]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/resource.c
Merge branch 'printk-rework' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / kernel / resource.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/device.h>
24 #include <linux/pfn.h>
25 #include <linux/mm.h>
26 #include <linux/resource_ext.h>
27 #include <asm/io.h>
28
29
30 struct resource ioport_resource = {
31 .name = "PCI IO",
32 .start = 0,
33 .end = IO_SPACE_LIMIT,
34 .flags = IORESOURCE_IO,
35 };
36 EXPORT_SYMBOL(ioport_resource);
37
38 struct resource iomem_resource = {
39 .name = "PCI mem",
40 .start = 0,
41 .end = -1,
42 .flags = IORESOURCE_MEM,
43 };
44 EXPORT_SYMBOL(iomem_resource);
45
46 /* constraints to be met while allocating resources */
47 struct resource_constraint {
48 resource_size_t min, max, align;
49 resource_size_t (*alignf)(void *, const struct resource *,
50 resource_size_t, resource_size_t);
51 void *alignf_data;
52 };
53
54 static DEFINE_RWLOCK(resource_lock);
55
56 /*
57 * For memory hotplug, there is no way to free resource entries allocated
58 * by boot mem after the system is up. So for reusing the resource entry
59 * we need to remember the resource.
60 */
61 static struct resource *bootmem_resource_free;
62 static DEFINE_SPINLOCK(bootmem_resource_lock);
63
64 static struct resource *next_resource(struct resource *p, bool sibling_only)
65 {
66 /* Caller wants to traverse through siblings only */
67 if (sibling_only)
68 return p->sibling;
69
70 if (p->child)
71 return p->child;
72 while (!p->sibling && p->parent)
73 p = p->parent;
74 return p->sibling;
75 }
76
77 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
78 {
79 struct resource *p = v;
80 (*pos)++;
81 return (void *)next_resource(p, false);
82 }
83
84 #ifdef CONFIG_PROC_FS
85
86 enum { MAX_IORES_LEVEL = 5 };
87
88 static void *r_start(struct seq_file *m, loff_t *pos)
89 __acquires(resource_lock)
90 {
91 struct resource *p = PDE_DATA(file_inode(m->file));
92 loff_t l = 0;
93 read_lock(&resource_lock);
94 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
95 ;
96 return p;
97 }
98
99 static void r_stop(struct seq_file *m, void *v)
100 __releases(resource_lock)
101 {
102 read_unlock(&resource_lock);
103 }
104
105 static int r_show(struct seq_file *m, void *v)
106 {
107 struct resource *root = PDE_DATA(file_inode(m->file));
108 struct resource *r = v, *p;
109 unsigned long long start, end;
110 int width = root->end < 0x10000 ? 4 : 8;
111 int depth;
112
113 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
114 if (p->parent == root)
115 break;
116
117 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
118 start = r->start;
119 end = r->end;
120 } else {
121 start = end = 0;
122 }
123
124 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
125 depth * 2, "",
126 width, start,
127 width, end,
128 r->name ? r->name : "<BAD>");
129 return 0;
130 }
131
132 static const struct seq_operations resource_op = {
133 .start = r_start,
134 .next = r_next,
135 .stop = r_stop,
136 .show = r_show,
137 };
138
139 static int __init ioresources_init(void)
140 {
141 proc_create_seq_data("ioports", 0, NULL, &resource_op,
142 &ioport_resource);
143 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
144 return 0;
145 }
146 __initcall(ioresources_init);
147
148 #endif /* CONFIG_PROC_FS */
149
150 static void free_resource(struct resource *res)
151 {
152 if (!res)
153 return;
154
155 if (!PageSlab(virt_to_head_page(res))) {
156 spin_lock(&bootmem_resource_lock);
157 res->sibling = bootmem_resource_free;
158 bootmem_resource_free = res;
159 spin_unlock(&bootmem_resource_lock);
160 } else {
161 kfree(res);
162 }
163 }
164
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 struct resource *res = NULL;
168
169 spin_lock(&bootmem_resource_lock);
170 if (bootmem_resource_free) {
171 res = bootmem_resource_free;
172 bootmem_resource_free = res->sibling;
173 }
174 spin_unlock(&bootmem_resource_lock);
175
176 if (res)
177 memset(res, 0, sizeof(struct resource));
178 else
179 res = kzalloc(sizeof(struct resource), flags);
180
181 return res;
182 }
183
184 /* Return the conflict entry if you can't request it */
185 static struct resource * __request_resource(struct resource *root, struct resource *new)
186 {
187 resource_size_t start = new->start;
188 resource_size_t end = new->end;
189 struct resource *tmp, **p;
190
191 if (end < start)
192 return root;
193 if (start < root->start)
194 return root;
195 if (end > root->end)
196 return root;
197 p = &root->child;
198 for (;;) {
199 tmp = *p;
200 if (!tmp || tmp->start > end) {
201 new->sibling = tmp;
202 *p = new;
203 new->parent = root;
204 return NULL;
205 }
206 p = &tmp->sibling;
207 if (tmp->end < start)
208 continue;
209 return tmp;
210 }
211 }
212
213 static int __release_resource(struct resource *old, bool release_child)
214 {
215 struct resource *tmp, **p, *chd;
216
217 p = &old->parent->child;
218 for (;;) {
219 tmp = *p;
220 if (!tmp)
221 break;
222 if (tmp == old) {
223 if (release_child || !(tmp->child)) {
224 *p = tmp->sibling;
225 } else {
226 for (chd = tmp->child;; chd = chd->sibling) {
227 chd->parent = tmp->parent;
228 if (!(chd->sibling))
229 break;
230 }
231 *p = tmp->child;
232 chd->sibling = tmp->sibling;
233 }
234 old->parent = NULL;
235 return 0;
236 }
237 p = &tmp->sibling;
238 }
239 return -EINVAL;
240 }
241
242 static void __release_child_resources(struct resource *r)
243 {
244 struct resource *tmp, *p;
245 resource_size_t size;
246
247 p = r->child;
248 r->child = NULL;
249 while (p) {
250 tmp = p;
251 p = p->sibling;
252
253 tmp->parent = NULL;
254 tmp->sibling = NULL;
255 __release_child_resources(tmp);
256
257 printk(KERN_DEBUG "release child resource %pR\n", tmp);
258 /* need to restore size, and keep flags */
259 size = resource_size(tmp);
260 tmp->start = 0;
261 tmp->end = size - 1;
262 }
263 }
264
265 void release_child_resources(struct resource *r)
266 {
267 write_lock(&resource_lock);
268 __release_child_resources(r);
269 write_unlock(&resource_lock);
270 }
271
272 /**
273 * request_resource_conflict - request and reserve an I/O or memory resource
274 * @root: root resource descriptor
275 * @new: resource descriptor desired by caller
276 *
277 * Returns 0 for success, conflict resource on error.
