]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
netfilter: ingress: translate 0 nf_hook_slow retval to -1
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753 }
754
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761 }
762
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769 }
770
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777 }
778
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785 }
786
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
788 {
789 /*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
830 }
831 #endif
832
833 rq->clock_task += delta;
834
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
839 }
840
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
842 {
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869 }
870
871 /*
872 * __normal_prio - return the priority that is based on the static prio
873 */
874 static inline int __normal_prio(struct task_struct *p)
875 {
876 return p->static_prio;
877 }
878
879 /*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
886 static inline int normal_prio(struct task_struct *p)
887 {
888 int prio;
889
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897 }
898
899 /*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906 static int effective_prio(struct task_struct *p)
907 {
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917 }
918
919 /**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
924 */
925 inline int task_curr(const struct task_struct *p)
926 {
927 return cpu_curr(task_cpu(p)) == p;
928 }
929
930 /*
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
936 */
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
940 {
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
973 }
974
975 #ifdef CONFIG_SMP
976 /*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990 /*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996 {
997 lockdep_assert_held(&rq->lock);
998
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013 }
1014
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018 };
1019
1020 /*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030 {
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1037
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
1041 }
1042
1043 /*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048 static int migration_cpu_stop(void *data)
1049 {
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
1082 local_irq_enable();
1083 return 0;
1084 }
1085
1086 /*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1091 {
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094 }
1095
1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097 {
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
1101 lockdep_assert_held(&p->pi_lock);
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1112 dequeue_task(rq, p, DEQUEUE_SAVE);
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
1117 p->sched_class->set_cpus_allowed(p, new_mask);
1118
1119 if (queued)
1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 if (running)
1122 set_curr_task(rq, p);
1123 }
1124
1125 /*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
1134 static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
1136 {
1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 unsigned int dest_cpu;
1139 struct rq_flags rf;
1140 struct rq *rq;
1141 int ret = 0;
1142
1143 rq = task_rq_lock(p, &rf);
1144
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
1189 task_rq_unlock(rq, p, &rf);
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
1198 lockdep_unpin_lock(&rq->lock, rf.cookie);
1199 rq = move_queued_task(rq, p, dest_cpu);
1200 lockdep_repin_lock(&rq->lock, rf.cookie);
1201 }
1202 out:
1203 task_rq_unlock(rq, p, &rf);
1204
1205 return ret;
1206 }
1207
1208 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209 {
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211 }
1212 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
1214 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1215 {
1216 #ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1222 !p->on_rq);
1223
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
1233 #ifdef CONFIG_LOCKDEP
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
1239 * see task_group().
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246 #endif
1247 #endif
1248
1249 trace_sched_migrate_task(p, new_cpu);
1250
1251 if (task_cpu(p) != new_cpu) {
1252 if (p->sched_class->migrate_task_rq)
1253 p->sched_class->migrate_task_rq(p);
1254 p->se.nr_migrations++;
1255 perf_event_task_migrate(p);
1256 }
1257
1258 __set_task_cpu(p, new_cpu);
1259 }
1260
1261 static void __migrate_swap_task(struct task_struct *p, int cpu)
1262 {
1263 if (task_on_rq_queued(p)) {
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
1269 p->on_rq = TASK_ON_RQ_MIGRATING;
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
1273 p->on_rq = TASK_ON_RQ_QUEUED;
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
1279 * previous cpu our target instead of where it really is.
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283 }
1284
1285 struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288 };
1289
1290 static int migrate_swap_stop(void *data)
1291 {
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
1304 double_rq_lock(src_rq, dst_rq);
1305
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323 unlock:
1324 double_rq_unlock(src_rq, dst_rq);
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
1327
1328 return ret;
1329 }
1330
1331 /*
1332 * Cross migrate two tasks
1333 */
1334 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335 {
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365 out:
1366 return ret;
1367 }
1368
1369 /*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
1385 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1386 {
1387 int running, queued;
1388 struct rq_flags rf;
1389 unsigned long ncsw;
1390 struct rq *rq;
1391
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
1400
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
1415 cpu_relax();
1416 }
1417
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
1423 rq = task_rq_lock(p, &rf);
1424 trace_sched_wait_task(p);
1425 running = task_running(rq, p);
1426 queued = task_on_rq_queued(p);
1427 ncsw = 0;
1428 if (!match_state || p->state == match_state)
1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430 task_rq_unlock(rq, p, &rf);
1431
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
1448
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
1454 * So if it was still runnable (but just not actively
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
1458 if (unlikely(queued)) {
1459 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463 continue;
1464 }
1465
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
1473
1474 return ncsw;
1475 }
1476
1477 /***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
1484 * NOTE: this function doesn't have to take the runqueue lock,
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
1490 void kick_process(struct task_struct *p)
1491 {
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499 }
1500 EXPORT_SYMBOL_GPL(kick_process);
1501
1502 /*
1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
1523 */
1524 static int select_fallback_rq(int cpu, struct task_struct *p)
1525 {
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
1530
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
1546 }
1547
1548 for (;;) {
1549 /* Any allowed, online CPU? */
1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
1554 continue;
1555 goto out;
1556 }
1557
1558 /* No more Mr. Nice Guy. */
1559 switch (state) {
1560 case cpuset:
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578 out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587 task_pid_nr(p), p->comm, cpu);
1588 }
1589 }
1590
1591 return dest_cpu;
1592 }
1593
1594 /*
1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596 */
1597 static inline
1598 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599 {
1600 lockdep_assert_held(&p->pi_lock);
1601
1602 if (tsk_nr_cpus_allowed(p) > 1)
1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1618 !cpu_online(cpu)))
1619 cpu = select_fallback_rq(task_cpu(p), p);
1620
1621 return cpu;
1622 }
1623
1624 static void update_avg(u64 *avg, u64 sample)
1625 {
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628 }
1629
1630 #else
1631
1632 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634 {
1635 return set_cpus_allowed_ptr(p, new_mask);
1636 }
1637
1638 #endif /* CONFIG_SMP */
1639
1640 static void
1641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1642 {
1643 struct rq *rq;
1644
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
1649
1650 #ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
1654 } else {
1655 struct sched_domain *sd;
1656
1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658 rcu_read_lock();
1659 for_each_domain(rq->cpu, sd) {
1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661 schedstat_inc(sd->ttwu_wake_remote);
1662 break;
1663 }
1664 }
1665 rcu_read_unlock();
1666 }
1667
1668 if (wake_flags & WF_MIGRATED)
1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1670 #endif /* CONFIG_SMP */
1671
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
1674
1675 if (wake_flags & WF_SYNC)
1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1677 }
1678
1679 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1680 {
1681 activate_task(rq, p, en_flags);
1682 p->on_rq = TASK_ON_RQ_QUEUED;
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
1687 }
1688
1689 /*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
1692 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 struct pin_cookie cookie)
1694 {
1695 check_preempt_curr(rq, p, wake_flags);
1696 p->state = TASK_RUNNING;
1697 trace_sched_wakeup(p);
1698
1699 #ifdef CONFIG_SMP
1700 if (p->sched_class->task_woken) {
1701 /*
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
1704 */
1705 lockdep_unpin_lock(&rq->lock, cookie);
1706 p->sched_class->task_woken(rq, p);
1707 lockdep_repin_lock(&rq->lock, cookie);
1708 }
1709
1710 if (rq->idle_stamp) {
1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
1712 u64 max = 2*rq->max_idle_balance_cost;
1713
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
1717 rq->avg_idle = max;
1718
1719 rq->idle_stamp = 0;
1720 }
1721 #endif
1722 }
1723
1724 static void
1725 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 struct pin_cookie cookie)
1727 {
1728 int en_flags = ENQUEUE_WAKEUP;
1729
1730 lockdep_assert_held(&rq->lock);
1731
1732 #ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
1735
1736 if (wake_flags & WF_MIGRATED)
1737 en_flags |= ENQUEUE_MIGRATED;
1738 #endif
1739
1740 ttwu_activate(rq, p, en_flags);
1741 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1742 }
1743
1744 /*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750 static int ttwu_remote(struct task_struct *p, int wake_flags)
1751 {
1752 struct rq_flags rf;
1753 struct rq *rq;
1754 int ret = 0;
1755
1756 rq = __task_rq_lock(p, &rf);
1757 if (task_on_rq_queued(p)) {
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1761 ret = 1;
1762 }
1763 __task_rq_unlock(rq, &rf);
1764
1765 return ret;
1766 }
1767
1768 #ifdef CONFIG_SMP
1769 void sched_ttwu_pending(void)
1770 {
1771 struct rq *rq = this_rq();
1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 struct pin_cookie cookie;
1774 struct task_struct *p;
1775 unsigned long flags;
1776
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
1781 cookie = lockdep_pin_lock(&rq->lock);
1782
1783 while (llist) {
1784 int wake_flags = 0;
1785
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
1792 ttwu_do_activate(rq, p, wake_flags, cookie);
1793 }
1794
1795 lockdep_unpin_lock(&rq->lock, cookie);
1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
1797 }
1798
1799 void scheduler_ipi(void)
1800 {
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
1806 preempt_fold_need_resched();
1807
1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
1825 sched_ttwu_pending();
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
1830 if (unlikely(got_nohz_idle_kick())) {
1831 this_rq()->idle_balance = 1;
1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
1833 }
1834 irq_exit();
1835 }
1836
1837 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838 {
1839 struct rq *rq = cpu_rq(cpu);
1840
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849 }
1850
1851 void wake_up_if_idle(int cpu)
1852 {
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871 out:
1872 rcu_read_unlock();
1873 }
1874
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880
1881 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882 {
1883 struct rq *rq = cpu_rq(cpu);
1884 struct pin_cookie cookie;
1885
1886 #if defined(CONFIG_SMP)
1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1889 ttwu_queue_remote(p, cpu, wake_flags);
1890 return;
1891 }
1892 #endif
1893
1894 raw_spin_lock(&rq->lock);
1895 cookie = lockdep_pin_lock(&rq->lock);
1896 ttwu_do_activate(rq, p, wake_flags, cookie);
1897 lockdep_unpin_lock(&rq->lock, cookie);
1898 raw_spin_unlock(&rq->lock);
1899 }
1900
1901 /*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1951 * 2) smp_cond_load_acquire(!X->on_cpu)
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989 *
1990 */
1991
1992 /**
1993 * try_to_wake_up - wake up a thread
1994 * @p: the thread to be awakened
1995 * @state: the mask of task states that can be woken
1996 * @wake_flags: wake modifier flags (WF_*)
1997 *
1998 * Put it on the run-queue if it's not already there. The "current"
1999 * thread is always on the run-queue (except when the actual
2000 * re-schedule is in progress), and as such you're allowed to do
2001 * the simpler "current->state = TASK_RUNNING" to mark yourself
2002 * runnable without the overhead of this.
2003 *
2004 * Return: %true if @p was woken up, %false if it was already running.
2005 * or @state didn't match @p's state.
2006 */
2007 static int
2008 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2009 {
2010 unsigned long flags;
2011 int cpu, success = 0;
2012
2013 /*
2014 * If we are going to wake up a thread waiting for CONDITION we
2015 * need to ensure that CONDITION=1 done by the caller can not be
2016 * reordered with p->state check below. This pairs with mb() in
2017 * set_current_state() the waiting thread does.
2018 */
2019 smp_mb__before_spinlock();
2020 raw_spin_lock_irqsave(&p->pi_lock, flags);
2021 if (!(p->state & state))
2022 goto out;
2023
2024 trace_sched_waking(p);
2025
2026 success = 1; /* we're going to change ->state */
2027 cpu = task_cpu(p);
2028
2029 /*
2030 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2031 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2032 * in smp_cond_load_acquire() below.
2033 *
2034 * sched_ttwu_pending() try_to_wake_up()
2035 * [S] p->on_rq = 1; [L] P->state
2036 * UNLOCK rq->lock -----.
2037 * \
2038 * +--- RMB
2039 * schedule() /
2040 * LOCK rq->lock -----'
2041 * UNLOCK rq->lock
2042 *
2043 * [task p]
2044 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2045 *
2046 * Pairs with the UNLOCK+LOCK on rq->lock from the
2047 * last wakeup of our task and the schedule that got our task
2048 * current.
2049 */
2050 smp_rmb();
2051 if (p->on_rq && ttwu_remote(p, wake_flags))
2052 goto stat;
2053
2054 #ifdef CONFIG_SMP
2055 /*
2056 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2057 * possible to, falsely, observe p->on_cpu == 0.
2058 *
2059 * One must be running (->on_cpu == 1) in order to remove oneself
2060 * from the runqueue.
2061 *
2062 * [S] ->on_cpu = 1; [L] ->on_rq
2063 * UNLOCK rq->lock
2064 * RMB
2065 * LOCK rq->lock
2066 * [S] ->on_rq = 0; [L] ->on_cpu
2067 *
2068 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2069 * from the consecutive calls to schedule(); the first switching to our
2070 * task, the second putting it to sleep.
2071 */
2072 smp_rmb();
2073
2074 /*
2075 * If the owning (remote) cpu is still in the middle of schedule() with
2076 * this task as prev, wait until its done referencing the task.
2077 *
2078 * Pairs with the smp_store_release() in finish_lock_switch().
2079 *
2080 * This ensures that tasks getting woken will be fully ordered against
2081 * their previous state and preserve Program Order.
2082 */
2083 smp_cond_load_acquire(&p->on_cpu, !VAL);
2084
2085 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2086 p->state = TASK_WAKING;
2087
2088 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2089 if (task_cpu(p) != cpu) {
2090 wake_flags |= WF_MIGRATED;
2091 set_task_cpu(p, cpu);
2092 }
2093 #endif /* CONFIG_SMP */
2094
2095 ttwu_queue(p, cpu, wake_flags);
2096 stat:
2097 ttwu_stat(p, cpu, wake_flags);
2098 out:
2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2100
2101 return success;
2102 }
2103
2104 /**
2105 * try_to_wake_up_local - try to wake up a local task with rq lock held
2106 * @p: the thread to be awakened
2107 * @cookie: context's cookie for pinning
2108 *
2109 * Put @p on the run-queue if it's not already there. The caller must
2110 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2111 * the current task.
2112 */
2113 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2114 {
2115 struct rq *rq = task_rq(p);
2116
2117 if (WARN_ON_ONCE(rq != this_rq()) ||
2118 WARN_ON_ONCE(p == current))
2119 return;
2120
2121 lockdep_assert_held(&rq->lock);
2122
2123 if (!raw_spin_trylock(&p->pi_lock)) {
2124 /*
2125 * This is OK, because current is on_cpu, which avoids it being
2126 * picked for load-balance and preemption/IRQs are still
2127 * disabled avoiding further scheduler activity on it and we've
2128 * not yet picked a replacement task.
2129 */
2130 lockdep_unpin_lock(&rq->lock, cookie);
2131 raw_spin_unlock(&rq->lock);
2132 raw_spin_lock(&p->pi_lock);
2133 raw_spin_lock(&rq->lock);
2134 lockdep_repin_lock(&rq->lock, cookie);
2135 }
2136
2137 if (!(p->state & TASK_NORMAL))
2138 goto out;
2139
2140 trace_sched_waking(p);
2141
2142 if (!task_on_rq_queued(p))
2143 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2144
2145 ttwu_do_wakeup(rq, p, 0, cookie);
2146 ttwu_stat(p, smp_processor_id(), 0);
2147 out:
2148 raw_spin_unlock(&p->pi_lock);
2149 }
2150
2151 /**
2152 * wake_up_process - Wake up a specific process
2153 * @p: The process to be woken up.
2154 *
2155 * Attempt to wake up the nominated process and move it to the set of runnable
2156 * processes.
2157 *
2158 * Return: 1 if the process was woken up, 0 if it was already running.
2159 *
2160 * It may be assumed that this function implies a write memory barrier before
2161 * changing the task state if and only if any tasks are woken up.
2162 */
2163 int wake_up_process(struct task_struct *p)
2164 {
2165 return try_to_wake_up(p, TASK_NORMAL, 0);
2166 }
2167 EXPORT_SYMBOL(wake_up_process);
2168
2169 int wake_up_state(struct task_struct *p, unsigned int state)
2170 {
2171 return try_to_wake_up(p, state, 0);
2172 }
2173
2174 /*
2175 * This function clears the sched_dl_entity static params.
2176 */
2177 void __dl_clear_params(struct task_struct *p)
2178 {
2179 struct sched_dl_entity *dl_se = &p->dl;
2180
2181 dl_se->dl_runtime = 0;
2182 dl_se->dl_deadline = 0;
2183 dl_se->dl_period = 0;
2184 dl_se->flags = 0;
2185 dl_se->dl_bw = 0;
2186
2187 dl_se->dl_throttled = 0;
2188 dl_se->dl_yielded = 0;
2189 }
2190
2191 /*
2192 * Perform scheduler related setup for a newly forked process p.
2193 * p is forked by current.
2194 *
2195 * __sched_fork() is basic setup used by init_idle() too:
2196 */
2197 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2198 {
2199 p->on_rq = 0;
2200
2201 p->se.on_rq = 0;
2202 p->se.exec_start = 0;
2203 p->se.sum_exec_runtime = 0;
2204 p->se.prev_sum_exec_runtime = 0;
2205 p->se.nr_migrations = 0;
2206 p->se.vruntime = 0;
2207 INIT_LIST_HEAD(&p->se.group_node);
2208
2209 #ifdef CONFIG_FAIR_GROUP_SCHED
2210 p->se.cfs_rq = NULL;
2211 #endif
2212
2213 #ifdef CONFIG_SCHEDSTATS
2214 /* Even if schedstat is disabled, there should not be garbage */
2215 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2216 #endif
2217
2218 RB_CLEAR_NODE(&p->dl.rb_node);
2219 init_dl_task_timer(&p->dl);
2220 __dl_clear_params(p);
2221
2222 INIT_LIST_HEAD(&p->rt.run_list);
2223 p->rt.timeout = 0;
2224 p->rt.time_slice = sched_rr_timeslice;
2225 p->rt.on_rq = 0;
2226 p->rt.on_list = 0;
2227
2228 #ifdef CONFIG_PREEMPT_NOTIFIERS
2229 INIT_HLIST_HEAD(&p->preempt_notifiers);
2230 #endif
2231
2232 #ifdef CONFIG_NUMA_BALANCING
2233 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2234 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2235 p->mm->numa_scan_seq = 0;
2236 }
2237
2238 if (clone_flags & CLONE_VM)
2239 p->numa_preferred_nid = current->numa_preferred_nid;
2240 else
2241 p->numa_preferred_nid = -1;
2242
2243 p->node_stamp = 0ULL;
2244 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2245 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2246 p->numa_work.next = &p->numa_work;
2247 p->numa_faults = NULL;
2248 p->last_task_numa_placement = 0;
2249 p->last_sum_exec_runtime = 0;
2250
2251 p->numa_group = NULL;
2252 #endif /* CONFIG_NUMA_BALANCING */
2253 }
2254
2255 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2256
2257 #ifdef CONFIG_NUMA_BALANCING
2258
2259 void set_numabalancing_state(bool enabled)
2260 {
2261 if (enabled)
2262 static_branch_enable(&sched_numa_balancing);
2263 else
2264 static_branch_disable(&sched_numa_balancing);
2265 }
2266
2267 #ifdef CONFIG_PROC_SYSCTL
2268 int sysctl_numa_balancing(struct ctl_table *table, int write,
2269 void __user *buffer, size_t *lenp, loff_t *ppos)
2270 {
2271 struct ctl_table t;
2272 int err;
2273 int state = static_branch_likely(&sched_numa_balancing);
2274
2275 if (write && !capable(CAP_SYS_ADMIN))
2276 return -EPERM;
2277
2278 t = *table;
2279 t.data = &state;
2280 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2281 if (err < 0)
2282 return err;
2283 if (write)
2284 set_numabalancing_state(state);
2285 return err;
2286 }
2287 #endif
2288 #endif
2289
2290 #ifdef CONFIG_SCHEDSTATS
2291
2292 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2293 static bool __initdata __sched_schedstats = false;
2294
2295 static void set_schedstats(bool enabled)
2296 {
2297 if (enabled)
2298 static_branch_enable(&sched_schedstats);
2299 else
2300 static_branch_disable(&sched_schedstats);
2301 }
2302
2303 void force_schedstat_enabled(void)
2304 {
2305 if (!schedstat_enabled()) {
2306 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2307 static_branch_enable(&sched_schedstats);
2308 }
2309 }
2310
2311 static int __init setup_schedstats(char *str)
2312 {
2313 int ret = 0;
2314 if (!str)
2315 goto out;
2316
2317 /*
2318 * This code is called before jump labels have been set up, so we can't
2319 * change the static branch directly just yet. Instead set a temporary
2320 * variable so init_schedstats() can do it later.
2321 */
2322 if (!strcmp(str, "enable")) {
2323 __sched_schedstats = true;
2324 ret = 1;
2325 } else if (!strcmp(str, "disable")) {
2326 __sched_schedstats = false;
2327 ret = 1;
2328 }
2329 out:
2330 if (!ret)
2331 pr_warn("Unable to parse schedstats=\n");
2332
2333 return ret;
2334 }
2335 __setup("schedstats=", setup_schedstats);
2336
2337 static void __init init_schedstats(void)
2338 {
2339 set_schedstats(__sched_schedstats);
2340 }
2341
2342 #ifdef CONFIG_PROC_SYSCTL
2343 int sysctl_schedstats(struct ctl_table *table, int write,
2344 void __user *buffer, size_t *lenp, loff_t *ppos)
2345 {
2346 struct ctl_table t;
2347 int err;
2348 int state = static_branch_likely(&sched_schedstats);
2349
2350 if (write && !capable(CAP_SYS_ADMIN))
2351 return -EPERM;
2352
2353 t = *table;
2354 t.data = &state;
2355 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2356 if (err < 0)
2357 return err;
2358 if (write)
2359 set_schedstats(state);
2360 return err;
2361 }
2362 #endif /* CONFIG_PROC_SYSCTL */
2363 #else /* !CONFIG_SCHEDSTATS */
2364 static inline void init_schedstats(void) {}
2365 #endif /* CONFIG_SCHEDSTATS */
2366
2367 /*
2368 * fork()/clone()-time setup:
2369 */
2370 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2371 {
2372 unsigned long flags;
2373 int cpu = get_cpu();
2374
2375 __sched_fork(clone_flags, p);
2376 /*
2377 * We mark the process as NEW here. This guarantees that
2378 * nobody will actually run it, and a signal or other external
2379 * event cannot wake it up and insert it on the runqueue either.
2380 */
2381 p->state = TASK_NEW;
2382
2383 /*
2384 * Make sure we do not leak PI boosting priority to the child.
2385 */
2386 p->prio = current->normal_prio;
2387
2388 /*
2389 * Revert to default priority/policy on fork if requested.
2390 */
2391 if (unlikely(p->sched_reset_on_fork)) {
2392 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2393 p->policy = SCHED_NORMAL;
2394 p->static_prio = NICE_TO_PRIO(0);
2395 p->rt_priority = 0;
2396 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2397 p->static_prio = NICE_TO_PRIO(0);
2398
2399 p->prio = p->normal_prio = __normal_prio(p);
2400 set_load_weight(p);
2401
2402 /*
2403 * We don't need the reset flag anymore after the fork. It has
2404 * fulfilled its duty:
2405 */
2406 p->sched_reset_on_fork = 0;
2407 }
2408
2409 if (dl_prio(p->prio)) {
2410 put_cpu();
2411 return -EAGAIN;
2412 } else if (rt_prio(p->prio)) {
2413 p->sched_class = &rt_sched_class;
2414 } else {
2415 p->sched_class = &fair_sched_class;
2416 }
2417
2418 init_entity_runnable_average(&p->se);
2419
2420 /*
2421 * The child is not yet in the pid-hash so no cgroup attach races,
2422 * and the cgroup is pinned to this child due to cgroup_fork()
2423 * is ran before sched_fork().
2424 *
2425 * Silence PROVE_RCU.
2426 */
2427 raw_spin_lock_irqsave(&p->pi_lock, flags);
2428 /*
2429 * We're setting the cpu for the first time, we don't migrate,
2430 * so use __set_task_cpu().
2431 */
2432 __set_task_cpu(p, cpu);
2433 if (p->sched_class->task_fork)
2434 p->sched_class->task_fork(p);
2435 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2436
2437 #ifdef CONFIG_SCHED_INFO
2438 if (likely(sched_info_on()))
2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
2440 #endif
2441 #if defined(CONFIG_SMP)
2442 p->on_cpu = 0;
2443 #endif
2444 init_task_preempt_count(p);
2445 #ifdef CONFIG_SMP
2446 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2447 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2448 #endif
2449
2450 put_cpu();
2451 return 0;
2452 }
2453
2454 unsigned long to_ratio(u64 period, u64 runtime)
2455 {
2456 if (runtime == RUNTIME_INF)
2457 return 1ULL << 20;
2458
2459 /*
2460 * Doing this here saves a lot of checks in all
2461 * the calling paths, and returning zero seems
2462 * safe for them anyway.
2463 */
2464 if (period == 0)
2465 return 0;
2466
2467 return div64_u64(runtime << 20, period);
2468 }
2469
2470 #ifdef CONFIG_SMP
2471 inline struct dl_bw *dl_bw_of(int i)
2472 {
2473 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2474 "sched RCU must be held");
2475 return &cpu_rq(i)->rd->dl_bw;
2476 }
2477
2478 static inline int dl_bw_cpus(int i)
2479 {
2480 struct root_domain *rd = cpu_rq(i)->rd;
2481 int cpus = 0;
2482
2483 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2484 "sched RCU must be held");
2485 for_each_cpu_and(i, rd->span, cpu_active_mask)
2486 cpus++;
2487
2488 return cpus;
2489 }
2490 #else
2491 inline struct dl_bw *dl_bw_of(int i)
2492 {
2493 return &cpu_rq(i)->dl.dl_bw;
2494 }
2495
2496 static inline int dl_bw_cpus(int i)
2497 {
2498 return 1;
2499 }
2500 #endif
2501
2502 /*
2503 * We must be sure that accepting a new task (or allowing changing the
2504 * parameters of an existing one) is consistent with the bandwidth
2505 * constraints. If yes, this function also accordingly updates the currently
2506 * allocated bandwidth to reflect the new situation.
2507 *
2508 * This function is called while holding p's rq->lock.
2509 *
2510 * XXX we should delay bw change until the task's 0-lag point, see
2511 * __setparam_dl().
