]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29
30 #include <asm/switch_to.h>
31 #include <asm/tlb.h>
32 #ifdef CONFIG_PARAVIRT
33 #include <asm/paravirt.h>
34 #endif
35
36 #include "sched.h"
37 #include "../workqueue_internal.h"
38 #include "../smpboot.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/sched.h>
42
43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44
45 /*
46 * Debugging: various feature bits
47 */
48
49 #define SCHED_FEAT(name, enabled) \
50 (1UL << __SCHED_FEAT_##name) * enabled |
51
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 0;
55
56 #undef SCHED_FEAT
57
58 /*
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
61 */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63
64 /*
65 * period over which we average the RT time consumption, measured
66 * in ms.
67 *
68 * default: 1s
69 */
70 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
71
72 /*
73 * period over which we measure -rt task CPU usage in us.
74 * default: 1s
75 */
76 unsigned int sysctl_sched_rt_period = 1000000;
77
78 __read_mostly int scheduler_running;
79
80 /*
81 * part of the period that we allow rt tasks to run in us.
82 * default: 0.95s
83 */
84 int sysctl_sched_rt_runtime = 950000;
85
86 /* CPUs with isolated domains */
87 cpumask_var_t cpu_isolated_map;
88
89 /*
90 * __task_rq_lock - lock the rq @p resides on.
91 */
92 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 __acquires(rq->lock)
94 {
95 struct rq *rq;
96
97 lockdep_assert_held(&p->pi_lock);
98
99 for (;;) {
100 rq = task_rq(p);
101 raw_spin_lock(&rq->lock);
102 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103 rq_pin_lock(rq, rf);
104 return rq;
105 }
106 raw_spin_unlock(&rq->lock);
107
108 while (unlikely(task_on_rq_migrating(p)))
109 cpu_relax();
110 }
111 }
112
113 /*
114 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
115 */
116 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 __acquires(p->pi_lock)
118 __acquires(rq->lock)
119 {
120 struct rq *rq;
121
122 for (;;) {
123 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 rq = task_rq(p);
125 raw_spin_lock(&rq->lock);
126 /*
127 * move_queued_task() task_rq_lock()
128 *
129 * ACQUIRE (rq->lock)
130 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
131 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
132 * [S] ->cpu = new_cpu [L] task_rq()
133 * [L] ->on_rq
134 * RELEASE (rq->lock)
135 *
136 * If we observe the old cpu in task_rq_lock, the acquire of
137 * the old rq->lock will fully serialize against the stores.
138 *
139 * If we observe the new CPU in task_rq_lock, the acquire will
140 * pair with the WMB to ensure we must then also see migrating.
141 */
142 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143 rq_pin_lock(rq, rf);
144 return rq;
145 }
146 raw_spin_unlock(&rq->lock);
147 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148
149 while (unlikely(task_on_rq_migrating(p)))
150 cpu_relax();
151 }
152 }
153
154 /*
155 * RQ-clock updating methods:
156 */
157
158 static void update_rq_clock_task(struct rq *rq, s64 delta)
159 {
160 /*
161 * In theory, the compile should just see 0 here, and optimize out the call
162 * to sched_rt_avg_update. But I don't trust it...
163 */
164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
165 s64 steal = 0, irq_delta = 0;
166 #endif
167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
168 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
169
170 /*
171 * Since irq_time is only updated on {soft,}irq_exit, we might run into
172 * this case when a previous update_rq_clock() happened inside a
173 * {soft,}irq region.
174 *
175 * When this happens, we stop ->clock_task and only update the
176 * prev_irq_time stamp to account for the part that fit, so that a next
177 * update will consume the rest. This ensures ->clock_task is
178 * monotonic.
179 *
180 * It does however cause some slight miss-attribution of {soft,}irq
181 * time, a more accurate solution would be to update the irq_time using
182 * the current rq->clock timestamp, except that would require using
183 * atomic ops.
184 */
185 if (irq_delta > delta)
186 irq_delta = delta;
187
188 rq->prev_irq_time += irq_delta;
189 delta -= irq_delta;
190 #endif
191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
192 if (static_key_false((&paravirt_steal_rq_enabled))) {
193 steal = paravirt_steal_clock(cpu_of(rq));
194 steal -= rq->prev_steal_time_rq;
195
196 if (unlikely(steal > delta))
197 steal = delta;
198
199 rq->prev_steal_time_rq += steal;
200 delta -= steal;
201 }
202 #endif
203
204 rq->clock_task += delta;
205
206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
207 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
208 sched_rt_avg_update(rq, irq_delta + steal);
209 #endif
210 }
211
212 void update_rq_clock(struct rq *rq)
213 {
214 s64 delta;
215
216 lockdep_assert_held(&rq->lock);
217
218 if (rq->clock_update_flags & RQCF_ACT_SKIP)
219 return;
220
221 #ifdef CONFIG_SCHED_DEBUG
222 if (sched_feat(WARN_DOUBLE_CLOCK))
223 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 rq->clock_update_flags |= RQCF_UPDATED;
225 #endif
226
227 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
228 if (delta < 0)
229 return;
230 rq->clock += delta;
231 update_rq_clock_task(rq, delta);
232 }
233
234
235 #ifdef CONFIG_SCHED_HRTICK
236 /*
237 * Use HR-timers to deliver accurate preemption points.
238 */
239
240 static void hrtick_clear(struct rq *rq)
241 {
242 if (hrtimer_active(&rq->hrtick_timer))
243 hrtimer_cancel(&rq->hrtick_timer);
244 }
245
246 /*
247 * High-resolution timer tick.
248 * Runs from hardirq context with interrupts disabled.
249 */
250 static enum hrtimer_restart hrtick(struct hrtimer *timer)
251 {
252 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253 struct rq_flags rf;
254
255 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
256
257 rq_lock(rq, &rf);
258 update_rq_clock(rq);
259 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260 rq_unlock(rq, &rf);
261
262 return HRTIMER_NORESTART;
263 }
264
265 #ifdef CONFIG_SMP
266
267 static void __hrtick_restart(struct rq *rq)
268 {
269 struct hrtimer *timer = &rq->hrtick_timer;
270
271 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
272 }
273
274 /*
275 * called from hardirq (IPI) context
276 */
277 static void __hrtick_start(void *arg)
278 {
279 struct rq *rq = arg;
280 struct rq_flags rf;
281
282 rq_lock(rq, &rf);
283 __hrtick_restart(rq);
284 rq->hrtick_csd_pending = 0;
285 rq_unlock(rq, &rf);
286 }
287
288 /*
289 * Called to set the hrtick timer state.
290 *
291 * called with rq->lock held and irqs disabled
292 */
293 void hrtick_start(struct rq *rq, u64 delay)
294 {
295 struct hrtimer *timer = &rq->hrtick_timer;
296 ktime_t time;
297 s64 delta;
298
299 /*
300 * Don't schedule slices shorter than 10000ns, that just
301 * doesn't make sense and can cause timer DoS.
302 */
303 delta = max_t(s64, delay, 10000LL);
304 time = ktime_add_ns(timer->base->get_time(), delta);
305
306 hrtimer_set_expires(timer, time);
307
308 if (rq == this_rq()) {
309 __hrtick_restart(rq);
310 } else if (!rq->hrtick_csd_pending) {
311 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 rq->hrtick_csd_pending = 1;
313 }
314 }
315
316 #else
317 /*
318 * Called to set the hrtick timer state.
319 *
320 * called with rq->lock held and irqs disabled
321 */
322 void hrtick_start(struct rq *rq, u64 delay)
323 {
324 /*
325 * Don't schedule slices shorter than 10000ns, that just
326 * doesn't make sense. Rely on vruntime for fairness.
327 */
328 delay = max_t(u64, delay, 10000LL);
329 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
330 HRTIMER_MODE_REL_PINNED);
331 }
332 #endif /* CONFIG_SMP */
333
334 static void init_rq_hrtick(struct rq *rq)
335 {
336 #ifdef CONFIG_SMP
337 rq->hrtick_csd_pending = 0;
338
339 rq->hrtick_csd.flags = 0;
340 rq->hrtick_csd.func = __hrtick_start;
341 rq->hrtick_csd.info = rq;
342 #endif
343
344 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
345 rq->hrtick_timer.function = hrtick;
346 }
347 #else /* CONFIG_SCHED_HRTICK */
348 static inline void hrtick_clear(struct rq *rq)
349 {
350 }
351
352 static inline void init_rq_hrtick(struct rq *rq)
353 {
354 }
355 #endif /* CONFIG_SCHED_HRTICK */
356
357 /*
358 * cmpxchg based fetch_or, macro so it works for different integer types
359 */
360 #define fetch_or(ptr, mask) \
361 ({ \
362 typeof(ptr) _ptr = (ptr); \
363 typeof(mask) _mask = (mask); \
364 typeof(*_ptr) _old, _val = *_ptr; \
365 \
366 for (;;) { \
367 _old = cmpxchg(_ptr, _val, _val | _mask); \
368 if (_old == _val) \
369 break; \
370 _val = _old; \
371 } \
372 _old; \
373 })
374
375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 /*
377 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
378 * this avoids any races wrt polling state changes and thereby avoids
379 * spurious IPIs.
380 */
381 static bool set_nr_and_not_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
385 }
386
387 /*
388 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
389 *
390 * If this returns true, then the idle task promises to call
391 * sched_ttwu_pending() and reschedule soon.
392 */
393 static bool set_nr_if_polling(struct task_struct *p)
394 {
395 struct thread_info *ti = task_thread_info(p);
396 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397
398 for (;;) {
399 if (!(val & _TIF_POLLING_NRFLAG))
400 return false;
401 if (val & _TIF_NEED_RESCHED)
402 return true;
403 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
404 if (old == val)
405 break;
406 val = old;
407 }
408 return true;
409 }
410
411 #else
412 static bool set_nr_and_not_polling(struct task_struct *p)
413 {
414 set_tsk_need_resched(p);
415 return true;
416 }
417
418 #ifdef CONFIG_SMP
419 static bool set_nr_if_polling(struct task_struct *p)
420 {
421 return false;
422 }
423 #endif
424 #endif
425
426 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
427 {
428 struct wake_q_node *node = &task->wake_q;
429
430 /*
431 * Atomically grab the task, if ->wake_q is !nil already it means
432 * its already queued (either by us or someone else) and will get the
433 * wakeup due to that.
434 *
435 * This cmpxchg() implies a full barrier, which pairs with the write
436 * barrier implied by the wakeup in wake_up_q().
437 */
438 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
439 return;
440
441 get_task_struct(task);
442
443 /*
444 * The head is context local, there can be no concurrency.
445 */
446 *head->lastp = node;
447 head->lastp = &node->next;
448 }
449
450 void wake_up_q(struct wake_q_head *head)
451 {
452 struct wake_q_node *node = head->first;
453
454 while (node != WAKE_Q_TAIL) {
455 struct task_struct *task;
456
457 task = container_of(node, struct task_struct, wake_q);
458 BUG_ON(!task);
459 /* Task can safely be re-inserted now: */
460 node = node->next;
461 task->wake_q.next = NULL;
462
463 /*
464 * wake_up_process() implies a wmb() to pair with the queueing
465 * in wake_q_add() so as not to miss wakeups.
466 */
467 wake_up_process(task);
468 put_task_struct(task);
469 }
470 }
471
472 /*
473 * resched_curr - mark rq's current task 'to be rescheduled now'.
474 *
475 * On UP this means the setting of the need_resched flag, on SMP it
476 * might also involve a cross-CPU call to trigger the scheduler on
477 * the target CPU.
478 */
479 void resched_curr(struct rq *rq)
480 {
481 struct task_struct *curr = rq->curr;
482 int cpu;
483
484 lockdep_assert_held(&rq->lock);
485
486 if (test_tsk_need_resched(curr))
487 return;
488
489 cpu = cpu_of(rq);
490
491 if (cpu == smp_processor_id()) {
492 set_tsk_need_resched(curr);
493 set_preempt_need_resched();
494 return;
495 }
496
497 if (set_nr_and_not_polling(curr))
498 smp_send_reschedule(cpu);
499 else
500 trace_sched_wake_idle_without_ipi(cpu);
501 }
502
503 void resched_cpu(int cpu)
504 {
505 struct rq *rq = cpu_rq(cpu);
506 unsigned long flags;
507
508 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
509 return;
510 resched_curr(rq);
511 raw_spin_unlock_irqrestore(&rq->lock, flags);
512 }
513
514 #ifdef CONFIG_SMP
515 #ifdef CONFIG_NO_HZ_COMMON
516 /*
517 * In the semi idle case, use the nearest busy CPU for migrating timers
518 * from an idle CPU. This is good for power-savings.
519 *
520 * We don't do similar optimization for completely idle system, as
521 * selecting an idle CPU will add more delays to the timers than intended
522 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523 */
524 int get_nohz_timer_target(void)
525 {
526 int i, cpu = smp_processor_id();
527 struct sched_domain *sd;
528
529 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 return cpu;
531
532 rcu_read_lock();
533 for_each_domain(cpu, sd) {
534 for_each_cpu(i, sched_domain_span(sd)) {
535 if (cpu == i)
536 continue;
537
538 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 cpu = i;
540 goto unlock;
541 }
542 }
543 }
544
545 if (!is_housekeeping_cpu(cpu))
546 cpu = housekeeping_any_cpu();
547 unlock:
548 rcu_read_unlock();
549 return cpu;
550 }
551
552 /*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
569 if (set_nr_and_not_polling(rq->idle))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
583 if (cpu_is_offline(cpu))
584 return true; /* Don't try to wake offline CPUs. */
585 if (tick_nohz_full_cpu(cpu)) {
586 if (cpu != smp_processor_id() ||
587 tick_nohz_tick_stopped())
588 tick_nohz_full_kick_cpu(cpu);
589 return true;
590 }
591
592 return false;
593 }
594
595 /*
596 * Wake up the specified CPU. If the CPU is going offline, it is the
597 * caller's responsibility to deal with the lost wakeup, for example,
598 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
599 */
600 void wake_up_nohz_cpu(int cpu)
601 {
602 if (!wake_up_full_nohz_cpu(cpu))
603 wake_up_idle_cpu(cpu);
604 }
605
606 static inline bool got_nohz_idle_kick(void)
607 {
608 int cpu = smp_processor_id();
609
610 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
611 return false;
612
613 if (idle_cpu(cpu) && !need_resched())
614 return true;
615
616 /*
617 * We can't run Idle Load Balance on this CPU for this time so we
618 * cancel it and clear NOHZ_BALANCE_KICK
619 */
620 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
621 return false;
622 }
623
624 #else /* CONFIG_NO_HZ_COMMON */
625
626 static inline bool got_nohz_idle_kick(void)
627 {
628 return false;
629 }
630
631 #endif /* CONFIG_NO_HZ_COMMON */
632
633 #ifdef CONFIG_NO_HZ_FULL
634 bool sched_can_stop_tick(struct rq *rq)
635 {
636 int fifo_nr_running;
637
638 /* Deadline tasks, even if single, need the tick */
639 if (rq->dl.dl_nr_running)
640 return false;
641
642 /*
643 * If there are more than one RR tasks, we need the tick to effect the
644 * actual RR behaviour.
645 */
646 if (rq->rt.rr_nr_running) {
647 if (rq->rt.rr_nr_running == 1)
648 return true;
649 else
650 return false;
651 }
652
653 /*
654 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 * forced preemption between FIFO tasks.
656 */
657 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
658 if (fifo_nr_running)
659 return true;
660
661 /*
662 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 * if there's more than one we need the tick for involuntary
664 * preemption.
665 */
666 if (rq->nr_running > 1)
667 return false;
668
669 return true;
670 }
671 #endif /* CONFIG_NO_HZ_FULL */
672
673 void sched_avg_update(struct rq *rq)
674 {
675 s64 period = sched_avg_period();
676
677 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 /*
679 * Inline assembly required to prevent the compiler
680 * optimising this loop into a divmod call.
681 * See __iter_div_u64_rem() for another example of this.
682 */
683 asm("" : "+rm" (rq->age_stamp));
684 rq->age_stamp += period;
685 rq->rt_avg /= 2;
686 }
687 }
688
689 #endif /* CONFIG_SMP */
690
691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 /*
694 * Iterate task_group tree rooted at *from, calling @down when first entering a
695 * node and @up when leaving it for the final time.
696 *
697 * Caller must hold rcu_lock or sufficient equivalent.
698 */
699 int walk_tg_tree_from(struct task_group *from,
700 tg_visitor down, tg_visitor up, void *data)
701 {
702 struct task_group *parent, *child;
703 int ret;
704
705 parent = from;
706
707 down:
708 ret = (*down)(parent, data);
709 if (ret)
710 goto out;
711 list_for_each_entry_rcu(child, &parent->children, siblings) {
712 parent = child;
713 goto down;
714
715 up:
716 continue;
717 }
718 ret = (*up)(parent, data);
719 if (ret || parent == from)
720 goto out;
721
722 child = parent;
723 parent = parent->parent;
724 if (parent)
725 goto up;
726 out:
727 return ret;
728 }
729
730 int tg_nop(struct task_group *tg, void *data)
731 {
732 return 0;
733 }
734 #endif
735
736 static void set_load_weight(struct task_struct *p)
737 {
738 int prio = p->static_prio - MAX_RT_PRIO;
739 struct load_weight *load = &p->se.load;
740
741 /*
742 * SCHED_IDLE tasks get minimal weight:
743 */
744 if (idle_policy(p->policy)) {
745 load->weight = scale_load(WEIGHT_IDLEPRIO);
746 load->inv_weight = WMULT_IDLEPRIO;
747 return;
748 }
749
750 load->weight = scale_load(sched_prio_to_weight[prio]);
751 load->inv_weight = sched_prio_to_wmult[prio];
752 }
753
754 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 if (!(flags & ENQUEUE_NOCLOCK))
757 update_rq_clock(rq);
758
759 if (!(flags & ENQUEUE_RESTORE))
760 sched_info_queued(rq, p);
761
762 p->sched_class->enqueue_task(rq, p, flags);
763 }
764
765 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 if (!(flags & DEQUEUE_NOCLOCK))
768 update_rq_clock(rq);
769
770 if (!(flags & DEQUEUE_SAVE))
771 sched_info_dequeued(rq, p);
772
773 p->sched_class->dequeue_task(rq, p, flags);
774 }
775
776 void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 {
778 if (task_contributes_to_load(p))
779 rq->nr_uninterruptible--;
780
781 enqueue_task(rq, p, flags);
782 }
783
784 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 {
786 if (task_contributes_to_load(p))
787 rq->nr_uninterruptible++;
788
789 dequeue_task(rq, p, flags);
790 }
791
792 /*
793 * __normal_prio - return the priority that is based on the static prio
794 */
795 static inline int __normal_prio(struct task_struct *p)
796 {
797 return p->static_prio;
798 }
799
800 /*
801 * Calculate the expected normal priority: i.e. priority
802 * without taking RT-inheritance into account. Might be
803 * boosted by interactivity modifiers. Changes upon fork,
804 * setprio syscalls, and whenever the interactivity
805 * estimator recalculates.
806 */
807 static inline int normal_prio(struct task_struct *p)
808 {
809 int prio;
810
811 if (task_has_dl_policy(p))
812 prio = MAX_DL_PRIO-1;
813 else if (task_has_rt_policy(p))
814 prio = MAX_RT_PRIO-1 - p->rt_priority;
815 else
816 prio = __normal_prio(p);
817 return prio;
818 }
819
820 /*
821 * Calculate the current priority, i.e. the priority
822 * taken into account by the scheduler. This value might
823 * be boosted by RT tasks, or might be boosted by
824 * interactivity modifiers. Will be RT if the task got
825 * RT-boosted. If not then it returns p->normal_prio.
826 */
827 static int effective_prio(struct task_struct *p)
828 {
829 p->normal_prio = normal_prio(p);
830 /*
831 * If we are RT tasks or we were boosted to RT priority,
832 * keep the priority unchanged. Otherwise, update priority
833 * to the normal priority:
834 */
835 if (!rt_prio(p->prio))
836 return p->normal_prio;
837 return p->prio;
838 }
839
840 /**
841 * task_curr - is this task currently executing on a CPU?
842 * @p: the task in question.
843 *
844 * Return: 1 if the task is currently executing. 0 otherwise.
845 */
846 inline int task_curr(const struct task_struct *p)
847 {
848 return cpu_curr(task_cpu(p)) == p;
849 }
850
851 /*
852 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
853 * use the balance_callback list if you want balancing.
854 *
855 * this means any call to check_class_changed() must be followed by a call to
856 * balance_callback().
857 */
858 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
859 const struct sched_class *prev_class,
860 int oldprio)
861 {
862 if (prev_class != p->sched_class) {
863 if (prev_class->switched_from)
864 prev_class->switched_from(rq, p);
865
866 p->sched_class->switched_to(rq, p);
867 } else if (oldprio != p->prio || dl_task(p))
868 p->sched_class->prio_changed(rq, p, oldprio);
869 }
870
871 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 {
873 const struct sched_class *class;
874
875 if (p->sched_class == rq->curr->sched_class) {
876 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
877 } else {
878 for_each_class(class) {
879 if (class == rq->curr->sched_class)
880 break;
881 if (class == p->sched_class) {
882 resched_curr(rq);
883 break;
884 }
885 }
886 }
887
888 /*
889 * A queue event has occurred, and we're going to schedule. In
890 * this case, we can save a useless back to back clock update.
891 */
892 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893 rq_clock_skip_update(rq, true);
894 }
895
896 #ifdef CONFIG_SMP
897 /*
898 * This is how migration works:
899 *
900 * 1) we invoke migration_cpu_stop() on the target CPU using
901 * stop_one_cpu().
902 * 2) stopper starts to run (implicitly forcing the migrated thread
903 * off the CPU)
904 * 3) it checks whether the migrated task is still in the wrong runqueue.
905 * 4) if it's in the wrong runqueue then the migration thread removes
906 * it and puts it into the right queue.
907 * 5) stopper completes and stop_one_cpu() returns and the migration
908 * is done.
909 */
910
911 /*
912 * move_queued_task - move a queued task to new rq.
913 *
914 * Returns (locked) new rq. Old rq's lock is released.
915 */
916 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
917 struct task_struct *p, int new_cpu)
918 {
919 lockdep_assert_held(&rq->lock);
920
921 p->on_rq = TASK_ON_RQ_MIGRATING;
922 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
923 set_task_cpu(p, new_cpu);
924 rq_unlock(rq, rf);
925
926 rq = cpu_rq(new_cpu);
927
928 rq_lock(rq, rf);
929 BUG_ON(task_cpu(p) != new_cpu);
930 enqueue_task(rq, p, 0);
931 p->on_rq = TASK_ON_RQ_QUEUED;
932 check_preempt_curr(rq, p, 0);
933
934 return rq;
935 }
936
937 struct migration_arg {
938 struct task_struct *task;
939 int dest_cpu;
940 };
941
942 /*
943 * Move (not current) task off this CPU, onto the destination CPU. We're doing
944 * this because either it can't run here any more (set_cpus_allowed()
945 * away from this CPU, or CPU going down), or because we're
946 * attempting to rebalance this task on exec (sched_exec).
947 *
948 * So we race with normal scheduler movements, but that's OK, as long
949 * as the task is no longer on this CPU.
950 */
951 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
952 struct task_struct *p, int dest_cpu)
953 {
954 if (unlikely(!cpu_active(dest_cpu)))
955 return rq;
956
957 /* Affinity changed (again). */
958 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
959 return rq;
960
961 update_rq_clock(rq);
962 rq = move_queued_task(rq, rf, p, dest_cpu);
963
964 return rq;
965 }
966
967 /*
968 * migration_cpu_stop - this will be executed by a highprio stopper thread
969 * and performs thread migration by bumping thread off CPU then
970 * 'pushing' onto another runqueue.
971 */
972 static int migration_cpu_stop(void *data)
973 {
974 struct migration_arg *arg = data;
975 struct task_struct *p = arg->task;
976 struct rq *rq = this_rq();
977 struct rq_flags rf;
978
979 /*
980 * The original target CPU might have gone down and we might
981 * be on another CPU but it doesn't matter.