278 */
279 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
280 {
281 struct resource *conflict;
282
283 write_lock(&resource_lock);
284 conflict = __request_resource(root, new);
285 write_unlock(&resource_lock);
286 return conflict;
287 }
288
289 /**
290 * request_resource - request and reserve an I/O or memory resource
291 * @root: root resource descriptor
292 * @new: resource descriptor desired by caller
293 *
294 * Returns 0 for success, negative error code on error.
295 */
296 int request_resource(struct resource *root, struct resource *new)
297 {
298 struct resource *conflict;
299
300 conflict = request_resource_conflict(root, new);
301 return conflict ? -EBUSY : 0;
302 }
303
304 EXPORT_SYMBOL(request_resource);
305
306 /**
307 * release_resource - release a previously reserved resource
308 * @old: resource pointer
309 */
310 int release_resource(struct resource *old)
311 {
312 int retval;
313
314 write_lock(&resource_lock);
315 retval = __release_resource(old, true);
316 write_unlock(&resource_lock);
317 return retval;
318 }
319
320 EXPORT_SYMBOL(release_resource);
321
322 /**
323 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
324 * [@start..@end].
325 *
326 * If a resource is found, returns 0 and @*res is overwritten with the part
327 * of the resource that's within [@start..@end]; if none is found, returns
328 * -ENODEV. Returns -EINVAL for invalid parameters.
329 *
330 * This function walks the whole tree and not just first level children
331 * unless @first_lvl is true.
332 *
333 * @start: start address of the resource searched for
334 * @end: end address of same resource
335 * @flags: flags which the resource must have
336 * @desc: descriptor the resource must have
337 * @first_lvl: walk only the first level children, if set
338 * @res: return ptr, if resource found
339 *
340 * The caller must specify @start, @end, @flags, and @desc
341 * (which may be IORES_DESC_NONE).
342 */
343 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
344 unsigned long flags, unsigned long desc,
345 bool first_lvl, struct resource *res)
346 {
347 bool siblings_only = true;
348 struct resource *p;
349
350 if (!res)
351 return -EINVAL;
352
353 if (start >= end)
354 return -EINVAL;
355
356 read_lock(&resource_lock);
357
358 for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
359 /* If we passed the resource we are looking for, stop */
360 if (p->start > end) {
361 p = NULL;
362 break;
363 }
364
365 /* Skip until we find a range that matches what we look for */
366 if (p->end < start)
367 continue;
368
369 /*
370 * Now that we found a range that matches what we look for,
371 * check the flags and the descriptor. If we were not asked to
372 * use only the first level, start looking at children as well.
373 */
374 siblings_only = first_lvl;
375
376 if ((p->flags & flags) != flags)
377 continue;
378 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
379 continue;
380
381 /* Found a match, break */
382 break;
383 }
384
385 if (p) {
386 /* copy data */
387 *res = (struct resource) {
388 .start = max(start, p->start),
389 .end = min(end, p->end),
390 .flags = p->flags,
391 .desc = p->desc,
392 .parent = p->parent,
393 };
394 }
395
396 read_unlock(&resource_lock);
397 return p ? 0 : -ENODEV;
398 }
399
400 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
401 unsigned long flags, unsigned long desc,
402 bool first_lvl, void *arg,
403 int (*func)(struct resource *, void *))
404 {
405 struct resource res;
406 int ret = -EINVAL;
407
408 while (start < end &&
409 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
410 ret = (*func)(&res, arg);
411 if (ret)
412 break;
413
414 start = res.end + 1;
415 }
416
417 return ret;
418 }
419
420 /**
421 * walk_iomem_res_desc - Walks through iomem resources and calls func()
422 * with matching resource ranges.
423 * *
424 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
425 * @flags: I/O resource flags
426 * @start: start addr
427 * @end: end addr
428 * @arg: function argument for the callback @func
429 * @func: callback function that is called for each qualifying resource area
430 *
431 * This walks through whole tree and not just first level children.
432 * All the memory ranges which overlap start,end and also match flags and
433 * desc are valid candidates.
434 *
435 * NOTE: For a new descriptor search, define a new IORES_DESC in
436 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
437 */
438 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
439 u64 end, void *arg, int (*func)(struct resource *, void *))
440 {
441 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
442 }
443 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
444
445 /*
446 * This function calls the @func callback against all memory ranges of type
447 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
448 * Now, this function is only for System RAM, it deals with full ranges and
449 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
450 * ranges.
451 */
452 int walk_system_ram_res(u64 start, u64 end, void *arg,
453 int (*func)(struct resource *, void *))
454 {
455 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
456
457 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
458 arg, func);
459 }
460
461 /*
462 * This function calls the @func callback against all memory ranges, which
463 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
464 */
465 int walk_mem_res(u64 start, u64 end, void *arg,
466 int (*func)(struct resource *, void *))
467 {
468 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
469
470 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
471 arg, func);
472 }
473
474 /*
475 * This function calls the @func callback against all memory ranges of type
476 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
477 * It is to be used only for System RAM.
478 *
479 * This will find System RAM ranges that are children of top-level resources
480 * in addition to top-level System RAM resources.
481 */
482 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
483 void *arg, int (*func)(unsigned long, unsigned long, void *))
484 {
485 resource_size_t start, end;
486 unsigned long flags;
487 struct resource res;
488 unsigned long pfn, end_pfn;
489 int ret = -EINVAL;
490
491 start = (u64) start_pfn << PAGE_SHIFT;
492 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
493 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
494 while (start < end &&
495 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
496 false, &res)) {
497 pfn = PFN_UP(res.start);
498 end_pfn = PFN_DOWN(res.end + 1);
499 if (end_pfn > pfn)
500 ret = (*func)(pfn, end_pfn - pfn, arg);
501 if (ret)
502 break;
503 start = res.end + 1;
504 }
505 return ret;
506 }
507
508 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
509 {
510 return 1;
511 }
512
513 /*
514 * This generic page_is_ram() returns true if specified address is
515 * registered as System RAM in iomem_resource list.
