]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
hlist: drop the node parameter from iterators
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625
626 #else /* CONFIG_NO_HZ */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
632
633 #endif /* CONFIG_NO_HZ */
634
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
650
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
672
673 parent = from;
674
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
697
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
703
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
717
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
721
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
728
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
735
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
741 enqueue_task(rq, p, flags);
742 }
743
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
749 dequeue_task(rq, p, flags);
750 }
751
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((&paravirt_steal_rq_enabled))) {
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802 #endif
803
804 rq->clock_task += delta;
805
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
841
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
849
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
860
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
867
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
887
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
896
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
908
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
933
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967
968 trace_sched_migrate_task(p, new_cpu);
969
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
972
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
984
985 __set_task_cpu(p, new_cpu);
986 }
987
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
992
993 static int migration_cpu_stop(void *data);
994
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1017
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1026
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1043
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1057
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1074
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1091
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1099
1100 return ncsw;
1101 }
1102
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
1139
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
1157 }
1158
1159 for (;;) {
1160 /* Any allowed, online CPU? */
1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
1168
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187 out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
1198 }
1199
1200 return dest_cpu;
1201 }
1202
1203 /*
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205 */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 !cpu_online(cpu)))
1223 cpu = select_fallback_rq(task_cpu(p), p);
1224
1225 return cpu;
1226 }
1227
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232 }
1233 #endif
1234
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 struct rq *rq = this_rq();
1240
1241 #ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 rcu_read_lock();
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
1258 rcu_read_unlock();
1259 }
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
1264 #endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
1267 schedstat_inc(p, se.statistics.nr_wakeups);
1268
1269 if (wake_flags & WF_SYNC)
1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 activate_task(rq, p, en_flags);
1278 p->on_rq = 1;
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284
1285 /*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 trace_sched_wakeup(p, true);
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
1299 if (rq->idle_stamp) {
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309 #endif
1310 }
1311
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318 #endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323
1324 /*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343 }
1344
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 struct rq *rq = this_rq();
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
1351
1352 raw_spin_lock(&rq->lock);
1353
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361 }
1362
1363 void scheduler_ipi(void)
1364 {
1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
1382 sched_ttwu_pending();
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 }
1391 irq_exit();
1392 }
1393
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 smp_send_reschedule(cpu);
1398 }
1399
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 struct rq *rq = cpu_rq(cpu);
1409
1410 #if defined(CONFIG_SMP)
1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416 #endif
1417
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
1421 }
1422
1423 /**
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1437 */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 unsigned long flags;
1442 int cpu, success = 0;
1443
1444 smp_wmb();
1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 if (!(p->state & state))
1447 goto out;
1448
1449 success = 1; /* we're going to change ->state */
1450 cpu = task_cpu(p);
1451
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1454
1455 #ifdef CONFIG_SMP
1456 /*
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
1459 */
1460 while (p->on_cpu)
1461 cpu_relax();
1462 /*
1463 * Pairs with the smp_wmb() in finish_lock_switch().
1464 */
1465 smp_rmb();
1466
1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 p->state = TASK_WAKING;
1469
1470 if (p->sched_class->task_waking)
1471 p->sched_class->task_waking(p);
1472
1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
1476 set_task_cpu(p, cpu);
1477 }
1478 #endif /* CONFIG_SMP */
1479
1480 ttwu_queue(p, cpu);
1481 stat:
1482 ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485
1486 return success;
1487 }
1488
1489 /**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495 * the current task.
1496 */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 struct rq *rq = task_rq(p);
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
1511 if (!(p->state & TASK_NORMAL))
1512 goto out;
1513
1514 if (!p->on_rq)
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
1517 ttwu_do_wakeup(rq, p, 0);
1518 ttwu_stat(p, smp_processor_id(), 0);
1519 out:
1520 raw_spin_unlock(&p->pi_lock);
1521 }
1522
1523 /**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
1534 int wake_up_process(struct task_struct *p)
1535 {
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1538 }
1539 EXPORT_SYMBOL(wake_up_process);
1540
1541 int wake_up_state(struct task_struct *p, unsigned int state)
1542 {
1543 return try_to_wake_up(p, state, 0);
1544 }
1545
1546 /*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552 static void __sched_fork(struct task_struct *p)
1553 {
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.prev_sum_exec_runtime = 0;
1560 p->se.nr_migrations = 0;
1561 p->se.vruntime = 0;
1562 INIT_LIST_HEAD(&p->se.group_node);
1563
1564 /*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572 #endif
1573 #ifdef CONFIG_SCHEDSTATS
1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1575 #endif
1576
1577 INIT_LIST_HEAD(&p->rt.run_list);
1578
1579 #ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581 #endif
1582
1583 #ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
1586 p->mm->numa_next_reset = jiffies;
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 p->numa_work.next = &p->numa_work;
1595 #endif /* CONFIG_NUMA_BALANCING */
1596 }
1597
1598 #ifdef CONFIG_NUMA_BALANCING
1599 #ifdef CONFIG_SCHED_DEBUG
1600 void set_numabalancing_state(bool enabled)
1601 {
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606 }
1607 #else
1608 __read_mostly bool numabalancing_enabled;
1609
1610 void set_numabalancing_state(bool enabled)
1611 {
1612 numabalancing_enabled = enabled;
1613 }
1614 #endif /* CONFIG_SCHED_DEBUG */
1615 #endif /* CONFIG_NUMA_BALANCING */
1616
1617 /*
1618 * fork()/clone()-time setup:
1619 */
1620 void sched_fork(struct task_struct *p)
1621 {
1622 unsigned long flags;
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
1626 /*
1627 * We mark the process as running here. This guarantees that
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
1631 p->state = TASK_RUNNING;
1632
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
1642 if (task_has_rt_policy(p)) {
1643 p->policy = SCHED_NORMAL;
1644 p->static_prio = NICE_TO_PRIO(0);
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
1651
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
1658
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
1661
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
1673 set_task_cpu(p, cpu);
1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675
1676 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1677 if (likely(sched_info_on()))
1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1679 #endif
1680 #if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
1682 #endif
1683 #ifdef CONFIG_PREEMPT_COUNT
1684 /* Want to start with kernel preemption disabled. */
1685 task_thread_info(p)->preempt_count = 1;
1686 #endif
1687 #ifdef CONFIG_SMP
1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689 #endif
1690
1691 put_cpu();
1692 }
1693
1694 /*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
1701 void wake_up_new_task(struct task_struct *p)
1702 {
1703 unsigned long flags;
1704 struct rq *rq;
1705
1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
1707 #ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
1712 */
1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714 #endif
1715
1716 rq = __task_rq_lock(p);
1717 activate_task(rq, p, 0);
1718 p->on_rq = 1;
1719 trace_sched_wakeup_new(p, true);
1720 check_preempt_curr(rq, p, WF_FORK);
1721 #ifdef CONFIG_SMP
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
1724 #endif
1725 task_rq_unlock(rq, p, &flags);
1726 }
1727
1728 #ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730 /**
1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1732 * @notifier: notifier struct to register
1733 */
1734 void preempt_notifier_register(struct preempt_notifier *notifier)
1735 {
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737 }
1738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740 /**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
1742 * @notifier: notifier struct to unregister
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747 {
1748 hlist_del(&notifier->link);
1749 }
1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753 {
1754 struct preempt_notifier *notifier;
1755
1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758 }
1759
1760 static void
1761 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763 {
1764 struct preempt_notifier *notifier;
1765
1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767 notifier->ops->sched_out(notifier, next);
1768 }
1769
1770 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1771
1772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773 {
1774 }
1775
1776 static void
1777 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779 {
1780 }
1781
1782 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1783
1784 /**
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
1787 * @prev: the current task that is being switched out
1788 * @next: the task we are going to switch to.
1789 *
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1792 * switch.
1793 *
1794 * prepare_task_switch sets up locking and calls architecture specific
1795 * hooks.
1796 */
1797 static inline void
1798 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 struct task_struct *next)
1800 {
1801 trace_sched_switch(prev, next);
1802 sched_info_switch(prev, next);
1803 perf_event_task_sched_out(prev, next);
1804 fire_sched_out_preempt_notifiers(prev, next);
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807 }
1808
1809 /**
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1813 *
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 __releases(rq->lock)
1826 {
1827 struct mm_struct *mm = rq->prev_mm;
1828 long prev_state;
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
1843 prev_state = prev->state;
1844 vtime_task_switch(prev);
1845 finish_arch_switch(prev);
1846 perf_event_task_sched_in(prev, current);
1847 finish_lock_switch(rq, prev);
1848 finish_arch_post_lock_switch();
1849
1850 fire_sched_in_preempt_notifiers(current);
1851 if (mm)
1852 mmdrop(mm);
1853 if (unlikely(prev_state == TASK_DEAD)) {
1854 /*
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
1857 */
1858 kprobe_flush_task(prev);
1859 put_task_struct(prev);
1860 }
1861 }
1862
1863 #ifdef CONFIG_SMP
1864
1865 /* assumes rq->lock is held */
1866 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867 {
1868 if (prev->sched_class->pre_schedule)
1869 prev->sched_class->pre_schedule(rq, prev);
1870 }
1871
1872 /* rq->lock is NOT held, but preemption is disabled */
1873 static inline void post_schedule(struct rq *rq)
1874 {
1875 if (rq->post_schedule) {
1876 unsigned long flags;
1877
1878 raw_spin_lock_irqsave(&rq->lock, flags);
1879 if (rq->curr->sched_class->post_schedule)
1880 rq->curr->sched_class->post_schedule(rq);
1881 raw_spin_unlock_irqrestore(&rq->lock, flags);
1882
1883 rq->post_schedule = 0;
1884 }
1885 }
1886
1887 #else
1888
1889 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890 {
1891 }
1892
1893 static inline void post_schedule(struct rq *rq)
1894 {
1895 }
1896
1897 #endif
1898
1899 /**
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1902 */
1903 asmlinkage void schedule_tail(struct task_struct *prev)
1904 __releases(rq->lock)
1905 {
1906 struct rq *rq = this_rq();
1907
1908 finish_task_switch(rq, prev);
1909
1910 /*
1911 * FIXME: do we need to worry about rq being invalidated by the
1912 * task_switch?
1913 */
1914 post_schedule(rq);
1915
1916 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 /* In this case, finish_task_switch does not reenable preemption */
1918 preempt_enable();
1919 #endif
1920 if (current->set_child_tid)
1921 put_user(task_pid_vnr(current), current->set_child_tid);
1922 }
1923
1924 /*
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1927 */
1928 static inline void
1929 context_switch(struct rq *rq, struct task_struct *prev,
1930 struct task_struct *next)
1931 {
1932 struct mm_struct *mm, *oldmm;
1933
1934 prepare_task_switch(rq, prev, next);
1935
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
1943 arch_start_context_switch(prev);
1944
1945 if (!mm) {
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
1952 if (!prev->mm) {
1953 prev->active_mm = NULL;
1954 rq->prev_mm = oldmm;
1955 }
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964 #endif
1965
1966 context_tracking_task_switch(prev, next);
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1969
1970 barrier();
1971 /*
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1975 */
1976 finish_task_switch(this_rq(), prev);
1977 }
1978
1979 /*
1980 * nr_running and nr_context_switches:
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1983 * threads, total number of context switches performed since bootup.
1984 */
1985 unsigned long nr_running(void)
1986 {
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
1993 }
1994
1995 unsigned long long nr_context_switches(void)
1996 {
1997 int i;
1998 unsigned long long sum = 0;
1999
2000 for_each_possible_cpu(i)
2001 sum += cpu_rq(i)->nr_switches;
2002
2003 return sum;
2004 }
2005
2006 unsigned long nr_iowait(void)
2007 {
2008 unsigned long i, sum = 0;
2009
2010 for_each_possible_cpu(i)
2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012
2013 return sum;
2014 }
2015
2016 unsigned long nr_iowait_cpu(int cpu)
2017 {
2018 struct rq *this = cpu_rq(cpu);
2019 return atomic_read(&this->nr_iowait);
2020 }
2021
2022 unsigned long this_cpu_load(void)
2023 {
2024 struct rq *this = this_rq();
2025 return this->cpu_load[0];
2026 }
2027
2028
2029 /*
2030 * Global load-average calculations
2031 *
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2034 *
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2037 *
2038 * Once every LOAD_FREQ:
2039 *
2040 * nr_active = 0;
2041 * for_each_possible_cpu(cpu)
2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043 *
2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045 *
2046 * Due to a number of reasons the above turns in the mess below:
2047 *
2048 * - for_each_possible_cpu() is prohibitively expensive on machines with
2049 * serious number of cpus, therefore we need to take a distributed approach
2050 * to calculating nr_active.
2051 *
2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054 *
2055 * So assuming nr_active := 0 when we start out -- true per definition, we
2056 * can simply take per-cpu deltas and fold those into a global accumulate
2057 * to obtain the same result. See calc_load_fold_active().
2058 *
2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 * across the machine, we assume 10 ticks is sufficient time for every
2061 * cpu to have completed this task.
2062 *
2063 * This places an upper-bound on the IRQ-off latency of the machine. Then
2064 * again, being late doesn't loose the delta, just wrecks the sample.
2065 *
2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 * this would add another cross-cpu cacheline miss and atomic operation
2068 * to the wakeup path. Instead we increment on whatever cpu the task ran
2069 * when it went into uninterruptible state and decrement on whatever cpu
2070 * did the wakeup. This means that only the sum of nr_uninterruptible over
2071 * all cpus yields the correct result.
2072 *
2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074 */
2075
2076 /* Variables and functions for calc_load */
2077 static atomic_long_t calc_load_tasks;
2078 static unsigned long calc_load_update;
2079 unsigned long avenrun[3];
2080 EXPORT_SYMBOL(avenrun); /* should be removed */
2081
2082 /**
2083 * get_avenrun - get the load average array
2084 * @loads: pointer to dest load array
2085 * @offset: offset to add
2086 * @shift: shift count to shift the result left
2087 *
2088 * These values are estimates at best, so no need for locking.
2089 */
2090 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091 {
2092 loads[0] = (avenrun[0] + offset) << shift;
2093 loads[1] = (avenrun[1] + offset) << shift;
2094 loads[2] = (avenrun[2] + offset) << shift;
2095 }
2096
2097 static long calc_load_fold_active(struct rq *this_rq)
2098 {
2099 long nr_active, delta = 0;
2100
2101 nr_active = this_rq->nr_running;
2102 nr_active += (long) this_rq->nr_uninterruptible;
2103
2104 if (nr_active != this_rq->calc_load_active) {
2105 delta = nr_active - this_rq->calc_load_active;
2106 this_rq->calc_load_active = nr_active;
2107 }
2108
2109 return delta;
2110 }
2111
2112 /*
2113 * a1 = a0 * e + a * (1 - e)
2114 */
2115 static unsigned long
2116 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117 {
2118 load *= exp;
2119 load += active * (FIXED_1 - exp);
2120 load += 1UL << (FSHIFT - 1);
2121 return load >> FSHIFT;
2122 }
2123
2124 #ifdef CONFIG_NO_HZ
2125 /*
2126 * Handle NO_HZ for the global load-average.
2127 *
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2130 * NO_HZ.
2131 *
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2135 *
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2137 *
2138 * - When we go NO_HZ idle during the window, we can negate our sample
2139 * contribution, causing under-accounting.
2140 *
2141 * We avoid this by keeping two idle-delta counters and flipping them
2142 * when the window starts, thus separating old and new NO_HZ load.
2143 *
2144 * The only trick is the slight shift in index flip for read vs write.
2145 *
2146 * 0s 5s 10s 15s
2147 * +10 +10 +10 +10
2148 * |-|-----------|-|-----------|-|-----------|-|
2149 * r:0 0 1 1 0 0 1 1 0
2150 * w:0 1 1 0 0 1 1 0 0
2151 *
2152 * This ensures we'll fold the old idle contribution in this window while
2153 * accumlating the new one.
2154 *
2155 * - When we wake up from NO_HZ idle during the window, we push up our
2156 * contribution, since we effectively move our sample point to a known
2157 * busy state.
2158 *
2159 * This is solved by pushing the window forward, and thus skipping the
2160 * sample, for this cpu (effectively using the idle-delta for this cpu which
2161 * was in effect at the time the window opened). This also solves the issue
2162 * of having to deal with a cpu having been in NOHZ idle for multiple
2163 * LOAD_FREQ intervals.
2164 *
2165 * When making the ILB scale, we should try to pull this in as well.
2166 */
2167 static atomic_long_t calc_load_idle[2];
2168 static int calc_load_idx;
2169
2170 static inline int calc_load_write_idx(void)
2171 {
2172 int idx = calc_load_idx;
2173
2174 /*
2175 * See calc_global_nohz(), if we observe the new index, we also
2176 * need to observe the new update time.
2177 */
2178 smp_rmb();
2179
2180 /*
2181 * If the folding window started, make sure we start writing in the
2182 * next idle-delta.
2183 */
2184 if (!time_before(jiffies, calc_load_update))
2185 idx++;
2186
2187 return idx & 1;
2188 }
2189
2190 static inline int calc_load_read_idx(void)
2191 {
2192 return calc_load_idx & 1;
2193 }
2194
2195 void calc_load_enter_idle(void)
2196 {
2197 struct rq *this_rq = this_rq();
2198 long delta;
2199
2200 /*
2201 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 * into the pending idle delta.
2203 */
2204 delta = calc_load_fold_active(this_rq);
2205 if (delta) {
2206 int idx = calc_load_write_idx();
2207 atomic_long_add(delta, &calc_load_idle[idx]);
2208 }
2209 }
2210
2211 void calc_load_exit_idle(void)
2212 {
2213 struct rq *this_rq = this_rq();
2214
2215 /*
2216 * If we're still before the sample window, we're done.
2217 */
2218 if (time_before(jiffies, this_rq->calc_load_update))
2219 return;
2220
2221 /*
2222 * We woke inside or after the sample window, this means we're already
2223 * accounted through the nohz accounting, so skip the entire deal and
2224 * sync up for the next window.
2225 */
2226 this_rq->calc_load_update = calc_load_update;
2227 if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 this_rq->calc_load_update += LOAD_FREQ;
2229 }
2230
2231 static long calc_load_fold_idle(void)
2232 {
2233 int idx = calc_load_read_idx();
2234 long delta = 0;
2235
2236 if (atomic_long_read(&calc_load_idle[idx]))
2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2238
2239 return delta;
2240 }
2241
2242 /**
2243 * fixed_power_int - compute: x^n, in O(log n) time
2244 *
2245 * @x: base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n: power to raise @x to.
2248 *
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2255 * vector.
2256 */
2257 static unsigned long
2258 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259 {
2260 unsigned long result = 1UL << frac_bits;
2261
2262 if (n) for (;;) {
2263 if (n & 1) {
2264 result *= x;
2265 result += 1UL << (frac_bits - 1);
2266 result >>= frac_bits;
2267 }
2268 n >>= 1;
2269 if (!n)
2270 break;
2271 x *= x;
2272 x += 1UL << (frac_bits - 1);
2273 x >>= frac_bits;
2274 }
2275
2276 return result;
2277 }
2278
2279 /*
2280 * a1 = a0 * e + a * (1 - e)
2281 *
2282 * a2 = a1 * e + a * (1 - e)
2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 * = a0 * e^2 + a * (1 - e) * (1 + e)
2285 *
2286 * a3 = a2 * e + a * (1 - e)
2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289 *
2290 * ...
2291 *
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 * = a0 * e^n + a * (1 - e^n)
2295 *
2296 * [1] application of the geometric series:
2297 *
2298 * n 1 - x^(n+1)
2299 * S_n := \Sum x^i = -------------
2300 * i=0 1 - x
2301 */
2302 static unsigned long
2303 calc_load_n(unsigned long load, unsigned long exp,
2304 unsigned long active, unsigned int n)
2305 {
2306
2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308 }
2309
2310 /*
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2315 *
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2318 */
2319 static void calc_global_nohz(void)
2320 {
2321 long delta, active, n;
2322
2323 if (!time_before(jiffies, calc_load_update + 10)) {
2324 /*
2325 * Catch-up, fold however many we are behind still
2326 */
2327 delta = jiffies - calc_load_update - 10;
2328 n = 1 + (delta / LOAD_FREQ);
2329
2330 active = atomic_long_read(&calc_load_tasks);
2331 active = active > 0 ? active * FIXED_1 : 0;
2332
2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2336
2337 calc_load_update += n * LOAD_FREQ;
2338 }
2339
2340 /*
2341 * Flip the idle index...
2342 *
2343 * Make sure we first write the new time then flip the index, so that
2344 * calc_load_write_idx() will see the new time when it reads the new
2345 * index, this avoids a double flip messing things up.
2346 */
2347 smp_wmb();
2348 calc_load_idx++;
2349 }
2350 #else /* !CONFIG_NO_HZ */
2351
2352 static inline long calc_load_fold_idle(void) { return 0; }
2353 static inline void calc_global_nohz(void) { }
2354
2355 #endif /* CONFIG_NO_HZ */
2356
2357 /*
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
2360 */
2361 void calc_global_load(unsigned long ticks)
2362 {
2363 long active, delta;
2364
2365 if (time_before(jiffies, calc_load_update + 10))
2366 return;
2367
2368 /*
2369 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370 */
2371 delta = calc_load_fold_idle();
2372 if (delta)
2373 atomic_long_add(delta, &calc_load_tasks);
2374
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
2377
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2381
2382 calc_load_update += LOAD_FREQ;
2383
2384 /*
2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2386 */
2387 calc_global_nohz();
2388 }
2389
2390 /*
2391 * Called from update_cpu_load() to periodically update this CPU's
2392 * active count.
2393 */
2394 static void calc_load_account_active(struct rq *this_rq)
2395 {
2396 long delta;
2397
2398 if (time_before(jiffies, this_rq->calc_load_update))
2399 return;
2400
2401 delta = calc_load_fold_active(this_rq);
2402 if (delta)
2403 atomic_long_add(delta, &calc_load_tasks);
2404
2405 this_rq->calc_load_update += LOAD_FREQ;
2406 }
2407
2408 /*
2409 * End of global load-average stuff
2410 */
2411
2412 /*
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415 *
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420 *
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424 *
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2431 * Example:
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434 *
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2438 */
2439 #define DEGRADE_SHIFT 7
2440 static const unsigned char
2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442 static const unsigned char
2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 {0, 0, 0, 0, 0, 0, 0, 0},
2445 {64, 32, 8, 0, 0, 0, 0, 0},
2446 {96, 72, 40, 12, 1, 0, 0},
2447 {112, 98, 75, 43, 15, 1, 0},
2448 {120, 112, 98, 76, 45, 16, 2} };
2449
2450 /*
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2454 */
2455 static unsigned long
2456 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457 {
2458 int j = 0;
2459
2460 if (!missed_updates)
2461 return load;
2462
2463 if (missed_updates >= degrade_zero_ticks[idx])
2464 return 0;
2465
2466 if (idx == 1)
2467 return load >> missed_updates;
2468
2469 while (missed_updates) {
2470 if (missed_updates % 2)
2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472
2473 missed_updates >>= 1;
2474 j++;
2475 }
2476 return load;
2477 }
2478
2479 /*
2480 * Update rq->cpu_load[] statistics. This function is usually called every
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
2483 */
2484 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 unsigned long pending_updates)
2486 {
2487 int i, scale;
2488
2489 this_rq->nr_load_updates++;
2490
2491 /* Update our load: */
2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2494 unsigned long old_load, new_load;
2495
2496 /* scale is effectively 1 << i now, and >> i divides by scale */
2497
2498 old_load = this_rq->cpu_load[i];
2499 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2500 new_load = this_load;
2501 /*
2502 * Round up the averaging division if load is increasing. This
2503 * prevents us from getting stuck on 9 if the load is 10, for
2504 * example.