982 */
983 local_irq_disable();
984 /*
985 * We need to explicitly wake pending tasks before running
986 * __migrate_task() such that we will not miss enforcing cpus_allowed
987 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
988 */
989 sched_ttwu_pending();
990
991 raw_spin_lock(&p->pi_lock);
992 rq_lock(rq, &rf);
993 /*
994 * If task_rq(p) != rq, it cannot be migrated here, because we're
995 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
996 * we're holding p->pi_lock.
997 */
998 if (task_rq(p) == rq) {
999 if (task_on_rq_queued(p))
1000 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1001 else
1002 p->wake_cpu = arg->dest_cpu;
1003 }
1004 rq_unlock(rq, &rf);
1005 raw_spin_unlock(&p->pi_lock);
1006
1007 local_irq_enable();
1008 return 0;
1009 }
1010
1011 /*
1012 * sched_class::set_cpus_allowed must do the below, but is not required to
1013 * actually call this function.
1014 */
1015 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1016 {
1017 cpumask_copy(&p->cpus_allowed, new_mask);
1018 p->nr_cpus_allowed = cpumask_weight(new_mask);
1019 }
1020
1021 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1022 {
1023 struct rq *rq = task_rq(p);
1024 bool queued, running;
1025
1026 lockdep_assert_held(&p->pi_lock);
1027
1028 queued = task_on_rq_queued(p);
1029 running = task_current(rq, p);
1030
1031 if (queued) {
1032 /*
1033 * Because __kthread_bind() calls this on blocked tasks without
1034 * holding rq->lock.
1035 */
1036 lockdep_assert_held(&rq->lock);
1037 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1038 }
1039 if (running)
1040 put_prev_task(rq, p);
1041
1042 p->sched_class->set_cpus_allowed(p, new_mask);
1043
1044 if (queued)
1045 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1046 if (running)
1047 set_curr_task(rq, p);
1048 }
1049
1050 /*
1051 * Change a given task's CPU affinity. Migrate the thread to a
1052 * proper CPU and schedule it away if the CPU it's executing on
1053 * is removed from the allowed bitmask.
1054 *
1055 * NOTE: the caller must have a valid reference to the task, the
1056 * task must not exit() & deallocate itself prematurely. The
1057 * call is not atomic; no spinlocks may be held.
1058 */
1059 static int __set_cpus_allowed_ptr(struct task_struct *p,
1060 const struct cpumask *new_mask, bool check)
1061 {
1062 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1063 unsigned int dest_cpu;
1064 struct rq_flags rf;
1065 struct rq *rq;
1066 int ret = 0;
1067
1068 rq = task_rq_lock(p, &rf);
1069 update_rq_clock(rq);
1070
1071 if (p->flags & PF_KTHREAD) {
1072 /*
1073 * Kernel threads are allowed on online && !active CPUs
1074 */
1075 cpu_valid_mask = cpu_online_mask;
1076 }
1077
1078 /*
1079 * Must re-check here, to close a race against __kthread_bind(),
1080 * sched_setaffinity() is not guaranteed to observe the flag.
1081 */
1082 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 if (cpumask_equal(&p->cpus_allowed, new_mask))
1088 goto out;
1089
1090 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 do_set_cpus_allowed(p, new_mask);
1096
1097 if (p->flags & PF_KTHREAD) {
1098 /*
1099 * For kernel threads that do indeed end up on online &&
1100 * !active we want to ensure they are strict per-CPU threads.
1101 */
1102 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1103 !cpumask_intersects(new_mask, cpu_active_mask) &&
1104 p->nr_cpus_allowed != 1);
1105 }
1106
1107 /* Can the task run on the task's current CPU? If so, we're done */
1108 if (cpumask_test_cpu(task_cpu(p), new_mask))
1109 goto out;
1110
1111 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1112 if (task_running(rq, p) || p->state == TASK_WAKING) {
1113 struct migration_arg arg = { p, dest_cpu };
1114 /* Need help from migration thread: drop lock and wait. */
1115 task_rq_unlock(rq, p, &rf);
1116 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1117 tlb_migrate_finish(p->mm);
1118 return 0;
1119 } else if (task_on_rq_queued(p)) {
1120 /*
1121 * OK, since we're going to drop the lock immediately
1122 * afterwards anyway.
1123 */
1124 rq = move_queued_task(rq, &rf, p, dest_cpu);
1125 }
1126 out:
1127 task_rq_unlock(rq, p, &rf);
1128
1129 return ret;
1130 }
1131
1132 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1133 {
1134 return __set_cpus_allowed_ptr(p, new_mask, false);
1135 }
1136 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1137
1138 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1139 {
1140 #ifdef CONFIG_SCHED_DEBUG
1141 /*
1142 * We should never call set_task_cpu() on a blocked task,
1143 * ttwu() will sort out the placement.
1144 */
1145 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1146 !p->on_rq);
1147
1148 /*
1149 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1150 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1151 * time relying on p->on_rq.
1152 */
1153 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1154 p->sched_class == &fair_sched_class &&
1155 (p->on_rq && !task_on_rq_migrating(p)));
1156
1157 #ifdef CONFIG_LOCKDEP
1158 /*
1159 * The caller should hold either p->pi_lock or rq->lock, when changing
1160 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1161 *
1162 * sched_move_task() holds both and thus holding either pins the cgroup,
1163 * see task_group().
1164 *
1165 * Furthermore, all task_rq users should acquire both locks, see
1166 * task_rq_lock().
1167 */
1168 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1169 lockdep_is_held(&task_rq(p)->lock)));
1170 #endif
1171 #endif
1172
1173 trace_sched_migrate_task(p, new_cpu);
1174
1175 if (task_cpu(p) != new_cpu) {
1176 if (p->sched_class->migrate_task_rq)
1177 p->sched_class->migrate_task_rq(p);
1178 p->se.nr_migrations++;
1179 perf_event_task_migrate(p);
1180 }
1181
1182 __set_task_cpu(p, new_cpu);
1183 }
1184
1185 static void __migrate_swap_task(struct task_struct *p, int cpu)
1186 {
1187 if (task_on_rq_queued(p)) {
1188 struct rq *src_rq, *dst_rq;
1189 struct rq_flags srf, drf;
1190
1191 src_rq = task_rq(p);
1192 dst_rq = cpu_rq(cpu);
1193
1194 rq_pin_lock(src_rq, &srf);
1195 rq_pin_lock(dst_rq, &drf);
1196
1197 p->on_rq = TASK_ON_RQ_MIGRATING;
1198 deactivate_task(src_rq, p, 0);
1199 set_task_cpu(p, cpu);
1200 activate_task(dst_rq, p, 0);
1201 p->on_rq = TASK_ON_RQ_QUEUED;
1202 check_preempt_curr(dst_rq, p, 0);
1203
1204 rq_unpin_lock(dst_rq, &drf);
1205 rq_unpin_lock(src_rq, &srf);
1206
1207 } else {
1208 /*
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
1211 * previous CPU our target instead of where it really is.
1212 */
1213 p->wake_cpu = cpu;
1214 }
1215 }
1216
1217 struct migration_swap_arg {
1218 struct task_struct *src_task, *dst_task;
1219 int src_cpu, dst_cpu;
1220 };
1221
1222 static int migrate_swap_stop(void *data)
1223 {
1224 struct migration_swap_arg *arg = data;
1225 struct rq *src_rq, *dst_rq;
1226 int ret = -EAGAIN;
1227
1228 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1229 return -EAGAIN;
1230
1231 src_rq = cpu_rq(arg->src_cpu);
1232 dst_rq = cpu_rq(arg->dst_cpu);
1233
1234 double_raw_lock(&arg->src_task->pi_lock,
1235 &arg->dst_task->pi_lock);
1236 double_rq_lock(src_rq, dst_rq);
1237
1238 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1239 goto unlock;
1240
1241 if (task_cpu(arg->src_task) != arg->src_cpu)
1242 goto unlock;
1243
1244 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1245 goto unlock;
1246
1247 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1248 goto unlock;
1249
1250 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1251 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1252
1253 ret = 0;
1254
1255 unlock:
1256 double_rq_unlock(src_rq, dst_rq);
1257 raw_spin_unlock(&arg->dst_task->pi_lock);
1258 raw_spin_unlock(&arg->src_task->pi_lock);
1259
1260 return ret;
1261 }
1262
1263 /*
1264 * Cross migrate two tasks
1265 */
1266 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1267 {
1268 struct migration_swap_arg arg;
1269 int ret = -EINVAL;
1270
1271 arg = (struct migration_swap_arg){
1272 .src_task = cur,
1273 .src_cpu = task_cpu(cur),
1274 .dst_task = p,
1275 .dst_cpu = task_cpu(p),
1276 };
1277
1278 if (arg.src_cpu == arg.dst_cpu)
1279 goto out;
1280
1281 /*
1282 * These three tests are all lockless; this is OK since all of them
1283 * will be re-checked with proper locks held further down the line.
1284 */
1285 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1286 goto out;
1287
1288 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1289 goto out;
1290
1291 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1292 goto out;
1293
1294 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1295 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1296
1297 out:
1298 return ret;
1299 }
1300
1301 /*
1302 * wait_task_inactive - wait for a thread to unschedule.
1303 *
1304 * If @match_state is nonzero, it's the @p->state value just checked and
1305 * not expected to change. If it changes, i.e. @p might have woken up,
1306 * then return zero. When we succeed in waiting for @p to be off its CPU,
1307 * we return a positive number (its total switch count). If a second call
1308 * a short while later returns the same number, the caller can be sure that
1309 * @p has remained unscheduled the whole time.
1310 *
1311 * The caller must ensure that the task *will* unschedule sometime soon,
1312 * else this function might spin for a *long* time. This function can't
1313 * be called with interrupts off, or it may introduce deadlock with
1314 * smp_call_function() if an IPI is sent by the same process we are
1315 * waiting to become inactive.
1316 */
1317 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1318 {
1319 int running, queued;
1320 struct rq_flags rf;
1321 unsigned long ncsw;
1322 struct rq *rq;
1323
1324 for (;;) {
1325 /*
1326 * We do the initial early heuristics without holding
1327 * any task-queue locks at all. We'll only try to get
1328 * the runqueue lock when things look like they will
1329 * work out!
1330 */
1331 rq = task_rq(p);
1332
1333 /*
1334 * If the task is actively running on another CPU
1335 * still, just relax and busy-wait without holding
1336 * any locks.
1337 *
1338 * NOTE! Since we don't hold any locks, it's not
1339 * even sure that "rq" stays as the right runqueue!
1340 * But we don't care, since "task_running()" will
1341 * return false if the runqueue has changed and p
1342 * is actually now running somewhere else!
1343 */
1344 while (task_running(rq, p)) {
1345 if (match_state && unlikely(p->state != match_state))
1346 return 0;
1347 cpu_relax();
1348 }
1349
1350 /*
1351 * Ok, time to look more closely! We need the rq
1352 * lock now, to be *sure*. If we're wrong, we'll
1353 * just go back and repeat.
1354 */
1355 rq = task_rq_lock(p, &rf);
1356 trace_sched_wait_task(p);
1357 running = task_running(rq, p);
1358 queued = task_on_rq_queued(p);
1359 ncsw = 0;
1360 if (!match_state || p->state == match_state)
1361 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1362 task_rq_unlock(rq, p, &rf);
1363
1364 /*
1365 * If it changed from the expected state, bail out now.
1366 */
1367 if (unlikely(!ncsw))
1368 break;
1369
1370 /*
1371 * Was it really running after all now that we
1372 * checked with the proper locks actually held?
1373 *
1374 * Oops. Go back and try again..
1375 */
1376 if (unlikely(running)) {
1377 cpu_relax();
1378 continue;
1379 }
1380
1381 /*
1382 * It's not enough that it's not actively running,
1383 * it must be off the runqueue _entirely_, and not
1384 * preempted!
1385 *
1386 * So if it was still runnable (but just not actively
1387 * running right now), it's preempted, and we should
1388 * yield - it could be a while.
1389 */
1390 if (unlikely(queued)) {
1391 ktime_t to = NSEC_PER_SEC / HZ;
1392
1393 set_current_state(TASK_UNINTERRUPTIBLE);
1394 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1395 continue;
1396 }
1397
1398 /*
1399 * Ahh, all good. It wasn't running, and it wasn't
1400 * runnable, which means that it will never become
1401 * running in the future either. We're all done!
1402 */
1403 break;
1404 }
1405
1406 return ncsw;
1407 }
1408
1409 /***
1410 * kick_process - kick a running thread to enter/exit the kernel
1411 * @p: the to-be-kicked thread
1412 *
1413 * Cause a process which is running on another CPU to enter
1414 * kernel-mode, without any delay. (to get signals handled.)
1415 *
1416 * NOTE: this function doesn't have to take the runqueue lock,
1417 * because all it wants to ensure is that the remote task enters
1418 * the kernel. If the IPI races and the task has been migrated
1419 * to another CPU then no harm is done and the purpose has been
1420 * achieved as well.
1421 */
1422 void kick_process(struct task_struct *p)
1423 {
1424 int cpu;
1425
1426 preempt_disable();
1427 cpu = task_cpu(p);
1428 if ((cpu != smp_processor_id()) && task_curr(p))
1429 smp_send_reschedule(cpu);
1430 preempt_enable();
1431 }
1432 EXPORT_SYMBOL_GPL(kick_process);
1433
1434 /*
1435 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1436 *
1437 * A few notes on cpu_active vs cpu_online:
1438 *
1439 * - cpu_active must be a subset of cpu_online
1440 *
1441 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1442 * see __set_cpus_allowed_ptr(). At this point the newly online
1443 * CPU isn't yet part of the sched domains, and balancing will not
1444 * see it.
1445 *
1446 * - on CPU-down we clear cpu_active() to mask the sched domains and
1447 * avoid the load balancer to place new tasks on the to be removed
1448 * CPU. Existing tasks will remain running there and will be taken
1449 * off.
1450 *
1451 * This means that fallback selection must not select !active CPUs.
1452 * And can assume that any active CPU must be online. Conversely
1453 * select_task_rq() below may allow selection of !active CPUs in order
1454 * to satisfy the above rules.
1455 */
1456 static int select_fallback_rq(int cpu, struct task_struct *p)
1457 {
1458 int nid = cpu_to_node(cpu);
1459 const struct cpumask *nodemask = NULL;
1460 enum { cpuset, possible, fail } state = cpuset;
1461 int dest_cpu;
1462
1463 /*
1464 * If the node that the CPU is on has been offlined, cpu_to_node()
1465 * will return -1. There is no CPU on the node, and we should
1466 * select the CPU on the other node.
1467 */
1468 if (nid != -1) {
1469 nodemask = cpumask_of_node(nid);
1470
1471 /* Look for allowed, online CPU in same node. */
1472 for_each_cpu(dest_cpu, nodemask) {
1473 if (!cpu_active(dest_cpu))
1474 continue;
1475 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1476 return dest_cpu;
1477 }
1478 }
1479
1480 for (;;) {
1481 /* Any allowed, online CPU? */
1482 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1483 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1484 continue;
1485 if (!cpu_online(dest_cpu))
1486 continue;
1487 goto out;
1488 }
1489
1490 /* No more Mr. Nice Guy. */
1491 switch (state) {
1492 case cpuset:
1493 if (IS_ENABLED(CONFIG_CPUSETS)) {
1494 cpuset_cpus_allowed_fallback(p);
1495 state = possible;
1496 break;
1497 }
1498 /* Fall-through */
1499 case possible:
1500 do_set_cpus_allowed(p, cpu_possible_mask);
1501 state = fail;
1502 break;
1503
1504 case fail:
1505 BUG();
1506 break;
1507 }
1508 }
1509
1510 out:
1511 if (state != cpuset) {
1512 /*
1513 * Don't tell them about moving exiting tasks or
1514 * kernel threads (both mm NULL), since they never
1515 * leave kernel.
1516 */
1517 if (p->mm && printk_ratelimit()) {
1518 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1519 task_pid_nr(p), p->comm, cpu);
1520 }
1521 }
1522
1523 return dest_cpu;
1524 }
1525
1526 /*
1527 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1528 */
1529 static inline
1530 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1531 {
1532 lockdep_assert_held(&p->pi_lock);
1533
1534 if (p->nr_cpus_allowed > 1)
1535 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1536 else
1537 cpu = cpumask_any(&p->cpus_allowed);
1538
1539 /*
1540 * In order not to call set_task_cpu() on a blocking task we need
1541 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1542 * CPU.
1543 *
1544 * Since this is common to all placement strategies, this lives here.
1545 *
1546 * [ this allows ->select_task() to simply return task_cpu(p) and
1547 * not worry about this generic constraint ]
1548 */
1549 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1550 !cpu_online(cpu)))
1551 cpu = select_fallback_rq(task_cpu(p), p);
1552
1553 return cpu;
1554 }
1555
1556 static void update_avg(u64 *avg, u64 sample)
1557 {
1558 s64 diff = sample - *avg;
1559 *avg += diff >> 3;
1560 }
1561
1562 void sched_set_stop_task(int cpu, struct task_struct *stop)
1563 {
1564 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1565 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1566
1567 if (stop) {
1568 /*
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1571 *
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1575 */
1576 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1577
1578 stop->sched_class = &stop_sched_class;
1579 }
1580
1581 cpu_rq(cpu)->stop = stop;
1582
1583 if (old_stop) {
1584 /*
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1587 */
1588 old_stop->sched_class = &rt_sched_class;
1589 }
1590 }
1591
1592 #else
1593
1594 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1595 const struct cpumask *new_mask, bool check)
1596 {
1597 return set_cpus_allowed_ptr(p, new_mask);
1598 }
1599
1600 #endif /* CONFIG_SMP */
1601
1602 static void
1603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1604 {
1605 struct rq *rq;
1606
1607 if (!schedstat_enabled())
1608 return;
1609
1610 rq = this_rq();
1611
1612 #ifdef CONFIG_SMP
1613 if (cpu == rq->cpu) {
1614 schedstat_inc(rq->ttwu_local);
1615 schedstat_inc(p->se.statistics.nr_wakeups_local);
1616 } else {
1617 struct sched_domain *sd;
1618
1619 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1620 rcu_read_lock();
1621 for_each_domain(rq->cpu, sd) {
1622 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1623 schedstat_inc(sd->ttwu_wake_remote);
1624 break;
1625 }
1626 }
1627 rcu_read_unlock();
1628 }
1629
1630 if (wake_flags & WF_MIGRATED)
1631 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1632 #endif /* CONFIG_SMP */
1633
1634 schedstat_inc(rq->ttwu_count);
1635 schedstat_inc(p->se.statistics.nr_wakeups);
1636
1637 if (wake_flags & WF_SYNC)
1638 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1639 }
1640
1641 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1642 {
1643 activate_task(rq, p, en_flags);
1644 p->on_rq = TASK_ON_RQ_QUEUED;
1645
1646 /* If a worker is waking up, notify the workqueue: */
1647 if (p->flags & PF_WQ_WORKER)
1648 wq_worker_waking_up(p, cpu_of(rq));
1649 }
1650
1651 /*
1652 * Mark the task runnable and perform wakeup-preemption.
1653 */
1654 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1655 struct rq_flags *rf)
1656 {
1657 check_preempt_curr(rq, p, wake_flags);
1658 p->state = TASK_RUNNING;
1659 trace_sched_wakeup(p);
1660
1661 #ifdef CONFIG_SMP
1662 if (p->sched_class->task_woken) {
1663 /*
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
1666 */
1667 rq_unpin_lock(rq, rf);
1668 p->sched_class->task_woken(rq, p);
1669 rq_repin_lock(rq, rf);
1670 }
1671
1672 if (rq->idle_stamp) {
1673 u64 delta = rq_clock(rq) - rq->idle_stamp;
1674 u64 max = 2*rq->max_idle_balance_cost;
1675
1676 update_avg(&rq->avg_idle, delta);
1677
1678 if (rq->avg_idle > max)
1679 rq->avg_idle = max;
1680
1681 rq->idle_stamp = 0;
1682 }
1683 #endif
1684 }
1685
1686 static void
1687 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1688 struct rq_flags *rf)
1689 {
1690 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1691
1692 lockdep_assert_held(&rq->lock);
1693
1694 #ifdef CONFIG_SMP
1695 if (p->sched_contributes_to_load)
1696 rq->nr_uninterruptible--;
1697
1698 if (wake_flags & WF_MIGRATED)
1699 en_flags |= ENQUEUE_MIGRATED;
1700 #endif
1701
1702 ttwu_activate(rq, p, en_flags);
1703 ttwu_do_wakeup(rq, p, wake_flags, rf);
1704 }
1705
1706 /*
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1711 */
1712 static int ttwu_remote(struct task_struct *p, int wake_flags)
1713 {
1714 struct rq_flags rf;
1715 struct rq *rq;
1716 int ret = 0;
1717
1718 rq = __task_rq_lock(p, &rf);
1719 if (task_on_rq_queued(p)) {
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq);
1722 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1723 ret = 1;
1724 }
1725 __task_rq_unlock(rq, &rf);
1726
1727 return ret;
1728 }
1729
1730 #ifdef CONFIG_SMP
1731 void sched_ttwu_pending(void)
1732 {
1733 struct rq *rq = this_rq();
1734 struct llist_node *llist = llist_del_all(&rq->wake_list);
1735 struct task_struct *p, *t;
1736 struct rq_flags rf;
1737
1738 if (!llist)
1739 return;
1740
1741 rq_lock_irqsave(rq, &rf);
1742 update_rq_clock(rq);
1743
1744 llist_for_each_entry_safe(p, t, llist, wake_entry)
1745 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1746
1747 rq_unlock_irqrestore(rq, &rf);
1748 }
1749
1750 void scheduler_ipi(void)
1751 {
1752 /*
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1755 * this IPI.
1756 */
1757 preempt_fold_need_resched();
1758
1759 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1760 return;
1761
1762 /*
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1766 * we do call them.
1767 *
1768 * Some archs already do call them, luckily irq_enter/exit nest
1769 * properly.
1770 *
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1774 */
1775 irq_enter();
1776 sched_ttwu_pending();
1777
1778 /*
1779 * Check if someone kicked us for doing the nohz idle load balance.
1780 */
1781 if (unlikely(got_nohz_idle_kick())) {
1782 this_rq()->idle_balance = 1;
1783 raise_softirq_irqoff(SCHED_SOFTIRQ);
1784 }
1785 irq_exit();
1786 }
1787
1788 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1789 {
1790 struct rq *rq = cpu_rq(cpu);
1791
1792 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1793
1794 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1795 if (!set_nr_if_polling(rq->idle))
1796 smp_send_reschedule(cpu);
1797 else
1798 trace_sched_wake_idle_without_ipi(cpu);
1799 }
1800 }
1801
1802 void wake_up_if_idle(int cpu)
1803 {
1804 struct rq *rq = cpu_rq(cpu);
1805 struct rq_flags rf;
1806
1807 rcu_read_lock();
1808
1809 if (!is_idle_task(rcu_dereference(rq->curr)))
1810 goto out;
1811
1812 if (set_nr_if_polling(rq->idle)) {
1813 trace_sched_wake_idle_without_ipi(cpu);
1814 } else {
1815 rq_lock_irqsave(rq, &rf);
1816 if (is_idle_task(rq->curr))
1817 smp_send_reschedule(cpu);
1818 /* Else CPU is not idle, do nothing here: */
1819 rq_unlock_irqrestore(rq, &rf);
1820 }
1821
1822 out:
1823 rcu_read_unlock();
1824 }
1825
1826 bool cpus_share_cache(int this_cpu, int that_cpu)
1827 {
1828 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1829 }
1830 #endif /* CONFIG_SMP */
1831
1832 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1833 {
1834 struct rq *rq = cpu_rq(cpu);
1835 struct rq_flags rf;
1836
1837 #if defined(CONFIG_SMP)
1838 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1839 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1840 ttwu_queue_remote(p, cpu, wake_flags);
1841 return;
1842 }
1843 #endif
1844
1845 rq_lock(rq, &rf);
1846 update_rq_clock(rq);
1847 ttwu_do_activate(rq, p, wake_flags, &rf);
1848 rq_unlock(rq, &rf);
1849 }
1850
1851 /*
1852 * Notes on Program-Order guarantees on SMP systems.
1853 *
1854 * MIGRATION
1855 *
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
1859 *
1860 * For migration (of runnable tasks) this is provided by the following means:
1861 *
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1866 *
1867 * Transitivity guarantees that B happens after A and C after B.
