]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/resource.c
Add and use a generic version of devmem_is_allowed()
[mirror_ubuntu-hirsute-kernel.git] / kernel / resource.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/device.h>
24 #include <linux/pfn.h>
25 #include <linux/mm.h>
26 #include <linux/resource_ext.h>
27 #include <asm/io.h>
28
29
30 struct resource ioport_resource = {
31 .name = "PCI IO",
32 .start = 0,
33 .end = IO_SPACE_LIMIT,
34 .flags = IORESOURCE_IO,
35 };
36 EXPORT_SYMBOL(ioport_resource);
37
38 struct resource iomem_resource = {
39 .name = "PCI mem",
40 .start = 0,
41 .end = -1,
42 .flags = IORESOURCE_MEM,
43 };
44 EXPORT_SYMBOL(iomem_resource);
45
46 /* constraints to be met while allocating resources */
47 struct resource_constraint {
48 resource_size_t min, max, align;
49 resource_size_t (*alignf)(void *, const struct resource *,
50 resource_size_t, resource_size_t);
51 void *alignf_data;
52 };
53
54 static DEFINE_RWLOCK(resource_lock);
55
56 /*
57 * For memory hotplug, there is no way to free resource entries allocated
58 * by boot mem after the system is up. So for reusing the resource entry
59 * we need to remember the resource.
60 */
61 static struct resource *bootmem_resource_free;
62 static DEFINE_SPINLOCK(bootmem_resource_lock);
63
64 static struct resource *next_resource(struct resource *p, bool sibling_only)
65 {
66 /* Caller wants to traverse through siblings only */
67 if (sibling_only)
68 return p->sibling;
69
70 if (p->child)
71 return p->child;
72 while (!p->sibling && p->parent)
73 p = p->parent;
74 return p->sibling;
75 }
76
77 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
78 {
79 struct resource *p = v;
80 (*pos)++;
81 return (void *)next_resource(p, false);
82 }
83
84 #ifdef CONFIG_PROC_FS
85
86 enum { MAX_IORES_LEVEL = 5 };
87
88 static void *r_start(struct seq_file *m, loff_t *pos)
89 __acquires(resource_lock)
90 {
91 struct resource *p = PDE_DATA(file_inode(m->file));
92 loff_t l = 0;
93 read_lock(&resource_lock);
94 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
95 ;
96 return p;
97 }
98
99 static void r_stop(struct seq_file *m, void *v)
100 __releases(resource_lock)
101 {
102 read_unlock(&resource_lock);
103 }
104
105 static int r_show(struct seq_file *m, void *v)
106 {
107 struct resource *root = PDE_DATA(file_inode(m->file));
108 struct resource *r = v, *p;
109 unsigned long long start, end;
110 int width = root->end < 0x10000 ? 4 : 8;
111 int depth;
112
113 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
114 if (p->parent == root)
115 break;
116
117 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
118 start = r->start;
119 end = r->end;
120 } else {
121 start = end = 0;
122 }
123
124 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
125 depth * 2, "",
126 width, start,
127 width, end,
128 r->name ? r->name : "<BAD>");
129 return 0;
130 }
131
132 static const struct seq_operations resource_op = {
133 .start = r_start,
134 .next = r_next,
135 .stop = r_stop,
136 .show = r_show,
137 };
138
139 static int __init ioresources_init(void)
140 {
141 proc_create_seq_data("ioports", 0, NULL, &resource_op,
142 &ioport_resource);
143 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
144 return 0;
145 }
146 __initcall(ioresources_init);
147
148 #endif /* CONFIG_PROC_FS */
149
150 static void free_resource(struct resource *res)
151 {
152 if (!res)
153 return;
154
155 if (!PageSlab(virt_to_head_page(res))) {
156 spin_lock(&bootmem_resource_lock);
157 res->sibling = bootmem_resource_free;
158 bootmem_resource_free = res;
159 spin_unlock(&bootmem_resource_lock);
160 } else {
161 kfree(res);
162 }
163 }
164
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 struct resource *res = NULL;
168
169 spin_lock(&bootmem_resource_lock);
170 if (bootmem_resource_free) {
171 res = bootmem_resource_free;
172 bootmem_resource_free = res->sibling;
173 }
174 spin_unlock(&bootmem_resource_lock);
175
176 if (res)
177 memset(res, 0, sizeof(struct resource));
178 else
179 res = kzalloc(sizeof(struct resource), flags);
180
181 return res;
182 }
183
184 /* Return the conflict entry if you can't request it */
185 static struct resource * __request_resource(struct resource *root, struct resource *new)
186 {
187 resource_size_t start = new->start;
188 resource_size_t end = new->end;
189 struct resource *tmp, **p;
190
191 if (end < start)
192 return root;
193 if (start < root->start)
194 return root;
195 if (end > root->end)
196 return root;
197 p = &root->child;
198 for (;;) {
199 tmp = *p;
200 if (!tmp || tmp->start > end) {
201 new->sibling = tmp;
202 *p = new;
203 new->parent = root;
204 return NULL;
205 }
206 p = &tmp->sibling;
207 if (tmp->end < start)
208 continue;
209 return tmp;
210 }
211 }
212
213 static int __release_resource(struct resource *old, bool release_child)
214 {
215 struct resource *tmp, **p, *chd;
216
217 p = &old->parent->child;
218 for (;;) {
219 tmp = *p;
220 if (!tmp)
221 break;
222 if (tmp == old) {
223 if (release_child || !(tmp->child)) {
224 *p = tmp->sibling;
225 } else {
226 for (chd = tmp->child;; chd = chd->sibling) {
227 chd->parent = tmp->parent;
228 if (!(chd->sibling))
229 break;
230 }
231 *p = tmp->child;
232 chd->sibling = tmp->sibling;
233 }
234 old->parent = NULL;
235 return 0;
236 }
237 p = &tmp->sibling;
238 }
239 return -EINVAL;
240 }
241
242 static void __release_child_resources(struct resource *r)
243 {
244 struct resource *tmp, *p;
245 resource_size_t size;
246
247 p = r->child;
248 r->child = NULL;
249 while (p) {
250 tmp = p;
251 p = p->sibling;
252
253 tmp->parent = NULL;
254 tmp->sibling = NULL;
255 __release_child_resources(tmp);
256
257 printk(KERN_DEBUG "release child resource %pR\n", tmp);
258 /* need to restore size, and keep flags */
259 size = resource_size(tmp);
260 tmp->start = 0;
261 tmp->end = size - 1;
262 }
263 }
264
265 void release_child_resources(struct resource *r)
266 {
267 write_lock(&resource_lock);
268 __release_child_resources(r);
269 write_unlock(&resource_lock);
270 }
271
272 /**
273 * request_resource_conflict - request and reserve an I/O or memory resource
274 * @root: root resource descriptor
275 * @new: resource descriptor desired by caller
276 *
277 * Returns 0 for success, conflict resource on error.