516 */
517 int __weak page_is_ram(unsigned long pfn)
518 {
519 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
520 }
521 EXPORT_SYMBOL_GPL(page_is_ram);
522
523 /**
524 * region_intersects() - determine intersection of region with known resources
525 * @start: region start address
526 * @size: size of region
527 * @flags: flags of resource (in iomem_resource)
528 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
529 *
530 * Check if the specified region partially overlaps or fully eclipses a
531 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
532 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
533 * return REGION_MIXED if the region overlaps @flags/@desc and another
534 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
535 * and no other defined resource. Note that REGION_INTERSECTS is also
536 * returned in the case when the specified region overlaps RAM and undefined
537 * memory holes.
538 *
539 * region_intersect() is used by memory remapping functions to ensure
540 * the user is not remapping RAM and is a vast speed up over walking
541 * through the resource table page by page.
542 */
543 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
544 unsigned long desc)
545 {
546 struct resource res;
547 int type = 0; int other = 0;
548 struct resource *p;
549
550 res.start = start;
551 res.end = start + size - 1;
552
553 read_lock(&resource_lock);
554 for (p = iomem_resource.child; p ; p = p->sibling) {
555 bool is_type = (((p->flags & flags) == flags) &&
556 ((desc == IORES_DESC_NONE) ||
557 (desc == p->desc)));
558
559 if (resource_overlaps(p, &res))
560 is_type ? type++ : other++;
561 }
562 read_unlock(&resource_lock);
563
564 if (type == 0)
565 return REGION_DISJOINT;
566
567 if (other == 0)
568 return REGION_INTERSECTS;
569
570 return REGION_MIXED;
571 }
572 EXPORT_SYMBOL_GPL(region_intersects);
573
574 void __weak arch_remove_reservations(struct resource *avail)
575 {
576 }
577
578 static resource_size_t simple_align_resource(void *data,
579 const struct resource *avail,
580 resource_size_t size,
581 resource_size_t align)
582 {
583 return avail->start;
584 }
585
586 static void resource_clip(struct resource *res, resource_size_t min,
587 resource_size_t max)
588 {
589 if (res->start < min)
590 res->start = min;
591 if (res->end > max)
592 res->end = max;
593 }
594
595 /*
596 * Find empty slot in the resource tree with the given range and
597 * alignment constraints
598 */
599 static int __find_resource(struct resource *root, struct resource *old,
600 struct resource *new,
601 resource_size_t size,
602 struct resource_constraint *constraint)
603 {
604 struct resource *this = root->child;
605 struct resource tmp = *new, avail, alloc;
606
607 tmp.start = root->start;
608 /*
609 * Skip past an allocated resource that starts at 0, since the assignment
610 * of this->start - 1 to tmp->end below would cause an underflow.
611 */
612 if (this && this->start == root->start) {
613 tmp.start = (this == old) ? old->start : this->end + 1;
614 this = this->sibling;
615 }
616 for(;;) {
617 if (this)
618 tmp.end = (this == old) ? this->end : this->start - 1;
619 else
620 tmp.end = root->end;
621
622 if (tmp.end < tmp.start)
623 goto next;
624
625 resource_clip(&tmp, constraint->min, constraint->max);
626 arch_remove_reservations(&tmp);
627
628 /* Check for overflow after ALIGN() */
629 avail.start = ALIGN(tmp.start, constraint->align);
630 avail.end = tmp.end;
631 avail.flags = new->flags & ~IORESOURCE_UNSET;
632 if (avail.start >= tmp.start) {
633 alloc.flags = avail.flags;
634 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
635 size, constraint->align);
636 alloc.end = alloc.start + size - 1;
637 if (alloc.start <= alloc.end &&
638 resource_contains(&avail, &alloc)) {
639 new->start = alloc.start;
640 new->end = alloc.end;
641 return 0;
642 }
643 }
644
645 next: if (!this || this->end == root->end)
646 break;
647
648 if (this != old)
649 tmp.start = this->end + 1;
650 this = this->sibling;
651 }
652 return -EBUSY;
653 }
654
655 /*
656 * Find empty slot in the resource tree given range and alignment.
657 */
658 static int find_resource(struct resource *root, struct resource *new,
659 resource_size_t size,
660 struct resource_constraint *constraint)
661 {
662 return __find_resource(root, NULL, new, size, constraint);
663 }
664
665 /**
666 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
667 * The resource will be relocated if the new size cannot be reallocated in the
668 * current location.
669 *
670 * @root: root resource descriptor
671 * @old: resource descriptor desired by caller
672 * @newsize: new size of the resource descriptor
673 * @constraint: the size and alignment constraints to be met.
