]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
sched/core: Move task_rq_lock() out of line
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 /*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
176 struct rq *__task_rq_lock(struct task_struct *p)
177 __acquires(rq->lock)
178 {
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 lockdep_pin_lock(&rq->lock);
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195 }
196
197 /*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
200 struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203 {
204 struct rq *rq;
205
206 for (;;) {
207 raw_spin_lock_irqsave(&p->pi_lock, *flags);
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 lockdep_pin_lock(&rq->lock);
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
231 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236 }
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240 * Use HR-timers to deliver accurate preemption points.
241 */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 raw_spin_lock(&rq->lock);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 raw_spin_unlock(&rq->lock);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282
283 raw_spin_lock(&rq->lock);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 static int
318 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
319 {
320 int cpu = (int)(long)hcpu;
321
322 switch (action) {
323 case CPU_UP_CANCELED:
324 case CPU_UP_CANCELED_FROZEN:
325 case CPU_DOWN_PREPARE:
326 case CPU_DOWN_PREPARE_FROZEN:
327 case CPU_DEAD:
328 case CPU_DEAD_FROZEN:
329 hrtick_clear(cpu_rq(cpu));
330 return NOTIFY_OK;
331 }
332
333 return NOTIFY_DONE;
334 }
335
336 static __init void init_hrtick(void)
337 {
338 hotcpu_notifier(hotplug_hrtick, 0);
339 }
340 #else
341 /*
342 * Called to set the hrtick timer state.
343 *
344 * called with rq->lock held and irqs disabled
345 */
346 void hrtick_start(struct rq *rq, u64 delay)
347 {
348 /*
349 * Don't schedule slices shorter than 10000ns, that just
350 * doesn't make sense. Rely on vruntime for fairness.
351 */
352 delay = max_t(u64, delay, 10000LL);
353 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
354 HRTIMER_MODE_REL_PINNED);
355 }
356
357 static inline void init_hrtick(void)
358 {
359 }
360 #endif /* CONFIG_SMP */
361
362 static void init_rq_hrtick(struct rq *rq)
363 {
364 #ifdef CONFIG_SMP
365 rq->hrtick_csd_pending = 0;
366
367 rq->hrtick_csd.flags = 0;
368 rq->hrtick_csd.func = __hrtick_start;
369 rq->hrtick_csd.info = rq;
370 #endif
371
372 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
373 rq->hrtick_timer.function = hrtick;
374 }
375 #else /* CONFIG_SCHED_HRTICK */
376 static inline void hrtick_clear(struct rq *rq)
377 {
378 }
379
380 static inline void init_rq_hrtick(struct rq *rq)
381 {
382 }
383
384 static inline void init_hrtick(void)
385 {
386 }
387 #endif /* CONFIG_SCHED_HRTICK */
388
389 /*
390 * cmpxchg based fetch_or, macro so it works for different integer types
391 */
392 #define fetch_or(ptr, mask) \
393 ({ \
394 typeof(ptr) _ptr = (ptr); \
395 typeof(mask) _mask = (mask); \
396 typeof(*_ptr) _old, _val = *_ptr; \
397 \
398 for (;;) { \
399 _old = cmpxchg(_ptr, _val, _val | _mask); \
400 if (_old == _val) \
401 break; \
402 _val = _old; \
403 } \
404 _old; \
405 })
406
407 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
408 /*
409 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
410 * this avoids any races wrt polling state changes and thereby avoids
411 * spurious IPIs.
412 */
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 struct thread_info *ti = task_thread_info(p);
416 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
417 }
418
419 /*
420 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
421 *
422 * If this returns true, then the idle task promises to call
423 * sched_ttwu_pending() and reschedule soon.
424 */
425 static bool set_nr_if_polling(struct task_struct *p)
426 {
427 struct thread_info *ti = task_thread_info(p);
428 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
429
430 for (;;) {
431 if (!(val & _TIF_POLLING_NRFLAG))
432 return false;
433 if (val & _TIF_NEED_RESCHED)
434 return true;
435 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
436 if (old == val)
437 break;
438 val = old;
439 }
440 return true;
441 }
442
443 #else
444 static bool set_nr_and_not_polling(struct task_struct *p)
445 {
446 set_tsk_need_resched(p);
447 return true;
448 }
449
450 #ifdef CONFIG_SMP
451 static bool set_nr_if_polling(struct task_struct *p)
452 {
453 return false;
454 }
455 #endif
456 #endif
457
458 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
459 {
460 struct wake_q_node *node = &task->wake_q;
461
462 /*
463 * Atomically grab the task, if ->wake_q is !nil already it means
464 * its already queued (either by us or someone else) and will get the
465 * wakeup due to that.
466 *
467 * This cmpxchg() implies a full barrier, which pairs with the write
468 * barrier implied by the wakeup in wake_up_list().
469 */
470 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
471 return;
472
473 get_task_struct(task);
474
475 /*
476 * The head is context local, there can be no concurrency.
477 */
478 *head->lastp = node;
479 head->lastp = &node->next;
480 }
481
482 void wake_up_q(struct wake_q_head *head)
483 {
484 struct wake_q_node *node = head->first;
485
486 while (node != WAKE_Q_TAIL) {
487 struct task_struct *task;
488
489 task = container_of(node, struct task_struct, wake_q);
490 BUG_ON(!task);
491 /* task can safely be re-inserted now */
492 node = node->next;
493 task->wake_q.next = NULL;
494
495 /*
496 * wake_up_process() implies a wmb() to pair with the queueing
497 * in wake_q_add() so as not to miss wakeups.
498 */
499 wake_up_process(task);
500 put_task_struct(task);
501 }
502 }
503
504 /*
505 * resched_curr - mark rq's current task 'to be rescheduled now'.
506 *
507 * On UP this means the setting of the need_resched flag, on SMP it
508 * might also involve a cross-CPU call to trigger the scheduler on
509 * the target CPU.
510 */
511 void resched_curr(struct rq *rq)
512 {
513 struct task_struct *curr = rq->curr;
514 int cpu;
515
516 lockdep_assert_held(&rq->lock);
517
518 if (test_tsk_need_resched(curr))
519 return;
520
521 cpu = cpu_of(rq);
522
523 if (cpu == smp_processor_id()) {
524 set_tsk_need_resched(curr);
525 set_preempt_need_resched();
526 return;
527 }
528
529 if (set_nr_and_not_polling(curr))
530 smp_send_reschedule(cpu);
531 else
532 trace_sched_wake_idle_without_ipi(cpu);
533 }
534
535 void resched_cpu(int cpu)
536 {
537 struct rq *rq = cpu_rq(cpu);
538 unsigned long flags;
539
540 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
541 return;
542 resched_curr(rq);
543 raw_spin_unlock_irqrestore(&rq->lock, flags);
544 }
545
546 #ifdef CONFIG_SMP
547 #ifdef CONFIG_NO_HZ_COMMON
548 /*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556 int get_nohz_timer_target(void)
557 {
558 int i, cpu = smp_processor_id();
559 struct sched_domain *sd;
560
561 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
562 return cpu;
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573
574 if (!is_housekeeping_cpu(cpu))
575 cpu = housekeeping_any_cpu();
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
601 }
602
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
611 if (tick_nohz_full_cpu(cpu)) {
612 if (cpu != smp_processor_id() ||
613 tick_nohz_tick_stopped())
614 tick_nohz_full_kick_cpu(cpu);
615 return true;
616 }
617
618 return false;
619 }
620
621 void wake_up_nohz_cpu(int cpu)
622 {
623 if (!wake_up_full_nohz_cpu(cpu))
624 wake_up_idle_cpu(cpu);
625 }
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 int cpu = smp_processor_id();
630
631 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
632 return false;
633
634 if (idle_cpu(cpu) && !need_resched())
635 return true;
636
637 /*
638 * We can't run Idle Load Balance on this CPU for this time so we
639 * cancel it and clear NOHZ_BALANCE_KICK
640 */
641 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 return false;
643 }
644
645 #else /* CONFIG_NO_HZ_COMMON */
646
647 static inline bool got_nohz_idle_kick(void)
648 {
649 return false;
650 }
651
652 #endif /* CONFIG_NO_HZ_COMMON */
653
654 #ifdef CONFIG_NO_HZ_FULL
655 bool sched_can_stop_tick(struct rq *rq)
656 {
657 int fifo_nr_running;
658
659 /* Deadline tasks, even if single, need the tick */
660 if (rq->dl.dl_nr_running)
661 return false;
662
663 /*
664 * If there are more than one RR tasks, we need the tick to effect the
665 * actual RR behaviour.
666 */
667 if (rq->rt.rr_nr_running) {
668 if (rq->rt.rr_nr_running == 1)
669 return true;
670 else
671 return false;
672 }
673
674 /*
675 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
676 * forced preemption between FIFO tasks.
677 */
678 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
679 if (fifo_nr_running)
680 return true;
681
682 /*
683 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
684 * if there's more than one we need the tick for involuntary
685 * preemption.
686 */
687 if (rq->nr_running > 1)
688 return false;
689
690 return true;
691 }
692 #endif /* CONFIG_NO_HZ_FULL */
693
694 void sched_avg_update(struct rq *rq)
695 {
696 s64 period = sched_avg_period();
697
698 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
699 /*
700 * Inline assembly required to prevent the compiler
701 * optimising this loop into a divmod call.
702 * See __iter_div_u64_rem() for another example of this.
703 */
704 asm("" : "+rm" (rq->age_stamp));
705 rq->age_stamp += period;
706 rq->rt_avg /= 2;
707 }
708 }
709
710 #endif /* CONFIG_SMP */
711
712 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
713 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
714 /*
715 * Iterate task_group tree rooted at *from, calling @down when first entering a
716 * node and @up when leaving it for the final time.
717 *
718 * Caller must hold rcu_lock or sufficient equivalent.
719 */
720 int walk_tg_tree_from(struct task_group *from,
721 tg_visitor down, tg_visitor up, void *data)
722 {
723 struct task_group *parent, *child;
724 int ret;
725
726 parent = from;
727
728 down:
729 ret = (*down)(parent, data);
730 if (ret)
731 goto out;
732 list_for_each_entry_rcu(child, &parent->children, siblings) {
733 parent = child;
734 goto down;
735
736 up:
737 continue;
738 }
739 ret = (*up)(parent, data);
740 if (ret || parent == from)
741 goto out;
742
743 child = parent;
744 parent = parent->parent;
745 if (parent)
746 goto up;
747 out:
748 return ret;
749 }
750
751 int tg_nop(struct task_group *tg, void *data)
752 {
753 return 0;
754 }
755 #endif
756
757 static void set_load_weight(struct task_struct *p)
758 {
759 int prio = p->static_prio - MAX_RT_PRIO;
760 struct load_weight *load = &p->se.load;
761
762 /*
763 * SCHED_IDLE tasks get minimal weight:
764 */
765 if (idle_policy(p->policy)) {
766 load->weight = scale_load(WEIGHT_IDLEPRIO);
767 load->inv_weight = WMULT_IDLEPRIO;
768 return;
769 }
770
771 load->weight = scale_load(sched_prio_to_weight[prio]);
772 load->inv_weight = sched_prio_to_wmult[prio];
773 }
774
775 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 update_rq_clock(rq);
778 if (!(flags & ENQUEUE_RESTORE))
779 sched_info_queued(rq, p);
780 p->sched_class->enqueue_task(rq, p, flags);
781 }
782
783 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 update_rq_clock(rq);
786 if (!(flags & DEQUEUE_SAVE))
787 sched_info_dequeued(rq, p);
788 p->sched_class->dequeue_task(rq, p, flags);
789 }
790
791 void activate_task(struct rq *rq, struct task_struct *p, int flags)
792 {
793 if (task_contributes_to_load(p))
794 rq->nr_uninterruptible--;
795
796 enqueue_task(rq, p, flags);
797 }
798
799 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
800 {
801 if (task_contributes_to_load(p))
802 rq->nr_uninterruptible++;
803
804 dequeue_task(rq, p, flags);
805 }
806
807 static void update_rq_clock_task(struct rq *rq, s64 delta)
808 {
809 /*
810 * In theory, the compile should just see 0 here, and optimize out the call
811 * to sched_rt_avg_update. But I don't trust it...
812 */
813 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
814 s64 steal = 0, irq_delta = 0;
815 #endif
816 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
817 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
818
819 /*
820 * Since irq_time is only updated on {soft,}irq_exit, we might run into
821 * this case when a previous update_rq_clock() happened inside a
822 * {soft,}irq region.
823 *
824 * When this happens, we stop ->clock_task and only update the
825 * prev_irq_time stamp to account for the part that fit, so that a next
826 * update will consume the rest. This ensures ->clock_task is
827 * monotonic.
828 *
829 * It does however cause some slight miss-attribution of {soft,}irq
830 * time, a more accurate solution would be to update the irq_time using
831 * the current rq->clock timestamp, except that would require using
832 * atomic ops.
833 */
834 if (irq_delta > delta)
835 irq_delta = delta;
836
837 rq->prev_irq_time += irq_delta;
838 delta -= irq_delta;
839 #endif
840 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
841 if (static_key_false((&paravirt_steal_rq_enabled))) {
842 steal = paravirt_steal_clock(cpu_of(rq));
843 steal -= rq->prev_steal_time_rq;
844
845 if (unlikely(steal > delta))
846 steal = delta;
847
848 rq->prev_steal_time_rq += steal;
849 delta -= steal;
850 }
851 #endif
852
853 rq->clock_task += delta;
854
855 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
856 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
857 sched_rt_avg_update(rq, irq_delta + steal);
858 #endif
859 }
860
861 void sched_set_stop_task(int cpu, struct task_struct *stop)
862 {
863 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
864 struct task_struct *old_stop = cpu_rq(cpu)->stop;
865
866 if (stop) {
867 /*
868 * Make it appear like a SCHED_FIFO task, its something
869 * userspace knows about and won't get confused about.
