]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/clock.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / clock.c
1 /*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5 *
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
31 * sched_clock_cpu(i)
32 *
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
44 * - sched_clock()
45 * - explicit idle events
46 *
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
54 */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/nmi.h>
62 #include <linux/sched/clock.h>
63 #include <linux/static_key.h>
64 #include <linux/workqueue.h>
65 #include <linux/compiler.h>
66 #include <linux/tick.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __weak sched_clock(void)
74 {
75 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
76 * (NSEC_PER_SEC / HZ);
77 }
78 EXPORT_SYMBOL_GPL(sched_clock);
79
80 __read_mostly int sched_clock_running;
81
82 void sched_clock_init(void)
83 {
84 sched_clock_running = 1;
85 }
86
87 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
88 /*
89 * We must start with !__sched_clock_stable because the unstable -> stable
90 * transition is accurate, while the stable -> unstable transition is not.
91 *
92 * Similarly we start with __sched_clock_stable_early, thereby assuming we
93 * will become stable, such that there's only a single 1 -> 0 transition.
94 */
95 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
96 static int __sched_clock_stable_early = 1;
97
98 /*
99 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
100 */
101 __read_mostly u64 __sched_clock_offset;
102 static __read_mostly u64 __gtod_offset;
103
104 struct sched_clock_data {
105 u64 tick_raw;
106 u64 tick_gtod;
107 u64 clock;
108 };
109
110 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
111
112 static inline struct sched_clock_data *this_scd(void)
113 {
114 return this_cpu_ptr(&sched_clock_data);
115 }
116
117 static inline struct sched_clock_data *cpu_sdc(int cpu)
118 {
119 return &per_cpu(sched_clock_data, cpu);
120 }
121
122 int sched_clock_stable(void)
123 {
124 return static_branch_likely(&__sched_clock_stable);
125 }
126
127 static void __set_sched_clock_stable(void)
128 {
129 struct sched_clock_data *scd = this_scd();
130
131 /*
132 * Attempt to make the (initial) unstable->stable transition continuous.
133 */
134 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
135
136 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
137 scd->tick_gtod, __gtod_offset,
138 scd->tick_raw, __sched_clock_offset);
139
140 static_branch_enable(&__sched_clock_stable);
141 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
142 }
143
144 static void __sched_clock_work(struct work_struct *work)
145 {
146 static_branch_disable(&__sched_clock_stable);
147 }
148
149 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
150
151 static void __clear_sched_clock_stable(void)
152 {
153 struct sched_clock_data *scd = this_scd();
154
155 /*
156 * Attempt to make the stable->unstable transition continuous.
157 *
158 * Trouble is, this is typically called from the TSC watchdog
159 * timer, which is late per definition. This means the tick
160 * values can already be screwy.
161 *
162 * Still do what we can.
163 */
164 __gtod_offset = (scd->tick_raw + __sched_clock_offset) - (scd->tick_gtod);
165
166 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
167 scd->tick_gtod, __gtod_offset,
168 scd->tick_raw, __sched_clock_offset);
169
170 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
171
172 if (sched_clock_stable())
173 schedule_work(&sched_clock_work);
174 }
175
176 void clear_sched_clock_stable(void)
177 {
178 __sched_clock_stable_early = 0;
179
180 smp_mb(); /* matches sched_clock_init_late() */
181
182 if (sched_clock_running == 2)
183 __clear_sched_clock_stable();
184 }
185
186 void sched_clock_init_late(void)
187 {
188 sched_clock_running = 2;
189 /*
190 * Ensure that it is impossible to not do a static_key update.
191 *
192 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
193 * and do the update, or we must see their __sched_clock_stable_early
194 * and do the update, or both.
195 */
196 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
197
198 if (__sched_clock_stable_early)
199 __set_sched_clock_stable();
200 }
201
202 /*
203 * min, max except they take wrapping into account
204 */
205
206 static inline u64 wrap_min(u64 x, u64 y)
207 {
208 return (s64)(x - y) < 0 ? x : y;
209 }
210
211 static inline u64 wrap_max(u64 x, u64 y)
212 {
213 return (s64)(x - y) > 0 ? x : y;
214 }
215
216 /*
217 * update the percpu scd from the raw @now value
218 *
219 * - filter out backward motion
220 * - use the GTOD tick value to create a window to filter crazy TSC values
221 */
222 static u64 sched_clock_local(struct sched_clock_data *scd)
223 {
224 u64 now, clock, old_clock, min_clock, max_clock, gtod;
225 s64 delta;
226
227 again:
228 now = sched_clock();
229 delta = now - scd->tick_raw;
230 if (unlikely(delta < 0))
231 delta = 0;
232
233 old_clock = scd->clock;
234
235 /*
236 * scd->clock = clamp(scd->tick_gtod + delta,
237 * max(scd->tick_gtod, scd->clock),
238 * scd->tick_gtod + TICK_NSEC);
239 */
240
241 gtod = scd->tick_gtod + __gtod_offset;
242 clock = gtod + delta;
243 min_clock = wrap_max(gtod, old_clock);
244 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
245
246 clock = wrap_max(clock, min_clock);
247 clock = wrap_min(clock, max_clock);
248
249 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
250 goto again;
251
252 return clock;
253 }
254
255 static u64 sched_clock_remote(struct sched_clock_data *scd)
256 {
257 struct sched_clock_data *my_scd = this_scd();
258 u64 this_clock, remote_clock;
259 u64 *ptr, old_val, val;
260
261 #if BITS_PER_LONG != 64
262 again:
263 /*
264 * Careful here: The local and the remote clock values need to
265 * be read out atomic as we need to compare the values and
266 * then update either the local or the remote side. So the
267 * cmpxchg64 below only protects one readout.