674 */
675 static int reallocate_resource(struct resource *root, struct resource *old,
676 resource_size_t newsize,
677 struct resource_constraint *constraint)
678 {
679 int err=0;
680 struct resource new = *old;
681 struct resource *conflict;
682
683 write_lock(&resource_lock);
684
685 if ((err = __find_resource(root, old, &new, newsize, constraint)))
686 goto out;
687
688 if (resource_contains(&new, old)) {
689 old->start = new.start;
690 old->end = new.end;
691 goto out;
692 }
693
694 if (old->child) {
695 err = -EBUSY;
696 goto out;
697 }
698
699 if (resource_contains(old, &new)) {
700 old->start = new.start;
701 old->end = new.end;
702 } else {
703 __release_resource(old, true);
704 *old = new;
705 conflict = __request_resource(root, old);
706 BUG_ON(conflict);
707 }
708 out:
709 write_unlock(&resource_lock);
710 return err;
711 }
712
713
714 /**
715 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
716 * The resource will be reallocated with a new size if it was already allocated
717 * @root: root resource descriptor
718 * @new: resource descriptor desired by caller
719 * @size: requested resource region size
720 * @min: minimum boundary to allocate
721 * @max: maximum boundary to allocate
722 * @align: alignment requested, in bytes
723 * @alignf: alignment function, optional, called if not NULL
724 * @alignf_data: arbitrary data to pass to the @alignf function
725 */
726 int allocate_resource(struct resource *root, struct resource *new,
727 resource_size_t size, resource_size_t min,
728 resource_size_t max, resource_size_t align,
729 resource_size_t (*alignf)(void *,
730 const struct resource *,
731 resource_size_t,
732 resource_size_t),
733 void *alignf_data)
734 {
735 int err;
736 struct resource_constraint constraint;
737
738 if (!alignf)
739 alignf = simple_align_resource;
740
741 constraint.min = min;
742 constraint.max = max;
743 constraint.align = align;
744 constraint.alignf = alignf;
745 constraint.alignf_data = alignf_data;
746
747 if ( new->parent ) {
748 /* resource is already allocated, try reallocating with
749 the new constraints */
750 return reallocate_resource(root, new, size, &constraint);
751 }
752
753 write_lock(&resource_lock);
754 err = find_resource(root, new, size, &constraint);
755 if (err >= 0 && __request_resource(root, new))
756 err = -EBUSY;
757 write_unlock(&resource_lock);
758 return err;
759 }
760
761 EXPORT_SYMBOL(allocate_resource);
762
763 /**
764 * lookup_resource - find an existing resource by a resource start address
765 * @root: root resource descriptor
766 * @start: resource start address
767 *
768 * Returns a pointer to the resource if found, NULL otherwise
769 */
770 struct resource *lookup_resource(struct resource *root, resource_size_t start)
771 {
772 struct resource *res;
773
774 read_lock(&resource_lock);
775 for (res = root->child; res; res = res->sibling) {
776 if (res->start == start)
777 break;
778 }
779 read_unlock(&resource_lock);
780
781 return res;
782 }
783
784 /*
785 * Insert a resource into the resource tree. If successful, return NULL,
786 * otherwise return the conflicting resource (compare to __request_resource())
787 */
788 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
789 {
790 struct resource *first, *next;
791
792 for (;; parent = first) {
793 first = __request_resource(parent, new);
794 if (!first)
795 return first;
796
797 if (first == parent)
798 return first;
799 if (WARN_ON(first == new)) /* duplicated insertion */
800 return first;
801
802 if ((first->start > new->start) || (first->end < new->end))
803 break;
804 if ((first->start == new->start) && (first->end == new->end))
805 break;
806 }
807
808 for (next = first; ; next = next->sibling) {
809 /* Partial overlap? Bad, and unfixable */
810 if (next->start < new->start || next->end > new->end)
811 return next;
812 if (!next->sibling)
813 break;
814 if (next->sibling->start > new->end)
815 break;
816 }
817
818 new->parent = parent;
819 new->sibling = next->sibling;
820 new->child = first;
821
822 next->sibling = NULL;
823 for (next = first; next; next = next->sibling)
824 next->parent = new;
825
826 if (parent->child == first) {
827 parent->child = new;
828 } else {
829 next = parent->child;
830 while (next->sibling != first)
831 next = next->sibling;
832 next->sibling = new;
833 }
834 return NULL;
835 }
836
837 /**
838 * insert_resource_conflict - Inserts resource in the resource tree
839 * @parent: parent of the new resource
840 * @new: new resource to insert
841 *
842 * Returns 0 on success, conflict resource if the resource can't be inserted.
843 *
844 * This function is equivalent to request_resource_conflict when no conflict
845 * happens. If a conflict happens, and the conflicting resources
846 * entirely fit within the range of the new resource, then the new
847 * resource is inserted and the conflicting resources become children of
848 * the new resource.
849 *
850 * This function is intended for producers of resources, such as FW modules
851 * and bus drivers.
852 */
853 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
854 {
855 struct resource *conflict;
856
857 write_lock(&resource_lock);
858 conflict = __insert_resource(parent, new);
859 write_unlock(&resource_lock);
860 return conflict;
861 }
862
863 /**
864 * insert_resource - Inserts a resource in the resource tree
865 * @parent: parent of the new resource
866 * @new: new resource to insert
867 *
868 * Returns 0 on success, -EBUSY if the resource can't be inserted.
869 *
870 * This function is intended for producers of resources, such as FW modules
871 * and bus drivers.
872 */
873 int insert_resource(struct resource *parent, struct resource *new)
874 {
875 struct resource *conflict;
876
877 conflict = insert_resource_conflict(parent, new);
878 return conflict ? -EBUSY : 0;
879 }
880 EXPORT_SYMBOL_GPL(insert_resource);
881
882 /**
883 * insert_resource_expand_to_fit - Insert a resource into the resource tree
884 * @root: root resource descriptor
885 * @new: new resource to insert
886 *
887 * Insert a resource into the resource tree, possibly expanding it in order
888 * to make it encompass any conflicting resources.
889 */
890 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
891 {
892 if (new->parent)
893 return;
894
895 write_lock(&resource_lock);
896 for (;;) {
897 struct resource *conflict;
898
899 conflict = __insert_resource(root, new);
900 if (!conflict)
901 break;
902 if (conflict == root)
903 break;
904
905 /* Ok, expand resource to cover the conflict, then try again .. */
906 if (conflict->start < new->start)
907 new->start = conflict->start;
908 if (conflict->end > new->end)
909 new->end = conflict->end;
910
911 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
912 }
913 write_unlock(&resource_lock);
914 }
915
916 /**
917 * remove_resource - Remove a resource in the resource tree
918 * @old: resource to remove
919 *
920 * Returns 0 on success, -EINVAL if the resource is not valid.
921 *
922 * This function removes a resource previously inserted by insert_resource()
923 * or insert_resource_conflict(), and moves the children (if any) up to
924 * where they were before. insert_resource() and insert_resource_conflict()
925 * insert a new resource, and move any conflicting resources down to the
926 * children of the new resource.
927 *
928 * insert_resource(), insert_resource_conflict() and remove_resource() are
929 * intended for producers of resources, such as FW modules and bus drivers.