278 */
279 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
280 {
281 struct resource *conflict;
282
283 write_lock(&resource_lock);
284 conflict = __request_resource(root, new);
285 write_unlock(&resource_lock);
286 return conflict;
287 }
288
289 /**
290 * request_resource - request and reserve an I/O or memory resource
291 * @root: root resource descriptor
292 * @new: resource descriptor desired by caller
293 *
294 * Returns 0 for success, negative error code on error.
295 */
296 int request_resource(struct resource *root, struct resource *new)
297 {
298 struct resource *conflict;
299
300 conflict = request_resource_conflict(root, new);
301 return conflict ? -EBUSY : 0;
302 }
303
304 EXPORT_SYMBOL(request_resource);
305
306 /**
307 * release_resource - release a previously reserved resource
308 * @old: resource pointer
309 */
310 int release_resource(struct resource *old)
311 {
312 int retval;
313
314 write_lock(&resource_lock);
315 retval = __release_resource(old, true);
316 write_unlock(&resource_lock);
317 return retval;
318 }
319
320 EXPORT_SYMBOL(release_resource);
321
322 /**
323 * Finds the lowest iomem resource that covers part of [@start..@end]. The
324 * caller must specify @start, @end, @flags, and @desc (which may be
325 * IORES_DESC_NONE).
326 *
327 * If a resource is found, returns 0 and @*res is overwritten with the part
328 * of the resource that's within [@start..@end]; if none is found, returns
329 * -ENODEV. Returns -EINVAL for invalid parameters.
330 *
331 * This function walks the whole tree and not just first level children
332 * unless @first_lvl is true.
333 *
334 * @start: start address of the resource searched for
335 * @end: end address of same resource
336 * @flags: flags which the resource must have
337 * @desc: descriptor the resource must have
338 * @first_lvl: walk only the first level children, if set
339 * @res: return ptr, if resource found
340 */
341 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
342 unsigned long flags, unsigned long desc,
343 bool first_lvl, struct resource *res)
344 {
345 bool siblings_only = true;
346 struct resource *p;
347
348 if (!res)
349 return -EINVAL;
350
351 if (start >= end)
352 return -EINVAL;
353
354 read_lock(&resource_lock);
355
356 for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
357 /* If we passed the resource we are looking for, stop */
358 if (p->start > end) {
359 p = NULL;
360 break;
361 }
362
363 /* Skip until we find a range that matches what we look for */
364 if (p->end < start)
365 continue;
366
367 /*
368 * Now that we found a range that matches what we look for,
369 * check the flags and the descriptor. If we were not asked to
370 * use only the first level, start looking at children as well.
371 */
372 siblings_only = first_lvl;
373
374 if ((p->flags & flags) != flags)
375 continue;
376 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
377 continue;
378
379 /* Found a match, break */
380 break;
381 }
382
383 if (p) {
384 /* copy data */
385 *res = (struct resource) {
386 .start = max(start, p->start),
387 .end = min(end, p->end),
388 .flags = p->flags,
389 .desc = p->desc,
390 .parent = p->parent,
391 };
392 }
393
394 read_unlock(&resource_lock);
395 return p ? 0 : -ENODEV;
396 }
397
398 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
399 unsigned long flags, unsigned long desc,
400 bool first_lvl, void *arg,
401 int (*func)(struct resource *, void *))
402 {
403 struct resource res;
404 int ret = -EINVAL;
405
406 while (start < end &&
407 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
408 ret = (*func)(&res, arg);
409 if (ret)
410 break;
411
412 start = res.end + 1;
413 }
414
415 return ret;
416 }
417
418 /**
419 * Walks through iomem resources and calls func() with matching resource
420 * ranges. This walks through whole tree and not just first level children.
421 * All the memory ranges which overlap start,end and also match flags and
422 * desc are valid candidates.
423 *
424 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
425 * @flags: I/O resource flags
426 * @start: start addr
427 * @end: end addr
428 * @arg: function argument for the callback @func
429 * @func: callback function that is called for each qualifying resource area
430 *
431 * NOTE: For a new descriptor search, define a new IORES_DESC in
432 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
433 */
434 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
435 u64 end, void *arg, int (*func)(struct resource *, void *))
436 {
437 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
438 }
439 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
440
441 /*
442 * This function calls the @func callback against all memory ranges of type
443 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
444 * Now, this function is only for System RAM, it deals with full ranges and
445 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
446 * ranges.
447 */
448 int walk_system_ram_res(u64 start, u64 end, void *arg,
449 int (*func)(struct resource *, void *))
450 {
451 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
452
453 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
454 arg, func);
455 }
456
457 /*
458 * This function calls the @func callback against all memory ranges, which
459 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
460 */
461 int walk_mem_res(u64 start, u64 end, void *arg,
462 int (*func)(struct resource *, void *))
463 {
464 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
465
466 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
467 arg, func);
468 }
469
470 /*
471 * This function calls the @func callback against all memory ranges of type
472 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
473 * It is to be used only for System RAM.
474 *
475 * This will find System RAM ranges that are children of top-level resources
476 * in addition to top-level System RAM resources.
477 */
478 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
479 void *arg, int (*func)(unsigned long, unsigned long, void *))
480 {
481 resource_size_t start, end;
482 unsigned long flags;
483 struct resource res;
484 unsigned long pfn, end_pfn;
485 int ret = -EINVAL;
486
487 start = (u64) start_pfn << PAGE_SHIFT;
488 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
489 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
490 while (start < end &&
491 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
492 false, &res)) {
493 pfn = PFN_UP(res.start);
494 end_pfn = PFN_DOWN(res.end + 1);
495 if (end_pfn > pfn)
496 ret = (*func)(pfn, end_pfn - pfn, arg);
497 if (ret)
498 break;
499 start = res.end + 1;
500 }
501 return ret;
502 }
503
504 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
505 {
506 return 1;
507 }
508
509 /*
510 * This generic page_is_ram() returns true if specified address is
511 * registered as System RAM in iomem_resource list.