268 *
269 * We must reread via sched_clock_local() in the retry case on
270 * 32bit as an NMI could use sched_clock_local() via the
271 * tracer and hit between the readout of
272 * the low32bit and the high 32bit portion.
273 */
274 this_clock = sched_clock_local(my_scd);
275 /*
276 * We must enforce atomic readout on 32bit, otherwise the
277 * update on the remote cpu can hit inbetween the readout of
278 * the low32bit and the high 32bit portion.
279 */
280 remote_clock = cmpxchg64(&scd->clock, 0, 0);
281 #else
282 /*
283 * On 64bit the read of [my]scd->clock is atomic versus the
284 * update, so we can avoid the above 32bit dance.
285 */
286 sched_clock_local(my_scd);
287 again:
288 this_clock = my_scd->clock;
289 remote_clock = scd->clock;
290 #endif
291
292 /*
293 * Use the opportunity that we have both locks
294 * taken to couple the two clocks: we take the
295 * larger time as the latest time for both
296 * runqueues. (this creates monotonic movement)
297 */
298 if (likely((s64)(remote_clock - this_clock) < 0)) {
299 ptr = &scd->clock;
300 old_val = remote_clock;
301 val = this_clock;
302 } else {
303 /*
304 * Should be rare, but possible:
305 */
306 ptr = &my_scd->clock;
307 old_val = this_clock;
308 val = remote_clock;
309 }
310
311 if (cmpxchg64(ptr, old_val, val) != old_val)
312 goto again;
313
314 return val;
315 }
316
317 /*
318 * Similar to cpu_clock(), but requires local IRQs to be disabled.
319 *
320 * See cpu_clock().
321 */
322 u64 sched_clock_cpu(int cpu)
323 {
324 struct sched_clock_data *scd;
325 u64 clock;
326
327 if (sched_clock_stable())
328 return sched_clock() + __sched_clock_offset;
329
330 if (unlikely(!sched_clock_running))
331 return 0ull;
332
333 preempt_disable_notrace();
334 scd = cpu_sdc(cpu);
335
336 if (cpu != smp_processor_id())
337 clock = sched_clock_remote(scd);
338 else
339 clock = sched_clock_local(scd);
340 preempt_enable_notrace();
341
342 return clock;
343 }
344 EXPORT_SYMBOL_GPL(sched_clock_cpu);
345
346 void sched_clock_tick(void)
347 {
348 struct sched_clock_data *scd;
349
350 WARN_ON_ONCE(!irqs_disabled());
351
352 /*
353 * Update these values even if sched_clock_stable(), because it can
354 * become unstable at any point in time at which point we need some
355 * values to fall back on.
356 *
357 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
358 */
359 scd = this_scd();
360 scd->tick_raw = sched_clock();
361 scd->tick_gtod = ktime_get_ns();
362
363 if (!sched_clock_stable() && likely(sched_clock_running))
364 sched_clock_local(scd);
365 }
366
367 /*
368 * We are going deep-idle (irqs are disabled):
369 */
370 void sched_clock_idle_sleep_event(void)
371 {
372 sched_clock_cpu(smp_processor_id());
373 }
374 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
375
376 /*
377 * We just idled delta nanoseconds (called with irqs disabled):
378 */
379 void sched_clock_idle_wakeup_event(u64 delta_ns)
380 {
381 if (timekeeping_suspended)
382 return;
383
384 sched_clock_tick();
385 touch_softlockup_watchdog_sched();
386 }
387 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
388
389 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
390
391 u64 sched_clock_cpu(int cpu)
392 {
393 if (unlikely(!sched_clock_running))
394 return 0;
395
396 return sched_clock();
397 }
398
399 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
400
401 /*
402 * Running clock - returns the time that has elapsed while a guest has been
403 * running.
404 * On a guest this value should be local_clock minus the time the guest was
405 * suspended by the hypervisor (for any reason).
406 * On bare metal this function should return the same as local_clock.
407 * Architectures and sub-architectures can override this.
408 */
409 u64 __weak running_clock(void)
410 {
411 return local_clock();
412 }