930 */
931 int remove_resource(struct resource *old)
932 {
933 int retval;
934
935 write_lock(&resource_lock);
936 retval = __release_resource(old, false);
937 write_unlock(&resource_lock);
938 return retval;
939 }
940 EXPORT_SYMBOL_GPL(remove_resource);
941
942 static int __adjust_resource(struct resource *res, resource_size_t start,
943 resource_size_t size)
944 {
945 struct resource *tmp, *parent = res->parent;
946 resource_size_t end = start + size - 1;
947 int result = -EBUSY;
948
949 if (!parent)
950 goto skip;
951
952 if ((start < parent->start) || (end > parent->end))
953 goto out;
954
955 if (res->sibling && (res->sibling->start <= end))
956 goto out;
957
958 tmp = parent->child;
959 if (tmp != res) {
960 while (tmp->sibling != res)
961 tmp = tmp->sibling;
962 if (start <= tmp->end)
963 goto out;
964 }
965
966 skip:
967 for (tmp = res->child; tmp; tmp = tmp->sibling)
968 if ((tmp->start < start) || (tmp->end > end))
969 goto out;
970
971 res->start = start;
972 res->end = end;
973 result = 0;
974
975 out:
976 return result;
977 }
978
979 /**
980 * adjust_resource - modify a resource's start and size
981 * @res: resource to modify
982 * @start: new start value
983 * @size: new size
984 *
985 * Given an existing resource, change its start and size to match the
986 * arguments. Returns 0 on success, -EBUSY if it can't fit.
987 * Existing children of the resource are assumed to be immutable.
988 */
989 int adjust_resource(struct resource *res, resource_size_t start,
990 resource_size_t size)
991 {
992 int result;
993
994 write_lock(&resource_lock);
995 result = __adjust_resource(res, start, size);
996 write_unlock(&resource_lock);
997 return result;
998 }
999 EXPORT_SYMBOL(adjust_resource);
1000
1001 static void __init
1002 __reserve_region_with_split(struct resource *root, resource_size_t start,
1003 resource_size_t end, const char *name)
1004 {
1005 struct resource *parent = root;
1006 struct resource *conflict;
1007 struct resource *res = alloc_resource(GFP_ATOMIC);
1008 struct resource *next_res = NULL;
1009 int type = resource_type(root);
1010
1011 if (!res)
1012 return;
1013
1014 res->name = name;
1015 res->start = start;
1016 res->end = end;
1017 res->flags = type | IORESOURCE_BUSY;
1018 res->desc = IORES_DESC_NONE;
1019
1020 while (1) {
1021
1022 conflict = __request_resource(parent, res);
1023 if (!conflict) {
1024 if (!next_res)
1025 break;
1026 res = next_res;
1027 next_res = NULL;
1028 continue;
1029 }
1030
1031 /* conflict covered whole area */
1032 if (conflict->start <= res->start &&
1033 conflict->end >= res->end) {
1034 free_resource(res);
1035 WARN_ON(next_res);
1036 break;
1037 }
1038
1039 /* failed, split and try again */
1040 if (conflict->start > res->start) {
1041 end = res->end;
1042 res->end = conflict->start - 1;
1043 if (conflict->end < end) {
1044 next_res = alloc_resource(GFP_ATOMIC);
1045 if (!next_res) {
1046 free_resource(res);
1047 break;
1048 }
1049 next_res->name = name;
1050 next_res->start = conflict->end + 1;
1051 next_res->end = end;
1052 next_res->flags = type | IORESOURCE_BUSY;
1053 next_res->desc = IORES_DESC_NONE;
1054 }
1055 } else {
1056 res->start = conflict->end + 1;
1057 }
1058 }
1059
1060 }
1061
1062 void __init
1063 reserve_region_with_split(struct resource *root, resource_size_t start,
1064 resource_size_t end, const char *name)
1065 {
1066 int abort = 0;
1067
1068 write_lock(&resource_lock);
1069 if (root->start > start || root->end < end) {
1070 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1071 (unsigned long long)start, (unsigned long long)end,
1072 root);
1073 if (start > root->end || end < root->start)
1074 abort = 1;
1075 else {
1076 if (end > root->end)
1077 end = root->end;
1078 if (start < root->start)
1079 start = root->start;
1080 pr_err("fixing request to [0x%llx-0x%llx]\n",
1081 (unsigned long long)start,
1082 (unsigned long long)end);
1083 }
1084 dump_stack();
1085 }
1086 if (!abort)
1087 __reserve_region_with_split(root, start, end, name);
1088 write_unlock(&resource_lock);
1089 }
1090
1091 /**
1092 * resource_alignment - calculate resource's alignment
1093 * @res: resource pointer
1094 *
1095 * Returns alignment on success, 0 (invalid alignment) on failure.
1096 */
1097 resource_size_t resource_alignment(struct resource *res)
1098 {
1099 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1100 case IORESOURCE_SIZEALIGN:
1101 return resource_size(res);
1102 case IORESOURCE_STARTALIGN:
1103 return res->start;
1104 default:
1105 return 0;
1106 }
1107 }
1108
1109 /*
1110 * This is compatibility stuff for IO resources.
1111 *
1112 * Note how this, unlike the above, knows about
1113 * the IO flag meanings (busy etc).
1114 *
1115 * request_region creates a new busy region.
1116 *
1117 * release_region releases a matching busy region.
1118 */
1119
1120 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1121
1122 /**
1123 * __request_region - create a new busy resource region
1124 * @parent: parent resource descriptor
1125 * @start: resource start address
1126 * @n: resource region size
1127 * @name: reserving caller's ID string
1128 * @flags: IO resource flags
1129 */
1130 struct resource * __request_region(struct resource *parent,
1131 resource_size_t start, resource_size_t n,
1132 const char *name, int flags)
1133 {
1134 DECLARE_WAITQUEUE(wait, current);
1135 struct resource *res = alloc_resource(GFP_KERNEL);
1136 struct resource *orig_parent = parent;
1137
1138 if (!res)
1139 return NULL;
1140
1141 res->name = name;
1142 res->start = start;
1143 res->end = start + n - 1;
1144
1145 write_lock(&resource_lock);
1146
1147 for (;;) {
1148 struct resource *conflict;
1149
1150 res->flags = resource_type(parent) | resource_ext_type(parent);
1151 res->flags |= IORESOURCE_BUSY | flags;
1152 res->desc = parent->desc;
1153
1154 conflict = __request_resource(parent, res);
1155 if (!conflict)
1156 break;
1157 /*
1158 * mm/hmm.c reserves physical addresses which then
1159 * become unavailable to other users. Conflicts are
1160 * not expected. Warn to aid debugging if encountered.