2505 */
2506 if (new_load > old_load)
2507 new_load += scale - 1;
2508
2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2510 }
2511
2512 sched_avg_update(this_rq);
2513 }
2514
2515 #ifdef CONFIG_NO_HZ
2516 /*
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520 *
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2525 *
2526 * This means we might still be one tick off for nohz periods.
2527 */
2528
2529 /*
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2531 * idle balance.
2532 */
2533 void update_idle_cpu_load(struct rq *this_rq)
2534 {
2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 unsigned long load = this_rq->load.weight;
2537 unsigned long pending_updates;
2538
2539 /*
2540 * bail if there's load or we're actually up-to-date.
2541 */
2542 if (load || curr_jiffies == this_rq->last_load_update_tick)
2543 return;
2544
2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 this_rq->last_load_update_tick = curr_jiffies;
2547
2548 __update_cpu_load(this_rq, load, pending_updates);
2549 }
2550
2551 /*
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553 */
2554 void update_cpu_load_nohz(void)
2555 {
2556 struct rq *this_rq = this_rq();
2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 unsigned long pending_updates;
2559
2560 if (curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 raw_spin_lock(&this_rq->lock);
2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 if (pending_updates) {
2566 this_rq->last_load_update_tick = curr_jiffies;
2567 /*
2568 * We were idle, this means load 0, the current load might be
2569 * !0 due to remote wakeups and the sort.
2570 */
2571 __update_cpu_load(this_rq, 0, pending_updates);
2572 }
2573 raw_spin_unlock(&this_rq->lock);
2574 }
2575 #endif /* CONFIG_NO_HZ */
2576
2577 /*
2578 * Called from scheduler_tick()
2579 */
2580 static void update_cpu_load_active(struct rq *this_rq)
2581 {
2582 /*
2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2584 */
2585 this_rq->last_load_update_tick = jiffies;
2586 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2587
2588 calc_load_account_active(this_rq);
2589 }
2590
2591 #ifdef CONFIG_SMP
2592
2593 /*
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
2596 */
2597 void sched_exec(void)
2598 {
2599 struct task_struct *p = current;
2600 unsigned long flags;
2601 int dest_cpu;
2602
2603 raw_spin_lock_irqsave(&p->pi_lock, flags);
2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605 if (dest_cpu == smp_processor_id())
2606 goto unlock;
2607
2608 if (likely(cpu_active(dest_cpu))) {
2609 struct migration_arg arg = { p, dest_cpu };
2610
2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2613 return;
2614 }
2615 unlock:
2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617 }
2618
2619 #endif
2620
2621 DEFINE_PER_CPU(struct kernel_stat, kstat);
2622 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2623
2624 EXPORT_PER_CPU_SYMBOL(kstat);
2625 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2626
2627 /*
2628 * Return any ns on the sched_clock that have not yet been accounted in
2629 * @p in case that task is currently running.
2630 *
2631 * Called with task_rq_lock() held on @rq.
2632 */
2633 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634 {
2635 u64 ns = 0;
2636
2637 if (task_current(rq, p)) {
2638 update_rq_clock(rq);
2639 ns = rq->clock_task - p->se.exec_start;
2640 if ((s64)ns < 0)
2641 ns = 0;
2642 }
2643
2644 return ns;
2645 }
2646
2647 unsigned long long task_delta_exec(struct task_struct *p)
2648 {
2649 unsigned long flags;
2650 struct rq *rq;
2651 u64 ns = 0;
2652
2653 rq = task_rq_lock(p, &flags);
2654 ns = do_task_delta_exec(p, rq);
2655 task_rq_unlock(rq, p, &flags);
2656
2657 return ns;
2658 }
2659
2660 /*
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2664 */
2665 unsigned long long task_sched_runtime(struct task_struct *p)
2666 {
2667 unsigned long flags;
2668 struct rq *rq;
2669 u64 ns = 0;
2670
2671 rq = task_rq_lock(p, &flags);
2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673 task_rq_unlock(rq, p, &flags);
2674
2675 return ns;
2676 }
2677
2678 /*
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
2681 */
2682 void scheduler_tick(void)
2683 {
2684 int cpu = smp_processor_id();
2685 struct rq *rq = cpu_rq(cpu);
2686 struct task_struct *curr = rq->curr;
2687
2688 sched_clock_tick();
2689
2690 raw_spin_lock(&rq->lock);
2691 update_rq_clock(rq);
2692 update_cpu_load_active(rq);
2693 curr->sched_class->task_tick(rq, curr, 0);
2694 raw_spin_unlock(&rq->lock);
2695
2696 perf_event_task_tick();
2697
2698 #ifdef CONFIG_SMP
2699 rq->idle_balance = idle_cpu(cpu);
2700 trigger_load_balance(rq, cpu);
2701 #endif
2702 }
2703
2704 notrace unsigned long get_parent_ip(unsigned long addr)
2705 {
2706 if (in_lock_functions(addr)) {
2707 addr = CALLER_ADDR2;
2708 if (in_lock_functions(addr))
2709 addr = CALLER_ADDR3;
2710 }
2711 return addr;
2712 }
2713
2714 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 defined(CONFIG_PREEMPT_TRACER))
2716
2717 void __kprobes add_preempt_count(int val)
2718 {
2719 #ifdef CONFIG_DEBUG_PREEMPT
2720 /*
2721 * Underflow?
2722 */
2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724 return;
2725 #endif
2726 preempt_count() += val;
2727 #ifdef CONFIG_DEBUG_PREEMPT
2728 /*
2729 * Spinlock count overflowing soon?
2730 */
2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732 PREEMPT_MASK - 10);
2733 #endif
2734 if (preempt_count() == val)
2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2736 }
2737 EXPORT_SYMBOL(add_preempt_count);
2738
2739 void __kprobes sub_preempt_count(int val)
2740 {
2741 #ifdef CONFIG_DEBUG_PREEMPT
2742 /*
2743 * Underflow?
2744 */
2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2746 return;
2747 /*
2748 * Is the spinlock portion underflowing?
2749 */
2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 !(preempt_count() & PREEMPT_MASK)))
2752 return;
2753 #endif
2754
2755 if (preempt_count() == val)
2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2757 preempt_count() -= val;
2758 }
2759 EXPORT_SYMBOL(sub_preempt_count);
2760
2761 #endif
2762
2763 /*
2764 * Print scheduling while atomic bug:
2765 */
2766 static noinline void __schedule_bug(struct task_struct *prev)
2767 {
2768 if (oops_in_progress)
2769 return;
2770
2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 prev->comm, prev->pid, preempt_count());
2773
2774 debug_show_held_locks(prev);
2775 print_modules();
2776 if (irqs_disabled())
2777 print_irqtrace_events(prev);
2778 dump_stack();
2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2780 }
2781
2782 /*
2783 * Various schedule()-time debugging checks and statistics:
2784 */
2785 static inline void schedule_debug(struct task_struct *prev)
2786 {
2787 /*
2788 * Test if we are atomic. Since do_exit() needs to call into
2789 * schedule() atomically, we ignore that path for now.
2790 * Otherwise, whine if we are scheduling when we should not be.
2791 */
2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2793 __schedule_bug(prev);
2794 rcu_sleep_check();
2795
2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797
2798 schedstat_inc(this_rq(), sched_count);
2799 }
2800
2801 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2802 {
2803 if (prev->on_rq || rq->skip_clock_update < 0)
2804 update_rq_clock(rq);
2805 prev->sched_class->put_prev_task(rq, prev);
2806 }
2807
2808 /*
2809 * Pick up the highest-prio task:
2810 */
2811 static inline struct task_struct *
2812 pick_next_task(struct rq *rq)
2813 {
2814 const struct sched_class *class;
2815 struct task_struct *p;
2816
2817 /*
2818 * Optimization: we know that if all tasks are in
2819 * the fair class we can call that function directly:
2820 */
2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822 p = fair_sched_class.pick_next_task(rq);
2823 if (likely(p))
2824 return p;
2825 }
2826
2827 for_each_class(class) {
2828 p = class->pick_next_task(rq);
2829 if (p)
2830 return p;
2831 }
2832
2833 BUG(); /* the idle class will always have a runnable task */
2834 }
2835
2836 /*
2837 * __schedule() is the main scheduler function.
2838 *
2839 * The main means of driving the scheduler and thus entering this function are:
2840 *
2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842 *
2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 * paths. For example, see arch/x86/entry_64.S.
2845 *
2846 * To drive preemption between tasks, the scheduler sets the flag in timer
2847 * interrupt handler scheduler_tick().
2848 *
2849 * 3. Wakeups don't really cause entry into schedule(). They add a
2850 * task to the run-queue and that's it.
2851 *
2852 * Now, if the new task added to the run-queue preempts the current
2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 * called on the nearest possible occasion:
2855 *
2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857 *
2858 * - in syscall or exception context, at the next outmost
2859 * preempt_enable(). (this might be as soon as the wake_up()'s
2860 * spin_unlock()!)
2861 *
2862 * - in IRQ context, return from interrupt-handler to
2863 * preemptible context
2864 *
2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866 * then at the next:
2867 *
2868 * - cond_resched() call
2869 * - explicit schedule() call
2870 * - return from syscall or exception to user-space
2871 * - return from interrupt-handler to user-space
2872 */
2873 static void __sched __schedule(void)
2874 {
2875 struct task_struct *prev, *next;
2876 unsigned long *switch_count;
2877 struct rq *rq;
2878 int cpu;
2879
2880 need_resched:
2881 preempt_disable();
2882 cpu = smp_processor_id();
2883 rq = cpu_rq(cpu);
2884 rcu_note_context_switch(cpu);
2885 prev = rq->curr;
2886
2887 schedule_debug(prev);
2888
2889 if (sched_feat(HRTICK))
2890 hrtick_clear(rq);
2891
2892 raw_spin_lock_irq(&rq->lock);
2893
2894 switch_count = &prev->nivcsw;
2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2896 if (unlikely(signal_pending_state(prev->state, prev))) {
2897 prev->state = TASK_RUNNING;
2898 } else {
2899 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900 prev->on_rq = 0;
2901
2902 /*
2903 * If a worker went to sleep, notify and ask workqueue
2904 * whether it wants to wake up a task to maintain
2905 * concurrency.
2906 */
2907 if (prev->flags & PF_WQ_WORKER) {
2908 struct task_struct *to_wakeup;
2909
2910 to_wakeup = wq_worker_sleeping(prev, cpu);
2911 if (to_wakeup)
2912 try_to_wake_up_local(to_wakeup);
2913 }
2914 }
2915 switch_count = &prev->nvcsw;
2916 }
2917
2918 pre_schedule(rq, prev);
2919
2920 if (unlikely(!rq->nr_running))
2921 idle_balance(cpu, rq);
2922
2923 put_prev_task(rq, prev);
2924 next = pick_next_task(rq);
2925 clear_tsk_need_resched(prev);
2926 rq->skip_clock_update = 0;
2927
2928 if (likely(prev != next)) {
2929 rq->nr_switches++;
2930 rq->curr = next;
2931 ++*switch_count;
2932
2933 context_switch(rq, prev, next); /* unlocks the rq */
2934 /*
2935 * The context switch have flipped the stack from under us
2936 * and restored the local variables which were saved when
2937 * this task called schedule() in the past. prev == current
2938 * is still correct, but it can be moved to another cpu/rq.
2939 */
2940 cpu = smp_processor_id();
2941 rq = cpu_rq(cpu);
2942 } else
2943 raw_spin_unlock_irq(&rq->lock);
2944
2945 post_schedule(rq);
2946
2947 sched_preempt_enable_no_resched();
2948 if (need_resched())
2949 goto need_resched;
2950 }
2951
2952 static inline void sched_submit_work(struct task_struct *tsk)
2953 {
2954 if (!tsk->state || tsk_is_pi_blocked(tsk))
2955 return;
2956 /*
2957 * If we are going to sleep and we have plugged IO queued,
2958 * make sure to submit it to avoid deadlocks.
2959 */
2960 if (blk_needs_flush_plug(tsk))
2961 blk_schedule_flush_plug(tsk);
2962 }
2963
2964 asmlinkage void __sched schedule(void)
2965 {
2966 struct task_struct *tsk = current;
2967
2968 sched_submit_work(tsk);
2969 __schedule();
2970 }
2971 EXPORT_SYMBOL(schedule);
2972
2973 #ifdef CONFIG_CONTEXT_TRACKING
2974 asmlinkage void __sched schedule_user(void)
2975 {
2976 /*
2977 * If we come here after a random call to set_need_resched(),
2978 * or we have been woken up remotely but the IPI has not yet arrived,
2979 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 * we find a better solution.
2981 */
2982 user_exit();
2983 schedule();
2984 user_enter();
2985 }
2986 #endif
2987
2988 /**
2989 * schedule_preempt_disabled - called with preemption disabled
2990 *
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2992 */
2993 void __sched schedule_preempt_disabled(void)
2994 {
2995 sched_preempt_enable_no_resched();
2996 schedule();
2997 preempt_disable();
2998 }
2999
3000 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3001
3002 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003 {
3004 if (lock->owner != owner)
3005 return false;
3006
3007 /*
3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 * lock->owner still matches owner, if that fails, owner might
3010 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 * ensures the memory stays valid.
3012 */
3013 barrier();
3014
3015 return owner->on_cpu;
3016 }
3017
3018 /*
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3021 */
3022 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023 {
3024 if (!sched_feat(OWNER_SPIN))
3025 return 0;
3026
3027 rcu_read_lock();
3028 while (owner_running(lock, owner)) {
3029 if (need_resched())
3030 break;
3031
3032 arch_mutex_cpu_relax();
3033 }
3034 rcu_read_unlock();
3035
3036 /*
3037 * We break out the loop above on need_resched() and when the
3038 * owner changed, which is a sign for heavy contention. Return
3039 * success only when lock->owner is NULL.
3040 */
3041 return lock->owner == NULL;
3042 }
3043 #endif
3044
3045 #ifdef CONFIG_PREEMPT
3046 /*
3047 * this is the entry point to schedule() from in-kernel preemption
3048 * off of preempt_enable. Kernel preemptions off return from interrupt
3049 * occur there and call schedule directly.
3050 */
3051 asmlinkage void __sched notrace preempt_schedule(void)
3052 {
3053 struct thread_info *ti = current_thread_info();
3054
3055 /*
3056 * If there is a non-zero preempt_count or interrupts are disabled,
3057 * we do not want to preempt the current task. Just return..
3058 */
3059 if (likely(ti->preempt_count || irqs_disabled()))
3060 return;
3061
3062 do {
3063 add_preempt_count_notrace(PREEMPT_ACTIVE);
3064 __schedule();
3065 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3066
3067 /*
3068 * Check again in case we missed a preemption opportunity
3069 * between schedule and now.
3070 */
3071 barrier();
3072 } while (need_resched());
3073 }
3074 EXPORT_SYMBOL(preempt_schedule);
3075
3076 /*
3077 * this is the entry point to schedule() from kernel preemption
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3081 */
3082 asmlinkage void __sched preempt_schedule_irq(void)
3083 {
3084 struct thread_info *ti = current_thread_info();
3085
3086 /* Catch callers which need to be fixed */
3087 BUG_ON(ti->preempt_count || !irqs_disabled());
3088
3089 user_exit();
3090 do {
3091 add_preempt_count(PREEMPT_ACTIVE);
3092 local_irq_enable();
3093 __schedule();
3094 local_irq_disable();
3095 sub_preempt_count(PREEMPT_ACTIVE);
3096
3097 /*
3098 * Check again in case we missed a preemption opportunity
3099 * between schedule and now.
3100 */
3101 barrier();
3102 } while (need_resched());
3103 }
3104
3105 #endif /* CONFIG_PREEMPT */
3106
3107 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3108 void *key)
3109 {
3110 return try_to_wake_up(curr->private, mode, wake_flags);
3111 }
3112 EXPORT_SYMBOL(default_wake_function);
3113
3114 /*
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3118 *
3119 * There are circumstances in which we can try to wake a task which has already
3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3122 */
3123 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3124 int nr_exclusive, int wake_flags, void *key)
3125 {
3126 wait_queue_t *curr, *next;
3127
3128 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3129 unsigned flags = curr->flags;
3130
3131 if (curr->func(curr, mode, wake_flags, key) &&
3132 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3133 break;
3134 }
3135 }
3136
3137 /**
3138 * __wake_up - wake up threads blocked on a waitqueue.
3139 * @q: the waitqueue
3140 * @mode: which threads
3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3142 * @key: is directly passed to the wakeup function
3143 *
3144 * It may be assumed that this function implies a write memory barrier before
3145 * changing the task state if and only if any tasks are woken up.
3146 */
3147 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3148 int nr_exclusive, void *key)
3149 {
3150 unsigned long flags;
3151
3152 spin_lock_irqsave(&q->lock, flags);
3153 __wake_up_common(q, mode, nr_exclusive, 0, key);
3154 spin_unlock_irqrestore(&q->lock, flags);
3155 }
3156 EXPORT_SYMBOL(__wake_up);
3157
3158 /*
3159 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3160 */
3161 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3162 {
3163 __wake_up_common(q, mode, nr, 0, NULL);
3164 }
3165 EXPORT_SYMBOL_GPL(__wake_up_locked);
3166
3167 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3168 {
3169 __wake_up_common(q, mode, 1, 0, key);
3170 }
3171 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3172
3173 /**
3174 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3175 * @q: the waitqueue
3176 * @mode: which threads
3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178 * @key: opaque value to be passed to wakeup targets
3179 *
3180 * The sync wakeup differs that the waker knows that it will schedule
3181 * away soon, so while the target thread will be woken up, it will not
3182 * be migrated to another CPU - ie. the two threads are 'synchronized'
3183 * with each other. This can prevent needless bouncing between CPUs.
3184 *
3185 * On UP it can prevent extra preemption.
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
3189 */
3190 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3191 int nr_exclusive, void *key)
3192 {
3193 unsigned long flags;
3194 int wake_flags = WF_SYNC;
3195
3196 if (unlikely(!q))
3197 return;
3198
3199 if (unlikely(!nr_exclusive))
3200 wake_flags = 0;
3201
3202 spin_lock_irqsave(&q->lock, flags);
3203 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3204 spin_unlock_irqrestore(&q->lock, flags);
3205 }
3206 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3207
3208 /*
3209 * __wake_up_sync - see __wake_up_sync_key()
3210 */
3211 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3212 {
3213 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3214 }
3215 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3216
3217 /**
3218 * complete: - signals a single thread waiting on this completion
3219 * @x: holds the state of this particular completion
3220 *
3221 * This will wake up a single thread waiting on this completion. Threads will be
3222 * awakened in the same order in which they were queued.
3223 *
3224 * See also complete_all(), wait_for_completion() and related routines.
3225 *
3226 * It may be assumed that this function implies a write memory barrier before
3227 * changing the task state if and only if any tasks are woken up.
3228 */
3229 void complete(struct completion *x)
3230 {
3231 unsigned long flags;
3232
3233 spin_lock_irqsave(&x->wait.lock, flags);
3234 x->done++;
3235 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3236 spin_unlock_irqrestore(&x->wait.lock, flags);
3237 }
3238 EXPORT_SYMBOL(complete);
3239
3240 /**
3241 * complete_all: - signals all threads waiting on this completion
3242 * @x: holds the state of this particular completion
3243 *
3244 * This will wake up all threads waiting on this particular completion event.
3245 *
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
3248 */
3249 void complete_all(struct completion *x)
3250 {
3251 unsigned long flags;
3252
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done += UINT_MAX/2;
3255 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3257 }
3258 EXPORT_SYMBOL(complete_all);
3259
3260 static inline long __sched
3261 do_wait_for_common(struct completion *x, long timeout, int state)
3262 {
3263 if (!x->done) {
3264 DECLARE_WAITQUEUE(wait, current);
3265
3266 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3267 do {
3268 if (signal_pending_state(state, current)) {
3269 timeout = -ERESTARTSYS;
3270 break;
3271 }
3272 __set_current_state(state);
3273 spin_unlock_irq(&x->wait.lock);
3274 timeout = schedule_timeout(timeout);
3275 spin_lock_irq(&x->wait.lock);
3276 } while (!x->done && timeout);
3277 __remove_wait_queue(&x->wait, &wait);
3278 if (!x->done)
3279 return timeout;
3280 }
3281 x->done--;
3282 return timeout ?: 1;
3283 }
3284
3285 static long __sched
3286 wait_for_common(struct completion *x, long timeout, int state)
3287 {
3288 might_sleep();
3289
3290 spin_lock_irq(&x->wait.lock);
3291 timeout = do_wait_for_common(x, timeout, state);
3292 spin_unlock_irq(&x->wait.lock);
3293 return timeout;
3294 }
3295
3296 /**
3297 * wait_for_completion: - waits for completion of a task
3298 * @x: holds the state of this particular completion
3299 *
3300 * This waits to be signaled for completion of a specific task. It is NOT
3301 * interruptible and there is no timeout.
3302 *
3303 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3304 * and interrupt capability. Also see complete().
3305 */
3306 void __sched wait_for_completion(struct completion *x)
3307 {
3308 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3309 }
3310 EXPORT_SYMBOL(wait_for_completion);
3311
3312 /**
3313 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3314 * @x: holds the state of this particular completion
3315 * @timeout: timeout value in jiffies
3316 *
3317 * This waits for either a completion of a specific task to be signaled or for a
3318 * specified timeout to expire. The timeout is in jiffies. It is not
3319 * interruptible.
3320 *
3321 * The return value is 0 if timed out, and positive (at least 1, or number of
3322 * jiffies left till timeout) if completed.
3323 */
3324 unsigned long __sched
3325 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3326 {
3327 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3328 }
3329 EXPORT_SYMBOL(wait_for_completion_timeout);
3330
3331 /**
3332 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3333 * @x: holds the state of this particular completion
3334 *
3335 * This waits for completion of a specific task to be signaled. It is
3336 * interruptible.
3337 *
3338 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3339 */
3340 int __sched wait_for_completion_interruptible(struct completion *x)
3341 {
3342 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3343 if (t == -ERESTARTSYS)
3344 return t;
3345 return 0;
3346 }
3347 EXPORT_SYMBOL(wait_for_completion_interruptible);
3348
3349 /**
3350 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3351 * @x: holds the state of this particular completion
3352 * @timeout: timeout value in jiffies
3353 *
3354 * This waits for either a completion of a specific task to be signaled or for a
3355 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3356 *
3357 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3358 * positive (at least 1, or number of jiffies left till timeout) if completed.
3359 */
3360 long __sched
3361 wait_for_completion_interruptible_timeout(struct completion *x,
3362 unsigned long timeout)
3363 {
3364 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3365 }
3366 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3367
3368 /**
3369 * wait_for_completion_killable: - waits for completion of a task (killable)
3370 * @x: holds the state of this particular completion
3371 *
3372 * This waits to be signaled for completion of a specific task. It can be
3373 * interrupted by a kill signal.
