_t n,
1135 const char *name, int flags)
1136 {
1137 DECLARE_WAITQUEUE(wait, current);
1138 struct resource *res = alloc_resource(GFP_KERNEL);
1139
1140 if (!res)
1141 return NULL;
1142
1143 res->name = name;
1144 res->start = start;
1145 res->end = start + n - 1;
1146
1147 write_lock(&resource_lock);
1148
1149 for (;;) {
1150 struct resource *conflict;
1151
1152 res->flags = resource_type(parent) | resource_ext_type(parent);
1153 res->flags |= IORESOURCE_BUSY | flags;
1154 res->desc = parent->desc;
1155
1156 conflict = __request_resource(parent, res);
1157 if (!conflict)
1158 break;
1159 if (conflict != parent) {
1160 if (!(conflict->flags & IORESOURCE_BUSY)) {
1161 parent = conflict;
1162 continue;
1163 }
1164 }
1165 if (conflict->flags & flags & IORESOURCE_MUXED) {
1166 add_wait_queue(&muxed_resource_wait, &wait);
1167 write_unlock(&resource_lock);
1168 set_current_state(TASK_UNINTERRUPTIBLE);
1169 schedule();
1170 remove_wait_queue(&muxed_resource_wait, &wait);
1171 write_lock(&resource_lock);
1172 continue;
1173 }
1174 /* Uhhuh, that didn't work out.. */
1175 free_resource(res);
1176 res = NULL;
1177 break;
1178 }
1179 write_unlock(&resource_lock);
1180 return res;
1181 }
1182 EXPORT_SYMBOL(__request_region);
1183
1184 /**
1185 * __release_region - release a previously reserved resource region
1186 * @parent: parent resource descriptor
1187 * @start: resource start address
1188 * @n: resource region size
1189 *
1190 * The described resource region must match a currently busy region.
1191 */
1192 void __release_region(struct resource *parent, resource_size_t start,
1193 resource_size_t n)
1194 {
1195 struct resource **p;
1196 resource_size_t end;
1197
1198 p = &parent->child;
1199 end = start + n - 1;
1200
1201 write_lock(&resource_lock);
1202
1203 for (;;) {
1204 struct resource *res = *p;
1205
1206 if (!res)
1207 break;
1208 if (res->start <= start && res->end >= end) {
1209 if (!(res->flags & IORESOURCE_BUSY)) {
1210 p = &res->child;
1211 continue;
1212 }
1213 if (res->start != start || res->end != end)
1214 break;
1215 *p = res->sibling;
1216 write_unlock(&resource_lock);
1217 if (res->flags & IORESOURCE_MUXED)
1218 wake_up(&muxed_resource_wait);
1219 free_resource(res);
1220 return;
1221 }
1222 p = &res->sibling;
1223 }
1224
1225 write_unlock(&resource_lock);
1226
1227 printk(KERN_WARNING "Trying to free nonexistent resource "
1228 "<%016llx-%016llx>\n", (unsigned long long)start,
1229 (unsigned long long)end);
1230 }
1231 EXPORT_SYMBOL(__release_region);
1232
1233 #ifdef CONFIG_MEMORY_HOTREMOVE
1234 /**
1235 * release_mem_region_adjustable - release a previously reserved memory region
1236 * @parent: parent resource descriptor
1237 * @start: resource start address
1238 * @size: resource region size
1239 *
1240 * This interface is intended for memory hot-delete. The requested region
1241 * is released from a currently busy memory resource. The requested region
1242 * must either match exactly or fit into a single busy resource entry. In
1243 * the latter case, the remaining resource is adjusted accordingly.
1244 * Existing children of the busy memory resource must be immutable in the
1245 * request.
1246 *
1247 * Note:
1248 * - Additional release conditions, such as overlapping region, can be
1249 * supported after they are confirmed as valid cases.
1250 * - When a busy memory resource gets split into two entries, the code
1251 * assumes that all children remain in the lower address entry for
1252 * simplicity. Enhance this logic when necessary.