2512 */
2513 static int dl_overflow(struct task_struct *p, int policy,
2514 const struct sched_attr *attr)
2515 {
2516
2517 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2518 u64 period = attr->sched_period ?: attr->sched_deadline;
2519 u64 runtime = attr->sched_runtime;
2520 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2521 int cpus, err = -1;
2522
2523 /* !deadline task may carry old deadline bandwidth */
2524 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2525 return 0;
2526
2527 /*
2528 * Either if a task, enters, leave, or stays -deadline but changes
2529 * its parameters, we may need to update accordingly the total
2530 * allocated bandwidth of the container.
2531 */
2532 raw_spin_lock(&dl_b->lock);
2533 cpus = dl_bw_cpus(task_cpu(p));
2534 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2535 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2536 __dl_add(dl_b, new_bw);
2537 err = 0;
2538 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2539 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2540 __dl_clear(dl_b, p->dl.dl_bw);
2541 __dl_add(dl_b, new_bw);
2542 err = 0;
2543 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2544 __dl_clear(dl_b, p->dl.dl_bw);
2545 err = 0;
2546 }
2547 raw_spin_unlock(&dl_b->lock);
2548
2549 return err;
2550 }
2551
2552 extern void init_dl_bw(struct dl_bw *dl_b);
2553
2554 /*
2555 * wake_up_new_task - wake up a newly created task for the first time.
2556 *
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2560 */
2561 void wake_up_new_task(struct task_struct *p)
2562 {
2563 struct rq_flags rf;
2564 struct rq *rq;
2565
2566 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2567 p->state = TASK_RUNNING;
2568 #ifdef CONFIG_SMP
2569 /*
2570 * Fork balancing, do it here and not earlier because:
2571 * - cpus_allowed can change in the fork path
2572 * - any previously selected cpu might disappear through hotplug
2573 *
2574 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2575 * as we're not fully set-up yet.
2576 */
2577 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2578 #endif
2579 rq = __task_rq_lock(p, &rf);
2580 post_init_entity_util_avg(&p->se);
2581
2582 activate_task(rq, p, 0);
2583 p->on_rq = TASK_ON_RQ_QUEUED;
2584 trace_sched_wakeup_new(p);
2585 check_preempt_curr(rq, p, WF_FORK);
2586 #ifdef CONFIG_SMP
2587 if (p->sched_class->task_woken) {
2588 /*
2589 * Nothing relies on rq->lock after this, so its fine to
2590 * drop it.
2591 */
2592 lockdep_unpin_lock(&rq->lock, rf.cookie);
2593 p->sched_class->task_woken(rq, p);
2594 lockdep_repin_lock(&rq->lock, rf.cookie);
2595 }
2596 #endif
2597 task_rq_unlock(rq, p, &rf);
2598 }
2599
2600 #ifdef CONFIG_PREEMPT_NOTIFIERS
2601
2602 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2603
2604 void preempt_notifier_inc(void)
2605 {
2606 static_key_slow_inc(&preempt_notifier_key);
2607 }
2608 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2609
2610 void preempt_notifier_dec(void)
2611 {
2612 static_key_slow_dec(&preempt_notifier_key);
2613 }
2614 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2615
2616 /**
2617 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2618 * @notifier: notifier struct to register
2619 */
2620 void preempt_notifier_register(struct preempt_notifier *notifier)
2621 {
2622 if (!static_key_false(&preempt_notifier_key))
2623 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2624
2625 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2626 }
2627 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2628
2629 /**
2630 * preempt_notifier_unregister - no longer interested in preemption notifications
2631 * @notifier: notifier struct to unregister
2632 *
2633 * This is *not* safe to call from within a preemption notifier.
2634 */
2635 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2636 {
2637 hlist_del(&notifier->link);
2638 }
2639 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2640
2641 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2642 {
2643 struct preempt_notifier *notifier;
2644
2645 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2646 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2647 }
2648
2649 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2650 {
2651 if (static_key_false(&preempt_notifier_key))
2652 __fire_sched_in_preempt_notifiers(curr);
2653 }
2654
2655 static void
2656 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658 {
2659 struct preempt_notifier *notifier;
2660
2661 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2662 notifier->ops->sched_out(notifier, next);
2663 }
2664
2665 static __always_inline void
2666 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2667 struct task_struct *next)
2668 {
2669 if (static_key_false(&preempt_notifier_key))
2670 __fire_sched_out_preempt_notifiers(curr, next);
2671 }
2672
2673 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2674
2675 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676 {
2677 }
2678
2679 static inline void
2680 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2681 struct task_struct *next)
2682 {
2683 }
2684
2685 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2686
2687 /**
2688 * prepare_task_switch - prepare to switch tasks
2689 * @rq: the runqueue preparing to switch
2690 * @prev: the current task that is being switched out
2691 * @next: the task we are going to switch to.
2692 *
2693 * This is called with the rq lock held and interrupts off. It must
2694 * be paired with a subsequent finish_task_switch after the context
2695 * switch.
2696 *
2697 * prepare_task_switch sets up locking and calls architecture specific
2698 * hooks.
2699 */
2700 static inline void
2701 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2702 struct task_struct *next)
2703 {
2704 sched_info_switch(rq, prev, next);
2705 perf_event_task_sched_out(prev, next);
2706 fire_sched_out_preempt_notifiers(prev, next);
2707 prepare_lock_switch(rq, next);
2708 prepare_arch_switch(next);
2709 }
2710
2711 /**
2712 * finish_task_switch - clean up after a task-switch
2713 * @prev: the thread we just switched away from.
2714 *
2715 * finish_task_switch must be called after the context switch, paired
2716 * with a prepare_task_switch call before the context switch.
2717 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2718 * and do any other architecture-specific cleanup actions.
2719 *
2720 * Note that we may have delayed dropping an mm in context_switch(). If
2721 * so, we finish that here outside of the runqueue lock. (Doing it
2722 * with the lock held can cause deadlocks; see schedule() for
2723 * details.)
2724 *
2725 * The context switch have flipped the stack from under us and restored the
2726 * local variables which were saved when this task called schedule() in the
2727 * past. prev == current is still correct but we need to recalculate this_rq
2728 * because prev may have moved to another CPU.
2729 */
2730 static struct rq *finish_task_switch(struct task_struct *prev)
2731 __releases(rq->lock)
2732 {
2733 struct rq *rq = this_rq();
2734 struct mm_struct *mm = rq->prev_mm;
2735 long prev_state;
2736
2737 /*
2738 * The previous task will have left us with a preempt_count of 2
2739 * because it left us after:
2740 *
2741 * schedule()
2742 * preempt_disable(); // 1
2743 * __schedule()
2744 * raw_spin_lock_irq(&rq->lock) // 2
2745 *
2746 * Also, see FORK_PREEMPT_COUNT.
2747 */
2748 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2749 "corrupted preempt_count: %s/%d/0x%x\n",
2750 current->comm, current->pid, preempt_count()))
2751 preempt_count_set(FORK_PREEMPT_COUNT);
2752
2753 rq->prev_mm = NULL;
2754
2755 /*
2756 * A task struct has one reference for the use as "current".
2757 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2758 * schedule one last time. The schedule call will never return, and
2759 * the scheduled task must drop that reference.
2760 *
2761 * We must observe prev->state before clearing prev->on_cpu (in
2762 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2763 * running on another CPU and we could rave with its RUNNING -> DEAD
2764 * transition, resulting in a double drop.
2765 */
2766 prev_state = prev->state;
2767 vtime_task_switch(prev);
2768 perf_event_task_sched_in(prev, current);
2769 finish_lock_switch(rq, prev);
2770 finish_arch_post_lock_switch();
2771
2772 fire_sched_in_preempt_notifiers(current);
2773 if (mm)
2774 mmdrop(mm);
2775 if (unlikely(prev_state == TASK_DEAD)) {
2776 if (prev->sched_class->task_dead)
2777 prev->sched_class->task_dead(prev);
2778
2779 /*
2780 * Remove function-return probe instances associated with this
2781 * task and put them back on the free list.
2782 */
2783 kprobe_flush_task(prev);
2784
2785 /* Task is done with its stack. */
2786 put_task_stack(prev);
2787
2788 put_task_struct(prev);
2789 }
2790
2791 tick_nohz_task_switch();
2792 return rq;
2793 }
2794
2795 #ifdef CONFIG_SMP
2796
2797 /* rq->lock is NOT held, but preemption is disabled */
2798 static void __balance_callback(struct rq *rq)
2799 {
2800 struct callback_head *head, *next;
2801 void (*func)(struct rq *rq);
2802 unsigned long flags;
2803
2804 raw_spin_lock_irqsave(&rq->lock, flags);
2805 head = rq->balance_callback;
2806 rq->balance_callback = NULL;
2807 while (head) {
2808 func = (void (*)(struct rq *))head->func;
2809 next = head->next;
2810 head->next = NULL;
2811 head = next;
2812
2813 func(rq);
2814 }
2815 raw_spin_unlock_irqrestore(&rq->lock, flags);
2816 }
2817
2818 static inline void balance_callback(struct rq *rq)
2819 {
2820 if (unlikely(rq->balance_callback))
2821 __balance_callback(rq);
2822 }
2823
2824 #else
2825
2826 static inline void balance_callback(struct rq *rq)
2827 {
2828 }
2829
2830 #endif
2831
2832 /**
2833 * schedule_tail - first thing a freshly forked thread must call.
2834 * @prev: the thread we just switched away from.
2835 */
2836 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2837 __releases(rq->lock)
2838 {
2839 struct rq *rq;
2840
2841 /*
2842 * New tasks start with FORK_PREEMPT_COUNT, see there and
2843 * finish_task_switch() for details.
2844 *
2845 * finish_task_switch() will drop rq->lock() and lower preempt_count
2846 * and the preempt_enable() will end up enabling preemption (on
2847 * PREEMPT_COUNT kernels).
2848 */
2849
2850 rq = finish_task_switch(prev);
2851 balance_callback(rq);
2852 preempt_enable();
2853
2854 if (current->set_child_tid)
2855 put_user(task_pid_vnr(current), current->set_child_tid);
2856 }
2857
2858 /*
2859 * context_switch - switch to the new MM and the new thread's register state.
2860 */
2861 static __always_inline struct rq *
2862 context_switch(struct rq *rq, struct task_struct *prev,
2863 struct task_struct *next, struct pin_cookie cookie)
2864 {
2865 struct mm_struct *mm, *oldmm;
2866
2867 prepare_task_switch(rq, prev, next);
2868
2869 mm = next->mm;
2870 oldmm = prev->active_mm;
2871 /*
2872 * For paravirt, this is coupled with an exit in switch_to to
2873 * combine the page table reload and the switch backend into
2874 * one hypercall.
2875 */
2876 arch_start_context_switch(prev);
2877
2878 if (!mm) {
2879 next->active_mm = oldmm;
2880 atomic_inc(&oldmm->mm_count);
2881 enter_lazy_tlb(oldmm, next);
2882 } else
2883 switch_mm_irqs_off(oldmm, mm, next);
2884
2885 if (!prev->mm) {
2886 prev->active_mm = NULL;
2887 rq->prev_mm = oldmm;
2888 }
2889 /*
2890 * Since the runqueue lock will be released by the next
2891 * task (which is an invalid locking op but in the case
2892 * of the scheduler it's an obvious special-case), so we
2893 * do an early lockdep release here:
2894 */
2895 lockdep_unpin_lock(&rq->lock, cookie);
2896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2897
2898 /* Here we just switch the register state and the stack. */
2899 switch_to(prev, next, prev);
2900 barrier();
2901
2902 return finish_task_switch(prev);
2903 }
2904
2905 /*
2906 * nr_running and nr_context_switches:
2907 *
2908 * externally visible scheduler statistics: current number of runnable
2909 * threads, total number of context switches performed since bootup.
2910 */
2911 unsigned long nr_running(void)
2912 {
2913 unsigned long i, sum = 0;
2914
2915 for_each_online_cpu(i)
2916 sum += cpu_rq(i)->nr_running;
2917
2918 return sum;
2919 }
2920
2921 /*
2922 * Check if only the current task is running on the cpu.
2923 *
2924 * Caution: this function does not check that the caller has disabled
2925 * preemption, thus the result might have a time-of-check-to-time-of-use
2926 * race. The caller is responsible to use it correctly, for example:
2927 *
2928 * - from a non-preemptable section (of course)
2929 *
2930 * - from a thread that is bound to a single CPU
2931 *
2932 * - in a loop with very short iterations (e.g. a polling loop)
2933 */
2934 bool single_task_running(void)
2935 {
2936 return raw_rq()->nr_running == 1;
2937 }
2938 EXPORT_SYMBOL(single_task_running);
2939
2940 unsigned long long nr_context_switches(void)
2941 {
2942 int i;
2943 unsigned long long sum = 0;
2944
2945 for_each_possible_cpu(i)
2946 sum += cpu_rq(i)->nr_switches;
2947
2948 return sum;
2949 }
2950
2951 unsigned long nr_iowait(void)
2952 {
2953 unsigned long i, sum = 0;
2954
2955 for_each_possible_cpu(i)
2956 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2957
2958 return sum;
2959 }
2960
2961 unsigned long nr_iowait_cpu(int cpu)
2962 {
2963 struct rq *this = cpu_rq(cpu);
2964 return atomic_read(&this->nr_iowait);
2965 }
2966
2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2968 {
2969 struct rq *rq = this_rq();
2970 *nr_waiters = atomic_read(&rq->nr_iowait);
2971 *load = rq->load.weight;
2972 }
2973
2974 #ifdef CONFIG_SMP
2975
2976 /*
2977 * sched_exec - execve() is a valuable balancing opportunity, because at
2978 * this point the task has the smallest effective memory and cache footprint.
2979 */
2980 void sched_exec(void)
2981 {
2982 struct task_struct *p = current;
2983 unsigned long flags;
2984 int dest_cpu;
2985
2986 raw_spin_lock_irqsave(&p->pi_lock, flags);
2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 if (dest_cpu == smp_processor_id())
2989 goto unlock;
2990
2991 if (likely(cpu_active(dest_cpu))) {
2992 struct migration_arg arg = { p, dest_cpu };
2993
2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2996 return;
2997 }
2998 unlock:
2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3000 }
3001
3002 #endif
3003
3004 DEFINE_PER_CPU(struct kernel_stat, kstat);
3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3006
3007 EXPORT_PER_CPU_SYMBOL(kstat);
3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3009
3010 /*
3011 * The function fair_sched_class.update_curr accesses the struct curr
3012 * and its field curr->exec_start; when called from task_sched_runtime(),
3013 * we observe a high rate of cache misses in practice.
3014 * Prefetching this data results in improved performance.
3015 */
3016 static inline void prefetch_curr_exec_start(struct task_struct *p)
3017 {
3018 #ifdef CONFIG_FAIR_GROUP_SCHED
3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3020 #else
3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3022 #endif
3023 prefetch(curr);
3024 prefetch(&curr->exec_start);
3025 }
3026
3027 /*
3028 * Return accounted runtime for the task.
3029 * In case the task is currently running, return the runtime plus current's
3030 * pending runtime that have not been accounted yet.
3031 */
3032 unsigned long long task_sched_runtime(struct task_struct *p)
3033 {
3034 struct rq_flags rf;
3035 struct rq *rq;
3036 u64 ns;
3037
3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3039 /*
3040 * 64-bit doesn't need locks to atomically read a 64bit value.
3041 * So we have a optimization chance when the task's delta_exec is 0.
3042 * Reading ->on_cpu is racy, but this is ok.
3043 *
3044 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3045 * If we race with it entering cpu, unaccounted time is 0. This is
3046 * indistinguishable from the read occurring a few cycles earlier.
3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 * been accounted, so we're correct here as well.
3049 */
3050 if (!p->on_cpu || !task_on_rq_queued(p))
3051 return p->se.sum_exec_runtime;
3052 #endif
3053
3054 rq = task_rq_lock(p, &rf);
3055 /*
3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3057 * project cycles that may never be accounted to this
3058 * thread, breaking clock_gettime().
3059 */
3060 if (task_current(rq, p) && task_on_rq_queued(p)) {
3061 prefetch_curr_exec_start(p);
3062 update_rq_clock(rq);
3063 p->sched_class->update_curr(rq);
3064 }
3065 ns = p->se.sum_exec_runtime;
3066 task_rq_unlock(rq, p, &rf);
3067
3068 return ns;
3069 }
3070
3071 /*
3072 * This function gets called by the timer code, with HZ frequency.
3073 * We call it with interrupts disabled.
3074 */
3075 void scheduler_tick(void)
3076 {
3077 int cpu = smp_processor_id();
3078 struct rq *rq = cpu_rq(cpu);
3079 struct task_struct *curr = rq->curr;
3080
3081 sched_clock_tick();
3082
3083 raw_spin_lock(&rq->lock);
3084 update_rq_clock(rq);
3085 curr->sched_class->task_tick(rq, curr, 0);
3086 cpu_load_update_active(rq);
3087 calc_global_load_tick(rq);
3088 raw_spin_unlock(&rq->lock);
3089
3090 perf_event_task_tick();
3091
3092 #ifdef CONFIG_SMP
3093 rq->idle_balance = idle_cpu(cpu);
3094 trigger_load_balance(rq);
3095 #endif
3096 rq_last_tick_reset(rq);
3097 }
3098
3099 #ifdef CONFIG_NO_HZ_FULL
3100 /**
3101 * scheduler_tick_max_deferment
3102 *
3103 * Keep at least one tick per second when a single
3104 * active task is running because the scheduler doesn't
3105 * yet completely support full dynticks environment.
3106 *
3107 * This makes sure that uptime, CFS vruntime, load
3108 * balancing, etc... continue to move forward, even
3109 * with a very low granularity.
3110 *
3111 * Return: Maximum deferment in nanoseconds.
3112 */
3113 u64 scheduler_tick_max_deferment(void)
3114 {
3115 struct rq *rq = this_rq();
3116 unsigned long next, now = READ_ONCE(jiffies);
3117
3118 next = rq->last_sched_tick + HZ;
3119
3120 if (time_before_eq(next, now))
3121 return 0;
3122
3123 return jiffies_to_nsecs(next - now);
3124 }
3125 #endif
3126
3127 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3128 defined(CONFIG_PREEMPT_TRACER))
3129 /*
3130 * If the value passed in is equal to the current preempt count
3131 * then we just disabled preemption. Start timing the latency.
3132 */
3133 static inline void preempt_latency_start(int val)
3134 {
3135 if (preempt_count() == val) {
3136 unsigned long ip = get_lock_parent_ip();
3137 #ifdef CONFIG_DEBUG_PREEMPT
3138 current->preempt_disable_ip = ip;
3139 #endif
3140 trace_preempt_off(CALLER_ADDR0, ip);
3141 }
3142 }
3143
3144 void preempt_count_add(int val)
3145 {
3146 #ifdef CONFIG_DEBUG_PREEMPT
3147 /*
3148 * Underflow?
3149 */
3150 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3151 return;
3152 #endif
3153 __preempt_count_add(val);
3154 #ifdef CONFIG_DEBUG_PREEMPT
3155 /*
3156 * Spinlock count overflowing soon?
3157 */
3158 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3159 PREEMPT_MASK - 10);
3160 #endif
3161 preempt_latency_start(val);
3162 }
3163 EXPORT_SYMBOL(preempt_count_add);
3164 NOKPROBE_SYMBOL(preempt_count_add);
3165
3166 /*
3167 * If the value passed in equals to the current preempt count
3168 * then we just enabled preemption. Stop timing the latency.
3169 */
3170 static inline void preempt_latency_stop(int val)
3171 {
3172 if (preempt_count() == val)
3173 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3174 }
3175
3176 void preempt_count_sub(int val)
3177 {
3178 #ifdef CONFIG_DEBUG_PREEMPT
3179 /*
3180 * Underflow?
3181 */
3182 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3183 return;
3184 /*
3185 * Is the spinlock portion underflowing?
3186 */
3187 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3188 !(preempt_count() & PREEMPT_MASK)))
3189 return;
3190 #endif
3191
3192 preempt_latency_stop(val);
3193 __preempt_count_sub(val);
3194 }
3195 EXPORT_SYMBOL(preempt_count_sub);
3196 NOKPROBE_SYMBOL(preempt_count_sub);
3197
3198 #else
3199 static inline void preempt_latency_start(int val) { }
3200 static inline void preempt_latency_stop(int val) { }
3201 #endif
3202
3203 /*
3204 * Print scheduling while atomic bug:
3205 */
3206 static noinline void __schedule_bug(struct task_struct *prev)
3207 {
3208 /* Save this before calling printk(), since that will clobber it */
3209 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3210
3211 if (oops_in_progress)
3212 return;
3213
3214 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3215 prev->comm, prev->pid, preempt_count());
3216
3217 debug_show_held_locks(prev);
3218 print_modules();
3219 if (irqs_disabled())
3220 print_irqtrace_events(prev);
3221 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3222 && in_atomic_preempt_off()) {
3223 pr_err("Preemption disabled at:");
3224 print_ip_sym(preempt_disable_ip);
3225 pr_cont("\n");
3226 }
3227 if (panic_on_warn)
3228 panic("scheduling while atomic\n");
3229
3230 dump_stack();
3231 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3232 }
3233
3234 /*
3235 * Various schedule()-time debugging checks and statistics:
3236 */
3237 static inline void schedule_debug(struct task_struct *prev)
3238 {
3239 #ifdef CONFIG_SCHED_STACK_END_CHECK
3240 if (task_stack_end_corrupted(prev))
3241 panic("corrupted stack end detected inside scheduler\n");
3242 #endif
3243
3244 if (unlikely(in_atomic_preempt_off())) {
3245 __schedule_bug(prev);
3246 preempt_count_set(PREEMPT_DISABLED);
3247 }
3248 rcu_sleep_check();
3249
3250 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3251
3252 schedstat_inc(this_rq()->sched_count);
3253 }
3254
3255 /*
3256 * Pick up the highest-prio task:
3257 */
3258 static inline struct task_struct *
3259 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3260 {
3261 const struct sched_class *class = &fair_sched_class;
3262 struct task_struct *p;
3263
3264 /*
3265 * Optimization: we know that if all tasks are in
3266 * the fair class we can call that function directly:
3267 */
3268 if (likely(prev->sched_class == class &&
3269 rq->nr_running == rq->cfs.h_nr_running)) {
3270 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3271 if (unlikely(p == RETRY_TASK))
3272 goto again;
3273
3274 /* assumes fair_sched_class->next == idle_sched_class */
3275 if (unlikely(!p))
3276 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3277
3278 return p;
3279 }
3280
3281 again:
3282 for_each_class(class) {
3283 p = class->pick_next_task(rq, prev, cookie);
3284 if (p) {
3285 if (unlikely(p == RETRY_TASK))
3286 goto again;
3287 return p;
3288 }
3289 }
3290
3291 BUG(); /* the idle class will always have a runnable task */
3292 }
3293
3294 /*
3295 * __schedule() is the main scheduler function.
3296 *
3297 * The main means of driving the scheduler and thus entering this function are:
3298 *
3299 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3300 *
3301 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3302 * paths. For example, see arch/x86/entry_64.S.
3303 *
3304 * To drive preemption between tasks, the scheduler sets the flag in timer
3305 * interrupt handler scheduler_tick().
3306 *
3307 * 3. Wakeups don't really cause entry into schedule(). They add a
3308 * task to the run-queue and that's it.
3309 *
3310 * Now, if the new task added to the run-queue preempts the current
3311 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3312 * called on the nearest possible occasion:
3313 *
3314 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3315 *
3316 * - in syscall or exception context, at the next outmost
3317 * preempt_enable(). (this might be as soon as the wake_up()'s
3318 * spin_unlock()!)
3319 *
3320 * - in IRQ context, return from interrupt-handler to
3321 * preemptible context
3322 *
3323 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3324 * then at the next:
3325 *
3326 * - cond_resched() call
3327 * - explicit schedule() call
3328 * - return from syscall or exception to user-space
3329 * - return from interrupt-handler to user-space
3330 *
3331 * WARNING: must be called with preemption disabled!
3332 */
3333 static void __sched notrace __schedule(bool preempt)
3334 {
3335 struct task_struct *prev, *next;
3336 unsigned long *switch_count;
3337 struct pin_cookie cookie;
3338 struct rq *rq;
3339 int cpu;
3340
3341 cpu = smp_processor_id();
3342 rq = cpu_rq(cpu);
3343 prev = rq->curr;
3344
3345 schedule_debug(prev);
3346
3347 if (sched_feat(HRTICK))
3348 hrtick_clear(rq);
3349
3350 local_irq_disable();
3351 rcu_note_context_switch();
3352
3353 /*
3354 * Make sure that signal_pending_state()->signal_pending() below
3355 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3356 * done by the caller to avoid the race with signal_wake_up().
3357 */
3358 smp_mb__before_spinlock();
3359 raw_spin_lock(&rq->lock);
3360 cookie = lockdep_pin_lock(&rq->lock);
3361
3362 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3363
3364 switch_count = &prev->nivcsw;
3365 if (!preempt && prev->state) {
3366 if (unlikely(signal_pending_state(prev->state, prev))) {
3367 prev->state = TASK_RUNNING;
3368 } else {
3369 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3370 prev->on_rq = 0;
3371
3372 /*
3373 * If a worker went to sleep, notify and ask workqueue
3374 * whether it wants to wake up a task to maintain
3375 * concurrency.
3376 */
3377 if (prev->flags & PF_WQ_WORKER) {
3378 struct task_struct *to_wakeup;
3379
3380 to_wakeup = wq_worker_sleeping(prev);
3381 if (to_wakeup)
3382 try_to_wake_up_local(to_wakeup, cookie);
3383 }
3384 }
3385 switch_count = &prev->nvcsw;
3386 }
3387
3388 if (task_on_rq_queued(prev))
3389 update_rq_clock(rq);
3390
3391 next = pick_next_task(rq, prev, cookie);
3392 clear_tsk_need_resched(prev);
3393 clear_preempt_need_resched();
3394 rq->clock_skip_update = 0;
3395
3396 if (likely(prev != next)) {
3397 rq->nr_switches++;
3398 rq->curr = next;
3399 ++*switch_count;
3400
3401 trace_sched_switch(preempt, prev, next);
3402 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3403 } else {
3404 lockdep_unpin_lock(&rq->lock, cookie);
3405 raw_spin_unlock_irq(&rq->lock);
3406 }
3407
3408 balance_callback(rq);
3409 }
3410
3411 void __noreturn do_task_dead(void)
3412 {
3413 /*
3414 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3415 * when the following two conditions become true.
3416 * - There is race condition of mmap_sem (It is acquired by
3417 * exit_mm()), and
3418 * - SMI occurs before setting TASK_RUNINNG.
