]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/resource.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-jammy-kernel.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27
28
29 struct resource ioport_resource = {
30 .name = "PCI IO",
31 .start = 0,
32 .end = IO_SPACE_LIMIT,
33 .flags = IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36
37 struct resource iomem_resource = {
38 .name = "PCI mem",
39 .start = 0,
40 .end = -1,
41 .flags = IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 resource_size_t min, max, align;
48 resource_size_t (*alignf)(void *, const struct resource *,
49 resource_size_t, resource_size_t);
50 void *alignf_data;
51 };
52
53 static DEFINE_RWLOCK(resource_lock);
54
55 /*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 /* Caller wants to traverse through siblings only */
66 if (sibling_only)
67 return p->sibling;
68
69 if (p->child)
70 return p->child;
71 while (!p->sibling && p->parent)
72 p = p->parent;
73 return p->sibling;
74 }
75
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 struct resource *p = v;
79 (*pos)++;
80 return (void *)next_resource(p, false);
81 }
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *p = PDE_DATA(file_inode(m->file));
91 loff_t l = 0;
92 read_lock(&resource_lock);
93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 ;
95 return p;
96 }
97
98 static void r_stop(struct seq_file *m, void *v)
99 __releases(resource_lock)
100 {
101 read_unlock(&resource_lock);
102 }
103
104 static int r_show(struct seq_file *m, void *v)
105 {
106 struct resource *root = PDE_DATA(file_inode(m->file));
107 struct resource *r = v, *p;
108 unsigned long long start, end;
109 int width = root->end < 0x10000 ? 4 : 8;
110 int depth;
111
112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 if (p->parent == root)
114 break;
115
116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 start = r->start;
118 end = r->end;
119 } else {
120 start = end = 0;
121 }
122
123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 depth * 2, "",
125 width, start,
126 width, end,
127 r->name ? r->name : "<BAD>");
128 return 0;
129 }
130
131 static const struct seq_operations resource_op = {
132 .start = r_start,
133 .next = r_next,
134 .stop = r_stop,
135 .show = r_show,
136 };
137
138 static int __init ioresources_init(void)
139 {
140 proc_create_seq_data("ioports", 0, NULL, &resource_op,
141 &ioport_resource);
142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
143 return 0;
144 }
145 __initcall(ioresources_init);
146
147 #endif /* CONFIG_PROC_FS */
148
149 static void free_resource(struct resource *res)
150 {
151 if (!res)
152 return;
153
154 if (!PageSlab(virt_to_head_page(res))) {
155 spin_lock(&bootmem_resource_lock);
156 res->sibling = bootmem_resource_free;
157 bootmem_resource_free = res;
158 spin_unlock(&bootmem_resource_lock);
159 } else {
160 kfree(res);
161 }
162 }
163
164 static struct resource *alloc_resource(gfp_t flags)
165 {
166 struct resource *res = NULL;
167
168 spin_lock(&bootmem_resource_lock);
169 if (bootmem_resource_free) {
170 res = bootmem_resource_free;
171 bootmem_resource_free = res->sibling;
172 }
173 spin_unlock(&bootmem_resource_lock);
174
175 if (res)
176 memset(res, 0, sizeof(struct resource));
177 else
178 res = kzalloc(sizeof(struct resource), flags);
179
180 return res;
181 }
182
183 /* Return the conflict entry if you can't request it */
184 static struct resource * __request_resource(struct resource *root, struct resource *new)
185 {
186 resource_size_t start = new->start;
187 resource_size_t end = new->end;
188 struct resource *tmp, **p;
189
190 if (end < start)
191 return root;
192 if (start < root->start)
193 return root;
194 if (end > root->end)
195 return root;
196 p = &root->child;
197 for (;;) {
198 tmp = *p;
199 if (!tmp || tmp->start > end) {
200 new->sibling = tmp;
201 *p = new;
202 new->parent = root;
203 return NULL;
204 }
205 p = &tmp->sibling;
206 if (tmp->end < start)
207 continue;
208 return tmp;
209 }
210 }
211
212 static int __release_resource(struct resource *old, bool release_child)
213 {
214 struct resource *tmp, **p, *chd;
215
216 p = &old->parent->child;
217 for (;;) {
218 tmp = *p;
219 if (!tmp)
220 break;
221 if (tmp == old) {
222 if (release_child || !(tmp->child)) {
223 *p = tmp->sibling;
224 } else {
225 for (chd = tmp->child;; chd = chd->sibling) {
226 chd->parent = tmp->parent;
227 if (!(chd->sibling))
228 break;
229 }
230 *p = tmp->child;
231 chd->sibling = tmp->sibling;
232 }
233 old->parent = NULL;
234 return 0;
235 }
236 p = &tmp->sibling;
237 }
238 return -EINVAL;
239 }
240
241 static void __release_child_resources(struct resource *r)
242 {
243 struct resource *tmp, *p;
244 resource_size_t size;
245
246 p = r->child;
247 r->child = NULL;
248 while (p) {
249 tmp = p;
250 p = p->sibling;
251
252 tmp->parent = NULL;
253 tmp->sibling = NULL;
254 __release_child_resources(tmp);
255
256 printk(KERN_DEBUG "release child resource %pR\n", tmp);
257 /* need to restore size, and keep flags */
258 size = resource_size(tmp);
259 tmp->start = 0;
260 tmp->end = size - 1;
261 }
262 }
263
264 void release_child_resources(struct resource *r)
265 {
266 write_lock(&resource_lock);
267 __release_child_resources(r);
268 write_unlock(&resource_lock);
269 }
270
271 /**
272 * request_resource_conflict - request and reserve an I/O or memory resource
273 * @root: root resource descriptor
274 * @new: resource descriptor desired by caller
275 *
276 * Returns 0 for success, conflict resource on error.