512 */
513 int __weak page_is_ram(unsigned long pfn)
514 {
515 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
516 }
517 EXPORT_SYMBOL_GPL(page_is_ram);
518
519 /**
520 * region_intersects() - determine intersection of region with known resources
521 * @start: region start address
522 * @size: size of region
523 * @flags: flags of resource (in iomem_resource)
524 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
525 *
526 * Check if the specified region partially overlaps or fully eclipses a
527 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
528 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
529 * return REGION_MIXED if the region overlaps @flags/@desc and another
530 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
531 * and no other defined resource. Note that REGION_INTERSECTS is also
532 * returned in the case when the specified region overlaps RAM and undefined
533 * memory holes.
534 *
535 * region_intersect() is used by memory remapping functions to ensure
536 * the user is not remapping RAM and is a vast speed up over walking
537 * through the resource table page by page.
538 */
539 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
540 unsigned long desc)
541 {
542 struct resource res;
543 int type = 0; int other = 0;
544 struct resource *p;
545
546 res.start = start;
547 res.end = start + size - 1;
548
549 read_lock(&resource_lock);
550 for (p = iomem_resource.child; p ; p = p->sibling) {
551 bool is_type = (((p->flags & flags) == flags) &&
552 ((desc == IORES_DESC_NONE) ||
553 (desc == p->desc)));
554
555 if (resource_overlaps(p, &res))
556 is_type ? type++ : other++;
557 }
558 read_unlock(&resource_lock);
559
560 if (other == 0)
561 return type ? REGION_INTERSECTS : REGION_DISJOINT;
562
563 if (type)
564 return REGION_MIXED;
565
566 return REGION_DISJOINT;
567 }
568 EXPORT_SYMBOL_GPL(region_intersects);
569
570 void __weak arch_remove_reservations(struct resource *avail)
571 {
572 }
573
574 static resource_size_t simple_align_resource(void *data,
575 const struct resource *avail,
576 resource_size_t size,
577 resource_size_t align)
578 {
579 return avail->start;
580 }
581
582 static void resource_clip(struct resource *res, resource_size_t min,
583 resource_size_t max)
584 {
585 if (res->start < min)
586 res->start = min;
587 if (res->end > max)
588 res->end = max;
589 }
590
591 /*
592 * Find empty slot in the resource tree with the given range and
593 * alignment constraints
594 */
595 static int __find_resource(struct resource *root, struct resource *old,
596 struct resource *new,
597 resource_size_t size,
598 struct resource_constraint *constraint)
599 {
600 struct resource *this = root->child;
601 struct resource tmp = *new, avail, alloc;
602
603 tmp.start = root->start;
604 /*
605 * Skip past an allocated resource that starts at 0, since the assignment
606 * of this->start - 1 to tmp->end below would cause an underflow.
607 */
608 if (this && this->start == root->start) {
609 tmp.start = (this == old) ? old->start : this->end + 1;
610 this = this->sibling;
611 }
612 for(;;) {
613 if (this)
614 tmp.end = (this == old) ? this->end : this->start - 1;
615 else
616 tmp.end = root->end;
617
618 if (tmp.end < tmp.start)
619 goto next;
620
621 resource_clip(&tmp, constraint->min, constraint->max);
622 arch_remove_reservations(&tmp);
623
624 /* Check for overflow after ALIGN() */
625 avail.start = ALIGN(tmp.start, constraint->align);
626 avail.end = tmp.end;
627 avail.flags = new->flags & ~IORESOURCE_UNSET;
628 if (avail.start >= tmp.start) {
629 alloc.flags = avail.flags;
630 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
631 size, constraint->align);
632 alloc.end = alloc.start + size - 1;
633 if (alloc.start <= alloc.end &&
634 resource_contains(&avail, &alloc)) {
635 new->start = alloc.start;
636 new->end = alloc.end;
637 return 0;
638 }
639 }
640
641 next: if (!this || this->end == root->end)
642 break;
643
644 if (this != old)
645 tmp.start = this->end + 1;
646 this = this->sibling;
647 }
648 return -EBUSY;
649 }
650
651 /*
652 * Find empty slot in the resource tree given range and alignment.
653 */
654 static int find_resource(struct resource *root, struct resource *new,
655 resource_size_t size,
656 struct resource_constraint *constraint)
657 {
658 return __find_resource(root, NULL, new, size, constraint);
659 }
660
661 /**
662 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
663 * The resource will be relocated if the new size cannot be reallocated in the
664 * current location.
665 *
666 * @root: root resource descriptor
667 * @old: resource descriptor desired by caller
668 * @newsize: new size of the resource descriptor
669 * @constraint: the size and alignment constraints to be met.