1868 * Note: we only require RCpc transitivity.
1869 * Note: the CPU doing B need not be c0 or c1
1870 *
1871 * Example:
1872 *
1873 * CPU0 CPU1 CPU2
1874 *
1875 * LOCK rq(0)->lock
1876 * sched-out X
1877 * sched-in Y
1878 * UNLOCK rq(0)->lock
1879 *
1880 * LOCK rq(0)->lock // orders against CPU0
1881 * dequeue X
1882 * UNLOCK rq(0)->lock
1883 *
1884 * LOCK rq(1)->lock
1885 * enqueue X
1886 * UNLOCK rq(1)->lock
1887 *
1888 * LOCK rq(1)->lock // orders against CPU2
1889 * sched-out Z
1890 * sched-in X
1891 * UNLOCK rq(1)->lock
1892 *
1893 *
1894 * BLOCKING -- aka. SLEEP + WAKEUP
1895 *
1896 * For blocking we (obviously) need to provide the same guarantee as for
1897 * migration. However the means are completely different as there is no lock
1898 * chain to provide order. Instead we do:
1899 *
1900 * 1) smp_store_release(X->on_cpu, 0)
1901 * 2) smp_cond_load_acquire(!X->on_cpu)
1902 *
1903 * Example:
1904 *
1905 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1906 *
1907 * LOCK rq(0)->lock LOCK X->pi_lock
1908 * dequeue X
1909 * sched-out X
1910 * smp_store_release(X->on_cpu, 0);
1911 *
1912 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1913 * X->state = WAKING
1914 * set_task_cpu(X,2)
1915 *
1916 * LOCK rq(2)->lock
1917 * enqueue X
1918 * X->state = RUNNING
1919 * UNLOCK rq(2)->lock
1920 *
1921 * LOCK rq(2)->lock // orders against CPU1
1922 * sched-out Z
1923 * sched-in X
1924 * UNLOCK rq(2)->lock
1925 *
1926 * UNLOCK X->pi_lock
1927 * UNLOCK rq(0)->lock
1928 *
1929 *
1930 * However; for wakeups there is a second guarantee we must provide, namely we
1931 * must observe the state that lead to our wakeup. That is, not only must our
1932 * task observe its own prior state, it must also observe the stores prior to
1933 * its wakeup.
1934 *
1935 * This means that any means of doing remote wakeups must order the CPU doing
1936 * the wakeup against the CPU the task is going to end up running on. This,
1937 * however, is already required for the regular Program-Order guarantee above,
1938 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1939 *
1940 */
1941
1942 /**
1943 * try_to_wake_up - wake up a thread
1944 * @p: the thread to be awakened
1945 * @state: the mask of task states that can be woken
1946 * @wake_flags: wake modifier flags (WF_*)
1947 *
1948 * If (@state & @p->state) @p->state = TASK_RUNNING.
1949 *
1950 * If the task was not queued/runnable, also place it back on a runqueue.
1951 *
1952 * Atomic against schedule() which would dequeue a task, also see
1953 * set_current_state().
1954 *
1955 * Return: %true if @p->state changes (an actual wakeup was done),
1956 * %false otherwise.
1957 */
1958 static int
1959 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1960 {
1961 unsigned long flags;
1962 int cpu, success = 0;
1963
1964 /*
1965 * If we are going to wake up a thread waiting for CONDITION we
1966 * need to ensure that CONDITION=1 done by the caller can not be
1967 * reordered with p->state check below. This pairs with mb() in
1968 * set_current_state() the waiting thread does.
1969 */
1970 smp_mb__before_spinlock();
1971 raw_spin_lock_irqsave(&p->pi_lock, flags);
1972 if (!(p->state & state))
1973 goto out;
1974
1975 trace_sched_waking(p);
1976
1977 /* We're going to change ->state: */
1978 success = 1;
1979 cpu = task_cpu(p);
1980
1981 /*
1982 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1983 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1984 * in smp_cond_load_acquire() below.
1985 *
1986 * sched_ttwu_pending() try_to_wake_up()
1987 * [S] p->on_rq = 1; [L] P->state
1988 * UNLOCK rq->lock -----.
1989 * \
1990 * +--- RMB
1991 * schedule() /
1992 * LOCK rq->lock -----'
1993 * UNLOCK rq->lock
1994 *
1995 * [task p]
1996 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1997 *
1998 * Pairs with the UNLOCK+LOCK on rq->lock from the
1999 * last wakeup of our task and the schedule that got our task
2000 * current.
2001 */
2002 smp_rmb();
2003 if (p->on_rq && ttwu_remote(p, wake_flags))
2004 goto stat;
2005
2006 #ifdef CONFIG_SMP
2007 /*
2008 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2009 * possible to, falsely, observe p->on_cpu == 0.
2010 *
2011 * One must be running (->on_cpu == 1) in order to remove oneself
2012 * from the runqueue.
2013 *
2014 * [S] ->on_cpu = 1; [L] ->on_rq
2015 * UNLOCK rq->lock
2016 * RMB
2017 * LOCK rq->lock
2018 * [S] ->on_rq = 0; [L] ->on_cpu
2019 *
2020 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2021 * from the consecutive calls to schedule(); the first switching to our
2022 * task, the second putting it to sleep.
2023 */
2024 smp_rmb();
2025
2026 /*
2027 * If the owning (remote) CPU is still in the middle of schedule() with
2028 * this task as prev, wait until its done referencing the task.
2029 *
2030 * Pairs with the smp_store_release() in finish_lock_switch().
2031 *
2032 * This ensures that tasks getting woken will be fully ordered against
2033 * their previous state and preserve Program Order.
2034 */
2035 smp_cond_load_acquire(&p->on_cpu, !VAL);
2036
2037 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2038 p->state = TASK_WAKING;
2039
2040 if (p->in_iowait) {
2041 delayacct_blkio_end();
2042 atomic_dec(&task_rq(p)->nr_iowait);
2043 }
2044
2045 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2046 if (task_cpu(p) != cpu) {
2047 wake_flags |= WF_MIGRATED;
2048 set_task_cpu(p, cpu);
2049 }
2050
2051 #else /* CONFIG_SMP */
2052
2053 if (p->in_iowait) {
2054 delayacct_blkio_end();
2055 atomic_dec(&task_rq(p)->nr_iowait);
2056 }
2057
2058 #endif /* CONFIG_SMP */
2059
2060 ttwu_queue(p, cpu, wake_flags);
2061 stat:
2062 ttwu_stat(p, cpu, wake_flags);
2063 out:
2064 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2065
2066 return success;
2067 }
2068
2069 /**
2070 * try_to_wake_up_local - try to wake up a local task with rq lock held
2071 * @p: the thread to be awakened
2072 * @rf: request-queue flags for pinning
2073 *
2074 * Put @p on the run-queue if it's not already there. The caller must
2075 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2076 * the current task.
2077 */
2078 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2079 {
2080 struct rq *rq = task_rq(p);
2081
2082 if (WARN_ON_ONCE(rq != this_rq()) ||
2083 WARN_ON_ONCE(p == current))
2084 return;
2085
2086 lockdep_assert_held(&rq->lock);
2087
2088 if (!raw_spin_trylock(&p->pi_lock)) {
2089 /*
2090 * This is OK, because current is on_cpu, which avoids it being
2091 * picked for load-balance and preemption/IRQs are still
2092 * disabled avoiding further scheduler activity on it and we've
2093 * not yet picked a replacement task.
2094 */
2095 rq_unlock(rq, rf);
2096 raw_spin_lock(&p->pi_lock);
2097 rq_relock(rq, rf);
2098 }
2099
2100 if (!(p->state & TASK_NORMAL))
2101 goto out;
2102
2103 trace_sched_waking(p);
2104
2105 if (!task_on_rq_queued(p)) {
2106 if (p->in_iowait) {
2107 delayacct_blkio_end();
2108 atomic_dec(&rq->nr_iowait);
2109 }
2110 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2111 }
2112
2113 ttwu_do_wakeup(rq, p, 0, rf);
2114 ttwu_stat(p, smp_processor_id(), 0);
2115 out:
2116 raw_spin_unlock(&p->pi_lock);
2117 }
2118
2119 /**
2120 * wake_up_process - Wake up a specific process
2121 * @p: The process to be woken up.
2122 *
2123 * Attempt to wake up the nominated process and move it to the set of runnable
2124 * processes.
2125 *
2126 * Return: 1 if the process was woken up, 0 if it was already running.
2127 *
2128 * It may be assumed that this function implies a write memory barrier before
2129 * changing the task state if and only if any tasks are woken up.
2130 */
2131 int wake_up_process(struct task_struct *p)
2132 {
2133 return try_to_wake_up(p, TASK_NORMAL, 0);
2134 }
2135 EXPORT_SYMBOL(wake_up_process);
2136
2137 int wake_up_state(struct task_struct *p, unsigned int state)
2138 {
2139 return try_to_wake_up(p, state, 0);
2140 }
2141
2142 /*
2143 * Perform scheduler related setup for a newly forked process p.
2144 * p is forked by current.
2145 *
2146 * __sched_fork() is basic setup used by init_idle() too:
2147 */
2148 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2149 {
2150 p->on_rq = 0;
2151
2152 p->se.on_rq = 0;
2153 p->se.exec_start = 0;
2154 p->se.sum_exec_runtime = 0;
2155 p->se.prev_sum_exec_runtime = 0;
2156 p->se.nr_migrations = 0;
2157 p->se.vruntime = 0;
2158 INIT_LIST_HEAD(&p->se.group_node);
2159
2160 #ifdef CONFIG_FAIR_GROUP_SCHED
2161 p->se.cfs_rq = NULL;
2162 #endif
2163
2164 #ifdef CONFIG_SCHEDSTATS
2165 /* Even if schedstat is disabled, there should not be garbage */
2166 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2167 #endif
2168
2169 RB_CLEAR_NODE(&p->dl.rb_node);
2170 init_dl_task_timer(&p->dl);
2171 init_dl_inactive_task_timer(&p->dl);
2172 __dl_clear_params(p);
2173
2174 INIT_LIST_HEAD(&p->rt.run_list);
2175 p->rt.timeout = 0;
2176 p->rt.time_slice = sched_rr_timeslice;
2177 p->rt.on_rq = 0;
2178 p->rt.on_list = 0;
2179
2180 #ifdef CONFIG_PREEMPT_NOTIFIERS
2181 INIT_HLIST_HEAD(&p->preempt_notifiers);
2182 #endif
2183
2184 #ifdef CONFIG_NUMA_BALANCING
2185 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2186 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2187 p->mm->numa_scan_seq = 0;
2188 }
2189
2190 if (clone_flags & CLONE_VM)
2191 p->numa_preferred_nid = current->numa_preferred_nid;
2192 else
2193 p->numa_preferred_nid = -1;
2194
2195 p->node_stamp = 0ULL;
2196 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2197 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2198 p->numa_work.next = &p->numa_work;
2199 p->numa_faults = NULL;
2200 p->last_task_numa_placement = 0;
2201 p->last_sum_exec_runtime = 0;
2202
2203 p->numa_group = NULL;
2204 #endif /* CONFIG_NUMA_BALANCING */
2205 }
2206
2207 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2208
2209 #ifdef CONFIG_NUMA_BALANCING
2210
2211 void set_numabalancing_state(bool enabled)
2212 {
2213 if (enabled)
2214 static_branch_enable(&sched_numa_balancing);
2215 else
2216 static_branch_disable(&sched_numa_balancing);
2217 }
2218
2219 #ifdef CONFIG_PROC_SYSCTL
2220 int sysctl_numa_balancing(struct ctl_table *table, int write,
2221 void __user *buffer, size_t *lenp, loff_t *ppos)
2222 {
2223 struct ctl_table t;
2224 int err;
2225 int state = static_branch_likely(&sched_numa_balancing);
2226
2227 if (write && !capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229
2230 t = *table;
2231 t.data = &state;
2232 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2233 if (err < 0)
2234 return err;
2235 if (write)
2236 set_numabalancing_state(state);
2237 return err;
2238 }
2239 #endif
2240 #endif
2241
2242 #ifdef CONFIG_SCHEDSTATS
2243
2244 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2245 static bool __initdata __sched_schedstats = false;
2246
2247 static void set_schedstats(bool enabled)
2248 {
2249 if (enabled)
2250 static_branch_enable(&sched_schedstats);
2251 else
2252 static_branch_disable(&sched_schedstats);
2253 }
2254
2255 void force_schedstat_enabled(void)
2256 {
2257 if (!schedstat_enabled()) {
2258 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2259 static_branch_enable(&sched_schedstats);
2260 }
2261 }
2262
2263 static int __init setup_schedstats(char *str)
2264 {
2265 int ret = 0;
2266 if (!str)
2267 goto out;
2268
2269 /*
2270 * This code is called before jump labels have been set up, so we can't
2271 * change the static branch directly just yet. Instead set a temporary
2272 * variable so init_schedstats() can do it later.
2273 */
2274 if (!strcmp(str, "enable")) {
2275 __sched_schedstats = true;
2276 ret = 1;
2277 } else if (!strcmp(str, "disable")) {
2278 __sched_schedstats = false;
2279 ret = 1;
2280 }
2281 out:
2282 if (!ret)
2283 pr_warn("Unable to parse schedstats=\n");
2284
2285 return ret;
2286 }
2287 __setup("schedstats=", setup_schedstats);
2288
2289 static void __init init_schedstats(void)
2290 {
2291 set_schedstats(__sched_schedstats);
2292 }
2293
2294 #ifdef CONFIG_PROC_SYSCTL
2295 int sysctl_schedstats(struct ctl_table *table, int write,
2296 void __user *buffer, size_t *lenp, loff_t *ppos)
2297 {
2298 struct ctl_table t;
2299 int err;
2300 int state = static_branch_likely(&sched_schedstats);
2301
2302 if (write && !capable(CAP_SYS_ADMIN))
2303 return -EPERM;
2304
2305 t = *table;
2306 t.data = &state;
2307 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2308 if (err < 0)
2309 return err;
2310 if (write)
2311 set_schedstats(state);
2312 return err;
2313 }
2314 #endif /* CONFIG_PROC_SYSCTL */
2315 #else /* !CONFIG_SCHEDSTATS */
2316 static inline void init_schedstats(void) {}
2317 #endif /* CONFIG_SCHEDSTATS */
2318
2319 /*
2320 * fork()/clone()-time setup:
2321 */
2322 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2323 {
2324 unsigned long flags;
2325 int cpu = get_cpu();
2326
2327 __sched_fork(clone_flags, p);
2328 /*
2329 * We mark the process as NEW here. This guarantees that
2330 * nobody will actually run it, and a signal or other external
2331 * event cannot wake it up and insert it on the runqueue either.
2332 */
2333 p->state = TASK_NEW;
2334
2335 /*
2336 * Make sure we do not leak PI boosting priority to the child.
2337 */
2338 p->prio = current->normal_prio;
2339
2340 /*
2341 * Revert to default priority/policy on fork if requested.
2342 */
2343 if (unlikely(p->sched_reset_on_fork)) {
2344 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2345 p->policy = SCHED_NORMAL;
2346 p->static_prio = NICE_TO_PRIO(0);
2347 p->rt_priority = 0;
2348 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2349 p->static_prio = NICE_TO_PRIO(0);
2350
2351 p->prio = p->normal_prio = __normal_prio(p);
2352 set_load_weight(p);
2353
2354 /*
2355 * We don't need the reset flag anymore after the fork. It has
2356 * fulfilled its duty:
2357 */
2358 p->sched_reset_on_fork = 0;
2359 }
2360
2361 if (dl_prio(p->prio)) {
2362 put_cpu();
2363 return -EAGAIN;
2364 } else if (rt_prio(p->prio)) {
2365 p->sched_class = &rt_sched_class;
2366 } else {
2367 p->sched_class = &fair_sched_class;
2368 }
2369
2370 init_entity_runnable_average(&p->se);
2371
2372 /*
2373 * The child is not yet in the pid-hash so no cgroup attach races,
2374 * and the cgroup is pinned to this child due to cgroup_fork()
2375 * is ran before sched_fork().
2376 *
2377 * Silence PROVE_RCU.
2378 */
2379 raw_spin_lock_irqsave(&p->pi_lock, flags);
2380 /*
2381 * We're setting the CPU for the first time, we don't migrate,
2382 * so use __set_task_cpu().
2383 */
2384 __set_task_cpu(p, cpu);
2385 if (p->sched_class->task_fork)
2386 p->sched_class->task_fork(p);
2387 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2388
2389 #ifdef CONFIG_SCHED_INFO
2390 if (likely(sched_info_on()))
2391 memset(&p->sched_info, 0, sizeof(p->sched_info));
2392 #endif
2393 #if defined(CONFIG_SMP)
2394 p->on_cpu = 0;
2395 #endif
2396 init_task_preempt_count(p);
2397 #ifdef CONFIG_SMP
2398 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2399 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2400 #endif
2401
2402 put_cpu();
2403 return 0;
2404 }
2405
2406 unsigned long to_ratio(u64 period, u64 runtime)
2407 {
2408 if (runtime == RUNTIME_INF)
2409 return BW_UNIT;
2410
2411 /*
2412 * Doing this here saves a lot of checks in all
2413 * the calling paths, and returning zero seems
2414 * safe for them anyway.
2415 */
2416 if (period == 0)
2417 return 0;
2418
2419 return div64_u64(runtime << BW_SHIFT, period);
2420 }
2421
2422 /*
2423 * wake_up_new_task - wake up a newly created task for the first time.
2424 *
2425 * This function will do some initial scheduler statistics housekeeping
2426 * that must be done for every newly created context, then puts the task
2427 * on the runqueue and wakes it.
2428 */
2429 void wake_up_new_task(struct task_struct *p)
2430 {
2431 struct rq_flags rf;
2432 struct rq *rq;
2433
2434 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2435 p->state = TASK_RUNNING;
2436 #ifdef CONFIG_SMP
2437 /*
2438 * Fork balancing, do it here and not earlier because:
2439 * - cpus_allowed can change in the fork path
2440 * - any previously selected CPU might disappear through hotplug
2441 *
2442 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2443 * as we're not fully set-up yet.
2444 */
2445 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2446 #endif
2447 rq = __task_rq_lock(p, &rf);
2448 update_rq_clock(rq);
2449 post_init_entity_util_avg(&p->se);
2450
2451 activate_task(rq, p, ENQUEUE_NOCLOCK);
2452 p->on_rq = TASK_ON_RQ_QUEUED;
2453 trace_sched_wakeup_new(p);
2454 check_preempt_curr(rq, p, WF_FORK);
2455 #ifdef CONFIG_SMP
2456 if (p->sched_class->task_woken) {
2457 /*
2458 * Nothing relies on rq->lock after this, so its fine to
2459 * drop it.
2460 */
2461 rq_unpin_lock(rq, &rf);
2462 p->sched_class->task_woken(rq, p);
2463 rq_repin_lock(rq, &rf);
2464 }
2465 #endif
2466 task_rq_unlock(rq, p, &rf);
2467 }
2468
2469 #ifdef CONFIG_PREEMPT_NOTIFIERS
2470
2471 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2472
2473 void preempt_notifier_inc(void)
2474 {
2475 static_key_slow_inc(&preempt_notifier_key);
2476 }
2477 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2478
2479 void preempt_notifier_dec(void)
2480 {
2481 static_key_slow_dec(&preempt_notifier_key);
2482 }
2483 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2484
2485 /**
2486 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2487 * @notifier: notifier struct to register
2488 */
2489 void preempt_notifier_register(struct preempt_notifier *notifier)
2490 {
2491 if (!static_key_false(&preempt_notifier_key))
2492 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2493
2494 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2495 }
2496 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2497
2498 /**
2499 * preempt_notifier_unregister - no longer interested in preemption notifications
2500 * @notifier: notifier struct to unregister
2501 *
2502 * This is *not* safe to call from within a preemption notifier.
2503 */
2504 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2505 {
2506 hlist_del(&notifier->link);
2507 }
2508 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2509
2510 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 {
2512 struct preempt_notifier *notifier;
2513
2514 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2515 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2516 }
2517
2518 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2519 {
2520 if (static_key_false(&preempt_notifier_key))
2521 __fire_sched_in_preempt_notifiers(curr);
2522 }
2523
2524 static void
2525 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 struct task_struct *next)
2527 {
2528 struct preempt_notifier *notifier;
2529
2530 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2531 notifier->ops->sched_out(notifier, next);
2532 }
2533
2534 static __always_inline void
2535 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2537 {
2538 if (static_key_false(&preempt_notifier_key))
2539 __fire_sched_out_preempt_notifiers(curr, next);
2540 }
2541
2542 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2543
2544 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2545 {
2546 }
2547
2548 static inline void
2549 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 struct task_struct *next)
2551 {
2552 }
2553
2554 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2555
2556 /**
2557 * prepare_task_switch - prepare to switch tasks
2558 * @rq: the runqueue preparing to switch
2559 * @prev: the current task that is being switched out
2560 * @next: the task we are going to switch to.
2561 *
2562 * This is called with the rq lock held and interrupts off. It must
2563 * be paired with a subsequent finish_task_switch after the context
2564 * switch.
2565 *
2566 * prepare_task_switch sets up locking and calls architecture specific
2567 * hooks.
2568 */
2569 static inline void
2570 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2571 struct task_struct *next)
2572 {
2573 sched_info_switch(rq, prev, next);
2574 perf_event_task_sched_out(prev, next);
2575 fire_sched_out_preempt_notifiers(prev, next);
2576 prepare_lock_switch(rq, next);
2577 prepare_arch_switch(next);
2578 }
2579
2580 /**
2581 * finish_task_switch - clean up after a task-switch
2582 * @prev: the thread we just switched away from.
2583 *
2584 * finish_task_switch must be called after the context switch, paired
2585 * with a prepare_task_switch call before the context switch.
2586 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2587 * and do any other architecture-specific cleanup actions.
2588 *
2589 * Note that we may have delayed dropping an mm in context_switch(). If
2590 * so, we finish that here outside of the runqueue lock. (Doing it
2591 * with the lock held can cause deadlocks; see schedule() for
2592 * details.)
2593 *
2594 * The context switch have flipped the stack from under us and restored the
2595 * local variables which were saved when this task called schedule() in the
2596 * past. prev == current is still correct but we need to recalculate this_rq
2597 * because prev may have moved to another CPU.
2598 */
2599 static struct rq *finish_task_switch(struct task_struct *prev)
2600 __releases(rq->lock)
2601 {
2602 struct rq *rq = this_rq();
2603 struct mm_struct *mm = rq->prev_mm;
2604 long prev_state;
2605
2606 /*
2607 * The previous task will have left us with a preempt_count of 2
2608 * because it left us after:
2609 *
2610 * schedule()
2611 * preempt_disable(); // 1
2612 * __schedule()
2613 * raw_spin_lock_irq(&rq->lock) // 2
2614 *
2615 * Also, see FORK_PREEMPT_COUNT.
2616 */
2617 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2618 "corrupted preempt_count: %s/%d/0x%x\n",
2619 current->comm, current->pid, preempt_count()))
2620 preempt_count_set(FORK_PREEMPT_COUNT);
2621
2622 rq->prev_mm = NULL;
2623
2624 /*
2625 * A task struct has one reference for the use as "current".
2626 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2627 * schedule one last time. The schedule call will never return, and
2628 * the scheduled task must drop that reference.
2629 *
2630 * We must observe prev->state before clearing prev->on_cpu (in
2631 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2632 * running on another CPU and we could rave with its RUNNING -> DEAD
2633 * transition, resulting in a double drop.
2634 */
2635 prev_state = prev->state;
2636 vtime_task_switch(prev);
2637 perf_event_task_sched_in(prev, current);
2638 finish_lock_switch(rq, prev);
2639 finish_arch_post_lock_switch();
2640
2641 fire_sched_in_preempt_notifiers(current);
2642 if (mm)
2643 mmdrop(mm);
2644 if (unlikely(prev_state == TASK_DEAD)) {
2645 if (prev->sched_class->task_dead)
2646 prev->sched_class->task_dead(prev);
2647
2648 /*
2649 * Remove function-return probe instances associated with this
2650 * task and put them back on the free list.