277 */
278 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
279 {
280 struct resource *conflict;
281
282 write_lock(&resource_lock);
283 conflict = __request_resource(root, new);
284 write_unlock(&resource_lock);
285 return conflict;
286 }
287
288 /**
289 * request_resource - request and reserve an I/O or memory resource
290 * @root: root resource descriptor
291 * @new: resource descriptor desired by caller
292 *
293 * Returns 0 for success, negative error code on error.
294 */
295 int request_resource(struct resource *root, struct resource *new)
296 {
297 struct resource *conflict;
298
299 conflict = request_resource_conflict(root, new);
300 return conflict ? -EBUSY : 0;
301 }
302
303 EXPORT_SYMBOL(request_resource);
304
305 /**
306 * release_resource - release a previously reserved resource
307 * @old: resource pointer
308 */
309 int release_resource(struct resource *old)
310 {
311 int retval;
312
313 write_lock(&resource_lock);
314 retval = __release_resource(old, true);
315 write_unlock(&resource_lock);
316 return retval;
317 }
318
319 EXPORT_SYMBOL(release_resource);
320
321 /**
322 * Finds the lowest iomem resource that covers part of [@start..@end]. The
323 * caller must specify @start, @end, @flags, and @desc (which may be
324 * IORES_DESC_NONE).
325 *
326 * If a resource is found, returns 0 and @*res is overwritten with the part
327 * of the resource that's within [@start..@end]; if none is found, returns
328 * -1 or -EINVAL for other invalid parameters.
329 *
330 * This function walks the whole tree and not just first level children
331 * unless @first_lvl is true.
332 *
333 * @start: start address of the resource searched for
334 * @end: end address of same resource
335 * @flags: flags which the resource must have
336 * @desc: descriptor the resource must have
337 * @first_lvl: walk only the first level children, if set
338 * @res: return ptr, if resource found
339 */
340 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
341 unsigned long flags, unsigned long desc,
342 bool first_lvl, struct resource *res)
343 {
344 struct resource *p;
345
346 if (!res)
347 return -EINVAL;
348
349 if (start >= end)
350 return -EINVAL;
351
352 read_lock(&resource_lock);
353
354 for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) {
355 if ((p->flags & flags) != flags)
356 continue;
357 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
358 continue;
359 if (p->start > end) {
360 p = NULL;
361 break;
362 }
363 if ((p->end >= start) && (p->start <= end))
364 break;
365 }
366
367 read_unlock(&resource_lock);
368 if (!p)
369 return -1;
370
371 /* copy data */
372 res->start = max(start, p->start);
373 res->end = min(end, p->end);
374 res->flags = p->flags;
375 res->desc = p->desc;
376 return 0;
377 }
378
379 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
380 unsigned long flags, unsigned long desc,
381 bool first_lvl, void *arg,
382 int (*func)(struct resource *, void *))
383 {
384 struct resource res;
385 int ret = -EINVAL;
386
387 while (start < end &&
388 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
389 ret = (*func)(&res, arg);
390 if (ret)
391 break;
392
393 start = res.end + 1;
394 }
395
396 return ret;
397 }
398
399 /**
400 * Walks through iomem resources and calls func() with matching resource
401 * ranges. This walks through whole tree and not just first level children.
402 * All the memory ranges which overlap start,end and also match flags and
403 * desc are valid candidates.
404 *
405 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
406 * @flags: I/O resource flags
407 * @start: start addr
408 * @end: end addr
409 * @arg: function argument for the callback @func
410 * @func: callback function that is called for each qualifying resource area
411 *
412 * NOTE: For a new descriptor search, define a new IORES_DESC in
413 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
414 */
415 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
416 u64 end, void *arg, int (*func)(struct resource *, void *))
417 {
418 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
419 }
420 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
421
422 /*
423 * This function calls the @func callback against all memory ranges of type
424 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
425 * Now, this function is only for System RAM, it deals with full ranges and
426 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
427 * ranges.
428 */
429 int walk_system_ram_res(u64 start, u64 end, void *arg,
430 int (*func)(struct resource *, void *))
431 {
432 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
433
434 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
435 arg, func);
436 }
437
438 /*
439 * This function calls the @func callback against all memory ranges, which
440 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
441 */
442 int walk_mem_res(u64 start, u64 end, void *arg,
443 int (*func)(struct resource *, void *))
444 {
445 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
446
447 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
448 arg, func);
449 }
450
451 /*
452 * This function calls the @func callback against all memory ranges of type
453 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
454 * It is to be used only for System RAM.
455 *
456 * This will find System RAM ranges that are children of top-level resources
457 * in addition to top-level System RAM resources.
458 */
459 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
460 void *arg, int (*func)(unsigned long, unsigned long, void *))
461 {
462 resource_size_t start, end;
463 unsigned long flags;
464 struct resource res;
465 unsigned long pfn, end_pfn;
466 int ret = -EINVAL;
467
468 start = (u64) start_pfn << PAGE_SHIFT;
469 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
470 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
471 while (start < end &&
472 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
473 false, &res)) {
474 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
475 end_pfn = (res.end + 1) >> PAGE_SHIFT;
476 if (end_pfn > pfn)
477 ret = (*func)(pfn, end_pfn - pfn, arg);
478 if (ret)
479 break;
480 start = res.end + 1;
481 }
482 return ret;
483 }
484
485 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
486 {
487 return 1;
488 }
489
490 /*
491 * This generic page_is_ram() returns true if specified address is
492 * registered as System RAM in iomem_resource list.