1161 */
1162 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1163 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1164 conflict->name, conflict, res);
1165 }
1166 if (conflict != parent) {
1167 if (!(conflict->flags & IORESOURCE_BUSY)) {
1168 parent = conflict;
1169 continue;
1170 }
1171 }
1172 if (conflict->flags & flags & IORESOURCE_MUXED) {
1173 add_wait_queue(&muxed_resource_wait, &wait);
1174 write_unlock(&resource_lock);
1175 set_current_state(TASK_UNINTERRUPTIBLE);
1176 schedule();
1177 remove_wait_queue(&muxed_resource_wait, &wait);
1178 write_lock(&resource_lock);
1179 continue;
1180 }
1181 /* Uhhuh, that didn't work out.. */
1182 free_resource(res);
1183 res = NULL;
1184 break;
1185 }
1186 write_unlock(&resource_lock);
1187
1188 if (res && orig_parent == &iomem_resource)
1189 revoke_devmem(res);
1190
1191 return res;
1192 }
1193 EXPORT_SYMBOL(__request_region);
1194
1195 /**
1196 * __release_region - release a previously reserved resource region
1197 * @parent: parent resource descriptor
1198 * @start: resource start address
1199 * @n: resource region size
1200 *
1201 * The described resource region must match a currently busy region.
1202 */
1203 void __release_region(struct resource *parent, resource_size_t start,
1204 resource_size_t n)
1205 {
1206 struct resource **p;
1207 resource_size_t end;
1208
1209 p = &parent->child;
1210 end = start + n - 1;
1211
1212 write_lock(&resource_lock);
1213
1214 for (;;) {
1215 struct resource *res = *p;
1216
1217 if (!res)
1218 break;
1219 if (res->start <= start && res->end >= end) {
1220 if (!(res->flags & IORESOURCE_BUSY)) {
1221 p = &res->child;
1222 continue;
1223 }
1224 if (res->start != start || res->end != end)
1225 break;
1226 *p = res->sibling;
1227 write_unlock(&resource_lock);
1228 if (res->flags & IORESOURCE_MUXED)
1229 wake_up(&muxed_resource_wait);
1230 free_resource(res);
1231 return;
1232 }
1233 p = &res->sibling;
1234 }
1235
1236 write_unlock(&resource_lock);
1237
1238 printk(KERN_WARNING "Trying to free nonexistent resource "
1239 "<%016llx-%016llx>\n", (unsigned long long)start,
1240 (unsigned long long)end);
1241 }
1242 EXPORT_SYMBOL(__release_region);
1243
1244 #ifdef CONFIG_MEMORY_HOTREMOVE
1245 /**
1246 * release_mem_region_adjustable - release a previously reserved memory region
1247 * @start: resource start address
1248 * @size: resource region size
1249 *
1250 * This interface is intended for memory hot-delete. The requested region
1251 * is released from a currently busy memory resource. The requested region
1252 * must either match exactly or fit into a single busy resource entry. In
1253 * the latter case, the remaining resource is adjusted accordingly.
1254 * Existing children of the busy memory resource must be immutable in the
1255 * request.
1256 *
1257 * Note:
1258 * - Additional release conditions, such as overlapping region, can be
1259 * supported after they are confirmed as valid cases.
1260 * - When a busy memory resource gets split into two entries, the code
1261 * assumes that all children remain in the lower address entry for
1262 * simplicity. Enhance this logic when necessary.
1263 */
1264 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1265 {
1266 struct resource *parent = &iomem_resource;
1267 struct resource *new_res = NULL;
1268 bool alloc_nofail = false;
1269 struct resource **p;
1270 struct resource *res;
1271 resource_size_t end;
1272
1273 end = start + size - 1;
1274 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1275 return;
1276
1277 /*
1278 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1279 * just before releasing the region. This is highly unlikely to
1280 * fail - let's play save and make it never fail as the caller cannot
1281 * perform any error handling (e.g., trying to re-add memory will fail
1282 * similarly).
1283 */
1284 retry:
1285 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1286
1287 p = &parent->child;
1288 write_lock(&resource_lock);
1289
1290 while ((res = *p)) {
1291 if (res->start >= end)
1292 break;
1293
1294 /* look for the next resource if it does not fit into */
1295 if (res->start > start || res->end < end) {
1296 p = &res->sibling;
1297 continue;
1298 }
1299
1300 /*
1301 * All memory regions added from memory-hotplug path have the
1302 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1303 * this flag, we know that we are dealing with a resource coming
1304 * from HMM/devm. HMM/devm use another mechanism to add/release
1305 * a resource. This goes via devm_request_mem_region and
1306 * devm_release_mem_region.
1307 * HMM/devm take care to release their resources when they want,
1308 * so if we are dealing with them, let us just back off here.
1309 */
1310 if (!(res->flags & IORESOURCE_SYSRAM)) {
1311 break;
1312 }
1313
1314 if (!(res->flags & IORESOURCE_MEM))
1315 break;
1316
1317 if (!(res->flags & IORESOURCE_BUSY)) {
1318 p = &res->child;
1319 continue;
1320 }
1321
1322 /* found the target resource; let's adjust accordingly */
1323 if (res->start == start && res->end == end) {
1324 /* free the whole entry */
1325 *p = res->sibling;
1326 free_resource(res);
1327 } else if (res->start == start && res->end != end) {
1328 /* adjust the start */
1329 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1330 res->end - end));
1331 } else if (res->start != start && res->end == end) {
1332 /* adjust the end */
1333 WARN_ON_ONCE(__adjust_resource(res, res->start,
1334 start - res->start));
1335 } else {
1336 /* split into two entries - we need a new resource */
1337 if (!new_res) {
1338 new_res = alloc_resource(GFP_ATOMIC);
1339 if (!new_res) {
1340 alloc_nofail = true;
1341 write_unlock(&resource_lock);
1342 goto retry;
1343 }
1344 }
1345 new_res->name = res->name;
1346 new_res->start = end + 1;
1347 new_res->end = res->end;
1348 new_res->flags = res->flags;
1349 new_res->desc = res->desc;
1350 new_res->parent = res->parent;
1351 new_res->sibling = res->sibling;
1352 new_res->child = NULL;
1353
1354 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1355 start - res->start)))
1356 break;
1357 res->sibling = new_res;
1358 new_res = NULL;
1359 }
1360
1361 break;
1362 }
1363
1364 write_unlock(&resource_lock);
1365 free_resource(new_res);
1366 }
1367 #endif /* CONFIG_MEMORY_HOTREMOVE */
1368
1369 #ifdef CONFIG_MEMORY_HOTPLUG
1370 static bool system_ram_resources_mergeable(struct resource *r1,
1371 struct resource *r2)
1372 {
1373 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1374 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1375 r1->name == r2->name && r1->desc == r2->desc &&
1376 !r1->child && !r2->child;
1377 }
1378
1379 /**
1380 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1381 * merge it with adjacent, mergeable resources
1382 * @res: resource descriptor
1383 *
1384 * This interface is intended for memory hotplug, whereby lots of contiguous
1385 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1386 * the actual resource boundaries are not of interest (e.g., it might be
1387 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1388 * same parent, and that don't have any children are considered. All mergeable
1389 * resources must be immutable during the request.
