]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/clock.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / clock.c
1 /*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5 *
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
31 * sched_clock_cpu(i)
32 *
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
44 * - sched_clock()
45 * - explicit idle events
46 *
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
54 */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/sched/clock.h>
62 #include <linux/static_key.h>
63 #include <linux/workqueue.h>
64 #include <linux/compiler.h>
65 #include <linux/tick.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __weak sched_clock(void)
73 {
74 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
75 * (NSEC_PER_SEC / HZ);
76 }
77 EXPORT_SYMBOL_GPL(sched_clock);
78
79 __read_mostly int sched_clock_running;
80
81 void sched_clock_init(void)
82 {
83 sched_clock_running = 1;
84 }
85
86 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
87 /*
88 * We must start with !__sched_clock_stable because the unstable -> stable
89 * transition is accurate, while the stable -> unstable transition is not.
90 *
91 * Similarly we start with __sched_clock_stable_early, thereby assuming we
92 * will become stable, such that there's only a single 1 -> 0 transition.
93 */
94 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
95 static int __sched_clock_stable_early = 1;
96
97 /*
98 * We want: ktime_get_ns() + gtod_offset == sched_clock() + raw_offset
99 */
100 static __read_mostly u64 raw_offset;
101 static __read_mostly u64 gtod_offset;
102
103 struct sched_clock_data {
104 u64 tick_raw;
105 u64 tick_gtod;
106 u64 clock;
107 };
108
109 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
110
111 static inline struct sched_clock_data *this_scd(void)
112 {
113 return this_cpu_ptr(&sched_clock_data);
114 }
115
116 static inline struct sched_clock_data *cpu_sdc(int cpu)
117 {
118 return &per_cpu(sched_clock_data, cpu);
119 }
120
121 int sched_clock_stable(void)
122 {
123 return static_branch_likely(&__sched_clock_stable);
124 }
125
126 static void __set_sched_clock_stable(void)
127 {
128 struct sched_clock_data *scd = this_scd();
129
130 /*
131 * Attempt to make the (initial) unstable->stable transition continuous.
132 */
133 raw_offset = (scd->tick_gtod + gtod_offset) - (scd->tick_raw);
134
135 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
136 scd->tick_gtod, gtod_offset,
137 scd->tick_raw, raw_offset);
138
139 static_branch_enable(&__sched_clock_stable);
140 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
141 }
142
143 static void __clear_sched_clock_stable(struct work_struct *work)
144 {
145 struct sched_clock_data *scd = this_scd();
146
147 /*
148 * Attempt to make the stable->unstable transition continuous.
149 *
150 * Trouble is, this is typically called from the TSC watchdog
151 * timer, which is late per definition. This means the tick
152 * values can already be screwy.
153 *
154 * Still do what we can.
155 */
156 gtod_offset = (scd->tick_raw + raw_offset) - (scd->tick_gtod);
157
158 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
159 scd->tick_gtod, gtod_offset,
160 scd->tick_raw, raw_offset);
161
162 static_branch_disable(&__sched_clock_stable);
163 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
164 }
165
166 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
167
168 void clear_sched_clock_stable(void)
169 {
170 __sched_clock_stable_early = 0;
171
172 smp_mb(); /* matches sched_clock_init_late() */
173
174 if (sched_clock_running == 2)
175 schedule_work(&sched_clock_work);
176 }
177
178 void sched_clock_init_late(void)
179 {
180 sched_clock_running = 2;
181 /*
182 * Ensure that it is impossible to not do a static_key update.
183 *
184 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
185 * and do the update, or we must see their __sched_clock_stable_early
186 * and do the update, or both.
187 */
188 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
189
190 if (__sched_clock_stable_early)
191 __set_sched_clock_stable();
192 }
193
194 /*
195 * min, max except they take wrapping into account
196 */
197
198 static inline u64 wrap_min(u64 x, u64 y)
199 {
200 return (s64)(x - y) < 0 ? x : y;
201 }
202
203 static inline u64 wrap_max(u64 x, u64 y)
204 {
205 return (s64)(x - y) > 0 ? x : y;
206 }
207
208 /*
209 * update the percpu scd from the raw @now value
210 *
211 * - filter out backward motion
212 * - use the GTOD tick value to create a window to filter crazy TSC values
213 */
214 static u64 sched_clock_local(struct sched_clock_data *scd)
215 {
216 u64 now, clock, old_clock, min_clock, max_clock;
217 s64 delta;
218
219 again:
220 now = sched_clock();
221 delta = now - scd->tick_raw;
222 if (unlikely(delta < 0))
223 delta = 0;
224
225 old_clock = scd->clock;
226
227 /*
228 * scd->clock = clamp(scd->tick_gtod + delta,
229 * max(scd->tick_gtod, scd->clock),
230 * scd->tick_gtod + TICK_NSEC);
231 */
232
233 clock = scd->tick_gtod + gtod_offset + delta;
234 min_clock = wrap_max(scd->tick_gtod, old_clock);
235 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
236
237 clock = wrap_max(clock, min_clock);
238 clock = wrap_min(clock, max_clock);
239
240 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
241 goto again;
242
243 return clock;
244 }
245
246 static u64 sched_clock_remote(struct sched_clock_data *scd)
247 {
248 struct sched_clock_data *my_scd = this_scd();
249 u64 this_clock, remote_clock;
250 u64 *ptr, old_val, val;
251
252 #if BITS_PER_LONG != 64
253 again:
254 /*
255 * Careful here: The local and the remote clock values need to
256 * be read out atomic as we need to compare the values and
257 * then update either the local or the remote side. So the
258 * cmpxchg64 below only protects one readout.