3419 * (or hypervisor of virtual machine switches to other guest)
3420 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3421 *
3422 * To avoid it, we have to wait for releasing tsk->pi_lock which
3423 * is held by try_to_wake_up()
3424 */
3425 smp_mb();
3426 raw_spin_unlock_wait(&current->pi_lock);
3427
3428 /* causes final put_task_struct in finish_task_switch(). */
3429 __set_current_state(TASK_DEAD);
3430 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3431 __schedule(false);
3432 BUG();
3433 /* Avoid "noreturn function does return". */
3434 for (;;)
3435 cpu_relax(); /* For when BUG is null */
3436 }
3437
3438 static inline void sched_submit_work(struct task_struct *tsk)
3439 {
3440 if (!tsk->state || tsk_is_pi_blocked(tsk))
3441 return;
3442 /*
3443 * If we are going to sleep and we have plugged IO queued,
3444 * make sure to submit it to avoid deadlocks.
3445 */
3446 if (blk_needs_flush_plug(tsk))
3447 blk_schedule_flush_plug(tsk);
3448 }
3449
3450 asmlinkage __visible void __sched schedule(void)
3451 {
3452 struct task_struct *tsk = current;
3453
3454 sched_submit_work(tsk);
3455 do {
3456 preempt_disable();
3457 __schedule(false);
3458 sched_preempt_enable_no_resched();
3459 } while (need_resched());
3460 }
3461 EXPORT_SYMBOL(schedule);
3462
3463 #ifdef CONFIG_CONTEXT_TRACKING
3464 asmlinkage __visible void __sched schedule_user(void)
3465 {
3466 /*
3467 * If we come here after a random call to set_need_resched(),
3468 * or we have been woken up remotely but the IPI has not yet arrived,
3469 * we haven't yet exited the RCU idle mode. Do it here manually until
3470 * we find a better solution.
3471 *
3472 * NB: There are buggy callers of this function. Ideally we
3473 * should warn if prev_state != CONTEXT_USER, but that will trigger
3474 * too frequently to make sense yet.
3475 */
3476 enum ctx_state prev_state = exception_enter();
3477 schedule();
3478 exception_exit(prev_state);
3479 }
3480 #endif
3481
3482 /**
3483 * schedule_preempt_disabled - called with preemption disabled
3484 *
3485 * Returns with preemption disabled. Note: preempt_count must be 1
3486 */
3487 void __sched schedule_preempt_disabled(void)
3488 {
3489 sched_preempt_enable_no_resched();
3490 schedule();
3491 preempt_disable();
3492 }
3493
3494 static void __sched notrace preempt_schedule_common(void)
3495 {
3496 do {
3497 /*
3498 * Because the function tracer can trace preempt_count_sub()
3499 * and it also uses preempt_enable/disable_notrace(), if
3500 * NEED_RESCHED is set, the preempt_enable_notrace() called
3501 * by the function tracer will call this function again and
3502 * cause infinite recursion.
3503 *
3504 * Preemption must be disabled here before the function
3505 * tracer can trace. Break up preempt_disable() into two
3506 * calls. One to disable preemption without fear of being
3507 * traced. The other to still record the preemption latency,
3508 * which can also be traced by the function tracer.
3509 */
3510 preempt_disable_notrace();
3511 preempt_latency_start(1);
3512 __schedule(true);
3513 preempt_latency_stop(1);
3514 preempt_enable_no_resched_notrace();
3515
3516 /*
3517 * Check again in case we missed a preemption opportunity
3518 * between schedule and now.
3519 */
3520 } while (need_resched());
3521 }
3522
3523 #ifdef CONFIG_PREEMPT
3524 /*
3525 * this is the entry point to schedule() from in-kernel preemption
3526 * off of preempt_enable. Kernel preemptions off return from interrupt
3527 * occur there and call schedule directly.
3528 */
3529 asmlinkage __visible void __sched notrace preempt_schedule(void)
3530 {
3531 /*
3532 * If there is a non-zero preempt_count or interrupts are disabled,
3533 * we do not want to preempt the current task. Just return..
3534 */
3535 if (likely(!preemptible()))
3536 return;
3537
3538 preempt_schedule_common();
3539 }
3540 NOKPROBE_SYMBOL(preempt_schedule);
3541 EXPORT_SYMBOL(preempt_schedule);
3542
3543 /**
3544 * preempt_schedule_notrace - preempt_schedule called by tracing
3545 *
3546 * The tracing infrastructure uses preempt_enable_notrace to prevent
3547 * recursion and tracing preempt enabling caused by the tracing
3548 * infrastructure itself. But as tracing can happen in areas coming
3549 * from userspace or just about to enter userspace, a preempt enable
3550 * can occur before user_exit() is called. This will cause the scheduler
3551 * to be called when the system is still in usermode.
3552 *
3553 * To prevent this, the preempt_enable_notrace will use this function
3554 * instead of preempt_schedule() to exit user context if needed before
3555 * calling the scheduler.
3556 */
3557 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3558 {
3559 enum ctx_state prev_ctx;
3560
3561 if (likely(!preemptible()))
3562 return;
3563
3564 do {
3565 /*
3566 * Because the function tracer can trace preempt_count_sub()
3567 * and it also uses preempt_enable/disable_notrace(), if
3568 * NEED_RESCHED is set, the preempt_enable_notrace() called
3569 * by the function tracer will call this function again and
3570 * cause infinite recursion.
3571 *
3572 * Preemption must be disabled here before the function
3573 * tracer can trace. Break up preempt_disable() into two
3574 * calls. One to disable preemption without fear of being
3575 * traced. The other to still record the preemption latency,
3576 * which can also be traced by the function tracer.
3577 */
3578 preempt_disable_notrace();
3579 preempt_latency_start(1);
3580 /*
3581 * Needs preempt disabled in case user_exit() is traced
3582 * and the tracer calls preempt_enable_notrace() causing
3583 * an infinite recursion.
3584 */
3585 prev_ctx = exception_enter();
3586 __schedule(true);
3587 exception_exit(prev_ctx);
3588
3589 preempt_latency_stop(1);
3590 preempt_enable_no_resched_notrace();
3591 } while (need_resched());
3592 }
3593 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3594
3595 #endif /* CONFIG_PREEMPT */
3596
3597 /*
3598 * this is the entry point to schedule() from kernel preemption
3599 * off of irq context.
3600 * Note, that this is called and return with irqs disabled. This will
3601 * protect us against recursive calling from irq.
3602 */
3603 asmlinkage __visible void __sched preempt_schedule_irq(void)
3604 {
3605 enum ctx_state prev_state;
3606
3607 /* Catch callers which need to be fixed */
3608 BUG_ON(preempt_count() || !irqs_disabled());
3609
3610 prev_state = exception_enter();
3611
3612 do {
3613 preempt_disable();
3614 local_irq_enable();
3615 __schedule(true);
3616 local_irq_disable();
3617 sched_preempt_enable_no_resched();
3618 } while (need_resched());
3619
3620 exception_exit(prev_state);
3621 }
3622
3623 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3624 void *key)
3625 {
3626 return try_to_wake_up(curr->private, mode, wake_flags);
3627 }
3628 EXPORT_SYMBOL(default_wake_function);
3629
3630 #ifdef CONFIG_RT_MUTEXES
3631
3632 /*
3633 * rt_mutex_setprio - set the current priority of a task
3634 * @p: task
3635 * @prio: prio value (kernel-internal form)
3636 *
3637 * This function changes the 'effective' priority of a task. It does
3638 * not touch ->normal_prio like __setscheduler().
3639 *
3640 * Used by the rt_mutex code to implement priority inheritance
3641 * logic. Call site only calls if the priority of the task changed.
3642 */
3643 void rt_mutex_setprio(struct task_struct *p, int prio)
3644 {
3645 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3646 const struct sched_class *prev_class;
3647 struct rq_flags rf;
3648 struct rq *rq;
3649
3650 BUG_ON(prio > MAX_PRIO);
3651
3652 rq = __task_rq_lock(p, &rf);
3653
3654 /*
3655 * Idle task boosting is a nono in general. There is one
3656 * exception, when PREEMPT_RT and NOHZ is active:
3657 *
3658 * The idle task calls get_next_timer_interrupt() and holds
3659 * the timer wheel base->lock on the CPU and another CPU wants
3660 * to access the timer (probably to cancel it). We can safely
3661 * ignore the boosting request, as the idle CPU runs this code
3662 * with interrupts disabled and will complete the lock
3663 * protected section without being interrupted. So there is no
3664 * real need to boost.
3665 */
3666 if (unlikely(p == rq->idle)) {
3667 WARN_ON(p != rq->curr);
3668 WARN_ON(p->pi_blocked_on);
3669 goto out_unlock;
3670 }
3671
3672 trace_sched_pi_setprio(p, prio);
3673 oldprio = p->prio;
3674
3675 if (oldprio == prio)
3676 queue_flag &= ~DEQUEUE_MOVE;
3677
3678 prev_class = p->sched_class;
3679 queued = task_on_rq_queued(p);
3680 running = task_current(rq, p);
3681 if (queued)
3682 dequeue_task(rq, p, queue_flag);
3683 if (running)
3684 put_prev_task(rq, p);
3685
3686 /*
3687 * Boosting condition are:
3688 * 1. -rt task is running and holds mutex A
3689 * --> -dl task blocks on mutex A
3690 *
3691 * 2. -dl task is running and holds mutex A
3692 * --> -dl task blocks on mutex A and could preempt the
3693 * running task
3694 */
3695 if (dl_prio(prio)) {
3696 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3697 if (!dl_prio(p->normal_prio) ||
3698 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3699 p->dl.dl_boosted = 1;
3700 queue_flag |= ENQUEUE_REPLENISH;
3701 } else
3702 p->dl.dl_boosted = 0;
3703 p->sched_class = &dl_sched_class;
3704 } else if (rt_prio(prio)) {
3705 if (dl_prio(oldprio))
3706 p->dl.dl_boosted = 0;
3707 if (oldprio < prio)
3708 queue_flag |= ENQUEUE_HEAD;
3709 p->sched_class = &rt_sched_class;
3710 } else {
3711 if (dl_prio(oldprio))
3712 p->dl.dl_boosted = 0;
3713 if (rt_prio(oldprio))
3714 p->rt.timeout = 0;
3715 p->sched_class = &fair_sched_class;
3716 }
3717
3718 p->prio = prio;
3719
3720 if (queued)
3721 enqueue_task(rq, p, queue_flag);
3722 if (running)
3723 set_curr_task(rq, p);
3724
3725 check_class_changed(rq, p, prev_class, oldprio);
3726 out_unlock:
3727 preempt_disable(); /* avoid rq from going away on us */
3728 __task_rq_unlock(rq, &rf);
3729
3730 balance_callback(rq);
3731 preempt_enable();
3732 }
3733 #endif
3734
3735 void set_user_nice(struct task_struct *p, long nice)
3736 {
3737 bool queued, running;
3738 int old_prio, delta;
3739 struct rq_flags rf;
3740 struct rq *rq;
3741
3742 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3743 return;
3744 /*
3745 * We have to be careful, if called from sys_setpriority(),
3746 * the task might be in the middle of scheduling on another CPU.
3747 */
3748 rq = task_rq_lock(p, &rf);
3749 /*
3750 * The RT priorities are set via sched_setscheduler(), but we still
3751 * allow the 'normal' nice value to be set - but as expected
3752 * it wont have any effect on scheduling until the task is
3753 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3754 */
3755 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3756 p->static_prio = NICE_TO_PRIO(nice);
3757 goto out_unlock;
3758 }
3759 queued = task_on_rq_queued(p);
3760 running = task_current(rq, p);
3761 if (queued)
3762 dequeue_task(rq, p, DEQUEUE_SAVE);
3763 if (running)
3764 put_prev_task(rq, p);
3765
3766 p->static_prio = NICE_TO_PRIO(nice);
3767 set_load_weight(p);
3768 old_prio = p->prio;
3769 p->prio = effective_prio(p);
3770 delta = p->prio - old_prio;
3771
3772 if (queued) {
3773 enqueue_task(rq, p, ENQUEUE_RESTORE);
3774 /*
3775 * If the task increased its priority or is running and
3776 * lowered its priority, then reschedule its CPU:
3777 */
3778 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3779 resched_curr(rq);
3780 }
3781 if (running)
3782 set_curr_task(rq, p);
3783 out_unlock:
3784 task_rq_unlock(rq, p, &rf);
3785 }
3786 EXPORT_SYMBOL(set_user_nice);
3787
3788 /*
3789 * can_nice - check if a task can reduce its nice value
3790 * @p: task
3791 * @nice: nice value
3792 */
3793 int can_nice(const struct task_struct *p, const int nice)
3794 {
3795 /* convert nice value [19,-20] to rlimit style value [1,40] */
3796 int nice_rlim = nice_to_rlimit(nice);
3797
3798 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3799 capable(CAP_SYS_NICE));
3800 }
3801
3802 #ifdef __ARCH_WANT_SYS_NICE
3803
3804 /*
3805 * sys_nice - change the priority of the current process.
3806 * @increment: priority increment
3807 *
3808 * sys_setpriority is a more generic, but much slower function that
3809 * does similar things.
3810 */
3811 SYSCALL_DEFINE1(nice, int, increment)
3812 {
3813 long nice, retval;
3814
3815 /*
3816 * Setpriority might change our priority at the same moment.
3817 * We don't have to worry. Conceptually one call occurs first
3818 * and we have a single winner.
3819 */
3820 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3821 nice = task_nice(current) + increment;
3822
3823 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3824 if (increment < 0 && !can_nice(current, nice))
3825 return -EPERM;
3826
3827 retval = security_task_setnice(current, nice);
3828 if (retval)
3829 return retval;
3830
3831 set_user_nice(current, nice);
3832 return 0;
3833 }
3834
3835 #endif
3836
3837 /**
3838 * task_prio - return the priority value of a given task.
3839 * @p: the task in question.
3840 *
3841 * Return: The priority value as seen by users in /proc.
3842 * RT tasks are offset by -200. Normal tasks are centered
3843 * around 0, value goes from -16 to +15.
3844 */
3845 int task_prio(const struct task_struct *p)
3846 {
3847 return p->prio - MAX_RT_PRIO;
3848 }
3849
3850 /**
3851 * idle_cpu - is a given cpu idle currently?
3852 * @cpu: the processor in question.
3853 *
3854 * Return: 1 if the CPU is currently idle. 0 otherwise.
3855 */
3856 int idle_cpu(int cpu)
3857 {
3858 struct rq *rq = cpu_rq(cpu);
3859
3860 if (rq->curr != rq->idle)
3861 return 0;
3862
3863 if (rq->nr_running)
3864 return 0;
3865
3866 #ifdef CONFIG_SMP
3867 if (!llist_empty(&rq->wake_list))
3868 return 0;
3869 #endif
3870
3871 return 1;
3872 }
3873
3874 /**
3875 * idle_task - return the idle task for a given cpu.
3876 * @cpu: the processor in question.
3877 *
3878 * Return: The idle task for the cpu @cpu.
3879 */
3880 struct task_struct *idle_task(int cpu)
3881 {
3882 return cpu_rq(cpu)->idle;
3883 }
3884
3885 /**
3886 * find_process_by_pid - find a process with a matching PID value.
3887 * @pid: the pid in question.
3888 *
3889 * The task of @pid, if found. %NULL otherwise.
3890 */
3891 static struct task_struct *find_process_by_pid(pid_t pid)
3892 {
3893 return pid ? find_task_by_vpid(pid) : current;
3894 }
3895
3896 /*
3897 * This function initializes the sched_dl_entity of a newly becoming
3898 * SCHED_DEADLINE task.
3899 *
3900 * Only the static values are considered here, the actual runtime and the
3901 * absolute deadline will be properly calculated when the task is enqueued
3902 * for the first time with its new policy.
3903 */
3904 static void
3905 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3906 {
3907 struct sched_dl_entity *dl_se = &p->dl;
3908
3909 dl_se->dl_runtime = attr->sched_runtime;
3910 dl_se->dl_deadline = attr->sched_deadline;
3911 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3912 dl_se->flags = attr->sched_flags;
3913 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3914
3915 /*
3916 * Changing the parameters of a task is 'tricky' and we're not doing
3917 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3918 *
3919 * What we SHOULD do is delay the bandwidth release until the 0-lag
3920 * point. This would include retaining the task_struct until that time
3921 * and change dl_overflow() to not immediately decrement the current
3922 * amount.
3923 *
3924 * Instead we retain the current runtime/deadline and let the new
3925 * parameters take effect after the current reservation period lapses.
3926 * This is safe (albeit pessimistic) because the 0-lag point is always
3927 * before the current scheduling deadline.
3928 *
3929 * We can still have temporary overloads because we do not delay the
3930 * change in bandwidth until that time; so admission control is
3931 * not on the safe side. It does however guarantee tasks will never
3932 * consume more than promised.
3933 */
3934 }
3935
3936 /*
3937 * sched_setparam() passes in -1 for its policy, to let the functions
3938 * it calls know not to change it.
3939 */
3940 #define SETPARAM_POLICY -1
3941
3942 static void __setscheduler_params(struct task_struct *p,
3943 const struct sched_attr *attr)
3944 {
3945 int policy = attr->sched_policy;
3946
3947 if (policy == SETPARAM_POLICY)
3948 policy = p->policy;
3949
3950 p->policy = policy;
3951
3952 if (dl_policy(policy))
3953 __setparam_dl(p, attr);
3954 else if (fair_policy(policy))
3955 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3956
3957 /*
3958 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3959 * !rt_policy. Always setting this ensures that things like
3960 * getparam()/getattr() don't report silly values for !rt tasks.
3961 */
3962 p->rt_priority = attr->sched_priority;
3963 p->normal_prio = normal_prio(p);
3964 set_load_weight(p);
3965 }
3966
3967 /* Actually do priority change: must hold pi & rq lock. */
3968 static void __setscheduler(struct rq *rq, struct task_struct *p,
3969 const struct sched_attr *attr, bool keep_boost)
3970 {
3971 __setscheduler_params(p, attr);
3972
3973 /*
3974 * Keep a potential priority boosting if called from
3975 * sched_setscheduler().
3976 */
3977 if (keep_boost)
3978 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3979 else
3980 p->prio = normal_prio(p);
3981
3982 if (dl_prio(p->prio))
3983 p->sched_class = &dl_sched_class;
3984 else if (rt_prio(p->prio))
3985 p->sched_class = &rt_sched_class;
3986 else
3987 p->sched_class = &fair_sched_class;
3988 }
3989
3990 static void
3991 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3992 {
3993 struct sched_dl_entity *dl_se = &p->dl;
3994
3995 attr->sched_priority = p->rt_priority;
3996 attr->sched_runtime = dl_se->dl_runtime;
3997 attr->sched_deadline = dl_se->dl_deadline;
3998 attr->sched_period = dl_se->dl_period;
3999 attr->sched_flags = dl_se->flags;
4000 }
4001
4002 /*
4003 * This function validates the new parameters of a -deadline task.
4004 * We ask for the deadline not being zero, and greater or equal
4005 * than the runtime, as well as the period of being zero or
4006 * greater than deadline. Furthermore, we have to be sure that
4007 * user parameters are above the internal resolution of 1us (we
4008 * check sched_runtime only since it is always the smaller one) and
4009 * below 2^63 ns (we have to check both sched_deadline and
4010 * sched_period, as the latter can be zero).
4011 */
4012 static bool
4013 __checkparam_dl(const struct sched_attr *attr)
4014 {
4015 /* deadline != 0 */
4016 if (attr->sched_deadline == 0)
4017 return false;
4018
4019 /*
4020 * Since we truncate DL_SCALE bits, make sure we're at least
4021 * that big.
4022 */
4023 if (attr->sched_runtime < (1ULL << DL_SCALE))
4024 return false;
4025
4026 /*
4027 * Since we use the MSB for wrap-around and sign issues, make
4028 * sure it's not set (mind that period can be equal to zero).
4029 */
4030 if (attr->sched_deadline & (1ULL << 63) ||
4031 attr->sched_period & (1ULL << 63))
4032 return false;
4033
4034 /* runtime <= deadline <= period (if period != 0) */
4035 if ((attr->sched_period != 0 &&
4036 attr->sched_period < attr->sched_deadline) ||
4037 attr->sched_deadline < attr->sched_runtime)
4038 return false;
4039
4040 return true;
4041 }
4042
4043 /*
4044 * check the target process has a UID that matches the current process's
4045 */
4046 static bool check_same_owner(struct task_struct *p)
4047 {
4048 const struct cred *cred = current_cred(), *pcred;
4049 bool match;
4050
4051 rcu_read_lock();
4052 pcred = __task_cred(p);
4053 match = (uid_eq(cred->euid, pcred->euid) ||
4054 uid_eq(cred->euid, pcred->uid));
4055 rcu_read_unlock();
4056 return match;
4057 }
4058
4059 static bool dl_param_changed(struct task_struct *p,
4060 const struct sched_attr *attr)
4061 {
4062 struct sched_dl_entity *dl_se = &p->dl;
4063
4064 if (dl_se->dl_runtime != attr->sched_runtime ||
4065 dl_se->dl_deadline != attr->sched_deadline ||
4066 dl_se->dl_period != attr->sched_period ||
4067 dl_se->flags != attr->sched_flags)
4068 return true;
4069
4070 return false;
4071 }
4072
4073 static int __sched_setscheduler(struct task_struct *p,
4074 const struct sched_attr *attr,
4075 bool user, bool pi)
4076 {
4077 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4078 MAX_RT_PRIO - 1 - attr->sched_priority;
4079 int retval, oldprio, oldpolicy = -1, queued, running;
4080 int new_effective_prio, policy = attr->sched_policy;
4081 const struct sched_class *prev_class;
4082 struct rq_flags rf;
4083 int reset_on_fork;
4084 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4085 struct rq *rq;
4086
4087 /* may grab non-irq protected spin_locks */
4088 BUG_ON(in_interrupt());
4089 recheck:
4090 /* double check policy once rq lock held */
4091 if (policy < 0) {
4092 reset_on_fork = p->sched_reset_on_fork;
4093 policy = oldpolicy = p->policy;
4094 } else {
4095 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4096
4097 if (!valid_policy(policy))
4098 return -EINVAL;
4099 }
4100
4101 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4102 return -EINVAL;
4103
4104 /*
4105 * Valid priorities for SCHED_FIFO and SCHED_RR are
4106 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4107 * SCHED_BATCH and SCHED_IDLE is 0.
4108 */
4109 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4110 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4111 return -EINVAL;
4112 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4113 (rt_policy(policy) != (attr->sched_priority != 0)))
4114 return -EINVAL;
4115
4116 /*
4117 * Allow unprivileged RT tasks to decrease priority:
4118 */
4119 if (user && !capable(CAP_SYS_NICE)) {
4120 if (fair_policy(policy)) {
4121 if (attr->sched_nice < task_nice(p) &&
4122 !can_nice(p, attr->sched_nice))
4123 return -EPERM;
4124 }
4125
4126 if (rt_policy(policy)) {
4127 unsigned long rlim_rtprio =
4128 task_rlimit(p, RLIMIT_RTPRIO);
4129
4130 /* can't set/change the rt policy */
4131 if (policy != p->policy && !rlim_rtprio)
4132 return -EPERM;
4133
4134 /* can't increase priority */
4135 if (attr->sched_priority > p->rt_priority &&
4136 attr->sched_priority > rlim_rtprio)
4137 return -EPERM;
4138 }
4139
4140 /*
4141 * Can't set/change SCHED_DEADLINE policy at all for now
4142 * (safest behavior); in the future we would like to allow
4143 * unprivileged DL tasks to increase their relative deadline
4144 * or reduce their runtime (both ways reducing utilization)
4145 */
4146 if (dl_policy(policy))
4147 return -EPERM;
4148
4149 /*
4150 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4151 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4152 */
4153 if (idle_policy(p->policy) && !idle_policy(policy)) {
4154 if (!can_nice(p, task_nice(p)))
4155 return -EPERM;
4156 }
4157
4158 /* can't change other user's priorities */
4159 if (!check_same_owner(p))
4160 return -EPERM;
4161
4162 /* Normal users shall not reset the sched_reset_on_fork flag */
4163 if (p->sched_reset_on_fork && !reset_on_fork)
4164 return -EPERM;
4165 }
4166
4167 if (user) {
4168 retval = security_task_setscheduler(p);
4169 if (retval)
4170 return retval;
4171 }
4172
4173 /*
4174 * make sure no PI-waiters arrive (or leave) while we are
4175 * changing the priority of the task:
4176 *
4177 * To be able to change p->policy safely, the appropriate
4178 * runqueue lock must be held.
4179 */
4180 rq = task_rq_lock(p, &rf);
4181
4182 /*
4183 * Changing the policy of the stop threads its a very bad idea
4184 */
4185 if (p == rq->stop) {
4186 task_rq_unlock(rq, p, &rf);
4187 return -EINVAL;
4188 }
4189
4190 /*
4191 * If not changing anything there's no need to proceed further,
4192 * but store a possible modification of reset_on_fork.
4193 */
4194 if (unlikely(policy == p->policy)) {
4195 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4196 goto change;
4197 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4198 goto change;
4199 if (dl_policy(policy) && dl_param_changed(p, attr))
4200 goto change;
4201
4202 p->sched_reset_on_fork = reset_on_fork;
4203 task_rq_unlock(rq, p, &rf);
4204 return 0;
4205 }
4206 change:
4207
4208 if (user) {
4209 #ifdef CONFIG_RT_GROUP_SCHED
4210 /*
4211 * Do not allow realtime tasks into groups that have no runtime
4212 * assigned.
4213 */
4214 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4215 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4216 !task_group_is_autogroup(task_group(p))) {
4217 task_rq_unlock(rq, p, &rf);
4218 return -EPERM;
4219 }
4220 #endif
4221 #ifdef CONFIG_SMP
4222 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4223 cpumask_t *span = rq->rd->span;
4224
4225 /*
4226 * Don't allow tasks with an affinity mask smaller than
4227 * the entire root_domain to become SCHED_DEADLINE. We
4228 * will also fail if there's no bandwidth available.
4229 */
4230 if (!cpumask_subset(span, &p->cpus_allowed) ||
4231 rq->rd->dl_bw.bw == 0) {
4232 task_rq_unlock(rq, p, &rf);
4233 return -EPERM;
4234 }
4235 }
4236 #endif
4237 }
4238
4239 /* recheck policy now with rq lock held */
4240 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4241 policy = oldpolicy = -1;
4242 task_rq_unlock(rq, p, &rf);
4243 goto recheck;
4244 }
4245
4246 /*
4247 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4248 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4249 * is available.
4250 */
4251 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4252 task_rq_unlock(rq, p, &rf);
4253 return -EBUSY;
4254 }
4255
4256 p->sched_reset_on_fork = reset_on_fork;
4257 oldprio = p->prio;
4258
4259 if (pi) {
4260 /*
4261 * Take priority boosted tasks into account. If the new
4262 * effective priority is unchanged, we just store the new
4263 * normal parameters and do not touch the scheduler class and
4264 * the runqueue. This will be done when the task deboost
4265 * itself.