870 *
871 * Also, it will make PI more or less work without too
872 * much confusion -- but then, stop work should not
873 * rely on PI working anyway.
874 */
875 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
876
877 stop->sched_class = &stop_sched_class;
878 }
879
880 cpu_rq(cpu)->stop = stop;
881
882 if (old_stop) {
883 /*
884 * Reset it back to a normal scheduling class so that
885 * it can die in pieces.
886 */
887 old_stop->sched_class = &rt_sched_class;
888 }
889 }
890
891 /*
892 * __normal_prio - return the priority that is based on the static prio
893 */
894 static inline int __normal_prio(struct task_struct *p)
895 {
896 return p->static_prio;
897 }
898
899 /*
900 * Calculate the expected normal priority: i.e. priority
901 * without taking RT-inheritance into account. Might be
902 * boosted by interactivity modifiers. Changes upon fork,
903 * setprio syscalls, and whenever the interactivity
904 * estimator recalculates.
905 */
906 static inline int normal_prio(struct task_struct *p)
907 {
908 int prio;
909
910 if (task_has_dl_policy(p))
911 prio = MAX_DL_PRIO-1;
912 else if (task_has_rt_policy(p))
913 prio = MAX_RT_PRIO-1 - p->rt_priority;
914 else
915 prio = __normal_prio(p);
916 return prio;
917 }
918
919 /*
920 * Calculate the current priority, i.e. the priority
921 * taken into account by the scheduler. This value might
922 * be boosted by RT tasks, or might be boosted by
923 * interactivity modifiers. Will be RT if the task got
924 * RT-boosted. If not then it returns p->normal_prio.
925 */
926 static int effective_prio(struct task_struct *p)
927 {
928 p->normal_prio = normal_prio(p);
929 /*
930 * If we are RT tasks or we were boosted to RT priority,
931 * keep the priority unchanged. Otherwise, update priority
932 * to the normal priority:
933 */
934 if (!rt_prio(p->prio))
935 return p->normal_prio;
936 return p->prio;
937 }
938
939 /**
940 * task_curr - is this task currently executing on a CPU?
941 * @p: the task in question.
942 *
943 * Return: 1 if the task is currently executing. 0 otherwise.
944 */
945 inline int task_curr(const struct task_struct *p)
946 {
947 return cpu_curr(task_cpu(p)) == p;
948 }
949
950 /*
951 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
952 * use the balance_callback list if you want balancing.
953 *
954 * this means any call to check_class_changed() must be followed by a call to
955 * balance_callback().
956 */
957 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
958 const struct sched_class *prev_class,
959 int oldprio)
960 {
961 if (prev_class != p->sched_class) {
962 if (prev_class->switched_from)
963 prev_class->switched_from(rq, p);
964
965 p->sched_class->switched_to(rq, p);
966 } else if (oldprio != p->prio || dl_task(p))
967 p->sched_class->prio_changed(rq, p, oldprio);
968 }
969
970 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
971 {
972 const struct sched_class *class;
973
974 if (p->sched_class == rq->curr->sched_class) {
975 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
976 } else {
977 for_each_class(class) {
978 if (class == rq->curr->sched_class)
979 break;
980 if (class == p->sched_class) {
981 resched_curr(rq);
982 break;
983 }
984 }
985 }
986
987 /*
988 * A queue event has occurred, and we're going to schedule. In
989 * this case, we can save a useless back to back clock update.
990 */
991 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
992 rq_clock_skip_update(rq, true);
993 }
994
995 #ifdef CONFIG_SMP
996 /*
997 * This is how migration works:
998 *
999 * 1) we invoke migration_cpu_stop() on the target CPU using
1000 * stop_one_cpu().
1001 * 2) stopper starts to run (implicitly forcing the migrated thread
1002 * off the CPU)
1003 * 3) it checks whether the migrated task is still in the wrong runqueue.
1004 * 4) if it's in the wrong runqueue then the migration thread removes
1005 * it and puts it into the right queue.
1006 * 5) stopper completes and stop_one_cpu() returns and the migration
1007 * is done.
1008 */
1009
1010 /*
1011 * move_queued_task - move a queued task to new rq.
1012 *
1013 * Returns (locked) new rq. Old rq's lock is released.
1014 */
1015 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1016 {
1017 lockdep_assert_held(&rq->lock);
1018
1019 p->on_rq = TASK_ON_RQ_MIGRATING;
1020 dequeue_task(rq, p, 0);
1021 set_task_cpu(p, new_cpu);
1022 raw_spin_unlock(&rq->lock);
1023
1024 rq = cpu_rq(new_cpu);
1025
1026 raw_spin_lock(&rq->lock);
1027 BUG_ON(task_cpu(p) != new_cpu);
1028 enqueue_task(rq, p, 0);
1029 p->on_rq = TASK_ON_RQ_QUEUED;
1030 check_preempt_curr(rq, p, 0);
1031
1032 return rq;
1033 }
1034
1035 struct migration_arg {
1036 struct task_struct *task;
1037 int dest_cpu;
1038 };
1039
1040 /*
1041 * Move (not current) task off this cpu, onto dest cpu. We're doing
1042 * this because either it can't run here any more (set_cpus_allowed()
1043 * away from this CPU, or CPU going down), or because we're
1044 * attempting to rebalance this task on exec (sched_exec).
1045 *
1046 * So we race with normal scheduler movements, but that's OK, as long
1047 * as the task is no longer on this CPU.
1048 */
1049 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1050 {
1051 if (unlikely(!cpu_active(dest_cpu)))
1052 return rq;
1053
1054 /* Affinity changed (again). */
1055 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1056 return rq;
1057
1058 rq = move_queued_task(rq, p, dest_cpu);
1059
1060 return rq;
1061 }
1062
1063 /*
1064 * migration_cpu_stop - this will be executed by a highprio stopper thread
1065 * and performs thread migration by bumping thread off CPU then
1066 * 'pushing' onto another runqueue.
1067 */
1068 static int migration_cpu_stop(void *data)
1069 {
1070 struct migration_arg *arg = data;
1071 struct task_struct *p = arg->task;
1072 struct rq *rq = this_rq();
1073
1074 /*
1075 * The original target cpu might have gone down and we might
1076 * be on another cpu but it doesn't matter.
1077 */
1078 local_irq_disable();
1079 /*
1080 * We need to explicitly wake pending tasks before running
1081 * __migrate_task() such that we will not miss enforcing cpus_allowed
1082 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1083 */
1084 sched_ttwu_pending();
1085
1086 raw_spin_lock(&p->pi_lock);
1087 raw_spin_lock(&rq->lock);
1088 /*
1089 * If task_rq(p) != rq, it cannot be migrated here, because we're
1090 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1091 * we're holding p->pi_lock.
1092 */
1093 if (task_rq(p) == rq && task_on_rq_queued(p))
1094 rq = __migrate_task(rq, p, arg->dest_cpu);
1095 raw_spin_unlock(&rq->lock);
1096 raw_spin_unlock(&p->pi_lock);
1097
1098 local_irq_enable();
1099 return 0;
1100 }
1101
1102 /*
1103 * sched_class::set_cpus_allowed must do the below, but is not required to
1104 * actually call this function.
1105 */
1106 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1107 {
1108 cpumask_copy(&p->cpus_allowed, new_mask);
1109 p->nr_cpus_allowed = cpumask_weight(new_mask);
1110 }
1111
1112 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1113 {
1114 struct rq *rq = task_rq(p);
1115 bool queued, running;
1116
1117 lockdep_assert_held(&p->pi_lock);
1118
1119 queued = task_on_rq_queued(p);
1120 running = task_current(rq, p);
1121
1122 if (queued) {
1123 /*
1124 * Because __kthread_bind() calls this on blocked tasks without
1125 * holding rq->lock.
1126 */
1127 lockdep_assert_held(&rq->lock);
1128 dequeue_task(rq, p, DEQUEUE_SAVE);
1129 }
1130 if (running)
1131 put_prev_task(rq, p);
1132
1133 p->sched_class->set_cpus_allowed(p, new_mask);
1134
1135 if (running)
1136 p->sched_class->set_curr_task(rq);
1137 if (queued)
1138 enqueue_task(rq, p, ENQUEUE_RESTORE);
1139 }
1140
1141 /*
1142 * Change a given task's CPU affinity. Migrate the thread to a
1143 * proper CPU and schedule it away if the CPU it's executing on
1144 * is removed from the allowed bitmask.
1145 *
1146 * NOTE: the caller must have a valid reference to the task, the
1147 * task must not exit() & deallocate itself prematurely. The
1148 * call is not atomic; no spinlocks may be held.
1149 */
1150 static int __set_cpus_allowed_ptr(struct task_struct *p,
1151 const struct cpumask *new_mask, bool check)
1152 {
1153 unsigned long flags;
1154 struct rq *rq;
1155 unsigned int dest_cpu;
1156 int ret = 0;
1157
1158 rq = task_rq_lock(p, &flags);
1159
1160 /*
1161 * Must re-check here, to close a race against __kthread_bind(),
1162 * sched_setaffinity() is not guaranteed to observe the flag.
1163 */
1164 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 if (cpumask_equal(&p->cpus_allowed, new_mask))
1170 goto out;
1171
1172 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1173 ret = -EINVAL;
1174 goto out;
1175 }
1176
1177 do_set_cpus_allowed(p, new_mask);
1178
1179 /* Can the task run on the task's current CPU? If so, we're done */
1180 if (cpumask_test_cpu(task_cpu(p), new_mask))
1181 goto out;
1182
1183 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1184 if (task_running(rq, p) || p->state == TASK_WAKING) {
1185 struct migration_arg arg = { p, dest_cpu };
1186 /* Need help from migration thread: drop lock and wait. */
1187 task_rq_unlock(rq, p, &flags);
1188 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1189 tlb_migrate_finish(p->mm);
1190 return 0;
1191 } else if (task_on_rq_queued(p)) {
1192 /*
1193 * OK, since we're going to drop the lock immediately
1194 * afterwards anyway.
1195 */
1196 lockdep_unpin_lock(&rq->lock);
1197 rq = move_queued_task(rq, p, dest_cpu);
1198 lockdep_pin_lock(&rq->lock);
1199 }
1200 out:
1201 task_rq_unlock(rq, p, &flags);
1202
1203 return ret;
1204 }
1205
1206 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1207 {
1208 return __set_cpus_allowed_ptr(p, new_mask, false);
1209 }
1210 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1211
1212 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1213 {
1214 #ifdef CONFIG_SCHED_DEBUG
1215 /*
1216 * We should never call set_task_cpu() on a blocked task,
1217 * ttwu() will sort out the placement.
1218 */
1219 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1220 !p->on_rq);
1221
1222 /*
1223 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1224 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1225 * time relying on p->on_rq.
1226 */
1227 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1228 p->sched_class == &fair_sched_class &&
1229 (p->on_rq && !task_on_rq_migrating(p)));
1230
1231 #ifdef CONFIG_LOCKDEP
1232 /*
1233 * The caller should hold either p->pi_lock or rq->lock, when changing
1234 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1235 *
1236 * sched_move_task() holds both and thus holding either pins the cgroup,
1237 * see task_group().
1238 *
1239 * Furthermore, all task_rq users should acquire both locks, see
1240 * task_rq_lock().
1241 */
1242 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1243 lockdep_is_held(&task_rq(p)->lock)));
1244 #endif
1245 #endif
1246
1247 trace_sched_migrate_task(p, new_cpu);
1248
1249 if (task_cpu(p) != new_cpu) {
1250 if (p->sched_class->migrate_task_rq)
1251 p->sched_class->migrate_task_rq(p);
1252 p->se.nr_migrations++;
1253 perf_event_task_migrate(p);
1254 }
1255
1256 __set_task_cpu(p, new_cpu);
1257 }
1258
1259 static void __migrate_swap_task(struct task_struct *p, int cpu)
1260 {
1261 if (task_on_rq_queued(p)) {
1262 struct rq *src_rq, *dst_rq;
1263
1264 src_rq = task_rq(p);
1265 dst_rq = cpu_rq(cpu);
1266
1267 p->on_rq = TASK_ON_RQ_MIGRATING;
1268 deactivate_task(src_rq, p, 0);
1269 set_task_cpu(p, cpu);
1270 activate_task(dst_rq, p, 0);
1271 p->on_rq = TASK_ON_RQ_QUEUED;
1272 check_preempt_curr(dst_rq, p, 0);
1273 } else {
1274 /*
1275 * Task isn't running anymore; make it appear like we migrated
1276 * it before it went to sleep. This means on wakeup we make the
1277 * previous cpu our targer instead of where it really is.