3374 *
3375 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3376 */
3377 int __sched wait_for_completion_killable(struct completion *x)
3378 {
3379 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3380 if (t == -ERESTARTSYS)
3381 return t;
3382 return 0;
3383 }
3384 EXPORT_SYMBOL(wait_for_completion_killable);
3385
3386 /**
3387 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3388 * @x: holds the state of this particular completion
3389 * @timeout: timeout value in jiffies
3390 *
3391 * This waits for either a completion of a specific task to be
3392 * signaled or for a specified timeout to expire. It can be
3393 * interrupted by a kill signal. The timeout is in jiffies.
3394 *
3395 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3396 * positive (at least 1, or number of jiffies left till timeout) if completed.
3397 */
3398 long __sched
3399 wait_for_completion_killable_timeout(struct completion *x,
3400 unsigned long timeout)
3401 {
3402 return wait_for_common(x, timeout, TASK_KILLABLE);
3403 }
3404 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3405
3406 /**
3407 * try_wait_for_completion - try to decrement a completion without blocking
3408 * @x: completion structure
3409 *
3410 * Returns: 0 if a decrement cannot be done without blocking
3411 * 1 if a decrement succeeded.
3412 *
3413 * If a completion is being used as a counting completion,
3414 * attempt to decrement the counter without blocking. This
3415 * enables us to avoid waiting if the resource the completion
3416 * is protecting is not available.
3417 */
3418 bool try_wait_for_completion(struct completion *x)
3419 {
3420 unsigned long flags;
3421 int ret = 1;
3422
3423 spin_lock_irqsave(&x->wait.lock, flags);
3424 if (!x->done)
3425 ret = 0;
3426 else
3427 x->done--;
3428 spin_unlock_irqrestore(&x->wait.lock, flags);
3429 return ret;
3430 }
3431 EXPORT_SYMBOL(try_wait_for_completion);
3432
3433 /**
3434 * completion_done - Test to see if a completion has any waiters
3435 * @x: completion structure
3436 *
3437 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3438 * 1 if there are no waiters.
3439 *
3440 */
3441 bool completion_done(struct completion *x)
3442 {
3443 unsigned long flags;
3444 int ret = 1;
3445
3446 spin_lock_irqsave(&x->wait.lock, flags);
3447 if (!x->done)
3448 ret = 0;
3449 spin_unlock_irqrestore(&x->wait.lock, flags);
3450 return ret;
3451 }
3452 EXPORT_SYMBOL(completion_done);
3453
3454 static long __sched
3455 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3456 {
3457 unsigned long flags;
3458 wait_queue_t wait;
3459
3460 init_waitqueue_entry(&wait, current);
3461
3462 __set_current_state(state);
3463
3464 spin_lock_irqsave(&q->lock, flags);
3465 __add_wait_queue(q, &wait);
3466 spin_unlock(&q->lock);
3467 timeout = schedule_timeout(timeout);
3468 spin_lock_irq(&q->lock);
3469 __remove_wait_queue(q, &wait);
3470 spin_unlock_irqrestore(&q->lock, flags);
3471
3472 return timeout;
3473 }
3474
3475 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3476 {
3477 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3478 }
3479 EXPORT_SYMBOL(interruptible_sleep_on);
3480
3481 long __sched
3482 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3483 {
3484 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3485 }
3486 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3487
3488 void __sched sleep_on(wait_queue_head_t *q)
3489 {
3490 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3491 }
3492 EXPORT_SYMBOL(sleep_on);
3493
3494 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3495 {
3496 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3497 }
3498 EXPORT_SYMBOL(sleep_on_timeout);
3499
3500 #ifdef CONFIG_RT_MUTEXES
3501
3502 /*
3503 * rt_mutex_setprio - set the current priority of a task
3504 * @p: task
3505 * @prio: prio value (kernel-internal form)
3506 *
3507 * This function changes the 'effective' priority of a task. It does
3508 * not touch ->normal_prio like __setscheduler().
3509 *
3510 * Used by the rt_mutex code to implement priority inheritance logic.
3511 */
3512 void rt_mutex_setprio(struct task_struct *p, int prio)
3513 {
3514 int oldprio, on_rq, running;
3515 struct rq *rq;
3516 const struct sched_class *prev_class;
3517
3518 BUG_ON(prio < 0 || prio > MAX_PRIO);
3519
3520 rq = __task_rq_lock(p);
3521
3522 /*
3523 * Idle task boosting is a nono in general. There is one
3524 * exception, when PREEMPT_RT and NOHZ is active:
3525 *
3526 * The idle task calls get_next_timer_interrupt() and holds
3527 * the timer wheel base->lock on the CPU and another CPU wants
3528 * to access the timer (probably to cancel it). We can safely
3529 * ignore the boosting request, as the idle CPU runs this code
3530 * with interrupts disabled and will complete the lock
3531 * protected section without being interrupted. So there is no
3532 * real need to boost.
3533 */
3534 if (unlikely(p == rq->idle)) {
3535 WARN_ON(p != rq->curr);
3536 WARN_ON(p->pi_blocked_on);
3537 goto out_unlock;
3538 }
3539
3540 trace_sched_pi_setprio(p, prio);
3541 oldprio = p->prio;
3542 prev_class = p->sched_class;
3543 on_rq = p->on_rq;
3544 running = task_current(rq, p);
3545 if (on_rq)
3546 dequeue_task(rq, p, 0);
3547 if (running)
3548 p->sched_class->put_prev_task(rq, p);
3549
3550 if (rt_prio(prio))
3551 p->sched_class = &rt_sched_class;
3552 else
3553 p->sched_class = &fair_sched_class;
3554
3555 p->prio = prio;
3556
3557 if (running)
3558 p->sched_class->set_curr_task(rq);
3559 if (on_rq)
3560 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3561
3562 check_class_changed(rq, p, prev_class, oldprio);
3563 out_unlock:
3564 __task_rq_unlock(rq);
3565 }
3566 #endif
3567 void set_user_nice(struct task_struct *p, long nice)
3568 {
3569 int old_prio, delta, on_rq;
3570 unsigned long flags;
3571 struct rq *rq;
3572
3573 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3574 return;
3575 /*
3576 * We have to be careful, if called from sys_setpriority(),
3577 * the task might be in the middle of scheduling on another CPU.
3578 */
3579 rq = task_rq_lock(p, &flags);
3580 /*
3581 * The RT priorities are set via sched_setscheduler(), but we still
3582 * allow the 'normal' nice value to be set - but as expected
3583 * it wont have any effect on scheduling until the task is
3584 * SCHED_FIFO/SCHED_RR:
3585 */
3586 if (task_has_rt_policy(p)) {
3587 p->static_prio = NICE_TO_PRIO(nice);
3588 goto out_unlock;
3589 }
3590 on_rq = p->on_rq;
3591 if (on_rq)
3592 dequeue_task(rq, p, 0);
3593
3594 p->static_prio = NICE_TO_PRIO(nice);
3595 set_load_weight(p);
3596 old_prio = p->prio;
3597 p->prio = effective_prio(p);
3598 delta = p->prio - old_prio;
3599
3600 if (on_rq) {
3601 enqueue_task(rq, p, 0);
3602 /*
3603 * If the task increased its priority or is running and
3604 * lowered its priority, then reschedule its CPU:
3605 */
3606 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3607 resched_task(rq->curr);
3608 }
3609 out_unlock:
3610 task_rq_unlock(rq, p, &flags);
3611 }
3612 EXPORT_SYMBOL(set_user_nice);
3613
3614 /*
3615 * can_nice - check if a task can reduce its nice value
3616 * @p: task
3617 * @nice: nice value
3618 */
3619 int can_nice(const struct task_struct *p, const int nice)
3620 {
3621 /* convert nice value [19,-20] to rlimit style value [1,40] */
3622 int nice_rlim = 20 - nice;
3623
3624 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3625 capable(CAP_SYS_NICE));
3626 }
3627
3628 #ifdef __ARCH_WANT_SYS_NICE
3629
3630 /*
3631 * sys_nice - change the priority of the current process.
3632 * @increment: priority increment
3633 *
3634 * sys_setpriority is a more generic, but much slower function that
3635 * does similar things.
3636 */
3637 SYSCALL_DEFINE1(nice, int, increment)
3638 {
3639 long nice, retval;
3640
3641 /*
3642 * Setpriority might change our priority at the same moment.
3643 * We don't have to worry. Conceptually one call occurs first
3644 * and we have a single winner.
3645 */
3646 if (increment < -40)
3647 increment = -40;
3648 if (increment > 40)
3649 increment = 40;
3650
3651 nice = TASK_NICE(current) + increment;
3652 if (nice < -20)
3653 nice = -20;
3654 if (nice > 19)
3655 nice = 19;
3656
3657 if (increment < 0 && !can_nice(current, nice))
3658 return -EPERM;
3659
3660 retval = security_task_setnice(current, nice);
3661 if (retval)
3662 return retval;
3663
3664 set_user_nice(current, nice);
3665 return 0;
3666 }
3667
3668 #endif
3669
3670 /**
3671 * task_prio - return the priority value of a given task.
3672 * @p: the task in question.
3673 *
3674 * This is the priority value as seen by users in /proc.
3675 * RT tasks are offset by -200. Normal tasks are centered
3676 * around 0, value goes from -16 to +15.
3677 */
3678 int task_prio(const struct task_struct *p)
3679 {
3680 return p->prio - MAX_RT_PRIO;
3681 }
3682
3683 /**
3684 * task_nice - return the nice value of a given task.
3685 * @p: the task in question.
3686 */
3687 int task_nice(const struct task_struct *p)
3688 {
3689 return TASK_NICE(p);
3690 }
3691 EXPORT_SYMBOL(task_nice);
3692
3693 /**
3694 * idle_cpu - is a given cpu idle currently?
3695 * @cpu: the processor in question.
3696 */
3697 int idle_cpu(int cpu)
3698 {
3699 struct rq *rq = cpu_rq(cpu);
3700
3701 if (rq->curr != rq->idle)
3702 return 0;
3703
3704 if (rq->nr_running)
3705 return 0;
3706
3707 #ifdef CONFIG_SMP
3708 if (!llist_empty(&rq->wake_list))
3709 return 0;
3710 #endif
3711
3712 return 1;
3713 }
3714
3715 /**
3716 * idle_task - return the idle task for a given cpu.
3717 * @cpu: the processor in question.
3718 */
3719 struct task_struct *idle_task(int cpu)
3720 {
3721 return cpu_rq(cpu)->idle;
3722 }
3723
3724 /**
3725 * find_process_by_pid - find a process with a matching PID value.
3726 * @pid: the pid in question.
3727 */
3728 static struct task_struct *find_process_by_pid(pid_t pid)
3729 {
3730 return pid ? find_task_by_vpid(pid) : current;
3731 }
3732
3733 /* Actually do priority change: must hold rq lock. */
3734 static void
3735 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3736 {
3737 p->policy = policy;
3738 p->rt_priority = prio;
3739 p->normal_prio = normal_prio(p);
3740 /* we are holding p->pi_lock already */
3741 p->prio = rt_mutex_getprio(p);
3742 if (rt_prio(p->prio))
3743 p->sched_class = &rt_sched_class;
3744 else
3745 p->sched_class = &fair_sched_class;
3746 set_load_weight(p);
3747 }
3748
3749 /*
3750 * check the target process has a UID that matches the current process's
3751 */
3752 static bool check_same_owner(struct task_struct *p)
3753 {
3754 const struct cred *cred = current_cred(), *pcred;
3755 bool match;
3756
3757 rcu_read_lock();
3758 pcred = __task_cred(p);
3759 match = (uid_eq(cred->euid, pcred->euid) ||
3760 uid_eq(cred->euid, pcred->uid));
3761 rcu_read_unlock();
3762 return match;
3763 }
3764
3765 static int __sched_setscheduler(struct task_struct *p, int policy,
3766 const struct sched_param *param, bool user)
3767 {
3768 int retval, oldprio, oldpolicy = -1, on_rq, running;
3769 unsigned long flags;
3770 const struct sched_class *prev_class;
3771 struct rq *rq;
3772 int reset_on_fork;
3773
3774 /* may grab non-irq protected spin_locks */
3775 BUG_ON(in_interrupt());
3776 recheck:
3777 /* double check policy once rq lock held */
3778 if (policy < 0) {
3779 reset_on_fork = p->sched_reset_on_fork;
3780 policy = oldpolicy = p->policy;
3781 } else {
3782 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3783 policy &= ~SCHED_RESET_ON_FORK;
3784
3785 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3786 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3787 policy != SCHED_IDLE)
3788 return -EINVAL;
3789 }
3790
3791 /*
3792 * Valid priorities for SCHED_FIFO and SCHED_RR are
3793 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3794 * SCHED_BATCH and SCHED_IDLE is 0.
3795 */
3796 if (param->sched_priority < 0 ||
3797 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3798 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3799 return -EINVAL;
3800 if (rt_policy(policy) != (param->sched_priority != 0))
3801 return -EINVAL;
3802
3803 /*
3804 * Allow unprivileged RT tasks to decrease priority:
3805 */
3806 if (user && !capable(CAP_SYS_NICE)) {
3807 if (rt_policy(policy)) {
3808 unsigned long rlim_rtprio =
3809 task_rlimit(p, RLIMIT_RTPRIO);
3810
3811 /* can't set/change the rt policy */
3812 if (policy != p->policy && !rlim_rtprio)
3813 return -EPERM;
3814
3815 /* can't increase priority */
3816 if (param->sched_priority > p->rt_priority &&
3817 param->sched_priority > rlim_rtprio)
3818 return -EPERM;
3819 }
3820
3821 /*
3822 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3823 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3824 */
3825 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3826 if (!can_nice(p, TASK_NICE(p)))
3827 return -EPERM;
3828 }
3829
3830 /* can't change other user's priorities */
3831 if (!check_same_owner(p))
3832 return -EPERM;
3833
3834 /* Normal users shall not reset the sched_reset_on_fork flag */
3835 if (p->sched_reset_on_fork && !reset_on_fork)
3836 return -EPERM;
3837 }
3838
3839 if (user) {
3840 retval = security_task_setscheduler(p);
3841 if (retval)
3842 return retval;
3843 }
3844
3845 /*
3846 * make sure no PI-waiters arrive (or leave) while we are
3847 * changing the priority of the task:
3848 *
3849 * To be able to change p->policy safely, the appropriate
3850 * runqueue lock must be held.
3851 */
3852 rq = task_rq_lock(p, &flags);
3853
3854 /*
3855 * Changing the policy of the stop threads its a very bad idea
3856 */
3857 if (p == rq->stop) {
3858 task_rq_unlock(rq, p, &flags);
3859 return -EINVAL;
3860 }
3861
3862 /*
3863 * If not changing anything there's no need to proceed further:
3864 */
3865 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3866 param->sched_priority == p->rt_priority))) {
3867 task_rq_unlock(rq, p, &flags);
3868 return 0;
3869 }
3870
3871 #ifdef CONFIG_RT_GROUP_SCHED
3872 if (user) {
3873 /*
3874 * Do not allow realtime tasks into groups that have no runtime
3875 * assigned.
3876 */
3877 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3878 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3879 !task_group_is_autogroup(task_group(p))) {
3880 task_rq_unlock(rq, p, &flags);
3881 return -EPERM;
3882 }
3883 }
3884 #endif
3885
3886 /* recheck policy now with rq lock held */
3887 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3888 policy = oldpolicy = -1;
3889 task_rq_unlock(rq, p, &flags);
3890 goto recheck;
3891 }
3892 on_rq = p->on_rq;
3893 running = task_current(rq, p);
3894 if (on_rq)
3895 dequeue_task(rq, p, 0);
3896 if (running)
3897 p->sched_class->put_prev_task(rq, p);
3898
3899 p->sched_reset_on_fork = reset_on_fork;
3900
3901 oldprio = p->prio;
3902 prev_class = p->sched_class;
3903 __setscheduler(rq, p, policy, param->sched_priority);
3904
3905 if (running)
3906 p->sched_class->set_curr_task(rq);
3907 if (on_rq)
3908 enqueue_task(rq, p, 0);
3909
3910 check_class_changed(rq, p, prev_class, oldprio);
3911 task_rq_unlock(rq, p, &flags);
3912
3913 rt_mutex_adjust_pi(p);
3914
3915 return 0;
3916 }
3917
3918 /**
3919 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3920 * @p: the task in question.
3921 * @policy: new policy.
3922 * @param: structure containing the new RT priority.
3923 *
3924 * NOTE that the task may be already dead.
3925 */
3926 int sched_setscheduler(struct task_struct *p, int policy,
3927 const struct sched_param *param)
3928 {
3929 return __sched_setscheduler(p, policy, param, true);
3930 }
3931 EXPORT_SYMBOL_GPL(sched_setscheduler);
3932
3933 /**
3934 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3935 * @p: the task in question.
3936 * @policy: new policy.
3937 * @param: structure containing the new RT priority.
3938 *
3939 * Just like sched_setscheduler, only don't bother checking if the
3940 * current context has permission. For example, this is needed in
3941 * stop_machine(): we create temporary high priority worker threads,
3942 * but our caller might not have that capability.
3943 */
3944 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3945 const struct sched_param *param)
3946 {
3947 return __sched_setscheduler(p, policy, param, false);
3948 }
3949
3950 static int
3951 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3952 {
3953 struct sched_param lparam;
3954 struct task_struct *p;
3955 int retval;
3956
3957 if (!param || pid < 0)
3958 return -EINVAL;
3959 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3960 return -EFAULT;
3961
3962 rcu_read_lock();
3963 retval = -ESRCH;
3964 p = find_process_by_pid(pid);
3965 if (p != NULL)
3966 retval = sched_setscheduler(p, policy, &lparam);
3967 rcu_read_unlock();
3968
3969 return retval;
3970 }
3971
3972 /**
3973 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3974 * @pid: the pid in question.
3975 * @policy: new policy.
3976 * @param: structure containing the new RT priority.
3977 */
3978 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3979 struct sched_param __user *, param)
3980 {
3981 /* negative values for policy are not valid */
3982 if (policy < 0)
3983 return -EINVAL;
3984
3985 return do_sched_setscheduler(pid, policy, param);
3986 }
3987
3988 /**
3989 * sys_sched_setparam - set/change the RT priority of a thread
3990 * @pid: the pid in question.
3991 * @param: structure containing the new RT priority.
3992 */
3993 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3994 {
3995 return do_sched_setscheduler(pid, -1, param);
3996 }
3997
3998 /**
3999 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4000 * @pid: the pid in question.
4001 */
4002 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4003 {
4004 struct task_struct *p;
4005 int retval;
4006
4007 if (pid < 0)
4008 return -EINVAL;
4009
4010 retval = -ESRCH;
4011 rcu_read_lock();
4012 p = find_process_by_pid(pid);
4013 if (p) {
4014 retval = security_task_getscheduler(p);
4015 if (!retval)
4016 retval = p->policy
4017 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4018 }
4019 rcu_read_unlock();
4020 return retval;
4021 }
4022
4023 /**
4024 * sys_sched_getparam - get the RT priority of a thread
4025 * @pid: the pid in question.
4026 * @param: structure containing the RT priority.
4027 */
4028 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4029 {
4030 struct sched_param lp;
4031 struct task_struct *p;
4032 int retval;
4033
4034 if (!param || pid < 0)
4035 return -EINVAL;
4036
4037 rcu_read_lock();
4038 p = find_process_by_pid(pid);
4039 retval = -ESRCH;
4040 if (!p)
4041 goto out_unlock;
4042
4043 retval = security_task_getscheduler(p);
4044 if (retval)
4045 goto out_unlock;
4046
4047 lp.sched_priority = p->rt_priority;
4048 rcu_read_unlock();
4049
4050 /*
4051 * This one might sleep, we cannot do it with a spinlock held ...
4052 */
4053 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4054
4055 return retval;
4056
4057 out_unlock:
4058 rcu_read_unlock();
4059 return retval;
4060 }
4061
4062 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4063 {
4064 cpumask_var_t cpus_allowed, new_mask;
4065 struct task_struct *p;
4066 int retval;
4067
4068 get_online_cpus();
4069 rcu_read_lock();
4070
4071 p = find_process_by_pid(pid);
4072 if (!p) {
4073 rcu_read_unlock();
4074 put_online_cpus();
4075 return -ESRCH;
4076 }
4077
4078 /* Prevent p going away */
4079 get_task_struct(p);
4080 rcu_read_unlock();
4081
4082 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4083 retval = -ENOMEM;
4084 goto out_put_task;
4085 }
4086 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4087 retval = -ENOMEM;
4088 goto out_free_cpus_allowed;
4089 }
4090 retval = -EPERM;
4091 if (!check_same_owner(p)) {
4092 rcu_read_lock();
4093 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4094 rcu_read_unlock();
4095 goto out_unlock;
4096 }
4097 rcu_read_unlock();
4098 }
4099
4100 retval = security_task_setscheduler(p);
4101 if (retval)
4102 goto out_unlock;
4103
4104 cpuset_cpus_allowed(p, cpus_allowed);
4105 cpumask_and(new_mask, in_mask, cpus_allowed);
4106 again:
4107 retval = set_cpus_allowed_ptr(p, new_mask);
4108
4109 if (!retval) {
4110 cpuset_cpus_allowed(p, cpus_allowed);
4111 if (!cpumask_subset(new_mask, cpus_allowed)) {
4112 /*
4113 * We must have raced with a concurrent cpuset
4114 * update. Just reset the cpus_allowed to the
4115 * cpuset's cpus_allowed
4116 */
4117 cpumask_copy(new_mask, cpus_allowed);
4118 goto again;
4119 }
4120 }
4121 out_unlock:
4122 free_cpumask_var(new_mask);
4123 out_free_cpus_allowed:
4124 free_cpumask_var(cpus_allowed);
4125 out_put_task:
4126 put_task_struct(p);
4127 put_online_cpus();
4128 return retval;
4129 }
4130
4131 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4132 struct cpumask *new_mask)
4133 {
4134 if (len < cpumask_size())
4135 cpumask_clear(new_mask);
4136 else if (len > cpumask_size())
4137 len = cpumask_size();
4138
4139 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4140 }
4141
4142 /**
4143 * sys_sched_setaffinity - set the cpu affinity of a process
4144 * @pid: pid of the process
4145 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4146 * @user_mask_ptr: user-space pointer to the new cpu mask
4147 */
4148 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4149 unsigned long __user *, user_mask_ptr)
4150 {
4151 cpumask_var_t new_mask;
4152 int retval;
4153
4154 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4155 return -ENOMEM;
4156
4157 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4158 if (retval == 0)
4159 retval = sched_setaffinity(pid, new_mask);
4160 free_cpumask_var(new_mask);
4161 return retval;
4162 }
4163
4164 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4165 {
4166 struct task_struct *p;
4167 unsigned long flags;
4168 int retval;
4169
4170 get_online_cpus();
4171 rcu_read_lock();
4172
4173 retval = -ESRCH;
4174 p = find_process_by_pid(pid);
4175 if (!p)
4176 goto out_unlock;
4177
4178 retval = security_task_getscheduler(p);
4179 if (retval)
4180 goto out_unlock;
4181
4182 raw_spin_lock_irqsave(&p->pi_lock, flags);
4183 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4184 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4185
4186 out_unlock:
4187 rcu_read_unlock();
4188 put_online_cpus();
4189
4190 return retval;
4191 }
4192
4193 /**
4194 * sys_sched_getaffinity - get the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4198 */
4199 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4200 unsigned long __user *, user_mask_ptr)
4201 {
4202 int ret;
4203 cpumask_var_t mask;
4204
4205 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4206 return -EINVAL;
4207 if (len & (sizeof(unsigned long)-1))
4208 return -EINVAL;
4209
4210 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4211 return -ENOMEM;
4212
4213 ret = sched_getaffinity(pid, mask);
4214 if (ret == 0) {
4215 size_t retlen = min_t(size_t, len, cpumask_size());
4216
4217 if (copy_to_user(user_mask_ptr, mask, retlen))
4218 ret = -EFAULT;
4219 else
4220 ret = retlen;
4221 }
4222 free_cpumask_var(mask);
4223
4224 return ret;
4225 }
4226
4227 /**
4228 * sys_sched_yield - yield the current processor to other threads.