2651 */
2652 kprobe_flush_task(prev);
2653
2654 /* Task is done with its stack. */
2655 put_task_stack(prev);
2656
2657 put_task_struct(prev);
2658 }
2659
2660 tick_nohz_task_switch();
2661 return rq;
2662 }
2663
2664 #ifdef CONFIG_SMP
2665
2666 /* rq->lock is NOT held, but preemption is disabled */
2667 static void __balance_callback(struct rq *rq)
2668 {
2669 struct callback_head *head, *next;
2670 void (*func)(struct rq *rq);
2671 unsigned long flags;
2672
2673 raw_spin_lock_irqsave(&rq->lock, flags);
2674 head = rq->balance_callback;
2675 rq->balance_callback = NULL;
2676 while (head) {
2677 func = (void (*)(struct rq *))head->func;
2678 next = head->next;
2679 head->next = NULL;
2680 head = next;
2681
2682 func(rq);
2683 }
2684 raw_spin_unlock_irqrestore(&rq->lock, flags);
2685 }
2686
2687 static inline void balance_callback(struct rq *rq)
2688 {
2689 if (unlikely(rq->balance_callback))
2690 __balance_callback(rq);
2691 }
2692
2693 #else
2694
2695 static inline void balance_callback(struct rq *rq)
2696 {
2697 }
2698
2699 #endif
2700
2701 /**
2702 * schedule_tail - first thing a freshly forked thread must call.
2703 * @prev: the thread we just switched away from.
2704 */
2705 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2706 __releases(rq->lock)
2707 {
2708 struct rq *rq;
2709
2710 /*
2711 * New tasks start with FORK_PREEMPT_COUNT, see there and
2712 * finish_task_switch() for details.
2713 *
2714 * finish_task_switch() will drop rq->lock() and lower preempt_count
2715 * and the preempt_enable() will end up enabling preemption (on
2716 * PREEMPT_COUNT kernels).
2717 */
2718
2719 rq = finish_task_switch(prev);
2720 balance_callback(rq);
2721 preempt_enable();
2722
2723 if (current->set_child_tid)
2724 put_user(task_pid_vnr(current), current->set_child_tid);
2725 }
2726
2727 /*
2728 * context_switch - switch to the new MM and the new thread's register state.
2729 */
2730 static __always_inline struct rq *
2731 context_switch(struct rq *rq, struct task_struct *prev,
2732 struct task_struct *next, struct rq_flags *rf)
2733 {
2734 struct mm_struct *mm, *oldmm;
2735
2736 prepare_task_switch(rq, prev, next);
2737
2738 mm = next->mm;
2739 oldmm = prev->active_mm;
2740 /*
2741 * For paravirt, this is coupled with an exit in switch_to to
2742 * combine the page table reload and the switch backend into
2743 * one hypercall.
2744 */
2745 arch_start_context_switch(prev);
2746
2747 if (!mm) {
2748 next->active_mm = oldmm;
2749 mmgrab(oldmm);
2750 enter_lazy_tlb(oldmm, next);
2751 } else
2752 switch_mm_irqs_off(oldmm, mm, next);
2753
2754 if (!prev->mm) {
2755 prev->active_mm = NULL;
2756 rq->prev_mm = oldmm;
2757 }
2758
2759 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2760
2761 /*
2762 * Since the runqueue lock will be released by the next
2763 * task (which is an invalid locking op but in the case
2764 * of the scheduler it's an obvious special-case), so we
2765 * do an early lockdep release here:
2766 */
2767 rq_unpin_lock(rq, rf);
2768 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2769
2770 /* Here we just switch the register state and the stack. */
2771 switch_to(prev, next, prev);
2772 barrier();
2773
2774 return finish_task_switch(prev);
2775 }
2776
2777 /*
2778 * nr_running and nr_context_switches:
2779 *
2780 * externally visible scheduler statistics: current number of runnable
2781 * threads, total number of context switches performed since bootup.
2782 */
2783 unsigned long nr_running(void)
2784 {
2785 unsigned long i, sum = 0;
2786
2787 for_each_online_cpu(i)
2788 sum += cpu_rq(i)->nr_running;
2789
2790 return sum;
2791 }
2792
2793 /*
2794 * Check if only the current task is running on the CPU.
2795 *
2796 * Caution: this function does not check that the caller has disabled
2797 * preemption, thus the result might have a time-of-check-to-time-of-use
2798 * race. The caller is responsible to use it correctly, for example:
2799 *
2800 * - from a non-preemptable section (of course)
2801 *
2802 * - from a thread that is bound to a single CPU
2803 *
2804 * - in a loop with very short iterations (e.g. a polling loop)
2805 */
2806 bool single_task_running(void)
2807 {
2808 return raw_rq()->nr_running == 1;
2809 }
2810 EXPORT_SYMBOL(single_task_running);
2811
2812 unsigned long long nr_context_switches(void)
2813 {
2814 int i;
2815 unsigned long long sum = 0;
2816
2817 for_each_possible_cpu(i)
2818 sum += cpu_rq(i)->nr_switches;
2819
2820 return sum;
2821 }
2822
2823 /*
2824 * IO-wait accounting, and how its mostly bollocks (on SMP).
2825 *
2826 * The idea behind IO-wait account is to account the idle time that we could
2827 * have spend running if it were not for IO. That is, if we were to improve the
2828 * storage performance, we'd have a proportional reduction in IO-wait time.
2829 *
2830 * This all works nicely on UP, where, when a task blocks on IO, we account
2831 * idle time as IO-wait, because if the storage were faster, it could've been
2832 * running and we'd not be idle.
2833 *
2834 * This has been extended to SMP, by doing the same for each CPU. This however
2835 * is broken.
2836 *
2837 * Imagine for instance the case where two tasks block on one CPU, only the one
2838 * CPU will have IO-wait accounted, while the other has regular idle. Even
2839 * though, if the storage were faster, both could've ran at the same time,
2840 * utilising both CPUs.
2841 *
2842 * This means, that when looking globally, the current IO-wait accounting on
2843 * SMP is a lower bound, by reason of under accounting.
2844 *
2845 * Worse, since the numbers are provided per CPU, they are sometimes
2846 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2847 * associated with any one particular CPU, it can wake to another CPU than it
2848 * blocked on. This means the per CPU IO-wait number is meaningless.
2849 *
2850 * Task CPU affinities can make all that even more 'interesting'.
2851 */
2852
2853 unsigned long nr_iowait(void)
2854 {
2855 unsigned long i, sum = 0;
2856
2857 for_each_possible_cpu(i)
2858 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2859
2860 return sum;
2861 }
2862
2863 /*
2864 * Consumers of these two interfaces, like for example the cpufreq menu
2865 * governor are using nonsensical data. Boosting frequency for a CPU that has
2866 * IO-wait which might not even end up running the task when it does become
2867 * runnable.
2868 */
2869
2870 unsigned long nr_iowait_cpu(int cpu)
2871 {
2872 struct rq *this = cpu_rq(cpu);
2873 return atomic_read(&this->nr_iowait);
2874 }
2875
2876 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2877 {
2878 struct rq *rq = this_rq();
2879 *nr_waiters = atomic_read(&rq->nr_iowait);
2880 *load = rq->load.weight;
2881 }
2882
2883 #ifdef CONFIG_SMP
2884
2885 /*
2886 * sched_exec - execve() is a valuable balancing opportunity, because at
2887 * this point the task has the smallest effective memory and cache footprint.
2888 */
2889 void sched_exec(void)
2890 {
2891 struct task_struct *p = current;
2892 unsigned long flags;
2893 int dest_cpu;
2894
2895 raw_spin_lock_irqsave(&p->pi_lock, flags);
2896 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2897 if (dest_cpu == smp_processor_id())
2898 goto unlock;
2899
2900 if (likely(cpu_active(dest_cpu))) {
2901 struct migration_arg arg = { p, dest_cpu };
2902
2903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2905 return;
2906 }
2907 unlock:
2908 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2909 }
2910
2911 #endif
2912
2913 DEFINE_PER_CPU(struct kernel_stat, kstat);
2914 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2915
2916 EXPORT_PER_CPU_SYMBOL(kstat);
2917 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2918
2919 /*
2920 * The function fair_sched_class.update_curr accesses the struct curr
2921 * and its field curr->exec_start; when called from task_sched_runtime(),
2922 * we observe a high rate of cache misses in practice.
2923 * Prefetching this data results in improved performance.
2924 */
2925 static inline void prefetch_curr_exec_start(struct task_struct *p)
2926 {
2927 #ifdef CONFIG_FAIR_GROUP_SCHED
2928 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2929 #else
2930 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2931 #endif
2932 prefetch(curr);
2933 prefetch(&curr->exec_start);
2934 }
2935
2936 /*
2937 * Return accounted runtime for the task.
2938 * In case the task is currently running, return the runtime plus current's
2939 * pending runtime that have not been accounted yet.
2940 */
2941 unsigned long long task_sched_runtime(struct task_struct *p)
2942 {
2943 struct rq_flags rf;
2944 struct rq *rq;
2945 u64 ns;
2946
2947 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2948 /*
2949 * 64-bit doesn't need locks to atomically read a 64bit value.
2950 * So we have a optimization chance when the task's delta_exec is 0.
2951 * Reading ->on_cpu is racy, but this is ok.
2952 *
2953 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2954 * If we race with it entering CPU, unaccounted time is 0. This is
2955 * indistinguishable from the read occurring a few cycles earlier.
2956 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2957 * been accounted, so we're correct here as well.
2958 */
2959 if (!p->on_cpu || !task_on_rq_queued(p))
2960 return p->se.sum_exec_runtime;
2961 #endif
2962
2963 rq = task_rq_lock(p, &rf);
2964 /*
2965 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2966 * project cycles that may never be accounted to this
2967 * thread, breaking clock_gettime().
2968 */
2969 if (task_current(rq, p) && task_on_rq_queued(p)) {
2970 prefetch_curr_exec_start(p);
2971 update_rq_clock(rq);
2972 p->sched_class->update_curr(rq);
2973 }
2974 ns = p->se.sum_exec_runtime;
2975 task_rq_unlock(rq, p, &rf);
2976
2977 return ns;
2978 }
2979
2980 /*
2981 * This function gets called by the timer code, with HZ frequency.
2982 * We call it with interrupts disabled.
2983 */
2984 void scheduler_tick(void)
2985 {
2986 int cpu = smp_processor_id();
2987 struct rq *rq = cpu_rq(cpu);
2988 struct task_struct *curr = rq->curr;
2989 struct rq_flags rf;
2990
2991 sched_clock_tick();
2992
2993 rq_lock(rq, &rf);
2994
2995 update_rq_clock(rq);
2996 curr->sched_class->task_tick(rq, curr, 0);
2997 cpu_load_update_active(rq);
2998 calc_global_load_tick(rq);
2999
3000 rq_unlock(rq, &rf);
3001
3002 perf_event_task_tick();
3003
3004 #ifdef CONFIG_SMP
3005 rq->idle_balance = idle_cpu(cpu);
3006 trigger_load_balance(rq);
3007 #endif
3008 rq_last_tick_reset(rq);
3009 }
3010
3011 #ifdef CONFIG_NO_HZ_FULL
3012 /**
3013 * scheduler_tick_max_deferment
3014 *
3015 * Keep at least one tick per second when a single
3016 * active task is running because the scheduler doesn't
3017 * yet completely support full dynticks environment.
3018 *
3019 * This makes sure that uptime, CFS vruntime, load
3020 * balancing, etc... continue to move forward, even
3021 * with a very low granularity.
3022 *
3023 * Return: Maximum deferment in nanoseconds.
3024 */
3025 u64 scheduler_tick_max_deferment(void)
3026 {
3027 struct rq *rq = this_rq();
3028 unsigned long next, now = READ_ONCE(jiffies);
3029
3030 next = rq->last_sched_tick + HZ;
3031
3032 if (time_before_eq(next, now))
3033 return 0;
3034
3035 return jiffies_to_nsecs(next - now);
3036 }
3037 #endif
3038
3039 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3040 defined(CONFIG_PREEMPT_TRACER))
3041 /*
3042 * If the value passed in is equal to the current preempt count
3043 * then we just disabled preemption. Start timing the latency.
3044 */
3045 static inline void preempt_latency_start(int val)
3046 {
3047 if (preempt_count() == val) {
3048 unsigned long ip = get_lock_parent_ip();
3049 #ifdef CONFIG_DEBUG_PREEMPT
3050 current->preempt_disable_ip = ip;
3051 #endif
3052 trace_preempt_off(CALLER_ADDR0, ip);
3053 }
3054 }
3055
3056 void preempt_count_add(int val)
3057 {
3058 #ifdef CONFIG_DEBUG_PREEMPT
3059 /*
3060 * Underflow?
3061 */
3062 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3063 return;
3064 #endif
3065 __preempt_count_add(val);
3066 #ifdef CONFIG_DEBUG_PREEMPT
3067 /*
3068 * Spinlock count overflowing soon?
3069 */
3070 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3071 PREEMPT_MASK - 10);
3072 #endif
3073 preempt_latency_start(val);
3074 }
3075 EXPORT_SYMBOL(preempt_count_add);
3076 NOKPROBE_SYMBOL(preempt_count_add);
3077
3078 /*
3079 * If the value passed in equals to the current preempt count
3080 * then we just enabled preemption. Stop timing the latency.
3081 */
3082 static inline void preempt_latency_stop(int val)
3083 {
3084 if (preempt_count() == val)
3085 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3086 }
3087
3088 void preempt_count_sub(int val)
3089 {
3090 #ifdef CONFIG_DEBUG_PREEMPT
3091 /*
3092 * Underflow?
3093 */
3094 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3095 return;
3096 /*
3097 * Is the spinlock portion underflowing?
3098 */
3099 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3100 !(preempt_count() & PREEMPT_MASK)))
3101 return;
3102 #endif
3103
3104 preempt_latency_stop(val);
3105 __preempt_count_sub(val);
3106 }
3107 EXPORT_SYMBOL(preempt_count_sub);
3108 NOKPROBE_SYMBOL(preempt_count_sub);
3109
3110 #else
3111 static inline void preempt_latency_start(int val) { }
3112 static inline void preempt_latency_stop(int val) { }
3113 #endif
3114
3115 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3116 {
3117 #ifdef CONFIG_DEBUG_PREEMPT
3118 return p->preempt_disable_ip;
3119 #else
3120 return 0;
3121 #endif
3122 }
3123
3124 /*
3125 * Print scheduling while atomic bug:
3126 */
3127 static noinline void __schedule_bug(struct task_struct *prev)
3128 {
3129 /* Save this before calling printk(), since that will clobber it */
3130 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3131
3132 if (oops_in_progress)
3133 return;
3134
3135 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3136 prev->comm, prev->pid, preempt_count());
3137
3138 debug_show_held_locks(prev);
3139 print_modules();
3140 if (irqs_disabled())
3141 print_irqtrace_events(prev);
3142 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3143 && in_atomic_preempt_off()) {
3144 pr_err("Preemption disabled at:");
3145 print_ip_sym(preempt_disable_ip);
3146 pr_cont("\n");
3147 }
3148 if (panic_on_warn)
3149 panic("scheduling while atomic\n");
3150
3151 dump_stack();
3152 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3153 }
3154
3155 /*
3156 * Various schedule()-time debugging checks and statistics:
3157 */
3158 static inline void schedule_debug(struct task_struct *prev)
3159 {
3160 #ifdef CONFIG_SCHED_STACK_END_CHECK
3161 if (task_stack_end_corrupted(prev))
3162 panic("corrupted stack end detected inside scheduler\n");
3163 #endif
3164
3165 if (unlikely(in_atomic_preempt_off())) {
3166 __schedule_bug(prev);
3167 preempt_count_set(PREEMPT_DISABLED);
3168 }
3169 rcu_sleep_check();
3170
3171 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3172
3173 schedstat_inc(this_rq()->sched_count);
3174 }
3175
3176 /*
3177 * Pick up the highest-prio task:
3178 */
3179 static inline struct task_struct *
3180 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3181 {
3182 const struct sched_class *class;
3183 struct task_struct *p;
3184
3185 /*
3186 * Optimization: we know that if all tasks are in the fair class we can
3187 * call that function directly, but only if the @prev task wasn't of a
3188 * higher scheduling class, because otherwise those loose the
3189 * opportunity to pull in more work from other CPUs.
3190 */
3191 if (likely((prev->sched_class == &idle_sched_class ||
3192 prev->sched_class == &fair_sched_class) &&
3193 rq->nr_running == rq->cfs.h_nr_running)) {
3194
3195 p = fair_sched_class.pick_next_task(rq, prev, rf);
3196 if (unlikely(p == RETRY_TASK))
3197 goto again;
3198
3199 /* Assumes fair_sched_class->next == idle_sched_class */
3200 if (unlikely(!p))
3201 p = idle_sched_class.pick_next_task(rq, prev, rf);
3202
3203 return p;
3204 }
3205
3206 again:
3207 for_each_class(class) {
3208 p = class->pick_next_task(rq, prev, rf);
3209 if (p) {
3210 if (unlikely(p == RETRY_TASK))
3211 goto again;
3212 return p;
3213 }
3214 }
3215
3216 /* The idle class should always have a runnable task: */
3217 BUG();
3218 }
3219
3220 /*
3221 * __schedule() is the main scheduler function.
3222 *
3223 * The main means of driving the scheduler and thus entering this function are:
3224 *
3225 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3226 *
3227 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3228 * paths. For example, see arch/x86/entry_64.S.
3229 *
3230 * To drive preemption between tasks, the scheduler sets the flag in timer
3231 * interrupt handler scheduler_tick().
3232 *
3233 * 3. Wakeups don't really cause entry into schedule(). They add a
3234 * task to the run-queue and that's it.
3235 *
3236 * Now, if the new task added to the run-queue preempts the current
3237 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3238 * called on the nearest possible occasion:
3239 *
3240 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3241 *
3242 * - in syscall or exception context, at the next outmost
3243 * preempt_enable(). (this might be as soon as the wake_up()'s
3244 * spin_unlock()!)
3245 *
3246 * - in IRQ context, return from interrupt-handler to
3247 * preemptible context
3248 *
3249 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3250 * then at the next:
3251 *
3252 * - cond_resched() call
3253 * - explicit schedule() call
3254 * - return from syscall or exception to user-space
3255 * - return from interrupt-handler to user-space
3256 *
3257 * WARNING: must be called with preemption disabled!
3258 */
3259 static void __sched notrace __schedule(bool preempt)
3260 {
3261 struct task_struct *prev, *next;
3262 unsigned long *switch_count;
3263 struct rq_flags rf;
3264 struct rq *rq;
3265 int cpu;
3266
3267 cpu = smp_processor_id();
3268 rq = cpu_rq(cpu);
3269 prev = rq->curr;
3270
3271 schedule_debug(prev);
3272
3273 if (sched_feat(HRTICK))
3274 hrtick_clear(rq);
3275
3276 local_irq_disable();
3277 rcu_note_context_switch(preempt);
3278
3279 /*
3280 * Make sure that signal_pending_state()->signal_pending() below
3281 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3282 * done by the caller to avoid the race with signal_wake_up().
3283 */
3284 smp_mb__before_spinlock();
3285 rq_lock(rq, &rf);
3286
3287 /* Promote REQ to ACT */
3288 rq->clock_update_flags <<= 1;
3289 update_rq_clock(rq);
3290
3291 switch_count = &prev->nivcsw;
3292 if (!preempt && prev->state) {
3293 if (unlikely(signal_pending_state(prev->state, prev))) {
3294 prev->state = TASK_RUNNING;
3295 } else {
3296 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3297 prev->on_rq = 0;
3298
3299 if (prev->in_iowait) {
3300 atomic_inc(&rq->nr_iowait);
3301 delayacct_blkio_start();
3302 }
3303
3304 /*
3305 * If a worker went to sleep, notify and ask workqueue
3306 * whether it wants to wake up a task to maintain
3307 * concurrency.
3308 */
3309 if (prev->flags & PF_WQ_WORKER) {
3310 struct task_struct *to_wakeup;
3311
3312 to_wakeup = wq_worker_sleeping(prev);
3313 if (to_wakeup)
3314 try_to_wake_up_local(to_wakeup, &rf);
3315 }
3316 }
3317 switch_count = &prev->nvcsw;
3318 }
3319
3320 next = pick_next_task(rq, prev, &rf);
3321 clear_tsk_need_resched(prev);
3322 clear_preempt_need_resched();
3323
3324 if (likely(prev != next)) {
3325 rq->nr_switches++;
3326 rq->curr = next;
3327 ++*switch_count;
3328
3329 trace_sched_switch(preempt, prev, next);
3330
3331 /* Also unlocks the rq: */
3332 rq = context_switch(rq, prev, next, &rf);
3333 } else {
3334 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3335 rq_unlock_irq(rq, &rf);
3336 }
3337
3338 balance_callback(rq);
3339 }
3340
3341 void __noreturn do_task_dead(void)
3342 {
3343 /*
3344 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3345 * when the following two conditions become true.
3346 * - There is race condition of mmap_sem (It is acquired by
3347 * exit_mm()), and
3348 * - SMI occurs before setting TASK_RUNINNG.
3349 * (or hypervisor of virtual machine switches to other guest)
3350 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3351 *
3352 * To avoid it, we have to wait for releasing tsk->pi_lock which
3353 * is held by try_to_wake_up()
3354 */
3355 smp_mb();
3356 raw_spin_unlock_wait(&current->pi_lock);
3357
3358 /* Causes final put_task_struct in finish_task_switch(): */
3359 __set_current_state(TASK_DEAD);
3360
3361 /* Tell freezer to ignore us: */
3362 current->flags |= PF_NOFREEZE;
3363
3364 __schedule(false);
3365 BUG();
3366
3367 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3368 for (;;)
3369 cpu_relax();
3370 }
3371
3372 static inline void sched_submit_work(struct task_struct *tsk)
3373 {
3374 if (!tsk->state || tsk_is_pi_blocked(tsk))
3375 return;
3376 /*
3377 * If we are going to sleep and we have plugged IO queued,
3378 * make sure to submit it to avoid deadlocks.
3379 */
3380 if (blk_needs_flush_plug(tsk))
3381 blk_schedule_flush_plug(tsk);
3382 }
3383
3384 asmlinkage __visible void __sched schedule(void)
3385 {
3386 struct task_struct *tsk = current;
3387
3388 sched_submit_work(tsk);
3389 do {
3390 preempt_disable();
3391 __schedule(false);
3392 sched_preempt_enable_no_resched();
3393 } while (need_resched());
3394 }
3395 EXPORT_SYMBOL(schedule);
3396
3397 /*
3398 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3399 * state (have scheduled out non-voluntarily) by making sure that all
3400 * tasks have either left the run queue or have gone into user space.
3401 * As idle tasks do not do either, they must not ever be preempted
3402 * (schedule out non-voluntarily).
3403 *
3404 * schedule_idle() is similar to schedule_preempt_disable() except that it
3405 * never enables preemption because it does not call sched_submit_work().
3406 */
3407 void __sched schedule_idle(void)
3408 {
3409 /*
3410 * As this skips calling sched_submit_work(), which the idle task does
3411 * regardless because that function is a nop when the task is in a
3412 * TASK_RUNNING state, make sure this isn't used someplace that the
3413 * current task can be in any other state. Note, idle is always in the
3414 * TASK_RUNNING state.
3415 */
3416 WARN_ON_ONCE(current->state);
3417 do {
3418 __schedule(false);
3419 } while (need_resched());
3420 }
3421
3422 #ifdef CONFIG_CONTEXT_TRACKING
3423 asmlinkage __visible void __sched schedule_user(void)
3424 {
3425 /*
3426 * If we come here after a random call to set_need_resched(),
3427 * or we have been woken up remotely but the IPI has not yet arrived,
3428 * we haven't yet exited the RCU idle mode. Do it here manually until
3429 * we find a better solution.
3430 *
3431 * NB: There are buggy callers of this function. Ideally we
3432 * should warn if prev_state != CONTEXT_USER, but that will trigger
3433 * too frequently to make sense yet.