493 */
494 int __weak page_is_ram(unsigned long pfn)
495 {
496 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
497 }
498 EXPORT_SYMBOL_GPL(page_is_ram);
499
500 /**
501 * region_intersects() - determine intersection of region with known resources
502 * @start: region start address
503 * @size: size of region
504 * @flags: flags of resource (in iomem_resource)
505 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
506 *
507 * Check if the specified region partially overlaps or fully eclipses a
508 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
509 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
510 * return REGION_MIXED if the region overlaps @flags/@desc and another
511 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
512 * and no other defined resource. Note that REGION_INTERSECTS is also
513 * returned in the case when the specified region overlaps RAM and undefined
514 * memory holes.
515 *
516 * region_intersect() is used by memory remapping functions to ensure
517 * the user is not remapping RAM and is a vast speed up over walking
518 * through the resource table page by page.
519 */
520 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
521 unsigned long desc)
522 {
523 struct resource res;
524 int type = 0; int other = 0;
525 struct resource *p;
526
527 res.start = start;
528 res.end = start + size - 1;
529
530 read_lock(&resource_lock);
531 for (p = iomem_resource.child; p ; p = p->sibling) {
532 bool is_type = (((p->flags & flags) == flags) &&
533 ((desc == IORES_DESC_NONE) ||
534 (desc == p->desc)));
535
536 if (resource_overlaps(p, &res))
537 is_type ? type++ : other++;
538 }
539 read_unlock(&resource_lock);
540
541 if (other == 0)
542 return type ? REGION_INTERSECTS : REGION_DISJOINT;
543
544 if (type)
545 return REGION_MIXED;
546
547 return REGION_DISJOINT;
548 }
549 EXPORT_SYMBOL_GPL(region_intersects);
550
551 void __weak arch_remove_reservations(struct resource *avail)
552 {
553 }
554
555 static resource_size_t simple_align_resource(void *data,
556 const struct resource *avail,
557 resource_size_t size,
558 resource_size_t align)
559 {
560 return avail->start;
561 }
562
563 static void resource_clip(struct resource *res, resource_size_t min,
564 resource_size_t max)
565 {
566 if (res->start < min)
567 res->start = min;
568 if (res->end > max)
569 res->end = max;
570 }
571
572 /*
573 * Find empty slot in the resource tree with the given range and
574 * alignment constraints
575 */
576 static int __find_resource(struct resource *root, struct resource *old,
577 struct resource *new,
578 resource_size_t size,
579 struct resource_constraint *constraint)
580 {
581 struct resource *this = root->child;
582 struct resource tmp = *new, avail, alloc;
583
584 tmp.start = root->start;
585 /*
586 * Skip past an allocated resource that starts at 0, since the assignment
587 * of this->start - 1 to tmp->end below would cause an underflow.
588 */
589 if (this && this->start == root->start) {
590 tmp.start = (this == old) ? old->start : this->end + 1;
591 this = this->sibling;
592 }
593 for(;;) {
594 if (this)
595 tmp.end = (this == old) ? this->end : this->start - 1;
596 else
597 tmp.end = root->end;
598
599 if (tmp.end < tmp.start)
600 goto next;
601
602 resource_clip(&tmp, constraint->min, constraint->max);
603 arch_remove_reservations(&tmp);
604
605 /* Check for overflow after ALIGN() */
606 avail.start = ALIGN(tmp.start, constraint->align);
607 avail.end = tmp.end;
608 avail.flags = new->flags & ~IORESOURCE_UNSET;
609 if (avail.start >= tmp.start) {
610 alloc.flags = avail.flags;
611 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
612 size, constraint->align);
613 alloc.end = alloc.start + size - 1;
614 if (alloc.start <= alloc.end &&
615 resource_contains(&avail, &alloc)) {
616 new->start = alloc.start;
617 new->end = alloc.end;
618 return 0;
619 }
620 }
621
622 next: if (!this || this->end == root->end)
623 break;
624
625 if (this != old)
626 tmp.start = this->end + 1;
627 this = this->sibling;
628 }
629 return -EBUSY;
630 }
631
632 /*
633 * Find empty slot in the resource tree given range and alignment.
634 */
635 static int find_resource(struct resource *root, struct resource *new,
636 resource_size_t size,
637 struct resource_constraint *constraint)
638 {
639 return __find_resource(root, NULL, new, size, constraint);
640 }
641
642 /**
643 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
644 * The resource will be relocated if the new size cannot be reallocated in the
645 * current location.
646 *
647 * @root: root resource descriptor
648 * @old: resource descriptor desired by caller
649 * @newsize: new size of the resource descriptor
650 * @constraint: the size and alignment constraints to be met.