4229 *
4230 * This function yields the current CPU to other tasks. If there are no
4231 * other threads running on this CPU then this function will return.
4232 */
4233 SYSCALL_DEFINE0(sched_yield)
4234 {
4235 struct rq *rq = this_rq_lock();
4236
4237 schedstat_inc(rq, yld_count);
4238 current->sched_class->yield_task(rq);
4239
4240 /*
4241 * Since we are going to call schedule() anyway, there's
4242 * no need to preempt or enable interrupts:
4243 */
4244 __release(rq->lock);
4245 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4246 do_raw_spin_unlock(&rq->lock);
4247 sched_preempt_enable_no_resched();
4248
4249 schedule();
4250
4251 return 0;
4252 }
4253
4254 static inline int should_resched(void)
4255 {
4256 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4257 }
4258
4259 static void __cond_resched(void)
4260 {
4261 add_preempt_count(PREEMPT_ACTIVE);
4262 __schedule();
4263 sub_preempt_count(PREEMPT_ACTIVE);
4264 }
4265
4266 int __sched _cond_resched(void)
4267 {
4268 if (should_resched()) {
4269 __cond_resched();
4270 return 1;
4271 }
4272 return 0;
4273 }
4274 EXPORT_SYMBOL(_cond_resched);
4275
4276 /*
4277 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4278 * call schedule, and on return reacquire the lock.
4279 *
4280 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4281 * operations here to prevent schedule() from being called twice (once via
4282 * spin_unlock(), once by hand).
4283 */
4284 int __cond_resched_lock(spinlock_t *lock)
4285 {
4286 int resched = should_resched();
4287 int ret = 0;
4288
4289 lockdep_assert_held(lock);
4290
4291 if (spin_needbreak(lock) || resched) {
4292 spin_unlock(lock);
4293 if (resched)
4294 __cond_resched();
4295 else
4296 cpu_relax();
4297 ret = 1;
4298 spin_lock(lock);
4299 }
4300 return ret;
4301 }
4302 EXPORT_SYMBOL(__cond_resched_lock);
4303
4304 int __sched __cond_resched_softirq(void)
4305 {
4306 BUG_ON(!in_softirq());
4307
4308 if (should_resched()) {
4309 local_bh_enable();
4310 __cond_resched();
4311 local_bh_disable();
4312 return 1;
4313 }
4314 return 0;
4315 }
4316 EXPORT_SYMBOL(__cond_resched_softirq);
4317
4318 /**
4319 * yield - yield the current processor to other threads.
4320 *
4321 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4322 *
4323 * The scheduler is at all times free to pick the calling task as the most
4324 * eligible task to run, if removing the yield() call from your code breaks
4325 * it, its already broken.
4326 *
4327 * Typical broken usage is:
4328 *
4329 * while (!event)
4330 * yield();
4331 *
4332 * where one assumes that yield() will let 'the other' process run that will
4333 * make event true. If the current task is a SCHED_FIFO task that will never
4334 * happen. Never use yield() as a progress guarantee!!
4335 *
4336 * If you want to use yield() to wait for something, use wait_event().
4337 * If you want to use yield() to be 'nice' for others, use cond_resched().
4338 * If you still want to use yield(), do not!
4339 */
4340 void __sched yield(void)
4341 {
4342 set_current_state(TASK_RUNNING);
4343 sys_sched_yield();
4344 }
4345 EXPORT_SYMBOL(yield);
4346
4347 /**
4348 * yield_to - yield the current processor to another thread in
4349 * your thread group, or accelerate that thread toward the
4350 * processor it's on.
4351 * @p: target task
4352 * @preempt: whether task preemption is allowed or not
4353 *
4354 * It's the caller's job to ensure that the target task struct
4355 * can't go away on us before we can do any checks.
4356 *
4357 * Returns:
4358 * true (>0) if we indeed boosted the target task.
4359 * false (0) if we failed to boost the target.
4360 * -ESRCH if there's no task to yield to.
4361 */
4362 bool __sched yield_to(struct task_struct *p, bool preempt)
4363 {
4364 struct task_struct *curr = current;
4365 struct rq *rq, *p_rq;
4366 unsigned long flags;
4367 int yielded = 0;
4368
4369 local_irq_save(flags);
4370 rq = this_rq();
4371
4372 again:
4373 p_rq = task_rq(p);
4374 /*
4375 * If we're the only runnable task on the rq and target rq also
4376 * has only one task, there's absolutely no point in yielding.
4377 */
4378 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4379 yielded = -ESRCH;
4380 goto out_irq;
4381 }
4382
4383 double_rq_lock(rq, p_rq);
4384 while (task_rq(p) != p_rq) {
4385 double_rq_unlock(rq, p_rq);
4386 goto again;
4387 }
4388
4389 if (!curr->sched_class->yield_to_task)
4390 goto out_unlock;
4391
4392 if (curr->sched_class != p->sched_class)
4393 goto out_unlock;
4394
4395 if (task_running(p_rq, p) || p->state)
4396 goto out_unlock;
4397
4398 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4399 if (yielded) {
4400 schedstat_inc(rq, yld_count);
4401 /*
4402 * Make p's CPU reschedule; pick_next_entity takes care of
4403 * fairness.
4404 */
4405 if (preempt && rq != p_rq)
4406 resched_task(p_rq->curr);
4407 }
4408
4409 out_unlock:
4410 double_rq_unlock(rq, p_rq);
4411 out_irq:
4412 local_irq_restore(flags);
4413
4414 if (yielded > 0)
4415 schedule();
4416
4417 return yielded;
4418 }
4419 EXPORT_SYMBOL_GPL(yield_to);
4420
4421 /*
4422 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4423 * that process accounting knows that this is a task in IO wait state.
4424 */
4425 void __sched io_schedule(void)
4426 {
4427 struct rq *rq = raw_rq();
4428
4429 delayacct_blkio_start();
4430 atomic_inc(&rq->nr_iowait);
4431 blk_flush_plug(current);
4432 current->in_iowait = 1;
4433 schedule();
4434 current->in_iowait = 0;
4435 atomic_dec(&rq->nr_iowait);
4436 delayacct_blkio_end();
4437 }
4438 EXPORT_SYMBOL(io_schedule);
4439
4440 long __sched io_schedule_timeout(long timeout)
4441 {
4442 struct rq *rq = raw_rq();
4443 long ret;
4444
4445 delayacct_blkio_start();
4446 atomic_inc(&rq->nr_iowait);
4447 blk_flush_plug(current);
4448 current->in_iowait = 1;
4449 ret = schedule_timeout(timeout);
4450 current->in_iowait = 0;
4451 atomic_dec(&rq->nr_iowait);
4452 delayacct_blkio_end();
4453 return ret;
4454 }
4455
4456 /**
4457 * sys_sched_get_priority_max - return maximum RT priority.
4458 * @policy: scheduling class.
4459 *
4460 * this syscall returns the maximum rt_priority that can be used
4461 * by a given scheduling class.
4462 */
4463 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4464 {
4465 int ret = -EINVAL;
4466
4467 switch (policy) {
4468 case SCHED_FIFO:
4469 case SCHED_RR:
4470 ret = MAX_USER_RT_PRIO-1;
4471 break;
4472 case SCHED_NORMAL:
4473 case SCHED_BATCH:
4474 case SCHED_IDLE:
4475 ret = 0;
4476 break;
4477 }
4478 return ret;
4479 }
4480
4481 /**
4482 * sys_sched_get_priority_min - return minimum RT priority.
4483 * @policy: scheduling class.
4484 *
4485 * this syscall returns the minimum rt_priority that can be used
4486 * by a given scheduling class.
4487 */
4488 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4489 {
4490 int ret = -EINVAL;
4491
4492 switch (policy) {
4493 case SCHED_FIFO:
4494 case SCHED_RR:
4495 ret = 1;
4496 break;
4497 case SCHED_NORMAL:
4498 case SCHED_BATCH:
4499 case SCHED_IDLE:
4500 ret = 0;
4501 }
4502 return ret;
4503 }
4504
4505 /**
4506 * sys_sched_rr_get_interval - return the default timeslice of a process.
4507 * @pid: pid of the process.
4508 * @interval: userspace pointer to the timeslice value.
4509 *
4510 * this syscall writes the default timeslice value of a given process
4511 * into the user-space timespec buffer. A value of '0' means infinity.
4512 */
4513 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4514 struct timespec __user *, interval)
4515 {
4516 struct task_struct *p;
4517 unsigned int time_slice;
4518 unsigned long flags;
4519 struct rq *rq;
4520 int retval;
4521 struct timespec t;
4522
4523 if (pid < 0)
4524 return -EINVAL;
4525
4526 retval = -ESRCH;
4527 rcu_read_lock();
4528 p = find_process_by_pid(pid);
4529 if (!p)
4530 goto out_unlock;
4531
4532 retval = security_task_getscheduler(p);
4533 if (retval)
4534 goto out_unlock;
4535
4536 rq = task_rq_lock(p, &flags);
4537 time_slice = p->sched_class->get_rr_interval(rq, p);
4538 task_rq_unlock(rq, p, &flags);
4539
4540 rcu_read_unlock();
4541 jiffies_to_timespec(time_slice, &t);
4542 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4543 return retval;
4544
4545 out_unlock:
4546 rcu_read_unlock();
4547 return retval;
4548 }
4549
4550 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4551
4552 void sched_show_task(struct task_struct *p)
4553 {
4554 unsigned long free = 0;
4555 int ppid;
4556 unsigned state;
4557
4558 state = p->state ? __ffs(p->state) + 1 : 0;
4559 printk(KERN_INFO "%-15.15s %c", p->comm,
4560 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4561 #if BITS_PER_LONG == 32
4562 if (state == TASK_RUNNING)
4563 printk(KERN_CONT " running ");
4564 else
4565 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4566 #else
4567 if (state == TASK_RUNNING)
4568 printk(KERN_CONT " running task ");
4569 else
4570 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4571 #endif
4572 #ifdef CONFIG_DEBUG_STACK_USAGE
4573 free = stack_not_used(p);
4574 #endif
4575 rcu_read_lock();
4576 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4577 rcu_read_unlock();
4578 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4579 task_pid_nr(p), ppid,
4580 (unsigned long)task_thread_info(p)->flags);
4581
4582 show_stack(p, NULL);
4583 }
4584
4585 void show_state_filter(unsigned long state_filter)
4586 {
4587 struct task_struct *g, *p;
4588
4589 #if BITS_PER_LONG == 32
4590 printk(KERN_INFO
4591 " task PC stack pid father\n");
4592 #else
4593 printk(KERN_INFO
4594 " task PC stack pid father\n");
4595 #endif
4596 rcu_read_lock();
4597 do_each_thread(g, p) {
4598 /*
4599 * reset the NMI-timeout, listing all files on a slow
4600 * console might take a lot of time:
4601 */
4602 touch_nmi_watchdog();
4603 if (!state_filter || (p->state & state_filter))
4604 sched_show_task(p);
4605 } while_each_thread(g, p);
4606
4607 touch_all_softlockup_watchdogs();
4608
4609 #ifdef CONFIG_SCHED_DEBUG
4610 sysrq_sched_debug_show();
4611 #endif
4612 rcu_read_unlock();
4613 /*
4614 * Only show locks if all tasks are dumped:
4615 */
4616 if (!state_filter)
4617 debug_show_all_locks();
4618 }
4619
4620 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4621 {
4622 idle->sched_class = &idle_sched_class;
4623 }
4624
4625 /**
4626 * init_idle - set up an idle thread for a given CPU
4627 * @idle: task in question
4628 * @cpu: cpu the idle task belongs to
4629 *
4630 * NOTE: this function does not set the idle thread's NEED_RESCHED
4631 * flag, to make booting more robust.
4632 */
4633 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4634 {
4635 struct rq *rq = cpu_rq(cpu);
4636 unsigned long flags;
4637
4638 raw_spin_lock_irqsave(&rq->lock, flags);
4639
4640 __sched_fork(idle);
4641 idle->state = TASK_RUNNING;
4642 idle->se.exec_start = sched_clock();
4643
4644 do_set_cpus_allowed(idle, cpumask_of(cpu));
4645 /*
4646 * We're having a chicken and egg problem, even though we are
4647 * holding rq->lock, the cpu isn't yet set to this cpu so the
4648 * lockdep check in task_group() will fail.
4649 *
4650 * Similar case to sched_fork(). / Alternatively we could
4651 * use task_rq_lock() here and obtain the other rq->lock.
4652 *
4653 * Silence PROVE_RCU
4654 */
4655 rcu_read_lock();
4656 __set_task_cpu(idle, cpu);
4657 rcu_read_unlock();
4658
4659 rq->curr = rq->idle = idle;
4660 #if defined(CONFIG_SMP)
4661 idle->on_cpu = 1;
4662 #endif
4663 raw_spin_unlock_irqrestore(&rq->lock, flags);
4664
4665 /* Set the preempt count _outside_ the spinlocks! */
4666 task_thread_info(idle)->preempt_count = 0;
4667
4668 /*
4669 * The idle tasks have their own, simple scheduling class:
4670 */
4671 idle->sched_class = &idle_sched_class;
4672 ftrace_graph_init_idle_task(idle, cpu);
4673 vtime_init_idle(idle);
4674 #if defined(CONFIG_SMP)
4675 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4676 #endif
4677 }
4678
4679 #ifdef CONFIG_SMP
4680 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4681 {
4682 if (p->sched_class && p->sched_class->set_cpus_allowed)
4683 p->sched_class->set_cpus_allowed(p, new_mask);
4684
4685 cpumask_copy(&p->cpus_allowed, new_mask);
4686 p->nr_cpus_allowed = cpumask_weight(new_mask);
4687 }
4688
4689 /*
4690 * This is how migration works:
4691 *
4692 * 1) we invoke migration_cpu_stop() on the target CPU using
4693 * stop_one_cpu().
4694 * 2) stopper starts to run (implicitly forcing the migrated thread
4695 * off the CPU)
4696 * 3) it checks whether the migrated task is still in the wrong runqueue.
4697 * 4) if it's in the wrong runqueue then the migration thread removes
4698 * it and puts it into the right queue.
4699 * 5) stopper completes and stop_one_cpu() returns and the migration
4700 * is done.
4701 */
4702
4703 /*
4704 * Change a given task's CPU affinity. Migrate the thread to a
4705 * proper CPU and schedule it away if the CPU it's executing on
4706 * is removed from the allowed bitmask.
4707 *
4708 * NOTE: the caller must have a valid reference to the task, the
4709 * task must not exit() & deallocate itself prematurely. The
4710 * call is not atomic; no spinlocks may be held.
4711 */
4712 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4713 {
4714 unsigned long flags;
4715 struct rq *rq;
4716 unsigned int dest_cpu;
4717 int ret = 0;
4718
4719 rq = task_rq_lock(p, &flags);
4720
4721 if (cpumask_equal(&p->cpus_allowed, new_mask))
4722 goto out;
4723
4724 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4725 ret = -EINVAL;
4726 goto out;
4727 }
4728
4729 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4730 ret = -EINVAL;
4731 goto out;
4732 }
4733
4734 do_set_cpus_allowed(p, new_mask);
4735
4736 /* Can the task run on the task's current CPU? If so, we're done */
4737 if (cpumask_test_cpu(task_cpu(p), new_mask))
4738 goto out;
4739
4740 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4741 if (p->on_rq) {
4742 struct migration_arg arg = { p, dest_cpu };
4743 /* Need help from migration thread: drop lock and wait. */
4744 task_rq_unlock(rq, p, &flags);
4745 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4746 tlb_migrate_finish(p->mm);
4747 return 0;
4748 }
4749 out:
4750 task_rq_unlock(rq, p, &flags);
4751
4752 return ret;
4753 }
4754 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4755
4756 /*
4757 * Move (not current) task off this cpu, onto dest cpu. We're doing
4758 * this because either it can't run here any more (set_cpus_allowed()
4759 * away from this CPU, or CPU going down), or because we're
4760 * attempting to rebalance this task on exec (sched_exec).
4761 *
4762 * So we race with normal scheduler movements, but that's OK, as long
4763 * as the task is no longer on this CPU.
4764 *
4765 * Returns non-zero if task was successfully migrated.
4766 */
4767 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4768 {
4769 struct rq *rq_dest, *rq_src;
4770 int ret = 0;
4771
4772 if (unlikely(!cpu_active(dest_cpu)))
4773 return ret;
4774
4775 rq_src = cpu_rq(src_cpu);
4776 rq_dest = cpu_rq(dest_cpu);
4777
4778 raw_spin_lock(&p->pi_lock);
4779 double_rq_lock(rq_src, rq_dest);
4780 /* Already moved. */
4781 if (task_cpu(p) != src_cpu)
4782 goto done;
4783 /* Affinity changed (again). */
4784 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4785 goto fail;
4786
4787 /*
4788 * If we're not on a rq, the next wake-up will ensure we're
4789 * placed properly.
4790 */
4791 if (p->on_rq) {
4792 dequeue_task(rq_src, p, 0);
4793 set_task_cpu(p, dest_cpu);
4794 enqueue_task(rq_dest, p, 0);
4795 check_preempt_curr(rq_dest, p, 0);
4796 }
4797 done:
4798 ret = 1;
4799 fail:
4800 double_rq_unlock(rq_src, rq_dest);
4801 raw_spin_unlock(&p->pi_lock);
4802 return ret;
4803 }
4804
4805 /*
4806 * migration_cpu_stop - this will be executed by a highprio stopper thread
4807 * and performs thread migration by bumping thread off CPU then
4808 * 'pushing' onto another runqueue.
4809 */
4810 static int migration_cpu_stop(void *data)
4811 {
4812 struct migration_arg *arg = data;
4813
4814 /*
4815 * The original target cpu might have gone down and we might
4816 * be on another cpu but it doesn't matter.
4817 */
4818 local_irq_disable();
4819 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4820 local_irq_enable();
4821 return 0;
4822 }
4823
4824 #ifdef CONFIG_HOTPLUG_CPU
4825
4826 /*
4827 * Ensures that the idle task is using init_mm right before its cpu goes
4828 * offline.
4829 */
4830 void idle_task_exit(void)
4831 {
4832 struct mm_struct *mm = current->active_mm;
4833
4834 BUG_ON(cpu_online(smp_processor_id()));
4835
4836 if (mm != &init_mm)
4837 switch_mm(mm, &init_mm, current);
4838 mmdrop(mm);
4839 }
4840
4841 /*
4842 * Since this CPU is going 'away' for a while, fold any nr_active delta
4843 * we might have. Assumes we're called after migrate_tasks() so that the
4844 * nr_active count is stable.
4845 *
4846 * Also see the comment "Global load-average calculations".
4847 */
4848 static void calc_load_migrate(struct rq *rq)
4849 {
4850 long delta = calc_load_fold_active(rq);
4851 if (delta)
4852 atomic_long_add(delta, &calc_load_tasks);
4853 }
4854
4855 /*
4856 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4857 * try_to_wake_up()->select_task_rq().
4858 *
4859 * Called with rq->lock held even though we'er in stop_machine() and
4860 * there's no concurrency possible, we hold the required locks anyway
4861 * because of lock validation efforts.
4862 */
4863 static void migrate_tasks(unsigned int dead_cpu)
4864 {
4865 struct rq *rq = cpu_rq(dead_cpu);
4866 struct task_struct *next, *stop = rq->stop;
4867 int dest_cpu;
4868
4869 /*
4870 * Fudge the rq selection such that the below task selection loop
4871 * doesn't get stuck on the currently eligible stop task.
4872 *
4873 * We're currently inside stop_machine() and the rq is either stuck
4874 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4875 * either way we should never end up calling schedule() until we're
4876 * done here.
4877 */
4878 rq->stop = NULL;
4879
4880 for ( ; ; ) {
4881 /*
4882 * There's this thread running, bail when that's the only
4883 * remaining thread.
4884 */
4885 if (rq->nr_running == 1)
4886 break;
4887
4888 next = pick_next_task(rq);
4889 BUG_ON(!next);
4890 next->sched_class->put_prev_task(rq, next);
4891
4892 /* Find suitable destination for @next, with force if needed. */
4893 dest_cpu = select_fallback_rq(dead_cpu, next);
4894 raw_spin_unlock(&rq->lock);
4895
4896 __migrate_task(next, dead_cpu, dest_cpu);
4897
4898 raw_spin_lock(&rq->lock);
4899 }
4900
4901 rq->stop = stop;
4902 }
4903
4904 #endif /* CONFIG_HOTPLUG_CPU */
4905
4906 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4907
4908 static struct ctl_table sd_ctl_dir[] = {
4909 {
4910 .procname = "sched_domain",
4911 .mode = 0555,
4912 },
4913 {}
4914 };
4915
4916 static struct ctl_table sd_ctl_root[] = {
4917 {
4918 .procname = "kernel",
4919 .mode = 0555,
4920 .child = sd_ctl_dir,
4921 },
4922 {}
4923 };
4924
4925 static struct ctl_table *sd_alloc_ctl_entry(int n)
4926 {
4927 struct ctl_table *entry =
4928 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4929
4930 return entry;
4931 }
4932
4933 static void sd_free_ctl_entry(struct ctl_table **tablep)
4934 {
4935 struct ctl_table *entry;
4936
4937 /*
4938 * In the intermediate directories, both the child directory and
4939 * procname are dynamically allocated and could fail but the mode
4940 * will always be set. In the lowest directory the names are
4941 * static strings and all have proc handlers.