4266 */
4267 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4268 if (new_effective_prio == oldprio)
4269 queue_flags &= ~DEQUEUE_MOVE;
4270 }
4271
4272 queued = task_on_rq_queued(p);
4273 running = task_current(rq, p);
4274 if (queued)
4275 dequeue_task(rq, p, queue_flags);
4276 if (running)
4277 put_prev_task(rq, p);
4278
4279 prev_class = p->sched_class;
4280 __setscheduler(rq, p, attr, pi);
4281
4282 if (queued) {
4283 /*
4284 * We enqueue to tail when the priority of a task is
4285 * increased (user space view).
4286 */
4287 if (oldprio < p->prio)
4288 queue_flags |= ENQUEUE_HEAD;
4289
4290 enqueue_task(rq, p, queue_flags);
4291 }
4292 if (running)
4293 set_curr_task(rq, p);
4294
4295 check_class_changed(rq, p, prev_class, oldprio);
4296 preempt_disable(); /* avoid rq from going away on us */
4297 task_rq_unlock(rq, p, &rf);
4298
4299 if (pi)
4300 rt_mutex_adjust_pi(p);
4301
4302 /*
4303 * Run balance callbacks after we've adjusted the PI chain.
4304 */
4305 balance_callback(rq);
4306 preempt_enable();
4307
4308 return 0;
4309 }
4310
4311 static int _sched_setscheduler(struct task_struct *p, int policy,
4312 const struct sched_param *param, bool check)
4313 {
4314 struct sched_attr attr = {
4315 .sched_policy = policy,
4316 .sched_priority = param->sched_priority,
4317 .sched_nice = PRIO_TO_NICE(p->static_prio),
4318 };
4319
4320 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4321 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4322 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4323 policy &= ~SCHED_RESET_ON_FORK;
4324 attr.sched_policy = policy;
4325 }
4326
4327 return __sched_setscheduler(p, &attr, check, true);
4328 }
4329 /**
4330 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4331 * @p: the task in question.
4332 * @policy: new policy.
4333 * @param: structure containing the new RT priority.
4334 *
4335 * Return: 0 on success. An error code otherwise.
4336 *
4337 * NOTE that the task may be already dead.
4338 */
4339 int sched_setscheduler(struct task_struct *p, int policy,
4340 const struct sched_param *param)
4341 {
4342 return _sched_setscheduler(p, policy, param, true);
4343 }
4344 EXPORT_SYMBOL_GPL(sched_setscheduler);
4345
4346 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4347 {
4348 return __sched_setscheduler(p, attr, true, true);
4349 }
4350 EXPORT_SYMBOL_GPL(sched_setattr);
4351
4352 /**
4353 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4354 * @p: the task in question.
4355 * @policy: new policy.
4356 * @param: structure containing the new RT priority.
4357 *
4358 * Just like sched_setscheduler, only don't bother checking if the
4359 * current context has permission. For example, this is needed in
4360 * stop_machine(): we create temporary high priority worker threads,
4361 * but our caller might not have that capability.
4362 *
4363 * Return: 0 on success. An error code otherwise.
4364 */
4365 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4366 const struct sched_param *param)
4367 {
4368 return _sched_setscheduler(p, policy, param, false);
4369 }
4370 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4371
4372 static int
4373 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4374 {
4375 struct sched_param lparam;
4376 struct task_struct *p;
4377 int retval;
4378
4379 if (!param || pid < 0)
4380 return -EINVAL;
4381 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4382 return -EFAULT;
4383
4384 rcu_read_lock();
4385 retval = -ESRCH;
4386 p = find_process_by_pid(pid);
4387 if (p != NULL)
4388 retval = sched_setscheduler(p, policy, &lparam);
4389 rcu_read_unlock();
4390
4391 return retval;
4392 }
4393
4394 /*
4395 * Mimics kernel/events/core.c perf_copy_attr().
4396 */
4397 static int sched_copy_attr(struct sched_attr __user *uattr,
4398 struct sched_attr *attr)
4399 {
4400 u32 size;
4401 int ret;
4402
4403 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4404 return -EFAULT;
4405
4406 /*
4407 * zero the full structure, so that a short copy will be nice.
4408 */
4409 memset(attr, 0, sizeof(*attr));
4410
4411 ret = get_user(size, &uattr->size);
4412 if (ret)
4413 return ret;
4414
4415 if (size > PAGE_SIZE) /* silly large */
4416 goto err_size;
4417
4418 if (!size) /* abi compat */
4419 size = SCHED_ATTR_SIZE_VER0;
4420
4421 if (size < SCHED_ATTR_SIZE_VER0)
4422 goto err_size;
4423
4424 /*
4425 * If we're handed a bigger struct than we know of,
4426 * ensure all the unknown bits are 0 - i.e. new
4427 * user-space does not rely on any kernel feature
4428 * extensions we dont know about yet.
4429 */
4430 if (size > sizeof(*attr)) {
4431 unsigned char __user *addr;
4432 unsigned char __user *end;
4433 unsigned char val;
4434
4435 addr = (void __user *)uattr + sizeof(*attr);
4436 end = (void __user *)uattr + size;
4437
4438 for (; addr < end; addr++) {
4439 ret = get_user(val, addr);
4440 if (ret)
4441 return ret;
4442 if (val)
4443 goto err_size;
4444 }
4445 size = sizeof(*attr);
4446 }
4447
4448 ret = copy_from_user(attr, uattr, size);
4449 if (ret)
4450 return -EFAULT;
4451
4452 /*
4453 * XXX: do we want to be lenient like existing syscalls; or do we want
4454 * to be strict and return an error on out-of-bounds values?
4455 */
4456 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4457
4458 return 0;
4459
4460 err_size:
4461 put_user(sizeof(*attr), &uattr->size);
4462 return -E2BIG;
4463 }
4464
4465 /**
4466 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4467 * @pid: the pid in question.
4468 * @policy: new policy.
4469 * @param: structure containing the new RT priority.
4470 *
4471 * Return: 0 on success. An error code otherwise.
4472 */
4473 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4474 struct sched_param __user *, param)
4475 {
4476 /* negative values for policy are not valid */
4477 if (policy < 0)
4478 return -EINVAL;
4479
4480 return do_sched_setscheduler(pid, policy, param);
4481 }
4482
4483 /**
4484 * sys_sched_setparam - set/change the RT priority of a thread
4485 * @pid: the pid in question.
4486 * @param: structure containing the new RT priority.
4487 *
4488 * Return: 0 on success. An error code otherwise.
4489 */
4490 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4491 {
4492 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4493 }
4494
4495 /**
4496 * sys_sched_setattr - same as above, but with extended sched_attr
4497 * @pid: the pid in question.
4498 * @uattr: structure containing the extended parameters.
4499 * @flags: for future extension.
4500 */
4501 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4502 unsigned int, flags)
4503 {
4504 struct sched_attr attr;
4505 struct task_struct *p;
4506 int retval;
4507
4508 if (!uattr || pid < 0 || flags)
4509 return -EINVAL;
4510
4511 retval = sched_copy_attr(uattr, &attr);
4512 if (retval)
4513 return retval;
4514
4515 if ((int)attr.sched_policy < 0)
4516 return -EINVAL;
4517
4518 rcu_read_lock();
4519 retval = -ESRCH;
4520 p = find_process_by_pid(pid);
4521 if (p != NULL)
4522 retval = sched_setattr(p, &attr);
4523 rcu_read_unlock();
4524
4525 return retval;
4526 }
4527
4528 /**
4529 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4530 * @pid: the pid in question.
4531 *
4532 * Return: On success, the policy of the thread. Otherwise, a negative error
4533 * code.
4534 */
4535 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4536 {
4537 struct task_struct *p;
4538 int retval;
4539
4540 if (pid < 0)
4541 return -EINVAL;
4542
4543 retval = -ESRCH;
4544 rcu_read_lock();
4545 p = find_process_by_pid(pid);
4546 if (p) {
4547 retval = security_task_getscheduler(p);
4548 if (!retval)
4549 retval = p->policy
4550 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4551 }
4552 rcu_read_unlock();
4553 return retval;
4554 }
4555
4556 /**
4557 * sys_sched_getparam - get the RT priority of a thread
4558 * @pid: the pid in question.
4559 * @param: structure containing the RT priority.
4560 *
4561 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4562 * code.
4563 */
4564 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4565 {
4566 struct sched_param lp = { .sched_priority = 0 };
4567 struct task_struct *p;
4568 int retval;
4569
4570 if (!param || pid < 0)
4571 return -EINVAL;
4572
4573 rcu_read_lock();
4574 p = find_process_by_pid(pid);
4575 retval = -ESRCH;
4576 if (!p)
4577 goto out_unlock;
4578
4579 retval = security_task_getscheduler(p);
4580 if (retval)
4581 goto out_unlock;
4582
4583 if (task_has_rt_policy(p))
4584 lp.sched_priority = p->rt_priority;
4585 rcu_read_unlock();
4586
4587 /*
4588 * This one might sleep, we cannot do it with a spinlock held ...
4589 */
4590 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4591
4592 return retval;
4593
4594 out_unlock:
4595 rcu_read_unlock();
4596 return retval;
4597 }
4598
4599 static int sched_read_attr(struct sched_attr __user *uattr,
4600 struct sched_attr *attr,
4601 unsigned int usize)
4602 {
4603 int ret;
4604
4605 if (!access_ok(VERIFY_WRITE, uattr, usize))
4606 return -EFAULT;
4607
4608 /*
4609 * If we're handed a smaller struct than we know of,
4610 * ensure all the unknown bits are 0 - i.e. old
4611 * user-space does not get uncomplete information.
4612 */
4613 if (usize < sizeof(*attr)) {
4614 unsigned char *addr;
4615 unsigned char *end;
4616
4617 addr = (void *)attr + usize;
4618 end = (void *)attr + sizeof(*attr);
4619
4620 for (; addr < end; addr++) {
4621 if (*addr)
4622 return -EFBIG;
4623 }
4624
4625 attr->size = usize;
4626 }
4627
4628 ret = copy_to_user(uattr, attr, attr->size);
4629 if (ret)
4630 return -EFAULT;
4631
4632 return 0;
4633 }
4634
4635 /**
4636 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4637 * @pid: the pid in question.
4638 * @uattr: structure containing the extended parameters.
4639 * @size: sizeof(attr) for fwd/bwd comp.
4640 * @flags: for future extension.
4641 */
4642 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4643 unsigned int, size, unsigned int, flags)
4644 {
4645 struct sched_attr attr = {
4646 .size = sizeof(struct sched_attr),
4647 };
4648 struct task_struct *p;
4649 int retval;
4650
4651 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4652 size < SCHED_ATTR_SIZE_VER0 || flags)
4653 return -EINVAL;
4654
4655 rcu_read_lock();
4656 p = find_process_by_pid(pid);
4657 retval = -ESRCH;
4658 if (!p)
4659 goto out_unlock;
4660
4661 retval = security_task_getscheduler(p);
4662 if (retval)
4663 goto out_unlock;
4664
4665 attr.sched_policy = p->policy;
4666 if (p->sched_reset_on_fork)
4667 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4668 if (task_has_dl_policy(p))
4669 __getparam_dl(p, &attr);
4670 else if (task_has_rt_policy(p))
4671 attr.sched_priority = p->rt_priority;
4672 else
4673 attr.sched_nice = task_nice(p);
4674
4675 rcu_read_unlock();
4676
4677 retval = sched_read_attr(uattr, &attr, size);
4678 return retval;
4679
4680 out_unlock:
4681 rcu_read_unlock();
4682 return retval;
4683 }
4684
4685 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4686 {
4687 cpumask_var_t cpus_allowed, new_mask;
4688 struct task_struct *p;
4689 int retval;
4690
4691 rcu_read_lock();
4692
4693 p = find_process_by_pid(pid);
4694 if (!p) {
4695 rcu_read_unlock();
4696 return -ESRCH;
4697 }
4698
4699 /* Prevent p going away */
4700 get_task_struct(p);
4701 rcu_read_unlock();
4702
4703 if (p->flags & PF_NO_SETAFFINITY) {
4704 retval = -EINVAL;
4705 goto out_put_task;
4706 }
4707 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4708 retval = -ENOMEM;
4709 goto out_put_task;
4710 }
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_free_cpus_allowed;
4714 }
4715 retval = -EPERM;
4716 if (!check_same_owner(p)) {
4717 rcu_read_lock();
4718 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4719 rcu_read_unlock();
4720 goto out_free_new_mask;
4721 }
4722 rcu_read_unlock();
4723 }
4724
4725 retval = security_task_setscheduler(p);
4726 if (retval)
4727 goto out_free_new_mask;
4728
4729
4730 cpuset_cpus_allowed(p, cpus_allowed);
4731 cpumask_and(new_mask, in_mask, cpus_allowed);
4732
4733 /*
4734 * Since bandwidth control happens on root_domain basis,
4735 * if admission test is enabled, we only admit -deadline
4736 * tasks allowed to run on all the CPUs in the task's
4737 * root_domain.
4738 */
4739 #ifdef CONFIG_SMP
4740 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4741 rcu_read_lock();
4742 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4743 retval = -EBUSY;
4744 rcu_read_unlock();
4745 goto out_free_new_mask;
4746 }
4747 rcu_read_unlock();
4748 }
4749 #endif
4750 again:
4751 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4752
4753 if (!retval) {
4754 cpuset_cpus_allowed(p, cpus_allowed);
4755 if (!cpumask_subset(new_mask, cpus_allowed)) {
4756 /*
4757 * We must have raced with a concurrent cpuset
4758 * update. Just reset the cpus_allowed to the
4759 * cpuset's cpus_allowed
4760 */
4761 cpumask_copy(new_mask, cpus_allowed);
4762 goto again;
4763 }
4764 }
4765 out_free_new_mask:
4766 free_cpumask_var(new_mask);
4767 out_free_cpus_allowed:
4768 free_cpumask_var(cpus_allowed);
4769 out_put_task:
4770 put_task_struct(p);
4771 return retval;
4772 }
4773
4774 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4775 struct cpumask *new_mask)
4776 {
4777 if (len < cpumask_size())
4778 cpumask_clear(new_mask);
4779 else if (len > cpumask_size())
4780 len = cpumask_size();
4781
4782 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4783 }
4784
4785 /**
4786 * sys_sched_setaffinity - set the cpu affinity of a process
4787 * @pid: pid of the process
4788 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4789 * @user_mask_ptr: user-space pointer to the new cpu mask
4790 *
4791 * Return: 0 on success. An error code otherwise.
4792 */
4793 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4794 unsigned long __user *, user_mask_ptr)
4795 {
4796 cpumask_var_t new_mask;
4797 int retval;
4798
4799 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4800 return -ENOMEM;
4801
4802 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4803 if (retval == 0)
4804 retval = sched_setaffinity(pid, new_mask);
4805 free_cpumask_var(new_mask);
4806 return retval;
4807 }
4808
4809 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4810 {
4811 struct task_struct *p;
4812 unsigned long flags;
4813 int retval;
4814
4815 rcu_read_lock();
4816
4817 retval = -ESRCH;
4818 p = find_process_by_pid(pid);
4819 if (!p)
4820 goto out_unlock;
4821
4822 retval = security_task_getscheduler(p);
4823 if (retval)
4824 goto out_unlock;
4825
4826 raw_spin_lock_irqsave(&p->pi_lock, flags);
4827 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4828 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4829
4830 out_unlock:
4831 rcu_read_unlock();
4832
4833 return retval;
4834 }
4835
4836 /**
4837 * sys_sched_getaffinity - get the cpu affinity of a process
4838 * @pid: pid of the process
4839 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4840 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4841 *
4842 * Return: size of CPU mask copied to user_mask_ptr on success. An
4843 * error code otherwise.
4844 */
4845 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4846 unsigned long __user *, user_mask_ptr)
4847 {
4848 int ret;
4849 cpumask_var_t mask;
4850
4851 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4852 return -EINVAL;
4853 if (len & (sizeof(unsigned long)-1))
4854 return -EINVAL;
4855
4856 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4857 return -ENOMEM;
4858
4859 ret = sched_getaffinity(pid, mask);
4860 if (ret == 0) {
4861 size_t retlen = min_t(size_t, len, cpumask_size());
4862
4863 if (copy_to_user(user_mask_ptr, mask, retlen))
4864 ret = -EFAULT;
4865 else
4866 ret = retlen;
4867 }
4868 free_cpumask_var(mask);
4869
4870 return ret;
4871 }
4872
4873 /**
4874 * sys_sched_yield - yield the current processor to other threads.
4875 *
4876 * This function yields the current CPU to other tasks. If there are no
4877 * other threads running on this CPU then this function will return.
4878 *
4879 * Return: 0.
4880 */
4881 SYSCALL_DEFINE0(sched_yield)
4882 {
4883 struct rq *rq = this_rq_lock();
4884
4885 schedstat_inc(rq->yld_count);
4886 current->sched_class->yield_task(rq);
4887
4888 /*
4889 * Since we are going to call schedule() anyway, there's
4890 * no need to preempt or enable interrupts:
4891 */
4892 __release(rq->lock);
4893 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4894 do_raw_spin_unlock(&rq->lock);
4895 sched_preempt_enable_no_resched();
4896
4897 schedule();
4898
4899 return 0;
4900 }
4901
4902 #ifndef CONFIG_PREEMPT
4903 int __sched _cond_resched(void)
4904 {
4905 if (should_resched(0)) {
4906 preempt_schedule_common();
4907 return 1;
4908 }
4909 return 0;
4910 }
4911 EXPORT_SYMBOL(_cond_resched);
4912 #endif
4913
4914 /*
4915 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4916 * call schedule, and on return reacquire the lock.
4917 *
4918 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4919 * operations here to prevent schedule() from being called twice (once via
4920 * spin_unlock(), once by hand).
4921 */
4922 int __cond_resched_lock(spinlock_t *lock)
4923 {
4924 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4925 int ret = 0;
4926
4927 lockdep_assert_held(lock);
4928
4929 if (spin_needbreak(lock) || resched) {
4930 spin_unlock(lock);
4931 if (resched)
4932 preempt_schedule_common();
4933 else
4934 cpu_relax();
4935 ret = 1;
4936 spin_lock(lock);
4937 }
4938 return ret;
4939 }
4940 EXPORT_SYMBOL(__cond_resched_lock);
4941
4942 int __sched __cond_resched_softirq(void)
4943 {
4944 BUG_ON(!in_softirq());
4945
4946 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4947 local_bh_enable();
4948 preempt_schedule_common();
4949 local_bh_disable();
4950 return 1;
4951 }
4952 return 0;
4953 }
4954 EXPORT_SYMBOL(__cond_resched_softirq);
4955
4956 /**
4957 * yield - yield the current processor to other threads.
4958 *
4959 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4960 *
4961 * The scheduler is at all times free to pick the calling task as the most
4962 * eligible task to run, if removing the yield() call from your code breaks
4963 * it, its already broken.
4964 *
4965 * Typical broken usage is:
4966 *
4967 * while (!event)
4968 * yield();
4969 *
4970 * where one assumes that yield() will let 'the other' process run that will
4971 * make event true. If the current task is a SCHED_FIFO task that will never
4972 * happen. Never use yield() as a progress guarantee!!
4973 *
4974 * If you want to use yield() to wait for something, use wait_event().
4975 * If you want to use yield() to be 'nice' for others, use cond_resched().
4976 * If you still want to use yield(), do not!
4977 */
4978 void __sched yield(void)
4979 {
4980 set_current_state(TASK_RUNNING);
4981 sys_sched_yield();
4982 }
4983 EXPORT_SYMBOL(yield);
4984
4985 /**
4986 * yield_to - yield the current processor to another thread in
4987 * your thread group, or accelerate that thread toward the
4988 * processor it's on.
4989 * @p: target task
4990 * @preempt: whether task preemption is allowed or not
4991 *
4992 * It's the caller's job to ensure that the target task struct
4993 * can't go away on us before we can do any checks.
4994 *
4995 * Return:
4996 * true (>0) if we indeed boosted the target task.
4997 * false (0) if we failed to boost the target.
4998 * -ESRCH if there's no task to yield to.
4999 */
5000 int __sched yield_to(struct task_struct *p, bool preempt)
5001 {
5002 struct task_struct *curr = current;
5003 struct rq *rq, *p_rq;
5004 unsigned long flags;
5005 int yielded = 0;
5006
5007 local_irq_save(flags);
5008 rq = this_rq();
5009
5010 again:
5011 p_rq = task_rq(p);
5012 /*
5013 * If we're the only runnable task on the rq and target rq also
5014 * has only one task, there's absolutely no point in yielding.
5015 */
5016 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5017 yielded = -ESRCH;
5018 goto out_irq;
5019 }
5020
5021 double_rq_lock(rq, p_rq);
5022 if (task_rq(p) != p_rq) {
5023 double_rq_unlock(rq, p_rq);
5024 goto again;
5025 }
5026
5027 if (!curr->sched_class->yield_to_task)
5028 goto out_unlock;
5029
5030 if (curr->sched_class != p->sched_class)
5031 goto out_unlock;
5032
5033 if (task_running(p_rq, p) || p->state)
5034 goto out_unlock;
5035
5036 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5037 if (yielded) {
5038 schedstat_inc(rq->yld_count);
5039 /*
5040 * Make p's CPU reschedule; pick_next_entity takes care of
5041 * fairness.
5042 */
5043 if (preempt && rq != p_rq)
5044 resched_curr(p_rq);
5045 }
5046
5047 out_unlock:
5048 double_rq_unlock(rq, p_rq);
5049 out_irq:
5050 local_irq_restore(flags);
5051
5052 if (yielded > 0)
5053 schedule();
5054
5055 return yielded;
5056 }
5057 EXPORT_SYMBOL_GPL(yield_to);
5058
5059 /*
5060 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5061 * that process accounting knows that this is a task in IO wait state.
5062 */
5063 long __sched io_schedule_timeout(long timeout)
5064 {
5065 int old_iowait = current->in_iowait;
5066 struct rq *rq;
5067 long ret;
5068
5069 current->in_iowait = 1;
5070 blk_schedule_flush_plug(current);
5071
5072 delayacct_blkio_start();
5073 rq = raw_rq();
5074 atomic_inc(&rq->nr_iowait);
5075 ret = schedule_timeout(timeout);
5076 current->in_iowait = old_iowait;
5077 atomic_dec(&rq->nr_iowait);
5078 delayacct_blkio_end();
5079
5080 return ret;
5081 }
5082 EXPORT_SYMBOL(io_schedule_timeout);
5083
5084 /**
5085 * sys_sched_get_priority_max - return maximum RT priority.
5086 * @policy: scheduling class.
5087 *
5088 * Return: On success, this syscall returns the maximum
5089 * rt_priority that can be used by a given scheduling class.
5090 * On failure, a negative error code is returned.
5091 */
5092 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5093 {
5094 int ret = -EINVAL;
5095
5096 switch (policy) {
5097 case SCHED_FIFO:
5098 case SCHED_RR:
5099 ret = MAX_USER_RT_PRIO-1;
5100 break;
5101 case SCHED_DEADLINE:
5102 case SCHED_NORMAL:
5103 case SCHED_BATCH:
5104 case SCHED_IDLE:
5105 ret = 0;
5106 break;
5107 }
5108 return ret;
5109 }
5110
5111 /**
5112 * sys_sched_get_priority_min - return minimum RT priority.
5113 * @policy: scheduling class.
5114 *
5115 * Return: On success, this syscall returns the minimum
5116 * rt_priority that can be used by a given scheduling class.
5117 * On failure, a negative error code is returned.
5118 */
5119 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5120 {
5121 int ret = -EINVAL;
5122
5123 switch (policy) {
5124 case SCHED_FIFO:
5125 case SCHED_RR:
5126 ret = 1;
5127 break;
5128 case SCHED_DEADLINE:
5129 case SCHED_NORMAL:
5130 case SCHED_BATCH:
5131 case SCHED_IDLE:
5132 ret = 0;
5133 }
5134 return ret;
5135 }
5136
5137 /**
5138 * sys_sched_rr_get_interval - return the default timeslice of a process.
5139 * @pid: pid of the process.
5140 * @interval: userspace pointer to the timeslice value.
5141 *
5142 * this syscall writes the default timeslice value of a given process
5143 * into the user-space timespec buffer. A value of '0' means infinity.
5144 *
5145 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5146 * an error code.
5147 */
5148 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5149 struct timespec __user *, interval)
5150 {
5151 struct task_struct *p;
5152 unsigned int time_slice;
5153 struct rq_flags rf;
5154 struct timespec t;
5155 struct rq *rq;
5156 int retval;
5157
5158 if (pid < 0)
5159 return -EINVAL;
5160
5161 retval = -ESRCH;
5162 rcu_read_lock();
5163 p = find_process_by_pid(pid);
5164 if (!p)
5165 goto out_unlock;
5166
5167 retval = security_task_getscheduler(p);
5168 if (retval)
5169 goto out_unlock;
5170
5171 rq = task_rq_lock(p, &rf);
5172 time_slice = 0;
5173 if (p->sched_class->get_rr_interval)
5174 time_slice = p->sched_class->get_rr_interval(rq, p);
5175 task_rq_unlock(rq, p, &rf);
5176
5177 rcu_read_unlock();
5178 jiffies_to_timespec(time_slice, &t);
5179 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5180 return retval;
5181
5182 out_unlock:
5183 rcu_read_unlock();
5184 return retval;
5185 }
5186
5187 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5188
5189 void sched_show_task(struct task_struct *p)
5190 {
5191 unsigned long free = 0;
5192 int ppid;
5193 unsigned long state = p->state;
5194
5195 if (!try_get_task_stack(p))
5196 return;
5197 if (state)
5198 state = __ffs(state) + 1;
5199 printk(KERN_INFO "%-15.15s %c", p->comm,
5200 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5201 if (state == TASK_RUNNING)
5202 printk(KERN_CONT " running task ");
5203 #ifdef CONFIG_DEBUG_STACK_USAGE
5204 free = stack_not_used(p);
5205 #endif
5206 ppid = 0;
5207 rcu_read_lock();
5208 if (pid_alive(p))
5209 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5210 rcu_read_unlock();
5211 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5212 task_pid_nr(p), ppid,
5213 (unsigned long)task_thread_info(p)->flags);
5214
5215 print_worker_info(KERN_INFO, p);
5216 show_stack(p, NULL);
5217 put_task_stack(p);
5218 }
5219
5220 void show_state_filter(unsigned long state_filter)
5221 {
5222 struct task_struct *g, *p;
5223
5224 #if BITS_PER_LONG == 32
5225 printk(KERN_INFO
5226 " task PC stack pid father\n");
5227 #else
5228 printk(KERN_INFO
5229 " task PC stack pid father\n");
5230 #endif
5231 rcu_read_lock();
5232 for_each_process_thread(g, p) {
5233 /*
5234 * reset the NMI-timeout, listing all files on a slow
5235 * console might take a lot of time:
5236 * Also, reset softlockup watchdogs on all CPUs, because
5237 * another CPU might be blocked waiting for us to process
5238 * an IPI.