670 */
671 static int reallocate_resource(struct resource *root, struct resource *old,
672 resource_size_t newsize,
673 struct resource_constraint *constraint)
674 {
675 int err=0;
676 struct resource new = *old;
677 struct resource *conflict;
678
679 write_lock(&resource_lock);
680
681 if ((err = __find_resource(root, old, &new, newsize, constraint)))
682 goto out;
683
684 if (resource_contains(&new, old)) {
685 old->start = new.start;
686 old->end = new.end;
687 goto out;
688 }
689
690 if (old->child) {
691 err = -EBUSY;
692 goto out;
693 }
694
695 if (resource_contains(old, &new)) {
696 old->start = new.start;
697 old->end = new.end;
698 } else {
699 __release_resource(old, true);
700 *old = new;
701 conflict = __request_resource(root, old);
702 BUG_ON(conflict);
703 }
704 out:
705 write_unlock(&resource_lock);
706 return err;
707 }
708
709
710 /**
711 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
712 * The resource will be reallocated with a new size if it was already allocated
713 * @root: root resource descriptor
714 * @new: resource descriptor desired by caller
715 * @size: requested resource region size
716 * @min: minimum boundary to allocate
717 * @max: maximum boundary to allocate
718 * @align: alignment requested, in bytes
719 * @alignf: alignment function, optional, called if not NULL
720 * @alignf_data: arbitrary data to pass to the @alignf function
721 */
722 int allocate_resource(struct resource *root, struct resource *new,
723 resource_size_t size, resource_size_t min,
724 resource_size_t max, resource_size_t align,
725 resource_size_t (*alignf)(void *,
726 const struct resource *,
727 resource_size_t,
728 resource_size_t),
729 void *alignf_data)
730 {
731 int err;
732 struct resource_constraint constraint;
733
734 if (!alignf)
735 alignf = simple_align_resource;
736
737 constraint.min = min;
738 constraint.max = max;
739 constraint.align = align;
740 constraint.alignf = alignf;
741 constraint.alignf_data = alignf_data;
742
743 if ( new->parent ) {
744 /* resource is already allocated, try reallocating with
745 the new constraints */
746 return reallocate_resource(root, new, size, &constraint);
747 }
748
749 write_lock(&resource_lock);
750 err = find_resource(root, new, size, &constraint);
751 if (err >= 0 && __request_resource(root, new))
752 err = -EBUSY;
753 write_unlock(&resource_lock);
754 return err;
755 }
756
757 EXPORT_SYMBOL(allocate_resource);
758
759 /**
760 * lookup_resource - find an existing resource by a resource start address
761 * @root: root resource descriptor
762 * @start: resource start address
763 *
764 * Returns a pointer to the resource if found, NULL otherwise
765 */
766 struct resource *lookup_resource(struct resource *root, resource_size_t start)
767 {
768 struct resource *res;
769
770 read_lock(&resource_lock);
771 for (res = root->child; res; res = res->sibling) {
772 if (res->start == start)
773 break;
774 }
775 read_unlock(&resource_lock);
776
777 return res;
778 }
779
780 /*
781 * Insert a resource into the resource tree. If successful, return NULL,
782 * otherwise return the conflicting resource (compare to __request_resource())
783 */
784 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
785 {
786 struct resource *first, *next;
787
788 for (;; parent = first) {
789 first = __request_resource(parent, new);
790 if (!first)
791 return first;
792
793 if (first == parent)
794 return first;
795 if (WARN_ON(first == new)) /* duplicated insertion */
796 return first;
797
798 if ((first->start > new->start) || (first->end < new->end))
799 break;
800 if ((first->start == new->start) && (first->end == new->end))
801 break;
802 }
803
804 for (next = first; ; next = next->sibling) {
805 /* Partial overlap? Bad, and unfixable */
806 if (next->start < new->start || next->end > new->end)
807 return next;
808 if (!next->sibling)
809 break;
810 if (next->sibling->start > new->end)
811 break;
812 }
813
814 new->parent = parent;
815 new->sibling = next->sibling;
816 new->child = first;
817
818 next->sibling = NULL;
819 for (next = first; next; next = next->sibling)
820 next->parent = new;
821
822 if (parent->child == first) {
823 parent->child = new;
824 } else {
825 next = parent->child;
826 while (next->sibling != first)
827 next = next->sibling;
828 next->sibling = new;
829 }
830 return NULL;
831 }
832
833 /**
834 * insert_resource_conflict - Inserts resource in the resource tree
835 * @parent: parent of the new resource
836 * @new: new resource to insert
837 *
838 * Returns 0 on success, conflict resource if the resource can't be inserted.
839 *
840 * This function is equivalent to request_resource_conflict when no conflict
841 * happens. If a conflict happens, and the conflicting resources
842 * entirely fit within the range of the new resource, then the new
843 * resource is inserted and the conflicting resources become children of
844 * the new resource.
845 *
846 * This function is intended for producers of resources, such as FW modules
847 * and bus drivers.
848 */
849 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
850 {
851 struct resource *conflict;
852
853 write_lock(&resource_lock);
854 conflict = __insert_resource(parent, new);
855 write_unlock(&resource_lock);
856 return conflict;
857 }
858
859 /**
860 * insert_resource - Inserts a resource in the resource tree
861 * @parent: parent of the new resource
862 * @new: new resource to insert
863 *
864 * Returns 0 on success, -EBUSY if the resource can't be inserted.
865 *
866 * This function is intended for producers of resources, such as FW modules
867 * and bus drivers.
868 */
869 int insert_resource(struct resource *parent, struct resource *new)
870 {
871 struct resource *conflict;
872
873 conflict = insert_resource_conflict(parent, new);
874 return conflict ? -EBUSY : 0;
875 }
876 EXPORT_SYMBOL_GPL(insert_resource);
877
878 /**
879 * insert_resource_expand_to_fit - Insert a resource into the resource tree
880 * @root: root resource descriptor
881 * @new: new resource to insert
882 *
883 * Insert a resource into the resource tree, possibly expanding it in order
884 * to make it encompass any conflicting resources.
885 */
886 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
887 {
888 if (new->parent)
889 return;
890
891 write_lock(&resource_lock);
892 for (;;) {
893 struct resource *conflict;
894
895 conflict = __insert_resource(root, new);
896 if (!conflict)
897 break;
898 if (conflict == root)
899 break;
900
901 /* Ok, expand resource to cover the conflict, then try again .. */
902 if (conflict->start < new->start)
903 new->start = conflict->start;
904 if (conflict->end > new->end)
905 new->end = conflict->end;
906
907 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
908 }
909 write_unlock(&resource_lock);
910 }
911
912 /**
913 * remove_resource - Remove a resource in the resource tree
914 * @old: resource to remove
915 *
916 * Returns 0 on success, -EINVAL if the resource is not valid.
917 *
918 * This function removes a resource previously inserted by insert_resource()
919 * or insert_resource_conflict(), and moves the children (if any) up to
920 * where they were before. insert_resource() and insert_resource_conflict()
921 * insert a new resource, and move any conflicting resources down to the
922 * children of the new resource.
923 *
924 * insert_resource(), insert_resource_conflict() and remove_resource() are
925 * intended for producers of resources, such as FW modules and bus drivers.