4942 */
4943 for (entry = *tablep; entry->mode; entry++) {
4944 if (entry->child)
4945 sd_free_ctl_entry(&entry->child);
4946 if (entry->proc_handler == NULL)
4947 kfree(entry->procname);
4948 }
4949
4950 kfree(*tablep);
4951 *tablep = NULL;
4952 }
4953
4954 static int min_load_idx = 0;
4955 static int max_load_idx = CPU_LOAD_IDX_MAX;
4956
4957 static void
4958 set_table_entry(struct ctl_table *entry,
4959 const char *procname, void *data, int maxlen,
4960 umode_t mode, proc_handler *proc_handler,
4961 bool load_idx)
4962 {
4963 entry->procname = procname;
4964 entry->data = data;
4965 entry->maxlen = maxlen;
4966 entry->mode = mode;
4967 entry->proc_handler = proc_handler;
4968
4969 if (load_idx) {
4970 entry->extra1 = &min_load_idx;
4971 entry->extra2 = &max_load_idx;
4972 }
4973 }
4974
4975 static struct ctl_table *
4976 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4977 {
4978 struct ctl_table *table = sd_alloc_ctl_entry(13);
4979
4980 if (table == NULL)
4981 return NULL;
4982
4983 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4984 sizeof(long), 0644, proc_doulongvec_minmax, false);
4985 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4986 sizeof(long), 0644, proc_doulongvec_minmax, false);
4987 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4988 sizeof(int), 0644, proc_dointvec_minmax, true);
4989 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4990 sizeof(int), 0644, proc_dointvec_minmax, true);
4991 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4992 sizeof(int), 0644, proc_dointvec_minmax, true);
4993 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4994 sizeof(int), 0644, proc_dointvec_minmax, true);
4995 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4996 sizeof(int), 0644, proc_dointvec_minmax, true);
4997 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4998 sizeof(int), 0644, proc_dointvec_minmax, false);
4999 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5000 sizeof(int), 0644, proc_dointvec_minmax, false);
5001 set_table_entry(&table[9], "cache_nice_tries",
5002 &sd->cache_nice_tries,
5003 sizeof(int), 0644, proc_dointvec_minmax, false);
5004 set_table_entry(&table[10], "flags", &sd->flags,
5005 sizeof(int), 0644, proc_dointvec_minmax, false);
5006 set_table_entry(&table[11], "name", sd->name,
5007 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5008 /* &table[12] is terminator */
5009
5010 return table;
5011 }
5012
5013 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5014 {
5015 struct ctl_table *entry, *table;
5016 struct sched_domain *sd;
5017 int domain_num = 0, i;
5018 char buf[32];
5019
5020 for_each_domain(cpu, sd)
5021 domain_num++;
5022 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5023 if (table == NULL)
5024 return NULL;
5025
5026 i = 0;
5027 for_each_domain(cpu, sd) {
5028 snprintf(buf, 32, "domain%d", i);
5029 entry->procname = kstrdup(buf, GFP_KERNEL);
5030 entry->mode = 0555;
5031 entry->child = sd_alloc_ctl_domain_table(sd);
5032 entry++;
5033 i++;
5034 }
5035 return table;
5036 }
5037
5038 static struct ctl_table_header *sd_sysctl_header;
5039 static void register_sched_domain_sysctl(void)
5040 {
5041 int i, cpu_num = num_possible_cpus();
5042 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5043 char buf[32];
5044
5045 WARN_ON(sd_ctl_dir[0].child);
5046 sd_ctl_dir[0].child = entry;
5047
5048 if (entry == NULL)
5049 return;
5050
5051 for_each_possible_cpu(i) {
5052 snprintf(buf, 32, "cpu%d", i);
5053 entry->procname = kstrdup(buf, GFP_KERNEL);
5054 entry->mode = 0555;
5055 entry->child = sd_alloc_ctl_cpu_table(i);
5056 entry++;
5057 }
5058
5059 WARN_ON(sd_sysctl_header);
5060 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5061 }
5062
5063 /* may be called multiple times per register */
5064 static void unregister_sched_domain_sysctl(void)
5065 {
5066 if (sd_sysctl_header)
5067 unregister_sysctl_table(sd_sysctl_header);
5068 sd_sysctl_header = NULL;
5069 if (sd_ctl_dir[0].child)
5070 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5071 }
5072 #else
5073 static void register_sched_domain_sysctl(void)
5074 {
5075 }
5076 static void unregister_sched_domain_sysctl(void)
5077 {
5078 }
5079 #endif
5080
5081 static void set_rq_online(struct rq *rq)
5082 {
5083 if (!rq->online) {
5084 const struct sched_class *class;
5085
5086 cpumask_set_cpu(rq->cpu, rq->rd->online);
5087 rq->online = 1;
5088
5089 for_each_class(class) {
5090 if (class->rq_online)
5091 class->rq_online(rq);
5092 }
5093 }
5094 }
5095
5096 static void set_rq_offline(struct rq *rq)
5097 {
5098 if (rq->online) {
5099 const struct sched_class *class;
5100
5101 for_each_class(class) {
5102 if (class->rq_offline)
5103 class->rq_offline(rq);
5104 }
5105
5106 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5107 rq->online = 0;
5108 }
5109 }
5110
5111 /*
5112 * migration_call - callback that gets triggered when a CPU is added.
5113 * Here we can start up the necessary migration thread for the new CPU.
5114 */
5115 static int __cpuinit
5116 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5117 {
5118 int cpu = (long)hcpu;
5119 unsigned long flags;
5120 struct rq *rq = cpu_rq(cpu);
5121
5122 switch (action & ~CPU_TASKS_FROZEN) {
5123
5124 case CPU_UP_PREPARE:
5125 rq->calc_load_update = calc_load_update;
5126 break;
5127
5128 case CPU_ONLINE:
5129 /* Update our root-domain */
5130 raw_spin_lock_irqsave(&rq->lock, flags);
5131 if (rq->rd) {
5132 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5133
5134 set_rq_online(rq);
5135 }
5136 raw_spin_unlock_irqrestore(&rq->lock, flags);
5137 break;
5138
5139 #ifdef CONFIG_HOTPLUG_CPU
5140 case CPU_DYING:
5141 sched_ttwu_pending();
5142 /* Update our root-domain */
5143 raw_spin_lock_irqsave(&rq->lock, flags);
5144 if (rq->rd) {
5145 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5146 set_rq_offline(rq);
5147 }
5148 migrate_tasks(cpu);
5149 BUG_ON(rq->nr_running != 1); /* the migration thread */
5150 raw_spin_unlock_irqrestore(&rq->lock, flags);
5151 break;
5152
5153 case CPU_DEAD:
5154 calc_load_migrate(rq);
5155 break;
5156 #endif
5157 }
5158
5159 update_max_interval();
5160
5161 return NOTIFY_OK;
5162 }
5163
5164 /*
5165 * Register at high priority so that task migration (migrate_all_tasks)
5166 * happens before everything else. This has to be lower priority than
5167 * the notifier in the perf_event subsystem, though.
5168 */
5169 static struct notifier_block __cpuinitdata migration_notifier = {
5170 .notifier_call = migration_call,
5171 .priority = CPU_PRI_MIGRATION,
5172 };
5173
5174 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5175 unsigned long action, void *hcpu)
5176 {
5177 switch (action & ~CPU_TASKS_FROZEN) {
5178 case CPU_STARTING:
5179 case CPU_DOWN_FAILED:
5180 set_cpu_active((long)hcpu, true);
5181 return NOTIFY_OK;
5182 default:
5183 return NOTIFY_DONE;
5184 }
5185 }
5186
5187 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5188 unsigned long action, void *hcpu)
5189 {
5190 switch (action & ~CPU_TASKS_FROZEN) {
5191 case CPU_DOWN_PREPARE:
5192 set_cpu_active((long)hcpu, false);
5193 return NOTIFY_OK;
5194 default:
5195 return NOTIFY_DONE;
5196 }
5197 }
5198
5199 static int __init migration_init(void)
5200 {
5201 void *cpu = (void *)(long)smp_processor_id();
5202 int err;
5203
5204 /* Initialize migration for the boot CPU */
5205 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5206 BUG_ON(err == NOTIFY_BAD);
5207 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5208 register_cpu_notifier(&migration_notifier);
5209
5210 /* Register cpu active notifiers */
5211 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5212 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5213
5214 return 0;
5215 }
5216 early_initcall(migration_init);
5217 #endif
5218
5219 #ifdef CONFIG_SMP
5220
5221 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5222
5223 #ifdef CONFIG_SCHED_DEBUG
5224
5225 static __read_mostly int sched_debug_enabled;
5226
5227 static int __init sched_debug_setup(char *str)
5228 {
5229 sched_debug_enabled = 1;
5230
5231 return 0;
5232 }
5233 early_param("sched_debug", sched_debug_setup);
5234
5235 static inline bool sched_debug(void)
5236 {
5237 return sched_debug_enabled;
5238 }
5239
5240 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5241 struct cpumask *groupmask)
5242 {
5243 struct sched_group *group = sd->groups;
5244 char str[256];
5245
5246 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5247 cpumask_clear(groupmask);
5248
5249 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5250
5251 if (!(sd->flags & SD_LOAD_BALANCE)) {
5252 printk("does not load-balance\n");
5253 if (sd->parent)
5254 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5255 " has parent");
5256 return -1;
5257 }
5258
5259 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5260
5261 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5262 printk(KERN_ERR "ERROR: domain->span does not contain "
5263 "CPU%d\n", cpu);
5264 }
5265 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5266 printk(KERN_ERR "ERROR: domain->groups does not contain"
5267 " CPU%d\n", cpu);
5268 }
5269
5270 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5271 do {
5272 if (!group) {
5273 printk("\n");
5274 printk(KERN_ERR "ERROR: group is NULL\n");
5275 break;
5276 }
5277
5278 /*
5279 * Even though we initialize ->power to something semi-sane,
5280 * we leave power_orig unset. This allows us to detect if
5281 * domain iteration is still funny without causing /0 traps.
5282 */
5283 if (!group->sgp->power_orig) {
5284 printk(KERN_CONT "\n");
5285 printk(KERN_ERR "ERROR: domain->cpu_power not "
5286 "set\n");
5287 break;
5288 }
5289
5290 if (!cpumask_weight(sched_group_cpus(group))) {
5291 printk(KERN_CONT "\n");
5292 printk(KERN_ERR "ERROR: empty group\n");
5293 break;
5294 }
5295
5296 if (!(sd->flags & SD_OVERLAP) &&
5297 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5298 printk(KERN_CONT "\n");
5299 printk(KERN_ERR "ERROR: repeated CPUs\n");
5300 break;
5301 }
5302
5303 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5304
5305 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5306
5307 printk(KERN_CONT " %s", str);
5308 if (group->sgp->power != SCHED_POWER_SCALE) {
5309 printk(KERN_CONT " (cpu_power = %d)",
5310 group->sgp->power);
5311 }
5312
5313 group = group->next;
5314 } while (group != sd->groups);
5315 printk(KERN_CONT "\n");
5316
5317 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5318 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5319
5320 if (sd->parent &&
5321 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5322 printk(KERN_ERR "ERROR: parent span is not a superset "
5323 "of domain->span\n");
5324 return 0;
5325 }
5326
5327 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5328 {
5329 int level = 0;
5330
5331 if (!sched_debug_enabled)
5332 return;
5333
5334 if (!sd) {
5335 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5336 return;
5337 }
5338
5339 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5340
5341 for (;;) {
5342 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5343 break;
5344 level++;
5345 sd = sd->parent;
5346 if (!sd)
5347 break;
5348 }
5349 }
5350 #else /* !CONFIG_SCHED_DEBUG */
5351 # define sched_domain_debug(sd, cpu) do { } while (0)
5352 static inline bool sched_debug(void)
5353 {
5354 return false;
5355 }
5356 #endif /* CONFIG_SCHED_DEBUG */
5357
5358 static int sd_degenerate(struct sched_domain *sd)
5359 {
5360 if (cpumask_weight(sched_domain_span(sd)) == 1)
5361 return 1;
5362
5363 /* Following flags need at least 2 groups */
5364 if (sd->flags & (SD_LOAD_BALANCE |
5365 SD_BALANCE_NEWIDLE |
5366 SD_BALANCE_FORK |
5367 SD_BALANCE_EXEC |
5368 SD_SHARE_CPUPOWER |
5369 SD_SHARE_PKG_RESOURCES)) {
5370 if (sd->groups != sd->groups->next)
5371 return 0;
5372 }
5373
5374 /* Following flags don't use groups */
5375 if (sd->flags & (SD_WAKE_AFFINE))
5376 return 0;
5377
5378 return 1;
5379 }
5380
5381 static int
5382 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5383 {
5384 unsigned long cflags = sd->flags, pflags = parent->flags;
5385
5386 if (sd_degenerate(parent))
5387 return 1;
5388
5389 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5390 return 0;
5391
5392 /* Flags needing groups don't count if only 1 group in parent */
5393 if (parent->groups == parent->groups->next) {
5394 pflags &= ~(SD_LOAD_BALANCE |
5395 SD_BALANCE_NEWIDLE |
5396 SD_BALANCE_FORK |
5397 SD_BALANCE_EXEC |
5398 SD_SHARE_CPUPOWER |
5399 SD_SHARE_PKG_RESOURCES);
5400 if (nr_node_ids == 1)
5401 pflags &= ~SD_SERIALIZE;
5402 }
5403 if (~cflags & pflags)
5404 return 0;
5405
5406 return 1;
5407 }
5408
5409 static void free_rootdomain(struct rcu_head *rcu)
5410 {
5411 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5412
5413 cpupri_cleanup(&rd->cpupri);
5414 free_cpumask_var(rd->rto_mask);
5415 free_cpumask_var(rd->online);
5416 free_cpumask_var(rd->span);
5417 kfree(rd);
5418 }
5419
5420 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5421 {
5422 struct root_domain *old_rd = NULL;
5423 unsigned long flags;
5424
5425 raw_spin_lock_irqsave(&rq->lock, flags);
5426
5427 if (rq->rd) {
5428 old_rd = rq->rd;
5429
5430 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5431 set_rq_offline(rq);
5432
5433 cpumask_clear_cpu(rq->cpu, old_rd->span);
5434
5435 /*
5436 * If we dont want to free the old_rt yet then
5437 * set old_rd to NULL to skip the freeing later
5438 * in this function:
5439 */
5440 if (!atomic_dec_and_test(&old_rd->refcount))
5441 old_rd = NULL;
5442 }
5443
5444 atomic_inc(&rd->refcount);
5445 rq->rd = rd;
5446
5447 cpumask_set_cpu(rq->cpu, rd->span);
5448 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5449 set_rq_online(rq);
5450
5451 raw_spin_unlock_irqrestore(&rq->lock, flags);
5452
5453 if (old_rd)
5454 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5455 }
5456
5457 static int init_rootdomain(struct root_domain *rd)
5458 {
5459 memset(rd, 0, sizeof(*rd));
5460
5461 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5462 goto out;
5463 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5464 goto free_span;
5465 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5466 goto free_online;
5467
5468 if (cpupri_init(&rd->cpupri) != 0)
5469 goto free_rto_mask;
5470 return 0;
5471
5472 free_rto_mask:
5473 free_cpumask_var(rd->rto_mask);
5474 free_online:
5475 free_cpumask_var(rd->online);
5476 free_span:
5477 free_cpumask_var(rd->span);
5478 out:
5479 return -ENOMEM;
5480 }
5481
5482 /*
5483 * By default the system creates a single root-domain with all cpus as
5484 * members (mimicking the global state we have today).
5485 */
5486 struct root_domain def_root_domain;
5487
5488 static void init_defrootdomain(void)
5489 {
5490 init_rootdomain(&def_root_domain);
5491
5492 atomic_set(&def_root_domain.refcount, 1);
5493 }
5494
5495 static struct root_domain *alloc_rootdomain(void)
5496 {
5497 struct root_domain *rd;
5498
5499 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5500 if (!rd)
5501 return NULL;
5502
5503 if (init_rootdomain(rd) != 0) {
5504 kfree(rd);
5505 return NULL;
5506 }
5507
5508 return rd;
5509 }
5510
5511 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5512 {
5513 struct sched_group *tmp, *first;
5514
5515 if (!sg)
5516 return;
5517
5518 first = sg;
5519 do {
5520 tmp = sg->next;
5521
5522 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5523 kfree(sg->sgp);
5524
5525 kfree(sg);
5526 sg = tmp;
5527 } while (sg != first);
5528 }
5529
5530 static void free_sched_domain(struct rcu_head *rcu)
5531 {
5532 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5533
5534 /*
5535 * If its an overlapping domain it has private groups, iterate and
5536 * nuke them all.
5537 */
5538 if (sd->flags & SD_OVERLAP) {
5539 free_sched_groups(sd->groups, 1);
5540 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5541 kfree(sd->groups->sgp);
5542 kfree(sd->groups);
5543 }
5544 kfree(sd);
5545 }
5546
5547 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5548 {
5549 call_rcu(&sd->rcu, free_sched_domain);
5550 }
5551
5552 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5553 {
5554 for (; sd; sd = sd->parent)
5555 destroy_sched_domain(sd, cpu);
5556 }
5557
5558 /*
5559 * Keep a special pointer to the highest sched_domain that has
5560 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5561 * allows us to avoid some pointer chasing select_idle_sibling().
5562 *
5563 * Also keep a unique ID per domain (we use the first cpu number in
5564 * the cpumask of the domain), this allows us to quickly tell if
5565 * two cpus are in the same cache domain, see cpus_share_cache().
5566 */
5567 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5568 DEFINE_PER_CPU(int, sd_llc_id);
5569
5570 static void update_top_cache_domain(int cpu)
5571 {
5572 struct sched_domain *sd;
5573 int id = cpu;
5574
5575 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5576 if (sd)
5577 id = cpumask_first(sched_domain_span(sd));
5578
5579 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5580 per_cpu(sd_llc_id, cpu) = id;
5581 }
5582
5583 /*
5584 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5585 * hold the hotplug lock.
5586 */
5587 static void
5588 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5589 {
5590 struct rq *rq = cpu_rq(cpu);
5591 struct sched_domain *tmp;
5592
5593 /* Remove the sched domains which do not contribute to scheduling. */
5594 for (tmp = sd; tmp; ) {
5595 struct sched_domain *parent = tmp->parent;
5596 if (!parent)
5597 break;
5598
5599 if (sd_parent_degenerate(tmp, parent)) {
5600 tmp->parent = parent->parent;
5601 if (parent->parent)
5602 parent->parent->child = tmp;
5603 destroy_sched_domain(parent, cpu);
5604 } else
5605 tmp = tmp->parent;
5606 }
5607
5608 if (sd && sd_degenerate(sd)) {
5609 tmp = sd;
5610 sd = sd->parent;
5611 destroy_sched_domain(tmp, cpu);
5612 if (sd)
5613 sd->child = NULL;
5614 }
5615
5616 sched_domain_debug(sd, cpu);
5617
5618 rq_attach_root(rq, rd);
5619 tmp = rq->sd;
5620 rcu_assign_pointer(rq->sd, sd);
5621 destroy_sched_domains(tmp, cpu);
5622
5623 update_top_cache_domain(cpu);
5624 }
5625
5626 /* cpus with isolated domains */
5627 static cpumask_var_t cpu_isolated_map;
5628
5629 /* Setup the mask of cpus configured for isolated domains */
5630 static int __init isolated_cpu_setup(char *str)
5631 {
5632 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5633 cpulist_parse(str, cpu_isolated_map);
5634 return 1;
5635 }
5636
5637 __setup("isolcpus=", isolated_cpu_setup);
5638
5639 static const struct cpumask *cpu_cpu_mask(int cpu)
5640 {
5641 return cpumask_of_node(cpu_to_node(cpu));
5642 }
5643
5644 struct sd_data {
5645 struct sched_domain **__percpu sd;
5646 struct sched_group **__percpu sg;
5647 struct sched_group_power **__percpu sgp;
5648 };
5649
5650 struct s_data {
5651 struct sched_domain ** __percpu sd;
5652 struct root_domain *rd;
5653 };
5654
5655 enum s_alloc {
5656 sa_rootdomain,
5657 sa_sd,
5658 sa_sd_storage,
5659 sa_none,
5660 };
5661
5662 struct sched_domain_topology_level;
5663
5664 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5665 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5666
5667 #define SDTL_OVERLAP 0x01
5668
5669 struct sched_domain_topology_level {
5670 sched_domain_init_f init;
5671 sched_domain_mask_f mask;
5672 int flags;
5673 int numa_level;
5674 struct sd_data data;
5675 };
5676
5677 /*
5678 * Build an iteration mask that can exclude certain CPUs from the upwards
5679 * domain traversal.
5680 *
5681 * Asymmetric node setups can result in situations where the domain tree is of
5682 * unequal depth, make sure to skip domains that already cover the entire
5683 * range.
5684 *
5685 * In that case build_sched_domains() will have terminated the iteration early
5686 * and our sibling sd spans will be empty. Domains should always include the
5687 * cpu they're built on, so check that.
5688 *
5689 */
5690 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5691 {
5692 const struct cpumask *span = sched_domain_span(sd);
5693 struct sd_data *sdd = sd->private;
5694 struct sched_domain *sibling;
5695 int i;
5696
5697 for_each_cpu(i, span) {
5698 sibling = *per_cpu_ptr(sdd->sd, i);
5699 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5700 continue;
5701
5702 cpumask_set_cpu(i, sched_group_mask(sg));
5703 }
5704 }
5705
5706 /*
5707 * Return the canonical balance cpu for this group, this is the first cpu
5708 * of this group that's also in the iteration mask.
5709 */
5710 int group_balance_cpu(struct sched_group *sg)
5711 {
5712 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5713 }
5714
5715 static int
5716 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5717 {
5718 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5719 const struct cpumask *span = sched_domain_span(sd);
5720 struct cpumask *covered = sched_domains_tmpmask;
5721 struct sd_data *sdd = sd->private;
5722 struct sched_domain *child;
5723 int i;
5724
5725 cpumask_clear(covered);
5726
5727 for_each_cpu(i, span) {
5728 struct cpumask *sg_span;
5729
5730 if (cpumask_test_cpu(i, covered))
5731 continue;
5732
5733 child = *per_cpu_ptr(sdd->sd, i);
5734
5735 /* See the comment near build_group_mask(). */
5736 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5737 continue;
5738
5739 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5740 GFP_KERNEL, cpu_to_node(cpu));
5741
5742 if (!sg)
5743 goto fail;
5744
5745 sg_span = sched_group_cpus(sg);
5746 if (child->child) {
5747 child = child->child;
5748 cpumask_copy(sg_span, sched_domain_span(child));
5749 } else
5750 cpumask_set_cpu(i, sg_span);
5751
5752 cpumask_or(covered, covered, sg_span);
5753
5754 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5755 if (atomic_inc_return(&sg->sgp->ref) == 1)
5756 build_group_mask(sd, sg);
5757
5758 /*
5759 * Initialize sgp->power such that even if we mess up the
5760 * domains and no possible iteration will get us here, we won't
5761 * die on a /0 trap.
5762 */
5763 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5764
5765 /*
5766 * Make sure the first group of this domain contains the
5767 * canonical balance cpu. Otherwise the sched_domain iteration
5768 * breaks. See update_sg_lb_stats().
5769 */
5770 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5771 group_balance_cpu(sg) == cpu)
5772 groups = sg;
5773
5774 if (!first)
5775 first = sg;
5776 if (last)
5777 last->next = sg;
5778 last = sg;
5779 last->next = first;
5780 }
5781 sd->groups = groups;
5782
5783 return 0;
5784
5785 fail:
5786 free_sched_groups(first, 0);
5787
5788 return -ENOMEM;
5789 }
5790
5791 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5792 {
5793 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5794 struct sched_domain *child = sd->child;
5795
5796 if (child)
5797 cpu = cpumask_first(sched_domain_span(child));
5798
5799 if (sg) {
5800 *sg = *per_cpu_ptr(sdd->sg, cpu);
5801 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5802 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5803 }
5804
5805 return cpu;
5806 }
5807
5808 /*
5809 * build_sched_groups will build a circular linked list of the groups
5810 * covered by the given span, and will set each group's ->cpumask correctly,
5811 * and ->cpu_power to 0.