5239 */
5240 touch_nmi_watchdog();
5241 touch_all_softlockup_watchdogs();
5242 if (!state_filter || (p->state & state_filter))
5243 sched_show_task(p);
5244 }
5245
5246 #ifdef CONFIG_SCHED_DEBUG
5247 if (!state_filter)
5248 sysrq_sched_debug_show();
5249 #endif
5250 rcu_read_unlock();
5251 /*
5252 * Only show locks if all tasks are dumped:
5253 */
5254 if (!state_filter)
5255 debug_show_all_locks();
5256 }
5257
5258 void init_idle_bootup_task(struct task_struct *idle)
5259 {
5260 idle->sched_class = &idle_sched_class;
5261 }
5262
5263 /**
5264 * init_idle - set up an idle thread for a given CPU
5265 * @idle: task in question
5266 * @cpu: cpu the idle task belongs to
5267 *
5268 * NOTE: this function does not set the idle thread's NEED_RESCHED
5269 * flag, to make booting more robust.
5270 */
5271 void init_idle(struct task_struct *idle, int cpu)
5272 {
5273 struct rq *rq = cpu_rq(cpu);
5274 unsigned long flags;
5275
5276 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5277 raw_spin_lock(&rq->lock);
5278
5279 __sched_fork(0, idle);
5280 idle->state = TASK_RUNNING;
5281 idle->se.exec_start = sched_clock();
5282
5283 kasan_unpoison_task_stack(idle);
5284
5285 #ifdef CONFIG_SMP
5286 /*
5287 * Its possible that init_idle() gets called multiple times on a task,
5288 * in that case do_set_cpus_allowed() will not do the right thing.
5289 *
5290 * And since this is boot we can forgo the serialization.
5291 */
5292 set_cpus_allowed_common(idle, cpumask_of(cpu));
5293 #endif
5294 /*
5295 * We're having a chicken and egg problem, even though we are
5296 * holding rq->lock, the cpu isn't yet set to this cpu so the
5297 * lockdep check in task_group() will fail.
5298 *
5299 * Similar case to sched_fork(). / Alternatively we could
5300 * use task_rq_lock() here and obtain the other rq->lock.
5301 *
5302 * Silence PROVE_RCU
5303 */
5304 rcu_read_lock();
5305 __set_task_cpu(idle, cpu);
5306 rcu_read_unlock();
5307
5308 rq->curr = rq->idle = idle;
5309 idle->on_rq = TASK_ON_RQ_QUEUED;
5310 #ifdef CONFIG_SMP
5311 idle->on_cpu = 1;
5312 #endif
5313 raw_spin_unlock(&rq->lock);
5314 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5315
5316 /* Set the preempt count _outside_ the spinlocks! */
5317 init_idle_preempt_count(idle, cpu);
5318
5319 /*
5320 * The idle tasks have their own, simple scheduling class:
5321 */
5322 idle->sched_class = &idle_sched_class;
5323 ftrace_graph_init_idle_task(idle, cpu);
5324 vtime_init_idle(idle, cpu);
5325 #ifdef CONFIG_SMP
5326 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5327 #endif
5328 }
5329
5330 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5331 const struct cpumask *trial)
5332 {
5333 int ret = 1, trial_cpus;
5334 struct dl_bw *cur_dl_b;
5335 unsigned long flags;
5336
5337 if (!cpumask_weight(cur))
5338 return ret;
5339
5340 rcu_read_lock_sched();
5341 cur_dl_b = dl_bw_of(cpumask_any(cur));
5342 trial_cpus = cpumask_weight(trial);
5343
5344 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5345 if (cur_dl_b->bw != -1 &&
5346 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5347 ret = 0;
5348 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5349 rcu_read_unlock_sched();
5350
5351 return ret;
5352 }
5353
5354 int task_can_attach(struct task_struct *p,
5355 const struct cpumask *cs_cpus_allowed)
5356 {
5357 int ret = 0;
5358
5359 /*
5360 * Kthreads which disallow setaffinity shouldn't be moved
5361 * to a new cpuset; we don't want to change their cpu
5362 * affinity and isolating such threads by their set of
5363 * allowed nodes is unnecessary. Thus, cpusets are not
5364 * applicable for such threads. This prevents checking for
5365 * success of set_cpus_allowed_ptr() on all attached tasks
5366 * before cpus_allowed may be changed.
5367 */
5368 if (p->flags & PF_NO_SETAFFINITY) {
5369 ret = -EINVAL;
5370 goto out;
5371 }
5372
5373 #ifdef CONFIG_SMP
5374 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5375 cs_cpus_allowed)) {
5376 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5377 cs_cpus_allowed);
5378 struct dl_bw *dl_b;
5379 bool overflow;
5380 int cpus;
5381 unsigned long flags;
5382
5383 rcu_read_lock_sched();
5384 dl_b = dl_bw_of(dest_cpu);
5385 raw_spin_lock_irqsave(&dl_b->lock, flags);
5386 cpus = dl_bw_cpus(dest_cpu);
5387 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5388 if (overflow)
5389 ret = -EBUSY;
5390 else {
5391 /*
5392 * We reserve space for this task in the destination
5393 * root_domain, as we can't fail after this point.
5394 * We will free resources in the source root_domain
5395 * later on (see set_cpus_allowed_dl()).
5396 */
5397 __dl_add(dl_b, p->dl.dl_bw);
5398 }
5399 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5400 rcu_read_unlock_sched();
5401
5402 }
5403 #endif
5404 out:
5405 return ret;
5406 }
5407
5408 #ifdef CONFIG_SMP
5409
5410 static bool sched_smp_initialized __read_mostly;
5411
5412 #ifdef CONFIG_NUMA_BALANCING
5413 /* Migrate current task p to target_cpu */
5414 int migrate_task_to(struct task_struct *p, int target_cpu)
5415 {
5416 struct migration_arg arg = { p, target_cpu };
5417 int curr_cpu = task_cpu(p);
5418
5419 if (curr_cpu == target_cpu)
5420 return 0;
5421
5422 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5423 return -EINVAL;
5424
5425 /* TODO: This is not properly updating schedstats */
5426
5427 trace_sched_move_numa(p, curr_cpu, target_cpu);
5428 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5429 }
5430
5431 /*
5432 * Requeue a task on a given node and accurately track the number of NUMA
5433 * tasks on the runqueues
5434 */
5435 void sched_setnuma(struct task_struct *p, int nid)
5436 {
5437 bool queued, running;
5438 struct rq_flags rf;
5439 struct rq *rq;
5440
5441 rq = task_rq_lock(p, &rf);
5442 queued = task_on_rq_queued(p);
5443 running = task_current(rq, p);
5444
5445 if (queued)
5446 dequeue_task(rq, p, DEQUEUE_SAVE);
5447 if (running)
5448 put_prev_task(rq, p);
5449
5450 p->numa_preferred_nid = nid;
5451
5452 if (queued)
5453 enqueue_task(rq, p, ENQUEUE_RESTORE);
5454 if (running)
5455 set_curr_task(rq, p);
5456 task_rq_unlock(rq, p, &rf);
5457 }
5458 #endif /* CONFIG_NUMA_BALANCING */
5459
5460 #ifdef CONFIG_HOTPLUG_CPU
5461 /*
5462 * Ensures that the idle task is using init_mm right before its cpu goes
5463 * offline.
5464 */
5465 void idle_task_exit(void)
5466 {
5467 struct mm_struct *mm = current->active_mm;
5468
5469 BUG_ON(cpu_online(smp_processor_id()));
5470
5471 if (mm != &init_mm) {
5472 switch_mm_irqs_off(mm, &init_mm, current);
5473 finish_arch_post_lock_switch();
5474 }
5475 mmdrop(mm);
5476 }
5477
5478 /*
5479 * Since this CPU is going 'away' for a while, fold any nr_active delta
5480 * we might have. Assumes we're called after migrate_tasks() so that the
5481 * nr_active count is stable. We need to take the teardown thread which
5482 * is calling this into account, so we hand in adjust = 1 to the load
5483 * calculation.
5484 *
5485 * Also see the comment "Global load-average calculations".
5486 */
5487 static void calc_load_migrate(struct rq *rq)
5488 {
5489 long delta = calc_load_fold_active(rq, 1);
5490 if (delta)
5491 atomic_long_add(delta, &calc_load_tasks);
5492 }
5493
5494 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5495 {
5496 }
5497
5498 static const struct sched_class fake_sched_class = {
5499 .put_prev_task = put_prev_task_fake,
5500 };
5501
5502 static struct task_struct fake_task = {
5503 /*
5504 * Avoid pull_{rt,dl}_task()
5505 */
5506 .prio = MAX_PRIO + 1,
5507 .sched_class = &fake_sched_class,
5508 };
5509
5510 /*
5511 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5512 * try_to_wake_up()->select_task_rq().
5513 *
5514 * Called with rq->lock held even though we'er in stop_machine() and
5515 * there's no concurrency possible, we hold the required locks anyway
5516 * because of lock validation efforts.
5517 */
5518 static void migrate_tasks(struct rq *dead_rq)
5519 {
5520 struct rq *rq = dead_rq;
5521 struct task_struct *next, *stop = rq->stop;
5522 struct pin_cookie cookie;
5523 int dest_cpu;
5524
5525 /*
5526 * Fudge the rq selection such that the below task selection loop
5527 * doesn't get stuck on the currently eligible stop task.
5528 *
5529 * We're currently inside stop_machine() and the rq is either stuck
5530 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5531 * either way we should never end up calling schedule() until we're
5532 * done here.
5533 */
5534 rq->stop = NULL;
5535
5536 /*
5537 * put_prev_task() and pick_next_task() sched
5538 * class method both need to have an up-to-date
5539 * value of rq->clock[_task]
5540 */
5541 update_rq_clock(rq);
5542
5543 for (;;) {
5544 /*
5545 * There's this thread running, bail when that's the only
5546 * remaining thread.
5547 */
5548 if (rq->nr_running == 1)
5549 break;
5550
5551 /*
5552 * pick_next_task assumes pinned rq->lock.
5553 */
5554 cookie = lockdep_pin_lock(&rq->lock);
5555 next = pick_next_task(rq, &fake_task, cookie);
5556 BUG_ON(!next);
5557 next->sched_class->put_prev_task(rq, next);
5558
5559 /*
5560 * Rules for changing task_struct::cpus_allowed are holding
5561 * both pi_lock and rq->lock, such that holding either
5562 * stabilizes the mask.
5563 *
5564 * Drop rq->lock is not quite as disastrous as it usually is
5565 * because !cpu_active at this point, which means load-balance
5566 * will not interfere. Also, stop-machine.
5567 */
5568 lockdep_unpin_lock(&rq->lock, cookie);
5569 raw_spin_unlock(&rq->lock);
5570 raw_spin_lock(&next->pi_lock);
5571 raw_spin_lock(&rq->lock);
5572
5573 /*
5574 * Since we're inside stop-machine, _nothing_ should have
5575 * changed the task, WARN if weird stuff happened, because in
5576 * that case the above rq->lock drop is a fail too.
5577 */
5578 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5579 raw_spin_unlock(&next->pi_lock);
5580 continue;
5581 }
5582
5583 /* Find suitable destination for @next, with force if needed. */
5584 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5585
5586 rq = __migrate_task(rq, next, dest_cpu);
5587 if (rq != dead_rq) {
5588 raw_spin_unlock(&rq->lock);
5589 rq = dead_rq;
5590 raw_spin_lock(&rq->lock);
5591 }
5592 raw_spin_unlock(&next->pi_lock);
5593 }
5594
5595 rq->stop = stop;
5596 }
5597 #endif /* CONFIG_HOTPLUG_CPU */
5598
5599 static void set_rq_online(struct rq *rq)
5600 {
5601 if (!rq->online) {
5602 const struct sched_class *class;
5603
5604 cpumask_set_cpu(rq->cpu, rq->rd->online);
5605 rq->online = 1;
5606
5607 for_each_class(class) {
5608 if (class->rq_online)
5609 class->rq_online(rq);
5610 }
5611 }
5612 }
5613
5614 static void set_rq_offline(struct rq *rq)
5615 {
5616 if (rq->online) {
5617 const struct sched_class *class;
5618
5619 for_each_class(class) {
5620 if (class->rq_offline)
5621 class->rq_offline(rq);
5622 }
5623
5624 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5625 rq->online = 0;
5626 }
5627 }
5628
5629 static void set_cpu_rq_start_time(unsigned int cpu)
5630 {
5631 struct rq *rq = cpu_rq(cpu);
5632
5633 rq->age_stamp = sched_clock_cpu(cpu);
5634 }
5635
5636 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5637
5638 #ifdef CONFIG_SCHED_DEBUG
5639
5640 static __read_mostly int sched_debug_enabled;
5641
5642 static int __init sched_debug_setup(char *str)
5643 {
5644 sched_debug_enabled = 1;
5645
5646 return 0;
5647 }
5648 early_param("sched_debug", sched_debug_setup);
5649
5650 static inline bool sched_debug(void)
5651 {
5652 return sched_debug_enabled;
5653 }
5654
5655 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5656 struct cpumask *groupmask)
5657 {
5658 struct sched_group *group = sd->groups;
5659
5660 cpumask_clear(groupmask);
5661
5662 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5663
5664 if (!(sd->flags & SD_LOAD_BALANCE)) {
5665 printk("does not load-balance\n");
5666 if (sd->parent)
5667 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5668 " has parent");
5669 return -1;
5670 }
5671
5672 printk(KERN_CONT "span %*pbl level %s\n",
5673 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5674
5675 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5676 printk(KERN_ERR "ERROR: domain->span does not contain "
5677 "CPU%d\n", cpu);
5678 }
5679 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5680 printk(KERN_ERR "ERROR: domain->groups does not contain"
5681 " CPU%d\n", cpu);
5682 }
5683
5684 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5685 do {
5686 if (!group) {
5687 printk("\n");
5688 printk(KERN_ERR "ERROR: group is NULL\n");
5689 break;
5690 }
5691
5692 if (!cpumask_weight(sched_group_cpus(group))) {
5693 printk(KERN_CONT "\n");
5694 printk(KERN_ERR "ERROR: empty group\n");
5695 break;
5696 }
5697
5698 if (!(sd->flags & SD_OVERLAP) &&
5699 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5700 printk(KERN_CONT "\n");
5701 printk(KERN_ERR "ERROR: repeated CPUs\n");
5702 break;
5703 }
5704
5705 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5706
5707 printk(KERN_CONT " %*pbl",
5708 cpumask_pr_args(sched_group_cpus(group)));
5709 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5710 printk(KERN_CONT " (cpu_capacity = %d)",
5711 group->sgc->capacity);
5712 }
5713
5714 group = group->next;
5715 } while (group != sd->groups);
5716 printk(KERN_CONT "\n");
5717
5718 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5719 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5720
5721 if (sd->parent &&
5722 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5723 printk(KERN_ERR "ERROR: parent span is not a superset "
5724 "of domain->span\n");
5725 return 0;
5726 }
5727
5728 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5729 {
5730 int level = 0;
5731
5732 if (!sched_debug_enabled)
5733 return;
5734
5735 if (!sd) {
5736 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5737 return;
5738 }
5739
5740 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5741
5742 for (;;) {
5743 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5744 break;
5745 level++;
5746 sd = sd->parent;
5747 if (!sd)
5748 break;
5749 }
5750 }
5751 #else /* !CONFIG_SCHED_DEBUG */
5752
5753 # define sched_debug_enabled 0
5754 # define sched_domain_debug(sd, cpu) do { } while (0)
5755 static inline bool sched_debug(void)
5756 {
5757 return false;
5758 }
5759 #endif /* CONFIG_SCHED_DEBUG */
5760
5761 static int sd_degenerate(struct sched_domain *sd)
5762 {
5763 if (cpumask_weight(sched_domain_span(sd)) == 1)
5764 return 1;
5765
5766 /* Following flags need at least 2 groups */
5767 if (sd->flags & (SD_LOAD_BALANCE |
5768 SD_BALANCE_NEWIDLE |
5769 SD_BALANCE_FORK |
5770 SD_BALANCE_EXEC |
5771 SD_SHARE_CPUCAPACITY |
5772 SD_ASYM_CPUCAPACITY |
5773 SD_SHARE_PKG_RESOURCES |
5774 SD_SHARE_POWERDOMAIN)) {
5775 if (sd->groups != sd->groups->next)
5776 return 0;
5777 }
5778
5779 /* Following flags don't use groups */
5780 if (sd->flags & (SD_WAKE_AFFINE))
5781 return 0;
5782
5783 return 1;
5784 }
5785
5786 static int
5787 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5788 {
5789 unsigned long cflags = sd->flags, pflags = parent->flags;
5790
5791 if (sd_degenerate(parent))
5792 return 1;
5793
5794 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5795 return 0;
5796
5797 /* Flags needing groups don't count if only 1 group in parent */
5798 if (parent->groups == parent->groups->next) {
5799 pflags &= ~(SD_LOAD_BALANCE |
5800 SD_BALANCE_NEWIDLE |
5801 SD_BALANCE_FORK |
5802 SD_BALANCE_EXEC |
5803 SD_ASYM_CPUCAPACITY |
5804 SD_SHARE_CPUCAPACITY |
5805 SD_SHARE_PKG_RESOURCES |
5806 SD_PREFER_SIBLING |
5807 SD_SHARE_POWERDOMAIN);
5808 if (nr_node_ids == 1)
5809 pflags &= ~SD_SERIALIZE;
5810 }
5811 if (~cflags & pflags)
5812 return 0;
5813
5814 return 1;
5815 }
5816
5817 static void free_rootdomain(struct rcu_head *rcu)
5818 {
5819 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5820
5821 cpupri_cleanup(&rd->cpupri);
5822 cpudl_cleanup(&rd->cpudl);
5823 free_cpumask_var(rd->dlo_mask);
5824 free_cpumask_var(rd->rto_mask);
5825 free_cpumask_var(rd->online);
5826 free_cpumask_var(rd->span);
5827 kfree(rd);
5828 }
5829
5830 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5831 {
5832 struct root_domain *old_rd = NULL;
5833 unsigned long flags;
5834
5835 raw_spin_lock_irqsave(&rq->lock, flags);
5836
5837 if (rq->rd) {
5838 old_rd = rq->rd;
5839
5840 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5841 set_rq_offline(rq);
5842
5843 cpumask_clear_cpu(rq->cpu, old_rd->span);
5844
5845 /*
5846 * If we dont want to free the old_rd yet then
5847 * set old_rd to NULL to skip the freeing later
5848 * in this function:
5849 */
5850 if (!atomic_dec_and_test(&old_rd->refcount))
5851 old_rd = NULL;
5852 }
5853
5854 atomic_inc(&rd->refcount);
5855 rq->rd = rd;
5856
5857 cpumask_set_cpu(rq->cpu, rd->span);
5858 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5859 set_rq_online(rq);
5860
5861 raw_spin_unlock_irqrestore(&rq->lock, flags);
5862
5863 if (old_rd)
5864 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5865 }
5866
5867 static int init_rootdomain(struct root_domain *rd)
5868 {
5869 memset(rd, 0, sizeof(*rd));
5870
5871 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5872 goto out;
5873 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5874 goto free_span;
5875 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5876 goto free_online;
5877 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5878 goto free_dlo_mask;
5879
5880 init_dl_bw(&rd->dl_bw);
5881 if (cpudl_init(&rd->cpudl) != 0)
5882 goto free_dlo_mask;
5883
5884 if (cpupri_init(&rd->cpupri) != 0)
5885 goto free_rto_mask;
5886 return 0;
5887
5888 free_rto_mask:
5889 free_cpumask_var(rd->rto_mask);
5890 free_dlo_mask:
5891 free_cpumask_var(rd->dlo_mask);
5892 free_online:
5893 free_cpumask_var(rd->online);
5894 free_span:
5895 free_cpumask_var(rd->span);
5896 out:
5897 return -ENOMEM;
5898 }
5899
5900 /*
5901 * By default the system creates a single root-domain with all cpus as
5902 * members (mimicking the global state we have today).
5903 */
5904 struct root_domain def_root_domain;
5905
5906 static void init_defrootdomain(void)
5907 {
5908 init_rootdomain(&def_root_domain);
5909
5910 atomic_set(&def_root_domain.refcount, 1);
5911 }
5912
5913 static struct root_domain *alloc_rootdomain(void)
5914 {
5915 struct root_domain *rd;
5916
5917 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5918 if (!rd)
5919 return NULL;
5920
5921 if (init_rootdomain(rd) != 0) {
5922 kfree(rd);
5923 return NULL;
5924 }
5925
5926 return rd;
5927 }
5928
5929 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5930 {
5931 struct sched_group *tmp, *first;
5932
5933 if (!sg)
5934 return;
5935
5936 first = sg;
5937 do {
5938 tmp = sg->next;
5939
5940 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5941 kfree(sg->sgc);
5942
5943 kfree(sg);
5944 sg = tmp;
5945 } while (sg != first);
5946 }
5947
5948 static void destroy_sched_domain(struct sched_domain *sd)
5949 {
5950 /*
5951 * If its an overlapping domain it has private groups, iterate and
5952 * nuke them all.
5953 */
5954 if (sd->flags & SD_OVERLAP) {
5955 free_sched_groups(sd->groups, 1);
5956 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5957 kfree(sd->groups->sgc);
5958 kfree(sd->groups);
5959 }
5960 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5961 kfree(sd->shared);
5962 kfree(sd);
5963 }
5964
5965 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5966 {
5967 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5968
5969 while (sd) {
5970 struct sched_domain *parent = sd->parent;
5971 destroy_sched_domain(sd);
5972 sd = parent;
5973 }
5974 }
5975
5976 static void destroy_sched_domains(struct sched_domain *sd)
5977 {
5978 if (sd)
5979 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5980 }
5981
5982 /*
5983 * Keep a special pointer to the highest sched_domain that has
5984 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5985 * allows us to avoid some pointer chasing select_idle_sibling().
5986 *
5987 * Also keep a unique ID per domain (we use the first cpu number in
5988 * the cpumask of the domain), this allows us to quickly tell if
5989 * two cpus are in the same cache domain, see cpus_share_cache().
5990 */
5991 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5992 DEFINE_PER_CPU(int, sd_llc_size);
5993 DEFINE_PER_CPU(int, sd_llc_id);
5994 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
5995 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5996 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5997
5998 static void update_top_cache_domain(int cpu)
5999 {
6000 struct sched_domain_shared *sds = NULL;
6001 struct sched_domain *sd;
6002 int id = cpu;
6003 int size = 1;
6004
6005 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6006 if (sd) {
6007 id = cpumask_first(sched_domain_span(sd));
6008 size = cpumask_weight(sched_domain_span(sd));
6009 sds = sd->shared;
6010 }
6011
6012 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6013 per_cpu(sd_llc_size, cpu) = size;
6014 per_cpu(sd_llc_id, cpu) = id;
6015 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6016
6017 sd = lowest_flag_domain(cpu, SD_NUMA);
6018 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6019
6020 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6021 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6022 }
6023
6024 /*
6025 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6026 * hold the hotplug lock.
6027 */
6028 static void
6029 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6030 {
6031 struct rq *rq = cpu_rq(cpu);
6032 struct sched_domain *tmp;
6033
6034 /* Remove the sched domains which do not contribute to scheduling. */
6035 for (tmp = sd; tmp; ) {
6036 struct sched_domain *parent = tmp->parent;
6037 if (!parent)
6038 break;
6039
6040 if (sd_parent_degenerate(tmp, parent)) {
6041 tmp->parent = parent->parent;
6042 if (parent->parent)
6043 parent->parent->child = tmp;
6044 /*
6045 * Transfer SD_PREFER_SIBLING down in case of a
6046 * degenerate parent; the spans match for this
6047 * so the property transfers.
6048 */
6049 if (parent->flags & SD_PREFER_SIBLING)
6050 tmp->flags |= SD_PREFER_SIBLING;
6051 destroy_sched_domain(parent);
6052 } else
6053 tmp = tmp->parent;
6054 }
6055
6056 if (sd && sd_degenerate(sd)) {
6057 tmp = sd;
6058 sd = sd->parent;
6059 destroy_sched_domain(tmp);
6060 if (sd)
6061 sd->child = NULL;
6062 }
6063
6064 sched_domain_debug(sd, cpu);
6065
6066 rq_attach_root(rq, rd);
6067 tmp = rq->sd;
6068 rcu_assign_pointer(rq->sd, sd);
6069 destroy_sched_domains(tmp);
6070
6071 update_top_cache_domain(cpu);
6072 }
6073
6074 /* Setup the mask of cpus configured for isolated domains */
6075 static int __init isolated_cpu_setup(char *str)
6076 {
6077 int ret;
6078
6079 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6080 ret = cpulist_parse(str, cpu_isolated_map);
6081 if (ret) {
6082 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6083 return 0;
6084 }
6085 return 1;
6086 }
6087 __setup("isolcpus=", isolated_cpu_setup);
6088
6089 struct s_data {
6090 struct sched_domain ** __percpu sd;
6091 struct root_domain *rd;
6092 };
6093
6094 enum s_alloc {
6095 sa_rootdomain,
6096 sa_sd,
6097 sa_sd_storage,
6098 sa_none,
6099 };
6100
6101 /*
6102 * Build an iteration mask that can exclude certain CPUs from the upwards
6103 * domain traversal.
6104 *
6105 * Asymmetric node setups can result in situations where the domain tree is of
6106 * unequal depth, make sure to skip domains that already cover the entire
6107 * range.
6108 *
6109 * In that case build_sched_domains() will have terminated the iteration early
6110 * and our sibling sd spans will be empty. Domains should always include the
6111 * cpu they're built on, so check that.
6112 *
6113 */
6114 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6115 {
6116 const struct cpumask *span = sched_domain_span(sd);
6117 struct sd_data *sdd = sd->private;
6118 struct sched_domain *sibling;
6119 int i;
6120
6121 for_each_cpu(i, span) {
6122 sibling = *per_cpu_ptr(sdd->sd, i);
6123 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6124 continue;
6125
6126 cpumask_set_cpu(i, sched_group_mask(sg));
6127 }
6128 }
6129
6130 /*
6131 * Return the canonical balance cpu for this group, this is the first cpu
6132 * of this group that's also in the iteration mask.