1390 *
1391 * Note:
1392 * - The caller has to make sure that no pointers to resources that are
1393 * marked mergeable are used anymore after this call - the resource might
1394 * be freed and the pointer might be stale!
1395 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1396 */
1397 void merge_system_ram_resource(struct resource *res)
1398 {
1399 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1400 struct resource *cur;
1401
1402 if (WARN_ON_ONCE((res->flags & flags) != flags))
1403 return;
1404
1405 write_lock(&resource_lock);
1406 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1407
1408 /* Try to merge with next item in the list. */
1409 cur = res->sibling;
1410 if (cur && system_ram_resources_mergeable(res, cur)) {
1411 res->end = cur->end;
1412 res->sibling = cur->sibling;
1413 free_resource(cur);
1414 }
1415
1416 /* Try to merge with previous item in the list. */
1417 cur = res->parent->child;
1418 while (cur && cur->sibling != res)
1419 cur = cur->sibling;
1420 if (cur && system_ram_resources_mergeable(cur, res)) {
1421 cur->end = res->end;
1422 cur->sibling = res->sibling;
1423 free_resource(res);
1424 }
1425 write_unlock(&resource_lock);
1426 }
1427 #endif /* CONFIG_MEMORY_HOTPLUG */
1428
1429 /*
1430 * Managed region resource
1431 */
1432 static void devm_resource_release(struct device *dev, void *ptr)
1433 {
1434 struct resource **r = ptr;
1435
1436 release_resource(*r);
1437 }
1438
1439 /**
1440 * devm_request_resource() - request and reserve an I/O or memory resource
1441 * @dev: device for which to request the resource
1442 * @root: root of the resource tree from which to request the resource
1443 * @new: descriptor of the resource to request
1444 *
1445 * This is a device-managed version of request_resource(). There is usually
1446 * no need to release resources requested by this function explicitly since
1447 * that will be taken care of when the device is unbound from its driver.
1448 * If for some reason the resource needs to be released explicitly, because
1449 * of ordering issues for example, drivers must call devm_release_resource()
1450 * rather than the regular release_resource().
1451 *
1452 * When a conflict is detected between any existing resources and the newly
1453 * requested resource, an error message will be printed.
1454 *
1455 * Returns 0 on success or a negative error code on failure.
1456 */
1457 int devm_request_resource(struct device *dev, struct resource *root,
1458 struct resource *new)
1459 {
1460 struct resource *conflict, **ptr;
1461
1462 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1463 if (!ptr)
1464 return -ENOMEM;
1465
1466 *ptr = new;
1467
1468 conflict = request_resource_conflict(root, new);
1469 if (conflict) {
1470 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1471 new, conflict->name, conflict);
1472 devres_free(ptr);
1473 return -EBUSY;
1474 }
1475
1476 devres_add(dev, ptr);
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(devm_request_resource);
1480
1481 static int devm_resource_match(struct device *dev, void *res, void *data)
1482 {
1483 struct resource **ptr = res;
1484
1485 return *ptr == data;
1486 }
1487
1488 /**
1489 * devm_release_resource() - release a previously requested resource
1490 * @dev: device for which to release the resource
1491 * @new: descriptor of the resource to release
1492 *
1493 * Releases a resource previously requested using devm_request_resource().
1494 */
1495 void devm_release_resource(struct device *dev, struct resource *new)
1496 {
1497 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1498 new));
1499 }
1500 EXPORT_SYMBOL(devm_release_resource);
1501
1502 struct region_devres {
1503 struct resource *parent;
1504 resource_size_t start;
1505 resource_size_t n;
1506 };
1507
1508 static void devm_region_release(struct device *dev, void *res)
1509 {
1510 struct region_devres *this = res;
1511
1512 __release_region(this->parent, this->start, this->n);
1513 }
1514
1515 static int devm_region_match(struct device *dev, void *res, void *match_data)
1516 {
1517 struct region_devres *this = res, *match = match_data;
1518
1519 return this->parent == match->parent &&
1520 this->start == match->start && this->n == match->n;
1521 }
1522
1523 struct resource *
1524 __devm_request_region(struct device *dev, struct resource *parent,
1525 resource_size_t start, resource_size_t n, const char *name)
1526 {
1527 struct region_devres *dr = NULL;
1528 struct resource *res;
1529
1530 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1531 GFP_KERNEL);
1532 if (!dr)
1533 return NULL;
1534
1535 dr->parent = parent;
1536 dr->start = start;
1537 dr->n = n;
1538
1539 res = __request_region(parent, start, n, name, 0);
1540 if (res)
1541 devres_add(dev, dr);
1542 else
1543 devres_free(dr);
1544
1545 return res;
1546 }
1547 EXPORT_SYMBOL(__devm_request_region);
1548
1549 void __devm_release_region(struct device *dev, struct resource *parent,
1550 resource_size_t start, resource_size_t n)
1551 {
1552 struct region_devres match_data = { parent, start, n };
1553
1554 __release_region(parent, start, n);
1555 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1556 &match_data));
1557 }
1558 EXPORT_SYMBOL(__devm_release_region);
1559
1560 /*
1561 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1562 */
1563 #define MAXRESERVE 4
1564 static int __init reserve_setup(char *str)
1565 {
1566 static int reserved;
1567 static struct resource reserve[MAXRESERVE];
1568
1569 for (;;) {
1570 unsigned int io_start, io_num;
1571 int x = reserved;
1572 struct resource *parent;
1573
1574 if (get_option(&str, &io_start) != 2)
1575 break;
1576 if (get_option(&str, &io_num) == 0)
1577 break;
1578 if (x < MAXRESERVE) {
1579 struct resource *res = reserve + x;
1580
1581 /*
1582 * If the region starts below 0x10000, we assume it's
1583 * I/O port space; otherwise assume it's memory.