1253 */
1254 int release_mem_region_adjustable(struct resource *parent,
1255 resource_size_t start, resource_size_t size)
1256 {
1257 struct resource **p;
1258 struct resource *res;
1259 struct resource *new_res;
1260 resource_size_t end;
1261 int ret = -EINVAL;
1262
1263 end = start + size - 1;
1264 if ((start < parent->start) || (end > parent->end))
1265 return ret;
1266
1267 /* The alloc_resource() result gets checked later */
1268 new_res = alloc_resource(GFP_KERNEL);
1269
1270 p = &parent->child;
1271 write_lock(&resource_lock);
1272
1273 while ((res = *p)) {
1274 if (res->start >= end)
1275 break;
1276
1277 /* look for the next resource if it does not fit into */
1278 if (res->start > start || res->end < end) {
1279 p = &res->sibling;
1280 continue;
1281 }
1282
1283 if (!(res->flags & IORESOURCE_MEM))
1284 break;
1285
1286 if (!(res->flags & IORESOURCE_BUSY)) {
1287 p = &res->child;
1288 continue;
1289 }
1290
1291 /* found the target resource; let's adjust accordingly */
1292 if (res->start == start && res->end == end) {
1293 /* free the whole entry */
1294 *p = res->sibling;
1295 free_resource(res);
1296 ret = 0;
1297 } else if (res->start == start && res->end != end) {
1298 /* adjust the start */
1299 ret = __adjust_resource(res, end + 1,
1300 res->end - end);
1301 } else if (res->start != start && res->end == end) {
1302 /* adjust the end */
1303 ret = __adjust_resource(res, res->start,
1304 start - res->start);
1305 } else {
1306 /* split into two entries */
1307 if (!new_res) {
1308 ret = -ENOMEM;
1309 break;
1310 }
1311 new_res->name = res->name;
1312 new_res->start = end + 1;
1313 new_res->end = res->end;
1314 new_res->flags = res->flags;
1315 new_res->desc = res->desc;
1316 new_res->parent = res->parent;
1317 new_res->sibling = res->sibling;
1318 new_res->child = NULL;
1319
1320 ret = __adjust_resource(res, res->start,
1321 start - res->start);
1322 if (ret)
1323 break;
1324 res->sibling = new_res;
1325 new_res = NULL;
1326 }
1327
1328 break;
1329 }
1330
1331 write_unlock(&resource_lock);
1332 free_resource(new_res);
1333 return ret;
1334 }
1335 #endif /* CONFIG_MEMORY_HOTREMOVE */
1336
1337 /*
1338 * Managed region resource
1339 */
1340 static void devm_resource_release(struct device *dev, void *ptr)
1341 {
1342 struct resource **r = ptr;
1343
1344 release_resource(*r);
1345 }
1346
1347 /**
1348 * devm_request_resource() - request and reserve an I/O or memory resource
1349 * @dev: device for which to request the resource
1350 * @root: root of the resource tree from which to request the resource
1351 * @new: descriptor of the resource to request
1352 *
1353 * This is a device-managed version of request_resource(). There is usually
1354 * no need to release resources requested by this function explicitly since
1355 * that will be taken care of when the device is unbound from its driver.
1356 * If for some reason the resource needs to be released explicitly, because
1357 * of ordering issues for example, drivers must call devm_release_resource()
1358 * rather than the regular release_resource().
1359 *
1360 * When a conflict is detected between any existing resources and the newly
1361 * requested resource, an error message will be printed.
1362 *
1363 * Returns 0 on success or a negative error code on failure.
1364 */
1365 int devm_request_resource(struct device *dev, struct resource *root,
1366 struct resource *new)
1367 {
1368 struct resource *conflict, **ptr;
1369
1370 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1371 if (!ptr)
1372 return -ENOMEM;
1373
1374 *ptr = new;
1375
1376 conflict = request_resource_conflict(root, new);
1377 if (conflict) {
1378 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1379 new, conflict->name, conflict);
1380 devres_free(ptr);
1381 return -EBUSY;
1382 }
1383
1384 devres_add(dev, ptr);
1385 return 0;
1386 }
1387 EXPORT_SYMBOL(devm_request_resource);
1388
1389 static int devm_resource_match(struct device *dev, void *res, void *data)
1390 {
1391 struct resource **ptr = res;
1392
1393 return *ptr == data;
1394 }
1395
1396 /**
1397 * devm_release_resource() - release a previously requested resource
1398 * @dev: device for which to release the resource
1399 * @new: descriptor of the resource to release
1400 *
1401 * Releases a resource previously requested using devm_request_resource().
1402 */
1403 void devm_release_resource(struct device *dev, struct resource *new)
1404 {
1405 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1406 new));
1407 }
1408 EXPORT_SYMBOL(devm_release_resource);
1409
1410 struct region_devres {
1411 struct resource *parent;
1412 resource_size_t start;
1413 resource_size_t n;
1414 };
1415
1416 static void devm_region_release(struct device *dev, void *res)
1417 {
1418 struct region_devres *this = res;
1419
1420 __release_region(this->parent, this->start, this->n);
1421 }
1422
1423 static int devm_region_match(struct device *dev, void *res, void *match_data)
1424 {
1425 struct region_devres *this = res, *match = match_data;
1426
1427 return this->parent == match->parent &&
1428 this->start == match->start && this->n == match->n;
1429 }
1430
1431 struct resource * __devm_request_region(struct device *dev,
1432 struct resource *parent, resource_size_t start,
1433 resource_size_t n, const char *name)
1434 {
1435 struct region_devres *dr = NULL;
1436 struct resource *res;
1437
1438 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1439 GFP_KERNEL);
1440 if (!dr)
1441 return NULL;
1442
1443 dr->parent = parent;
1444 dr->start = start;
1445 dr->n = n;
1446
1447 res = __request_region(parent, start, n, name, 0);
1448 if (res)
1449 devres_add(dev, dr);
1450 else
1451 devres_free(dr);
1452
1453 return res;
1454 }
1455 EXPORT_SYMBOL(__devm_request_region);
1456
1457 void __devm_release_region(struct device *dev, struct resource *parent,
1458 resource_size_t start, resource_size_t n)
1459 {
1460 struct region_devres match_data = { parent, start, n };
1461
1462 __release_region(parent, start, n);
1463 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1464 &match_data));
1465 }
1466 EXPORT_SYMBOL(__devm_release_region);
1467
1468 /*
1469 * Called from init/main.c to reserve IO ports.