651 */
652 static int reallocate_resource(struct resource *root, struct resource *old,
653 resource_size_t newsize,
654 struct resource_constraint *constraint)
655 {
656 int err=0;
657 struct resource new = *old;
658 struct resource *conflict;
659
660 write_lock(&resource_lock);
661
662 if ((err = __find_resource(root, old, &new, newsize, constraint)))
663 goto out;
664
665 if (resource_contains(&new, old)) {
666 old->start = new.start;
667 old->end = new.end;
668 goto out;
669 }
670
671 if (old->child) {
672 err = -EBUSY;
673 goto out;
674 }
675
676 if (resource_contains(old, &new)) {
677 old->start = new.start;
678 old->end = new.end;
679 } else {
680 __release_resource(old, true);
681 *old = new;
682 conflict = __request_resource(root, old);
683 BUG_ON(conflict);
684 }
685 out:
686 write_unlock(&resource_lock);
687 return err;
688 }
689
690
691 /**
692 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
693 * The resource will be reallocated with a new size if it was already allocated
694 * @root: root resource descriptor
695 * @new: resource descriptor desired by caller
696 * @size: requested resource region size
697 * @min: minimum boundary to allocate
698 * @max: maximum boundary to allocate
699 * @align: alignment requested, in bytes
700 * @alignf: alignment function, optional, called if not NULL
701 * @alignf_data: arbitrary data to pass to the @alignf function
702 */
703 int allocate_resource(struct resource *root, struct resource *new,
704 resource_size_t size, resource_size_t min,
705 resource_size_t max, resource_size_t align,
706 resource_size_t (*alignf)(void *,
707 const struct resource *,
708 resource_size_t,
709 resource_size_t),
710 void *alignf_data)
711 {
712 int err;
713 struct resource_constraint constraint;
714
715 if (!alignf)
716 alignf = simple_align_resource;
717
718 constraint.min = min;
719 constraint.max = max;
720 constraint.align = align;
721 constraint.alignf = alignf;
722 constraint.alignf_data = alignf_data;
723
724 if ( new->parent ) {
725 /* resource is already allocated, try reallocating with
726 the new constraints */
727 return reallocate_resource(root, new, size, &constraint);
728 }
729
730 write_lock(&resource_lock);
731 err = find_resource(root, new, size, &constraint);
732 if (err >= 0 && __request_resource(root, new))
733 err = -EBUSY;
734 write_unlock(&resource_lock);
735 return err;
736 }
737
738 EXPORT_SYMBOL(allocate_resource);
739
740 /**
741 * lookup_resource - find an existing resource by a resource start address
742 * @root: root resource descriptor
743 * @start: resource start address
744 *
745 * Returns a pointer to the resource if found, NULL otherwise
746 */
747 struct resource *lookup_resource(struct resource *root, resource_size_t start)
748 {
749 struct resource *res;
750
751 read_lock(&resource_lock);
752 for (res = root->child; res; res = res->sibling) {
753 if (res->start == start)
754 break;
755 }
756 read_unlock(&resource_lock);
757
758 return res;
759 }
760
761 /*
762 * Insert a resource into the resource tree. If successful, return NULL,
763 * otherwise return the conflicting resource (compare to __request_resource())
764 */
765 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
766 {
767 struct resource *first, *next;
768
769 for (;; parent = first) {
770 first = __request_resource(parent, new);
771 if (!first)
772 return first;
773
774 if (first == parent)
775 return first;
776 if (WARN_ON(first == new)) /* duplicated insertion */
777 return first;
778
779 if ((first->start > new->start) || (first->end < new->end))
780 break;
781 if ((first->start == new->start) && (first->end == new->end))
782 break;
783 }
784
785 for (next = first; ; next = next->sibling) {
786 /* Partial overlap? Bad, and unfixable */
787 if (next->start < new->start || next->end > new->end)
788 return next;
789 if (!next->sibling)
790 break;
791 if (next->sibling->start > new->end)
792 break;
793 }
794
795 new->parent = parent;
796 new->sibling = next->sibling;
797 new->child = first;
798
799 next->sibling = NULL;
800 for (next = first; next; next = next->sibling)
801 next->parent = new;
802
803 if (parent->child == first) {
804 parent->child = new;
805 } else {
806 next = parent->child;
807 while (next->sibling != first)
808 next = next->sibling;
809 next->sibling = new;
810 }
811 return NULL;
812 }
813
814 /**
815 * insert_resource_conflict - Inserts resource in the resource tree
816 * @parent: parent of the new resource
817 * @new: new resource to insert
818 *
819 * Returns 0 on success, conflict resource if the resource can't be inserted.
820 *
821 * This function is equivalent to request_resource_conflict when no conflict
822 * happens. If a conflict happens, and the conflicting resources
823 * entirely fit within the range of the new resource, then the new
824 * resource is inserted and the conflicting resources become children of
825 * the new resource.
826 *
827 * This function is intended for producers of resources, such as FW modules
828 * and bus drivers.
829 */
830 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
831 {
832 struct resource *conflict;
833
834 write_lock(&resource_lock);
835 conflict = __insert_resource(parent, new);
836 write_unlock(&resource_lock);
837 return conflict;
838 }
839
840 /**
841 * insert_resource - Inserts a resource in the resource tree
842 * @parent: parent of the new resource
843 * @new: new resource to insert
844 *
845 * Returns 0 on success, -EBUSY if the resource can't be inserted.
846 *
847 * This function is intended for producers of resources, such as FW modules
848 * and bus drivers.
849 */
850 int insert_resource(struct resource *parent, struct resource *new)
851 {
852 struct resource *conflict;
853
854 conflict = insert_resource_conflict(parent, new);
855 return conflict ? -EBUSY : 0;
856 }
857 EXPORT_SYMBOL_GPL(insert_resource);
858
859 /**
860 * insert_resource_expand_to_fit - Insert a resource into the resource tree
861 * @root: root resource descriptor
862 * @new: new resource to insert
863 *
864 * Insert a resource into the resource tree, possibly expanding it in order
865 * to make it encompass any conflicting resources.
866 */
867 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
868 {
869 if (new->parent)
870 return;
871
872 write_lock(&resource_lock);
873 for (;;) {
874 struct resource *conflict;
875
876 conflict = __insert_resource(root, new);
877 if (!conflict)
878 break;
879 if (conflict == root)
880 break;
881
882 /* Ok, expand resource to cover the conflict, then try again .. */
883 if (conflict->start < new->start)
884 new->start = conflict->start;
885 if (conflict->end > new->end)
886 new->end = conflict->end;
887
888 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
889 }
890 write_unlock(&resource_lock);
891 }
892
893 /**
894 * remove_resource - Remove a resource in the resource tree
895 * @old: resource to remove
896 *
897 * Returns 0 on success, -EINVAL if the resource is not valid.