259 *
260 * We must reread via sched_clock_local() in the retry case on
261 * 32bit as an NMI could use sched_clock_local() via the
262 * tracer and hit between the readout of
263 * the low32bit and the high 32bit portion.
264 */
265 this_clock = sched_clock_local(my_scd);
266 /*
267 * We must enforce atomic readout on 32bit, otherwise the
268 * update on the remote cpu can hit inbetween the readout of
269 * the low32bit and the high 32bit portion.
270 */
271 remote_clock = cmpxchg64(&scd->clock, 0, 0);
272 #else
273 /*
274 * On 64bit the read of [my]scd->clock is atomic versus the
275 * update, so we can avoid the above 32bit dance.
276 */
277 sched_clock_local(my_scd);
278 again:
279 this_clock = my_scd->clock;
280 remote_clock = scd->clock;
281 #endif
282
283 /*
284 * Use the opportunity that we have both locks
285 * taken to couple the two clocks: we take the
286 * larger time as the latest time for both
287 * runqueues. (this creates monotonic movement)
288 */
289 if (likely((s64)(remote_clock - this_clock) < 0)) {
290 ptr = &scd->clock;
291 old_val = remote_clock;
292 val = this_clock;
293 } else {
294 /*
295 * Should be rare, but possible:
296 */
297 ptr = &my_scd->clock;
298 old_val = this_clock;
299 val = remote_clock;
300 }
301
302 if (cmpxchg64(ptr, old_val, val) != old_val)
303 goto again;
304
305 return val;
306 }
307
308 /*
309 * Similar to cpu_clock(), but requires local IRQs to be disabled.
310 *
311 * See cpu_clock().
312 */
313 u64 sched_clock_cpu(int cpu)
314 {
315 struct sched_clock_data *scd;
316 u64 clock;
317
318 if (sched_clock_stable())
319 return sched_clock() + raw_offset;
320
321 if (unlikely(!sched_clock_running))
322 return 0ull;
323
324 preempt_disable_notrace();
325 scd = cpu_sdc(cpu);
326
327 if (cpu != smp_processor_id())
328 clock = sched_clock_remote(scd);
329 else
330 clock = sched_clock_local(scd);
331 preempt_enable_notrace();
332
333 return clock;
334 }
335 EXPORT_SYMBOL_GPL(sched_clock_cpu);
336
337 void sched_clock_tick(void)
338 {
339 struct sched_clock_data *scd;
340
341 WARN_ON_ONCE(!irqs_disabled());
342
343 /*
344 * Update these values even if sched_clock_stable(), because it can
345 * become unstable at any point in time at which point we need some
346 * values to fall back on.
347 *
348 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
349 */
350 scd = this_scd();
351 scd->tick_raw = sched_clock();
352 scd->tick_gtod = ktime_get_ns();
353
354 if (!sched_clock_stable() && likely(sched_clock_running))
355 sched_clock_local(scd);
356 }
357
358 /*
359 * We are going deep-idle (irqs are disabled):
360 */
361 void sched_clock_idle_sleep_event(void)
362 {
363 sched_clock_cpu(smp_processor_id());
364 }
365 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
366
367 /*
368 * We just idled delta nanoseconds (called with irqs disabled):
369 */
370 void sched_clock_idle_wakeup_event(u64 delta_ns)
371 {
372 if (timekeeping_suspended)
373 return;
374
375 sched_clock_tick();
376 touch_softlockup_watchdog_sched();
377 }
378 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
379
380 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
381
382 u64 sched_clock_cpu(int cpu)
383 {
384 if (unlikely(!sched_clock_running))
385 return 0;
386
387 return sched_clock();
388 }
389
390 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
391
392 /*
393 * Running clock - returns the time that has elapsed while a guest has been
394 * running.
395 * On a guest this value should be local_clock minus the time the guest was
396 * suspended by the hypervisor (for any reason).
397 * On bare metal this function should return the same as local_clock.
398 * Architectures and sub-architectures can override this.
399 */
400 u64 __weak running_clock(void)
401 {
402 return local_clock();
403 }