3434 */
3435 enum ctx_state prev_state = exception_enter();
3436 schedule();
3437 exception_exit(prev_state);
3438 }
3439 #endif
3440
3441 /**
3442 * schedule_preempt_disabled - called with preemption disabled
3443 *
3444 * Returns with preemption disabled. Note: preempt_count must be 1
3445 */
3446 void __sched schedule_preempt_disabled(void)
3447 {
3448 sched_preempt_enable_no_resched();
3449 schedule();
3450 preempt_disable();
3451 }
3452
3453 static void __sched notrace preempt_schedule_common(void)
3454 {
3455 do {
3456 /*
3457 * Because the function tracer can trace preempt_count_sub()
3458 * and it also uses preempt_enable/disable_notrace(), if
3459 * NEED_RESCHED is set, the preempt_enable_notrace() called
3460 * by the function tracer will call this function again and
3461 * cause infinite recursion.
3462 *
3463 * Preemption must be disabled here before the function
3464 * tracer can trace. Break up preempt_disable() into two
3465 * calls. One to disable preemption without fear of being
3466 * traced. The other to still record the preemption latency,
3467 * which can also be traced by the function tracer.
3468 */
3469 preempt_disable_notrace();
3470 preempt_latency_start(1);
3471 __schedule(true);
3472 preempt_latency_stop(1);
3473 preempt_enable_no_resched_notrace();
3474
3475 /*
3476 * Check again in case we missed a preemption opportunity
3477 * between schedule and now.
3478 */
3479 } while (need_resched());
3480 }
3481
3482 #ifdef CONFIG_PREEMPT
3483 /*
3484 * this is the entry point to schedule() from in-kernel preemption
3485 * off of preempt_enable. Kernel preemptions off return from interrupt
3486 * occur there and call schedule directly.
3487 */
3488 asmlinkage __visible void __sched notrace preempt_schedule(void)
3489 {
3490 /*
3491 * If there is a non-zero preempt_count or interrupts are disabled,
3492 * we do not want to preempt the current task. Just return..
3493 */
3494 if (likely(!preemptible()))
3495 return;
3496
3497 preempt_schedule_common();
3498 }
3499 NOKPROBE_SYMBOL(preempt_schedule);
3500 EXPORT_SYMBOL(preempt_schedule);
3501
3502 /**
3503 * preempt_schedule_notrace - preempt_schedule called by tracing
3504 *
3505 * The tracing infrastructure uses preempt_enable_notrace to prevent
3506 * recursion and tracing preempt enabling caused by the tracing
3507 * infrastructure itself. But as tracing can happen in areas coming
3508 * from userspace or just about to enter userspace, a preempt enable
3509 * can occur before user_exit() is called. This will cause the scheduler
3510 * to be called when the system is still in usermode.
3511 *
3512 * To prevent this, the preempt_enable_notrace will use this function
3513 * instead of preempt_schedule() to exit user context if needed before
3514 * calling the scheduler.
3515 */
3516 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3517 {
3518 enum ctx_state prev_ctx;
3519
3520 if (likely(!preemptible()))
3521 return;
3522
3523 do {
3524 /*
3525 * Because the function tracer can trace preempt_count_sub()
3526 * and it also uses preempt_enable/disable_notrace(), if
3527 * NEED_RESCHED is set, the preempt_enable_notrace() called
3528 * by the function tracer will call this function again and
3529 * cause infinite recursion.
3530 *
3531 * Preemption must be disabled here before the function
3532 * tracer can trace. Break up preempt_disable() into two
3533 * calls. One to disable preemption without fear of being
3534 * traced. The other to still record the preemption latency,
3535 * which can also be traced by the function tracer.
3536 */
3537 preempt_disable_notrace();
3538 preempt_latency_start(1);
3539 /*
3540 * Needs preempt disabled in case user_exit() is traced
3541 * and the tracer calls preempt_enable_notrace() causing
3542 * an infinite recursion.
3543 */
3544 prev_ctx = exception_enter();
3545 __schedule(true);
3546 exception_exit(prev_ctx);
3547
3548 preempt_latency_stop(1);
3549 preempt_enable_no_resched_notrace();
3550 } while (need_resched());
3551 }
3552 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3553
3554 #endif /* CONFIG_PREEMPT */
3555
3556 /*
3557 * this is the entry point to schedule() from kernel preemption
3558 * off of irq context.
3559 * Note, that this is called and return with irqs disabled. This will
3560 * protect us against recursive calling from irq.
3561 */
3562 asmlinkage __visible void __sched preempt_schedule_irq(void)
3563 {
3564 enum ctx_state prev_state;
3565
3566 /* Catch callers which need to be fixed */
3567 BUG_ON(preempt_count() || !irqs_disabled());
3568
3569 prev_state = exception_enter();
3570
3571 do {
3572 preempt_disable();
3573 local_irq_enable();
3574 __schedule(true);
3575 local_irq_disable();
3576 sched_preempt_enable_no_resched();
3577 } while (need_resched());
3578
3579 exception_exit(prev_state);
3580 }
3581
3582 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3583 void *key)
3584 {
3585 return try_to_wake_up(curr->private, mode, wake_flags);
3586 }
3587 EXPORT_SYMBOL(default_wake_function);
3588
3589 #ifdef CONFIG_RT_MUTEXES
3590
3591 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3592 {
3593 if (pi_task)
3594 prio = min(prio, pi_task->prio);
3595
3596 return prio;
3597 }
3598
3599 static inline int rt_effective_prio(struct task_struct *p, int prio)
3600 {
3601 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3602
3603 return __rt_effective_prio(pi_task, prio);
3604 }
3605
3606 /*
3607 * rt_mutex_setprio - set the current priority of a task
3608 * @p: task to boost
3609 * @pi_task: donor task
3610 *
3611 * This function changes the 'effective' priority of a task. It does
3612 * not touch ->normal_prio like __setscheduler().
3613 *
3614 * Used by the rt_mutex code to implement priority inheritance
3615 * logic. Call site only calls if the priority of the task changed.
3616 */
3617 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3618 {
3619 int prio, oldprio, queued, running, queue_flag =
3620 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3621 const struct sched_class *prev_class;
3622 struct rq_flags rf;
3623 struct rq *rq;
3624
3625 /* XXX used to be waiter->prio, not waiter->task->prio */
3626 prio = __rt_effective_prio(pi_task, p->normal_prio);
3627
3628 /*
3629 * If nothing changed; bail early.
3630 */
3631 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3632 return;
3633
3634 rq = __task_rq_lock(p, &rf);
3635 update_rq_clock(rq);
3636 /*
3637 * Set under pi_lock && rq->lock, such that the value can be used under
3638 * either lock.
3639 *
3640 * Note that there is loads of tricky to make this pointer cache work
3641 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3642 * ensure a task is de-boosted (pi_task is set to NULL) before the
3643 * task is allowed to run again (and can exit). This ensures the pointer
3644 * points to a blocked task -- which guaratees the task is present.
3645 */
3646 p->pi_top_task = pi_task;
3647
3648 /*
3649 * For FIFO/RR we only need to set prio, if that matches we're done.
3650 */
3651 if (prio == p->prio && !dl_prio(prio))
3652 goto out_unlock;
3653
3654 /*
3655 * Idle task boosting is a nono in general. There is one
3656 * exception, when PREEMPT_RT and NOHZ is active:
3657 *
3658 * The idle task calls get_next_timer_interrupt() and holds
3659 * the timer wheel base->lock on the CPU and another CPU wants
3660 * to access the timer (probably to cancel it). We can safely
3661 * ignore the boosting request, as the idle CPU runs this code
3662 * with interrupts disabled and will complete the lock
3663 * protected section without being interrupted. So there is no
3664 * real need to boost.
3665 */
3666 if (unlikely(p == rq->idle)) {
3667 WARN_ON(p != rq->curr);
3668 WARN_ON(p->pi_blocked_on);
3669 goto out_unlock;
3670 }
3671
3672 trace_sched_pi_setprio(p, pi_task);
3673 oldprio = p->prio;
3674
3675 if (oldprio == prio)
3676 queue_flag &= ~DEQUEUE_MOVE;
3677
3678 prev_class = p->sched_class;
3679 queued = task_on_rq_queued(p);
3680 running = task_current(rq, p);
3681 if (queued)
3682 dequeue_task(rq, p, queue_flag);
3683 if (running)
3684 put_prev_task(rq, p);
3685
3686 /*
3687 * Boosting condition are:
3688 * 1. -rt task is running and holds mutex A
3689 * --> -dl task blocks on mutex A
3690 *
3691 * 2. -dl task is running and holds mutex A
3692 * --> -dl task blocks on mutex A and could preempt the
3693 * running task
3694 */
3695 if (dl_prio(prio)) {
3696 if (!dl_prio(p->normal_prio) ||
3697 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3698 p->dl.dl_boosted = 1;
3699 queue_flag |= ENQUEUE_REPLENISH;
3700 } else
3701 p->dl.dl_boosted = 0;
3702 p->sched_class = &dl_sched_class;
3703 } else if (rt_prio(prio)) {
3704 if (dl_prio(oldprio))
3705 p->dl.dl_boosted = 0;
3706 if (oldprio < prio)
3707 queue_flag |= ENQUEUE_HEAD;
3708 p->sched_class = &rt_sched_class;
3709 } else {
3710 if (dl_prio(oldprio))
3711 p->dl.dl_boosted = 0;
3712 if (rt_prio(oldprio))
3713 p->rt.timeout = 0;
3714 p->sched_class = &fair_sched_class;
3715 }
3716
3717 p->prio = prio;
3718
3719 if (queued)
3720 enqueue_task(rq, p, queue_flag);
3721 if (running)
3722 set_curr_task(rq, p);
3723
3724 check_class_changed(rq, p, prev_class, oldprio);
3725 out_unlock:
3726 /* Avoid rq from going away on us: */
3727 preempt_disable();
3728 __task_rq_unlock(rq, &rf);
3729
3730 balance_callback(rq);
3731 preempt_enable();
3732 }
3733 #else
3734 static inline int rt_effective_prio(struct task_struct *p, int prio)
3735 {
3736 return prio;
3737 }
3738 #endif
3739
3740 void set_user_nice(struct task_struct *p, long nice)
3741 {
3742 bool queued, running;
3743 int old_prio, delta;
3744 struct rq_flags rf;
3745 struct rq *rq;
3746
3747 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3748 return;
3749 /*
3750 * We have to be careful, if called from sys_setpriority(),
3751 * the task might be in the middle of scheduling on another CPU.
3752 */
3753 rq = task_rq_lock(p, &rf);
3754 update_rq_clock(rq);
3755
3756 /*
3757 * The RT priorities are set via sched_setscheduler(), but we still
3758 * allow the 'normal' nice value to be set - but as expected
3759 * it wont have any effect on scheduling until the task is
3760 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3761 */
3762 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3763 p->static_prio = NICE_TO_PRIO(nice);
3764 goto out_unlock;
3765 }
3766 queued = task_on_rq_queued(p);
3767 running = task_current(rq, p);
3768 if (queued)
3769 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3770 if (running)
3771 put_prev_task(rq, p);
3772
3773 p->static_prio = NICE_TO_PRIO(nice);
3774 set_load_weight(p);
3775 old_prio = p->prio;
3776 p->prio = effective_prio(p);
3777 delta = p->prio - old_prio;
3778
3779 if (queued) {
3780 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3781 /*
3782 * If the task increased its priority or is running and
3783 * lowered its priority, then reschedule its CPU:
3784 */
3785 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3786 resched_curr(rq);
3787 }
3788 if (running)
3789 set_curr_task(rq, p);
3790 out_unlock:
3791 task_rq_unlock(rq, p, &rf);
3792 }
3793 EXPORT_SYMBOL(set_user_nice);
3794
3795 /*
3796 * can_nice - check if a task can reduce its nice value
3797 * @p: task
3798 * @nice: nice value
3799 */
3800 int can_nice(const struct task_struct *p, const int nice)
3801 {
3802 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3803 int nice_rlim = nice_to_rlimit(nice);
3804
3805 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3806 capable(CAP_SYS_NICE));
3807 }
3808
3809 #ifdef __ARCH_WANT_SYS_NICE
3810
3811 /*
3812 * sys_nice - change the priority of the current process.
3813 * @increment: priority increment
3814 *
3815 * sys_setpriority is a more generic, but much slower function that
3816 * does similar things.
3817 */
3818 SYSCALL_DEFINE1(nice, int, increment)
3819 {
3820 long nice, retval;
3821
3822 /*
3823 * Setpriority might change our priority at the same moment.
3824 * We don't have to worry. Conceptually one call occurs first
3825 * and we have a single winner.
3826 */
3827 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3828 nice = task_nice(current) + increment;
3829
3830 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3831 if (increment < 0 && !can_nice(current, nice))
3832 return -EPERM;
3833
3834 retval = security_task_setnice(current, nice);
3835 if (retval)
3836 return retval;
3837
3838 set_user_nice(current, nice);
3839 return 0;
3840 }
3841
3842 #endif
3843
3844 /**
3845 * task_prio - return the priority value of a given task.
3846 * @p: the task in question.
3847 *
3848 * Return: The priority value as seen by users in /proc.
3849 * RT tasks are offset by -200. Normal tasks are centered
3850 * around 0, value goes from -16 to +15.
3851 */
3852 int task_prio(const struct task_struct *p)
3853 {
3854 return p->prio - MAX_RT_PRIO;
3855 }
3856
3857 /**
3858 * idle_cpu - is a given CPU idle currently?
3859 * @cpu: the processor in question.
3860 *
3861 * Return: 1 if the CPU is currently idle. 0 otherwise.
3862 */
3863 int idle_cpu(int cpu)
3864 {
3865 struct rq *rq = cpu_rq(cpu);
3866
3867 if (rq->curr != rq->idle)
3868 return 0;
3869
3870 if (rq->nr_running)
3871 return 0;
3872
3873 #ifdef CONFIG_SMP
3874 if (!llist_empty(&rq->wake_list))
3875 return 0;
3876 #endif
3877
3878 return 1;
3879 }
3880
3881 /**
3882 * idle_task - return the idle task for a given CPU.
3883 * @cpu: the processor in question.
3884 *
3885 * Return: The idle task for the CPU @cpu.
3886 */
3887 struct task_struct *idle_task(int cpu)
3888 {
3889 return cpu_rq(cpu)->idle;
3890 }
3891
3892 /**
3893 * find_process_by_pid - find a process with a matching PID value.
3894 * @pid: the pid in question.
3895 *
3896 * The task of @pid, if found. %NULL otherwise.
3897 */
3898 static struct task_struct *find_process_by_pid(pid_t pid)
3899 {
3900 return pid ? find_task_by_vpid(pid) : current;
3901 }
3902
3903 /*
3904 * sched_setparam() passes in -1 for its policy, to let the functions
3905 * it calls know not to change it.
3906 */
3907 #define SETPARAM_POLICY -1
3908
3909 static void __setscheduler_params(struct task_struct *p,
3910 const struct sched_attr *attr)
3911 {
3912 int policy = attr->sched_policy;
3913
3914 if (policy == SETPARAM_POLICY)
3915 policy = p->policy;
3916
3917 p->policy = policy;
3918
3919 if (dl_policy(policy))
3920 __setparam_dl(p, attr);
3921 else if (fair_policy(policy))
3922 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3923
3924 /*
3925 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3926 * !rt_policy. Always setting this ensures that things like
3927 * getparam()/getattr() don't report silly values for !rt tasks.
3928 */
3929 p->rt_priority = attr->sched_priority;
3930 p->normal_prio = normal_prio(p);
3931 set_load_weight(p);
3932 }
3933
3934 /* Actually do priority change: must hold pi & rq lock. */
3935 static void __setscheduler(struct rq *rq, struct task_struct *p,
3936 const struct sched_attr *attr, bool keep_boost)
3937 {
3938 __setscheduler_params(p, attr);
3939
3940 /*
3941 * Keep a potential priority boosting if called from
3942 * sched_setscheduler().
3943 */
3944 p->prio = normal_prio(p);
3945 if (keep_boost)
3946 p->prio = rt_effective_prio(p, p->prio);
3947
3948 if (dl_prio(p->prio))
3949 p->sched_class = &dl_sched_class;
3950 else if (rt_prio(p->prio))
3951 p->sched_class = &rt_sched_class;
3952 else
3953 p->sched_class = &fair_sched_class;
3954 }
3955
3956 /*
3957 * Check the target process has a UID that matches the current process's:
3958 */
3959 static bool check_same_owner(struct task_struct *p)
3960 {
3961 const struct cred *cred = current_cred(), *pcred;
3962 bool match;
3963
3964 rcu_read_lock();
3965 pcred = __task_cred(p);
3966 match = (uid_eq(cred->euid, pcred->euid) ||
3967 uid_eq(cred->euid, pcred->uid));
3968 rcu_read_unlock();
3969 return match;
3970 }
3971
3972 static int __sched_setscheduler(struct task_struct *p,
3973 const struct sched_attr *attr,
3974 bool user, bool pi)
3975 {
3976 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3977 MAX_RT_PRIO - 1 - attr->sched_priority;
3978 int retval, oldprio, oldpolicy = -1, queued, running;
3979 int new_effective_prio, policy = attr->sched_policy;
3980 const struct sched_class *prev_class;
3981 struct rq_flags rf;
3982 int reset_on_fork;
3983 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3984 struct rq *rq;
3985
3986 /* The pi code expects interrupts enabled */
3987 BUG_ON(pi && in_interrupt());
3988 recheck:
3989 /* Double check policy once rq lock held: */
3990 if (policy < 0) {
3991 reset_on_fork = p->sched_reset_on_fork;
3992 policy = oldpolicy = p->policy;
3993 } else {
3994 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3995
3996 if (!valid_policy(policy))
3997 return -EINVAL;
3998 }
3999
4000 if (attr->sched_flags &
4001 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4002 return -EINVAL;
4003
4004 /*
4005 * Valid priorities for SCHED_FIFO and SCHED_RR are
4006 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4007 * SCHED_BATCH and SCHED_IDLE is 0.
4008 */
4009 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4010 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4011 return -EINVAL;
4012 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4013 (rt_policy(policy) != (attr->sched_priority != 0)))
4014 return -EINVAL;
4015
4016 /*
4017 * Allow unprivileged RT tasks to decrease priority:
4018 */
4019 if (user && !capable(CAP_SYS_NICE)) {
4020 if (fair_policy(policy)) {
4021 if (attr->sched_nice < task_nice(p) &&
4022 !can_nice(p, attr->sched_nice))
4023 return -EPERM;
4024 }
4025
4026 if (rt_policy(policy)) {
4027 unsigned long rlim_rtprio =
4028 task_rlimit(p, RLIMIT_RTPRIO);
4029
4030 /* Can't set/change the rt policy: */
4031 if (policy != p->policy && !rlim_rtprio)
4032 return -EPERM;
4033
4034 /* Can't increase priority: */
4035 if (attr->sched_priority > p->rt_priority &&
4036 attr->sched_priority > rlim_rtprio)
4037 return -EPERM;
4038 }
4039
4040 /*
4041 * Can't set/change SCHED_DEADLINE policy at all for now
4042 * (safest behavior); in the future we would like to allow
4043 * unprivileged DL tasks to increase their relative deadline
4044 * or reduce their runtime (both ways reducing utilization)
4045 */
4046 if (dl_policy(policy))
4047 return -EPERM;
4048
4049 /*
4050 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4051 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4052 */
4053 if (idle_policy(p->policy) && !idle_policy(policy)) {
4054 if (!can_nice(p, task_nice(p)))
4055 return -EPERM;
4056 }
4057
4058 /* Can't change other user's priorities: */
4059 if (!check_same_owner(p))
4060 return -EPERM;
4061
4062 /* Normal users shall not reset the sched_reset_on_fork flag: */
4063 if (p->sched_reset_on_fork && !reset_on_fork)
4064 return -EPERM;
4065 }
4066
4067 if (user) {
4068 retval = security_task_setscheduler(p);
4069 if (retval)
4070 return retval;
4071 }
4072
4073 /*
4074 * Make sure no PI-waiters arrive (or leave) while we are
4075 * changing the priority of the task:
4076 *
4077 * To be able to change p->policy safely, the appropriate
4078 * runqueue lock must be held.
4079 */
4080 rq = task_rq_lock(p, &rf);
4081 update_rq_clock(rq);
4082
4083 /*
4084 * Changing the policy of the stop threads its a very bad idea:
4085 */
4086 if (p == rq->stop) {
4087 task_rq_unlock(rq, p, &rf);
4088 return -EINVAL;
4089 }
4090
4091 /*
4092 * If not changing anything there's no need to proceed further,
4093 * but store a possible modification of reset_on_fork.
4094 */
4095 if (unlikely(policy == p->policy)) {
4096 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4097 goto change;
4098 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4099 goto change;
4100 if (dl_policy(policy) && dl_param_changed(p, attr))
4101 goto change;
4102
4103 p->sched_reset_on_fork = reset_on_fork;
4104 task_rq_unlock(rq, p, &rf);
4105 return 0;
4106 }
4107 change:
4108
4109 if (user) {
4110 #ifdef CONFIG_RT_GROUP_SCHED
4111 /*
4112 * Do not allow realtime tasks into groups that have no runtime
4113 * assigned.
4114 */
4115 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4116 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4117 !task_group_is_autogroup(task_group(p))) {
4118 task_rq_unlock(rq, p, &rf);
4119 return -EPERM;
4120 }
4121 #endif
4122 #ifdef CONFIG_SMP
4123 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4124 cpumask_t *span = rq->rd->span;
4125
4126 /*
4127 * Don't allow tasks with an affinity mask smaller than
4128 * the entire root_domain to become SCHED_DEADLINE. We
4129 * will also fail if there's no bandwidth available.
4130 */
4131 if (!cpumask_subset(span, &p->cpus_allowed) ||
4132 rq->rd->dl_bw.bw == 0) {
4133 task_rq_unlock(rq, p, &rf);
4134 return -EPERM;
4135 }
4136 }
4137 #endif
4138 }
4139
4140 /* Re-check policy now with rq lock held: */
4141 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4142 policy = oldpolicy = -1;
4143 task_rq_unlock(rq, p, &rf);
4144 goto recheck;
4145 }
4146
4147 /*
4148 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4149 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4150 * is available.
4151 */
4152 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4153 task_rq_unlock(rq, p, &rf);
4154 return -EBUSY;
4155 }
4156
4157 p->sched_reset_on_fork = reset_on_fork;
4158 oldprio = p->prio;
4159
4160 if (pi) {
4161 /*
4162 * Take priority boosted tasks into account. If the new
4163 * effective priority is unchanged, we just store the new
4164 * normal parameters and do not touch the scheduler class and
4165 * the runqueue. This will be done when the task deboost
4166 * itself.
4167 */
4168 new_effective_prio = rt_effective_prio(p, newprio);
4169 if (new_effective_prio == oldprio)
4170 queue_flags &= ~DEQUEUE_MOVE;
4171 }
4172
4173 queued = task_on_rq_queued(p);
4174 running = task_current(rq, p);
4175 if (queued)
4176 dequeue_task(rq, p, queue_flags);
4177 if (running)
4178 put_prev_task(rq, p);
4179
4180 prev_class = p->sched_class;
4181 __setscheduler(rq, p, attr, pi);
4182
4183 if (queued) {
4184 /*
4185 * We enqueue to tail when the priority of a task is
4186 * increased (user space view).
4187 */
4188 if (oldprio < p->prio)
4189 queue_flags |= ENQUEUE_HEAD;
4190
4191 enqueue_task(rq, p, queue_flags);
4192 }
4193 if (running)
4194 set_curr_task(rq, p);
4195
4196 check_class_changed(rq, p, prev_class, oldprio);
4197
4198 /* Avoid rq from going away on us: */
4199 preempt_disable();
4200 task_rq_unlock(rq, p, &rf);
4201
4202 if (pi)
4203 rt_mutex_adjust_pi(p);
4204
4205 /* Run balance callbacks after we've adjusted the PI chain: */
4206 balance_callback(rq);
4207 preempt_enable();
4208
4209 return 0;
4210 }
4211
4212 static int _sched_setscheduler(struct task_struct *p, int policy,
4213 const struct sched_param *param, bool check)
4214 {
4215 struct sched_attr attr = {
4216 .sched_policy = policy,
4217 .sched_priority = param->sched_priority,
4218 .sched_nice = PRIO_TO_NICE(p->static_prio),
4219 };
4220
4221 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4222 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4223 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4224 policy &= ~SCHED_RESET_ON_FORK;
4225 attr.sched_policy = policy;
4226 }
4227
4228 return __sched_setscheduler(p, &attr, check, true);
4229 }
4230 /**
4231 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4232 * @p: the task in question.