898 *
899 * This function removes a resource previously inserted by insert_resource()
900 * or insert_resource_conflict(), and moves the children (if any) up to
901 * where they were before. insert_resource() and insert_resource_conflict()
902 * insert a new resource, and move any conflicting resources down to the
903 * children of the new resource.
904 *
905 * insert_resource(), insert_resource_conflict() and remove_resource() are
906 * intended for producers of resources, such as FW modules and bus drivers.
907 */
908 int remove_resource(struct resource *old)
909 {
910 int retval;
911
912 write_lock(&resource_lock);
913 retval = __release_resource(old, false);
914 write_unlock(&resource_lock);
915 return retval;
916 }
917 EXPORT_SYMBOL_GPL(remove_resource);
918
919 static int __adjust_resource(struct resource *res, resource_size_t start,
920 resource_size_t size)
921 {
922 struct resource *tmp, *parent = res->parent;
923 resource_size_t end = start + size - 1;
924 int result = -EBUSY;
925
926 if (!parent)
927 goto skip;
928
929 if ((start < parent->start) || (end > parent->end))
930 goto out;
931
932 if (res->sibling && (res->sibling->start <= end))
933 goto out;
934
935 tmp = parent->child;
936 if (tmp != res) {
937 while (tmp->sibling != res)
938 tmp = tmp->sibling;
939 if (start <= tmp->end)
940 goto out;
941 }
942
943 skip:
944 for (tmp = res->child; tmp; tmp = tmp->sibling)
945 if ((tmp->start < start) || (tmp->end > end))
946 goto out;
947
948 res->start = start;
949 res->end = end;
950 result = 0;
951
952 out:
953 return result;
954 }
955
956 /**
957 * adjust_resource - modify a resource's start and size
958 * @res: resource to modify
959 * @start: new start value
960 * @size: new size
961 *
962 * Given an existing resource, change its start and size to match the
963 * arguments. Returns 0 on success, -EBUSY if it can't fit.
964 * Existing children of the resource are assumed to be immutable.
965 */
966 int adjust_resource(struct resource *res, resource_size_t start,
967 resource_size_t size)
968 {
969 int result;
970
971 write_lock(&resource_lock);
972 result = __adjust_resource(res, start, size);
973 write_unlock(&resource_lock);
974 return result;
975 }
976 EXPORT_SYMBOL(adjust_resource);
977
978 static void __init
979 __reserve_region_with_split(struct resource *root, resource_size_t start,
980 resource_size_t end, const char *name)
981 {
982 struct resource *parent = root;
983 struct resource *conflict;
984 struct resource *res = alloc_resource(GFP_ATOMIC);
985 struct resource *next_res = NULL;
986 int type = resource_type(root);
987
988 if (!res)
989 return;
990
991 res->name = name;
992 res->start = start;
993 res->end = end;
994 res->flags = type | IORESOURCE_BUSY;
995 res->desc = IORES_DESC_NONE;
996
997 while (1) {
998
999 conflict = __request_resource(parent, res);
1000 if (!conflict) {
1001 if (!next_res)
1002 break;
1003 res = next_res;
1004 next_res = NULL;
1005 continue;
1006 }
1007
1008 /* conflict covered whole area */
1009 if (conflict->start <= res->start &&
1010 conflict->end >= res->end) {
1011 free_resource(res);
1012 WARN_ON(next_res);
1013 break;
1014 }
1015
1016 /* failed, split and try again */
1017 if (conflict->start > res->start) {
1018 end = res->end;
1019 res->end = conflict->start - 1;
1020 if (conflict->end < end) {
1021 next_res = alloc_resource(GFP_ATOMIC);
1022 if (!next_res) {
1023 free_resource(res);
1024 break;
1025 }
1026 next_res->name = name;
1027 next_res->start = conflict->end + 1;
1028 next_res->end = end;
1029 next_res->flags = type | IORESOURCE_BUSY;
1030 next_res->desc = IORES_DESC_NONE;
1031 }
1032 } else {
1033 res->start = conflict->end + 1;
1034 }
1035 }
1036
1037 }
1038
1039 void __init
1040 reserve_region_with_split(struct resource *root, resource_size_t start,
1041 resource_size_t end, const char *name)
1042 {
1043 int abort = 0;
1044
1045 write_lock(&resource_lock);
1046 if (root->start > start || root->end < end) {
1047 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1048 (unsigned long long)start, (unsigned long long)end,
1049 root);
1050 if (start > root->end || end < root->start)
1051 abort = 1;
1052 else {
1053 if (end > root->end)
1054 end = root->end;
1055 if (start < root->start)
1056 start = root->start;
1057 pr_err("fixing request to [0x%llx-0x%llx]\n",
1058 (unsigned long long)start,
1059 (unsigned long long)end);
1060 }
1061 dump_stack();
1062 }
1063 if (!abort)
1064 __reserve_region_with_split(root, start, end, name);
1065 write_unlock(&resource_lock);
1066 }
1067
1068 /**
1069 * resource_alignment - calculate resource's alignment
1070 * @res: resource pointer
1071 *
1072 * Returns alignment on success, 0 (invalid alignment) on failure.
1073 */
1074 resource_size_t resource_alignment(struct resource *res)
1075 {
1076 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1077 case IORESOURCE_SIZEALIGN:
1078 return resource_size(res);
1079 case IORESOURCE_STARTALIGN:
1080 return res->start;
1081 default:
1082 return 0;
1083 }
1084 }
1085
1086 /*
1087 * This is compatibility stuff for IO resources.