5812 *
5813 * Assumes the sched_domain tree is fully constructed
5814 */
5815 static int
5816 build_sched_groups(struct sched_domain *sd, int cpu)
5817 {
5818 struct sched_group *first = NULL, *last = NULL;
5819 struct sd_data *sdd = sd->private;
5820 const struct cpumask *span = sched_domain_span(sd);
5821 struct cpumask *covered;
5822 int i;
5823
5824 get_group(cpu, sdd, &sd->groups);
5825 atomic_inc(&sd->groups->ref);
5826
5827 if (cpu != cpumask_first(sched_domain_span(sd)))
5828 return 0;
5829
5830 lockdep_assert_held(&sched_domains_mutex);
5831 covered = sched_domains_tmpmask;
5832
5833 cpumask_clear(covered);
5834
5835 for_each_cpu(i, span) {
5836 struct sched_group *sg;
5837 int group = get_group(i, sdd, &sg);
5838 int j;
5839
5840 if (cpumask_test_cpu(i, covered))
5841 continue;
5842
5843 cpumask_clear(sched_group_cpus(sg));
5844 sg->sgp->power = 0;
5845 cpumask_setall(sched_group_mask(sg));
5846
5847 for_each_cpu(j, span) {
5848 if (get_group(j, sdd, NULL) != group)
5849 continue;
5850
5851 cpumask_set_cpu(j, covered);
5852 cpumask_set_cpu(j, sched_group_cpus(sg));
5853 }
5854
5855 if (!first)
5856 first = sg;
5857 if (last)
5858 last->next = sg;
5859 last = sg;
5860 }
5861 last->next = first;
5862
5863 return 0;
5864 }
5865
5866 /*
5867 * Initialize sched groups cpu_power.
5868 *
5869 * cpu_power indicates the capacity of sched group, which is used while
5870 * distributing the load between different sched groups in a sched domain.
5871 * Typically cpu_power for all the groups in a sched domain will be same unless
5872 * there are asymmetries in the topology. If there are asymmetries, group
5873 * having more cpu_power will pickup more load compared to the group having
5874 * less cpu_power.
5875 */
5876 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5877 {
5878 struct sched_group *sg = sd->groups;
5879
5880 WARN_ON(!sd || !sg);
5881
5882 do {
5883 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5884 sg = sg->next;
5885 } while (sg != sd->groups);
5886
5887 if (cpu != group_balance_cpu(sg))
5888 return;
5889
5890 update_group_power(sd, cpu);
5891 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5892 }
5893
5894 int __weak arch_sd_sibling_asym_packing(void)
5895 {
5896 return 0*SD_ASYM_PACKING;
5897 }
5898
5899 /*
5900 * Initializers for schedule domains
5901 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5902 */
5903
5904 #ifdef CONFIG_SCHED_DEBUG
5905 # define SD_INIT_NAME(sd, type) sd->name = #type
5906 #else
5907 # define SD_INIT_NAME(sd, type) do { } while (0)
5908 #endif
5909
5910 #define SD_INIT_FUNC(type) \
5911 static noinline struct sched_domain * \
5912 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5913 { \
5914 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5915 *sd = SD_##type##_INIT; \
5916 SD_INIT_NAME(sd, type); \
5917 sd->private = &tl->data; \
5918 return sd; \
5919 }
5920
5921 SD_INIT_FUNC(CPU)
5922 #ifdef CONFIG_SCHED_SMT
5923 SD_INIT_FUNC(SIBLING)
5924 #endif
5925 #ifdef CONFIG_SCHED_MC
5926 SD_INIT_FUNC(MC)
5927 #endif
5928 #ifdef CONFIG_SCHED_BOOK
5929 SD_INIT_FUNC(BOOK)
5930 #endif
5931
5932 static int default_relax_domain_level = -1;
5933 int sched_domain_level_max;
5934
5935 static int __init setup_relax_domain_level(char *str)
5936 {
5937 if (kstrtoint(str, 0, &default_relax_domain_level))
5938 pr_warn("Unable to set relax_domain_level\n");
5939
5940 return 1;
5941 }
5942 __setup("relax_domain_level=", setup_relax_domain_level);
5943
5944 static void set_domain_attribute(struct sched_domain *sd,
5945 struct sched_domain_attr *attr)
5946 {
5947 int request;
5948
5949 if (!attr || attr->relax_domain_level < 0) {
5950 if (default_relax_domain_level < 0)
5951 return;
5952 else
5953 request = default_relax_domain_level;
5954 } else
5955 request = attr->relax_domain_level;
5956 if (request < sd->level) {
5957 /* turn off idle balance on this domain */
5958 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5959 } else {
5960 /* turn on idle balance on this domain */
5961 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5962 }
5963 }
5964
5965 static void __sdt_free(const struct cpumask *cpu_map);
5966 static int __sdt_alloc(const struct cpumask *cpu_map);
5967
5968 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5969 const struct cpumask *cpu_map)
5970 {
5971 switch (what) {
5972 case sa_rootdomain:
5973 if (!atomic_read(&d->rd->refcount))
5974 free_rootdomain(&d->rd->rcu); /* fall through */
5975 case sa_sd:
5976 free_percpu(d->sd); /* fall through */
5977 case sa_sd_storage:
5978 __sdt_free(cpu_map); /* fall through */
5979 case sa_none:
5980 break;
5981 }
5982 }
5983
5984 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5985 const struct cpumask *cpu_map)
5986 {
5987 memset(d, 0, sizeof(*d));
5988
5989 if (__sdt_alloc(cpu_map))
5990 return sa_sd_storage;
5991 d->sd = alloc_percpu(struct sched_domain *);
5992 if (!d->sd)
5993 return sa_sd_storage;
5994 d->rd = alloc_rootdomain();
5995 if (!d->rd)
5996 return sa_sd;
5997 return sa_rootdomain;
5998 }
5999
6000 /*
6001 * NULL the sd_data elements we've used to build the sched_domain and
6002 * sched_group structure so that the subsequent __free_domain_allocs()
6003 * will not free the data we're using.
6004 */
6005 static void claim_allocations(int cpu, struct sched_domain *sd)
6006 {
6007 struct sd_data *sdd = sd->private;
6008
6009 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6010 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6011
6012 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6013 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6014
6015 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6016 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6017 }
6018
6019 #ifdef CONFIG_SCHED_SMT
6020 static const struct cpumask *cpu_smt_mask(int cpu)
6021 {
6022 return topology_thread_cpumask(cpu);
6023 }
6024 #endif
6025
6026 /*
6027 * Topology list, bottom-up.
6028 */
6029 static struct sched_domain_topology_level default_topology[] = {
6030 #ifdef CONFIG_SCHED_SMT
6031 { sd_init_SIBLING, cpu_smt_mask, },
6032 #endif
6033 #ifdef CONFIG_SCHED_MC
6034 { sd_init_MC, cpu_coregroup_mask, },
6035 #endif
6036 #ifdef CONFIG_SCHED_BOOK
6037 { sd_init_BOOK, cpu_book_mask, },
6038 #endif
6039 { sd_init_CPU, cpu_cpu_mask, },
6040 { NULL, },
6041 };
6042
6043 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6044
6045 #ifdef CONFIG_NUMA
6046
6047 static int sched_domains_numa_levels;
6048 static int *sched_domains_numa_distance;
6049 static struct cpumask ***sched_domains_numa_masks;
6050 static int sched_domains_curr_level;
6051
6052 static inline int sd_local_flags(int level)
6053 {
6054 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6055 return 0;
6056
6057 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6058 }
6059
6060 static struct sched_domain *
6061 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6062 {
6063 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6064 int level = tl->numa_level;
6065 int sd_weight = cpumask_weight(
6066 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6067
6068 *sd = (struct sched_domain){
6069 .min_interval = sd_weight,
6070 .max_interval = 2*sd_weight,
6071 .busy_factor = 32,
6072 .imbalance_pct = 125,
6073 .cache_nice_tries = 2,
6074 .busy_idx = 3,
6075 .idle_idx = 2,
6076 .newidle_idx = 0,
6077 .wake_idx = 0,
6078 .forkexec_idx = 0,
6079
6080 .flags = 1*SD_LOAD_BALANCE
6081 | 1*SD_BALANCE_NEWIDLE
6082 | 0*SD_BALANCE_EXEC
6083 | 0*SD_BALANCE_FORK
6084 | 0*SD_BALANCE_WAKE
6085 | 0*SD_WAKE_AFFINE
6086 | 0*SD_SHARE_CPUPOWER
6087 | 0*SD_SHARE_PKG_RESOURCES
6088 | 1*SD_SERIALIZE
6089 | 0*SD_PREFER_SIBLING
6090 | sd_local_flags(level)
6091 ,
6092 .last_balance = jiffies,
6093 .balance_interval = sd_weight,
6094 };
6095 SD_INIT_NAME(sd, NUMA);
6096 sd->private = &tl->data;
6097
6098 /*
6099 * Ugly hack to pass state to sd_numa_mask()...
6100 */
6101 sched_domains_curr_level = tl->numa_level;
6102
6103 return sd;
6104 }
6105
6106 static const struct cpumask *sd_numa_mask(int cpu)
6107 {
6108 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6109 }
6110
6111 static void sched_numa_warn(const char *str)
6112 {
6113 static int done = false;
6114 int i,j;
6115
6116 if (done)
6117 return;
6118
6119 done = true;
6120
6121 printk(KERN_WARNING "ERROR: %s\n\n", str);
6122
6123 for (i = 0; i < nr_node_ids; i++) {
6124 printk(KERN_WARNING " ");
6125 for (j = 0; j < nr_node_ids; j++)
6126 printk(KERN_CONT "%02d ", node_distance(i,j));
6127 printk(KERN_CONT "\n");
6128 }
6129 printk(KERN_WARNING "\n");
6130 }
6131
6132 static bool find_numa_distance(int distance)
6133 {
6134 int i;
6135
6136 if (distance == node_distance(0, 0))
6137 return true;
6138
6139 for (i = 0; i < sched_domains_numa_levels; i++) {
6140 if (sched_domains_numa_distance[i] == distance)
6141 return true;
6142 }
6143
6144 return false;
6145 }
6146
6147 static void sched_init_numa(void)
6148 {
6149 int next_distance, curr_distance = node_distance(0, 0);
6150 struct sched_domain_topology_level *tl;
6151 int level = 0;
6152 int i, j, k;
6153
6154 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6155 if (!sched_domains_numa_distance)
6156 return;
6157
6158 /*
6159 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6160 * unique distances in the node_distance() table.
6161 *
6162 * Assumes node_distance(0,j) includes all distances in
6163 * node_distance(i,j) in order to avoid cubic time.
6164 */
6165 next_distance = curr_distance;
6166 for (i = 0; i < nr_node_ids; i++) {
6167 for (j = 0; j < nr_node_ids; j++) {
6168 for (k = 0; k < nr_node_ids; k++) {
6169 int distance = node_distance(i, k);
6170
6171 if (distance > curr_distance &&
6172 (distance < next_distance ||
6173 next_distance == curr_distance))
6174 next_distance = distance;
6175
6176 /*
6177 * While not a strong assumption it would be nice to know
6178 * about cases where if node A is connected to B, B is not
6179 * equally connected to A.
6180 */
6181 if (sched_debug() && node_distance(k, i) != distance)
6182 sched_numa_warn("Node-distance not symmetric");
6183
6184 if (sched_debug() && i && !find_numa_distance(distance))
6185 sched_numa_warn("Node-0 not representative");
6186 }
6187 if (next_distance != curr_distance) {
6188 sched_domains_numa_distance[level++] = next_distance;
6189 sched_domains_numa_levels = level;
6190 curr_distance = next_distance;
6191 } else break;
6192 }
6193
6194 /*
6195 * In case of sched_debug() we verify the above assumption.
6196 */
6197 if (!sched_debug())
6198 break;
6199 }
6200 /*
6201 * 'level' contains the number of unique distances, excluding the
6202 * identity distance node_distance(i,i).
6203 *
6204 * The sched_domains_nume_distance[] array includes the actual distance
6205 * numbers.
6206 */
6207
6208 /*
6209 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6210 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6211 * the array will contain less then 'level' members. This could be
6212 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6213 * in other functions.
6214 *
6215 * We reset it to 'level' at the end of this function.
6216 */
6217 sched_domains_numa_levels = 0;
6218
6219 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6220 if (!sched_domains_numa_masks)
6221 return;
6222
6223 /*
6224 * Now for each level, construct a mask per node which contains all
6225 * cpus of nodes that are that many hops away from us.
6226 */
6227 for (i = 0; i < level; i++) {
6228 sched_domains_numa_masks[i] =
6229 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6230 if (!sched_domains_numa_masks[i])
6231 return;
6232
6233 for (j = 0; j < nr_node_ids; j++) {
6234 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6235 if (!mask)
6236 return;
6237
6238 sched_domains_numa_masks[i][j] = mask;
6239
6240 for (k = 0; k < nr_node_ids; k++) {
6241 if (node_distance(j, k) > sched_domains_numa_distance[i])
6242 continue;
6243
6244 cpumask_or(mask, mask, cpumask_of_node(k));
6245 }
6246 }
6247 }
6248
6249 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6250 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6251 if (!tl)
6252 return;
6253
6254 /*
6255 * Copy the default topology bits..
6256 */
6257 for (i = 0; default_topology[i].init; i++)
6258 tl[i] = default_topology[i];
6259
6260 /*
6261 * .. and append 'j' levels of NUMA goodness.
6262 */
6263 for (j = 0; j < level; i++, j++) {
6264 tl[i] = (struct sched_domain_topology_level){
6265 .init = sd_numa_init,
6266 .mask = sd_numa_mask,
6267 .flags = SDTL_OVERLAP,
6268 .numa_level = j,
6269 };
6270 }
6271
6272 sched_domain_topology = tl;
6273
6274 sched_domains_numa_levels = level;
6275 }
6276
6277 static void sched_domains_numa_masks_set(int cpu)
6278 {
6279 int i, j;
6280 int node = cpu_to_node(cpu);
6281
6282 for (i = 0; i < sched_domains_numa_levels; i++) {
6283 for (j = 0; j < nr_node_ids; j++) {
6284 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6285 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6286 }
6287 }
6288 }
6289
6290 static void sched_domains_numa_masks_clear(int cpu)
6291 {
6292 int i, j;
6293 for (i = 0; i < sched_domains_numa_levels; i++) {
6294 for (j = 0; j < nr_node_ids; j++)
6295 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6296 }
6297 }
6298
6299 /*
6300 * Update sched_domains_numa_masks[level][node] array when new cpus
6301 * are onlined.
6302 */
6303 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6304 unsigned long action,
6305 void *hcpu)
6306 {
6307 int cpu = (long)hcpu;
6308
6309 switch (action & ~CPU_TASKS_FROZEN) {
6310 case CPU_ONLINE:
6311 sched_domains_numa_masks_set(cpu);
6312 break;
6313
6314 case CPU_DEAD:
6315 sched_domains_numa_masks_clear(cpu);
6316 break;
6317
6318 default:
6319 return NOTIFY_DONE;
6320 }
6321
6322 return NOTIFY_OK;
6323 }
6324 #else
6325 static inline void sched_init_numa(void)
6326 {
6327 }
6328
6329 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6330 unsigned long action,
6331 void *hcpu)
6332 {
6333 return 0;
6334 }
6335 #endif /* CONFIG_NUMA */
6336
6337 static int __sdt_alloc(const struct cpumask *cpu_map)
6338 {
6339 struct sched_domain_topology_level *tl;
6340 int j;
6341
6342 for (tl = sched_domain_topology; tl->init; tl++) {
6343 struct sd_data *sdd = &tl->data;
6344
6345 sdd->sd = alloc_percpu(struct sched_domain *);
6346 if (!sdd->sd)
6347 return -ENOMEM;
6348
6349 sdd->sg = alloc_percpu(struct sched_group *);
6350 if (!sdd->sg)
6351 return -ENOMEM;
6352
6353 sdd->sgp = alloc_percpu(struct sched_group_power *);
6354 if (!sdd->sgp)
6355 return -ENOMEM;
6356
6357 for_each_cpu(j, cpu_map) {
6358 struct sched_domain *sd;
6359 struct sched_group *sg;
6360 struct sched_group_power *sgp;
6361
6362 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6363 GFP_KERNEL, cpu_to_node(j));
6364 if (!sd)
6365 return -ENOMEM;
6366
6367 *per_cpu_ptr(sdd->sd, j) = sd;
6368
6369 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6370 GFP_KERNEL, cpu_to_node(j));
6371 if (!sg)
6372 return -ENOMEM;
6373
6374 sg->next = sg;
6375
6376 *per_cpu_ptr(sdd->sg, j) = sg;
6377
6378 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6379 GFP_KERNEL, cpu_to_node(j));
6380 if (!sgp)
6381 return -ENOMEM;
6382
6383 *per_cpu_ptr(sdd->sgp, j) = sgp;
6384 }
6385 }
6386
6387 return 0;
6388 }
6389
6390 static void __sdt_free(const struct cpumask *cpu_map)
6391 {
6392 struct sched_domain_topology_level *tl;
6393 int j;
6394
6395 for (tl = sched_domain_topology; tl->init; tl++) {
6396 struct sd_data *sdd = &tl->data;
6397
6398 for_each_cpu(j, cpu_map) {
6399 struct sched_domain *sd;
6400
6401 if (sdd->sd) {
6402 sd = *per_cpu_ptr(sdd->sd, j);
6403 if (sd && (sd->flags & SD_OVERLAP))
6404 free_sched_groups(sd->groups, 0);
6405 kfree(*per_cpu_ptr(sdd->sd, j));
6406 }
6407
6408 if (sdd->sg)
6409 kfree(*per_cpu_ptr(sdd->sg, j));
6410 if (sdd->sgp)
6411 kfree(*per_cpu_ptr(sdd->sgp, j));
6412 }
6413 free_percpu(sdd->sd);
6414 sdd->sd = NULL;
6415 free_percpu(sdd->sg);
6416 sdd->sg = NULL;
6417 free_percpu(sdd->sgp);
6418 sdd->sgp = NULL;
6419 }
6420 }
6421
6422 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6423 struct s_data *d, const struct cpumask *cpu_map,
6424 struct sched_domain_attr *attr, struct sched_domain *child,
6425 int cpu)
6426 {
6427 struct sched_domain *sd = tl->init(tl, cpu);
6428 if (!sd)
6429 return child;
6430
6431 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6432 if (child) {
6433 sd->level = child->level + 1;
6434 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6435 child->parent = sd;
6436 }
6437 sd->child = child;
6438 set_domain_attribute(sd, attr);
6439
6440 return sd;
6441 }
6442
6443 /*
6444 * Build sched domains for a given set of cpus and attach the sched domains
6445 * to the individual cpus
6446 */
6447 static int build_sched_domains(const struct cpumask *cpu_map,
6448 struct sched_domain_attr *attr)
6449 {
6450 enum s_alloc alloc_state = sa_none;
6451 struct sched_domain *sd;
6452 struct s_data d;
6453 int i, ret = -ENOMEM;
6454
6455 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6456 if (alloc_state != sa_rootdomain)
6457 goto error;
6458
6459 /* Set up domains for cpus specified by the cpu_map. */
6460 for_each_cpu(i, cpu_map) {
6461 struct sched_domain_topology_level *tl;
6462
6463 sd = NULL;
6464 for (tl = sched_domain_topology; tl->init; tl++) {
6465 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6466 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6467 sd->flags |= SD_OVERLAP;
6468 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6469 break;
6470 }
6471
6472 while (sd->child)
6473 sd = sd->child;
6474
6475 *per_cpu_ptr(d.sd, i) = sd;
6476 }
6477
6478 /* Build the groups for the domains */
6479 for_each_cpu(i, cpu_map) {
6480 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6481 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6482 if (sd->flags & SD_OVERLAP) {
6483 if (build_overlap_sched_groups(sd, i))
6484 goto error;
6485 } else {
6486 if (build_sched_groups(sd, i))
6487 goto error;
6488 }
6489 }
6490 }
6491
6492 /* Calculate CPU power for physical packages and nodes */
6493 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6494 if (!cpumask_test_cpu(i, cpu_map))
6495 continue;
6496
6497 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6498 claim_allocations(i, sd);
6499 init_sched_groups_power(i, sd);
6500 }
6501 }
6502
6503 /* Attach the domains */
6504 rcu_read_lock();
6505 for_each_cpu(i, cpu_map) {
6506 sd = *per_cpu_ptr(d.sd, i);
6507 cpu_attach_domain(sd, d.rd, i);
6508 }
6509 rcu_read_unlock();
6510
6511 ret = 0;
6512 error:
6513 __free_domain_allocs(&d, alloc_state, cpu_map);
6514 return ret;
6515 }
6516
6517 static cpumask_var_t *doms_cur; /* current sched domains */
6518 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6519 static struct sched_domain_attr *dattr_cur;
6520 /* attribues of custom domains in 'doms_cur' */
6521
6522 /*
6523 * Special case: If a kmalloc of a doms_cur partition (array of
6524 * cpumask) fails, then fallback to a single sched domain,
6525 * as determined by the single cpumask fallback_doms.
6526 */
6527 static cpumask_var_t fallback_doms;
6528
6529 /*
6530 * arch_update_cpu_topology lets virtualized architectures update the
6531 * cpu core maps. It is supposed to return 1 if the topology changed
6532 * or 0 if it stayed the same.
6533 */
6534 int __attribute__((weak)) arch_update_cpu_topology(void)
6535 {
6536 return 0;
6537 }
6538
6539 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6540 {
6541 int i;
6542 cpumask_var_t *doms;
6543
6544 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6545 if (!doms)
6546 return NULL;
6547 for (i = 0; i < ndoms; i++) {
6548 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6549 free_sched_domains(doms, i);
6550 return NULL;
6551 }
6552 }
6553 return doms;
6554 }
6555
6556 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6557 {
6558 unsigned int i;
6559 for (i = 0; i < ndoms; i++)
6560 free_cpumask_var(doms[i]);
6561 kfree(doms);
6562 }
6563
6564 /*
6565 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6566 * For now this just excludes isolated cpus, but could be used to
6567 * exclude other special cases in the future.
6568 */
6569 static int init_sched_domains(const struct cpumask *cpu_map)
6570 {
6571 int err;
6572
6573 arch_update_cpu_topology();
6574 ndoms_cur = 1;
6575 doms_cur = alloc_sched_domains(ndoms_cur);
6576 if (!doms_cur)
6577 doms_cur = &fallback_doms;
6578 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6579 err = build_sched_domains(doms_cur[0], NULL);
6580 register_sched_domain_sysctl();
6581
6582 return err;
6583 }
6584
6585 /*
6586 * Detach sched domains from a group of cpus specified in cpu_map
6587 * These cpus will now be attached to the NULL domain
6588 */
6589 static void detach_destroy_domains(const struct cpumask *cpu_map)
6590 {
6591 int i;
6592
6593 rcu_read_lock();
6594 for_each_cpu(i, cpu_map)
6595 cpu_attach_domain(NULL, &def_root_domain, i);
6596 rcu_read_unlock();
6597 }
6598
6599 /* handle null as "default" */
6600 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6601 struct sched_domain_attr *new, int idx_new)
6602 {
6603 struct sched_domain_attr tmp;
6604
6605 /* fast path */
6606 if (!new && !cur)
6607 return 1;
6608
6609 tmp = SD_ATTR_INIT;
6610 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6611 new ? (new + idx_new) : &tmp,
6612 sizeof(struct sched_domain_attr));
6613 }
6614
6615 /*
6616 * Partition sched domains as specified by the 'ndoms_new'
6617 * cpumasks in the array doms_new[] of cpumasks. This compares
6618 * doms_new[] to the current sched domain partitioning, doms_cur[].