4233 * @policy: new policy.
4234 * @param: structure containing the new RT priority.
4235 *
4236 * Return: 0 on success. An error code otherwise.
4237 *
4238 * NOTE that the task may be already dead.
4239 */
4240 int sched_setscheduler(struct task_struct *p, int policy,
4241 const struct sched_param *param)
4242 {
4243 return _sched_setscheduler(p, policy, param, true);
4244 }
4245 EXPORT_SYMBOL_GPL(sched_setscheduler);
4246
4247 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4248 {
4249 return __sched_setscheduler(p, attr, true, true);
4250 }
4251 EXPORT_SYMBOL_GPL(sched_setattr);
4252
4253 /**
4254 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4255 * @p: the task in question.
4256 * @policy: new policy.
4257 * @param: structure containing the new RT priority.
4258 *
4259 * Just like sched_setscheduler, only don't bother checking if the
4260 * current context has permission. For example, this is needed in
4261 * stop_machine(): we create temporary high priority worker threads,
4262 * but our caller might not have that capability.
4263 *
4264 * Return: 0 on success. An error code otherwise.
4265 */
4266 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4267 const struct sched_param *param)
4268 {
4269 return _sched_setscheduler(p, policy, param, false);
4270 }
4271 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4272
4273 static int
4274 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4275 {
4276 struct sched_param lparam;
4277 struct task_struct *p;
4278 int retval;
4279
4280 if (!param || pid < 0)
4281 return -EINVAL;
4282 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4283 return -EFAULT;
4284
4285 rcu_read_lock();
4286 retval = -ESRCH;
4287 p = find_process_by_pid(pid);
4288 if (p != NULL)
4289 retval = sched_setscheduler(p, policy, &lparam);
4290 rcu_read_unlock();
4291
4292 return retval;
4293 }
4294
4295 /*
4296 * Mimics kernel/events/core.c perf_copy_attr().
4297 */
4298 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4299 {
4300 u32 size;
4301 int ret;
4302
4303 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4304 return -EFAULT;
4305
4306 /* Zero the full structure, so that a short copy will be nice: */
4307 memset(attr, 0, sizeof(*attr));
4308
4309 ret = get_user(size, &uattr->size);
4310 if (ret)
4311 return ret;
4312
4313 /* Bail out on silly large: */
4314 if (size > PAGE_SIZE)
4315 goto err_size;
4316
4317 /* ABI compatibility quirk: */
4318 if (!size)
4319 size = SCHED_ATTR_SIZE_VER0;
4320
4321 if (size < SCHED_ATTR_SIZE_VER0)
4322 goto err_size;
4323
4324 /*
4325 * If we're handed a bigger struct than we know of,
4326 * ensure all the unknown bits are 0 - i.e. new
4327 * user-space does not rely on any kernel feature
4328 * extensions we dont know about yet.
4329 */
4330 if (size > sizeof(*attr)) {
4331 unsigned char __user *addr;
4332 unsigned char __user *end;
4333 unsigned char val;
4334
4335 addr = (void __user *)uattr + sizeof(*attr);
4336 end = (void __user *)uattr + size;
4337
4338 for (; addr < end; addr++) {
4339 ret = get_user(val, addr);
4340 if (ret)
4341 return ret;
4342 if (val)
4343 goto err_size;
4344 }
4345 size = sizeof(*attr);
4346 }
4347
4348 ret = copy_from_user(attr, uattr, size);
4349 if (ret)
4350 return -EFAULT;
4351
4352 /*
4353 * XXX: Do we want to be lenient like existing syscalls; or do we want
4354 * to be strict and return an error on out-of-bounds values?
4355 */
4356 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4357
4358 return 0;
4359
4360 err_size:
4361 put_user(sizeof(*attr), &uattr->size);
4362 return -E2BIG;
4363 }
4364
4365 /**
4366 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4367 * @pid: the pid in question.
4368 * @policy: new policy.
4369 * @param: structure containing the new RT priority.
4370 *
4371 * Return: 0 on success. An error code otherwise.
4372 */
4373 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4374 {
4375 if (policy < 0)
4376 return -EINVAL;
4377
4378 return do_sched_setscheduler(pid, policy, param);
4379 }
4380
4381 /**
4382 * sys_sched_setparam - set/change the RT priority of a thread
4383 * @pid: the pid in question.
4384 * @param: structure containing the new RT priority.
4385 *
4386 * Return: 0 on success. An error code otherwise.
4387 */
4388 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4389 {
4390 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4391 }
4392
4393 /**
4394 * sys_sched_setattr - same as above, but with extended sched_attr
4395 * @pid: the pid in question.
4396 * @uattr: structure containing the extended parameters.
4397 * @flags: for future extension.
4398 */
4399 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4400 unsigned int, flags)
4401 {
4402 struct sched_attr attr;
4403 struct task_struct *p;
4404 int retval;
4405
4406 if (!uattr || pid < 0 || flags)
4407 return -EINVAL;
4408
4409 retval = sched_copy_attr(uattr, &attr);
4410 if (retval)
4411 return retval;
4412
4413 if ((int)attr.sched_policy < 0)
4414 return -EINVAL;
4415
4416 rcu_read_lock();
4417 retval = -ESRCH;
4418 p = find_process_by_pid(pid);
4419 if (p != NULL)
4420 retval = sched_setattr(p, &attr);
4421 rcu_read_unlock();
4422
4423 return retval;
4424 }
4425
4426 /**
4427 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4428 * @pid: the pid in question.
4429 *
4430 * Return: On success, the policy of the thread. Otherwise, a negative error
4431 * code.
4432 */
4433 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4434 {
4435 struct task_struct *p;
4436 int retval;
4437
4438 if (pid < 0)
4439 return -EINVAL;
4440
4441 retval = -ESRCH;
4442 rcu_read_lock();
4443 p = find_process_by_pid(pid);
4444 if (p) {
4445 retval = security_task_getscheduler(p);
4446 if (!retval)
4447 retval = p->policy
4448 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4449 }
4450 rcu_read_unlock();
4451 return retval;
4452 }
4453
4454 /**
4455 * sys_sched_getparam - get the RT priority of a thread
4456 * @pid: the pid in question.
4457 * @param: structure containing the RT priority.
4458 *
4459 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4460 * code.
4461 */
4462 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4463 {
4464 struct sched_param lp = { .sched_priority = 0 };
4465 struct task_struct *p;
4466 int retval;
4467
4468 if (!param || pid < 0)
4469 return -EINVAL;
4470
4471 rcu_read_lock();
4472 p = find_process_by_pid(pid);
4473 retval = -ESRCH;
4474 if (!p)
4475 goto out_unlock;
4476
4477 retval = security_task_getscheduler(p);
4478 if (retval)
4479 goto out_unlock;
4480
4481 if (task_has_rt_policy(p))
4482 lp.sched_priority = p->rt_priority;
4483 rcu_read_unlock();
4484
4485 /*
4486 * This one might sleep, we cannot do it with a spinlock held ...
4487 */
4488 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4489
4490 return retval;
4491
4492 out_unlock:
4493 rcu_read_unlock();
4494 return retval;
4495 }
4496
4497 static int sched_read_attr(struct sched_attr __user *uattr,
4498 struct sched_attr *attr,
4499 unsigned int usize)
4500 {
4501 int ret;
4502
4503 if (!access_ok(VERIFY_WRITE, uattr, usize))
4504 return -EFAULT;
4505
4506 /*
4507 * If we're handed a smaller struct than we know of,
4508 * ensure all the unknown bits are 0 - i.e. old
4509 * user-space does not get uncomplete information.
4510 */
4511 if (usize < sizeof(*attr)) {
4512 unsigned char *addr;
4513 unsigned char *end;
4514
4515 addr = (void *)attr + usize;
4516 end = (void *)attr + sizeof(*attr);
4517
4518 for (; addr < end; addr++) {
4519 if (*addr)
4520 return -EFBIG;
4521 }
4522
4523 attr->size = usize;
4524 }
4525
4526 ret = copy_to_user(uattr, attr, attr->size);
4527 if (ret)
4528 return -EFAULT;
4529
4530 return 0;
4531 }
4532
4533 /**
4534 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4535 * @pid: the pid in question.
4536 * @uattr: structure containing the extended parameters.
4537 * @size: sizeof(attr) for fwd/bwd comp.
4538 * @flags: for future extension.
4539 */
4540 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4541 unsigned int, size, unsigned int, flags)
4542 {
4543 struct sched_attr attr = {
4544 .size = sizeof(struct sched_attr),
4545 };
4546 struct task_struct *p;
4547 int retval;
4548
4549 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4550 size < SCHED_ATTR_SIZE_VER0 || flags)
4551 return -EINVAL;
4552
4553 rcu_read_lock();
4554 p = find_process_by_pid(pid);
4555 retval = -ESRCH;
4556 if (!p)
4557 goto out_unlock;
4558
4559 retval = security_task_getscheduler(p);
4560 if (retval)
4561 goto out_unlock;
4562
4563 attr.sched_policy = p->policy;
4564 if (p->sched_reset_on_fork)
4565 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4566 if (task_has_dl_policy(p))
4567 __getparam_dl(p, &attr);
4568 else if (task_has_rt_policy(p))
4569 attr.sched_priority = p->rt_priority;
4570 else
4571 attr.sched_nice = task_nice(p);
4572
4573 rcu_read_unlock();
4574
4575 retval = sched_read_attr(uattr, &attr, size);
4576 return retval;
4577
4578 out_unlock:
4579 rcu_read_unlock();
4580 return retval;
4581 }
4582
4583 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4584 {
4585 cpumask_var_t cpus_allowed, new_mask;
4586 struct task_struct *p;
4587 int retval;
4588
4589 rcu_read_lock();
4590
4591 p = find_process_by_pid(pid);
4592 if (!p) {
4593 rcu_read_unlock();
4594 return -ESRCH;
4595 }
4596
4597 /* Prevent p going away */
4598 get_task_struct(p);
4599 rcu_read_unlock();
4600
4601 if (p->flags & PF_NO_SETAFFINITY) {
4602 retval = -EINVAL;
4603 goto out_put_task;
4604 }
4605 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4606 retval = -ENOMEM;
4607 goto out_put_task;
4608 }
4609 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4610 retval = -ENOMEM;
4611 goto out_free_cpus_allowed;
4612 }
4613 retval = -EPERM;
4614 if (!check_same_owner(p)) {
4615 rcu_read_lock();
4616 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4617 rcu_read_unlock();
4618 goto out_free_new_mask;
4619 }
4620 rcu_read_unlock();
4621 }
4622
4623 retval = security_task_setscheduler(p);
4624 if (retval)
4625 goto out_free_new_mask;
4626
4627
4628 cpuset_cpus_allowed(p, cpus_allowed);
4629 cpumask_and(new_mask, in_mask, cpus_allowed);
4630
4631 /*
4632 * Since bandwidth control happens on root_domain basis,
4633 * if admission test is enabled, we only admit -deadline
4634 * tasks allowed to run on all the CPUs in the task's
4635 * root_domain.
4636 */
4637 #ifdef CONFIG_SMP
4638 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4639 rcu_read_lock();
4640 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4641 retval = -EBUSY;
4642 rcu_read_unlock();
4643 goto out_free_new_mask;
4644 }
4645 rcu_read_unlock();
4646 }
4647 #endif
4648 again:
4649 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4650
4651 if (!retval) {
4652 cpuset_cpus_allowed(p, cpus_allowed);
4653 if (!cpumask_subset(new_mask, cpus_allowed)) {
4654 /*
4655 * We must have raced with a concurrent cpuset
4656 * update. Just reset the cpus_allowed to the
4657 * cpuset's cpus_allowed
4658 */
4659 cpumask_copy(new_mask, cpus_allowed);
4660 goto again;
4661 }
4662 }
4663 out_free_new_mask:
4664 free_cpumask_var(new_mask);
4665 out_free_cpus_allowed:
4666 free_cpumask_var(cpus_allowed);
4667 out_put_task:
4668 put_task_struct(p);
4669 return retval;
4670 }
4671
4672 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4673 struct cpumask *new_mask)
4674 {
4675 if (len < cpumask_size())
4676 cpumask_clear(new_mask);
4677 else if (len > cpumask_size())
4678 len = cpumask_size();
4679
4680 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4681 }
4682
4683 /**
4684 * sys_sched_setaffinity - set the CPU affinity of a process
4685 * @pid: pid of the process
4686 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4687 * @user_mask_ptr: user-space pointer to the new CPU mask
4688 *
4689 * Return: 0 on success. An error code otherwise.
4690 */
4691 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4692 unsigned long __user *, user_mask_ptr)
4693 {
4694 cpumask_var_t new_mask;
4695 int retval;
4696
4697 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4698 return -ENOMEM;
4699
4700 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4701 if (retval == 0)
4702 retval = sched_setaffinity(pid, new_mask);
4703 free_cpumask_var(new_mask);
4704 return retval;
4705 }
4706
4707 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4708 {
4709 struct task_struct *p;
4710 unsigned long flags;
4711 int retval;
4712
4713 rcu_read_lock();
4714
4715 retval = -ESRCH;
4716 p = find_process_by_pid(pid);
4717 if (!p)
4718 goto out_unlock;
4719
4720 retval = security_task_getscheduler(p);
4721 if (retval)
4722 goto out_unlock;
4723
4724 raw_spin_lock_irqsave(&p->pi_lock, flags);
4725 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4726 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4727
4728 out_unlock:
4729 rcu_read_unlock();
4730
4731 return retval;
4732 }
4733
4734 /**
4735 * sys_sched_getaffinity - get the CPU affinity of a process
4736 * @pid: pid of the process
4737 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4738 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4739 *
4740 * Return: size of CPU mask copied to user_mask_ptr on success. An
4741 * error code otherwise.
4742 */
4743 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4744 unsigned long __user *, user_mask_ptr)
4745 {
4746 int ret;
4747 cpumask_var_t mask;
4748
4749 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4750 return -EINVAL;
4751 if (len & (sizeof(unsigned long)-1))
4752 return -EINVAL;
4753
4754 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4755 return -ENOMEM;
4756
4757 ret = sched_getaffinity(pid, mask);
4758 if (ret == 0) {
4759 size_t retlen = min_t(size_t, len, cpumask_size());
4760
4761 if (copy_to_user(user_mask_ptr, mask, retlen))
4762 ret = -EFAULT;
4763 else
4764 ret = retlen;
4765 }
4766 free_cpumask_var(mask);
4767
4768 return ret;
4769 }
4770
4771 /**
4772 * sys_sched_yield - yield the current processor to other threads.
4773 *
4774 * This function yields the current CPU to other tasks. If there are no
4775 * other threads running on this CPU then this function will return.
4776 *
4777 * Return: 0.
4778 */
4779 SYSCALL_DEFINE0(sched_yield)
4780 {
4781 struct rq_flags rf;
4782 struct rq *rq;
4783
4784 local_irq_disable();
4785 rq = this_rq();
4786 rq_lock(rq, &rf);
4787
4788 schedstat_inc(rq->yld_count);
4789 current->sched_class->yield_task(rq);
4790
4791 /*
4792 * Since we are going to call schedule() anyway, there's
4793 * no need to preempt or enable interrupts:
4794 */
4795 preempt_disable();
4796 rq_unlock(rq, &rf);
4797 sched_preempt_enable_no_resched();
4798
4799 schedule();
4800
4801 return 0;
4802 }
4803
4804 #ifndef CONFIG_PREEMPT
4805 int __sched _cond_resched(void)
4806 {
4807 if (should_resched(0)) {
4808 preempt_schedule_common();
4809 return 1;
4810 }
4811 return 0;
4812 }
4813 EXPORT_SYMBOL(_cond_resched);
4814 #endif
4815
4816 /*
4817 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4818 * call schedule, and on return reacquire the lock.
4819 *
4820 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4821 * operations here to prevent schedule() from being called twice (once via
4822 * spin_unlock(), once by hand).
4823 */
4824 int __cond_resched_lock(spinlock_t *lock)
4825 {
4826 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4827 int ret = 0;
4828
4829 lockdep_assert_held(lock);
4830
4831 if (spin_needbreak(lock) || resched) {
4832 spin_unlock(lock);
4833 if (resched)
4834 preempt_schedule_common();
4835 else
4836 cpu_relax();
4837 ret = 1;
4838 spin_lock(lock);
4839 }
4840 return ret;
4841 }
4842 EXPORT_SYMBOL(__cond_resched_lock);
4843
4844 int __sched __cond_resched_softirq(void)
4845 {
4846 BUG_ON(!in_softirq());
4847
4848 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4849 local_bh_enable();
4850 preempt_schedule_common();
4851 local_bh_disable();
4852 return 1;
4853 }
4854 return 0;
4855 }
4856 EXPORT_SYMBOL(__cond_resched_softirq);
4857
4858 /**
4859 * yield - yield the current processor to other threads.
4860 *
4861 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4862 *
4863 * The scheduler is at all times free to pick the calling task as the most
4864 * eligible task to run, if removing the yield() call from your code breaks
4865 * it, its already broken.
4866 *
4867 * Typical broken usage is:
4868 *
4869 * while (!event)
4870 * yield();
4871 *
4872 * where one assumes that yield() will let 'the other' process run that will
4873 * make event true. If the current task is a SCHED_FIFO task that will never
4874 * happen. Never use yield() as a progress guarantee!!
4875 *
4876 * If you want to use yield() to wait for something, use wait_event().
4877 * If you want to use yield() to be 'nice' for others, use cond_resched().
4878 * If you still want to use yield(), do not!
4879 */
4880 void __sched yield(void)
4881 {
4882 set_current_state(TASK_RUNNING);
4883 sys_sched_yield();
4884 }
4885 EXPORT_SYMBOL(yield);
4886
4887 /**
4888 * yield_to - yield the current processor to another thread in
4889 * your thread group, or accelerate that thread toward the
4890 * processor it's on.
4891 * @p: target task
4892 * @preempt: whether task preemption is allowed or not
4893 *
4894 * It's the caller's job to ensure that the target task struct
4895 * can't go away on us before we can do any checks.
4896 *
4897 * Return:
4898 * true (>0) if we indeed boosted the target task.
4899 * false (0) if we failed to boost the target.
4900 * -ESRCH if there's no task to yield to.
4901 */
4902 int __sched yield_to(struct task_struct *p, bool preempt)
4903 {
4904 struct task_struct *curr = current;
4905 struct rq *rq, *p_rq;
4906 unsigned long flags;
4907 int yielded = 0;
4908
4909 local_irq_save(flags);
4910 rq = this_rq();
4911
4912 again:
4913 p_rq = task_rq(p);
4914 /*
4915 * If we're the only runnable task on the rq and target rq also
4916 * has only one task, there's absolutely no point in yielding.
4917 */
4918 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4919 yielded = -ESRCH;
4920 goto out_irq;
4921 }
4922
4923 double_rq_lock(rq, p_rq);
4924 if (task_rq(p) != p_rq) {
4925 double_rq_unlock(rq, p_rq);
4926 goto again;
4927 }
4928
4929 if (!curr->sched_class->yield_to_task)
4930 goto out_unlock;
4931
4932 if (curr->sched_class != p->sched_class)
4933 goto out_unlock;
4934
4935 if (task_running(p_rq, p) || p->state)
4936 goto out_unlock;
4937
4938 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4939 if (yielded) {
4940 schedstat_inc(rq->yld_count);
4941 /*
4942 * Make p's CPU reschedule; pick_next_entity takes care of
4943 * fairness.
4944 */
4945 if (preempt && rq != p_rq)
4946 resched_curr(p_rq);
4947 }
4948
4949 out_unlock:
4950 double_rq_unlock(rq, p_rq);
4951 out_irq:
4952 local_irq_restore(flags);
4953
4954 if (yielded > 0)
4955 schedule();
4956
4957 return yielded;
4958 }
4959 EXPORT_SYMBOL_GPL(yield_to);
4960
4961 int io_schedule_prepare(void)
4962 {
4963 int old_iowait = current->in_iowait;
4964
4965 current->in_iowait = 1;
4966 blk_schedule_flush_plug(current);
4967
4968 return old_iowait;
4969 }
4970
4971 void io_schedule_finish(int token)
4972 {
4973 current->in_iowait = token;
4974 }
4975
4976 /*
4977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4978 * that process accounting knows that this is a task in IO wait state.
4979 */
4980 long __sched io_schedule_timeout(long timeout)
4981 {
4982 int token;
4983 long ret;
4984
4985 token = io_schedule_prepare();
4986 ret = schedule_timeout(timeout);
4987 io_schedule_finish(token);
4988
4989 return ret;
4990 }
4991 EXPORT_SYMBOL(io_schedule_timeout);
4992
4993 void io_schedule(void)
4994 {
4995 int token;
4996
4997 token = io_schedule_prepare();
4998 schedule();
4999 io_schedule_finish(token);
5000 }
5001 EXPORT_SYMBOL(io_schedule);
5002
5003 /**
5004 * sys_sched_get_priority_max - return maximum RT priority.
5005 * @policy: scheduling class.
5006 *
5007 * Return: On success, this syscall returns the maximum
5008 * rt_priority that can be used by a given scheduling class.
5009 * On failure, a negative error code is returned.
5010 */
5011 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5012 {
5013 int ret = -EINVAL;
5014
5015 switch (policy) {
5016 case SCHED_FIFO:
5017 case SCHED_RR:
5018 ret = MAX_USER_RT_PRIO-1;
5019 break;
5020 case SCHED_DEADLINE:
5021 case SCHED_NORMAL:
5022 case SCHED_BATCH:
5023 case SCHED_IDLE:
5024 ret = 0;
5025 break;
5026 }
5027 return ret;
5028 }
5029
5030 /**
5031 * sys_sched_get_priority_min - return minimum RT priority.
5032 * @policy: scheduling class.
5033 *
5034 * Return: On success, this syscall returns the minimum
5035 * rt_priority that can be used by a given scheduling class.
5036 * On failure, a negative error code is returned.
5037 */
5038 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5039 {
5040 int ret = -EINVAL;
5041
5042 switch (policy) {
5043 case SCHED_FIFO:
5044 case SCHED_RR:
5045 ret = 1;
5046 break;
5047 case SCHED_DEADLINE:
5048 case SCHED_NORMAL:
5049 case SCHED_BATCH:
5050 case SCHED_IDLE:
5051 ret = 0;
5052 }
5053 return ret;
5054 }
5055
5056 /**
5057 * sys_sched_rr_get_interval - return the default timeslice of a process.
5058 * @pid: pid of the process.
5059 * @interval: userspace pointer to the timeslice value.
5060 *
5061 * this syscall writes the default timeslice value of a given process
5062 * into the user-space timespec buffer. A value of '0' means infinity.
5063 *
5064 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5065 * an error code.
5066 */
5067 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5068 struct timespec __user *, interval)
5069 {
5070 struct task_struct *p;
5071 unsigned int time_slice;
5072 struct rq_flags rf;
5073 struct timespec t;
5074 struct rq *rq;
5075 int retval;
5076
5077 if (pid < 0)
5078 return -EINVAL;
5079
5080 retval = -ESRCH;
5081 rcu_read_lock();
5082 p = find_process_by_pid(pid);
5083 if (!p)
5084 goto out_unlock;
5085
5086 retval = security_task_getscheduler(p);
5087 if (retval)
5088 goto out_unlock;
5089
5090 rq = task_rq_lock(p, &rf);
5091 time_slice = 0;
5092 if (p->sched_class->get_rr_interval)
5093 time_slice = p->sched_class->get_rr_interval(rq, p);
5094 task_rq_unlock(rq, p, &rf);
5095
5096 rcu_read_unlock();
5097 jiffies_to_timespec(time_slice, &t);
5098 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5099 return retval;
5100
5101 out_unlock:
5102 rcu_read_unlock();
5103 return retval;
5104 }
5105
5106 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5107
5108 void sched_show_task(struct task_struct *p)
5109 {
5110 unsigned long free = 0;
5111 int ppid;
5112 unsigned long state = p->state;
5113
5114 /* Make sure the string lines up properly with the number of task states: */
5115 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5116
5117 if (!try_get_task_stack(p))
5118 return;
5119 if (state)
5120 state = __ffs(state) + 1;
5121 printk(KERN_INFO "%-15.15s %c", p->comm,
5122 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5123 if (state == TASK_RUNNING)
5124 printk(KERN_CONT " running task ");
5125 #ifdef CONFIG_DEBUG_STACK_USAGE
5126 free = stack_not_used(p);
5127 #endif
5128 ppid = 0;
5129 rcu_read_lock();
5130 if (pid_alive(p))
5131 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5132 rcu_read_unlock();
5133 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5134 task_pid_nr(p), ppid,
5135 (unsigned long)task_thread_info(p)->flags);
5136
5137 print_worker_info(KERN_INFO, p);
5138 show_stack(p, NULL);
5139 put_task_stack(p);
5140 }
5141
5142 void show_state_filter(unsigned long state_filter)
5143 {
5144 struct task_struct *g, *p;
5145
5146 #if BITS_PER_LONG == 32
5147 printk(KERN_INFO
5148 " task PC stack pid father\n");
5149 #else
5150 printk(KERN_INFO
5151 " task PC stack pid father\n");
5152 #endif
5153 rcu_read_lock();
5154 for_each_process_thread(g, p) {
5155 /*
5156 * reset the NMI-timeout, listing all files on a slow
5157 * console might take a lot of time:
5158 * Also, reset softlockup watchdogs on all CPUs, because
5159 * another CPU might be blocked waiting for us to process
5160 * an IPI.