1278 */
1279 p->wake_cpu = cpu;
1280 }
1281 }
1282
1283 struct migration_swap_arg {
1284 struct task_struct *src_task, *dst_task;
1285 int src_cpu, dst_cpu;
1286 };
1287
1288 static int migrate_swap_stop(void *data)
1289 {
1290 struct migration_swap_arg *arg = data;
1291 struct rq *src_rq, *dst_rq;
1292 int ret = -EAGAIN;
1293
1294 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1295 return -EAGAIN;
1296
1297 src_rq = cpu_rq(arg->src_cpu);
1298 dst_rq = cpu_rq(arg->dst_cpu);
1299
1300 double_raw_lock(&arg->src_task->pi_lock,
1301 &arg->dst_task->pi_lock);
1302 double_rq_lock(src_rq, dst_rq);
1303
1304 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1305 goto unlock;
1306
1307 if (task_cpu(arg->src_task) != arg->src_cpu)
1308 goto unlock;
1309
1310 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1311 goto unlock;
1312
1313 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1314 goto unlock;
1315
1316 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1317 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1318
1319 ret = 0;
1320
1321 unlock:
1322 double_rq_unlock(src_rq, dst_rq);
1323 raw_spin_unlock(&arg->dst_task->pi_lock);
1324 raw_spin_unlock(&arg->src_task->pi_lock);
1325
1326 return ret;
1327 }
1328
1329 /*
1330 * Cross migrate two tasks
1331 */
1332 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1333 {
1334 struct migration_swap_arg arg;
1335 int ret = -EINVAL;
1336
1337 arg = (struct migration_swap_arg){
1338 .src_task = cur,
1339 .src_cpu = task_cpu(cur),
1340 .dst_task = p,
1341 .dst_cpu = task_cpu(p),
1342 };
1343
1344 if (arg.src_cpu == arg.dst_cpu)
1345 goto out;
1346
1347 /*
1348 * These three tests are all lockless; this is OK since all of them
1349 * will be re-checked with proper locks held further down the line.
1350 */
1351 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1352 goto out;
1353
1354 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1355 goto out;
1356
1357 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1358 goto out;
1359
1360 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1361 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1362
1363 out:
1364 return ret;
1365 }
1366
1367 /*
1368 * wait_task_inactive - wait for a thread to unschedule.
1369 *
1370 * If @match_state is nonzero, it's the @p->state value just checked and
1371 * not expected to change. If it changes, i.e. @p might have woken up,
1372 * then return zero. When we succeed in waiting for @p to be off its CPU,
1373 * we return a positive number (its total switch count). If a second call
1374 * a short while later returns the same number, the caller can be sure that
1375 * @p has remained unscheduled the whole time.
1376 *
1377 * The caller must ensure that the task *will* unschedule sometime soon,
1378 * else this function might spin for a *long* time. This function can't
1379 * be called with interrupts off, or it may introduce deadlock with
1380 * smp_call_function() if an IPI is sent by the same process we are
1381 * waiting to become inactive.
1382 */
1383 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1384 {
1385 unsigned long flags;
1386 int running, queued;
1387 unsigned long ncsw;
1388 struct rq *rq;
1389
1390 for (;;) {
1391 /*
1392 * We do the initial early heuristics without holding
1393 * any task-queue locks at all. We'll only try to get
1394 * the runqueue lock when things look like they will
1395 * work out!
1396 */
1397 rq = task_rq(p);
1398
1399 /*
1400 * If the task is actively running on another CPU
1401 * still, just relax and busy-wait without holding
1402 * any locks.
1403 *
1404 * NOTE! Since we don't hold any locks, it's not
1405 * even sure that "rq" stays as the right runqueue!
1406 * But we don't care, since "task_running()" will
1407 * return false if the runqueue has changed and p
1408 * is actually now running somewhere else!
1409 */
1410 while (task_running(rq, p)) {
1411 if (match_state && unlikely(p->state != match_state))
1412 return 0;
1413 cpu_relax();
1414 }
1415
1416 /*
1417 * Ok, time to look more closely! We need the rq
1418 * lock now, to be *sure*. If we're wrong, we'll
1419 * just go back and repeat.
1420 */
1421 rq = task_rq_lock(p, &flags);
1422 trace_sched_wait_task(p);
1423 running = task_running(rq, p);
1424 queued = task_on_rq_queued(p);
1425 ncsw = 0;
1426 if (!match_state || p->state == match_state)
1427 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1428 task_rq_unlock(rq, p, &flags);
1429
1430 /*
1431 * If it changed from the expected state, bail out now.
1432 */
1433 if (unlikely(!ncsw))
1434 break;
1435
1436 /*
1437 * Was it really running after all now that we
1438 * checked with the proper locks actually held?
1439 *
1440 * Oops. Go back and try again..
1441 */
1442 if (unlikely(running)) {
1443 cpu_relax();
1444 continue;
1445 }
1446
1447 /*
1448 * It's not enough that it's not actively running,
1449 * it must be off the runqueue _entirely_, and not
1450 * preempted!
1451 *
1452 * So if it was still runnable (but just not actively
1453 * running right now), it's preempted, and we should
1454 * yield - it could be a while.
1455 */
1456 if (unlikely(queued)) {
1457 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1458
1459 set_current_state(TASK_UNINTERRUPTIBLE);
1460 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1461 continue;
1462 }
1463
1464 /*
1465 * Ahh, all good. It wasn't running, and it wasn't
1466 * runnable, which means that it will never become
1467 * running in the future either. We're all done!
1468 */
1469 break;
1470 }
1471
1472 return ncsw;
1473 }
1474
1475 /***
1476 * kick_process - kick a running thread to enter/exit the kernel
1477 * @p: the to-be-kicked thread
1478 *
1479 * Cause a process which is running on another CPU to enter
1480 * kernel-mode, without any delay. (to get signals handled.)
1481 *
1482 * NOTE: this function doesn't have to take the runqueue lock,
1483 * because all it wants to ensure is that the remote task enters
1484 * the kernel. If the IPI races and the task has been migrated
1485 * to another CPU then no harm is done and the purpose has been
1486 * achieved as well.
1487 */
1488 void kick_process(struct task_struct *p)
1489 {
1490 int cpu;
1491
1492 preempt_disable();
1493 cpu = task_cpu(p);
1494 if ((cpu != smp_processor_id()) && task_curr(p))
1495 smp_send_reschedule(cpu);
1496 preempt_enable();
1497 }
1498 EXPORT_SYMBOL_GPL(kick_process);
1499
1500 /*
1501 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1502 */
1503 static int select_fallback_rq(int cpu, struct task_struct *p)
1504 {
1505 int nid = cpu_to_node(cpu);
1506 const struct cpumask *nodemask = NULL;
1507 enum { cpuset, possible, fail } state = cpuset;
1508 int dest_cpu;
1509
1510 /*
1511 * If the node that the cpu is on has been offlined, cpu_to_node()
1512 * will return -1. There is no cpu on the node, and we should
1513 * select the cpu on the other node.
1514 */
1515 if (nid != -1) {
1516 nodemask = cpumask_of_node(nid);
1517
1518 /* Look for allowed, online CPU in same node. */
1519 for_each_cpu(dest_cpu, nodemask) {
1520 if (!cpu_online(dest_cpu))
1521 continue;
1522 if (!cpu_active(dest_cpu))
1523 continue;
1524 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1525 return dest_cpu;
1526 }
1527 }
1528
1529 for (;;) {
1530 /* Any allowed, online CPU? */
1531 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1532 if (!cpu_online(dest_cpu))
1533 continue;
1534 if (!cpu_active(dest_cpu))
1535 continue;
1536 goto out;
1537 }
1538
1539 /* No more Mr. Nice Guy. */
1540 switch (state) {
1541 case cpuset:
1542 if (IS_ENABLED(CONFIG_CPUSETS)) {
1543 cpuset_cpus_allowed_fallback(p);
1544 state = possible;
1545 break;
1546 }
1547 /* fall-through */
1548 case possible:
1549 do_set_cpus_allowed(p, cpu_possible_mask);
1550 state = fail;
1551 break;
1552
1553 case fail:
1554 BUG();
1555 break;
1556 }
1557 }
1558
1559 out:
1560 if (state != cpuset) {
1561 /*
1562 * Don't tell them about moving exiting tasks or
1563 * kernel threads (both mm NULL), since they never
1564 * leave kernel.
1565 */
1566 if (p->mm && printk_ratelimit()) {
1567 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1568 task_pid_nr(p), p->comm, cpu);
1569 }
1570 }
1571
1572 return dest_cpu;
1573 }
1574
1575 /*
1576 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1577 */
1578 static inline
1579 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1580 {
1581 lockdep_assert_held(&p->pi_lock);
1582
1583 if (p->nr_cpus_allowed > 1)
1584 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1585
1586 /*
1587 * In order not to call set_task_cpu() on a blocking task we need
1588 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1589 * cpu.
1590 *
1591 * Since this is common to all placement strategies, this lives here.
1592 *
1593 * [ this allows ->select_task() to simply return task_cpu(p) and
1594 * not worry about this generic constraint ]
1595 */
1596 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1597 !cpu_online(cpu)))
1598 cpu = select_fallback_rq(task_cpu(p), p);
1599
1600 return cpu;
1601 }
1602
1603 static void update_avg(u64 *avg, u64 sample)
1604 {
1605 s64 diff = sample - *avg;
1606 *avg += diff >> 3;
1607 }
1608
1609 #else
1610
1611 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1612 const struct cpumask *new_mask, bool check)
1613 {
1614 return set_cpus_allowed_ptr(p, new_mask);
1615 }
1616
1617 #endif /* CONFIG_SMP */
1618
1619 static void
1620 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1621 {
1622 #ifdef CONFIG_SCHEDSTATS
1623 struct rq *rq = this_rq();
1624
1625 #ifdef CONFIG_SMP
1626 int this_cpu = smp_processor_id();
1627
1628 if (cpu == this_cpu) {
1629 schedstat_inc(rq, ttwu_local);
1630 schedstat_inc(p, se.statistics.nr_wakeups_local);
1631 } else {
1632 struct sched_domain *sd;
1633
1634 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1635 rcu_read_lock();
1636 for_each_domain(this_cpu, sd) {
1637 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1638 schedstat_inc(sd, ttwu_wake_remote);
1639 break;
1640 }
1641 }
1642 rcu_read_unlock();
1643 }
1644
1645 if (wake_flags & WF_MIGRATED)
1646 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1647
1648 #endif /* CONFIG_SMP */
1649
1650 schedstat_inc(rq, ttwu_count);
1651 schedstat_inc(p, se.statistics.nr_wakeups);
1652
1653 if (wake_flags & WF_SYNC)
1654 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1655
1656 #endif /* CONFIG_SCHEDSTATS */
1657 }
1658
1659 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1660 {
1661 activate_task(rq, p, en_flags);
1662 p->on_rq = TASK_ON_RQ_QUEUED;
1663
1664 /* if a worker is waking up, notify workqueue */
1665 if (p->flags & PF_WQ_WORKER)
1666 wq_worker_waking_up(p, cpu_of(rq));
1667 }
1668
1669 /*
1670 * Mark the task runnable and perform wakeup-preemption.
1671 */
1672 static void
1673 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1674 {
1675 check_preempt_curr(rq, p, wake_flags);
1676 p->state = TASK_RUNNING;
1677 trace_sched_wakeup(p);
1678
1679 #ifdef CONFIG_SMP
1680 if (p->sched_class->task_woken) {
1681 /*
1682 * Our task @p is fully woken up and running; so its safe to
1683 * drop the rq->lock, hereafter rq is only used for statistics.
1684 */
1685 lockdep_unpin_lock(&rq->lock);
1686 p->sched_class->task_woken(rq, p);
1687 lockdep_pin_lock(&rq->lock);
1688 }
1689
1690 if (rq->idle_stamp) {
1691 u64 delta = rq_clock(rq) - rq->idle_stamp;
1692 u64 max = 2*rq->max_idle_balance_cost;
1693
1694 update_avg(&rq->avg_idle, delta);
1695
1696 if (rq->avg_idle > max)
1697 rq->avg_idle = max;
1698
1699 rq->idle_stamp = 0;
1700 }
1701 #endif
1702 }
1703
1704 static void
1705 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1706 {
1707 lockdep_assert_held(&rq->lock);
1708
1709 #ifdef CONFIG_SMP
1710 if (p->sched_contributes_to_load)
1711 rq->nr_uninterruptible--;
1712 #endif
1713
1714 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1715 ttwu_do_wakeup(rq, p, wake_flags);
1716 }
1717
1718 /*
1719 * Called in case the task @p isn't fully descheduled from its runqueue,
1720 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1721 * since all we need to do is flip p->state to TASK_RUNNING, since
1722 * the task is still ->on_rq.
1723 */
1724 static int ttwu_remote(struct task_struct *p, int wake_flags)
1725 {
1726 struct rq *rq;
1727 int ret = 0;
1728
1729 rq = __task_rq_lock(p);
1730 if (task_on_rq_queued(p)) {
1731 /* check_preempt_curr() may use rq clock */
1732 update_rq_clock(rq);
1733 ttwu_do_wakeup(rq, p, wake_flags);
1734 ret = 1;
1735 }
1736 __task_rq_unlock(rq);
1737
1738 return ret;
1739 }
1740
1741 #ifdef CONFIG_SMP
1742 void sched_ttwu_pending(void)
1743 {
1744 struct rq *rq = this_rq();
1745 struct llist_node *llist = llist_del_all(&rq->wake_list);
1746 struct task_struct *p;
1747 unsigned long flags;
1748
1749 if (!llist)
1750 return;
1751
1752 raw_spin_lock_irqsave(&rq->lock, flags);
1753 lockdep_pin_lock(&rq->lock);
1754
1755 while (llist) {
1756 p = llist_entry(llist, struct task_struct, wake_entry);
1757 llist = llist_next(llist);
1758 ttwu_do_activate(rq, p, 0);
1759 }
1760
1761 lockdep_unpin_lock(&rq->lock);
1762 raw_spin_unlock_irqrestore(&rq->lock, flags);
1763 }
1764
1765 void scheduler_ipi(void)
1766 {
1767 /*
1768 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1769 * TIF_NEED_RESCHED remotely (for the first time) will also send
1770 * this IPI.