6133 */
6134 int group_balance_cpu(struct sched_group *sg)
6135 {
6136 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6137 }
6138
6139 static int
6140 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6141 {
6142 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6143 const struct cpumask *span = sched_domain_span(sd);
6144 struct cpumask *covered = sched_domains_tmpmask;
6145 struct sd_data *sdd = sd->private;
6146 struct sched_domain *sibling;
6147 int i;
6148
6149 cpumask_clear(covered);
6150
6151 for_each_cpu(i, span) {
6152 struct cpumask *sg_span;
6153
6154 if (cpumask_test_cpu(i, covered))
6155 continue;
6156
6157 sibling = *per_cpu_ptr(sdd->sd, i);
6158
6159 /* See the comment near build_group_mask(). */
6160 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6161 continue;
6162
6163 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6164 GFP_KERNEL, cpu_to_node(cpu));
6165
6166 if (!sg)
6167 goto fail;
6168
6169 sg_span = sched_group_cpus(sg);
6170 if (sibling->child)
6171 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6172 else
6173 cpumask_set_cpu(i, sg_span);
6174
6175 cpumask_or(covered, covered, sg_span);
6176
6177 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6178 if (atomic_inc_return(&sg->sgc->ref) == 1)
6179 build_group_mask(sd, sg);
6180
6181 /*
6182 * Initialize sgc->capacity such that even if we mess up the
6183 * domains and no possible iteration will get us here, we won't
6184 * die on a /0 trap.
6185 */
6186 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6187
6188 /*
6189 * Make sure the first group of this domain contains the
6190 * canonical balance cpu. Otherwise the sched_domain iteration
6191 * breaks. See update_sg_lb_stats().
6192 */
6193 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6194 group_balance_cpu(sg) == cpu)
6195 groups = sg;
6196
6197 if (!first)
6198 first = sg;
6199 if (last)
6200 last->next = sg;
6201 last = sg;
6202 last->next = first;
6203 }
6204 sd->groups = groups;
6205
6206 return 0;
6207
6208 fail:
6209 free_sched_groups(first, 0);
6210
6211 return -ENOMEM;
6212 }
6213
6214 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6215 {
6216 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6217 struct sched_domain *child = sd->child;
6218
6219 if (child)
6220 cpu = cpumask_first(sched_domain_span(child));
6221
6222 if (sg) {
6223 *sg = *per_cpu_ptr(sdd->sg, cpu);
6224 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6225 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6226 }
6227
6228 return cpu;
6229 }
6230
6231 /*
6232 * build_sched_groups will build a circular linked list of the groups
6233 * covered by the given span, and will set each group's ->cpumask correctly,
6234 * and ->cpu_capacity to 0.
6235 *
6236 * Assumes the sched_domain tree is fully constructed
6237 */
6238 static int
6239 build_sched_groups(struct sched_domain *sd, int cpu)
6240 {
6241 struct sched_group *first = NULL, *last = NULL;
6242 struct sd_data *sdd = sd->private;
6243 const struct cpumask *span = sched_domain_span(sd);
6244 struct cpumask *covered;
6245 int i;
6246
6247 get_group(cpu, sdd, &sd->groups);
6248 atomic_inc(&sd->groups->ref);
6249
6250 if (cpu != cpumask_first(span))
6251 return 0;
6252
6253 lockdep_assert_held(&sched_domains_mutex);
6254 covered = sched_domains_tmpmask;
6255
6256 cpumask_clear(covered);
6257
6258 for_each_cpu(i, span) {
6259 struct sched_group *sg;
6260 int group, j;
6261
6262 if (cpumask_test_cpu(i, covered))
6263 continue;
6264
6265 group = get_group(i, sdd, &sg);
6266 cpumask_setall(sched_group_mask(sg));
6267
6268 for_each_cpu(j, span) {
6269 if (get_group(j, sdd, NULL) != group)
6270 continue;
6271
6272 cpumask_set_cpu(j, covered);
6273 cpumask_set_cpu(j, sched_group_cpus(sg));
6274 }
6275
6276 if (!first)
6277 first = sg;
6278 if (last)
6279 last->next = sg;
6280 last = sg;
6281 }
6282 last->next = first;
6283
6284 return 0;
6285 }
6286
6287 /*
6288 * Initialize sched groups cpu_capacity.
6289 *
6290 * cpu_capacity indicates the capacity of sched group, which is used while
6291 * distributing the load between different sched groups in a sched domain.
6292 * Typically cpu_capacity for all the groups in a sched domain will be same
6293 * unless there are asymmetries in the topology. If there are asymmetries,
6294 * group having more cpu_capacity will pickup more load compared to the
6295 * group having less cpu_capacity.
6296 */
6297 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6298 {
6299 struct sched_group *sg = sd->groups;
6300
6301 WARN_ON(!sg);
6302
6303 do {
6304 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6305 sg = sg->next;
6306 } while (sg != sd->groups);
6307
6308 if (cpu != group_balance_cpu(sg))
6309 return;
6310
6311 update_group_capacity(sd, cpu);
6312 }
6313
6314 /*
6315 * Initializers for schedule domains
6316 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6317 */
6318
6319 static int default_relax_domain_level = -1;
6320 int sched_domain_level_max;
6321
6322 static int __init setup_relax_domain_level(char *str)
6323 {
6324 if (kstrtoint(str, 0, &default_relax_domain_level))
6325 pr_warn("Unable to set relax_domain_level\n");
6326
6327 return 1;
6328 }
6329 __setup("relax_domain_level=", setup_relax_domain_level);
6330
6331 static void set_domain_attribute(struct sched_domain *sd,
6332 struct sched_domain_attr *attr)
6333 {
6334 int request;
6335
6336 if (!attr || attr->relax_domain_level < 0) {
6337 if (default_relax_domain_level < 0)
6338 return;
6339 else
6340 request = default_relax_domain_level;
6341 } else
6342 request = attr->relax_domain_level;
6343 if (request < sd->level) {
6344 /* turn off idle balance on this domain */
6345 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6346 } else {
6347 /* turn on idle balance on this domain */
6348 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6349 }
6350 }
6351
6352 static void __sdt_free(const struct cpumask *cpu_map);
6353 static int __sdt_alloc(const struct cpumask *cpu_map);
6354
6355 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6356 const struct cpumask *cpu_map)
6357 {
6358 switch (what) {
6359 case sa_rootdomain:
6360 if (!atomic_read(&d->rd->refcount))
6361 free_rootdomain(&d->rd->rcu); /* fall through */
6362 case sa_sd:
6363 free_percpu(d->sd); /* fall through */
6364 case sa_sd_storage:
6365 __sdt_free(cpu_map); /* fall through */
6366 case sa_none:
6367 break;
6368 }
6369 }
6370
6371 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6372 const struct cpumask *cpu_map)
6373 {
6374 memset(d, 0, sizeof(*d));
6375
6376 if (__sdt_alloc(cpu_map))
6377 return sa_sd_storage;
6378 d->sd = alloc_percpu(struct sched_domain *);
6379 if (!d->sd)
6380 return sa_sd_storage;
6381 d->rd = alloc_rootdomain();
6382 if (!d->rd)
6383 return sa_sd;
6384 return sa_rootdomain;
6385 }
6386
6387 /*
6388 * NULL the sd_data elements we've used to build the sched_domain and
6389 * sched_group structure so that the subsequent __free_domain_allocs()
6390 * will not free the data we're using.
6391 */
6392 static void claim_allocations(int cpu, struct sched_domain *sd)
6393 {
6394 struct sd_data *sdd = sd->private;
6395
6396 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6397 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6398
6399 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6400 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6401
6402 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6403 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6404
6405 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6406 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6407 }
6408
6409 #ifdef CONFIG_NUMA
6410 static int sched_domains_numa_levels;
6411 enum numa_topology_type sched_numa_topology_type;
6412 static int *sched_domains_numa_distance;
6413 int sched_max_numa_distance;
6414 static struct cpumask ***sched_domains_numa_masks;
6415 static int sched_domains_curr_level;
6416 #endif
6417
6418 /*
6419 * SD_flags allowed in topology descriptions.
6420 *
6421 * These flags are purely descriptive of the topology and do not prescribe
6422 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6423 * function:
6424 *
6425 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6426 * SD_SHARE_PKG_RESOURCES - describes shared caches
6427 * SD_NUMA - describes NUMA topologies
6428 * SD_SHARE_POWERDOMAIN - describes shared power domain
6429 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6430 *
6431 * Odd one out, which beside describing the topology has a quirk also
6432 * prescribes the desired behaviour that goes along with it:
6433 *
6434 * SD_ASYM_PACKING - describes SMT quirks
6435 */
6436 #define TOPOLOGY_SD_FLAGS \
6437 (SD_SHARE_CPUCAPACITY | \
6438 SD_SHARE_PKG_RESOURCES | \
6439 SD_NUMA | \
6440 SD_ASYM_PACKING | \
6441 SD_ASYM_CPUCAPACITY | \
6442 SD_SHARE_POWERDOMAIN)
6443
6444 static struct sched_domain *
6445 sd_init(struct sched_domain_topology_level *tl,
6446 const struct cpumask *cpu_map,
6447 struct sched_domain *child, int cpu)
6448 {
6449 struct sd_data *sdd = &tl->data;
6450 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6451 int sd_id, sd_weight, sd_flags = 0;
6452
6453 #ifdef CONFIG_NUMA
6454 /*
6455 * Ugly hack to pass state to sd_numa_mask()...
6456 */
6457 sched_domains_curr_level = tl->numa_level;
6458 #endif
6459
6460 sd_weight = cpumask_weight(tl->mask(cpu));
6461
6462 if (tl->sd_flags)
6463 sd_flags = (*tl->sd_flags)();
6464 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6465 "wrong sd_flags in topology description\n"))
6466 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6467
6468 *sd = (struct sched_domain){
6469 .min_interval = sd_weight,
6470 .max_interval = 2*sd_weight,
6471 .busy_factor = 32,
6472 .imbalance_pct = 125,
6473
6474 .cache_nice_tries = 0,
6475 .busy_idx = 0,
6476 .idle_idx = 0,
6477 .newidle_idx = 0,
6478 .wake_idx = 0,
6479 .forkexec_idx = 0,
6480
6481 .flags = 1*SD_LOAD_BALANCE
6482 | 1*SD_BALANCE_NEWIDLE
6483 | 1*SD_BALANCE_EXEC
6484 | 1*SD_BALANCE_FORK
6485 | 0*SD_BALANCE_WAKE
6486 | 1*SD_WAKE_AFFINE
6487 | 0*SD_SHARE_CPUCAPACITY
6488 | 0*SD_SHARE_PKG_RESOURCES
6489 | 0*SD_SERIALIZE
6490 | 0*SD_PREFER_SIBLING
6491 | 0*SD_NUMA
6492 | sd_flags
6493 ,
6494
6495 .last_balance = jiffies,
6496 .balance_interval = sd_weight,
6497 .smt_gain = 0,
6498 .max_newidle_lb_cost = 0,
6499 .next_decay_max_lb_cost = jiffies,
6500 .child = child,
6501 #ifdef CONFIG_SCHED_DEBUG
6502 .name = tl->name,
6503 #endif
6504 };
6505
6506 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6507 sd_id = cpumask_first(sched_domain_span(sd));
6508
6509 /*
6510 * Convert topological properties into behaviour.
6511 */
6512
6513 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6514 struct sched_domain *t = sd;
6515
6516 for_each_lower_domain(t)
6517 t->flags |= SD_BALANCE_WAKE;
6518 }
6519
6520 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6521 sd->flags |= SD_PREFER_SIBLING;
6522 sd->imbalance_pct = 110;
6523 sd->smt_gain = 1178; /* ~15% */
6524
6525 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6526 sd->imbalance_pct = 117;
6527 sd->cache_nice_tries = 1;
6528 sd->busy_idx = 2;
6529
6530 #ifdef CONFIG_NUMA
6531 } else if (sd->flags & SD_NUMA) {
6532 sd->cache_nice_tries = 2;
6533 sd->busy_idx = 3;
6534 sd->idle_idx = 2;
6535
6536 sd->flags |= SD_SERIALIZE;
6537 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6538 sd->flags &= ~(SD_BALANCE_EXEC |
6539 SD_BALANCE_FORK |
6540 SD_WAKE_AFFINE);
6541 }
6542
6543 #endif
6544 } else {
6545 sd->flags |= SD_PREFER_SIBLING;
6546 sd->cache_nice_tries = 1;
6547 sd->busy_idx = 2;
6548 sd->idle_idx = 1;
6549 }
6550
6551 /*
6552 * For all levels sharing cache; connect a sched_domain_shared
6553 * instance.
6554 */
6555 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6556 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6557 atomic_inc(&sd->shared->ref);
6558 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6559 }
6560
6561 sd->private = sdd;
6562
6563 return sd;
6564 }
6565
6566 /*
6567 * Topology list, bottom-up.
6568 */
6569 static struct sched_domain_topology_level default_topology[] = {
6570 #ifdef CONFIG_SCHED_SMT
6571 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6572 #endif
6573 #ifdef CONFIG_SCHED_MC
6574 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6575 #endif
6576 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6577 { NULL, },
6578 };
6579
6580 static struct sched_domain_topology_level *sched_domain_topology =
6581 default_topology;
6582
6583 #define for_each_sd_topology(tl) \
6584 for (tl = sched_domain_topology; tl->mask; tl++)
6585
6586 void set_sched_topology(struct sched_domain_topology_level *tl)
6587 {
6588 if (WARN_ON_ONCE(sched_smp_initialized))
6589 return;
6590
6591 sched_domain_topology = tl;
6592 }
6593
6594 #ifdef CONFIG_NUMA
6595
6596 static const struct cpumask *sd_numa_mask(int cpu)
6597 {
6598 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6599 }
6600
6601 static void sched_numa_warn(const char *str)
6602 {
6603 static int done = false;
6604 int i,j;
6605
6606 if (done)
6607 return;
6608
6609 done = true;
6610
6611 printk(KERN_WARNING "ERROR: %s\n\n", str);
6612
6613 for (i = 0; i < nr_node_ids; i++) {
6614 printk(KERN_WARNING " ");
6615 for (j = 0; j < nr_node_ids; j++)
6616 printk(KERN_CONT "%02d ", node_distance(i,j));
6617 printk(KERN_CONT "\n");
6618 }
6619 printk(KERN_WARNING "\n");
6620 }
6621
6622 bool find_numa_distance(int distance)
6623 {
6624 int i;
6625
6626 if (distance == node_distance(0, 0))
6627 return true;
6628
6629 for (i = 0; i < sched_domains_numa_levels; i++) {
6630 if (sched_domains_numa_distance[i] == distance)
6631 return true;
6632 }
6633
6634 return false;
6635 }
6636
6637 /*
6638 * A system can have three types of NUMA topology:
6639 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6640 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6641 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6642 *
6643 * The difference between a glueless mesh topology and a backplane
6644 * topology lies in whether communication between not directly
6645 * connected nodes goes through intermediary nodes (where programs
6646 * could run), or through backplane controllers. This affects
6647 * placement of programs.
6648 *
6649 * The type of topology can be discerned with the following tests:
6650 * - If the maximum distance between any nodes is 1 hop, the system
6651 * is directly connected.
6652 * - If for two nodes A and B, located N > 1 hops away from each other,
6653 * there is an intermediary node C, which is < N hops away from both
6654 * nodes A and B, the system is a glueless mesh.
6655 */
6656 static void init_numa_topology_type(void)
6657 {
6658 int a, b, c, n;
6659
6660 n = sched_max_numa_distance;
6661
6662 if (sched_domains_numa_levels <= 1) {
6663 sched_numa_topology_type = NUMA_DIRECT;
6664 return;
6665 }
6666
6667 for_each_online_node(a) {
6668 for_each_online_node(b) {
6669 /* Find two nodes furthest removed from each other. */
6670 if (node_distance(a, b) < n)
6671 continue;
6672
6673 /* Is there an intermediary node between a and b? */
6674 for_each_online_node(c) {
6675 if (node_distance(a, c) < n &&
6676 node_distance(b, c) < n) {
6677 sched_numa_topology_type =
6678 NUMA_GLUELESS_MESH;
6679 return;
6680 }
6681 }
6682
6683 sched_numa_topology_type = NUMA_BACKPLANE;
6684 return;
6685 }
6686 }
6687 }
6688
6689 static void sched_init_numa(void)
6690 {
6691 int next_distance, curr_distance = node_distance(0, 0);
6692 struct sched_domain_topology_level *tl;
6693 int level = 0;
6694 int i, j, k;
6695
6696 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6697 if (!sched_domains_numa_distance)
6698 return;
6699
6700 /*
6701 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6702 * unique distances in the node_distance() table.
6703 *
6704 * Assumes node_distance(0,j) includes all distances in
6705 * node_distance(i,j) in order to avoid cubic time.
6706 */
6707 next_distance = curr_distance;
6708 for (i = 0; i < nr_node_ids; i++) {
6709 for (j = 0; j < nr_node_ids; j++) {
6710 for (k = 0; k < nr_node_ids; k++) {
6711 int distance = node_distance(i, k);
6712
6713 if (distance > curr_distance &&
6714 (distance < next_distance ||
6715 next_distance == curr_distance))
6716 next_distance = distance;
6717
6718 /*
6719 * While not a strong assumption it would be nice to know
6720 * about cases where if node A is connected to B, B is not
6721 * equally connected to A.
6722 */
6723 if (sched_debug() && node_distance(k, i) != distance)
6724 sched_numa_warn("Node-distance not symmetric");
6725
6726 if (sched_debug() && i && !find_numa_distance(distance))
6727 sched_numa_warn("Node-0 not representative");
6728 }
6729 if (next_distance != curr_distance) {
6730 sched_domains_numa_distance[level++] = next_distance;
6731 sched_domains_numa_levels = level;
6732 curr_distance = next_distance;
6733 } else break;
6734 }
6735
6736 /*
6737 * In case of sched_debug() we verify the above assumption.
6738 */
6739 if (!sched_debug())
6740 break;
6741 }
6742
6743 if (!level)
6744 return;
6745
6746 /*
6747 * 'level' contains the number of unique distances, excluding the
6748 * identity distance node_distance(i,i).
6749 *
6750 * The sched_domains_numa_distance[] array includes the actual distance
6751 * numbers.
6752 */
6753
6754 /*
6755 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6756 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6757 * the array will contain less then 'level' members. This could be
6758 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6759 * in other functions.
6760 *
6761 * We reset it to 'level' at the end of this function.
6762 */
6763 sched_domains_numa_levels = 0;
6764
6765 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6766 if (!sched_domains_numa_masks)
6767 return;
6768
6769 /*
6770 * Now for each level, construct a mask per node which contains all
6771 * cpus of nodes that are that many hops away from us.
6772 */
6773 for (i = 0; i < level; i++) {
6774 sched_domains_numa_masks[i] =
6775 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6776 if (!sched_domains_numa_masks[i])
6777 return;
6778
6779 for (j = 0; j < nr_node_ids; j++) {
6780 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6781 if (!mask)
6782 return;
6783
6784 sched_domains_numa_masks[i][j] = mask;
6785
6786 for_each_node(k) {
6787 if (node_distance(j, k) > sched_domains_numa_distance[i])
6788 continue;
6789
6790 cpumask_or(mask, mask, cpumask_of_node(k));
6791 }
6792 }
6793 }
6794
6795 /* Compute default topology size */
6796 for (i = 0; sched_domain_topology[i].mask; i++);
6797
6798 tl = kzalloc((i + level + 1) *
6799 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6800 if (!tl)
6801 return;
6802
6803 /*
6804 * Copy the default topology bits..
6805 */
6806 for (i = 0; sched_domain_topology[i].mask; i++)
6807 tl[i] = sched_domain_topology[i];
6808
6809 /*
6810 * .. and append 'j' levels of NUMA goodness.
6811 */
6812 for (j = 0; j < level; i++, j++) {
6813 tl[i] = (struct sched_domain_topology_level){
6814 .mask = sd_numa_mask,
6815 .sd_flags = cpu_numa_flags,
6816 .flags = SDTL_OVERLAP,
6817 .numa_level = j,
6818 SD_INIT_NAME(NUMA)
6819 };
6820 }
6821
6822 sched_domain_topology = tl;
6823
6824 sched_domains_numa_levels = level;
6825 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6826
6827 init_numa_topology_type();
6828 }
6829
6830 static void sched_domains_numa_masks_set(unsigned int cpu)
6831 {
6832 int node = cpu_to_node(cpu);
6833 int i, j;
6834
6835 for (i = 0; i < sched_domains_numa_levels; i++) {
6836 for (j = 0; j < nr_node_ids; j++) {
6837 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6838 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6839 }
6840 }
6841 }
6842
6843 static void sched_domains_numa_masks_clear(unsigned int cpu)
6844 {
6845 int i, j;
6846
6847 for (i = 0; i < sched_domains_numa_levels; i++) {
6848 for (j = 0; j < nr_node_ids; j++)
6849 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6850 }
6851 }
6852
6853 #else
6854 static inline void sched_init_numa(void) { }
6855 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6856 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6857 #endif /* CONFIG_NUMA */
6858
6859 static int __sdt_alloc(const struct cpumask *cpu_map)
6860 {
6861 struct sched_domain_topology_level *tl;
6862 int j;
6863
6864 for_each_sd_topology(tl) {
6865 struct sd_data *sdd = &tl->data;
6866
6867 sdd->sd = alloc_percpu(struct sched_domain *);
6868 if (!sdd->sd)
6869 return -ENOMEM;
6870
6871 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6872 if (!sdd->sds)
6873 return -ENOMEM;
6874
6875 sdd->sg = alloc_percpu(struct sched_group *);
6876 if (!sdd->sg)
6877 return -ENOMEM;
6878
6879 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6880 if (!sdd->sgc)
6881 return -ENOMEM;
6882
6883 for_each_cpu(j, cpu_map) {
6884 struct sched_domain *sd;
6885 struct sched_domain_shared *sds;
6886 struct sched_group *sg;
6887 struct sched_group_capacity *sgc;
6888
6889 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6890 GFP_KERNEL, cpu_to_node(j));
6891 if (!sd)
6892 return -ENOMEM;
6893
6894 *per_cpu_ptr(sdd->sd, j) = sd;
6895
6896 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6897 GFP_KERNEL, cpu_to_node(j));
6898 if (!sds)
6899 return -ENOMEM;
6900
6901 *per_cpu_ptr(sdd->sds, j) = sds;
6902
6903 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6904 GFP_KERNEL, cpu_to_node(j));
6905 if (!sg)
6906 return -ENOMEM;
6907
6908 sg->next = sg;
6909
6910 *per_cpu_ptr(sdd->sg, j) = sg;
6911
6912 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6913 GFP_KERNEL, cpu_to_node(j));
6914 if (!sgc)
6915 return -ENOMEM;
6916
6917 *per_cpu_ptr(sdd->sgc, j) = sgc;
6918 }
6919 }
6920
6921 return 0;
6922 }
6923
6924 static void __sdt_free(const struct cpumask *cpu_map)
6925 {
6926 struct sched_domain_topology_level *tl;
6927 int j;
6928
6929 for_each_sd_topology(tl) {
6930 struct sd_data *sdd = &tl->data;
6931
6932 for_each_cpu(j, cpu_map) {
6933 struct sched_domain *sd;
6934
6935 if (sdd->sd) {
6936 sd = *per_cpu_ptr(sdd->sd, j);
6937 if (sd && (sd->flags & SD_OVERLAP))
6938 free_sched_groups(sd->groups, 0);
6939 kfree(*per_cpu_ptr(sdd->sd, j));
6940 }
6941
6942 if (sdd->sds)
6943 kfree(*per_cpu_ptr(sdd->sds, j));
6944 if (sdd->sg)
6945 kfree(*per_cpu_ptr(sdd->sg, j));
6946 if (sdd->sgc)
6947 kfree(*per_cpu_ptr(sdd->sgc, j));
6948 }
6949 free_percpu(sdd->sd);
6950 sdd->sd = NULL;
6951 free_percpu(sdd->sds);
6952 sdd->sds = NULL;
6953 free_percpu(sdd->sg);
6954 sdd->sg = NULL;
6955 free_percpu(sdd->sgc);
6956 sdd->sgc = NULL;
6957 }
6958 }
6959
6960 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6961 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6962 struct sched_domain *child, int cpu)
6963 {
6964 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
6965
6966 if (child) {
6967 sd->level = child->level + 1;
6968 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6969 child->parent = sd;
6970
6971 if (!cpumask_subset(sched_domain_span(child),
6972 sched_domain_span(sd))) {
6973 pr_err("BUG: arch topology borken\n");
6974 #ifdef CONFIG_SCHED_DEBUG
6975 pr_err(" the %s domain not a subset of the %s domain\n",
6976 child->name, sd->name);
6977 #endif
6978 /* Fixup, ensure @sd has at least @child cpus. */
6979 cpumask_or(sched_domain_span(sd),
6980 sched_domain_span(sd),
6981 sched_domain_span(child));
6982 }
6983
6984 }
6985 set_domain_attribute(sd, attr);
6986
6987 return sd;
6988 }
6989
6990 /*
6991 * Build sched domains for a given set of cpus and attach the sched domains
6992 * to the individual cpus
6993 */
6994 static int build_sched_domains(const struct cpumask *cpu_map,
6995 struct sched_domain_attr *attr)
6996 {
6997 enum s_alloc alloc_state;
6998 struct sched_domain *sd;
6999 struct s_data d;
7000 struct rq *rq = NULL;
7001 int i, ret = -ENOMEM;
7002
7003 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7004 if (alloc_state != sa_rootdomain)
7005 goto error;
7006
7007 /* Set up domains for cpus specified by the cpu_map. */
7008 for_each_cpu(i, cpu_map) {
7009 struct sched_domain_topology_level *tl;
7010
7011 sd = NULL;
7012 for_each_sd_topology(tl) {
7013 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7014 if (tl == sched_domain_topology)
7015 *per_cpu_ptr(d.sd, i) = sd;
7016 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7017 sd->flags |= SD_OVERLAP;
7018 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7019 break;
7020 }
7021 }
7022
7023 /* Build the groups for the domains */
7024 for_each_cpu(i, cpu_map) {
7025 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7026 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7027 if (sd->flags & SD_OVERLAP) {
7028 if (build_overlap_sched_groups(sd, i))
7029 goto error;
7030 } else {
7031 if (build_sched_groups(sd, i))
7032 goto error;
7033 }
7034 }
7035 }
7036
7037 /* Calculate CPU capacity for physical packages and nodes */
7038 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7039 if (!cpumask_test_cpu(i, cpu_map))
7040 continue;
7041
7042 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7043 claim_allocations(i, sd);
7044 init_sched_groups_capacity(i, sd);
7045 }
7046 }
7047
7048 /* Attach the domains */
7049 rcu_read_lock();
7050 for_each_cpu(i, cpu_map) {
7051 rq = cpu_rq(i);
7052 sd = *per_cpu_ptr(d.sd, i);
7053
7054 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7055 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7056 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7057
7058 cpu_attach_domain(sd, d.rd, i);
7059 }
7060 rcu_read_unlock();
7061
7062 if (rq && sched_debug_enabled) {
7063 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7064 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7065 }
7066
7067 ret = 0;
7068 error:
7069 __free_domain_allocs(&d, alloc_state, cpu_map);
7070 return ret;
7071 }
7072
7073 static cpumask_var_t *doms_cur; /* current sched domains */
7074 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7075 static struct sched_domain_attr *dattr_cur;
7076 /* attribues of custom domains in 'doms_cur' */
7077
7078 /*
7079 * Special case: If a kmalloc of a doms_cur partition (array of
7080 * cpumask) fails, then fallback to a single sched domain,
7081 * as determined by the single cpumask fallback_doms.