926 */
927 int remove_resource(struct resource *old)
928 {
929 int retval;
930
931 write_lock(&resource_lock);
932 retval = __release_resource(old, false);
933 write_unlock(&resource_lock);
934 return retval;
935 }
936 EXPORT_SYMBOL_GPL(remove_resource);
937
938 static int __adjust_resource(struct resource *res, resource_size_t start,
939 resource_size_t size)
940 {
941 struct resource *tmp, *parent = res->parent;
942 resource_size_t end = start + size - 1;
943 int result = -EBUSY;
944
945 if (!parent)
946 goto skip;
947
948 if ((start < parent->start) || (end > parent->end))
949 goto out;
950
951 if (res->sibling && (res->sibling->start <= end))
952 goto out;
953
954 tmp = parent->child;
955 if (tmp != res) {
956 while (tmp->sibling != res)
957 tmp = tmp->sibling;
958 if (start <= tmp->end)
959 goto out;
960 }
961
962 skip:
963 for (tmp = res->child; tmp; tmp = tmp->sibling)
964 if ((tmp->start < start) || (tmp->end > end))
965 goto out;
966
967 res->start = start;
968 res->end = end;
969 result = 0;
970
971 out:
972 return result;
973 }
974
975 /**
976 * adjust_resource - modify a resource's start and size
977 * @res: resource to modify
978 * @start: new start value
979 * @size: new size
980 *
981 * Given an existing resource, change its start and size to match the
982 * arguments. Returns 0 on success, -EBUSY if it can't fit.
983 * Existing children of the resource are assumed to be immutable.
984 */
985 int adjust_resource(struct resource *res, resource_size_t start,
986 resource_size_t size)
987 {
988 int result;
989
990 write_lock(&resource_lock);
991 result = __adjust_resource(res, start, size);
992 write_unlock(&resource_lock);
993 return result;
994 }
995 EXPORT_SYMBOL(adjust_resource);
996
997 static void __init
998 __reserve_region_with_split(struct resource *root, resource_size_t start,
999 resource_size_t end, const char *name)
1000 {
1001 struct resource *parent = root;
1002 struct resource *conflict;
1003 struct resource *res = alloc_resource(GFP_ATOMIC);
1004 struct resource *next_res = NULL;
1005 int type = resource_type(root);
1006
1007 if (!res)
1008 return;
1009
1010 res->name = name;
1011 res->start = start;
1012 res->end = end;
1013 res->flags = type | IORESOURCE_BUSY;
1014 res->desc = IORES_DESC_NONE;
1015
1016 while (1) {
1017
1018 conflict = __request_resource(parent, res);
1019 if (!conflict) {
1020 if (!next_res)
1021 break;
1022 res = next_res;
1023 next_res = NULL;
1024 continue;
1025 }
1026
1027 /* conflict covered whole area */
1028 if (conflict->start <= res->start &&
1029 conflict->end >= res->end) {
1030 free_resource(res);
1031 WARN_ON(next_res);
1032 break;
1033 }
1034
1035 /* failed, split and try again */
1036 if (conflict->start > res->start) {
1037 end = res->end;
1038 res->end = conflict->start - 1;
1039 if (conflict->end < end) {
1040 next_res = alloc_resource(GFP_ATOMIC);
1041 if (!next_res) {
1042 free_resource(res);
1043 break;
1044 }
1045 next_res->name = name;
1046 next_res->start = conflict->end + 1;
1047 next_res->end = end;
1048 next_res->flags = type | IORESOURCE_BUSY;
1049 next_res->desc = IORES_DESC_NONE;
1050 }
1051 } else {
1052 res->start = conflict->end + 1;
1053 }
1054 }
1055
1056 }
1057
1058 void __init
1059 reserve_region_with_split(struct resource *root, resource_size_t start,
1060 resource_size_t end, const char *name)
1061 {
1062 int abort = 0;
1063
1064 write_lock(&resource_lock);
1065 if (root->start > start || root->end < end) {
1066 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1067 (unsigned long long)start, (unsigned long long)end,
1068 root);
1069 if (start > root->end || end < root->start)
1070 abort = 1;
1071 else {
1072 if (end > root->end)
1073 end = root->end;
1074 if (start < root->start)
1075 start = root->start;
1076 pr_err("fixing request to [0x%llx-0x%llx]\n",
1077 (unsigned long long)start,
1078 (unsigned long long)end);
1079 }
1080 dump_stack();
1081 }
1082 if (!abort)
1083 __reserve_region_with_split(root, start, end, name);
1084 write_unlock(&resource_lock);
1085 }
1086
1087 /**
1088 * resource_alignment - calculate resource's alignment
1089 * @res: resource pointer
1090 *
1091 * Returns alignment on success, 0 (invalid alignment) on failure.
1092 */
1093 resource_size_t resource_alignment(struct resource *res)
1094 {
1095 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1096 case IORESOURCE_SIZEALIGN:
1097 return resource_size(res);
1098 case IORESOURCE_STARTALIGN:
1099 return res->start;
1100 default:
1101 return 0;
1102 }
1103 }
1104
1105 /*
1106 * This is compatibility stuff for IO resources.
1107 *
1108 * Note how this, unlike the above, knows about
1109 * the IO flag meanings (busy etc).
1110 *
1111 * request_region creates a new busy region.
1112 *
1113 * release_region releases a matching busy region.
1114 */
1115
1116 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1117
1118 /**
1119 * __request_region - create a new busy resource region
1120 * @parent: parent resource descriptor
1121 * @start: resource start address
1122 * @n: resource region size
1123 * @name: reserving caller's ID string
1124 * @flags: IO resource flags
1125 */
1126 struct resource * __request_region(struct resource *parent,
1127 resource_size_t start, resource_size_t n,
1128 const char *name, int flags)
1129 {
1130 DECLARE_WAITQUEUE(wait, current);
1131 struct resource *res = alloc_resource(GFP_KERNEL);
1132 struct resource *orig_parent = parent;
1133
1134 if (!res)
1135 return NULL;
1136
1137 res->name = name;
1138 res->start = start;
1139 res->end = start + n - 1;
1140
1141 write_lock(&resource_lock);
1142
1143 for (;;) {
1144 struct resource *conflict;
1145
1146 res->flags = resource_type(parent) | resource_ext_type(parent);
1147 res->flags |= IORESOURCE_BUSY | flags;
1148 res->desc = parent->desc;
1149
1150 conflict = __request_resource(parent, res);
1151 if (!conflict)
1152 break;
1153 /*
1154 * mm/hmm.c reserves physical addresses which then
1155 * become unavailable to other users. Conflicts are
1156 * not expected. Warn to aid debugging if encountered.