1088 *
1089 * Note how this, unlike the above, knows about
1090 * the IO flag meanings (busy etc).
1091 *
1092 * request_region creates a new busy region.
1093 *
1094 * release_region releases a matching busy region.
1095 */
1096
1097 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1098
1099 /**
1100 * __request_region - create a new busy resource region
1101 * @parent: parent resource descriptor
1102 * @start: resource start address
1103 * @n: resource region size
1104 * @name: reserving caller's ID string
1105 * @flags: IO resource flags
1106 */
1107 struct resource * __request_region(struct resource *parent,
1108 resource_size_t start, resource_size_t n,
1109 const char *name, int flags)
1110 {
1111 DECLARE_WAITQUEUE(wait, current);
1112 struct resource *res = alloc_resource(GFP_KERNEL);
1113
1114 if (!res)
1115 return NULL;
1116
1117 res->name = name;
1118 res->start = start;
1119 res->end = start + n - 1;
1120
1121 write_lock(&resource_lock);
1122
1123 for (;;) {
1124 struct resource *conflict;
1125
1126 res->flags = resource_type(parent) | resource_ext_type(parent);
1127 res->flags |= IORESOURCE_BUSY | flags;
1128 res->desc = parent->desc;
1129
1130 conflict = __request_resource(parent, res);
1131 if (!conflict)
1132 break;
1133 /*
1134 * mm/hmm.c reserves physical addresses which then
1135 * become unavailable to other users. Conflicts are
1136 * not expected. Warn to aid debugging if encountered.
1137 */
1138 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1139 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1140 conflict->name, conflict, res);
1141 }
1142 if (conflict != parent) {
1143 if (!(conflict->flags & IORESOURCE_BUSY)) {
1144 parent = conflict;
1145 continue;
1146 }
1147 }
1148 if (conflict->flags & flags & IORESOURCE_MUXED) {
1149 add_wait_queue(&muxed_resource_wait, &wait);
1150 write_unlock(&resource_lock);
1151 set_current_state(TASK_UNINTERRUPTIBLE);
1152 schedule();
1153 remove_wait_queue(&muxed_resource_wait, &wait);
1154 write_lock(&resource_lock);
1155 continue;
1156 }
1157 /* Uhhuh, that didn't work out.. */
1158 free_resource(res);
1159 res = NULL;
1160 break;
1161 }
1162 write_unlock(&resource_lock);
1163 return res;
1164 }
1165 EXPORT_SYMBOL(__request_region);
1166
1167 /**
1168 * __release_region - release a previously reserved resource region
1169 * @parent: parent resource descriptor
1170 * @start: resource start address
1171 * @n: resource region size
1172 *
1173 * The described resource region must match a currently busy region.
1174 */
1175 void __release_region(struct resource *parent, resource_size_t start,
1176 resource_size_t n)
1177 {
1178 struct resource **p;
1179 resource_size_t end;
1180
1181 p = &parent->child;
1182 end = start + n - 1;
1183
1184 write_lock(&resource_lock);
1185
1186 for (;;) {
1187 struct resource *res = *p;
1188
1189 if (!res)
1190 break;
1191 if (res->start <= start && res->end >= end) {
1192 if (!(res->flags & IORESOURCE_BUSY)) {
1193 p = &res->child;
1194 continue;
1195 }
1196 if (res->start != start || res->end != end)
1197 break;
1198 *p = res->sibling;
1199 write_unlock(&resource_lock);
1200 if (res->flags & IORESOURCE_MUXED)
1201 wake_up(&muxed_resource_wait);
1202 free_resource(res);
1203 return;
1204 }
1205 p = &res->sibling;
1206 }
1207
1208 write_unlock(&resource_lock);
1209
1210 printk(KERN_WARNING "Trying to free nonexistent resource "
1211 "<%016llx-%016llx>\n", (unsigned long long)start,
1212 (unsigned long long)end);
1213 }
1214 EXPORT_SYMBOL(__release_region);
1215
1216 #ifdef CONFIG_MEMORY_HOTREMOVE
1217 /**
1218 * release_mem_region_adjustable - release a previously reserved memory region
1219 * @parent: parent resource descriptor
1220 * @start: resource start address
1221 * @size: resource region size
1222 *
1223 * This interface is intended for memory hot-delete. The requested region
1224 * is released from a currently busy memory resource. The requested region
1225 * must either match exactly or fit into a single busy resource entry. In
1226 * the latter case, the remaining resource is adjusted accordingly.
1227 * Existing children of the busy memory resource must be immutable in the
1228 * request.
1229 *
1230 * Note:
1231 * - Additional release conditions, such as overlapping region, can be
1232 * supported after they are confirmed as valid cases.
1233 * - When a busy memory resource gets split into two entries, the code
1234 * assumes that all children remain in the lower address entry for
1235 * simplicity. Enhance this logic when necessary.
1236 */
1237 int release_mem_region_adjustable(struct resource *parent,
1238 resource_size_t start, resource_size_t size)
1239 {
1240 struct resource **p;
1241 struct resource *res;
1242 struct resource *new_res;
1243 resource_size_t end;
1244 int ret = -EINVAL;
1245
1246 end = start + size - 1;
1247 if ((start < parent->start) || (end > parent->end))
1248 return ret;
1249
1250 /* The alloc_resource() result gets checked later */
1251 new_res = alloc_resource(GFP_KERNEL);
1252
1253 p = &parent->child;
1254 write_lock(&resource_lock);
1255
1256 while ((res = *p)) {
1257 if (res->start >= end)
1258 break;
1259
1260 /* look for the next resource if it does not fit into */
1261 if (res->start > start || res->end < end) {
1262 p = &res->sibling;
1263 continue;
1264 }
1265
1266 /*
1267 * All memory regions added from memory-hotplug path have the
1268 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1269 * this flag, we know that we are dealing with a resource coming
1270 * from HMM/devm. HMM/devm use another mechanism to add/release
1271 * a resource. This goes via devm_request_mem_region and
1272 * devm_release_mem_region.