6619 * It destroys each deleted domain and builds each new domain.
6620 *
6621 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6622 * The masks don't intersect (don't overlap.) We should setup one
6623 * sched domain for each mask. CPUs not in any of the cpumasks will
6624 * not be load balanced. If the same cpumask appears both in the
6625 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6626 * it as it is.
6627 *
6628 * The passed in 'doms_new' should be allocated using
6629 * alloc_sched_domains. This routine takes ownership of it and will
6630 * free_sched_domains it when done with it. If the caller failed the
6631 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6632 * and partition_sched_domains() will fallback to the single partition
6633 * 'fallback_doms', it also forces the domains to be rebuilt.
6634 *
6635 * If doms_new == NULL it will be replaced with cpu_online_mask.
6636 * ndoms_new == 0 is a special case for destroying existing domains,
6637 * and it will not create the default domain.
6638 *
6639 * Call with hotplug lock held
6640 */
6641 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6642 struct sched_domain_attr *dattr_new)
6643 {
6644 int i, j, n;
6645 int new_topology;
6646
6647 mutex_lock(&sched_domains_mutex);
6648
6649 /* always unregister in case we don't destroy any domains */
6650 unregister_sched_domain_sysctl();
6651
6652 /* Let architecture update cpu core mappings. */
6653 new_topology = arch_update_cpu_topology();
6654
6655 n = doms_new ? ndoms_new : 0;
6656
6657 /* Destroy deleted domains */
6658 for (i = 0; i < ndoms_cur; i++) {
6659 for (j = 0; j < n && !new_topology; j++) {
6660 if (cpumask_equal(doms_cur[i], doms_new[j])
6661 && dattrs_equal(dattr_cur, i, dattr_new, j))
6662 goto match1;
6663 }
6664 /* no match - a current sched domain not in new doms_new[] */
6665 detach_destroy_domains(doms_cur[i]);
6666 match1:
6667 ;
6668 }
6669
6670 if (doms_new == NULL) {
6671 ndoms_cur = 0;
6672 doms_new = &fallback_doms;
6673 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6674 WARN_ON_ONCE(dattr_new);
6675 }
6676
6677 /* Build new domains */
6678 for (i = 0; i < ndoms_new; i++) {
6679 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6680 if (cpumask_equal(doms_new[i], doms_cur[j])
6681 && dattrs_equal(dattr_new, i, dattr_cur, j))
6682 goto match2;
6683 }
6684 /* no match - add a new doms_new */
6685 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6686 match2:
6687 ;
6688 }
6689
6690 /* Remember the new sched domains */
6691 if (doms_cur != &fallback_doms)
6692 free_sched_domains(doms_cur, ndoms_cur);
6693 kfree(dattr_cur); /* kfree(NULL) is safe */
6694 doms_cur = doms_new;
6695 dattr_cur = dattr_new;
6696 ndoms_cur = ndoms_new;
6697
6698 register_sched_domain_sysctl();
6699
6700 mutex_unlock(&sched_domains_mutex);
6701 }
6702
6703 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6704
6705 /*
6706 * Update cpusets according to cpu_active mask. If cpusets are
6707 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6708 * around partition_sched_domains().
6709 *
6710 * If we come here as part of a suspend/resume, don't touch cpusets because we
6711 * want to restore it back to its original state upon resume anyway.
6712 */
6713 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6714 void *hcpu)
6715 {
6716 switch (action) {
6717 case CPU_ONLINE_FROZEN:
6718 case CPU_DOWN_FAILED_FROZEN:
6719
6720 /*
6721 * num_cpus_frozen tracks how many CPUs are involved in suspend
6722 * resume sequence. As long as this is not the last online
6723 * operation in the resume sequence, just build a single sched
6724 * domain, ignoring cpusets.
6725 */
6726 num_cpus_frozen--;
6727 if (likely(num_cpus_frozen)) {
6728 partition_sched_domains(1, NULL, NULL);
6729 break;
6730 }
6731
6732 /*
6733 * This is the last CPU online operation. So fall through and
6734 * restore the original sched domains by considering the
6735 * cpuset configurations.
6736 */
6737
6738 case CPU_ONLINE:
6739 case CPU_DOWN_FAILED:
6740 cpuset_update_active_cpus(true);
6741 break;
6742 default:
6743 return NOTIFY_DONE;
6744 }
6745 return NOTIFY_OK;
6746 }
6747
6748 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6749 void *hcpu)
6750 {
6751 switch (action) {
6752 case CPU_DOWN_PREPARE:
6753 cpuset_update_active_cpus(false);
6754 break;
6755 case CPU_DOWN_PREPARE_FROZEN:
6756 num_cpus_frozen++;
6757 partition_sched_domains(1, NULL, NULL);
6758 break;
6759 default:
6760 return NOTIFY_DONE;
6761 }
6762 return NOTIFY_OK;
6763 }
6764
6765 void __init sched_init_smp(void)
6766 {
6767 cpumask_var_t non_isolated_cpus;
6768
6769 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6770 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6771
6772 sched_init_numa();
6773
6774 get_online_cpus();
6775 mutex_lock(&sched_domains_mutex);
6776 init_sched_domains(cpu_active_mask);
6777 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6778 if (cpumask_empty(non_isolated_cpus))
6779 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6780 mutex_unlock(&sched_domains_mutex);
6781 put_online_cpus();
6782
6783 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6784 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6785 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6786
6787 /* RT runtime code needs to handle some hotplug events */
6788 hotcpu_notifier(update_runtime, 0);
6789
6790 init_hrtick();
6791
6792 /* Move init over to a non-isolated CPU */
6793 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6794 BUG();
6795 sched_init_granularity();
6796 free_cpumask_var(non_isolated_cpus);
6797
6798 init_sched_rt_class();
6799 }
6800 #else
6801 void __init sched_init_smp(void)
6802 {
6803 sched_init_granularity();
6804 }
6805 #endif /* CONFIG_SMP */
6806
6807 const_debug unsigned int sysctl_timer_migration = 1;
6808
6809 int in_sched_functions(unsigned long addr)
6810 {
6811 return in_lock_functions(addr) ||
6812 (addr >= (unsigned long)__sched_text_start
6813 && addr < (unsigned long)__sched_text_end);
6814 }
6815
6816 #ifdef CONFIG_CGROUP_SCHED
6817 struct task_group root_task_group;
6818 LIST_HEAD(task_groups);
6819 #endif
6820
6821 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6822
6823 void __init sched_init(void)
6824 {
6825 int i, j;
6826 unsigned long alloc_size = 0, ptr;
6827
6828 #ifdef CONFIG_FAIR_GROUP_SCHED
6829 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6830 #endif
6831 #ifdef CONFIG_RT_GROUP_SCHED
6832 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6833 #endif
6834 #ifdef CONFIG_CPUMASK_OFFSTACK
6835 alloc_size += num_possible_cpus() * cpumask_size();
6836 #endif
6837 if (alloc_size) {
6838 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6839
6840 #ifdef CONFIG_FAIR_GROUP_SCHED
6841 root_task_group.se = (struct sched_entity **)ptr;
6842 ptr += nr_cpu_ids * sizeof(void **);
6843
6844 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6845 ptr += nr_cpu_ids * sizeof(void **);
6846
6847 #endif /* CONFIG_FAIR_GROUP_SCHED */
6848 #ifdef CONFIG_RT_GROUP_SCHED
6849 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6850 ptr += nr_cpu_ids * sizeof(void **);
6851
6852 root_task_group.rt_rq = (struct rt_rq **)ptr;
6853 ptr += nr_cpu_ids * sizeof(void **);
6854
6855 #endif /* CONFIG_RT_GROUP_SCHED */
6856 #ifdef CONFIG_CPUMASK_OFFSTACK
6857 for_each_possible_cpu(i) {
6858 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6859 ptr += cpumask_size();
6860 }
6861 #endif /* CONFIG_CPUMASK_OFFSTACK */
6862 }
6863
6864 #ifdef CONFIG_SMP
6865 init_defrootdomain();
6866 #endif
6867
6868 init_rt_bandwidth(&def_rt_bandwidth,
6869 global_rt_period(), global_rt_runtime());
6870
6871 #ifdef CONFIG_RT_GROUP_SCHED
6872 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6873 global_rt_period(), global_rt_runtime());
6874 #endif /* CONFIG_RT_GROUP_SCHED */
6875
6876 #ifdef CONFIG_CGROUP_SCHED
6877 list_add(&root_task_group.list, &task_groups);
6878 INIT_LIST_HEAD(&root_task_group.children);
6879 INIT_LIST_HEAD(&root_task_group.siblings);
6880 autogroup_init(&init_task);
6881
6882 #endif /* CONFIG_CGROUP_SCHED */
6883
6884 #ifdef CONFIG_CGROUP_CPUACCT
6885 root_cpuacct.cpustat = &kernel_cpustat;
6886 root_cpuacct.cpuusage = alloc_percpu(u64);
6887 /* Too early, not expected to fail */
6888 BUG_ON(!root_cpuacct.cpuusage);
6889 #endif
6890 for_each_possible_cpu(i) {
6891 struct rq *rq;
6892
6893 rq = cpu_rq(i);
6894 raw_spin_lock_init(&rq->lock);
6895 rq->nr_running = 0;
6896 rq->calc_load_active = 0;
6897 rq->calc_load_update = jiffies + LOAD_FREQ;
6898 init_cfs_rq(&rq->cfs);
6899 init_rt_rq(&rq->rt, rq);
6900 #ifdef CONFIG_FAIR_GROUP_SCHED
6901 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6902 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6903 /*
6904 * How much cpu bandwidth does root_task_group get?
6905 *
6906 * In case of task-groups formed thr' the cgroup filesystem, it
6907 * gets 100% of the cpu resources in the system. This overall
6908 * system cpu resource is divided among the tasks of
6909 * root_task_group and its child task-groups in a fair manner,
6910 * based on each entity's (task or task-group's) weight
6911 * (se->load.weight).
6912 *
6913 * In other words, if root_task_group has 10 tasks of weight
6914 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6915 * then A0's share of the cpu resource is:
6916 *
6917 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6918 *
6919 * We achieve this by letting root_task_group's tasks sit
6920 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6921 */
6922 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6923 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6924 #endif /* CONFIG_FAIR_GROUP_SCHED */
6925
6926 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6927 #ifdef CONFIG_RT_GROUP_SCHED
6928 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6929 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6930 #endif
6931
6932 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6933 rq->cpu_load[j] = 0;
6934
6935 rq->last_load_update_tick = jiffies;
6936
6937 #ifdef CONFIG_SMP
6938 rq->sd = NULL;
6939 rq->rd = NULL;
6940 rq->cpu_power = SCHED_POWER_SCALE;
6941 rq->post_schedule = 0;
6942 rq->active_balance = 0;
6943 rq->next_balance = jiffies;
6944 rq->push_cpu = 0;
6945 rq->cpu = i;
6946 rq->online = 0;
6947 rq->idle_stamp = 0;
6948 rq->avg_idle = 2*sysctl_sched_migration_cost;
6949
6950 INIT_LIST_HEAD(&rq->cfs_tasks);
6951
6952 rq_attach_root(rq, &def_root_domain);
6953 #ifdef CONFIG_NO_HZ
6954 rq->nohz_flags = 0;
6955 #endif
6956 #endif
6957 init_rq_hrtick(rq);
6958 atomic_set(&rq->nr_iowait, 0);
6959 }
6960
6961 set_load_weight(&init_task);
6962
6963 #ifdef CONFIG_PREEMPT_NOTIFIERS
6964 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6965 #endif
6966
6967 #ifdef CONFIG_RT_MUTEXES
6968 plist_head_init(&init_task.pi_waiters);
6969 #endif
6970
6971 /*
6972 * The boot idle thread does lazy MMU switching as well:
6973 */
6974 atomic_inc(&init_mm.mm_count);
6975 enter_lazy_tlb(&init_mm, current);
6976
6977 /*
6978 * Make us the idle thread. Technically, schedule() should not be
6979 * called from this thread, however somewhere below it might be,
6980 * but because we are the idle thread, we just pick up running again
6981 * when this runqueue becomes "idle".
6982 */
6983 init_idle(current, smp_processor_id());
6984
6985 calc_load_update = jiffies + LOAD_FREQ;
6986
6987 /*
6988 * During early bootup we pretend to be a normal task:
6989 */
6990 current->sched_class = &fair_sched_class;
6991
6992 #ifdef CONFIG_SMP
6993 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6994 /* May be allocated at isolcpus cmdline parse time */
6995 if (cpu_isolated_map == NULL)
6996 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6997 idle_thread_set_boot_cpu();
6998 #endif
6999 init_sched_fair_class();
7000
7001 scheduler_running = 1;
7002 }
7003
7004 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7005 static inline int preempt_count_equals(int preempt_offset)
7006 {
7007 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7008
7009 return (nested == preempt_offset);
7010 }
7011
7012 void __might_sleep(const char *file, int line, int preempt_offset)
7013 {
7014 static unsigned long prev_jiffy; /* ratelimiting */
7015
7016 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7017 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7018 system_state != SYSTEM_RUNNING || oops_in_progress)
7019 return;
7020 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7021 return;
7022 prev_jiffy = jiffies;
7023
7024 printk(KERN_ERR
7025 "BUG: sleeping function called from invalid context at %s:%d\n",
7026 file, line);
7027 printk(KERN_ERR
7028 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7029 in_atomic(), irqs_disabled(),
7030 current->pid, current->comm);
7031
7032 debug_show_held_locks(current);
7033 if (irqs_disabled())
7034 print_irqtrace_events(current);
7035 dump_stack();
7036 }
7037 EXPORT_SYMBOL(__might_sleep);
7038 #endif
7039
7040 #ifdef CONFIG_MAGIC_SYSRQ
7041 static void normalize_task(struct rq *rq, struct task_struct *p)
7042 {
7043 const struct sched_class *prev_class = p->sched_class;
7044 int old_prio = p->prio;
7045 int on_rq;
7046
7047 on_rq = p->on_rq;
7048 if (on_rq)
7049 dequeue_task(rq, p, 0);
7050 __setscheduler(rq, p, SCHED_NORMAL, 0);
7051 if (on_rq) {
7052 enqueue_task(rq, p, 0);
7053 resched_task(rq->curr);
7054 }
7055
7056 check_class_changed(rq, p, prev_class, old_prio);
7057 }
7058
7059 void normalize_rt_tasks(void)
7060 {
7061 struct task_struct *g, *p;
7062 unsigned long flags;
7063 struct rq *rq;
7064
7065 read_lock_irqsave(&tasklist_lock, flags);
7066 do_each_thread(g, p) {
7067 /*
7068 * Only normalize user tasks:
7069 */
7070 if (!p->mm)
7071 continue;
7072
7073 p->se.exec_start = 0;
7074 #ifdef CONFIG_SCHEDSTATS
7075 p->se.statistics.wait_start = 0;
7076 p->se.statistics.sleep_start = 0;
7077 p->se.statistics.block_start = 0;
7078 #endif
7079
7080 if (!rt_task(p)) {
7081 /*
7082 * Renice negative nice level userspace
7083 * tasks back to 0:
7084 */
7085 if (TASK_NICE(p) < 0 && p->mm)
7086 set_user_nice(p, 0);
7087 continue;
7088 }
7089
7090 raw_spin_lock(&p->pi_lock);
7091 rq = __task_rq_lock(p);
7092
7093 normalize_task(rq, p);
7094
7095 __task_rq_unlock(rq);
7096 raw_spin_unlock(&p->pi_lock);
7097 } while_each_thread(g, p);
7098
7099 read_unlock_irqrestore(&tasklist_lock, flags);
7100 }
7101
7102 #endif /* CONFIG_MAGIC_SYSRQ */
7103
7104 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7105 /*
7106 * These functions are only useful for the IA64 MCA handling, or kdb.
7107 *
7108 * They can only be called when the whole system has been
7109 * stopped - every CPU needs to be quiescent, and no scheduling
7110 * activity can take place. Using them for anything else would
7111 * be a serious bug, and as a result, they aren't even visible
7112 * under any other configuration.
7113 */
7114
7115 /**
7116 * curr_task - return the current task for a given cpu.
7117 * @cpu: the processor in question.
7118 *
7119 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7120 */
7121 struct task_struct *curr_task(int cpu)
7122 {
7123 return cpu_curr(cpu);
7124 }
7125
7126 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7127
7128 #ifdef CONFIG_IA64
7129 /**
7130 * set_curr_task - set the current task for a given cpu.
7131 * @cpu: the processor in question.
7132 * @p: the task pointer to set.
7133 *
7134 * Description: This function must only be used when non-maskable interrupts
7135 * are serviced on a separate stack. It allows the architecture to switch the
7136 * notion of the current task on a cpu in a non-blocking manner. This function
7137 * must be called with all CPU's synchronized, and interrupts disabled, the
7138 * and caller must save the original value of the current task (see
7139 * curr_task() above) and restore that value before reenabling interrupts and
7140 * re-starting the system.
7141 *
7142 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7143 */
7144 void set_curr_task(int cpu, struct task_struct *p)
7145 {
7146 cpu_curr(cpu) = p;
7147 }
7148
7149 #endif
7150
7151 #ifdef CONFIG_CGROUP_SCHED
7152 /* task_group_lock serializes the addition/removal of task groups */
7153 static DEFINE_SPINLOCK(task_group_lock);
7154
7155 static void free_sched_group(struct task_group *tg)
7156 {
7157 free_fair_sched_group(tg);
7158 free_rt_sched_group(tg);
7159 autogroup_free(tg);
7160 kfree(tg);
7161 }
7162
7163 /* allocate runqueue etc for a new task group */
7164 struct task_group *sched_create_group(struct task_group *parent)
7165 {
7166 struct task_group *tg;
7167
7168 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7169 if (!tg)
7170 return ERR_PTR(-ENOMEM);
7171
7172 if (!alloc_fair_sched_group(tg, parent))
7173 goto err;
7174
7175 if (!alloc_rt_sched_group(tg, parent))
7176 goto err;
7177
7178 return tg;
7179
7180 err:
7181 free_sched_group(tg);
7182 return ERR_PTR(-ENOMEM);
7183 }
7184
7185 void sched_online_group(struct task_group *tg, struct task_group *parent)
7186 {
7187 unsigned long flags;
7188
7189 spin_lock_irqsave(&task_group_lock, flags);
7190 list_add_rcu(&tg->list, &task_groups);
7191
7192 WARN_ON(!parent); /* root should already exist */
7193
7194 tg->parent = parent;
7195 INIT_LIST_HEAD(&tg->children);
7196 list_add_rcu(&tg->siblings, &parent->children);
7197 spin_unlock_irqrestore(&task_group_lock, flags);
7198 }
7199
7200 /* rcu callback to free various structures associated with a task group */
7201 static void free_sched_group_rcu(struct rcu_head *rhp)
7202 {
7203 /* now it should be safe to free those cfs_rqs */
7204 free_sched_group(container_of(rhp, struct task_group, rcu));
7205 }
7206
7207 /* Destroy runqueue etc associated with a task group */
7208 void sched_destroy_group(struct task_group *tg)
7209 {
7210 /* wait for possible concurrent references to cfs_rqs complete */
7211 call_rcu(&tg->rcu, free_sched_group_rcu);
7212 }
7213
7214 void sched_offline_group(struct task_group *tg)
7215 {
7216 unsigned long flags;
7217 int i;
7218
7219 /* end participation in shares distribution */
7220 for_each_possible_cpu(i)
7221 unregister_fair_sched_group(tg, i);
7222
7223 spin_lock_irqsave(&task_group_lock, flags);
7224 list_del_rcu(&tg->list);
7225 list_del_rcu(&tg->siblings);
7226 spin_unlock_irqrestore(&task_group_lock, flags);
7227 }
7228
7229 /* change task's runqueue when it moves between groups.
7230 * The caller of this function should have put the task in its new group
7231 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7232 * reflect its new group.
7233 */
7234 void sched_move_task(struct task_struct *tsk)
7235 {
7236 struct task_group *tg;
7237 int on_rq, running;
7238 unsigned long flags;
7239 struct rq *rq;
7240
7241 rq = task_rq_lock(tsk, &flags);
7242
7243 running = task_current(rq, tsk);
7244 on_rq = tsk->on_rq;
7245
7246 if (on_rq)
7247 dequeue_task(rq, tsk, 0);
7248 if (unlikely(running))
7249 tsk->sched_class->put_prev_task(rq, tsk);
7250
7251 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7252 lockdep_is_held(&tsk->sighand->siglock)),
7253 struct task_group, css);
7254 tg = autogroup_task_group(tsk, tg);
7255 tsk->sched_task_group = tg;
7256
7257 #ifdef CONFIG_FAIR_GROUP_SCHED
7258 if (tsk->sched_class->task_move_group)
7259 tsk->sched_class->task_move_group(tsk, on_rq);
7260 else
7261 #endif
7262 set_task_rq(tsk, task_cpu(tsk));
7263
7264 if (unlikely(running))
7265 tsk->sched_class->set_curr_task(rq);
7266 if (on_rq)
7267 enqueue_task(rq, tsk, 0);
7268
7269 task_rq_unlock(rq, tsk, &flags);
7270 }
7271 #endif /* CONFIG_CGROUP_SCHED */
7272
7273 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7274 static unsigned long to_ratio(u64 period, u64 runtime)
7275 {
7276 if (runtime == RUNTIME_INF)
7277 return 1ULL << 20;
7278
7279 return div64_u64(runtime << 20, period);
7280 }
7281 #endif
7282
7283 #ifdef CONFIG_RT_GROUP_SCHED
7284 /*
7285 * Ensure that the real time constraints are schedulable.
7286 */
7287 static DEFINE_MUTEX(rt_constraints_mutex);
7288
7289 /* Must be called with tasklist_lock held */
7290 static inline int tg_has_rt_tasks(struct task_group *tg)
7291 {
7292 struct task_struct *g, *p;
7293
7294 do_each_thread(g, p) {
7295 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7296 return 1;
7297 } while_each_thread(g, p);
7298
7299 return 0;
7300 }
7301
7302 struct rt_schedulable_data {
7303 struct task_group *tg;
7304 u64 rt_period;
7305 u64 rt_runtime;
7306 };
7307
7308 static int tg_rt_schedulable(struct task_group *tg, void *data)
7309 {
7310 struct rt_schedulable_data *d = data;
7311 struct task_group *child;
7312 unsigned long total, sum = 0;
7313 u64 period, runtime;
7314
7315 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7316 runtime = tg->rt_bandwidth.rt_runtime;
7317
7318 if (tg == d->tg) {
7319 period = d->rt_period;
7320 runtime = d->rt_runtime;
7321 }
7322
7323 /*
7324 * Cannot have more runtime than the period.
7325 */
7326 if (runtime > period && runtime != RUNTIME_INF)
7327 return -EINVAL;
7328
7329 /*
7330 * Ensure we don't starve existing RT tasks.
7331 */
7332 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7333 return -EBUSY;
7334
7335 total = to_ratio(period, runtime);
7336
7337 /*
7338 * Nobody can have more than the global setting allows.