7082 */
7083 static cpumask_var_t fallback_doms;
7084
7085 /*
7086 * arch_update_cpu_topology lets virtualized architectures update the
7087 * cpu core maps. It is supposed to return 1 if the topology changed
7088 * or 0 if it stayed the same.
7089 */
7090 int __weak arch_update_cpu_topology(void)
7091 {
7092 return 0;
7093 }
7094
7095 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7096 {
7097 int i;
7098 cpumask_var_t *doms;
7099
7100 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7101 if (!doms)
7102 return NULL;
7103 for (i = 0; i < ndoms; i++) {
7104 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7105 free_sched_domains(doms, i);
7106 return NULL;
7107 }
7108 }
7109 return doms;
7110 }
7111
7112 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7113 {
7114 unsigned int i;
7115 for (i = 0; i < ndoms; i++)
7116 free_cpumask_var(doms[i]);
7117 kfree(doms);
7118 }
7119
7120 /*
7121 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7122 * For now this just excludes isolated cpus, but could be used to
7123 * exclude other special cases in the future.
7124 */
7125 static int init_sched_domains(const struct cpumask *cpu_map)
7126 {
7127 int err;
7128
7129 arch_update_cpu_topology();
7130 ndoms_cur = 1;
7131 doms_cur = alloc_sched_domains(ndoms_cur);
7132 if (!doms_cur)
7133 doms_cur = &fallback_doms;
7134 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7135 err = build_sched_domains(doms_cur[0], NULL);
7136 register_sched_domain_sysctl();
7137
7138 return err;
7139 }
7140
7141 /*
7142 * Detach sched domains from a group of cpus specified in cpu_map
7143 * These cpus will now be attached to the NULL domain
7144 */
7145 static void detach_destroy_domains(const struct cpumask *cpu_map)
7146 {
7147 int i;
7148
7149 rcu_read_lock();
7150 for_each_cpu(i, cpu_map)
7151 cpu_attach_domain(NULL, &def_root_domain, i);
7152 rcu_read_unlock();
7153 }
7154
7155 /* handle null as "default" */
7156 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7157 struct sched_domain_attr *new, int idx_new)
7158 {
7159 struct sched_domain_attr tmp;
7160
7161 /* fast path */
7162 if (!new && !cur)
7163 return 1;
7164
7165 tmp = SD_ATTR_INIT;
7166 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7167 new ? (new + idx_new) : &tmp,
7168 sizeof(struct sched_domain_attr));
7169 }
7170
7171 /*
7172 * Partition sched domains as specified by the 'ndoms_new'
7173 * cpumasks in the array doms_new[] of cpumasks. This compares
7174 * doms_new[] to the current sched domain partitioning, doms_cur[].
7175 * It destroys each deleted domain and builds each new domain.
7176 *
7177 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7178 * The masks don't intersect (don't overlap.) We should setup one
7179 * sched domain for each mask. CPUs not in any of the cpumasks will
7180 * not be load balanced. If the same cpumask appears both in the
7181 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7182 * it as it is.
7183 *
7184 * The passed in 'doms_new' should be allocated using
7185 * alloc_sched_domains. This routine takes ownership of it and will
7186 * free_sched_domains it when done with it. If the caller failed the
7187 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7188 * and partition_sched_domains() will fallback to the single partition
7189 * 'fallback_doms', it also forces the domains to be rebuilt.
7190 *
7191 * If doms_new == NULL it will be replaced with cpu_online_mask.
7192 * ndoms_new == 0 is a special case for destroying existing domains,
7193 * and it will not create the default domain.
7194 *
7195 * Call with hotplug lock held
7196 */
7197 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7198 struct sched_domain_attr *dattr_new)
7199 {
7200 int i, j, n;
7201 int new_topology;
7202
7203 mutex_lock(&sched_domains_mutex);
7204
7205 /* always unregister in case we don't destroy any domains */
7206 unregister_sched_domain_sysctl();
7207
7208 /* Let architecture update cpu core mappings. */
7209 new_topology = arch_update_cpu_topology();
7210
7211 n = doms_new ? ndoms_new : 0;
7212
7213 /* Destroy deleted domains */
7214 for (i = 0; i < ndoms_cur; i++) {
7215 for (j = 0; j < n && !new_topology; j++) {
7216 if (cpumask_equal(doms_cur[i], doms_new[j])
7217 && dattrs_equal(dattr_cur, i, dattr_new, j))
7218 goto match1;
7219 }
7220 /* no match - a current sched domain not in new doms_new[] */
7221 detach_destroy_domains(doms_cur[i]);
7222 match1:
7223 ;
7224 }
7225
7226 n = ndoms_cur;
7227 if (doms_new == NULL) {
7228 n = 0;
7229 doms_new = &fallback_doms;
7230 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7231 WARN_ON_ONCE(dattr_new);
7232 }
7233
7234 /* Build new domains */
7235 for (i = 0; i < ndoms_new; i++) {
7236 for (j = 0; j < n && !new_topology; j++) {
7237 if (cpumask_equal(doms_new[i], doms_cur[j])
7238 && dattrs_equal(dattr_new, i, dattr_cur, j))
7239 goto match2;
7240 }
7241 /* no match - add a new doms_new */
7242 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7243 match2:
7244 ;
7245 }
7246
7247 /* Remember the new sched domains */
7248 if (doms_cur != &fallback_doms)
7249 free_sched_domains(doms_cur, ndoms_cur);
7250 kfree(dattr_cur); /* kfree(NULL) is safe */
7251 doms_cur = doms_new;
7252 dattr_cur = dattr_new;
7253 ndoms_cur = ndoms_new;
7254
7255 register_sched_domain_sysctl();
7256
7257 mutex_unlock(&sched_domains_mutex);
7258 }
7259
7260 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7261
7262 /*
7263 * Update cpusets according to cpu_active mask. If cpusets are
7264 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7265 * around partition_sched_domains().
7266 *
7267 * If we come here as part of a suspend/resume, don't touch cpusets because we
7268 * want to restore it back to its original state upon resume anyway.
7269 */
7270 static void cpuset_cpu_active(void)
7271 {
7272 if (cpuhp_tasks_frozen) {
7273 /*
7274 * num_cpus_frozen tracks how many CPUs are involved in suspend
7275 * resume sequence. As long as this is not the last online
7276 * operation in the resume sequence, just build a single sched
7277 * domain, ignoring cpusets.
7278 */
7279 num_cpus_frozen--;
7280 if (likely(num_cpus_frozen)) {
7281 partition_sched_domains(1, NULL, NULL);
7282 return;
7283 }
7284 /*
7285 * This is the last CPU online operation. So fall through and
7286 * restore the original sched domains by considering the
7287 * cpuset configurations.
7288 */
7289 }
7290 cpuset_update_active_cpus(true);
7291 }
7292
7293 static int cpuset_cpu_inactive(unsigned int cpu)
7294 {
7295 unsigned long flags;
7296 struct dl_bw *dl_b;
7297 bool overflow;
7298 int cpus;
7299
7300 if (!cpuhp_tasks_frozen) {
7301 rcu_read_lock_sched();
7302 dl_b = dl_bw_of(cpu);
7303
7304 raw_spin_lock_irqsave(&dl_b->lock, flags);
7305 cpus = dl_bw_cpus(cpu);
7306 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7307 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7308
7309 rcu_read_unlock_sched();
7310
7311 if (overflow)
7312 return -EBUSY;
7313 cpuset_update_active_cpus(false);
7314 } else {
7315 num_cpus_frozen++;
7316 partition_sched_domains(1, NULL, NULL);
7317 }
7318 return 0;
7319 }
7320
7321 int sched_cpu_activate(unsigned int cpu)
7322 {
7323 struct rq *rq = cpu_rq(cpu);
7324 unsigned long flags;
7325
7326 set_cpu_active(cpu, true);
7327
7328 if (sched_smp_initialized) {
7329 sched_domains_numa_masks_set(cpu);
7330 cpuset_cpu_active();
7331 }
7332
7333 /*
7334 * Put the rq online, if not already. This happens:
7335 *
7336 * 1) In the early boot process, because we build the real domains
7337 * after all cpus have been brought up.
7338 *
7339 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7340 * domains.
7341 */
7342 raw_spin_lock_irqsave(&rq->lock, flags);
7343 if (rq->rd) {
7344 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7345 set_rq_online(rq);
7346 }
7347 raw_spin_unlock_irqrestore(&rq->lock, flags);
7348
7349 update_max_interval();
7350
7351 return 0;
7352 }
7353
7354 int sched_cpu_deactivate(unsigned int cpu)
7355 {
7356 int ret;
7357
7358 set_cpu_active(cpu, false);
7359 /*
7360 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7361 * users of this state to go away such that all new such users will
7362 * observe it.
7363 *
7364 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7365 * not imply sync_sched(), so wait for both.
7366 *
7367 * Do sync before park smpboot threads to take care the rcu boost case.
7368 */
7369 if (IS_ENABLED(CONFIG_PREEMPT))
7370 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7371 else
7372 synchronize_rcu();
7373
7374 if (!sched_smp_initialized)
7375 return 0;
7376
7377 ret = cpuset_cpu_inactive(cpu);
7378 if (ret) {
7379 set_cpu_active(cpu, true);
7380 return ret;
7381 }
7382 sched_domains_numa_masks_clear(cpu);
7383 return 0;
7384 }
7385
7386 static void sched_rq_cpu_starting(unsigned int cpu)
7387 {
7388 struct rq *rq = cpu_rq(cpu);
7389
7390 rq->calc_load_update = calc_load_update;
7391 update_max_interval();
7392 }
7393
7394 int sched_cpu_starting(unsigned int cpu)
7395 {
7396 set_cpu_rq_start_time(cpu);
7397 sched_rq_cpu_starting(cpu);
7398 return 0;
7399 }
7400
7401 #ifdef CONFIG_HOTPLUG_CPU
7402 int sched_cpu_dying(unsigned int cpu)
7403 {
7404 struct rq *rq = cpu_rq(cpu);
7405 unsigned long flags;
7406
7407 /* Handle pending wakeups and then migrate everything off */
7408 sched_ttwu_pending();
7409 raw_spin_lock_irqsave(&rq->lock, flags);
7410 if (rq->rd) {
7411 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7412 set_rq_offline(rq);
7413 }
7414 migrate_tasks(rq);
7415 BUG_ON(rq->nr_running != 1);
7416 raw_spin_unlock_irqrestore(&rq->lock, flags);
7417 calc_load_migrate(rq);
7418 update_max_interval();
7419 nohz_balance_exit_idle(cpu);
7420 hrtick_clear(rq);
7421 return 0;
7422 }
7423 #endif
7424
7425 #ifdef CONFIG_SCHED_SMT
7426 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7427
7428 static void sched_init_smt(void)
7429 {
7430 /*
7431 * We've enumerated all CPUs and will assume that if any CPU
7432 * has SMT siblings, CPU0 will too.
7433 */
7434 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7435 static_branch_enable(&sched_smt_present);
7436 }
7437 #else
7438 static inline void sched_init_smt(void) { }
7439 #endif
7440
7441 void __init sched_init_smp(void)
7442 {
7443 cpumask_var_t non_isolated_cpus;
7444
7445 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7446 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7447
7448 sched_init_numa();
7449
7450 /*
7451 * There's no userspace yet to cause hotplug operations; hence all the
7452 * cpu masks are stable and all blatant races in the below code cannot
7453 * happen.
7454 */
7455 mutex_lock(&sched_domains_mutex);
7456 init_sched_domains(cpu_active_mask);
7457 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7458 if (cpumask_empty(non_isolated_cpus))
7459 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7460 mutex_unlock(&sched_domains_mutex);
7461
7462 /* Move init over to a non-isolated CPU */
7463 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7464 BUG();
7465 sched_init_granularity();
7466 free_cpumask_var(non_isolated_cpus);
7467
7468 init_sched_rt_class();
7469 init_sched_dl_class();
7470
7471 sched_init_smt();
7472
7473 sched_smp_initialized = true;
7474 }
7475
7476 static int __init migration_init(void)
7477 {
7478 sched_rq_cpu_starting(smp_processor_id());
7479 return 0;
7480 }
7481 early_initcall(migration_init);
7482
7483 #else
7484 void __init sched_init_smp(void)
7485 {
7486 sched_init_granularity();
7487 }
7488 #endif /* CONFIG_SMP */
7489
7490 int in_sched_functions(unsigned long addr)
7491 {
7492 return in_lock_functions(addr) ||
7493 (addr >= (unsigned long)__sched_text_start
7494 && addr < (unsigned long)__sched_text_end);
7495 }
7496
7497 #ifdef CONFIG_CGROUP_SCHED
7498 /*
7499 * Default task group.
7500 * Every task in system belongs to this group at bootup.
7501 */
7502 struct task_group root_task_group;
7503 LIST_HEAD(task_groups);
7504
7505 /* Cacheline aligned slab cache for task_group */
7506 static struct kmem_cache *task_group_cache __read_mostly;
7507 #endif
7508
7509 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7510 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7511
7512 #define WAIT_TABLE_BITS 8
7513 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7514 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7515
7516 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7517 {
7518 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7519 unsigned long val = (unsigned long)word << shift | bit;
7520
7521 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7522 }
7523 EXPORT_SYMBOL(bit_waitqueue);
7524
7525 void __init sched_init(void)
7526 {
7527 int i, j;
7528 unsigned long alloc_size = 0, ptr;
7529
7530 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7531 init_waitqueue_head(bit_wait_table + i);
7532
7533 #ifdef CONFIG_FAIR_GROUP_SCHED
7534 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7535 #endif
7536 #ifdef CONFIG_RT_GROUP_SCHED
7537 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7538 #endif
7539 if (alloc_size) {
7540 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7541
7542 #ifdef CONFIG_FAIR_GROUP_SCHED
7543 root_task_group.se = (struct sched_entity **)ptr;
7544 ptr += nr_cpu_ids * sizeof(void **);
7545
7546 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7547 ptr += nr_cpu_ids * sizeof(void **);
7548
7549 #endif /* CONFIG_FAIR_GROUP_SCHED */
7550 #ifdef CONFIG_RT_GROUP_SCHED
7551 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7552 ptr += nr_cpu_ids * sizeof(void **);
7553
7554 root_task_group.rt_rq = (struct rt_rq **)ptr;
7555 ptr += nr_cpu_ids * sizeof(void **);
7556
7557 #endif /* CONFIG_RT_GROUP_SCHED */
7558 }
7559 #ifdef CONFIG_CPUMASK_OFFSTACK
7560 for_each_possible_cpu(i) {
7561 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7562 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7563 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7564 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7565 }
7566 #endif /* CONFIG_CPUMASK_OFFSTACK */
7567
7568 init_rt_bandwidth(&def_rt_bandwidth,
7569 global_rt_period(), global_rt_runtime());
7570 init_dl_bandwidth(&def_dl_bandwidth,
7571 global_rt_period(), global_rt_runtime());
7572
7573 #ifdef CONFIG_SMP
7574 init_defrootdomain();
7575 #endif
7576
7577 #ifdef CONFIG_RT_GROUP_SCHED
7578 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7579 global_rt_period(), global_rt_runtime());
7580 #endif /* CONFIG_RT_GROUP_SCHED */
7581
7582 #ifdef CONFIG_CGROUP_SCHED
7583 task_group_cache = KMEM_CACHE(task_group, 0);
7584
7585 list_add(&root_task_group.list, &task_groups);
7586 INIT_LIST_HEAD(&root_task_group.children);
7587 INIT_LIST_HEAD(&root_task_group.siblings);
7588 autogroup_init(&init_task);
7589 #endif /* CONFIG_CGROUP_SCHED */
7590
7591 for_each_possible_cpu(i) {
7592 struct rq *rq;
7593
7594 rq = cpu_rq(i);
7595 raw_spin_lock_init(&rq->lock);
7596 rq->nr_running = 0;
7597 rq->calc_load_active = 0;
7598 rq->calc_load_update = jiffies + LOAD_FREQ;
7599 init_cfs_rq(&rq->cfs);
7600 init_rt_rq(&rq->rt);
7601 init_dl_rq(&rq->dl);
7602 #ifdef CONFIG_FAIR_GROUP_SCHED
7603 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7604 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7605 /*
7606 * How much cpu bandwidth does root_task_group get?
7607 *
7608 * In case of task-groups formed thr' the cgroup filesystem, it
7609 * gets 100% of the cpu resources in the system. This overall
7610 * system cpu resource is divided among the tasks of
7611 * root_task_group and its child task-groups in a fair manner,
7612 * based on each entity's (task or task-group's) weight
7613 * (se->load.weight).
7614 *
7615 * In other words, if root_task_group has 10 tasks of weight
7616 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7617 * then A0's share of the cpu resource is:
7618 *
7619 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7620 *
7621 * We achieve this by letting root_task_group's tasks sit
7622 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7623 */
7624 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7625 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7626 #endif /* CONFIG_FAIR_GROUP_SCHED */
7627
7628 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7629 #ifdef CONFIG_RT_GROUP_SCHED
7630 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7631 #endif
7632
7633 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7634 rq->cpu_load[j] = 0;
7635
7636 #ifdef CONFIG_SMP
7637 rq->sd = NULL;
7638 rq->rd = NULL;
7639 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7640 rq->balance_callback = NULL;
7641 rq->active_balance = 0;
7642 rq->next_balance = jiffies;
7643 rq->push_cpu = 0;
7644 rq->cpu = i;
7645 rq->online = 0;
7646 rq->idle_stamp = 0;
7647 rq->avg_idle = 2*sysctl_sched_migration_cost;
7648 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7649
7650 INIT_LIST_HEAD(&rq->cfs_tasks);
7651
7652 rq_attach_root(rq, &def_root_domain);
7653 #ifdef CONFIG_NO_HZ_COMMON
7654 rq->last_load_update_tick = jiffies;
7655 rq->nohz_flags = 0;
7656 #endif
7657 #ifdef CONFIG_NO_HZ_FULL
7658 rq->last_sched_tick = 0;
7659 #endif
7660 #endif /* CONFIG_SMP */
7661 init_rq_hrtick(rq);
7662 atomic_set(&rq->nr_iowait, 0);
7663 }
7664
7665 set_load_weight(&init_task);
7666
7667 /*
7668 * The boot idle thread does lazy MMU switching as well:
7669 */
7670 atomic_inc(&init_mm.mm_count);
7671 enter_lazy_tlb(&init_mm, current);
7672
7673 /*
7674 * Make us the idle thread. Technically, schedule() should not be
7675 * called from this thread, however somewhere below it might be,
7676 * but because we are the idle thread, we just pick up running again
7677 * when this runqueue becomes "idle".
7678 */
7679 init_idle(current, smp_processor_id());
7680
7681 calc_load_update = jiffies + LOAD_FREQ;
7682
7683 #ifdef CONFIG_SMP
7684 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7685 /* May be allocated at isolcpus cmdline parse time */
7686 if (cpu_isolated_map == NULL)
7687 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7688 idle_thread_set_boot_cpu();
7689 set_cpu_rq_start_time(smp_processor_id());
7690 #endif
7691 init_sched_fair_class();
7692
7693 init_schedstats();
7694
7695 scheduler_running = 1;
7696 }
7697
7698 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7699 static inline int preempt_count_equals(int preempt_offset)
7700 {
7701 int nested = preempt_count() + rcu_preempt_depth();
7702
7703 return (nested == preempt_offset);
7704 }
7705
7706 void __might_sleep(const char *file, int line, int preempt_offset)
7707 {
7708 /*
7709 * Blocking primitives will set (and therefore destroy) current->state,
7710 * since we will exit with TASK_RUNNING make sure we enter with it,
7711 * otherwise we will destroy state.
7712 */
7713 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7714 "do not call blocking ops when !TASK_RUNNING; "
7715 "state=%lx set at [<%p>] %pS\n",
7716 current->state,
7717 (void *)current->task_state_change,
7718 (void *)current->task_state_change);
7719
7720 ___might_sleep(file, line, preempt_offset);
7721 }
7722 EXPORT_SYMBOL(__might_sleep);
7723
7724 void ___might_sleep(const char *file, int line, int preempt_offset)
7725 {
7726 static unsigned long prev_jiffy; /* ratelimiting */
7727 unsigned long preempt_disable_ip;
7728
7729 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7730 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7731 !is_idle_task(current)) ||
7732 system_state != SYSTEM_RUNNING || oops_in_progress)
7733 return;
7734 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7735 return;
7736 prev_jiffy = jiffies;
7737
7738 /* Save this before calling printk(), since that will clobber it */
7739 preempt_disable_ip = get_preempt_disable_ip(current);
7740
7741 printk(KERN_ERR
7742 "BUG: sleeping function called from invalid context at %s:%d\n",
7743 file, line);
7744 printk(KERN_ERR
7745 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7746 in_atomic(), irqs_disabled(),
7747 current->pid, current->comm);
7748
7749 if (task_stack_end_corrupted(current))
7750 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7751
7752 debug_show_held_locks(current);
7753 if (irqs_disabled())
7754 print_irqtrace_events(current);
7755 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7756 && !preempt_count_equals(preempt_offset)) {
7757 pr_err("Preemption disabled at:");
7758 print_ip_sym(preempt_disable_ip);
7759 pr_cont("\n");
7760 }
7761 dump_stack();
7762 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7763 }
7764 EXPORT_SYMBOL(___might_sleep);
7765 #endif
7766
7767 #ifdef CONFIG_MAGIC_SYSRQ
7768 void normalize_rt_tasks(void)
7769 {
7770 struct task_struct *g, *p;
7771 struct sched_attr attr = {
7772 .sched_policy = SCHED_NORMAL,
7773 };
7774
7775 read_lock(&tasklist_lock);
7776 for_each_process_thread(g, p) {
7777 /*
7778 * Only normalize user tasks:
7779 */
7780 if (p->flags & PF_KTHREAD)
7781 continue;
7782
7783 p->se.exec_start = 0;
7784 schedstat_set(p->se.statistics.wait_start, 0);
7785 schedstat_set(p->se.statistics.sleep_start, 0);
7786 schedstat_set(p->se.statistics.block_start, 0);
7787
7788 if (!dl_task(p) && !rt_task(p)) {
7789 /*
7790 * Renice negative nice level userspace
7791 * tasks back to 0:
7792 */
7793 if (task_nice(p) < 0)
7794 set_user_nice(p, 0);
7795 continue;
7796 }
7797
7798 __sched_setscheduler(p, &attr, false, false);
7799 }
7800 read_unlock(&tasklist_lock);
7801 }
7802
7803 #endif /* CONFIG_MAGIC_SYSRQ */
7804
7805 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7806 /*
7807 * These functions are only useful for the IA64 MCA handling, or kdb.
7808 *
7809 * They can only be called when the whole system has been
7810 * stopped - every CPU needs to be quiescent, and no scheduling
7811 * activity can take place. Using them for anything else would
7812 * be a serious bug, and as a result, they aren't even visible
7813 * under any other configuration.
7814 */
7815
7816 /**
7817 * curr_task - return the current task for a given cpu.
7818 * @cpu: the processor in question.
7819 *
7820 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7821 *
7822 * Return: The current task for @cpu.
7823 */
7824 struct task_struct *curr_task(int cpu)
7825 {
7826 return cpu_curr(cpu);
7827 }
7828
7829 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7830
7831 #ifdef CONFIG_IA64
7832 /**
7833 * set_curr_task - set the current task for a given cpu.
7834 * @cpu: the processor in question.
7835 * @p: the task pointer to set.
7836 *
7837 * Description: This function must only be used when non-maskable interrupts
7838 * are serviced on a separate stack. It allows the architecture to switch the
7839 * notion of the current task on a cpu in a non-blocking manner. This function
7840 * must be called with all CPU's synchronized, and interrupts disabled, the
7841 * and caller must save the original value of the current task (see
7842 * curr_task() above) and restore that value before reenabling interrupts and
7843 * re-starting the system.
7844 *
7845 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7846 */
7847 void ia64_set_curr_task(int cpu, struct task_struct *p)
7848 {
7849 cpu_curr(cpu) = p;
7850 }
7851
7852 #endif
7853
7854 #ifdef CONFIG_CGROUP_SCHED
7855 /* task_group_lock serializes the addition/removal of task groups */
7856 static DEFINE_SPINLOCK(task_group_lock);
7857
7858 static void sched_free_group(struct task_group *tg)
7859 {
7860 free_fair_sched_group(tg);
7861 free_rt_sched_group(tg);
7862 autogroup_free(tg);
7863 kmem_cache_free(task_group_cache, tg);
7864 }
7865
7866 /* allocate runqueue etc for a new task group */
7867 struct task_group *sched_create_group(struct task_group *parent)
7868 {
7869 struct task_group *tg;
7870
7871 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7872 if (!tg)
7873 return ERR_PTR(-ENOMEM);
7874
7875 if (!alloc_fair_sched_group(tg, parent))
7876 goto err;
7877
7878 if (!alloc_rt_sched_group(tg, parent))
7879 goto err;
7880
7881 return tg;
7882
7883 err:
7884 sched_free_group(tg);
7885 return ERR_PTR(-ENOMEM);
7886 }
7887
7888 void sched_online_group(struct task_group *tg, struct task_group *parent)
7889 {
7890 unsigned long flags;
7891
7892 spin_lock_irqsave(&task_group_lock, flags);
7893 list_add_rcu(&tg->list, &task_groups);
7894
7895 WARN_ON(!parent); /* root should already exist */
7896
7897 tg->parent = parent;
7898 INIT_LIST_HEAD(&tg->children);
7899 list_add_rcu(&tg->siblings, &parent->children);
7900 spin_unlock_irqrestore(&task_group_lock, flags);
7901
7902 online_fair_sched_group(tg);
7903 }
7904
7905 /* rcu callback to free various structures associated with a task group */
7906 static void sched_free_group_rcu(struct rcu_head *rhp)
7907 {
7908 /* now it should be safe to free those cfs_rqs */
7909 sched_free_group(container_of(rhp, struct task_group, rcu));
7910 }
7911
7912 void sched_destroy_group(struct task_group *tg)
7913 {
7914 /* wait for possible concurrent references to cfs_rqs complete */
7915 call_rcu(&tg->rcu, sched_free_group_rcu);
7916 }
7917
7918 void sched_offline_group(struct task_group *tg)
7919 {
7920 unsigned long flags;
7921
7922 /* end participation in shares distribution */
7923 unregister_fair_sched_group(tg);
7924
7925 spin_lock_irqsave(&task_group_lock, flags);
7926 list_del_rcu(&tg->list);
7927 list_del_rcu(&tg->siblings);
7928 spin_unlock_irqrestore(&task_group_lock, flags);
7929 }
7930
7931 static void sched_change_group(struct task_struct *tsk, int type)
7932 {
7933 struct task_group *tg;
7934
7935 /*
7936 * All callers are synchronized by task_rq_lock(); we do not use RCU
7937 * which is pointless here. Thus, we pass "true" to task_css_check()
7938 * to prevent lockdep warnings.