1584 */
1585 if (io_start < 0x10000) {
1586 res->flags = IORESOURCE_IO;
1587 parent = &ioport_resource;
1588 } else {
1589 res->flags = IORESOURCE_MEM;
1590 parent = &iomem_resource;
1591 }
1592 res->name = "reserved";
1593 res->start = io_start;
1594 res->end = io_start + io_num - 1;
1595 res->flags |= IORESOURCE_BUSY;
1596 res->desc = IORES_DESC_NONE;
1597 res->child = NULL;
1598 if (request_resource(parent, res) == 0)
1599 reserved = x+1;
1600 }
1601 }
1602 return 1;
1603 }
1604 __setup("reserve=", reserve_setup);
1605
1606 /*
1607 * Check if the requested addr and size spans more than any slot in the
1608 * iomem resource tree.
1609 */
1610 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1611 {
1612 struct resource *p = &iomem_resource;
1613 int err = 0;
1614 loff_t l;
1615
1616 read_lock(&resource_lock);
1617 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1618 /*
1619 * We can probably skip the resources without
1620 * IORESOURCE_IO attribute?
1621 */
1622 if (p->start >= addr + size)
1623 continue;
1624 if (p->end < addr)
1625 continue;
1626 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1627 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1628 continue;
1629 /*
1630 * if a resource is "BUSY", it's not a hardware resource
1631 * but a driver mapping of such a resource; we don't want
1632 * to warn for those; some drivers legitimately map only
1633 * partial hardware resources. (example: vesafb)
1634 */
1635 if (p->flags & IORESOURCE_BUSY)
1636 continue;
1637
1638 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1639 (unsigned long long)addr,
1640 (unsigned long long)(addr + size - 1),
1641 p->name, p);
1642 err = -1;
1643 break;
1644 }
1645 read_unlock(&resource_lock);
1646
1647 return err;
1648 }
1649
1650 #ifdef CONFIG_STRICT_DEVMEM
1651 static int strict_iomem_checks = 1;
1652 #else
1653 static int strict_iomem_checks;
1654 #endif
1655
1656 /*
1657 * check if an address is reserved in the iomem resource tree
1658 * returns true if reserved, false if not reserved.
1659 */
1660 bool iomem_is_exclusive(u64 addr)
1661 {
1662 struct resource *p = &iomem_resource;
1663 bool err = false;
1664 loff_t l;
1665 int size = PAGE_SIZE;
1666
1667 if (!strict_iomem_checks)
1668 return false;
1669
1670 addr = addr & PAGE_MASK;
1671
1672 read_lock(&resource_lock);
1673 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1674 /*
1675 * We can probably skip the resources without
1676 * IORESOURCE_IO attribute?
1677 */
1678 if (p->start >= addr + size)
1679 break;
1680 if (p->end < addr)
1681 continue;
1682 /*
1683 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1684 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1685 * resource is busy.
1686 */
1687 if ((p->flags & IORESOURCE_BUSY) == 0)
1688 continue;
1689 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1690 || p->flags & IORESOURCE_EXCLUSIVE) {
1691 err = true;
1692 break;
1693 }
1694 }
1695 read_unlock(&resource_lock);
1696
1697 return err;
1698 }
1699
1700 struct resource_entry *resource_list_create_entry(struct resource *res,
1701 size_t extra_size)
1702 {
1703 struct resource_entry *entry;
1704
1705 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1706 if (entry) {
1707 INIT_LIST_HEAD(&entry->node);
1708 entry->res = res ? res : &entry->__res;
1709 }
1710
1711 return entry;
1712 }
1713 EXPORT_SYMBOL(resource_list_create_entry);
1714
1715 void resource_list_free(struct list_head *head)
1716 {
1717 struct resource_entry *entry, *tmp;
1718
1719 list_for_each_entry_safe(entry, tmp, head, node)
1720 resource_list_destroy_entry(entry);
1721 }
1722 EXPORT_SYMBOL(resource_list_free);
1723
1724 #ifdef CONFIG_DEVICE_PRIVATE
1725 static struct resource *__request_free_mem_region(struct device *dev,
1726 struct resource *base, unsigned long size, const char *name)
1727 {
1728 resource_size_t end, addr;
1729 struct resource *res;
1730
1731 size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1732 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1733 addr = end - size + 1UL;
1734
1735 for (; addr > size && addr >= base->start; addr -= size) {
1736 if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1737 REGION_DISJOINT)
1738 continue;
1739
1740 if (dev)
1741 res = devm_request_mem_region(dev, addr, size, name);
1742 else
1743 res = request_mem_region(addr, size, name);
1744 if (!res)
1745 return ERR_PTR(-ENOMEM);
1746 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1747 return res;
1748 }
1749
1750 return ERR_PTR(-ERANGE);
1751 }
1752
1753 /**
1754 * devm_request_free_mem_region - find free region for device private memory
1755 *
1756 * @dev: device struct to bind the resource to
1757 * @size: size in bytes of the device memory to add
1758 * @base: resource tree to look in
1759 *
1760 * This function tries to find an empty range of physical address big enough to
1761 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1762 * memory, which in turn allocates struct pages.
1763 */
1764 struct resource *devm_request_free_mem_region(struct device *dev,
1765 struct resource *base, unsigned long size)
1766 {
1767 return __request_free_mem_region(dev, base, size, dev_name(dev));
1768 }
1769 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1770
1771 struct resource *request_free_mem_region(struct resource *base,
1772 unsigned long size, const char *name)
1773 {
1774 return __request_free_mem_region(NULL, base, size, name);
1775 }
1776 EXPORT_SYMBOL_GPL(request_free_mem_region);
1777
1778 #endif /* CONFIG_DEVICE_PRIVATE */
1779
1780 static int __init strict_iomem(char *str)
1781 {
1782 if (strstr(str, "relaxed"))
1783 strict_iomem_checks = 0;
1784 if (strstr(str, "strict"))
1785 strict_iomem_checks = 1;
1786 return 1;
1787 }
1788
1789 __setup("iomem=", strict_iomem);