1157 */
1158 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1159 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1160 conflict->name, conflict, res);
1161 }
1162 if (conflict != parent) {
1163 if (!(conflict->flags & IORESOURCE_BUSY)) {
1164 parent = conflict;
1165 continue;
1166 }
1167 }
1168 if (conflict->flags & flags & IORESOURCE_MUXED) {
1169 add_wait_queue(&muxed_resource_wait, &wait);
1170 write_unlock(&resource_lock);
1171 set_current_state(TASK_UNINTERRUPTIBLE);
1172 schedule();
1173 remove_wait_queue(&muxed_resource_wait, &wait);
1174 write_lock(&resource_lock);
1175 continue;
1176 }
1177 /* Uhhuh, that didn't work out.. */
1178 free_resource(res);
1179 res = NULL;
1180 break;
1181 }
1182 write_unlock(&resource_lock);
1183
1184 if (res && orig_parent == &iomem_resource)
1185 revoke_devmem(res);
1186
1187 return res;
1188 }
1189 EXPORT_SYMBOL(__request_region);
1190
1191 /**
1192 * __release_region - release a previously reserved resource region
1193 * @parent: parent resource descriptor
1194 * @start: resource start address
1195 * @n: resource region size
1196 *
1197 * The described resource region must match a currently busy region.
1198 */
1199 void __release_region(struct resource *parent, resource_size_t start,
1200 resource_size_t n)
1201 {
1202 struct resource **p;
1203 resource_size_t end;
1204
1205 p = &parent->child;
1206 end = start + n - 1;
1207
1208 write_lock(&resource_lock);
1209
1210 for (;;) {
1211 struct resource *res = *p;
1212
1213 if (!res)
1214 break;
1215 if (res->start <= start && res->end >= end) {
1216 if (!(res->flags & IORESOURCE_BUSY)) {
1217 p = &res->child;
1218 continue;
1219 }
1220 if (res->start != start || res->end != end)
1221 break;
1222 *p = res->sibling;
1223 write_unlock(&resource_lock);
1224 if (res->flags & IORESOURCE_MUXED)
1225 wake_up(&muxed_resource_wait);
1226 free_resource(res);
1227 return;
1228 }
1229 p = &res->sibling;
1230 }
1231
1232 write_unlock(&resource_lock);
1233
1234 printk(KERN_WARNING "Trying to free nonexistent resource "
1235 "<%016llx-%016llx>\n", (unsigned long long)start,
1236 (unsigned long long)end);
1237 }
1238 EXPORT_SYMBOL(__release_region);
1239
1240 #ifdef CONFIG_MEMORY_HOTREMOVE
1241 /**
1242 * release_mem_region_adjustable - release a previously reserved memory region
1243 * @start: resource start address
1244 * @size: resource region size
1245 *
1246 * This interface is intended for memory hot-delete. The requested region
1247 * is released from a currently busy memory resource. The requested region
1248 * must either match exactly or fit into a single busy resource entry. In
1249 * the latter case, the remaining resource is adjusted accordingly.
1250 * Existing children of the busy memory resource must be immutable in the
1251 * request.
1252 *
1253 * Note:
1254 * - Additional release conditions, such as overlapping region, can be
1255 * supported after they are confirmed as valid cases.
1256 * - When a busy memory resource gets split into two entries, the code
1257 * assumes that all children remain in the lower address entry for
1258 * simplicity. Enhance this logic when necessary.
1259 */
1260 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1261 {
1262 struct resource *parent = &iomem_resource;
1263 struct resource *new_res = NULL;
1264 bool alloc_nofail = false;
1265 struct resource **p;
1266 struct resource *res;
1267 resource_size_t end;
1268
1269 end = start + size - 1;
1270 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1271 return;
1272
1273 /*
1274 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1275 * just before releasing the region. This is highly unlikely to
1276 * fail - let's play save and make it never fail as the caller cannot
1277 * perform any error handling (e.g., trying to re-add memory will fail
1278 * similarly).
1279 */
1280 retry:
1281 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1282
1283 p = &parent->child;
1284 write_lock(&resource_lock);
1285
1286 while ((res = *p)) {
1287 if (res->start >= end)
1288 break;
1289
1290 /* look for the next resource if it does not fit into */
1291 if (res->start > start || res->end < end) {
1292 p = &res->sibling;
1293 continue;
1294 }
1295
1296 /*
1297 * All memory regions added from memory-hotplug path have the
1298 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1299 * this flag, we know that we are dealing with a resource coming
1300 * from HMM/devm. HMM/devm use another mechanism to add/release
1301 * a resource. This goes via devm_request_mem_region and
1302 * devm_release_mem_region.
1303 * HMM/devm take care to release their resources when they want,
1304 * so if we are dealing with them, let us just back off here.
1305 */
1306 if (!(res->flags & IORESOURCE_SYSRAM)) {
1307 break;
1308 }
1309
1310 if (!(res->flags & IORESOURCE_MEM))
1311 break;
1312
1313 if (!(res->flags & IORESOURCE_BUSY)) {
1314 p = &res->child;
1315 continue;
1316 }
1317
1318 /* found the target resource; let's adjust accordingly */
1319 if (res->start == start && res->end == end) {
1320 /* free the whole entry */
1321 *p = res->sibling;
1322 free_resource(res);
1323 } else if (res->start == start && res->end != end) {
1324 /* adjust the start */
1325 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1326 res->end - end));
1327 } else if (res->start != start && res->end == end) {
1328 /* adjust the end */
1329 WARN_ON_ONCE(__adjust_resource(res, res->start,
1330 start - res->start));
1331 } else {
1332 /* split into two entries - we need a new resource */
1333 if (!new_res) {
1334 new_res = alloc_resource(GFP_ATOMIC);
1335 if (!new_res) {
1336 alloc_nofail = true;
1337 write_unlock(&resource_lock);
1338 goto retry;
1339 }
1340 }
1341 new_res->name = res->name;
1342 new_res->start = end + 1;
1343 new_res->end = res->end;
1344 new_res->flags = res->flags;
1345 new_res->desc = res->desc;
1346 new_res->parent = res->parent;
1347 new_res->sibling = res->sibling;
1348 new_res->child = NULL;
1349
1350 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1351 start - res->start)))
1352 break;
1353 res->sibling = new_res;
1354 new_res = NULL;
1355 }
1356
1357 break;
1358 }
1359
1360 write_unlock(&resource_lock);
1361 free_resource(new_res);
1362 }
1363 #endif /* CONFIG_MEMORY_HOTREMOVE */
1364
1365 #ifdef CONFIG_MEMORY_HOTPLUG
1366 static bool system_ram_resources_mergeable(struct resource *r1,
1367 struct resource *r2)
1368 {
1369 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1370 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1371 r1->name == r2->name && r1->desc == r2->desc &&
1372 !r1->child && !r2->child;
1373 }
1374
1375 /*
1376 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1377 * merge it with adjacent, mergeable resources
1378 * @res: resource descriptor
1379 *
1380 * This interface is intended for memory hotplug, whereby lots of contiguous
1381 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1382 * the actual resource boundaries are not of interest (e.g., it might be
1383 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1384 * same parent, and that don't have any children are considered. All mergeable
1385 * resources must be immutable during the request.