7939 */
7940 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7941 struct task_group, css);
7942 tg = autogroup_task_group(tsk, tg);
7943 tsk->sched_task_group = tg;
7944
7945 #ifdef CONFIG_FAIR_GROUP_SCHED
7946 if (tsk->sched_class->task_change_group)
7947 tsk->sched_class->task_change_group(tsk, type);
7948 else
7949 #endif
7950 set_task_rq(tsk, task_cpu(tsk));
7951 }
7952
7953 /*
7954 * Change task's runqueue when it moves between groups.
7955 *
7956 * The caller of this function should have put the task in its new group by
7957 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7958 * its new group.
7959 */
7960 void sched_move_task(struct task_struct *tsk)
7961 {
7962 int queued, running;
7963 struct rq_flags rf;
7964 struct rq *rq;
7965
7966 rq = task_rq_lock(tsk, &rf);
7967
7968 running = task_current(rq, tsk);
7969 queued = task_on_rq_queued(tsk);
7970
7971 if (queued)
7972 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7973 if (unlikely(running))
7974 put_prev_task(rq, tsk);
7975
7976 sched_change_group(tsk, TASK_MOVE_GROUP);
7977
7978 if (queued)
7979 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7980 if (unlikely(running))
7981 set_curr_task(rq, tsk);
7982
7983 task_rq_unlock(rq, tsk, &rf);
7984 }
7985 #endif /* CONFIG_CGROUP_SCHED */
7986
7987 #ifdef CONFIG_RT_GROUP_SCHED
7988 /*
7989 * Ensure that the real time constraints are schedulable.
7990 */
7991 static DEFINE_MUTEX(rt_constraints_mutex);
7992
7993 /* Must be called with tasklist_lock held */
7994 static inline int tg_has_rt_tasks(struct task_group *tg)
7995 {
7996 struct task_struct *g, *p;
7997
7998 /*
7999 * Autogroups do not have RT tasks; see autogroup_create().
8000 */
8001 if (task_group_is_autogroup(tg))
8002 return 0;
8003
8004 for_each_process_thread(g, p) {
8005 if (rt_task(p) && task_group(p) == tg)
8006 return 1;
8007 }
8008
8009 return 0;
8010 }
8011
8012 struct rt_schedulable_data {
8013 struct task_group *tg;
8014 u64 rt_period;
8015 u64 rt_runtime;
8016 };
8017
8018 static int tg_rt_schedulable(struct task_group *tg, void *data)
8019 {
8020 struct rt_schedulable_data *d = data;
8021 struct task_group *child;
8022 unsigned long total, sum = 0;
8023 u64 period, runtime;
8024
8025 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8026 runtime = tg->rt_bandwidth.rt_runtime;
8027
8028 if (tg == d->tg) {
8029 period = d->rt_period;
8030 runtime = d->rt_runtime;
8031 }
8032
8033 /*
8034 * Cannot have more runtime than the period.
8035 */
8036 if (runtime > period && runtime != RUNTIME_INF)
8037 return -EINVAL;
8038
8039 /*
8040 * Ensure we don't starve existing RT tasks.
8041 */
8042 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8043 return -EBUSY;
8044
8045 total = to_ratio(period, runtime);
8046
8047 /*
8048 * Nobody can have more than the global setting allows.
8049 */
8050 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8051 return -EINVAL;
8052
8053 /*
8054 * The sum of our children's runtime should not exceed our own.
8055 */
8056 list_for_each_entry_rcu(child, &tg->children, siblings) {
8057 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8058 runtime = child->rt_bandwidth.rt_runtime;
8059
8060 if (child == d->tg) {
8061 period = d->rt_period;
8062 runtime = d->rt_runtime;
8063 }
8064
8065 sum += to_ratio(period, runtime);
8066 }
8067
8068 if (sum > total)
8069 return -EINVAL;
8070
8071 return 0;
8072 }
8073
8074 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8075 {
8076 int ret;
8077
8078 struct rt_schedulable_data data = {
8079 .tg = tg,
8080 .rt_period = period,
8081 .rt_runtime = runtime,
8082 };
8083
8084 rcu_read_lock();
8085 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8086 rcu_read_unlock();
8087
8088 return ret;
8089 }
8090
8091 static int tg_set_rt_bandwidth(struct task_group *tg,
8092 u64 rt_period, u64 rt_runtime)
8093 {
8094 int i, err = 0;
8095
8096 /*
8097 * Disallowing the root group RT runtime is BAD, it would disallow the
8098 * kernel creating (and or operating) RT threads.
8099 */
8100 if (tg == &root_task_group && rt_runtime == 0)
8101 return -EINVAL;
8102
8103 /* No period doesn't make any sense. */
8104 if (rt_period == 0)
8105 return -EINVAL;
8106
8107 mutex_lock(&rt_constraints_mutex);
8108 read_lock(&tasklist_lock);
8109 err = __rt_schedulable(tg, rt_period, rt_runtime);
8110 if (err)
8111 goto unlock;
8112
8113 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8114 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8115 tg->rt_bandwidth.rt_runtime = rt_runtime;
8116
8117 for_each_possible_cpu(i) {
8118 struct rt_rq *rt_rq = tg->rt_rq[i];
8119
8120 raw_spin_lock(&rt_rq->rt_runtime_lock);
8121 rt_rq->rt_runtime = rt_runtime;
8122 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8123 }
8124 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8125 unlock:
8126 read_unlock(&tasklist_lock);
8127 mutex_unlock(&rt_constraints_mutex);
8128
8129 return err;
8130 }
8131
8132 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8133 {
8134 u64 rt_runtime, rt_period;
8135
8136 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8137 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8138 if (rt_runtime_us < 0)
8139 rt_runtime = RUNTIME_INF;
8140
8141 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8142 }
8143
8144 static long sched_group_rt_runtime(struct task_group *tg)
8145 {
8146 u64 rt_runtime_us;
8147
8148 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8149 return -1;
8150
8151 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8152 do_div(rt_runtime_us, NSEC_PER_USEC);
8153 return rt_runtime_us;
8154 }
8155
8156 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8157 {
8158 u64 rt_runtime, rt_period;
8159
8160 rt_period = rt_period_us * NSEC_PER_USEC;
8161 rt_runtime = tg->rt_bandwidth.rt_runtime;
8162
8163 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8164 }
8165
8166 static long sched_group_rt_period(struct task_group *tg)
8167 {
8168 u64 rt_period_us;
8169
8170 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8171 do_div(rt_period_us, NSEC_PER_USEC);
8172 return rt_period_us;
8173 }
8174 #endif /* CONFIG_RT_GROUP_SCHED */
8175
8176 #ifdef CONFIG_RT_GROUP_SCHED
8177 static int sched_rt_global_constraints(void)
8178 {
8179 int ret = 0;
8180
8181 mutex_lock(&rt_constraints_mutex);
8182 read_lock(&tasklist_lock);
8183 ret = __rt_schedulable(NULL, 0, 0);
8184 read_unlock(&tasklist_lock);
8185 mutex_unlock(&rt_constraints_mutex);
8186
8187 return ret;
8188 }
8189
8190 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8191 {
8192 /* Don't accept realtime tasks when there is no way for them to run */
8193 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8194 return 0;
8195
8196 return 1;
8197 }
8198
8199 #else /* !CONFIG_RT_GROUP_SCHED */
8200 static int sched_rt_global_constraints(void)
8201 {
8202 unsigned long flags;
8203 int i;
8204
8205 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8206 for_each_possible_cpu(i) {
8207 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8208
8209 raw_spin_lock(&rt_rq->rt_runtime_lock);
8210 rt_rq->rt_runtime = global_rt_runtime();
8211 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8212 }
8213 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8214
8215 return 0;
8216 }
8217 #endif /* CONFIG_RT_GROUP_SCHED */
8218
8219 static int sched_dl_global_validate(void)
8220 {
8221 u64 runtime = global_rt_runtime();
8222 u64 period = global_rt_period();
8223 u64 new_bw = to_ratio(period, runtime);
8224 struct dl_bw *dl_b;
8225 int cpu, ret = 0;
8226 unsigned long flags;
8227
8228 /*
8229 * Here we want to check the bandwidth not being set to some
8230 * value smaller than the currently allocated bandwidth in
8231 * any of the root_domains.
8232 *
8233 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8234 * cycling on root_domains... Discussion on different/better
8235 * solutions is welcome!
8236 */
8237 for_each_possible_cpu(cpu) {
8238 rcu_read_lock_sched();
8239 dl_b = dl_bw_of(cpu);
8240
8241 raw_spin_lock_irqsave(&dl_b->lock, flags);
8242 if (new_bw < dl_b->total_bw)
8243 ret = -EBUSY;
8244 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8245
8246 rcu_read_unlock_sched();
8247
8248 if (ret)
8249 break;
8250 }
8251
8252 return ret;
8253 }
8254
8255 static void sched_dl_do_global(void)
8256 {
8257 u64 new_bw = -1;
8258 struct dl_bw *dl_b;
8259 int cpu;
8260 unsigned long flags;
8261
8262 def_dl_bandwidth.dl_period = global_rt_period();
8263 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8264
8265 if (global_rt_runtime() != RUNTIME_INF)
8266 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8267
8268 /*
8269 * FIXME: As above...
8270 */
8271 for_each_possible_cpu(cpu) {
8272 rcu_read_lock_sched();
8273 dl_b = dl_bw_of(cpu);
8274
8275 raw_spin_lock_irqsave(&dl_b->lock, flags);
8276 dl_b->bw = new_bw;
8277 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8278
8279 rcu_read_unlock_sched();
8280 }
8281 }
8282
8283 static int sched_rt_global_validate(void)
8284 {
8285 if (sysctl_sched_rt_period <= 0)
8286 return -EINVAL;
8287
8288 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8289 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8290 return -EINVAL;
8291
8292 return 0;
8293 }
8294
8295 static void sched_rt_do_global(void)
8296 {
8297 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8298 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8299 }
8300
8301 int sched_rt_handler(struct ctl_table *table, int write,
8302 void __user *buffer, size_t *lenp,
8303 loff_t *ppos)
8304 {
8305 int old_period, old_runtime;
8306 static DEFINE_MUTEX(mutex);
8307 int ret;
8308
8309 mutex_lock(&mutex);
8310 old_period = sysctl_sched_rt_period;
8311 old_runtime = sysctl_sched_rt_runtime;
8312
8313 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8314
8315 if (!ret && write) {
8316 ret = sched_rt_global_validate();
8317 if (ret)
8318 goto undo;
8319
8320 ret = sched_dl_global_validate();
8321 if (ret)
8322 goto undo;
8323
8324 ret = sched_rt_global_constraints();
8325 if (ret)
8326 goto undo;
8327
8328 sched_rt_do_global();
8329 sched_dl_do_global();
8330 }
8331 if (0) {
8332 undo:
8333 sysctl_sched_rt_period = old_period;
8334 sysctl_sched_rt_runtime = old_runtime;
8335 }
8336 mutex_unlock(&mutex);
8337
8338 return ret;
8339 }
8340
8341 int sched_rr_handler(struct ctl_table *table, int write,
8342 void __user *buffer, size_t *lenp,
8343 loff_t *ppos)
8344 {
8345 int ret;
8346 static DEFINE_MUTEX(mutex);
8347
8348 mutex_lock(&mutex);
8349 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8350 /* make sure that internally we keep jiffies */
8351 /* also, writing zero resets timeslice to default */
8352 if (!ret && write) {
8353 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8354 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8355 }
8356 mutex_unlock(&mutex);
8357 return ret;
8358 }
8359
8360 #ifdef CONFIG_CGROUP_SCHED
8361
8362 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8363 {
8364 return css ? container_of(css, struct task_group, css) : NULL;
8365 }
8366
8367 static struct cgroup_subsys_state *
8368 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8369 {
8370 struct task_group *parent = css_tg(parent_css);
8371 struct task_group *tg;
8372
8373 if (!parent) {
8374 /* This is early initialization for the top cgroup */
8375 return &root_task_group.css;
8376 }
8377
8378 tg = sched_create_group(parent);
8379 if (IS_ERR(tg))
8380 return ERR_PTR(-ENOMEM);
8381
8382 sched_online_group(tg, parent);
8383
8384 return &tg->css;
8385 }
8386
8387 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8388 {
8389 struct task_group *tg = css_tg(css);
8390
8391 sched_offline_group(tg);
8392 }
8393
8394 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8395 {
8396 struct task_group *tg = css_tg(css);
8397
8398 /*
8399 * Relies on the RCU grace period between css_released() and this.
8400 */
8401 sched_free_group(tg);
8402 }
8403
8404 /*
8405 * This is called before wake_up_new_task(), therefore we really only
8406 * have to set its group bits, all the other stuff does not apply.
8407 */
8408 static void cpu_cgroup_fork(struct task_struct *task)
8409 {
8410 struct rq_flags rf;
8411 struct rq *rq;
8412
8413 rq = task_rq_lock(task, &rf);
8414
8415 sched_change_group(task, TASK_SET_GROUP);
8416
8417 task_rq_unlock(rq, task, &rf);
8418 }
8419
8420 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8421 {
8422 struct task_struct *task;
8423 struct cgroup_subsys_state *css;
8424 int ret = 0;
8425
8426 cgroup_taskset_for_each(task, css, tset) {
8427 #ifdef CONFIG_RT_GROUP_SCHED
8428 if (!sched_rt_can_attach(css_tg(css), task))
8429 return -EINVAL;
8430 #else
8431 /* We don't support RT-tasks being in separate groups */
8432 if (task->sched_class != &fair_sched_class)
8433 return -EINVAL;
8434 #endif
8435 /*
8436 * Serialize against wake_up_new_task() such that if its
8437 * running, we're sure to observe its full state.
8438 */
8439 raw_spin_lock_irq(&task->pi_lock);
8440 /*
8441 * Avoid calling sched_move_task() before wake_up_new_task()
8442 * has happened. This would lead to problems with PELT, due to
8443 * move wanting to detach+attach while we're not attached yet.
8444 */
8445 if (task->state == TASK_NEW)
8446 ret = -EINVAL;
8447 raw_spin_unlock_irq(&task->pi_lock);
8448
8449 if (ret)
8450 break;
8451 }
8452 return ret;
8453 }
8454
8455 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8456 {
8457 struct task_struct *task;
8458 struct cgroup_subsys_state *css;
8459
8460 cgroup_taskset_for_each(task, css, tset)
8461 sched_move_task(task);
8462 }
8463
8464 #ifdef CONFIG_FAIR_GROUP_SCHED
8465 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8466 struct cftype *cftype, u64 shareval)
8467 {
8468 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8469 }
8470
8471 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8472 struct cftype *cft)
8473 {
8474 struct task_group *tg = css_tg(css);
8475
8476 return (u64) scale_load_down(tg->shares);
8477 }
8478
8479 #ifdef CONFIG_CFS_BANDWIDTH
8480 static DEFINE_MUTEX(cfs_constraints_mutex);
8481
8482 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8483 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8484
8485 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8486
8487 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8488 {
8489 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8490 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8491
8492 if (tg == &root_task_group)
8493 return -EINVAL;
8494
8495 /*
8496 * Ensure we have at some amount of bandwidth every period. This is
8497 * to prevent reaching a state of large arrears when throttled via
8498 * entity_tick() resulting in prolonged exit starvation.
8499 */
8500 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8501 return -EINVAL;
8502
8503 /*
8504 * Likewise, bound things on the otherside by preventing insane quota
8505 * periods. This also allows us to normalize in computing quota
8506 * feasibility.
8507 */
8508 if (period > max_cfs_quota_period)
8509 return -EINVAL;
8510
8511 /*
8512 * Prevent race between setting of cfs_rq->runtime_enabled and
8513 * unthrottle_offline_cfs_rqs().
8514 */
8515 get_online_cpus();
8516 mutex_lock(&cfs_constraints_mutex);
8517 ret = __cfs_schedulable(tg, period, quota);
8518 if (ret)
8519 goto out_unlock;
8520
8521 runtime_enabled = quota != RUNTIME_INF;
8522 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8523 /*
8524 * If we need to toggle cfs_bandwidth_used, off->on must occur
8525 * before making related changes, and on->off must occur afterwards
8526 */
8527 if (runtime_enabled && !runtime_was_enabled)
8528 cfs_bandwidth_usage_inc();
8529 raw_spin_lock_irq(&cfs_b->lock);
8530 cfs_b->period = ns_to_ktime(period);
8531 cfs_b->quota = quota;
8532
8533 __refill_cfs_bandwidth_runtime(cfs_b);
8534 /* restart the period timer (if active) to handle new period expiry */
8535 if (runtime_enabled)
8536 start_cfs_bandwidth(cfs_b);
8537 raw_spin_unlock_irq(&cfs_b->lock);
8538
8539 for_each_online_cpu(i) {
8540 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8541 struct rq *rq = cfs_rq->rq;
8542
8543 raw_spin_lock_irq(&rq->lock);
8544 cfs_rq->runtime_enabled = runtime_enabled;
8545 cfs_rq->runtime_remaining = 0;
8546
8547 if (cfs_rq->throttled)
8548 unthrottle_cfs_rq(cfs_rq);
8549 raw_spin_unlock_irq(&rq->lock);
8550 }
8551 if (runtime_was_enabled && !runtime_enabled)
8552 cfs_bandwidth_usage_dec();
8553 out_unlock:
8554 mutex_unlock(&cfs_constraints_mutex);
8555 put_online_cpus();
8556
8557 return ret;
8558 }
8559
8560 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8561 {
8562 u64 quota, period;
8563
8564 period = ktime_to_ns(tg->cfs_bandwidth.period);
8565 if (cfs_quota_us < 0)
8566 quota = RUNTIME_INF;
8567 else
8568 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8569
8570 return tg_set_cfs_bandwidth(tg, period, quota);
8571 }
8572
8573 long tg_get_cfs_quota(struct task_group *tg)
8574 {
8575 u64 quota_us;
8576
8577 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8578 return -1;
8579
8580 quota_us = tg->cfs_bandwidth.quota;
8581 do_div(quota_us, NSEC_PER_USEC);
8582
8583 return quota_us;
8584 }
8585
8586 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8587 {
8588 u64 quota, period;
8589
8590 period = (u64)cfs_period_us * NSEC_PER_USEC;
8591 quota = tg->cfs_bandwidth.quota;
8592
8593 return tg_set_cfs_bandwidth(tg, period, quota);
8594 }
8595
8596 long tg_get_cfs_period(struct task_group *tg)
8597 {
8598 u64 cfs_period_us;
8599
8600 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8601 do_div(cfs_period_us, NSEC_PER_USEC);
8602
8603 return cfs_period_us;
8604 }
8605
8606 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8607 struct cftype *cft)
8608 {
8609 return tg_get_cfs_quota(css_tg(css));
8610 }
8611
8612 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8613 struct cftype *cftype, s64 cfs_quota_us)
8614 {
8615 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8616 }
8617
8618 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8619 struct cftype *cft)
8620 {
8621 return tg_get_cfs_period(css_tg(css));
8622 }
8623
8624 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8625 struct cftype *cftype, u64 cfs_period_us)
8626 {
8627 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8628 }
8629
8630 struct cfs_schedulable_data {
8631 struct task_group *tg;
8632 u64 period, quota;
8633 };
8634
8635 /*
8636 * normalize group quota/period to be quota/max_period
8637 * note: units are usecs
8638 */
8639 static u64 normalize_cfs_quota(struct task_group *tg,
8640 struct cfs_schedulable_data *d)
8641 {
8642 u64 quota, period;
8643
8644 if (tg == d->tg) {
8645 period = d->period;
8646 quota = d->quota;
8647 } else {
8648 period = tg_get_cfs_period(tg);
8649 quota = tg_get_cfs_quota(tg);
8650 }
8651
8652 /* note: these should typically be equivalent */
8653 if (quota == RUNTIME_INF || quota == -1)
8654 return RUNTIME_INF;
8655
8656 return to_ratio(period, quota);
8657 }
8658
8659 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8660 {
8661 struct cfs_schedulable_data *d = data;
8662 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8663 s64 quota = 0, parent_quota = -1;
8664
8665 if (!tg->parent) {
8666 quota = RUNTIME_INF;
8667 } else {
8668 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8669
8670 quota = normalize_cfs_quota(tg, d);
8671 parent_quota = parent_b->hierarchical_quota;
8672
8673 /*
8674 * ensure max(child_quota) <= parent_quota, inherit when no
8675 * limit is set
8676 */
8677 if (quota == RUNTIME_INF)
8678 quota = parent_quota;
8679 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8680 return -EINVAL;
8681 }
8682 cfs_b->hierarchical_quota = quota;
8683
8684 return 0;
8685 }
8686
8687 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8688 {
8689 int ret;
8690 struct cfs_schedulable_data data = {
8691 .tg = tg,
8692 .period = period,
8693 .quota = quota,
8694 };
8695
8696 if (quota != RUNTIME_INF) {
8697 do_div(data.period, NSEC_PER_USEC);
8698 do_div(data.quota, NSEC_PER_USEC);
8699 }
8700
8701 rcu_read_lock();
8702 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8703 rcu_read_unlock();
8704
8705 return ret;
8706 }
8707
8708 static int cpu_stats_show(struct seq_file *sf, void *v)
8709 {
8710 struct task_group *tg = css_tg(seq_css(sf));
8711 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8712
8713 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8714 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8715 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8716
8717 return 0;
8718 }
8719 #endif /* CONFIG_CFS_BANDWIDTH */
8720 #endif /* CONFIG_FAIR_GROUP_SCHED */
8721
8722 #ifdef CONFIG_RT_GROUP_SCHED
8723 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8724 struct cftype *cft, s64 val)
8725 {
8726 return sched_group_set_rt_runtime(css_tg(css), val);
8727 }
8728
8729 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8730 struct cftype *cft)
8731 {
8732 return sched_group_rt_runtime(css_tg(css));
8733 }
8734
8735 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8736 struct cftype *cftype, u64 rt_period_us)
8737 {
8738 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8739 }
8740
8741 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8742 struct cftype *cft)
8743 {
8744 return sched_group_rt_period(css_tg(css));
8745 }
8746 #endif /* CONFIG_RT_GROUP_SCHED */
8747
8748 static struct cftype cpu_files[] = {
8749 #ifdef CONFIG_FAIR_GROUP_SCHED
8750 {
8751 .name = "shares",
8752 .read_u64 = cpu_shares_read_u64,
8753 .write_u64 = cpu_shares_write_u64,
8754 },
8755 #endif
8756 #ifdef CONFIG_CFS_BANDWIDTH
8757 {
8758 .name = "cfs_quota_us",
8759 .read_s64 = cpu_cfs_quota_read_s64,
8760 .write_s64 = cpu_cfs_quota_write_s64,
8761 },
8762 {
8763 .name = "cfs_period_us",
8764 .read_u64 = cpu_cfs_period_read_u64,
8765 .write_u64 = cpu_cfs_period_write_u64,
8766 },
8767 {
8768 .name = "stat",
8769 .seq_show = cpu_stats_show,
8770 },
8771 #endif
8772 #ifdef CONFIG_RT_GROUP_SCHED
8773 {
8774 .name = "rt_runtime_us",
8775 .read_s64 = cpu_rt_runtime_read,
8776 .write_s64 = cpu_rt_runtime_write,
8777 },
8778 {
8779 .name = "rt_period_us",
8780 .read_u64 = cpu_rt_period_read_uint,
8781 .write_u64 = cpu_rt_period_write_uint,
8782 },
8783 #endif
8784 { } /* terminate */
8785 };
8786
8787 struct cgroup_subsys cpu_cgrp_subsys = {
8788 .css_alloc = cpu_cgroup_css_alloc,
8789 .css_released = cpu_cgroup_css_released,
8790 .css_free = cpu_cgroup_css_free,
8791 .fork = cpu_cgroup_fork,
8792 .can_attach = cpu_cgroup_can_attach,
8793 .attach = cpu_cgroup_attach,
8794 .legacy_cftypes = cpu_files,
8795 .early_init = true,
8796 };
8797
8798 #endif /* CONFIG_CGROUP_SCHED */
8799
8800 void dump_cpu_task(int cpu)
8801 {
8802 pr_info("Task dump for CPU %d:\n", cpu);
8803 sched_show_task(cpu_curr(cpu));
8804 }
8805
8806 /*
8807 * Nice levels are multiplicative, with a gentle 10% change for every
8808 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8809 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8810 * that remained on nice 0.
8811 *
8812 * The "10% effect" is relative and cumulative: from _any_ nice level,
8813 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8814 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8815 * If a task goes up by ~10% and another task goes down by ~10% then
8816 * the relative distance between them is ~25%.)
8817 */
8818 const int sched_prio_to_weight[40] = {
8819 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8820 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8821 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8822 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8823 /* 0 */ 1024, 820, 655, 526, 423,
8824 /* 5 */ 335, 272, 215, 172, 137,
8825 /* 10 */ 110, 87, 70, 56, 45,
8826 /* 15 */ 36, 29, 23, 18, 15,
8827 };
8828
8829 /*
8830 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8831 *
8832 * In cases where the weight does not change often, we can use the
8833 * precalculated inverse to speed up arithmetics by turning divisions
8834 * into multiplications:
8835 */
8836 const u32 sched_prio_to_wmult[40] = {
8837 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8838 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8839 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8840 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8841 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8842 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8843 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8844 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8845 };