7339 */
7340 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7341 return -EINVAL;
7342
7343 /*
7344 * The sum of our children's runtime should not exceed our own.
7345 */
7346 list_for_each_entry_rcu(child, &tg->children, siblings) {
7347 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7348 runtime = child->rt_bandwidth.rt_runtime;
7349
7350 if (child == d->tg) {
7351 period = d->rt_period;
7352 runtime = d->rt_runtime;
7353 }
7354
7355 sum += to_ratio(period, runtime);
7356 }
7357
7358 if (sum > total)
7359 return -EINVAL;
7360
7361 return 0;
7362 }
7363
7364 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7365 {
7366 int ret;
7367
7368 struct rt_schedulable_data data = {
7369 .tg = tg,
7370 .rt_period = period,
7371 .rt_runtime = runtime,
7372 };
7373
7374 rcu_read_lock();
7375 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7376 rcu_read_unlock();
7377
7378 return ret;
7379 }
7380
7381 static int tg_set_rt_bandwidth(struct task_group *tg,
7382 u64 rt_period, u64 rt_runtime)
7383 {
7384 int i, err = 0;
7385
7386 mutex_lock(&rt_constraints_mutex);
7387 read_lock(&tasklist_lock);
7388 err = __rt_schedulable(tg, rt_period, rt_runtime);
7389 if (err)
7390 goto unlock;
7391
7392 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7393 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7394 tg->rt_bandwidth.rt_runtime = rt_runtime;
7395
7396 for_each_possible_cpu(i) {
7397 struct rt_rq *rt_rq = tg->rt_rq[i];
7398
7399 raw_spin_lock(&rt_rq->rt_runtime_lock);
7400 rt_rq->rt_runtime = rt_runtime;
7401 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7402 }
7403 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7404 unlock:
7405 read_unlock(&tasklist_lock);
7406 mutex_unlock(&rt_constraints_mutex);
7407
7408 return err;
7409 }
7410
7411 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7412 {
7413 u64 rt_runtime, rt_period;
7414
7415 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7416 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7417 if (rt_runtime_us < 0)
7418 rt_runtime = RUNTIME_INF;
7419
7420 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7421 }
7422
7423 long sched_group_rt_runtime(struct task_group *tg)
7424 {
7425 u64 rt_runtime_us;
7426
7427 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7428 return -1;
7429
7430 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7431 do_div(rt_runtime_us, NSEC_PER_USEC);
7432 return rt_runtime_us;
7433 }
7434
7435 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7436 {
7437 u64 rt_runtime, rt_period;
7438
7439 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7440 rt_runtime = tg->rt_bandwidth.rt_runtime;
7441
7442 if (rt_period == 0)
7443 return -EINVAL;
7444
7445 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7446 }
7447
7448 long sched_group_rt_period(struct task_group *tg)
7449 {
7450 u64 rt_period_us;
7451
7452 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7453 do_div(rt_period_us, NSEC_PER_USEC);
7454 return rt_period_us;
7455 }
7456
7457 static int sched_rt_global_constraints(void)
7458 {
7459 u64 runtime, period;
7460 int ret = 0;
7461
7462 if (sysctl_sched_rt_period <= 0)
7463 return -EINVAL;
7464
7465 runtime = global_rt_runtime();
7466 period = global_rt_period();
7467
7468 /*
7469 * Sanity check on the sysctl variables.
7470 */
7471 if (runtime > period && runtime != RUNTIME_INF)
7472 return -EINVAL;
7473
7474 mutex_lock(&rt_constraints_mutex);
7475 read_lock(&tasklist_lock);
7476 ret = __rt_schedulable(NULL, 0, 0);
7477 read_unlock(&tasklist_lock);
7478 mutex_unlock(&rt_constraints_mutex);
7479
7480 return ret;
7481 }
7482
7483 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7484 {
7485 /* Don't accept realtime tasks when there is no way for them to run */
7486 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7487 return 0;
7488
7489 return 1;
7490 }
7491
7492 #else /* !CONFIG_RT_GROUP_SCHED */
7493 static int sched_rt_global_constraints(void)
7494 {
7495 unsigned long flags;
7496 int i;
7497
7498 if (sysctl_sched_rt_period <= 0)
7499 return -EINVAL;
7500
7501 /*
7502 * There's always some RT tasks in the root group
7503 * -- migration, kstopmachine etc..
7504 */
7505 if (sysctl_sched_rt_runtime == 0)
7506 return -EBUSY;
7507
7508 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7509 for_each_possible_cpu(i) {
7510 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7511
7512 raw_spin_lock(&rt_rq->rt_runtime_lock);
7513 rt_rq->rt_runtime = global_rt_runtime();
7514 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7515 }
7516 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7517
7518 return 0;
7519 }
7520 #endif /* CONFIG_RT_GROUP_SCHED */
7521
7522 int sched_rr_handler(struct ctl_table *table, int write,
7523 void __user *buffer, size_t *lenp,
7524 loff_t *ppos)
7525 {
7526 int ret;
7527 static DEFINE_MUTEX(mutex);
7528
7529 mutex_lock(&mutex);
7530 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7531 /* make sure that internally we keep jiffies */
7532 /* also, writing zero resets timeslice to default */
7533 if (!ret && write) {
7534 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7535 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7536 }
7537 mutex_unlock(&mutex);
7538 return ret;
7539 }
7540
7541 int sched_rt_handler(struct ctl_table *table, int write,
7542 void __user *buffer, size_t *lenp,
7543 loff_t *ppos)
7544 {
7545 int ret;
7546 int old_period, old_runtime;
7547 static DEFINE_MUTEX(mutex);
7548
7549 mutex_lock(&mutex);
7550 old_period = sysctl_sched_rt_period;
7551 old_runtime = sysctl_sched_rt_runtime;
7552
7553 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7554
7555 if (!ret && write) {
7556 ret = sched_rt_global_constraints();
7557 if (ret) {
7558 sysctl_sched_rt_period = old_period;
7559 sysctl_sched_rt_runtime = old_runtime;
7560 } else {
7561 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7562 def_rt_bandwidth.rt_period =
7563 ns_to_ktime(global_rt_period());
7564 }
7565 }
7566 mutex_unlock(&mutex);
7567
7568 return ret;
7569 }
7570
7571 #ifdef CONFIG_CGROUP_SCHED
7572
7573 /* return corresponding task_group object of a cgroup */
7574 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7575 {
7576 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7577 struct task_group, css);
7578 }
7579
7580 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7581 {
7582 struct task_group *tg, *parent;
7583
7584 if (!cgrp->parent) {
7585 /* This is early initialization for the top cgroup */
7586 return &root_task_group.css;
7587 }
7588
7589 parent = cgroup_tg(cgrp->parent);
7590 tg = sched_create_group(parent);
7591 if (IS_ERR(tg))
7592 return ERR_PTR(-ENOMEM);
7593
7594 return &tg->css;
7595 }
7596
7597 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7598 {
7599 struct task_group *tg = cgroup_tg(cgrp);
7600 struct task_group *parent;
7601
7602 if (!cgrp->parent)
7603 return 0;
7604
7605 parent = cgroup_tg(cgrp->parent);
7606 sched_online_group(tg, parent);
7607 return 0;
7608 }
7609
7610 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7611 {
7612 struct task_group *tg = cgroup_tg(cgrp);
7613
7614 sched_destroy_group(tg);
7615 }
7616
7617 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7618 {
7619 struct task_group *tg = cgroup_tg(cgrp);
7620
7621 sched_offline_group(tg);
7622 }
7623
7624 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7625 struct cgroup_taskset *tset)
7626 {
7627 struct task_struct *task;
7628
7629 cgroup_taskset_for_each(task, cgrp, tset) {
7630 #ifdef CONFIG_RT_GROUP_SCHED
7631 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7632 return -EINVAL;
7633 #else
7634 /* We don't support RT-tasks being in separate groups */
7635 if (task->sched_class != &fair_sched_class)
7636 return -EINVAL;
7637 #endif
7638 }
7639 return 0;
7640 }
7641
7642 static void cpu_cgroup_attach(struct cgroup *cgrp,
7643 struct cgroup_taskset *tset)
7644 {
7645 struct task_struct *task;
7646
7647 cgroup_taskset_for_each(task, cgrp, tset)
7648 sched_move_task(task);
7649 }
7650
7651 static void
7652 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7653 struct task_struct *task)
7654 {
7655 /*
7656 * cgroup_exit() is called in the copy_process() failure path.
7657 * Ignore this case since the task hasn't ran yet, this avoids
7658 * trying to poke a half freed task state from generic code.
7659 */
7660 if (!(task->flags & PF_EXITING))
7661 return;
7662
7663 sched_move_task(task);
7664 }
7665
7666 #ifdef CONFIG_FAIR_GROUP_SCHED
7667 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7668 u64 shareval)
7669 {
7670 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7671 }
7672
7673 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7674 {
7675 struct task_group *tg = cgroup_tg(cgrp);
7676
7677 return (u64) scale_load_down(tg->shares);
7678 }
7679
7680 #ifdef CONFIG_CFS_BANDWIDTH
7681 static DEFINE_MUTEX(cfs_constraints_mutex);
7682
7683 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7684 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7685
7686 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7687
7688 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7689 {
7690 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7691 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7692
7693 if (tg == &root_task_group)
7694 return -EINVAL;
7695
7696 /*
7697 * Ensure we have at some amount of bandwidth every period. This is
7698 * to prevent reaching a state of large arrears when throttled via
7699 * entity_tick() resulting in prolonged exit starvation.
7700 */
7701 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7702 return -EINVAL;
7703
7704 /*
7705 * Likewise, bound things on the otherside by preventing insane quota
7706 * periods. This also allows us to normalize in computing quota
7707 * feasibility.
7708 */
7709 if (period > max_cfs_quota_period)
7710 return -EINVAL;
7711
7712 mutex_lock(&cfs_constraints_mutex);
7713 ret = __cfs_schedulable(tg, period, quota);
7714 if (ret)
7715 goto out_unlock;
7716
7717 runtime_enabled = quota != RUNTIME_INF;
7718 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7719 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7720 raw_spin_lock_irq(&cfs_b->lock);
7721 cfs_b->period = ns_to_ktime(period);
7722 cfs_b->quota = quota;
7723
7724 __refill_cfs_bandwidth_runtime(cfs_b);
7725 /* restart the period timer (if active) to handle new period expiry */
7726 if (runtime_enabled && cfs_b->timer_active) {
7727 /* force a reprogram */
7728 cfs_b->timer_active = 0;
7729 __start_cfs_bandwidth(cfs_b);
7730 }
7731 raw_spin_unlock_irq(&cfs_b->lock);
7732
7733 for_each_possible_cpu(i) {
7734 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7735 struct rq *rq = cfs_rq->rq;
7736
7737 raw_spin_lock_irq(&rq->lock);
7738 cfs_rq->runtime_enabled = runtime_enabled;
7739 cfs_rq->runtime_remaining = 0;
7740
7741 if (cfs_rq->throttled)
7742 unthrottle_cfs_rq(cfs_rq);
7743 raw_spin_unlock_irq(&rq->lock);
7744 }
7745 out_unlock:
7746 mutex_unlock(&cfs_constraints_mutex);
7747
7748 return ret;
7749 }
7750
7751 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7752 {
7753 u64 quota, period;
7754
7755 period = ktime_to_ns(tg->cfs_bandwidth.period);
7756 if (cfs_quota_us < 0)
7757 quota = RUNTIME_INF;
7758 else
7759 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7760
7761 return tg_set_cfs_bandwidth(tg, period, quota);
7762 }
7763
7764 long tg_get_cfs_quota(struct task_group *tg)
7765 {
7766 u64 quota_us;
7767
7768 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7769 return -1;
7770
7771 quota_us = tg->cfs_bandwidth.quota;
7772 do_div(quota_us, NSEC_PER_USEC);
7773
7774 return quota_us;
7775 }
7776
7777 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7778 {
7779 u64 quota, period;
7780
7781 period = (u64)cfs_period_us * NSEC_PER_USEC;
7782 quota = tg->cfs_bandwidth.quota;
7783
7784 return tg_set_cfs_bandwidth(tg, period, quota);
7785 }
7786
7787 long tg_get_cfs_period(struct task_group *tg)
7788 {
7789 u64 cfs_period_us;
7790
7791 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7792 do_div(cfs_period_us, NSEC_PER_USEC);
7793
7794 return cfs_period_us;
7795 }
7796
7797 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7798 {
7799 return tg_get_cfs_quota(cgroup_tg(cgrp));
7800 }
7801
7802 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7803 s64 cfs_quota_us)
7804 {
7805 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7806 }
7807
7808 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7809 {
7810 return tg_get_cfs_period(cgroup_tg(cgrp));
7811 }
7812
7813 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7814 u64 cfs_period_us)
7815 {
7816 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7817 }
7818
7819 struct cfs_schedulable_data {
7820 struct task_group *tg;
7821 u64 period, quota;
7822 };
7823
7824 /*
7825 * normalize group quota/period to be quota/max_period
7826 * note: units are usecs
7827 */
7828 static u64 normalize_cfs_quota(struct task_group *tg,
7829 struct cfs_schedulable_data *d)
7830 {
7831 u64 quota, period;
7832
7833 if (tg == d->tg) {
7834 period = d->period;
7835 quota = d->quota;
7836 } else {
7837 period = tg_get_cfs_period(tg);
7838 quota = tg_get_cfs_quota(tg);
7839 }
7840
7841 /* note: these should typically be equivalent */
7842 if (quota == RUNTIME_INF || quota == -1)
7843 return RUNTIME_INF;
7844
7845 return to_ratio(period, quota);
7846 }
7847
7848 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7849 {
7850 struct cfs_schedulable_data *d = data;
7851 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7852 s64 quota = 0, parent_quota = -1;
7853
7854 if (!tg->parent) {
7855 quota = RUNTIME_INF;
7856 } else {
7857 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7858
7859 quota = normalize_cfs_quota(tg, d);
7860 parent_quota = parent_b->hierarchal_quota;
7861
7862 /*
7863 * ensure max(child_quota) <= parent_quota, inherit when no
7864 * limit is set
7865 */
7866 if (quota == RUNTIME_INF)
7867 quota = parent_quota;
7868 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7869 return -EINVAL;
7870 }
7871 cfs_b->hierarchal_quota = quota;
7872
7873 return 0;
7874 }
7875
7876 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7877 {
7878 int ret;
7879 struct cfs_schedulable_data data = {
7880 .tg = tg,
7881 .period = period,
7882 .quota = quota,
7883 };
7884
7885 if (quota != RUNTIME_INF) {
7886 do_div(data.period, NSEC_PER_USEC);
7887 do_div(data.quota, NSEC_PER_USEC);
7888 }
7889
7890 rcu_read_lock();
7891 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7892 rcu_read_unlock();
7893
7894 return ret;
7895 }
7896
7897 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7898 struct cgroup_map_cb *cb)
7899 {
7900 struct task_group *tg = cgroup_tg(cgrp);
7901 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7902
7903 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7904 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7905 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7906
7907 return 0;
7908 }
7909 #endif /* CONFIG_CFS_BANDWIDTH */
7910 #endif /* CONFIG_FAIR_GROUP_SCHED */
7911
7912 #ifdef CONFIG_RT_GROUP_SCHED
7913 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7914 s64 val)
7915 {
7916 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7917 }
7918
7919 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7920 {
7921 return sched_group_rt_runtime(cgroup_tg(cgrp));
7922 }
7923
7924 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7925 u64 rt_period_us)
7926 {
7927 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7928 }
7929
7930 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7931 {
7932 return sched_group_rt_period(cgroup_tg(cgrp));
7933 }
7934 #endif /* CONFIG_RT_GROUP_SCHED */
7935
7936 static struct cftype cpu_files[] = {
7937 #ifdef CONFIG_FAIR_GROUP_SCHED
7938 {
7939 .name = "shares",
7940 .read_u64 = cpu_shares_read_u64,
7941 .write_u64 = cpu_shares_write_u64,
7942 },
7943 #endif
7944 #ifdef CONFIG_CFS_BANDWIDTH
7945 {
7946 .name = "cfs_quota_us",
7947 .read_s64 = cpu_cfs_quota_read_s64,
7948 .write_s64 = cpu_cfs_quota_write_s64,
7949 },
7950 {
7951 .name = "cfs_period_us",
7952 .read_u64 = cpu_cfs_period_read_u64,
7953 .write_u64 = cpu_cfs_period_write_u64,
7954 },
7955 {
7956 .name = "stat",
7957 .read_map = cpu_stats_show,
7958 },
7959 #endif
7960 #ifdef CONFIG_RT_GROUP_SCHED
7961 {
7962 .name = "rt_runtime_us",
7963 .read_s64 = cpu_rt_runtime_read,
7964 .write_s64 = cpu_rt_runtime_write,
7965 },
7966 {
7967 .name = "rt_period_us",
7968 .read_u64 = cpu_rt_period_read_uint,
7969 .write_u64 = cpu_rt_period_write_uint,
7970 },
7971 #endif
7972 { } /* terminate */
7973 };
7974
7975 struct cgroup_subsys cpu_cgroup_subsys = {
7976 .name = "cpu",
7977 .css_alloc = cpu_cgroup_css_alloc,
7978 .css_free = cpu_cgroup_css_free,
7979 .css_online = cpu_cgroup_css_online,
7980 .css_offline = cpu_cgroup_css_offline,
7981 .can_attach = cpu_cgroup_can_attach,
7982 .attach = cpu_cgroup_attach,
7983 .exit = cpu_cgroup_exit,
7984 .subsys_id = cpu_cgroup_subsys_id,
7985 .base_cftypes = cpu_files,
7986 .early_init = 1,
7987 };
7988
7989 #endif /* CONFIG_CGROUP_SCHED */
7990
7991 #ifdef CONFIG_CGROUP_CPUACCT
7992
7993 /*
7994 * CPU accounting code for task groups.
7995 *
7996 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7997 * (balbir@in.ibm.com).
7998 */
7999
8000 struct cpuacct root_cpuacct;
8001
8002 /* create a new cpu accounting group */
8003 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8004 {
8005 struct cpuacct *ca;
8006
8007 if (!cgrp->parent)
8008 return &root_cpuacct.css;
8009
8010 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8011 if (!ca)
8012 goto out;
8013
8014 ca->cpuusage = alloc_percpu(u64);
8015 if (!ca->cpuusage)
8016 goto out_free_ca;
8017
8018 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8019 if (!ca->cpustat)
8020 goto out_free_cpuusage;
8021
8022 return &ca->css;
8023
8024 out_free_cpuusage:
8025 free_percpu(ca->cpuusage);
8026 out_free_ca:
8027 kfree(ca);
8028 out:
8029 return ERR_PTR(-ENOMEM);
8030 }
8031
8032 /* destroy an existing cpu accounting group */
8033 static void cpuacct_css_free(struct cgroup *cgrp)
8034 {
8035 struct cpuacct *ca = cgroup_ca(cgrp);
8036
8037 free_percpu(ca->cpustat);
8038 free_percpu(ca->cpuusage);
8039 kfree(ca);
8040 }
8041
8042 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8043 {
8044 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8045 u64 data;
8046
8047 #ifndef CONFIG_64BIT
8048 /*
8049 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8050 */
8051 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8052 data = *cpuusage;
8053 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8054 #else
8055 data = *cpuusage;
8056 #endif
8057
8058 return data;
8059 }
8060
8061 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8062 {
8063 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8064
8065 #ifndef CONFIG_64BIT
8066 /*
8067 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8068 */
8069 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8070 *cpuusage = val;
8071 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8072 #else
8073 *cpuusage = val;
8074 #endif
8075 }
8076
8077 /* return total cpu usage (in nanoseconds) of a group */
8078 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8079 {
8080 struct cpuacct *ca = cgroup_ca(cgrp);
8081 u64 totalcpuusage = 0;
8082 int i;
8083
8084 for_each_present_cpu(i)
8085 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8086
8087 return totalcpuusage;
8088 }
8089
8090 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8091 u64 reset)
8092 {
8093 struct cpuacct *ca = cgroup_ca(cgrp);
8094 int err = 0;
8095 int i;
8096
8097 if (reset) {
8098 err = -EINVAL;
8099 goto out;
8100 }
8101
8102 for_each_present_cpu(i)
8103 cpuacct_cpuusage_write(ca, i, 0);
8104
8105 out:
8106 return err;
8107 }
8108
8109 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8110 struct seq_file *m)
8111 {
8112 struct cpuacct *ca = cgroup_ca(cgroup);
8113 u64 percpu;
8114 int i;
8115
8116 for_each_present_cpu(i) {
8117 percpu = cpuacct_cpuusage_read(ca, i);
8118 seq_printf(m, "%llu ", (unsigned long long) percpu);
8119 }
8120 seq_printf(m, "\n");
8121 return 0;
8122 }
8123
8124 static const char *cpuacct_stat_desc[] = {
8125 [CPUACCT_STAT_USER] = "user",
8126 [CPUACCT_STAT_SYSTEM] = "system",
8127 };
8128
8129 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8130 struct cgroup_map_cb *cb)
8131 {
8132 struct cpuacct *ca = cgroup_ca(cgrp);
8133 int cpu;
8134 s64 val = 0;
8135
8136 for_each_online_cpu(cpu) {
8137 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8138 val += kcpustat->cpustat[CPUTIME_USER];
8139 val += kcpustat->cpustat[CPUTIME_NICE];
8140 }
8141 val = cputime64_to_clock_t(val);
8142 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8143
8144 val = 0;
8145 for_each_online_cpu(cpu) {
8146 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8147 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8148 val += kcpustat->cpustat[CPUTIME_IRQ];
8149 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8150 }
8151
8152 val = cputime64_to_clock_t(val);
8153 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8154
8155 return 0;
8156 }
8157
8158 static struct cftype files[] = {
8159 {
8160 .name = "usage",
8161 .read_u64 = cpuusage_read,
8162 .write_u64 = cpuusage_write,
8163 },
8164 {
8165 .name = "usage_percpu",
8166 .read_seq_string = cpuacct_percpu_seq_read,
8167 },
8168 {
8169 .name = "stat",
8170 .read_map = cpuacct_stats_show,
8171 },
8172 { } /* terminate */
8173 };
8174
8175 /*
8176 * charge this task's execution time to its accounting group.
8177 *
8178 * called with rq->lock held.
8179 */
8180 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8181 {
8182 struct cpuacct *ca;
8183 int cpu;
8184
8185 if (unlikely(!cpuacct_subsys.active))
8186 return;
8187
8188 cpu = task_cpu(tsk);
8189
8190 rcu_read_lock();
8191
8192 ca = task_ca(tsk);
8193
8194 for (; ca; ca = parent_ca(ca)) {
8195 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8196 *cpuusage += cputime;
8197 }
8198
8199 rcu_read_unlock();
8200 }
8201
8202 struct cgroup_subsys cpuacct_subsys = {
8203 .name = "cpuacct",
8204 .css_alloc = cpuacct_css_alloc,
8205 .css_free = cpuacct_css_free,
8206 .subsys_id = cpuacct_subsys_id,
8207 .base_cftypes = files,
8208 };
8209 #endif /* CONFIG_CGROUP_CPUACCT */
8210
8211 void dump_cpu_task(int cpu)
8212 {
8213 pr_info("Task dump for CPU %d:\n", cpu);
8214 sched_show_task(cpu_curr(cpu));
8215 }