5161 */
5162 touch_nmi_watchdog();
5163 touch_all_softlockup_watchdogs();
5164 if (!state_filter || (p->state & state_filter))
5165 sched_show_task(p);
5166 }
5167
5168 #ifdef CONFIG_SCHED_DEBUG
5169 if (!state_filter)
5170 sysrq_sched_debug_show();
5171 #endif
5172 rcu_read_unlock();
5173 /*
5174 * Only show locks if all tasks are dumped:
5175 */
5176 if (!state_filter)
5177 debug_show_all_locks();
5178 }
5179
5180 void init_idle_bootup_task(struct task_struct *idle)
5181 {
5182 idle->sched_class = &idle_sched_class;
5183 }
5184
5185 /**
5186 * init_idle - set up an idle thread for a given CPU
5187 * @idle: task in question
5188 * @cpu: CPU the idle task belongs to
5189 *
5190 * NOTE: this function does not set the idle thread's NEED_RESCHED
5191 * flag, to make booting more robust.
5192 */
5193 void init_idle(struct task_struct *idle, int cpu)
5194 {
5195 struct rq *rq = cpu_rq(cpu);
5196 unsigned long flags;
5197
5198 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5199 raw_spin_lock(&rq->lock);
5200
5201 __sched_fork(0, idle);
5202 idle->state = TASK_RUNNING;
5203 idle->se.exec_start = sched_clock();
5204 idle->flags |= PF_IDLE;
5205
5206 kasan_unpoison_task_stack(idle);
5207
5208 #ifdef CONFIG_SMP
5209 /*
5210 * Its possible that init_idle() gets called multiple times on a task,
5211 * in that case do_set_cpus_allowed() will not do the right thing.
5212 *
5213 * And since this is boot we can forgo the serialization.
5214 */
5215 set_cpus_allowed_common(idle, cpumask_of(cpu));
5216 #endif
5217 /*
5218 * We're having a chicken and egg problem, even though we are
5219 * holding rq->lock, the CPU isn't yet set to this CPU so the
5220 * lockdep check in task_group() will fail.
5221 *
5222 * Similar case to sched_fork(). / Alternatively we could
5223 * use task_rq_lock() here and obtain the other rq->lock.
5224 *
5225 * Silence PROVE_RCU
5226 */
5227 rcu_read_lock();
5228 __set_task_cpu(idle, cpu);
5229 rcu_read_unlock();
5230
5231 rq->curr = rq->idle = idle;
5232 idle->on_rq = TASK_ON_RQ_QUEUED;
5233 #ifdef CONFIG_SMP
5234 idle->on_cpu = 1;
5235 #endif
5236 raw_spin_unlock(&rq->lock);
5237 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5238
5239 /* Set the preempt count _outside_ the spinlocks! */
5240 init_idle_preempt_count(idle, cpu);
5241
5242 /*
5243 * The idle tasks have their own, simple scheduling class:
5244 */
5245 idle->sched_class = &idle_sched_class;
5246 ftrace_graph_init_idle_task(idle, cpu);
5247 vtime_init_idle(idle, cpu);
5248 #ifdef CONFIG_SMP
5249 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5250 #endif
5251 }
5252
5253 #ifdef CONFIG_SMP
5254
5255 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5256 const struct cpumask *trial)
5257 {
5258 int ret = 1;
5259
5260 if (!cpumask_weight(cur))
5261 return ret;
5262
5263 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5264
5265 return ret;
5266 }
5267
5268 int task_can_attach(struct task_struct *p,
5269 const struct cpumask *cs_cpus_allowed)
5270 {
5271 int ret = 0;
5272
5273 /*
5274 * Kthreads which disallow setaffinity shouldn't be moved
5275 * to a new cpuset; we don't want to change their CPU
5276 * affinity and isolating such threads by their set of
5277 * allowed nodes is unnecessary. Thus, cpusets are not
5278 * applicable for such threads. This prevents checking for
5279 * success of set_cpus_allowed_ptr() on all attached tasks
5280 * before cpus_allowed may be changed.
5281 */
5282 if (p->flags & PF_NO_SETAFFINITY) {
5283 ret = -EINVAL;
5284 goto out;
5285 }
5286
5287 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5288 cs_cpus_allowed))
5289 ret = dl_task_can_attach(p, cs_cpus_allowed);
5290
5291 out:
5292 return ret;
5293 }
5294
5295 bool sched_smp_initialized __read_mostly;
5296
5297 #ifdef CONFIG_NUMA_BALANCING
5298 /* Migrate current task p to target_cpu */
5299 int migrate_task_to(struct task_struct *p, int target_cpu)
5300 {
5301 struct migration_arg arg = { p, target_cpu };
5302 int curr_cpu = task_cpu(p);
5303
5304 if (curr_cpu == target_cpu)
5305 return 0;
5306
5307 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5308 return -EINVAL;
5309
5310 /* TODO: This is not properly updating schedstats */
5311
5312 trace_sched_move_numa(p, curr_cpu, target_cpu);
5313 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5314 }
5315
5316 /*
5317 * Requeue a task on a given node and accurately track the number of NUMA
5318 * tasks on the runqueues
5319 */
5320 void sched_setnuma(struct task_struct *p, int nid)
5321 {
5322 bool queued, running;
5323 struct rq_flags rf;
5324 struct rq *rq;
5325
5326 rq = task_rq_lock(p, &rf);
5327 queued = task_on_rq_queued(p);
5328 running = task_current(rq, p);
5329
5330 if (queued)
5331 dequeue_task(rq, p, DEQUEUE_SAVE);
5332 if (running)
5333 put_prev_task(rq, p);
5334
5335 p->numa_preferred_nid = nid;
5336
5337 if (queued)
5338 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5339 if (running)
5340 set_curr_task(rq, p);
5341 task_rq_unlock(rq, p, &rf);
5342 }
5343 #endif /* CONFIG_NUMA_BALANCING */
5344
5345 #ifdef CONFIG_HOTPLUG_CPU
5346 /*
5347 * Ensure that the idle task is using init_mm right before its CPU goes
5348 * offline.
5349 */
5350 void idle_task_exit(void)
5351 {
5352 struct mm_struct *mm = current->active_mm;
5353
5354 BUG_ON(cpu_online(smp_processor_id()));
5355
5356 if (mm != &init_mm) {
5357 switch_mm(mm, &init_mm, current);
5358 finish_arch_post_lock_switch();
5359 }
5360 mmdrop(mm);
5361 }
5362
5363 /*
5364 * Since this CPU is going 'away' for a while, fold any nr_active delta
5365 * we might have. Assumes we're called after migrate_tasks() so that the
5366 * nr_active count is stable. We need to take the teardown thread which
5367 * is calling this into account, so we hand in adjust = 1 to the load
5368 * calculation.
5369 *
5370 * Also see the comment "Global load-average calculations".
5371 */
5372 static void calc_load_migrate(struct rq *rq)
5373 {
5374 long delta = calc_load_fold_active(rq, 1);
5375 if (delta)
5376 atomic_long_add(delta, &calc_load_tasks);
5377 }
5378
5379 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5380 {
5381 }
5382
5383 static const struct sched_class fake_sched_class = {
5384 .put_prev_task = put_prev_task_fake,
5385 };
5386
5387 static struct task_struct fake_task = {
5388 /*
5389 * Avoid pull_{rt,dl}_task()
5390 */
5391 .prio = MAX_PRIO + 1,
5392 .sched_class = &fake_sched_class,
5393 };
5394
5395 /*
5396 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5397 * try_to_wake_up()->select_task_rq().
5398 *
5399 * Called with rq->lock held even though we'er in stop_machine() and
5400 * there's no concurrency possible, we hold the required locks anyway
5401 * because of lock validation efforts.
5402 */
5403 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5404 {
5405 struct rq *rq = dead_rq;
5406 struct task_struct *next, *stop = rq->stop;
5407 struct rq_flags orf = *rf;
5408 int dest_cpu;
5409
5410 /*
5411 * Fudge the rq selection such that the below task selection loop
5412 * doesn't get stuck on the currently eligible stop task.
5413 *
5414 * We're currently inside stop_machine() and the rq is either stuck
5415 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5416 * either way we should never end up calling schedule() until we're
5417 * done here.
5418 */
5419 rq->stop = NULL;
5420
5421 /*
5422 * put_prev_task() and pick_next_task() sched
5423 * class method both need to have an up-to-date
5424 * value of rq->clock[_task]
5425 */
5426 update_rq_clock(rq);
5427
5428 for (;;) {
5429 /*
5430 * There's this thread running, bail when that's the only
5431 * remaining thread:
5432 */
5433 if (rq->nr_running == 1)
5434 break;
5435
5436 /*
5437 * pick_next_task() assumes pinned rq->lock:
5438 */
5439 next = pick_next_task(rq, &fake_task, rf);
5440 BUG_ON(!next);
5441 next->sched_class->put_prev_task(rq, next);
5442
5443 /*
5444 * Rules for changing task_struct::cpus_allowed are holding
5445 * both pi_lock and rq->lock, such that holding either
5446 * stabilizes the mask.
5447 *
5448 * Drop rq->lock is not quite as disastrous as it usually is
5449 * because !cpu_active at this point, which means load-balance
5450 * will not interfere. Also, stop-machine.
5451 */
5452 rq_unlock(rq, rf);
5453 raw_spin_lock(&next->pi_lock);
5454 rq_relock(rq, rf);
5455
5456 /*
5457 * Since we're inside stop-machine, _nothing_ should have
5458 * changed the task, WARN if weird stuff happened, because in
5459 * that case the above rq->lock drop is a fail too.
5460 */
5461 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5462 raw_spin_unlock(&next->pi_lock);
5463 continue;
5464 }
5465
5466 /* Find suitable destination for @next, with force if needed. */
5467 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5468 rq = __migrate_task(rq, rf, next, dest_cpu);
5469 if (rq != dead_rq) {
5470 rq_unlock(rq, rf);
5471 rq = dead_rq;
5472 *rf = orf;
5473 rq_relock(rq, rf);
5474 }
5475 raw_spin_unlock(&next->pi_lock);
5476 }
5477
5478 rq->stop = stop;
5479 }
5480 #endif /* CONFIG_HOTPLUG_CPU */
5481
5482 void set_rq_online(struct rq *rq)
5483 {
5484 if (!rq->online) {
5485 const struct sched_class *class;
5486
5487 cpumask_set_cpu(rq->cpu, rq->rd->online);
5488 rq->online = 1;
5489
5490 for_each_class(class) {
5491 if (class->rq_online)
5492 class->rq_online(rq);
5493 }
5494 }
5495 }
5496
5497 void set_rq_offline(struct rq *rq)
5498 {
5499 if (rq->online) {
5500 const struct sched_class *class;
5501
5502 for_each_class(class) {
5503 if (class->rq_offline)
5504 class->rq_offline(rq);
5505 }
5506
5507 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5508 rq->online = 0;
5509 }
5510 }
5511
5512 static void set_cpu_rq_start_time(unsigned int cpu)
5513 {
5514 struct rq *rq = cpu_rq(cpu);
5515
5516 rq->age_stamp = sched_clock_cpu(cpu);
5517 }
5518
5519 /*
5520 * used to mark begin/end of suspend/resume:
5521 */
5522 static int num_cpus_frozen;
5523
5524 /*
5525 * Update cpusets according to cpu_active mask. If cpusets are
5526 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5527 * around partition_sched_domains().
5528 *
5529 * If we come here as part of a suspend/resume, don't touch cpusets because we
5530 * want to restore it back to its original state upon resume anyway.
5531 */
5532 static void cpuset_cpu_active(void)
5533 {
5534 if (cpuhp_tasks_frozen) {
5535 /*
5536 * num_cpus_frozen tracks how many CPUs are involved in suspend
5537 * resume sequence. As long as this is not the last online
5538 * operation in the resume sequence, just build a single sched
5539 * domain, ignoring cpusets.
5540 */
5541 num_cpus_frozen--;
5542 if (likely(num_cpus_frozen)) {
5543 partition_sched_domains(1, NULL, NULL);
5544 return;
5545 }
5546 /*
5547 * This is the last CPU online operation. So fall through and
5548 * restore the original sched domains by considering the
5549 * cpuset configurations.
5550 */
5551 }
5552 cpuset_update_active_cpus();
5553 }
5554
5555 static int cpuset_cpu_inactive(unsigned int cpu)
5556 {
5557 if (!cpuhp_tasks_frozen) {
5558 if (dl_cpu_busy(cpu))
5559 return -EBUSY;
5560 cpuset_update_active_cpus();
5561 } else {
5562 num_cpus_frozen++;
5563 partition_sched_domains(1, NULL, NULL);
5564 }
5565 return 0;
5566 }
5567
5568 int sched_cpu_activate(unsigned int cpu)
5569 {
5570 struct rq *rq = cpu_rq(cpu);
5571 struct rq_flags rf;
5572
5573 set_cpu_active(cpu, true);
5574
5575 if (sched_smp_initialized) {
5576 sched_domains_numa_masks_set(cpu);
5577 cpuset_cpu_active();
5578 }
5579
5580 /*
5581 * Put the rq online, if not already. This happens:
5582 *
5583 * 1) In the early boot process, because we build the real domains
5584 * after all CPUs have been brought up.
5585 *
5586 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5587 * domains.
5588 */
5589 rq_lock_irqsave(rq, &rf);
5590 if (rq->rd) {
5591 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5592 set_rq_online(rq);
5593 }
5594 rq_unlock_irqrestore(rq, &rf);
5595
5596 update_max_interval();
5597
5598 return 0;
5599 }
5600
5601 int sched_cpu_deactivate(unsigned int cpu)
5602 {
5603 int ret;
5604
5605 set_cpu_active(cpu, false);
5606 /*
5607 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5608 * users of this state to go away such that all new such users will
5609 * observe it.
5610 *
5611 * Do sync before park smpboot threads to take care the rcu boost case.
5612 */
5613 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5614
5615 if (!sched_smp_initialized)
5616 return 0;
5617
5618 ret = cpuset_cpu_inactive(cpu);
5619 if (ret) {
5620 set_cpu_active(cpu, true);
5621 return ret;
5622 }
5623 sched_domains_numa_masks_clear(cpu);
5624 return 0;
5625 }
5626
5627 static void sched_rq_cpu_starting(unsigned int cpu)
5628 {
5629 struct rq *rq = cpu_rq(cpu);
5630
5631 rq->calc_load_update = calc_load_update;
5632 update_max_interval();
5633 }
5634
5635 int sched_cpu_starting(unsigned int cpu)
5636 {
5637 set_cpu_rq_start_time(cpu);
5638 sched_rq_cpu_starting(cpu);
5639 return 0;
5640 }
5641
5642 #ifdef CONFIG_HOTPLUG_CPU
5643 int sched_cpu_dying(unsigned int cpu)
5644 {
5645 struct rq *rq = cpu_rq(cpu);
5646 struct rq_flags rf;
5647
5648 /* Handle pending wakeups and then migrate everything off */
5649 sched_ttwu_pending();
5650
5651 rq_lock_irqsave(rq, &rf);
5652 if (rq->rd) {
5653 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5654 set_rq_offline(rq);
5655 }
5656 migrate_tasks(rq, &rf);
5657 BUG_ON(rq->nr_running != 1);
5658 rq_unlock_irqrestore(rq, &rf);
5659
5660 calc_load_migrate(rq);
5661 update_max_interval();
5662 nohz_balance_exit_idle(cpu);
5663 hrtick_clear(rq);
5664 return 0;
5665 }
5666 #endif
5667
5668 #ifdef CONFIG_SCHED_SMT
5669 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5670
5671 static void sched_init_smt(void)
5672 {
5673 /*
5674 * We've enumerated all CPUs and will assume that if any CPU
5675 * has SMT siblings, CPU0 will too.
5676 */
5677 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5678 static_branch_enable(&sched_smt_present);
5679 }
5680 #else
5681 static inline void sched_init_smt(void) { }
5682 #endif
5683
5684 void __init sched_init_smp(void)
5685 {
5686 cpumask_var_t non_isolated_cpus;
5687
5688 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5689
5690 sched_init_numa();
5691
5692 /*
5693 * There's no userspace yet to cause hotplug operations; hence all the
5694 * CPU masks are stable and all blatant races in the below code cannot
5695 * happen.
5696 */
5697 mutex_lock(&sched_domains_mutex);
5698 sched_init_domains(cpu_active_mask);
5699 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5700 if (cpumask_empty(non_isolated_cpus))
5701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5702 mutex_unlock(&sched_domains_mutex);
5703
5704 /* Move init over to a non-isolated CPU */
5705 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5706 BUG();
5707 sched_init_granularity();
5708 free_cpumask_var(non_isolated_cpus);
5709
5710 init_sched_rt_class();
5711 init_sched_dl_class();
5712
5713 sched_init_smt();
5714
5715 sched_smp_initialized = true;
5716 }
5717
5718 static int __init migration_init(void)
5719 {
5720 sched_rq_cpu_starting(smp_processor_id());
5721 return 0;
5722 }
5723 early_initcall(migration_init);
5724
5725 #else
5726 void __init sched_init_smp(void)
5727 {
5728 sched_init_granularity();
5729 }
5730 #endif /* CONFIG_SMP */
5731
5732 int in_sched_functions(unsigned long addr)
5733 {
5734 return in_lock_functions(addr) ||
5735 (addr >= (unsigned long)__sched_text_start
5736 && addr < (unsigned long)__sched_text_end);
5737 }
5738
5739 #ifdef CONFIG_CGROUP_SCHED
5740 /*
5741 * Default task group.
5742 * Every task in system belongs to this group at bootup.
5743 */
5744 struct task_group root_task_group;
5745 LIST_HEAD(task_groups);
5746
5747 /* Cacheline aligned slab cache for task_group */
5748 static struct kmem_cache *task_group_cache __read_mostly;
5749 #endif
5750
5751 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5752 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5753
5754 void __init sched_init(void)
5755 {
5756 int i, j;
5757 unsigned long alloc_size = 0, ptr;
5758
5759 sched_clock_init();
5760 wait_bit_init();
5761
5762 #ifdef CONFIG_FAIR_GROUP_SCHED
5763 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5764 #endif
5765 #ifdef CONFIG_RT_GROUP_SCHED
5766 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5767 #endif
5768 if (alloc_size) {
5769 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5770
5771 #ifdef CONFIG_FAIR_GROUP_SCHED
5772 root_task_group.se = (struct sched_entity **)ptr;
5773 ptr += nr_cpu_ids * sizeof(void **);
5774
5775 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5776 ptr += nr_cpu_ids * sizeof(void **);
5777
5778 #endif /* CONFIG_FAIR_GROUP_SCHED */
5779 #ifdef CONFIG_RT_GROUP_SCHED
5780 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5781 ptr += nr_cpu_ids * sizeof(void **);
5782
5783 root_task_group.rt_rq = (struct rt_rq **)ptr;
5784 ptr += nr_cpu_ids * sizeof(void **);
5785
5786 #endif /* CONFIG_RT_GROUP_SCHED */
5787 }
5788 #ifdef CONFIG_CPUMASK_OFFSTACK
5789 for_each_possible_cpu(i) {
5790 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5791 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5792 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5793 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5794 }
5795 #endif /* CONFIG_CPUMASK_OFFSTACK */
5796
5797 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5798 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5799
5800 #ifdef CONFIG_SMP
5801 init_defrootdomain();
5802 #endif
5803
5804 #ifdef CONFIG_RT_GROUP_SCHED
5805 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5806 global_rt_period(), global_rt_runtime());
5807 #endif /* CONFIG_RT_GROUP_SCHED */
5808
5809 #ifdef CONFIG_CGROUP_SCHED
5810 task_group_cache = KMEM_CACHE(task_group, 0);
5811
5812 list_add(&root_task_group.list, &task_groups);
5813 INIT_LIST_HEAD(&root_task_group.children);
5814 INIT_LIST_HEAD(&root_task_group.siblings);
5815 autogroup_init(&init_task);
5816 #endif /* CONFIG_CGROUP_SCHED */
5817
5818 for_each_possible_cpu(i) {
5819 struct rq *rq;
5820
5821 rq = cpu_rq(i);
5822 raw_spin_lock_init(&rq->lock);
5823 rq->nr_running = 0;
5824 rq->calc_load_active = 0;
5825 rq->calc_load_update = jiffies + LOAD_FREQ;
5826 init_cfs_rq(&rq->cfs);
5827 init_rt_rq(&rq->rt);
5828 init_dl_rq(&rq->dl);
5829 #ifdef CONFIG_FAIR_GROUP_SCHED
5830 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5831 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5832 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5833 /*
5834 * How much CPU bandwidth does root_task_group get?
5835 *
5836 * In case of task-groups formed thr' the cgroup filesystem, it
5837 * gets 100% of the CPU resources in the system. This overall
5838 * system CPU resource is divided among the tasks of
5839 * root_task_group and its child task-groups in a fair manner,
5840 * based on each entity's (task or task-group's) weight
5841 * (se->load.weight).
5842 *
5843 * In other words, if root_task_group has 10 tasks of weight
5844 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5845 * then A0's share of the CPU resource is:
5846 *
5847 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5848 *
5849 * We achieve this by letting root_task_group's tasks sit
5850 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5851 */
5852 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5853 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5854 #endif /* CONFIG_FAIR_GROUP_SCHED */
5855
5856 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5857 #ifdef CONFIG_RT_GROUP_SCHED
5858 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5859 #endif
5860
5861 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5862 rq->cpu_load[j] = 0;
5863
5864 #ifdef CONFIG_SMP
5865 rq->sd = NULL;
5866 rq->rd = NULL;
5867 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5868 rq->balance_callback = NULL;
5869 rq->active_balance = 0;
5870 rq->next_balance = jiffies;
5871 rq->push_cpu = 0;
5872 rq->cpu = i;
5873 rq->online = 0;
5874 rq->idle_stamp = 0;
5875 rq->avg_idle = 2*sysctl_sched_migration_cost;
5876 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5877
5878 INIT_LIST_HEAD(&rq->cfs_tasks);
5879
5880 rq_attach_root(rq, &def_root_domain);
5881 #ifdef CONFIG_NO_HZ_COMMON
5882 rq->last_load_update_tick = jiffies;
5883 rq->nohz_flags = 0;
5884 #endif
5885 #ifdef CONFIG_NO_HZ_FULL
5886 rq->last_sched_tick = 0;
5887 #endif
5888 #endif /* CONFIG_SMP */
5889 init_rq_hrtick(rq);
5890 atomic_set(&rq->nr_iowait, 0);
5891 }
5892
5893 set_load_weight(&init_task);
5894
5895 /*
5896 * The boot idle thread does lazy MMU switching as well:
5897 */
5898 mmgrab(&init_mm);
5899 enter_lazy_tlb(&init_mm, current);
5900
5901 /*
5902 * Make us the idle thread. Technically, schedule() should not be
5903 * called from this thread, however somewhere below it might be,
5904 * but because we are the idle thread, we just pick up running again
5905 * when this runqueue becomes "idle".