1771 */
1772 preempt_fold_need_resched();
1773
1774 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1775 return;
1776
1777 /*
1778 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1779 * traditionally all their work was done from the interrupt return
1780 * path. Now that we actually do some work, we need to make sure
1781 * we do call them.
1782 *
1783 * Some archs already do call them, luckily irq_enter/exit nest
1784 * properly.
1785 *
1786 * Arguably we should visit all archs and update all handlers,
1787 * however a fair share of IPIs are still resched only so this would
1788 * somewhat pessimize the simple resched case.
1789 */
1790 irq_enter();
1791 sched_ttwu_pending();
1792
1793 /*
1794 * Check if someone kicked us for doing the nohz idle load balance.
1795 */
1796 if (unlikely(got_nohz_idle_kick())) {
1797 this_rq()->idle_balance = 1;
1798 raise_softirq_irqoff(SCHED_SOFTIRQ);
1799 }
1800 irq_exit();
1801 }
1802
1803 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1804 {
1805 struct rq *rq = cpu_rq(cpu);
1806
1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 if (!set_nr_if_polling(rq->idle))
1809 smp_send_reschedule(cpu);
1810 else
1811 trace_sched_wake_idle_without_ipi(cpu);
1812 }
1813 }
1814
1815 void wake_up_if_idle(int cpu)
1816 {
1817 struct rq *rq = cpu_rq(cpu);
1818 unsigned long flags;
1819
1820 rcu_read_lock();
1821
1822 if (!is_idle_task(rcu_dereference(rq->curr)))
1823 goto out;
1824
1825 if (set_nr_if_polling(rq->idle)) {
1826 trace_sched_wake_idle_without_ipi(cpu);
1827 } else {
1828 raw_spin_lock_irqsave(&rq->lock, flags);
1829 if (is_idle_task(rq->curr))
1830 smp_send_reschedule(cpu);
1831 /* Else cpu is not in idle, do nothing here */
1832 raw_spin_unlock_irqrestore(&rq->lock, flags);
1833 }
1834
1835 out:
1836 rcu_read_unlock();
1837 }
1838
1839 bool cpus_share_cache(int this_cpu, int that_cpu)
1840 {
1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842 }
1843 #endif /* CONFIG_SMP */
1844
1845 static void ttwu_queue(struct task_struct *p, int cpu)
1846 {
1847 struct rq *rq = cpu_rq(cpu);
1848
1849 #if defined(CONFIG_SMP)
1850 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1851 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1852 ttwu_queue_remote(p, cpu);
1853 return;
1854 }
1855 #endif
1856
1857 raw_spin_lock(&rq->lock);
1858 lockdep_pin_lock(&rq->lock);
1859 ttwu_do_activate(rq, p, 0);
1860 lockdep_unpin_lock(&rq->lock);
1861 raw_spin_unlock(&rq->lock);
1862 }
1863
1864 /*
1865 * Notes on Program-Order guarantees on SMP systems.
1866 *
1867 * MIGRATION
1868 *
1869 * The basic program-order guarantee on SMP systems is that when a task [t]
1870 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1871 * execution on its new cpu [c1].
1872 *
1873 * For migration (of runnable tasks) this is provided by the following means:
1874 *
1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1877 * rq(c1)->lock (if not at the same time, then in that order).
1878 * C) LOCK of the rq(c1)->lock scheduling in task
1879 *
1880 * Transitivity guarantees that B happens after A and C after B.
1881 * Note: we only require RCpc transitivity.
1882 * Note: the cpu doing B need not be c0 or c1
1883 *
1884 * Example:
1885 *
1886 * CPU0 CPU1 CPU2
1887 *
1888 * LOCK rq(0)->lock
1889 * sched-out X
1890 * sched-in Y
1891 * UNLOCK rq(0)->lock
1892 *
1893 * LOCK rq(0)->lock // orders against CPU0
1894 * dequeue X
1895 * UNLOCK rq(0)->lock
1896 *
1897 * LOCK rq(1)->lock
1898 * enqueue X
1899 * UNLOCK rq(1)->lock
1900 *
1901 * LOCK rq(1)->lock // orders against CPU2
1902 * sched-out Z
1903 * sched-in X
1904 * UNLOCK rq(1)->lock
1905 *
1906 *
1907 * BLOCKING -- aka. SLEEP + WAKEUP
1908 *
1909 * For blocking we (obviously) need to provide the same guarantee as for
1910 * migration. However the means are completely different as there is no lock
1911 * chain to provide order. Instead we do:
1912 *
1913 * 1) smp_store_release(X->on_cpu, 0)
1914 * 2) smp_cond_acquire(!X->on_cpu)
1915 *
1916 * Example:
1917 *
1918 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1919 *
1920 * LOCK rq(0)->lock LOCK X->pi_lock
1921 * dequeue X
1922 * sched-out X
1923 * smp_store_release(X->on_cpu, 0);
1924 *
1925 * smp_cond_acquire(!X->on_cpu);
1926 * X->state = WAKING
1927 * set_task_cpu(X,2)
1928 *
1929 * LOCK rq(2)->lock
1930 * enqueue X
1931 * X->state = RUNNING
1932 * UNLOCK rq(2)->lock
1933 *
1934 * LOCK rq(2)->lock // orders against CPU1
1935 * sched-out Z
1936 * sched-in X
1937 * UNLOCK rq(2)->lock
1938 *
1939 * UNLOCK X->pi_lock
1940 * UNLOCK rq(0)->lock
1941 *
1942 *
1943 * However; for wakeups there is a second guarantee we must provide, namely we
1944 * must observe the state that lead to our wakeup. That is, not only must our
1945 * task observe its own prior state, it must also observe the stores prior to
1946 * its wakeup.
1947 *
1948 * This means that any means of doing remote wakeups must order the CPU doing
1949 * the wakeup against the CPU the task is going to end up running on. This,
1950 * however, is already required for the regular Program-Order guarantee above,
1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1952 *
1953 */
1954
1955 /**
1956 * try_to_wake_up - wake up a thread
1957 * @p: the thread to be awakened
1958 * @state: the mask of task states that can be woken
1959 * @wake_flags: wake modifier flags (WF_*)
1960 *
1961 * Put it on the run-queue if it's not already there. The "current"
1962 * thread is always on the run-queue (except when the actual
1963 * re-schedule is in progress), and as such you're allowed to do
1964 * the simpler "current->state = TASK_RUNNING" to mark yourself
1965 * runnable without the overhead of this.
1966 *
1967 * Return: %true if @p was woken up, %false if it was already running.
1968 * or @state didn't match @p's state.
1969 */
1970 static int
1971 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1972 {
1973 unsigned long flags;
1974 int cpu, success = 0;
1975
1976 /*
1977 * If we are going to wake up a thread waiting for CONDITION we
1978 * need to ensure that CONDITION=1 done by the caller can not be
1979 * reordered with p->state check below. This pairs with mb() in
1980 * set_current_state() the waiting thread does.
1981 */
1982 smp_mb__before_spinlock();
1983 raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 if (!(p->state & state))
1985 goto out;
1986
1987 trace_sched_waking(p);
1988
1989 success = 1; /* we're going to change ->state */
1990 cpu = task_cpu(p);
1991
1992 if (p->on_rq && ttwu_remote(p, wake_flags))
1993 goto stat;
1994
1995 #ifdef CONFIG_SMP
1996 /*
1997 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1998 * possible to, falsely, observe p->on_cpu == 0.
1999 *
2000 * One must be running (->on_cpu == 1) in order to remove oneself
2001 * from the runqueue.
2002 *
2003 * [S] ->on_cpu = 1; [L] ->on_rq
2004 * UNLOCK rq->lock
2005 * RMB
2006 * LOCK rq->lock
2007 * [S] ->on_rq = 0; [L] ->on_cpu
2008 *
2009 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2010 * from the consecutive calls to schedule(); the first switching to our
2011 * task, the second putting it to sleep.
2012 */
2013 smp_rmb();
2014
2015 /*
2016 * If the owning (remote) cpu is still in the middle of schedule() with
2017 * this task as prev, wait until its done referencing the task.
2018 *
2019 * Pairs with the smp_store_release() in finish_lock_switch().
2020 *
2021 * This ensures that tasks getting woken will be fully ordered against
2022 * their previous state and preserve Program Order.
2023 */
2024 smp_cond_acquire(!p->on_cpu);
2025
2026 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2027 p->state = TASK_WAKING;
2028
2029 if (p->sched_class->task_waking)
2030 p->sched_class->task_waking(p);
2031
2032 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2033 if (task_cpu(p) != cpu) {
2034 wake_flags |= WF_MIGRATED;
2035 set_task_cpu(p, cpu);
2036 }
2037 #endif /* CONFIG_SMP */
2038
2039 ttwu_queue(p, cpu);
2040 stat:
2041 if (schedstat_enabled())
2042 ttwu_stat(p, cpu, wake_flags);
2043 out:
2044 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2045
2046 return success;
2047 }
2048
2049 /**
2050 * try_to_wake_up_local - try to wake up a local task with rq lock held
2051 * @p: the thread to be awakened
2052 *
2053 * Put @p on the run-queue if it's not already there. The caller must
2054 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2055 * the current task.
2056 */
2057 static void try_to_wake_up_local(struct task_struct *p)
2058 {
2059 struct rq *rq = task_rq(p);
2060
2061 if (WARN_ON_ONCE(rq != this_rq()) ||
2062 WARN_ON_ONCE(p == current))
2063 return;
2064
2065 lockdep_assert_held(&rq->lock);
2066
2067 if (!raw_spin_trylock(&p->pi_lock)) {
2068 /*
2069 * This is OK, because current is on_cpu, which avoids it being
2070 * picked for load-balance and preemption/IRQs are still
2071 * disabled avoiding further scheduler activity on it and we've
2072 * not yet picked a replacement task.
2073 */
2074 lockdep_unpin_lock(&rq->lock);
2075 raw_spin_unlock(&rq->lock);
2076 raw_spin_lock(&p->pi_lock);
2077 raw_spin_lock(&rq->lock);
2078 lockdep_pin_lock(&rq->lock);
2079 }
2080
2081 if (!(p->state & TASK_NORMAL))
2082 goto out;
2083
2084 trace_sched_waking(p);
2085
2086 if (!task_on_rq_queued(p))
2087 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2088
2089 ttwu_do_wakeup(rq, p, 0);
2090 if (schedstat_enabled())
2091 ttwu_stat(p, smp_processor_id(), 0);
2092 out:
2093 raw_spin_unlock(&p->pi_lock);
2094 }
2095
2096 /**
2097 * wake_up_process - Wake up a specific process
2098 * @p: The process to be woken up.
2099 *
2100 * Attempt to wake up the nominated process and move it to the set of runnable
2101 * processes.
2102 *
2103 * Return: 1 if the process was woken up, 0 if it was already running.
2104 *
2105 * It may be assumed that this function implies a write memory barrier before
2106 * changing the task state if and only if any tasks are woken up.
2107 */
2108 int wake_up_process(struct task_struct *p)
2109 {
2110 return try_to_wake_up(p, TASK_NORMAL, 0);
2111 }
2112 EXPORT_SYMBOL(wake_up_process);
2113
2114 int wake_up_state(struct task_struct *p, unsigned int state)
2115 {
2116 return try_to_wake_up(p, state, 0);
2117 }
2118
2119 /*
2120 * This function clears the sched_dl_entity static params.
2121 */
2122 void __dl_clear_params(struct task_struct *p)
2123 {
2124 struct sched_dl_entity *dl_se = &p->dl;
2125
2126 dl_se->dl_runtime = 0;
2127 dl_se->dl_deadline = 0;
2128 dl_se->dl_period = 0;
2129 dl_se->flags = 0;
2130 dl_se->dl_bw = 0;
2131
2132 dl_se->dl_throttled = 0;
2133 dl_se->dl_yielded = 0;
2134 }
2135
2136 /*
2137 * Perform scheduler related setup for a newly forked process p.
2138 * p is forked by current.