1386 *
1387 * Note:
1388 * - The caller has to make sure that no pointers to resources that are
1389 * marked mergeable are used anymore after this call - the resource might
1390 * be freed and the pointer might be stale!
1391 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1392 */
1393 void merge_system_ram_resource(struct resource *res)
1394 {
1395 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1396 struct resource *cur;
1397
1398 if (WARN_ON_ONCE((res->flags & flags) != flags))
1399 return;
1400
1401 write_lock(&resource_lock);
1402 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1403
1404 /* Try to merge with next item in the list. */
1405 cur = res->sibling;
1406 if (cur && system_ram_resources_mergeable(res, cur)) {
1407 res->end = cur->end;
1408 res->sibling = cur->sibling;
1409 free_resource(cur);
1410 }
1411
1412 /* Try to merge with previous item in the list. */
1413 cur = res->parent->child;
1414 while (cur && cur->sibling != res)
1415 cur = cur->sibling;
1416 if (cur && system_ram_resources_mergeable(cur, res)) {
1417 cur->end = res->end;
1418 cur->sibling = res->sibling;
1419 free_resource(res);
1420 }
1421 write_unlock(&resource_lock);
1422 }
1423 #endif /* CONFIG_MEMORY_HOTPLUG */
1424
1425 /*
1426 * Managed region resource
1427 */
1428 static void devm_resource_release(struct device *dev, void *ptr)
1429 {
1430 struct resource **r = ptr;
1431
1432 release_resource(*r);
1433 }
1434
1435 /**
1436 * devm_request_resource() - request and reserve an I/O or memory resource
1437 * @dev: device for which to request the resource
1438 * @root: root of the resource tree from which to request the resource
1439 * @new: descriptor of the resource to request
1440 *
1441 * This is a device-managed version of request_resource(). There is usually
1442 * no need to release resources requested by this function explicitly since
1443 * that will be taken care of when the device is unbound from its driver.
1444 * If for some reason the resource needs to be released explicitly, because
1445 * of ordering issues for example, drivers must call devm_release_resource()
1446 * rather than the regular release_resource().
1447 *
1448 * When a conflict is detected between any existing resources and the newly
1449 * requested resource, an error message will be printed.
1450 *
1451 * Returns 0 on success or a negative error code on failure.
1452 */
1453 int devm_request_resource(struct device *dev, struct resource *root,
1454 struct resource *new)
1455 {
1456 struct resource *conflict, **ptr;
1457
1458 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1459 if (!ptr)
1460 return -ENOMEM;
1461
1462 *ptr = new;
1463
1464 conflict = request_resource_conflict(root, new);
1465 if (conflict) {
1466 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1467 new, conflict->name, conflict);
1468 devres_free(ptr);
1469 return -EBUSY;
1470 }
1471
1472 devres_add(dev, ptr);
1473 return 0;
1474 }
1475 EXPORT_SYMBOL(devm_request_resource);
1476
1477 static int devm_resource_match(struct device *dev, void *res, void *data)
1478 {
1479 struct resource **ptr = res;
1480
1481 return *ptr == data;
1482 }
1483
1484 /**
1485 * devm_release_resource() - release a previously requested resource
1486 * @dev: device for which to release the resource
1487 * @new: descriptor of the resource to release
1488 *
1489 * Releases a resource previously requested using devm_request_resource().
1490 */
1491 void devm_release_resource(struct device *dev, struct resource *new)
1492 {
1493 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1494 new));
1495 }
1496 EXPORT_SYMBOL(devm_release_resource);
1497
1498 struct region_devres {
1499 struct resource *parent;
1500 resource_size_t start;
1501 resource_size_t n;
1502 };
1503
1504 static void devm_region_release(struct device *dev, void *res)
1505 {
1506 struct region_devres *this = res;
1507
1508 __release_region(this->parent, this->start, this->n);
1509 }
1510
1511 static int devm_region_match(struct device *dev, void *res, void *match_data)
1512 {
1513 struct region_devres *this = res, *match = match_data;
1514
1515 return this->parent == match->parent &&
1516 this->start == match->start && this->n == match->n;
1517 }
1518
1519 struct resource *
1520 __devm_request_region(struct device *dev, struct resource *parent,
1521 resource_size_t start, resource_size_t n, const char *name)
1522 {
1523 struct region_devres *dr = NULL;
1524 struct resource *res;
1525
1526 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1527 GFP_KERNEL);
1528 if (!dr)
1529 return NULL;
1530
1531 dr->parent = parent;
1532 dr->start = start;
1533 dr->n = n;
1534
1535 res = __request_region(parent, start, n, name, 0);
1536 if (res)
1537 devres_add(dev, dr);
1538 else
1539 devres_free(dr);
1540
1541 return res;
1542 }
1543 EXPORT_SYMBOL(__devm_request_region);
1544
1545 void __devm_release_region(struct device *dev, struct resource *parent,
1546 resource_size_t start, resource_size_t n)
1547 {
1548 struct region_devres match_data = { parent, start, n };
1549
1550 __release_region(parent, start, n);
1551 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1552 &match_data));
1553 }
1554 EXPORT_SYMBOL(__devm_release_region);
1555
1556 /*
1557 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1558 */
1559 #define MAXRESERVE 4
1560 static int __init reserve_setup(char *str)
1561 {
1562 static int reserved;
1563 static struct resource reserve[MAXRESERVE];
1564
1565 for (;;) {
1566 unsigned int io_start, io_num;
1567 int x = reserved;
1568 struct resource *parent;
1569
1570 if (get_option(&str, &io_start) != 2)
1571 break;
1572 if (get_option(&str, &io_num) == 0)
1573 break;
1574 if (x < MAXRESERVE) {
1575 struct resource *res = reserve + x;
1576
1577 /*
1578 * If the region starts below 0x10000, we assume it's
1579 * I/O port space; otherwise assume it's memory.