1470 */
1471 #define MAXRESERVE 4
1472 static int __init reserve_setup(char *str)
1473 {
1474 static int reserved;
1475 static struct resource reserve[MAXRESERVE];
1476
1477 for (;;) {
1478 unsigned int io_start, io_num;
1479 int x = reserved;
1480
1481 if (get_option (&str, &io_start) != 2)
1482 break;
1483 if (get_option (&str, &io_num) == 0)
1484 break;
1485 if (x < MAXRESERVE) {
1486 struct resource *res = reserve + x;
1487 res->name = "reserved";
1488 res->start = io_start;
1489 res->end = io_start + io_num - 1;
1490 res->flags = IORESOURCE_BUSY;
1491 res->desc = IORES_DESC_NONE;
1492 res->child = NULL;
1493 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1494 reserved = x+1;
1495 }
1496 }
1497 return 1;
1498 }
1499
1500 __setup("reserve=", reserve_setup);
1501
1502 /*
1503 * Check if the requested addr and size spans more than any slot in the
1504 * iomem resource tree.
1505 */
1506 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1507 {
1508 struct resource *p = &iomem_resource;
1509 int err = 0;
1510 loff_t l;
1511
1512 read_lock(&resource_lock);
1513 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1514 /*
1515 * We can probably skip the resources without
1516 * IORESOURCE_IO attribute?
1517 */
1518 if (p->start >= addr + size)
1519 continue;
1520 if (p->end < addr)
1521 continue;
1522 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1523 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1524 continue;
1525 /*
1526 * if a resource is "BUSY", it's not a hardware resource
1527 * but a driver mapping of such a resource; we don't want
1528 * to warn for those; some drivers legitimately map only
1529 * partial hardware resources. (example: vesafb)
1530 */
1531 if (p->flags & IORESOURCE_BUSY)
1532 continue;
1533
1534 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1535 (unsigned long long)addr,
1536 (unsigned long long)(addr + size - 1),
1537 p->name, p);
1538 err = -1;
1539 break;
1540 }
1541 read_unlock(&resource_lock);
1542
1543 return err;
1544 }
1545
1546 #ifdef CONFIG_STRICT_DEVMEM
1547 static int strict_iomem_checks = 1;
1548 #else
1549 static int strict_iomem_checks;
1550 #endif
1551
1552 /*
1553 * check if an address is reserved in the iomem resource tree
1554 * returns 1 if reserved, 0 if not reserved.
1555 */
1556 int iomem_is_exclusive(u64 addr)
1557 {
1558 struct resource *p = &iomem_resource;
1559 int err = 0;
1560 loff_t l;
1561 int size = PAGE_SIZE;
1562
1563 if (!strict_iomem_checks)
1564 return 0;
1565
1566 addr = addr & PAGE_MASK;
1567
1568 read_lock(&resource_lock);
1569 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1570 /*
1571 * We can probably skip the resources without
1572 * IORESOURCE_IO attribute?
1573 */
1574 if (p->start >= addr + size)
1575 break;
1576 if (p->end < addr)
1577 continue;
1578 /*
1579 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1580 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1581 * resource is busy.
1582 */
1583 if ((p->flags & IORESOURCE_BUSY) == 0)
1584 continue;
1585 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1586 || p->flags & IORESOURCE_EXCLUSIVE) {
1587 err = 1;
1588 break;
1589 }
1590 }
1591 read_unlock(&resource_lock);
1592
1593 return err;
1594 }
1595
1596 struct resource_entry *resource_list_create_entry(struct resource *res,
1597 size_t extra_size)
1598 {
1599 struct resource_entry *entry;
1600
1601 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1602 if (entry) {
1603 INIT_LIST_HEAD(&entry->node);
1604 entry->res = res ? res : &entry->__res;
1605 }
1606
1607 return entry;
1608 }
1609 EXPORT_SYMBOL(resource_list_create_entry);
1610
1611 void resource_list_free(struct list_head *head)
1612 {
1613 struct resource_entry *entry, *tmp;
1614
1615 list_for_each_entry_safe(entry, tmp, head, node)
1616 resource_list_destroy_entry(entry);
1617 }
1618 EXPORT_SYMBOL(resource_list_free);
1619
1620 static int __init strict_iomem(char *str)
1621 {
1622 if (strstr(str, "relaxed"))
1623 strict_iomem_checks = 0;
1624 if (strstr(str, "strict"))
1625 strict_iomem_checks = 1;
1626 return 1;
1627 }
1628
1629 __setup("iomem=", strict_iomem);