2139 *
2140 * __sched_fork() is basic setup used by init_idle() too:
2141 */
2142 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2143 {
2144 p->on_rq = 0;
2145
2146 p->se.on_rq = 0;
2147 p->se.exec_start = 0;
2148 p->se.sum_exec_runtime = 0;
2149 p->se.prev_sum_exec_runtime = 0;
2150 p->se.nr_migrations = 0;
2151 p->se.vruntime = 0;
2152 INIT_LIST_HEAD(&p->se.group_node);
2153
2154 #ifdef CONFIG_FAIR_GROUP_SCHED
2155 p->se.cfs_rq = NULL;
2156 #endif
2157
2158 #ifdef CONFIG_SCHEDSTATS
2159 /* Even if schedstat is disabled, there should not be garbage */
2160 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2161 #endif
2162
2163 RB_CLEAR_NODE(&p->dl.rb_node);
2164 init_dl_task_timer(&p->dl);
2165 __dl_clear_params(p);
2166
2167 INIT_LIST_HEAD(&p->rt.run_list);
2168 p->rt.timeout = 0;
2169 p->rt.time_slice = sched_rr_timeslice;
2170 p->rt.on_rq = 0;
2171 p->rt.on_list = 0;
2172
2173 #ifdef CONFIG_PREEMPT_NOTIFIERS
2174 INIT_HLIST_HEAD(&p->preempt_notifiers);
2175 #endif
2176
2177 #ifdef CONFIG_NUMA_BALANCING
2178 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2179 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2180 p->mm->numa_scan_seq = 0;
2181 }
2182
2183 if (clone_flags & CLONE_VM)
2184 p->numa_preferred_nid = current->numa_preferred_nid;
2185 else
2186 p->numa_preferred_nid = -1;
2187
2188 p->node_stamp = 0ULL;
2189 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2190 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2191 p->numa_work.next = &p->numa_work;
2192 p->numa_faults = NULL;
2193 p->last_task_numa_placement = 0;
2194 p->last_sum_exec_runtime = 0;
2195
2196 p->numa_group = NULL;
2197 #endif /* CONFIG_NUMA_BALANCING */
2198 }
2199
2200 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2201
2202 #ifdef CONFIG_NUMA_BALANCING
2203
2204 void set_numabalancing_state(bool enabled)
2205 {
2206 if (enabled)
2207 static_branch_enable(&sched_numa_balancing);
2208 else
2209 static_branch_disable(&sched_numa_balancing);
2210 }
2211
2212 #ifdef CONFIG_PROC_SYSCTL
2213 int sysctl_numa_balancing(struct ctl_table *table, int write,
2214 void __user *buffer, size_t *lenp, loff_t *ppos)
2215 {
2216 struct ctl_table t;
2217 int err;
2218 int state = static_branch_likely(&sched_numa_balancing);
2219
2220 if (write && !capable(CAP_SYS_ADMIN))
2221 return -EPERM;
2222
2223 t = *table;
2224 t.data = &state;
2225 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2226 if (err < 0)
2227 return err;
2228 if (write)
2229 set_numabalancing_state(state);
2230 return err;
2231 }
2232 #endif
2233 #endif
2234
2235 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2236
2237 #ifdef CONFIG_SCHEDSTATS
2238 static void set_schedstats(bool enabled)
2239 {
2240 if (enabled)
2241 static_branch_enable(&sched_schedstats);
2242 else
2243 static_branch_disable(&sched_schedstats);
2244 }
2245
2246 void force_schedstat_enabled(void)
2247 {
2248 if (!schedstat_enabled()) {
2249 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2250 static_branch_enable(&sched_schedstats);
2251 }
2252 }
2253
2254 static int __init setup_schedstats(char *str)
2255 {
2256 int ret = 0;
2257 if (!str)
2258 goto out;
2259
2260 if (!strcmp(str, "enable")) {
2261 set_schedstats(true);
2262 ret = 1;
2263 } else if (!strcmp(str, "disable")) {
2264 set_schedstats(false);
2265 ret = 1;
2266 }
2267 out:
2268 if (!ret)
2269 pr_warn("Unable to parse schedstats=\n");
2270
2271 return ret;
2272 }
2273 __setup("schedstats=", setup_schedstats);
2274
2275 #ifdef CONFIG_PROC_SYSCTL
2276 int sysctl_schedstats(struct ctl_table *table, int write,
2277 void __user *buffer, size_t *lenp, loff_t *ppos)
2278 {
2279 struct ctl_table t;
2280 int err;
2281 int state = static_branch_likely(&sched_schedstats);
2282
2283 if (write && !capable(CAP_SYS_ADMIN))
2284 return -EPERM;
2285
2286 t = *table;
2287 t.data = &state;
2288 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2289 if (err < 0)
2290 return err;
2291 if (write)
2292 set_schedstats(state);
2293 return err;
2294 }
2295 #endif
2296 #endif
2297
2298 /*
2299 * fork()/clone()-time setup:
2300 */
2301 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2302 {
2303 unsigned long flags;
2304 int cpu = get_cpu();
2305
2306 __sched_fork(clone_flags, p);
2307 /*
2308 * We mark the process as running here. This guarantees that
2309 * nobody will actually run it, and a signal or other external
2310 * event cannot wake it up and insert it on the runqueue either.
2311 */
2312 p->state = TASK_RUNNING;
2313
2314 /*
2315 * Make sure we do not leak PI boosting priority to the child.
2316 */
2317 p->prio = current->normal_prio;
2318
2319 /*
2320 * Revert to default priority/policy on fork if requested.
2321 */
2322 if (unlikely(p->sched_reset_on_fork)) {
2323 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2324 p->policy = SCHED_NORMAL;
2325 p->static_prio = NICE_TO_PRIO(0);
2326 p->rt_priority = 0;
2327 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2328 p->static_prio = NICE_TO_PRIO(0);
2329
2330 p->prio = p->normal_prio = __normal_prio(p);
2331 set_load_weight(p);
2332
2333 /*
2334 * We don't need the reset flag anymore after the fork. It has
2335 * fulfilled its duty:
2336 */
2337 p->sched_reset_on_fork = 0;
2338 }
2339
2340 if (dl_prio(p->prio)) {
2341 put_cpu();
2342 return -EAGAIN;
2343 } else if (rt_prio(p->prio)) {
2344 p->sched_class = &rt_sched_class;
2345 } else {
2346 p->sched_class = &fair_sched_class;
2347 }
2348
2349 if (p->sched_class->task_fork)
2350 p->sched_class->task_fork(p);
2351
2352 /*
2353 * The child is not yet in the pid-hash so no cgroup attach races,
2354 * and the cgroup is pinned to this child due to cgroup_fork()
2355 * is ran before sched_fork().
2356 *
2357 * Silence PROVE_RCU.
2358 */
2359 raw_spin_lock_irqsave(&p->pi_lock, flags);
2360 set_task_cpu(p, cpu);
2361 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2362
2363 #ifdef CONFIG_SCHED_INFO
2364 if (likely(sched_info_on()))
2365 memset(&p->sched_info, 0, sizeof(p->sched_info));
2366 #endif
2367 #if defined(CONFIG_SMP)
2368 p->on_cpu = 0;
2369 #endif
2370 init_task_preempt_count(p);
2371 #ifdef CONFIG_SMP
2372 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2373 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2374 #endif
2375
2376 put_cpu();
2377 return 0;
2378 }
2379
2380 unsigned long to_ratio(u64 period, u64 runtime)
2381 {
2382 if (runtime == RUNTIME_INF)
2383 return 1ULL << 20;
2384
2385 /*
2386 * Doing this here saves a lot of checks in all
2387 * the calling paths, and returning zero seems
2388 * safe for them anyway.
2389 */
2390 if (period == 0)
2391 return 0;
2392
2393 return div64_u64(runtime << 20, period);
2394 }
2395
2396 #ifdef CONFIG_SMP
2397 inline struct dl_bw *dl_bw_of(int i)
2398 {
2399 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2400 "sched RCU must be held");
2401 return &cpu_rq(i)->rd->dl_bw;
2402 }
2403
2404 static inline int dl_bw_cpus(int i)
2405 {
2406 struct root_domain *rd = cpu_rq(i)->rd;
2407 int cpus = 0;
2408
2409 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2410 "sched RCU must be held");
2411 for_each_cpu_and(i, rd->span, cpu_active_mask)
2412 cpus++;
2413
2414 return cpus;
2415 }
2416 #else
2417 inline struct dl_bw *dl_bw_of(int i)
2418 {
2419 return &cpu_rq(i)->dl.dl_bw;
2420 }
2421
2422 static inline int dl_bw_cpus(int i)
2423 {
2424 return 1;
2425 }
2426 #endif
2427
2428 /*
2429 * We must be sure that accepting a new task (or allowing changing the
2430 * parameters of an existing one) is consistent with the bandwidth
2431 * constraints. If yes, this function also accordingly updates the currently
2432 * allocated bandwidth to reflect the new situation.
2433 *
2434 * This function is called while holding p's rq->lock.
2435 *
2436 * XXX we should delay bw change until the task's 0-lag point, see
2437 * __setparam_dl().
2438 */
2439 static int dl_overflow(struct task_struct *p, int policy,
2440 const struct sched_attr *attr)
2441 {
2442
2443 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2444 u64 period = attr->sched_period ?: attr->sched_deadline;
2445 u64 runtime = attr->sched_runtime;
2446 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2447 int cpus, err = -1;
2448
2449 /* !deadline task may carry old deadline bandwidth */
2450 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2451 return 0;
2452
2453 /*
2454 * Either if a task, enters, leave, or stays -deadline but changes
2455 * its parameters, we may need to update accordingly the total
2456 * allocated bandwidth of the container.
2457 */
2458 raw_spin_lock(&dl_b->lock);
2459 cpus = dl_bw_cpus(task_cpu(p));
2460 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2461 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2462 __dl_add(dl_b, new_bw);
2463 err = 0;
2464 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2465 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2466 __dl_clear(dl_b, p->dl.dl_bw);
2467 __dl_add(dl_b, new_bw);
2468 err = 0;
2469 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2470 __dl_clear(dl_b, p->dl.dl_bw);
2471 err = 0;
2472 }
2473 raw_spin_unlock(&dl_b->lock);
2474
2475 return err;
2476 }
2477
2478 extern void init_dl_bw(struct dl_bw *dl_b);
2479
2480 /*
2481 * wake_up_new_task - wake up a newly created task for the first time.
2482 *
2483 * This function will do some initial scheduler statistics housekeeping
2484 * that must be done for every newly created context, then puts the task
2485 * on the runqueue and wakes it.
2486 */
2487 void wake_up_new_task(struct task_struct *p)
2488 {
2489 unsigned long flags;
2490 struct rq *rq;
2491
2492 raw_spin_lock_irqsave(&p->pi_lock, flags);
2493 /* Initialize new task's runnable average */
2494 init_entity_runnable_average(&p->se);
2495 #ifdef CONFIG_SMP
2496 /*
2497 * Fork balancing, do it here and not earlier because:
2498 * - cpus_allowed can change in the fork path
2499 * - any previously selected cpu might disappear through hotplug
2500 */
2501 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2502 #endif
2503 /* Post initialize new task's util average when its cfs_rq is set */
2504 post_init_entity_util_avg(&p->se);
2505
2506 rq = __task_rq_lock(p);
2507 activate_task(rq, p, 0);
2508 p->on_rq = TASK_ON_RQ_QUEUED;
2509 trace_sched_wakeup_new(p);
2510 check_preempt_curr(rq, p, WF_FORK);
2511 #ifdef CONFIG_SMP
2512 if (p->sched_class->task_woken) {
2513 /*
2514 * Nothing relies on rq->lock after this, so its fine to
2515 * drop it.
2516 */
2517 lockdep_unpin_lock(&rq->lock);
2518 p->sched_class->task_woken(rq, p);
2519 lockdep_pin_lock(&rq->lock);
2520 }
2521 #endif
2522 task_rq_unlock(rq, p, &flags);
2523 }
2524
2525 #ifdef CONFIG_PREEMPT_NOTIFIERS
2526
2527 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2528
2529 void preempt_notifier_inc(void)
2530 {
2531 static_key_slow_inc(&preempt_notifier_key);
2532 }
2533 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2534
2535 void preempt_notifier_dec(void)
2536 {
2537 static_key_slow_dec(&preempt_notifier_key);
2538 }
2539 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2540
2541 /**
2542 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2543 * @notifier: notifier struct to register
2544 */
2545 void preempt_notifier_register(struct preempt_notifier *notifier)
2546 {
2547 if (!static_key_false(&preempt_notifier_key))
2548 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2549
2550 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2551 }
2552 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2553
2554 /**
2555 * preempt_notifier_unregister - no longer interested in preemption notifications
2556 * @notifier: notifier struct to unregister
2557 *
2558 * This is *not* safe to call from within a preemption notifier.
2559 */
2560 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2561 {
2562 hlist_del(&notifier->link);
2563 }
2564 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2565
2566 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2567 {
2568 struct preempt_notifier *notifier;
2569
2570 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2571 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2572 }
2573
2574 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2575 {
2576 if (static_key_false(&preempt_notifier_key))
2577 __fire_sched_in_preempt_notifiers(curr);
2578 }
2579
2580 static void
2581 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2582 struct task_struct *next)
2583 {
2584 struct preempt_notifier *notifier;
2585
2586 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2587 notifier->ops->sched_out(notifier, next);
2588 }
2589
2590 static __always_inline void
2591 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2592 struct task_struct *next)
2593 {
2594 if (static_key_false(&preempt_notifier_key))
2595 __fire_sched_out_preempt_notifiers(curr, next);
2596 }
2597
2598 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2599
2600 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2601 {
2602 }
2603
2604 static inline void
2605 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607 {
2608 }
2609
2610 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2611
2612 /**
2613 * prepare_task_switch - prepare to switch tasks
2614 * @rq: the runqueue preparing to switch
2615 * @prev: the current task that is being switched out
2616 * @next: the task we are going to switch to.
2617 *
2618 * This is called with the rq lock held and interrupts off. It must
2619 * be paired with a subsequent finish_task_switch after the context
2620 * switch.
2621 *
2622 * prepare_task_switch sets up locking and calls architecture specific
2623 * hooks.
2624 */
2625 static inline void
2626 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2627 struct task_struct *next)
2628 {
2629 sched_info_switch(rq, prev, next);
2630 perf_event_task_sched_out(prev, next);
2631 fire_sched_out_preempt_notifiers(prev, next);
2632 prepare_lock_switch(rq, next);
2633 prepare_arch_switch(next);
2634 }
2635
2636 /**
2637 * finish_task_switch - clean up after a task-switch
2638 * @prev: the thread we just switched away from.
2639 *
2640 * finish_task_switch must be called after the context switch, paired
2641 * with a prepare_task_switch call before the context switch.
2642 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2643 * and do any other architecture-specific cleanup actions.
2644 *
2645 * Note that we may have delayed dropping an mm in context_switch(). If
2646 * so, we finish that here outside of the runqueue lock. (Doing it
2647 * with the lock held can cause deadlocks; see schedule() for
2648 * details.)