1273 * HMM/devm take care to release their resources when they want,
1274 * so if we are dealing with them, let us just back off here.
1275 */
1276 if (!(res->flags & IORESOURCE_SYSRAM)) {
1277 ret = 0;
1278 break;
1279 }
1280
1281 if (!(res->flags & IORESOURCE_MEM))
1282 break;
1283
1284 if (!(res->flags & IORESOURCE_BUSY)) {
1285 p = &res->child;
1286 continue;
1287 }
1288
1289 /* found the target resource; let's adjust accordingly */
1290 if (res->start == start && res->end == end) {
1291 /* free the whole entry */
1292 *p = res->sibling;
1293 free_resource(res);
1294 ret = 0;
1295 } else if (res->start == start && res->end != end) {
1296 /* adjust the start */
1297 ret = __adjust_resource(res, end + 1,
1298 res->end - end);
1299 } else if (res->start != start && res->end == end) {
1300 /* adjust the end */
1301 ret = __adjust_resource(res, res->start,
1302 start - res->start);
1303 } else {
1304 /* split into two entries */
1305 if (!new_res) {
1306 ret = -ENOMEM;
1307 break;
1308 }
1309 new_res->name = res->name;
1310 new_res->start = end + 1;
1311 new_res->end = res->end;
1312 new_res->flags = res->flags;
1313 new_res->desc = res->desc;
1314 new_res->parent = res->parent;
1315 new_res->sibling = res->sibling;
1316 new_res->child = NULL;
1317
1318 ret = __adjust_resource(res, res->start,
1319 start - res->start);
1320 if (ret)
1321 break;
1322 res->sibling = new_res;
1323 new_res = NULL;
1324 }
1325
1326 break;
1327 }
1328
1329 write_unlock(&resource_lock);
1330 free_resource(new_res);
1331 return ret;
1332 }
1333 #endif /* CONFIG_MEMORY_HOTREMOVE */
1334
1335 /*
1336 * Managed region resource
1337 */
1338 static void devm_resource_release(struct device *dev, void *ptr)
1339 {
1340 struct resource **r = ptr;
1341
1342 release_resource(*r);
1343 }
1344
1345 /**
1346 * devm_request_resource() - request and reserve an I/O or memory resource
1347 * @dev: device for which to request the resource
1348 * @root: root of the resource tree from which to request the resource
1349 * @new: descriptor of the resource to request
1350 *
1351 * This is a device-managed version of request_resource(). There is usually
1352 * no need to release resources requested by this function explicitly since
1353 * that will be taken care of when the device is unbound from its driver.
1354 * If for some reason the resource needs to be released explicitly, because
1355 * of ordering issues for example, drivers must call devm_release_resource()
1356 * rather than the regular release_resource().
1357 *
1358 * When a conflict is detected between any existing resources and the newly
1359 * requested resource, an error message will be printed.
1360 *
1361 * Returns 0 on success or a negative error code on failure.
1362 */
1363 int devm_request_resource(struct device *dev, struct resource *root,
1364 struct resource *new)
1365 {
1366 struct resource *conflict, **ptr;
1367
1368 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1369 if (!ptr)
1370 return -ENOMEM;
1371
1372 *ptr = new;
1373
1374 conflict = request_resource_conflict(root, new);
1375 if (conflict) {
1376 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1377 new, conflict->name, conflict);
1378 devres_free(ptr);
1379 return -EBUSY;
1380 }
1381
1382 devres_add(dev, ptr);
1383 return 0;
1384 }
1385 EXPORT_SYMBOL(devm_request_resource);
1386
1387 static int devm_resource_match(struct device *dev, void *res, void *data)
1388 {
1389 struct resource **ptr = res;
1390
1391 return *ptr == data;
1392 }
1393
1394 /**
1395 * devm_release_resource() - release a previously requested resource
1396 * @dev: device for which to release the resource
1397 * @new: descriptor of the resource to release
1398 *
1399 * Releases a resource previously requested using devm_request_resource().