1580 */
1581 if (io_start < 0x10000) {
1582 res->flags = IORESOURCE_IO;
1583 parent = &ioport_resource;
1584 } else {
1585 res->flags = IORESOURCE_MEM;
1586 parent = &iomem_resource;
1587 }
1588 res->name = "reserved";
1589 res->start = io_start;
1590 res->end = io_start + io_num - 1;
1591 res->flags |= IORESOURCE_BUSY;
1592 res->desc = IORES_DESC_NONE;
1593 res->child = NULL;
1594 if (request_resource(parent, res) == 0)
1595 reserved = x+1;
1596 }
1597 }
1598 return 1;
1599 }
1600 __setup("reserve=", reserve_setup);
1601
1602 /*
1603 * Check if the requested addr and size spans more than any slot in the
1604 * iomem resource tree.
1605 */
1606 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1607 {
1608 struct resource *p = &iomem_resource;
1609 int err = 0;
1610 loff_t l;
1611
1612 read_lock(&resource_lock);
1613 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1614 /*
1615 * We can probably skip the resources without
1616 * IORESOURCE_IO attribute?
1617 */
1618 if (p->start >= addr + size)
1619 continue;
1620 if (p->end < addr)
1621 continue;
1622 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1623 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1624 continue;
1625 /*
1626 * if a resource is "BUSY", it's not a hardware resource
1627 * but a driver mapping of such a resource; we don't want
1628 * to warn for those; some drivers legitimately map only
1629 * partial hardware resources. (example: vesafb)
1630 */
1631 if (p->flags & IORESOURCE_BUSY)
1632 continue;
1633
1634 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1635 (unsigned long long)addr,
1636 (unsigned long long)(addr + size - 1),
1637 p->name, p);
1638 err = -1;
1639 break;
1640 }
1641 read_unlock(&resource_lock);
1642
1643 return err;
1644 }
1645
1646 #ifdef CONFIG_STRICT_DEVMEM
1647 static int strict_iomem_checks = 1;
1648 #else
1649 static int strict_iomem_checks;
1650 #endif
1651
1652 /*
1653 * check if an address is reserved in the iomem resource tree
1654 * returns true if reserved, false if not reserved.
1655 */
1656 bool iomem_is_exclusive(u64 addr)
1657 {
1658 struct resource *p = &iomem_resource;
1659 bool err = false;
1660 loff_t l;
1661 int size = PAGE_SIZE;
1662
1663 if (!strict_iomem_checks)
1664 return false;
1665
1666 addr = addr & PAGE_MASK;
1667
1668 read_lock(&resource_lock);
1669 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1670 /*
1671 * We can probably skip the resources without
1672 * IORESOURCE_IO attribute?
1673 */
1674 if (p->start >= addr + size)
1675 break;
1676 if (p->end < addr)
1677 continue;
1678 /*
1679 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1680 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1681 * resource is busy.
1682 */
1683 if ((p->flags & IORESOURCE_BUSY) == 0)
1684 continue;
1685 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1686 || p->flags & IORESOURCE_EXCLUSIVE) {
1687 err = true;
1688 break;
1689 }
1690 }
1691 read_unlock(&resource_lock);
1692
1693 return err;
1694 }
1695
1696 struct resource_entry *resource_list_create_entry(struct resource *res,
1697 size_t extra_size)
1698 {
1699 struct resource_entry *entry;
1700
1701 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1702 if (entry) {
1703 INIT_LIST_HEAD(&entry->node);
1704 entry->res = res ? res : &entry->__res;
1705 }
1706
1707 return entry;
1708 }
1709 EXPORT_SYMBOL(resource_list_create_entry);
1710
1711 void resource_list_free(struct list_head *head)
1712 {
1713 struct resource_entry *entry, *tmp;
1714
1715 list_for_each_entry_safe(entry, tmp, head, node)
1716 resource_list_destroy_entry(entry);
1717 }
1718 EXPORT_SYMBOL(resource_list_free);
1719
1720 #ifdef CONFIG_DEVICE_PRIVATE
1721 static struct resource *__request_free_mem_region(struct device *dev,
1722 struct resource *base, unsigned long size, const char *name)
1723 {
1724 resource_size_t end, addr;
1725 struct resource *res;
1726
1727 size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1728 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1729 addr = end - size + 1UL;
1730
1731 for (; addr > size && addr >= base->start; addr -= size) {
1732 if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1733 REGION_DISJOINT)
1734 continue;
1735
1736 if (dev)
1737 res = devm_request_mem_region(dev, addr, size, name);
1738 else
1739 res = request_mem_region(addr, size, name);
1740 if (!res)
1741 return ERR_PTR(-ENOMEM);
1742 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1743 return res;
1744 }
1745
1746 return ERR_PTR(-ERANGE);
1747 }
1748
1749 /**
1750 * devm_request_free_mem_region - find free region for device private memory
1751 *
1752 * @dev: device struct to bind the resource to
1753 * @size: size in bytes of the device memory to add
1754 * @base: resource tree to look in
1755 *
1756 * This function tries to find an empty range of physical address big enough to
1757 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1758 * memory, which in turn allocates struct pages.
1759 */
1760 struct resource *devm_request_free_mem_region(struct device *dev,
1761 struct resource *base, unsigned long size)
1762 {
1763 return __request_free_mem_region(dev, base, size, dev_name(dev));
1764 }
1765 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1766
1767 struct resource *request_free_mem_region(struct resource *base,
1768 unsigned long size, const char *name)
1769 {
1770 return __request_free_mem_region(NULL, base, size, name);
1771 }
1772 EXPORT_SYMBOL_GPL(request_free_mem_region);
1773
1774 #endif /* CONFIG_DEVICE_PRIVATE */
1775
1776 static int __init strict_iomem(char *str)
1777 {
1778 if (strstr(str, "relaxed"))
1779 strict_iomem_checks = 0;
1780 if (strstr(str, "strict"))
1781 strict_iomem_checks = 1;
1782 return 1;
1783 }
1784
1785 __setup("iomem=", strict_iomem);