2649 *
2650 * The context switch have flipped the stack from under us and restored the
2651 * local variables which were saved when this task called schedule() in the
2652 * past. prev == current is still correct but we need to recalculate this_rq
2653 * because prev may have moved to another CPU.
2654 */
2655 static struct rq *finish_task_switch(struct task_struct *prev)
2656 __releases(rq->lock)
2657 {
2658 struct rq *rq = this_rq();
2659 struct mm_struct *mm = rq->prev_mm;
2660 long prev_state;
2661
2662 /*
2663 * The previous task will have left us with a preempt_count of 2
2664 * because it left us after:
2665 *
2666 * schedule()
2667 * preempt_disable(); // 1
2668 * __schedule()
2669 * raw_spin_lock_irq(&rq->lock) // 2
2670 *
2671 * Also, see FORK_PREEMPT_COUNT.
2672 */
2673 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2674 "corrupted preempt_count: %s/%d/0x%x\n",
2675 current->comm, current->pid, preempt_count()))
2676 preempt_count_set(FORK_PREEMPT_COUNT);
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
2685 *
2686 * We must observe prev->state before clearing prev->on_cpu (in
2687 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2688 * running on another CPU and we could rave with its RUNNING -> DEAD
2689 * transition, resulting in a double drop.
2690 */
2691 prev_state = prev->state;
2692 vtime_task_switch(prev);
2693 perf_event_task_sched_in(prev, current);
2694 finish_lock_switch(rq, prev);
2695 finish_arch_post_lock_switch();
2696
2697 fire_sched_in_preempt_notifiers(current);
2698 if (mm)
2699 mmdrop(mm);
2700 if (unlikely(prev_state == TASK_DEAD)) {
2701 if (prev->sched_class->task_dead)
2702 prev->sched_class->task_dead(prev);
2703
2704 /*
2705 * Remove function-return probe instances associated with this
2706 * task and put them back on the free list.
2707 */
2708 kprobe_flush_task(prev);
2709 put_task_struct(prev);
2710 }
2711
2712 tick_nohz_task_switch();
2713 return rq;
2714 }
2715
2716 #ifdef CONFIG_SMP
2717
2718 /* rq->lock is NOT held, but preemption is disabled */
2719 static void __balance_callback(struct rq *rq)
2720 {
2721 struct callback_head *head, *next;
2722 void (*func)(struct rq *rq);
2723 unsigned long flags;
2724
2725 raw_spin_lock_irqsave(&rq->lock, flags);
2726 head = rq->balance_callback;
2727 rq->balance_callback = NULL;
2728 while (head) {
2729 func = (void (*)(struct rq *))head->func;
2730 next = head->next;
2731 head->next = NULL;
2732 head = next;
2733
2734 func(rq);
2735 }
2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
2737 }
2738
2739 static inline void balance_callback(struct rq *rq)
2740 {
2741 if (unlikely(rq->balance_callback))
2742 __balance_callback(rq);
2743 }
2744
2745 #else
2746
2747 static inline void balance_callback(struct rq *rq)
2748 {
2749 }
2750
2751 #endif
2752
2753 /**
2754 * schedule_tail - first thing a freshly forked thread must call.
2755 * @prev: the thread we just switched away from.
2756 */
2757 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2758 __releases(rq->lock)
2759 {
2760 struct rq *rq;
2761
2762 /*
2763 * New tasks start with FORK_PREEMPT_COUNT, see there and
2764 * finish_task_switch() for details.
2765 *
2766 * finish_task_switch() will drop rq->lock() and lower preempt_count
2767 * and the preempt_enable() will end up enabling preemption (on
2768 * PREEMPT_COUNT kernels).
2769 */
2770
2771 rq = finish_task_switch(prev);
2772 balance_callback(rq);
2773 preempt_enable();
2774
2775 if (current->set_child_tid)
2776 put_user(task_pid_vnr(current), current->set_child_tid);
2777 }
2778
2779 /*
2780 * context_switch - switch to the new MM and the new thread's register state.
2781 */
2782 static __always_inline struct rq *
2783 context_switch(struct rq *rq, struct task_struct *prev,
2784 struct task_struct *next)
2785 {
2786 struct mm_struct *mm, *oldmm;
2787
2788 prepare_task_switch(rq, prev, next);
2789
2790 mm = next->mm;
2791 oldmm = prev->active_mm;
2792 /*
2793 * For paravirt, this is coupled with an exit in switch_to to
2794 * combine the page table reload and the switch backend into
2795 * one hypercall.
2796 */
2797 arch_start_context_switch(prev);
2798
2799 if (!mm) {
2800 next->active_mm = oldmm;
2801 atomic_inc(&oldmm->mm_count);
2802 enter_lazy_tlb(oldmm, next);
2803 } else
2804 switch_mm_irqs_off(oldmm, mm, next);
2805
2806 if (!prev->mm) {
2807 prev->active_mm = NULL;
2808 rq->prev_mm = oldmm;
2809 }
2810 /*
2811 * Since the runqueue lock will be released by the next
2812 * task (which is an invalid locking op but in the case
2813 * of the scheduler it's an obvious special-case), so we
2814 * do an early lockdep release here:
2815 */
2816 lockdep_unpin_lock(&rq->lock);
2817 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2818
2819 /* Here we just switch the register state and the stack. */
2820 switch_to(prev, next, prev);
2821 barrier();
2822
2823 return finish_task_switch(prev);
2824 }
2825
2826 /*
2827 * nr_running and nr_context_switches:
2828 *
2829 * externally visible scheduler statistics: current number of runnable
2830 * threads, total number of context switches performed since bootup.
2831 */
2832 unsigned long nr_running(void)
2833 {
2834 unsigned long i, sum = 0;
2835
2836 for_each_online_cpu(i)
2837 sum += cpu_rq(i)->nr_running;
2838
2839 return sum;
2840 }
2841
2842 /*
2843 * Check if only the current task is running on the cpu.
2844 *
2845 * Caution: this function does not check that the caller has disabled
2846 * preemption, thus the result might have a time-of-check-to-time-of-use
2847 * race. The caller is responsible to use it correctly, for example:
2848 *
2849 * - from a non-preemptable section (of course)
2850 *
2851 * - from a thread that is bound to a single CPU
2852 *
2853 * - in a loop with very short iterations (e.g. a polling loop)
2854 */
2855 bool single_task_running(void)
2856 {
2857 return raw_rq()->nr_running == 1;
2858 }
2859 EXPORT_SYMBOL(single_task_running);
2860
2861 unsigned long long nr_context_switches(void)
2862 {
2863 int i;
2864 unsigned long long sum = 0;
2865
2866 for_each_possible_cpu(i)
2867 sum += cpu_rq(i)->nr_switches;
2868
2869 return sum;
2870 }
2871
2872 unsigned long nr_iowait(void)
2873 {
2874 unsigned long i, sum = 0;
2875
2876 for_each_possible_cpu(i)
2877 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2878
2879 return sum;
2880 }
2881
2882 unsigned long nr_iowait_cpu(int cpu)
2883 {
2884 struct rq *this = cpu_rq(cpu);
2885 return atomic_read(&this->nr_iowait);
2886 }
2887
2888 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2889 {
2890 struct rq *rq = this_rq();
2891 *nr_waiters = atomic_read(&rq->nr_iowait);
2892 *load = rq->load.weight;
2893 }
2894
2895 #ifdef CONFIG_SMP
2896
2897 /*
2898 * sched_exec - execve() is a valuable balancing opportunity, because at
2899 * this point the task has the smallest effective memory and cache footprint.
2900 */
2901 void sched_exec(void)
2902 {
2903 struct task_struct *p = current;
2904 unsigned long flags;
2905 int dest_cpu;
2906
2907 raw_spin_lock_irqsave(&p->pi_lock, flags);
2908 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2909 if (dest_cpu == smp_processor_id())
2910 goto unlock;
2911
2912 if (likely(cpu_active(dest_cpu))) {
2913 struct migration_arg arg = { p, dest_cpu };
2914
2915 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2916 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2917 return;
2918 }
2919 unlock:
2920 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2921 }
2922
2923 #endif
2924
2925 DEFINE_PER_CPU(struct kernel_stat, kstat);
2926 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2927
2928 EXPORT_PER_CPU_SYMBOL(kstat);
2929 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2930
2931 /*
2932 * Return accounted runtime for the task.
2933 * In case the task is currently running, return the runtime plus current's
2934 * pending runtime that have not been accounted yet.
2935 */
2936 unsigned long long task_sched_runtime(struct task_struct *p)
2937 {
2938 unsigned long flags;
2939 struct rq *rq;
2940 u64 ns;
2941
2942 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2943 /*
2944 * 64-bit doesn't need locks to atomically read a 64bit value.
2945 * So we have a optimization chance when the task's delta_exec is 0.
2946 * Reading ->on_cpu is racy, but this is ok.
2947 *
2948 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2949 * If we race with it entering cpu, unaccounted time is 0. This is
2950 * indistinguishable from the read occurring a few cycles earlier.
2951 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2952 * been accounted, so we're correct here as well.
2953 */
2954 if (!p->on_cpu || !task_on_rq_queued(p))
2955 return p->se.sum_exec_runtime;
2956 #endif
2957
2958 rq = task_rq_lock(p, &flags);
2959 /*
2960 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2961 * project cycles that may never be accounted to this
2962 * thread, breaking clock_gettime().
2963 */
2964 if (task_current(rq, p) && task_on_rq_queued(p)) {
2965 update_rq_clock(rq);
2966 p->sched_class->update_curr(rq);
2967 }
2968 ns = p->se.sum_exec_runtime;
2969 task_rq_unlock(rq, p, &flags);
2970
2971 return ns;
2972 }
2973
2974 /*
2975 * This function gets called by the timer code, with HZ frequency.
2976 * We call it with interrupts disabled.
2977 */
2978 void scheduler_tick(void)
2979 {
2980 int cpu = smp_processor_id();
2981 struct rq *rq = cpu_rq(cpu);
2982 struct task_struct *curr = rq->curr;
2983
2984 sched_clock_tick();
2985
2986 raw_spin_lock(&rq->lock);
2987 update_rq_clock(rq);
2988 curr->sched_class->task_tick(rq, curr, 0);
2989 cpu_load_update_active(rq);
2990 calc_global_load_tick(rq);
2991 raw_spin_unlock(&rq->lock);
2992
2993 perf_event_task_tick();
2994
2995 #ifdef CONFIG_SMP
2996 rq->idle_balance = idle_cpu(cpu);
2997 trigger_load_balance(rq);
2998 #endif
2999 rq_last_tick_reset(rq);
3000 }
3001
3002 #ifdef CONFIG_NO_HZ_FULL
3003 /**
3004 * scheduler_tick_max_deferment
3005 *
3006 * Keep at least one tick per second when a single
3007 * active task is running because the scheduler doesn't
3008 * yet completely support full dynticks environment.
3009 *
3010 * This makes sure that uptime, CFS vruntime, load
3011 * balancing, etc... continue to move forward, even
3012 * with a very low granularity.
3013 *
3014 * Return: Maximum deferment in nanoseconds.
3015 */
3016 u64 scheduler_tick_max_deferment(void)
3017 {
3018 struct rq *rq = this_rq();
3019 unsigned long next, now = READ_ONCE(jiffies);
3020
3021 next = rq->last_sched_tick + HZ;
3022
3023 if (time_before_eq(next, now))
3024 return 0;
3025
3026 return jiffies_to_nsecs(next - now);
3027 }
3028 #endif
3029
3030 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3031 defined(CONFIG_PREEMPT_TRACER))
3032 /*
3033 * If the value passed in is equal to the current preempt count
3034 * then we just disabled preemption. Start timing the latency.
3035 */
3036 static inline void preempt_latency_start(int val)
3037 {
3038 if (preempt_count() == val) {
3039 unsigned long ip = get_lock_parent_ip();
3040 #ifdef CONFIG_DEBUG_PREEMPT
3041 current->preempt_disable_ip = ip;
3042 #endif
3043 trace_preempt_off(CALLER_ADDR0, ip);
3044 }
3045 }
3046
3047 void preempt_count_add(int val)
3048 {
3049 #ifdef CONFIG_DEBUG_PREEMPT
3050 /*
3051 * Underflow?
3052 */
3053 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3054 return;
3055 #endif
3056 __preempt_count_add(val);
3057 #ifdef CONFIG_DEBUG_PREEMPT
3058 /*
3059 * Spinlock count overflowing soon?
3060 */
3061 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3062 PREEMPT_MASK - 10);
3063 #endif
3064 preempt_latency_start(val);
3065 }
3066 EXPORT_SYMBOL(preempt_count_add);
3067 NOKPROBE_SYMBOL(preempt_count_add);
3068
3069 /*
3070 * If the value passed in equals to the current preempt count
3071 * then we just enabled preemption. Stop timing the latency.
3072 */
3073 static inline void preempt_latency_stop(int val)
3074 {
3075 if (preempt_count() == val)
3076 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3077 }
3078
3079 void preempt_count_sub(int val)
3080 {
3081 #ifdef CONFIG_DEBUG_PREEMPT
3082 /*
3083 * Underflow?
3084 */
3085 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3086 return;
3087 /*
3088 * Is the spinlock portion underflowing?