5906 */
5907 init_idle(current, smp_processor_id());
5908
5909 calc_load_update = jiffies + LOAD_FREQ;
5910
5911 #ifdef CONFIG_SMP
5912 /* May be allocated at isolcpus cmdline parse time */
5913 if (cpu_isolated_map == NULL)
5914 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5915 idle_thread_set_boot_cpu();
5916 set_cpu_rq_start_time(smp_processor_id());
5917 #endif
5918 init_sched_fair_class();
5919
5920 init_schedstats();
5921
5922 scheduler_running = 1;
5923 }
5924
5925 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5926 static inline int preempt_count_equals(int preempt_offset)
5927 {
5928 int nested = preempt_count() + rcu_preempt_depth();
5929
5930 return (nested == preempt_offset);
5931 }
5932
5933 void __might_sleep(const char *file, int line, int preempt_offset)
5934 {
5935 /*
5936 * Blocking primitives will set (and therefore destroy) current->state,
5937 * since we will exit with TASK_RUNNING make sure we enter with it,
5938 * otherwise we will destroy state.
5939 */
5940 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
5941 "do not call blocking ops when !TASK_RUNNING; "
5942 "state=%lx set at [<%p>] %pS\n",
5943 current->state,
5944 (void *)current->task_state_change,
5945 (void *)current->task_state_change);
5946
5947 ___might_sleep(file, line, preempt_offset);
5948 }
5949 EXPORT_SYMBOL(__might_sleep);
5950
5951 void ___might_sleep(const char *file, int line, int preempt_offset)
5952 {
5953 /* Ratelimiting timestamp: */
5954 static unsigned long prev_jiffy;
5955
5956 unsigned long preempt_disable_ip;
5957
5958 /* WARN_ON_ONCE() by default, no rate limit required: */
5959 rcu_sleep_check();
5960
5961 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
5962 !is_idle_task(current)) ||
5963 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
5964 oops_in_progress)
5965 return;
5966
5967 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5968 return;
5969 prev_jiffy = jiffies;
5970
5971 /* Save this before calling printk(), since that will clobber it: */
5972 preempt_disable_ip = get_preempt_disable_ip(current);
5973
5974 printk(KERN_ERR
5975 "BUG: sleeping function called from invalid context at %s:%d\n",
5976 file, line);
5977 printk(KERN_ERR
5978 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
5979 in_atomic(), irqs_disabled(),
5980 current->pid, current->comm);
5981
5982 if (task_stack_end_corrupted(current))
5983 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
5984
5985 debug_show_held_locks(current);
5986 if (irqs_disabled())
5987 print_irqtrace_events(current);
5988 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5989 && !preempt_count_equals(preempt_offset)) {
5990 pr_err("Preemption disabled at:");
5991 print_ip_sym(preempt_disable_ip);
5992 pr_cont("\n");
5993 }
5994 dump_stack();
5995 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5996 }
5997 EXPORT_SYMBOL(___might_sleep);
5998 #endif
5999
6000 #ifdef CONFIG_MAGIC_SYSRQ
6001 void normalize_rt_tasks(void)
6002 {
6003 struct task_struct *g, *p;
6004 struct sched_attr attr = {
6005 .sched_policy = SCHED_NORMAL,
6006 };
6007
6008 read_lock(&tasklist_lock);
6009 for_each_process_thread(g, p) {
6010 /*
6011 * Only normalize user tasks:
6012 */
6013 if (p->flags & PF_KTHREAD)
6014 continue;
6015
6016 p->se.exec_start = 0;
6017 schedstat_set(p->se.statistics.wait_start, 0);
6018 schedstat_set(p->se.statistics.sleep_start, 0);
6019 schedstat_set(p->se.statistics.block_start, 0);
6020
6021 if (!dl_task(p) && !rt_task(p)) {
6022 /*
6023 * Renice negative nice level userspace
6024 * tasks back to 0:
6025 */
6026 if (task_nice(p) < 0)
6027 set_user_nice(p, 0);
6028 continue;
6029 }
6030
6031 __sched_setscheduler(p, &attr, false, false);
6032 }
6033 read_unlock(&tasklist_lock);
6034 }
6035
6036 #endif /* CONFIG_MAGIC_SYSRQ */
6037
6038 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6039 /*
6040 * These functions are only useful for the IA64 MCA handling, or kdb.
6041 *
6042 * They can only be called when the whole system has been
6043 * stopped - every CPU needs to be quiescent, and no scheduling
6044 * activity can take place. Using them for anything else would
6045 * be a serious bug, and as a result, they aren't even visible
6046 * under any other configuration.
6047 */
6048
6049 /**
6050 * curr_task - return the current task for a given CPU.
6051 * @cpu: the processor in question.
6052 *
6053 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6054 *
6055 * Return: The current task for @cpu.
6056 */
6057 struct task_struct *curr_task(int cpu)
6058 {
6059 return cpu_curr(cpu);
6060 }
6061
6062 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6063
6064 #ifdef CONFIG_IA64
6065 /**
6066 * set_curr_task - set the current task for a given CPU.
6067 * @cpu: the processor in question.
6068 * @p: the task pointer to set.
6069 *
6070 * Description: This function must only be used when non-maskable interrupts
6071 * are serviced on a separate stack. It allows the architecture to switch the
6072 * notion of the current task on a CPU in a non-blocking manner. This function
6073 * must be called with all CPU's synchronized, and interrupts disabled, the
6074 * and caller must save the original value of the current task (see
6075 * curr_task() above) and restore that value before reenabling interrupts and
6076 * re-starting the system.
6077 *
6078 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6079 */
6080 void ia64_set_curr_task(int cpu, struct task_struct *p)
6081 {
6082 cpu_curr(cpu) = p;
6083 }
6084
6085 #endif
6086
6087 #ifdef CONFIG_CGROUP_SCHED
6088 /* task_group_lock serializes the addition/removal of task groups */
6089 static DEFINE_SPINLOCK(task_group_lock);
6090
6091 static void sched_free_group(struct task_group *tg)
6092 {
6093 free_fair_sched_group(tg);
6094 free_rt_sched_group(tg);
6095 autogroup_free(tg);
6096 kmem_cache_free(task_group_cache, tg);
6097 }
6098
6099 /* allocate runqueue etc for a new task group */
6100 struct task_group *sched_create_group(struct task_group *parent)
6101 {
6102 struct task_group *tg;
6103
6104 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6105 if (!tg)
6106 return ERR_PTR(-ENOMEM);
6107
6108 if (!alloc_fair_sched_group(tg, parent))
6109 goto err;
6110
6111 if (!alloc_rt_sched_group(tg, parent))
6112 goto err;
6113
6114 return tg;
6115
6116 err:
6117 sched_free_group(tg);
6118 return ERR_PTR(-ENOMEM);
6119 }
6120
6121 void sched_online_group(struct task_group *tg, struct task_group *parent)
6122 {
6123 unsigned long flags;
6124
6125 spin_lock_irqsave(&task_group_lock, flags);
6126 list_add_rcu(&tg->list, &task_groups);
6127
6128 /* Root should already exist: */
6129 WARN_ON(!parent);
6130
6131 tg->parent = parent;
6132 INIT_LIST_HEAD(&tg->children);
6133 list_add_rcu(&tg->siblings, &parent->children);
6134 spin_unlock_irqrestore(&task_group_lock, flags);
6135
6136 online_fair_sched_group(tg);
6137 }
6138
6139 /* rcu callback to free various structures associated with a task group */
6140 static void sched_free_group_rcu(struct rcu_head *rhp)
6141 {
6142 /* Now it should be safe to free those cfs_rqs: */
6143 sched_free_group(container_of(rhp, struct task_group, rcu));
6144 }
6145
6146 void sched_destroy_group(struct task_group *tg)
6147 {
6148 /* Wait for possible concurrent references to cfs_rqs complete: */
6149 call_rcu(&tg->rcu, sched_free_group_rcu);
6150 }
6151
6152 void sched_offline_group(struct task_group *tg)
6153 {
6154 unsigned long flags;
6155
6156 /* End participation in shares distribution: */
6157 unregister_fair_sched_group(tg);
6158
6159 spin_lock_irqsave(&task_group_lock, flags);
6160 list_del_rcu(&tg->list);
6161 list_del_rcu(&tg->siblings);
6162 spin_unlock_irqrestore(&task_group_lock, flags);
6163 }
6164
6165 static void sched_change_group(struct task_struct *tsk, int type)
6166 {
6167 struct task_group *tg;
6168
6169 /*
6170 * All callers are synchronized by task_rq_lock(); we do not use RCU
6171 * which is pointless here. Thus, we pass "true" to task_css_check()
6172 * to prevent lockdep warnings.
6173 */
6174 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6175 struct task_group, css);
6176 tg = autogroup_task_group(tsk, tg);
6177 tsk->sched_task_group = tg;
6178
6179 #ifdef CONFIG_FAIR_GROUP_SCHED
6180 if (tsk->sched_class->task_change_group)
6181 tsk->sched_class->task_change_group(tsk, type);
6182 else
6183 #endif
6184 set_task_rq(tsk, task_cpu(tsk));
6185 }
6186
6187 /*
6188 * Change task's runqueue when it moves between groups.
6189 *
6190 * The caller of this function should have put the task in its new group by
6191 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6192 * its new group.
6193 */
6194 void sched_move_task(struct task_struct *tsk)
6195 {
6196 int queued, running, queue_flags =
6197 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6198 struct rq_flags rf;
6199 struct rq *rq;
6200
6201 rq = task_rq_lock(tsk, &rf);
6202 update_rq_clock(rq);
6203
6204 running = task_current(rq, tsk);
6205 queued = task_on_rq_queued(tsk);
6206
6207 if (queued)
6208 dequeue_task(rq, tsk, queue_flags);
6209 if (running)
6210 put_prev_task(rq, tsk);
6211
6212 sched_change_group(tsk, TASK_MOVE_GROUP);
6213
6214 if (queued)
6215 enqueue_task(rq, tsk, queue_flags);
6216 if (running)
6217 set_curr_task(rq, tsk);
6218
6219 task_rq_unlock(rq, tsk, &rf);
6220 }
6221
6222 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6223 {
6224 return css ? container_of(css, struct task_group, css) : NULL;
6225 }
6226
6227 static struct cgroup_subsys_state *
6228 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6229 {
6230 struct task_group *parent = css_tg(parent_css);
6231 struct task_group *tg;
6232
6233 if (!parent) {
6234 /* This is early initialization for the top cgroup */
6235 return &root_task_group.css;
6236 }
6237
6238 tg = sched_create_group(parent);
6239 if (IS_ERR(tg))
6240 return ERR_PTR(-ENOMEM);
6241
6242 return &tg->css;
6243 }
6244
6245 /* Expose task group only after completing cgroup initialization */
6246 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6247 {
6248 struct task_group *tg = css_tg(css);
6249 struct task_group *parent = css_tg(css->parent);
6250
6251 if (parent)
6252 sched_online_group(tg, parent);
6253 return 0;
6254 }
6255
6256 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6257 {
6258 struct task_group *tg = css_tg(css);
6259
6260 sched_offline_group(tg);
6261 }
6262
6263 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6264 {
6265 struct task_group *tg = css_tg(css);
6266
6267 /*
6268 * Relies on the RCU grace period between css_released() and this.
6269 */
6270 sched_free_group(tg);
6271 }
6272
6273 /*
6274 * This is called before wake_up_new_task(), therefore we really only
6275 * have to set its group bits, all the other stuff does not apply.
6276 */
6277 static void cpu_cgroup_fork(struct task_struct *task)
6278 {
6279 struct rq_flags rf;
6280 struct rq *rq;
6281
6282 rq = task_rq_lock(task, &rf);
6283
6284 update_rq_clock(rq);
6285 sched_change_group(task, TASK_SET_GROUP);
6286
6287 task_rq_unlock(rq, task, &rf);
6288 }
6289
6290 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6291 {
6292 struct task_struct *task;
6293 struct cgroup_subsys_state *css;
6294 int ret = 0;
6295
6296 cgroup_taskset_for_each(task, css, tset) {
6297 #ifdef CONFIG_RT_GROUP_SCHED
6298 if (!sched_rt_can_attach(css_tg(css), task))
6299 return -EINVAL;
6300 #else
6301 /* We don't support RT-tasks being in separate groups */
6302 if (task->sched_class != &fair_sched_class)
6303 return -EINVAL;
6304 #endif
6305 /*
6306 * Serialize against wake_up_new_task() such that if its
6307 * running, we're sure to observe its full state.
6308 */
6309 raw_spin_lock_irq(&task->pi_lock);
6310 /*
6311 * Avoid calling sched_move_task() before wake_up_new_task()
6312 * has happened. This would lead to problems with PELT, due to
6313 * move wanting to detach+attach while we're not attached yet.
6314 */
6315 if (task->state == TASK_NEW)
6316 ret = -EINVAL;
6317 raw_spin_unlock_irq(&task->pi_lock);
6318
6319 if (ret)
6320 break;
6321 }
6322 return ret;
6323 }
6324
6325 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6326 {
6327 struct task_struct *task;
6328 struct cgroup_subsys_state *css;
6329
6330 cgroup_taskset_for_each(task, css, tset)
6331 sched_move_task(task);
6332 }
6333
6334 #ifdef CONFIG_FAIR_GROUP_SCHED
6335 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6336 struct cftype *cftype, u64 shareval)
6337 {
6338 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6339 }
6340
6341 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6342 struct cftype *cft)
6343 {
6344 struct task_group *tg = css_tg(css);
6345
6346 return (u64) scale_load_down(tg->shares);
6347 }
6348
6349 #ifdef CONFIG_CFS_BANDWIDTH
6350 static DEFINE_MUTEX(cfs_constraints_mutex);
6351
6352 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6353 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6354
6355 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6356
6357 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6358 {
6359 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6360 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6361
6362 if (tg == &root_task_group)
6363 return -EINVAL;
6364
6365 /*
6366 * Ensure we have at some amount of bandwidth every period. This is
6367 * to prevent reaching a state of large arrears when throttled via
6368 * entity_tick() resulting in prolonged exit starvation.
6369 */
6370 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6371 return -EINVAL;
6372
6373 /*
6374 * Likewise, bound things on the otherside by preventing insane quota
6375 * periods. This also allows us to normalize in computing quota
6376 * feasibility.
6377 */
6378 if (period > max_cfs_quota_period)
6379 return -EINVAL;
6380
6381 /*
6382 * Prevent race between setting of cfs_rq->runtime_enabled and
6383 * unthrottle_offline_cfs_rqs().
6384 */
6385 get_online_cpus();
6386 mutex_lock(&cfs_constraints_mutex);
6387 ret = __cfs_schedulable(tg, period, quota);
6388 if (ret)
6389 goto out_unlock;
6390
6391 runtime_enabled = quota != RUNTIME_INF;
6392 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6393 /*
6394 * If we need to toggle cfs_bandwidth_used, off->on must occur
6395 * before making related changes, and on->off must occur afterwards
6396 */
6397 if (runtime_enabled && !runtime_was_enabled)
6398 cfs_bandwidth_usage_inc();
6399 raw_spin_lock_irq(&cfs_b->lock);
6400 cfs_b->period = ns_to_ktime(period);
6401 cfs_b->quota = quota;
6402
6403 __refill_cfs_bandwidth_runtime(cfs_b);
6404
6405 /* Restart the period timer (if active) to handle new period expiry: */
6406 if (runtime_enabled)
6407 start_cfs_bandwidth(cfs_b);
6408
6409 raw_spin_unlock_irq(&cfs_b->lock);
6410
6411 for_each_online_cpu(i) {
6412 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6413 struct rq *rq = cfs_rq->rq;
6414 struct rq_flags rf;
6415
6416 rq_lock_irq(rq, &rf);
6417 cfs_rq->runtime_enabled = runtime_enabled;
6418 cfs_rq->runtime_remaining = 0;
6419
6420 if (cfs_rq->throttled)
6421 unthrottle_cfs_rq(cfs_rq);
6422 rq_unlock_irq(rq, &rf);
6423 }
6424 if (runtime_was_enabled && !runtime_enabled)
6425 cfs_bandwidth_usage_dec();
6426 out_unlock:
6427 mutex_unlock(&cfs_constraints_mutex);
6428 put_online_cpus();
6429
6430 return ret;
6431 }
6432
6433 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6434 {
6435 u64 quota, period;
6436
6437 period = ktime_to_ns(tg->cfs_bandwidth.period);
6438 if (cfs_quota_us < 0)
6439 quota = RUNTIME_INF;
6440 else
6441 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6442
6443 return tg_set_cfs_bandwidth(tg, period, quota);
6444 }
6445
6446 long tg_get_cfs_quota(struct task_group *tg)
6447 {
6448 u64 quota_us;
6449
6450 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6451 return -1;
6452
6453 quota_us = tg->cfs_bandwidth.quota;
6454 do_div(quota_us, NSEC_PER_USEC);
6455
6456 return quota_us;
6457 }
6458
6459 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6460 {
6461 u64 quota, period;
6462
6463 period = (u64)cfs_period_us * NSEC_PER_USEC;
6464 quota = tg->cfs_bandwidth.quota;
6465
6466 return tg_set_cfs_bandwidth(tg, period, quota);
6467 }
6468
6469 long tg_get_cfs_period(struct task_group *tg)
6470 {
6471 u64 cfs_period_us;
6472
6473 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6474 do_div(cfs_period_us, NSEC_PER_USEC);
6475
6476 return cfs_period_us;
6477 }
6478
6479 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6480 struct cftype *cft)
6481 {
6482 return tg_get_cfs_quota(css_tg(css));
6483 }
6484
6485 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6486 struct cftype *cftype, s64 cfs_quota_us)
6487 {
6488 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6489 }
6490
6491 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6492 struct cftype *cft)
6493 {
6494 return tg_get_cfs_period(css_tg(css));
6495 }
6496
6497 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6498 struct cftype *cftype, u64 cfs_period_us)
6499 {
6500 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6501 }
6502
6503 struct cfs_schedulable_data {
6504 struct task_group *tg;
6505 u64 period, quota;
6506 };
6507
6508 /*
6509 * normalize group quota/period to be quota/max_period
6510 * note: units are usecs
6511 */
6512 static u64 normalize_cfs_quota(struct task_group *tg,
6513 struct cfs_schedulable_data *d)
6514 {
6515 u64 quota, period;
6516
6517 if (tg == d->tg) {
6518 period = d->period;
6519 quota = d->quota;
6520 } else {
6521 period = tg_get_cfs_period(tg);
6522 quota = tg_get_cfs_quota(tg);
6523 }
6524
6525 /* note: these should typically be equivalent */
6526 if (quota == RUNTIME_INF || quota == -1)
6527 return RUNTIME_INF;
6528
6529 return to_ratio(period, quota);
6530 }
6531
6532 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6533 {
6534 struct cfs_schedulable_data *d = data;
6535 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6536 s64 quota = 0, parent_quota = -1;
6537
6538 if (!tg->parent) {
6539 quota = RUNTIME_INF;
6540 } else {
6541 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6542
6543 quota = normalize_cfs_quota(tg, d);
6544 parent_quota = parent_b->hierarchical_quota;
6545
6546 /*
6547 * Ensure max(child_quota) <= parent_quota, inherit when no
6548 * limit is set:
6549 */
6550 if (quota == RUNTIME_INF)
6551 quota = parent_quota;
6552 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6553 return -EINVAL;
6554 }
6555 cfs_b->hierarchical_quota = quota;
6556
6557 return 0;
6558 }
6559
6560 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6561 {
6562 int ret;
6563 struct cfs_schedulable_data data = {
6564 .tg = tg,
6565 .period = period,
6566 .quota = quota,
6567 };
6568
6569 if (quota != RUNTIME_INF) {
6570 do_div(data.period, NSEC_PER_USEC);
6571 do_div(data.quota, NSEC_PER_USEC);
6572 }
6573
6574 rcu_read_lock();
6575 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6576 rcu_read_unlock();
6577
6578 return ret;
6579 }
6580
6581 static int cpu_stats_show(struct seq_file *sf, void *v)
6582 {
6583 struct task_group *tg = css_tg(seq_css(sf));
6584 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6585
6586 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6587 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6588 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6589
6590 return 0;
6591 }
6592 #endif /* CONFIG_CFS_BANDWIDTH */
6593 #endif /* CONFIG_FAIR_GROUP_SCHED */
6594
6595 #ifdef CONFIG_RT_GROUP_SCHED
6596 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6597 struct cftype *cft, s64 val)
6598 {
6599 return sched_group_set_rt_runtime(css_tg(css), val);
6600 }
6601
6602 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6603 struct cftype *cft)
6604 {
6605 return sched_group_rt_runtime(css_tg(css));
6606 }
6607
6608 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6609 struct cftype *cftype, u64 rt_period_us)
6610 {
6611 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6612 }
6613
6614 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6615 struct cftype *cft)
6616 {
6617 return sched_group_rt_period(css_tg(css));
6618 }
6619 #endif /* CONFIG_RT_GROUP_SCHED */
6620
6621 static struct cftype cpu_files[] = {
6622 #ifdef CONFIG_FAIR_GROUP_SCHED
6623 {
6624 .name = "shares",
6625 .read_u64 = cpu_shares_read_u64,
6626 .write_u64 = cpu_shares_write_u64,
6627 },
6628 #endif
6629 #ifdef CONFIG_CFS_BANDWIDTH
6630 {
6631 .name = "cfs_quota_us",
6632 .read_s64 = cpu_cfs_quota_read_s64,
6633 .write_s64 = cpu_cfs_quota_write_s64,
6634 },
6635 {
6636 .name = "cfs_period_us",
6637 .read_u64 = cpu_cfs_period_read_u64,
6638 .write_u64 = cpu_cfs_period_write_u64,
6639 },
6640 {
6641 .name = "stat",
6642 .seq_show = cpu_stats_show,
6643 },
6644 #endif
6645 #ifdef CONFIG_RT_GROUP_SCHED
6646 {
6647 .name = "rt_runtime_us",
6648 .read_s64 = cpu_rt_runtime_read,
6649 .write_s64 = cpu_rt_runtime_write,
6650 },
6651 {
6652 .name = "rt_period_us",
6653 .read_u64 = cpu_rt_period_read_uint,
6654 .write_u64 = cpu_rt_period_write_uint,
6655 },
6656 #endif
6657 { } /* Terminate */
6658 };
6659
6660 struct cgroup_subsys cpu_cgrp_subsys = {
6661 .css_alloc = cpu_cgroup_css_alloc,
6662 .css_online = cpu_cgroup_css_online,
6663 .css_released = cpu_cgroup_css_released,
6664 .css_free = cpu_cgroup_css_free,
6665 .fork = cpu_cgroup_fork,
6666 .can_attach = cpu_cgroup_can_attach,
6667 .attach = cpu_cgroup_attach,
6668 .legacy_cftypes = cpu_files,
6669 .early_init = true,
6670 };
6671
6672 #endif /* CONFIG_CGROUP_SCHED */
6673
6674 void dump_cpu_task(int cpu)
6675 {
6676 pr_info("Task dump for CPU %d:\n", cpu);
6677 sched_show_task(cpu_curr(cpu));
6678 }
6679
6680 /*
6681 * Nice levels are multiplicative, with a gentle 10% change for every
6682 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6683 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6684 * that remained on nice 0.
6685 *
6686 * The "10% effect" is relative and cumulative: from _any_ nice level,
6687 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6688 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6689 * If a task goes up by ~10% and another task goes down by ~10% then
6690 * the relative distance between them is ~25%.)
6691 */
6692 const int sched_prio_to_weight[40] = {
6693 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6694 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6695 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6696 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6697 /* 0 */ 1024, 820, 655, 526, 423,
6698 /* 5 */ 335, 272, 215, 172, 137,
6699 /* 10 */ 110, 87, 70, 56, 45,
6700 /* 15 */ 36, 29, 23, 18, 15,
6701 };
6702
6703 /*
6704 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6705 *
6706 * In cases where the weight does not change often, we can use the
6707 * precalculated inverse to speed up arithmetics by turning divisions
6708 * into multiplications:
6709 */
6710 const u32 sched_prio_to_wmult[40] = {
6711 /* -20 */ 48388, 59856, 76040, 92818, 118348,
6712 /* -15 */ 147320, 184698, 229616, 287308, 360437,
6713 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
6714 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
6715 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
6716 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
6717 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
6718 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6719 };