1400 */
1401 void devm_release_resource(struct device *dev, struct resource *new)
1402 {
1403 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1404 new));
1405 }
1406 EXPORT_SYMBOL(devm_release_resource);
1407
1408 struct region_devres {
1409 struct resource *parent;
1410 resource_size_t start;
1411 resource_size_t n;
1412 };
1413
1414 static void devm_region_release(struct device *dev, void *res)
1415 {
1416 struct region_devres *this = res;
1417
1418 __release_region(this->parent, this->start, this->n);
1419 }
1420
1421 static int devm_region_match(struct device *dev, void *res, void *match_data)
1422 {
1423 struct region_devres *this = res, *match = match_data;
1424
1425 return this->parent == match->parent &&
1426 this->start == match->start && this->n == match->n;
1427 }
1428
1429 struct resource *
1430 __devm_request_region(struct device *dev, struct resource *parent,
1431 resource_size_t start, resource_size_t n, const char *name)
1432 {
1433 struct region_devres *dr = NULL;
1434 struct resource *res;
1435
1436 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1437 GFP_KERNEL);
1438 if (!dr)
1439 return NULL;
1440
1441 dr->parent = parent;
1442 dr->start = start;
1443 dr->n = n;
1444
1445 res = __request_region(parent, start, n, name, 0);
1446 if (res)
1447 devres_add(dev, dr);
1448 else
1449 devres_free(dr);
1450
1451 return res;
1452 }
1453 EXPORT_SYMBOL(__devm_request_region);
1454
1455 void __devm_release_region(struct device *dev, struct resource *parent,
1456 resource_size_t start, resource_size_t n)
1457 {
1458 struct region_devres match_data = { parent, start, n };
1459
1460 __release_region(parent, start, n);
1461 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1462 &match_data));
1463 }
1464 EXPORT_SYMBOL(__devm_release_region);
1465
1466 /*
1467 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1468 */
1469 #define MAXRESERVE 4
1470 static int __init reserve_setup(char *str)
1471 {
1472 static int reserved;
1473 static struct resource reserve[MAXRESERVE];
1474
1475 for (;;) {
1476 unsigned int io_start, io_num;
1477 int x = reserved;
1478 struct resource *parent;
1479
1480 if (get_option(&str, &io_start) != 2)
1481 break;
1482 if (get_option(&str, &io_num) == 0)
1483 break;
1484 if (x < MAXRESERVE) {
1485 struct resource *res = reserve + x;
1486
1487 /*
1488 * If the region starts below 0x10000, we assume it's
1489 * I/O port space; otherwise assume it's memory.
1490 */
1491 if (io_start < 0x10000) {
1492 res->flags = IORESOURCE_IO;
1493 parent = &ioport_resource;
1494 } else {
1495 res->flags = IORESOURCE_MEM;
1496 parent = &iomem_resource;
1497 }
1498 res->name = "reserved";
1499 res->start = io_start;
1500 res->end = io_start + io_num - 1;
1501 res->flags |= IORESOURCE_BUSY;
1502 res->desc = IORES_DESC_NONE;
1503 res->child = NULL;
1504 if (request_resource(parent, res) == 0)
1505 reserved = x+1;
1506 }
1507 }
1508 return 1;
1509 }
1510 __setup("reserve=", reserve_setup);
1511
1512 /*
1513 * Check if the requested addr and size spans more than any slot in the
1514 * iomem resource tree.
1515 */
1516 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1517 {
1518 struct resource *p = &iomem_resource;
1519 int err = 0;
1520 loff_t l;
1521
1522 read_lock(&resource_lock);
1523 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1524 /*
1525 * We can probably skip the resources without
1526 * IORESOURCE_IO attribute?
1527 */
1528 if (p->start >= addr + size)
1529 continue;
1530 if (p->end < addr)
1531 continue;
1532 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1533 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1534 continue;
1535 /*
1536 * if a resource is "BUSY", it's not a hardware resource
1537 * but a driver mapping of such a resource; we don't want
1538 * to warn for those; some drivers legitimately map only
1539 * partial hardware resources. (example: vesafb)
1540 */
1541 if (p->flags & IORESOURCE_BUSY)
1542 continue;
1543
1544 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1545 (unsigned long long)addr,
1546 (unsigned long long)(addr + size - 1),
1547 p->name, p);
1548 err = -1;
1549 break;
1550 }
1551 read_unlock(&resource_lock);
1552
1553 return err;
1554 }
1555
1556 #ifdef CONFIG_STRICT_DEVMEM
1557 static int strict_iomem_checks = 1;
1558 #else
1559 static int strict_iomem_checks;
1560 #endif
1561
1562 /*
1563 * check if an address is reserved in the iomem resource tree
1564 * returns true if reserved, false if not reserved.
1565 */
1566 bool iomem_is_exclusive(u64 addr)
1567 {
1568 struct resource *p = &iomem_resource;
1569 bool err = false;
1570 loff_t l;
1571 int size = PAGE_SIZE;
1572
1573 if (!strict_iomem_checks)
1574 return false;
1575
1576 addr = addr & PAGE_MASK;
1577
1578 read_lock(&resource_lock);
1579 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1580 /*
1581 * We can probably skip the resources without
1582 * IORESOURCE_IO attribute?
1583 */
1584 if (p->start >= addr + size)
1585 break;
1586 if (p->end < addr)
1587 continue;
1588 /*
1589 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1590 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1591 * resource is busy.
1592 */
1593 if ((p->flags & IORESOURCE_BUSY) == 0)
1594 continue;
1595 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1596 || p->flags & IORESOURCE_EXCLUSIVE) {
1597 err = true;
1598 break;
1599 }
1600 }
1601 read_unlock(&resource_lock);
1602
1603 return err;
1604 }
1605
1606 struct resource_entry *resource_list_create_entry(struct resource *res,
1607 size_t extra_size)
1608 {
1609 struct resource_entry *entry;
1610
1611 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1612 if (entry) {
1613 INIT_LIST_HEAD(&entry->node);
1614 entry->res = res ? res : &entry->__res;
1615 }
1616
1617 return entry;
1618 }
1619 EXPORT_SYMBOL(resource_list_create_entry);
1620
1621 void resource_list_free(struct list_head *head)
1622 {
1623 struct resource_entry *entry, *tmp;
1624
1625 list_for_each_entry_safe(entry, tmp, head, node)
1626 resource_list_destroy_entry(entry);
1627 }
1628 EXPORT_SYMBOL(resource_list_free);
1629
1630 static int __init strict_iomem(char *str)
1631 {
1632 if (strstr(str, "relaxed"))
1633 strict_iomem_checks = 0;
1634 if (strstr(str, "strict"))
1635 strict_iomem_checks = 1;
1636 return 1;
1637 }
1638
1639 __setup("iomem=", strict_iomem);