3089 */
3090 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3091 !(preempt_count() & PREEMPT_MASK)))
3092 return;
3093 #endif
3094
3095 preempt_latency_stop(val);
3096 __preempt_count_sub(val);
3097 }
3098 EXPORT_SYMBOL(preempt_count_sub);
3099 NOKPROBE_SYMBOL(preempt_count_sub);
3100
3101 #else
3102 static inline void preempt_latency_start(int val) { }
3103 static inline void preempt_latency_stop(int val) { }
3104 #endif
3105
3106 /*
3107 * Print scheduling while atomic bug:
3108 */
3109 static noinline void __schedule_bug(struct task_struct *prev)
3110 {
3111 if (oops_in_progress)
3112 return;
3113
3114 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3115 prev->comm, prev->pid, preempt_count());
3116
3117 debug_show_held_locks(prev);
3118 print_modules();
3119 if (irqs_disabled())
3120 print_irqtrace_events(prev);
3121 #ifdef CONFIG_DEBUG_PREEMPT
3122 if (in_atomic_preempt_off()) {
3123 pr_err("Preemption disabled at:");
3124 print_ip_sym(current->preempt_disable_ip);
3125 pr_cont("\n");
3126 }
3127 #endif
3128 dump_stack();
3129 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3130 }
3131
3132 /*
3133 * Various schedule()-time debugging checks and statistics:
3134 */
3135 static inline void schedule_debug(struct task_struct *prev)
3136 {
3137 #ifdef CONFIG_SCHED_STACK_END_CHECK
3138 BUG_ON(task_stack_end_corrupted(prev));
3139 #endif
3140
3141 if (unlikely(in_atomic_preempt_off())) {
3142 __schedule_bug(prev);
3143 preempt_count_set(PREEMPT_DISABLED);
3144 }
3145 rcu_sleep_check();
3146
3147 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3148
3149 schedstat_inc(this_rq(), sched_count);
3150 }
3151
3152 /*
3153 * Pick up the highest-prio task:
3154 */
3155 static inline struct task_struct *
3156 pick_next_task(struct rq *rq, struct task_struct *prev)
3157 {
3158 const struct sched_class *class = &fair_sched_class;
3159 struct task_struct *p;
3160
3161 /*
3162 * Optimization: we know that if all tasks are in
3163 * the fair class we can call that function directly:
3164 */
3165 if (likely(prev->sched_class == class &&
3166 rq->nr_running == rq->cfs.h_nr_running)) {
3167 p = fair_sched_class.pick_next_task(rq, prev);
3168 if (unlikely(p == RETRY_TASK))
3169 goto again;
3170
3171 /* assumes fair_sched_class->next == idle_sched_class */
3172 if (unlikely(!p))
3173 p = idle_sched_class.pick_next_task(rq, prev);
3174
3175 return p;
3176 }
3177
3178 again:
3179 for_each_class(class) {
3180 p = class->pick_next_task(rq, prev);
3181 if (p) {
3182 if (unlikely(p == RETRY_TASK))
3183 goto again;
3184 return p;
3185 }
3186 }
3187
3188 BUG(); /* the idle class will always have a runnable task */
3189 }
3190
3191 /*
3192 * __schedule() is the main scheduler function.
3193 *
3194 * The main means of driving the scheduler and thus entering this function are:
3195 *
3196 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3197 *
3198 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3199 * paths. For example, see arch/x86/entry_64.S.
3200 *
3201 * To drive preemption between tasks, the scheduler sets the flag in timer
3202 * interrupt handler scheduler_tick().
3203 *
3204 * 3. Wakeups don't really cause entry into schedule(). They add a
3205 * task to the run-queue and that's it.
3206 *
3207 * Now, if the new task added to the run-queue preempts the current
3208 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3209 * called on the nearest possible occasion:
3210 *
3211 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3212 *
3213 * - in syscall or exception context, at the next outmost
3214 * preempt_enable(). (this might be as soon as the wake_up()'s
3215 * spin_unlock()!)
3216 *
3217 * - in IRQ context, return from interrupt-handler to
3218 * preemptible context
3219 *
3220 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3221 * then at the next:
3222 *
3223 * - cond_resched() call
3224 * - explicit schedule() call
3225 * - return from syscall or exception to user-space
3226 * - return from interrupt-handler to user-space
3227 *
3228 * WARNING: must be called with preemption disabled!
3229 */
3230 static void __sched notrace __schedule(bool preempt)
3231 {
3232 struct task_struct *prev, *next;
3233 unsigned long *switch_count;
3234 struct rq *rq;
3235 int cpu;
3236
3237 cpu = smp_processor_id();
3238 rq = cpu_rq(cpu);
3239 prev = rq->curr;
3240
3241 /*
3242 * do_exit() calls schedule() with preemption disabled as an exception;
3243 * however we must fix that up, otherwise the next task will see an
3244 * inconsistent (higher) preempt count.
3245 *
3246 * It also avoids the below schedule_debug() test from complaining
3247 * about this.
3248 */
3249 if (unlikely(prev->state == TASK_DEAD))
3250 preempt_enable_no_resched_notrace();
3251
3252 schedule_debug(prev);
3253
3254 if (sched_feat(HRTICK))
3255 hrtick_clear(rq);
3256
3257 local_irq_disable();
3258 rcu_note_context_switch();
3259
3260 /*
3261 * Make sure that signal_pending_state()->signal_pending() below
3262 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3263 * done by the caller to avoid the race with signal_wake_up().
3264 */
3265 smp_mb__before_spinlock();
3266 raw_spin_lock(&rq->lock);
3267 lockdep_pin_lock(&rq->lock);
3268
3269 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3270
3271 switch_count = &prev->nivcsw;
3272 if (!preempt && prev->state) {
3273 if (unlikely(signal_pending_state(prev->state, prev))) {
3274 prev->state = TASK_RUNNING;
3275 } else {
3276 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3277 prev->on_rq = 0;
3278
3279 /*
3280 * If a worker went to sleep, notify and ask workqueue
3281 * whether it wants to wake up a task to maintain
3282 * concurrency.
3283 */
3284 if (prev->flags & PF_WQ_WORKER) {
3285 struct task_struct *to_wakeup;
3286
3287 to_wakeup = wq_worker_sleeping(prev);
3288 if (to_wakeup)
3289 try_to_wake_up_local(to_wakeup);
3290 }
3291 }
3292 switch_count = &prev->nvcsw;
3293 }
3294
3295 if (task_on_rq_queued(prev))
3296 update_rq_clock(rq);
3297
3298 next = pick_next_task(rq, prev);
3299 clear_tsk_need_resched(prev);
3300 clear_preempt_need_resched();
3301 rq->clock_skip_update = 0;
3302
3303 if (likely(prev != next)) {
3304 rq->nr_switches++;
3305 rq->curr = next;
3306 ++*switch_count;
3307
3308 trace_sched_switch(preempt, prev, next);
3309 rq = context_switch(rq, prev, next); /* unlocks the rq */
3310 } else {
3311 lockdep_unpin_lock(&rq->lock);
3312 raw_spin_unlock_irq(&rq->lock);
3313 }
3314
3315 balance_callback(rq);
3316 }
3317 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3318
3319 static inline void sched_submit_work(struct task_struct *tsk)
3320 {
3321 if (!tsk->state || tsk_is_pi_blocked(tsk))
3322 return;
3323 /*
3324 * If we are going to sleep and we have plugged IO queued,
3325 * make sure to submit it to avoid deadlocks.
3326 */
3327 if (blk_needs_flush_plug(tsk))
3328 blk_schedule_flush_plug(tsk);
3329 }
3330
3331 asmlinkage __visible void __sched schedule(void)
3332 {
3333 struct task_struct *tsk = current;
3334
3335 sched_submit_work(tsk);
3336 do {
3337 preempt_disable();
3338 __schedule(false);
3339 sched_preempt_enable_no_resched();
3340 } while (need_resched());
3341 }
3342 EXPORT_SYMBOL(schedule);
3343
3344 #ifdef CONFIG_CONTEXT_TRACKING
3345 asmlinkage __visible void __sched schedule_user(void)
3346 {
3347 /*
3348 * If we come here after a random call to set_need_resched(),
3349 * or we have been woken up remotely but the IPI has not yet arrived,
3350 * we haven't yet exited the RCU idle mode. Do it here manually until
3351 * we find a better solution.
3352 *
3353 * NB: There are buggy callers of this function. Ideally we
3354 * should warn if prev_state != CONTEXT_USER, but that will trigger
3355 * too frequently to make sense yet.
3356 */
3357 enum ctx_state prev_state = exception_enter();
3358 schedule();
3359 exception_exit(prev_state);
3360 }
3361 #endif
3362
3363 /**
3364 * schedule_preempt_disabled - called with preemption disabled
3365 *
3366 * Returns with preemption disabled. Note: preempt_count must be 1
3367 */
3368 void __sched schedule_preempt_disabled(void)
3369 {
3370 sched_preempt_enable_no_resched();
3371 schedule();
3372 preempt_disable();
3373 }
3374
3375 static void __sched notrace preempt_schedule_common(void)
3376 {
3377 do {
3378 /*
3379 * Because the function tracer can trace preempt_count_sub()
3380 * and it also uses preempt_enable/disable_notrace(), if
3381 * NEED_RESCHED is set, the preempt_enable_notrace() called
3382 * by the function tracer will call this function again and
3383 * cause infinite recursion.
3384 *
3385 * Preemption must be disabled here before the function
3386 * tracer can trace. Break up preempt_disable() into two
3387 * calls. One to disable preemption without fear of being
3388 * traced. The other to still record the preemption latency,
3389 * which can also be traced by the function tracer.
3390 */
3391 preempt_disable_notrace();
3392 preempt_latency_start(1);
3393 __schedule(true);
3394 preempt_latency_stop(1);
3395 preempt_enable_no_resched_notrace();
3396
3397 /*
3398 * Check again in case we missed a preemption opportunity
3399 * between schedule and now.
3400 */
3401 } while (need_resched());
3402 }
3403
3404 #ifdef CONFIG_PREEMPT
3405 /*
3406 * this is the entry point to schedule() from in-kernel preemption
3407 * off of preempt_enable. Kernel preemptions off return from interrupt
3408 * occur there and call schedule directly.
3409 */
3410 asmlinkage __visible void __sched notrace preempt_schedule(void)
3411 {
3412 /*
3413 * If there is a non-zero preempt_count or interrupts are disabled,
3414 * we do not want to preempt the current task. Just return..
3415 */
3416 if (likely(!preemptible()))
3417 return;
3418
3419 preempt_schedule_common();
3420 }
3421 NOKPROBE_SYMBOL(preempt_schedule);
3422 EXPORT_SYMBOL(preempt_schedule);
3423
3424 /**
3425 * preempt_schedule_notrace - preempt_schedule called by tracing
3426 *
3427 * The tracing infrastructure uses preempt_enable_notrace to prevent
3428 * recursion and tracing preempt enabling caused by the tracing
3429 * infrastructure itself. But as tracing can happen in areas coming
3430 * from userspace or just about to enter userspace, a preempt enable
3431 * can occur before user_exit() is called. This will cause the scheduler
3432 * to be called when the system is still in usermode.
3433 *
3434 * To prevent this, the preempt_enable_notrace will use this function
3435 * instead of preempt_schedule() to exit user context if needed before
3436 * calling the scheduler.
3437 */
3438 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3439 {
3440 enum ctx_state prev_ctx;
3441
3442 if (likely(!preemptible()))
3443 return;
3444
3445 do {
3446 /*
3447 * Because the function tracer can trace preempt_count_sub()
3448 * and it also uses preempt_enable/disable_notrace(), if
3449 * NEED_RESCHED is set, the preempt_enable_notrace() called
3450 * by the function tracer will call this function again and
3451 * cause infinite recursion.
3452 *
3453 * Preemption must be disabled here before the function
3454 * tracer can trace. Break up preempt_disable() into two
3455 * calls. One to disable preemption without fear of being
3456 * traced. The other to still record the preemption latency,
3457 * which can also be traced by the function tracer.
3458 */
3459 preempt_disable_notrace();
3460 preempt_latency_start(1);
3461 /*
3462 * Needs preempt disabled in case user_exit() is traced
3463 * and the tracer calls preempt_enable_notrace() causing
3464 * an infinite recursion.
3465 */
3466 prev_ctx = exception_enter();
3467 __schedule(true);
3468 exception_exit(prev_ctx);
3469
3470 preempt_latency_stop(1);
3471 preempt_enable_no_resched_notrace();
3472 } while (need_resched());
3473 }
3474 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3475
3476 #endif /* CONFIG_PREEMPT */
3477
3478 /*
3479 * this is the entry point to schedule() from kernel preemption
3480 * off of irq context.
3481 * Note, that this is called and return with irqs disabled. This will
3482 * protect us against recursive calling from irq.
3483 */
3484 asmlinkage __visible void __sched preempt_schedule_irq(void)
3485 {
3486 enum ctx_state prev_state;
3487
3488 /* Catch callers which need to be fixed */
3489 BUG_ON(preempt_count() || !irqs_disabled());
3490
3491 prev_state = exception_enter();
3492
3493 do {
3494 preempt_disable();
3495 local_irq_enable();
3496 __schedule(true);
3497 local_irq_disable();
3498 sched_preempt_enable_no_resched();
3499 } while (need_resched());
3500
3501 exception_exit(prev_state);
3502 }
3503
3504 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3505 void *key)
3506 {
3507 return try_to_wake_up(curr->private, mode, wake_flags);
3508 }
3509 EXPORT_SYMBOL(default_wake_function);
3510
3511 #ifdef CONFIG_RT_MUTEXES
3512
3513 /*
3514 * rt_mutex_setprio - set the current priority of a task
3515 * @p: task
3516 * @prio: prio value (kernel-internal form)
3517 *
3518 * This function changes the 'effective' priority of a task. It does
3519 * not touch ->normal_prio like __setscheduler().
3520 *
3521 * Used by the rt_mutex code to implement priority inheritance
3522 * logic. Call site only calls if the priority of the task changed.
3523 */
3524 void rt_mutex_setprio(struct task_struct *p, int prio)
3525 {
3526 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3527 struct rq *rq;
3528 const struct sched_class *prev_class;
3529
3530 BUG_ON(prio > MAX_PRIO);
3531
3532 rq = __task_rq_lock(p);
3533
3534 /*
3535 * Idle task boosting is a nono in general. There is one
3536 * exception, when PREEMPT_RT and NOHZ is active:
3537 *
3538 * The idle task calls get_next_timer_interrupt() and holds
3539 * the timer wheel base->lock on the CPU and another CPU wants
3540 * to access the timer (probably to cancel it). We can safely
3541 * ignore the boosting request, as the idle CPU runs this code
3542 * with interrupts disabled and will complete the lock
3543 * protected section without being interrupted. So there is no
3544 * real need to boost.
3545 */
3546 if (unlikely(p == rq->idle)) {
3547 WARN_ON(p != rq->curr);
3548 WARN_ON(p->pi_blocked_on);
3549 goto out_unlock;
3550 }
3551
3552 trace_sched_pi_setprio(p, prio);
3553 oldprio = p->prio;
3554
3555 if (oldprio == prio)
3556 queue_flag &= ~DEQUEUE_MOVE;
3557
3558 prev_class = p->sched_class;
3559 queued = task_on_rq_queued(p);
3560 running = task_current(rq, p);
3561 if (queued)
3562 dequeue_task(rq, p, queue_flag);
3563 if (running)
3564 put_prev_task(rq, p);
3565
3566 /*
3567 * Boosting condition are:
3568 * 1. -rt task is running and holds mutex A
3569 * --> -dl task blocks on mutex A
3570 *
3571 * 2. -dl task is running and holds mutex A
3572 * --> -dl task blocks on mutex A and could preempt the
3573 * running task
3574 */
3575 if (dl_prio(prio)) {
3576 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3577 if (!dl_prio(p->normal_prio) ||
3578 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3579 p->dl.dl_boosted = 1;
3580 queue_flag |= ENQUEUE_REPLENISH;
3581 } else
3582 p->dl.dl_boosted = 0;
3583 p->sched_class = &dl_sched_class;
3584 } else if (rt_prio(prio)) {
3585 if (dl_prio(oldprio))
3586 p->dl.dl_boosted = 0;
3587 if (oldprio < prio)
3588 queue_flag |= ENQUEUE_HEAD;
3589 p->sched_class = &rt_sched_class;
3590 } else {
3591 if (dl_prio(oldprio))
3592 p->dl.dl_boosted = 0;
3593 if (rt_prio(oldprio))
3594 p->rt.timeout = 0;
3595 p->sched_class = &fair_sched_class;
3596 }
3597
3598 p->prio = prio;
3599
3600 if (running)
3601 p->sched_class->set_curr_task(rq);
3602 if (queued)
3603 enqueue_task(rq, p, queue_flag);
3604
3605 check_class_changed(rq, p, prev_class, oldprio);
3606 out_unlock:
3607 preempt_disable(); /* avoid rq from going away on us */
3608 __task_rq_unlock(rq);
3609
3610 balance_callback(rq);
3611 preempt_enable();
3612 }
3613 #endif
3614
3615 void set_user_nice(struct task_struct *p, long nice)
3616 {
3617 int old_prio, delta, queued;
3618 unsigned long flags;
3619 struct rq *rq;
3620
3621 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3622 return;
3623 /*
3624 * We have to be careful, if called from sys_setpriority(),
3625 * the task might be in the middle of scheduling on another CPU.
3626 */
3627 rq = task_rq_lock(p, &flags);
3628 /*
3629 * The RT priorities are set via sched_setscheduler(), but we still
3630 * allow the 'normal' nice value to be set - but as expected
3631 * it wont have any effect on scheduling until the task is
3632 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3633 */
3634 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3635 p->static_prio = NICE_TO_PRIO(nice);
3636 goto out_unlock;
3637 }
3638 queued = task_on_rq_queued(p);
3639 if (queued)
3640 dequeue_task(rq, p, DEQUEUE_SAVE);
3641
3642 p->static_prio = NICE_TO_PRIO(nice);
3643 set_load_weight(p);
3644 old_prio = p->prio;
3645 p->prio = effective_prio(p);
3646 delta = p->prio - old_prio;
3647
3648 if (queued) {
3649 enqueue_task(rq, p, ENQUEUE_RESTORE);
3650 /*
3651 * If the task increased its priority or is running and
3652 * lowered its priority, then reschedule its CPU:
3653 */
3654 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3655 resched_curr(rq);
3656 }
3657 out_unlock:
3658 task_rq_unlock(rq, p, &flags);
3659 }
3660 EXPORT_SYMBOL(set_user_nice);
3661
3662 /*
3663 * can_nice - check if a task can reduce its nice value
3664 * @p: task
3665 * @nice: nice value
3666 */
3667 int can_nice(const struct task_struct *p, const int nice)
3668 {
3669 /* convert nice value [19,-20] to rlimit style value [1,40] */
3670 int nice_rlim = nice_to_rlimit(nice);
3671
3672 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3673 capable(CAP_SYS_NICE));
3674 }
3675
3676 #ifdef __ARCH_WANT_SYS_NICE
3677
3678 /*
3679 * sys_nice - change the priority of the current process.
3680 * @increment: priority increment
3681 *
3682 * sys_setpriority is a more generic, but much slower function that
3683 * does similar things.
3684 */
3685 SYSCALL_DEFINE1(nice, int, increment)
3686 {
3687 long nice, retval;
3688
3689 /*
3690 * Setpriority might change our priority at the same moment.
3691 * We don't have to worry. Conceptually one call occurs first
3692 * and we have a single winner.
3693 */
3694 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3695 nice = task_nice(current) + increment;
3696
3697 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3698 if (increment < 0 && !can_nice(current, nice))
3699 return -EPERM;
3700
3701 retval = security_task_setnice(current, nice);
3702 if (retval)
3703 return retval;
3704
3705 set_user_nice(current, nice);
3706 return 0;
3707 }
3708
3709 #endif
3710
3711 /**
3712 * task_prio - return the priority value of a given task.
3713 * @p: the task in question.
3714 *
3715 * Return: The priority value as seen by users in /proc.
3716 * RT tasks are offset by -200. Normal tasks are centered
3717 * around 0, value goes from -16 to +15.
3718 */
3719 int task_prio(const struct task_struct *p)
3720 {
3721 return p->prio - MAX_RT_PRIO;
3722 }
3723
3724 /**
3725 * idle_cpu - is a given cpu idle currently?
3726 * @cpu: the processor in question.
3727 *
3728 * Return: 1 if the CPU is currently idle. 0 otherwise.
3729 */
3730 int idle_cpu(int cpu)
3731 {
3732 struct rq *rq = cpu_rq(cpu);
3733
3734 if (rq->curr != rq->idle)
3735 return 0;
3736
3737 if (rq->nr_running)
3738 return 0;
3739
3740 #ifdef CONFIG_SMP
3741 if (!llist_empty(&rq->wake_list))
3742 return 0;
3743 #endif
3744
3745 return 1;
3746 }
3747
3748 /**
3749 * idle_task - return the idle task for a given cpu.
3750 * @cpu: the processor in question.
3751 *
3752 * Return: The idle task for the cpu @cpu.
3753 */
3754 struct task_struct *idle_task(int cpu)
3755 {
3756 return cpu_rq(cpu)->idle;
3757 }
3758
3759 /**
3760 * find_process_by_pid - find a process with a matching PID value.
3761 * @pid: the pid in question.
3762 *
3763 * The task of @pid, if found. %NULL otherwise.
3764 */
3765 static struct task_struct *find_process_by_pid(pid_t pid)
3766 {
3767 return pid ? find_task_by_vpid(pid) : current;
3768 }
3769
3770 /*
3771 * This function initializes the sched_dl_entity of a newly becoming
3772 * SCHED_DEADLINE task.
3773 *
3774 * Only the static values are considered here, the actual runtime and the
3775 * absolute deadline will be properly calculated when the task is enqueued
3776 * for the first time with its new policy.
3777 */
3778 static void
3779 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3780 {
3781 struct sched_dl_entity *dl_se = &p->dl;
3782
3783 dl_se->dl_runtime = attr->sched_runtime;
3784 dl_se->dl_deadline = attr->sched_deadline;
3785 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3786 dl_se->flags = attr->sched_flags;
3787 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3788
3789 /*
3790 * Changing the parameters of a task is 'tricky' and we're not doing
3791 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3792 *
3793 * What we SHOULD do is delay the bandwidth release until the 0-lag
3794 * point. This would include retaining the task_struct until that time
3795 * and change dl_overflow() to not immediately decrement the current
3796 * amount.
3797 *
3798 * Instead we retain the current runtime/deadline and let the new
3799 * parameters take effect after the current reservation period lapses.
3800 * This is safe (albeit pessimistic) because the 0-lag point is always
3801 * before the current scheduling deadline.
3802 *
3803 * We can still have temporary overloads because we do not delay the
3804 * change in bandwidth until that time; so admission control is
3805 * not on the safe side. It does however guarantee tasks will never
3806 * consume more than promised.
3807 */
3808 }
3809
3810 /*
3811 * sched_setparam() passes in -1 for its policy, to let the functions
3812 * it calls know not to change it.
3813 */
3814 #define SETPARAM_POLICY -1
3815
3816 static void __setscheduler_params(struct task_struct *p,
3817 const struct sched_attr *attr)
3818 {
3819 int policy = attr->sched_policy;
3820
3821 if (policy == SETPARAM_POLICY)
3822 policy = p->policy;
3823
3824 p->policy = policy;
3825
3826 if (dl_policy(policy))
3827 __setparam_dl(p, attr);
3828 else if (fair_policy(policy))
3829 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3830
3831 /*
3832 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3833 * !rt_policy. Always setting this ensures that things like
3834 * getparam()/getattr() don't report silly values for !rt tasks.
3835 */
3836 p->rt_priority = attr->sched_priority;
3837 p->normal_prio = normal_prio(p);
3838 set_load_weight(p);
3839 }
3840
3841 /* Actually do priority change: must hold pi & rq lock. */
3842 static void __setscheduler(struct rq *rq, struct task_struct *p,
3843 const struct sched_attr *attr, bool keep_boost)
3844 {
3845 __setscheduler_params(p, attr);
3846
3847 /*
3848 * Keep a potential priority boosting if called from
3849 * sched_setscheduler().
3850 */
3851 if (keep_boost)
3852 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3853 else
3854 p->prio = normal_prio(p);
3855
3856 if (dl_prio(p->prio))
3857 p->sched_class = &dl_sched_class;
3858 else if (rt_prio(p->prio))
3859 p->sched_class = &rt_sched_class;
3860 else
3861 p->sched_class = &fair_sched_class;
3862 }
3863
3864 static void
3865 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3866 {
3867 struct sched_dl_entity *dl_se = &p->dl;
3868
3869 attr->sched_priority = p->rt_priority;
3870 attr->sched_runtime = dl_se->dl_runtime;
3871 attr->sched_deadline = dl_se->dl_deadline;
3872 attr->sched_period = dl_se->dl_period;
3873 attr->sched_flags = dl_se->flags;
3874 }
3875
3876 /*
3877 * This function validates the new parameters of a -deadline task.
3878 * We ask for the deadline not being zero, and greater or equal
3879 * than the runtime, as well as the period of being zero or
3880 * greater than deadline. Furthermore, we have to be sure that
3881 * user parameters are above the internal resolution of 1us (we
3882 * check sched_runtime only since it is always the smaller one) and
3883 * below 2^63 ns (we have to check both sched_deadline and
3884 * sched_period, as the latter can be zero).
3885 */
3886 static bool
3887 __checkparam_dl(const struct sched_attr *attr)
3888 {
3889 /* deadline != 0 */
3890 if (attr->sched_deadline == 0)
3891 return false;
3892
3893 /*
3894 * Since we truncate DL_SCALE bits, make sure we're at least
3895 * that big.
3896 */
3897 if (attr->sched_runtime < (1ULL << DL_SCALE))
3898 return false;
3899
3900 /*
3901 * Since we use the MSB for wrap-around and sign issues, make
3902 * sure it's not set (mind that period can be equal to zero).
3903 */
3904 if (attr->sched_deadline & (1ULL << 63) ||
3905 attr->sched_period & (1ULL << 63))
3906 return false;
3907
3908 /* runtime <= deadline <= period (if period != 0) */
3909 if ((attr->sched_period != 0 &&
3910 attr->sched_period < attr->sched_deadline) ||
3911 attr->sched_deadline < attr->sched_runtime)
3912 return false;
3913
3914 return true;
3915 }
3916
3917 /*
3918 * check the target process has a UID that matches the current process's
3919 */
3920 static bool check_same_owner(struct task_struct *p)
3921 {
3922 const struct cred *cred = current_cred(), *pcred;
3923 bool match;
3924
3925 rcu_read_lock();
3926 pcred = __task_cred(p);
3927 match = (uid_eq(cred->euid, pcred->euid) ||
3928 uid_eq(cred->euid, pcred->uid));
3929 rcu_read_unlock();
3930 return match;
3931 }
3932
3933 static bool dl_param_changed(struct task_struct *p,
3934 const struct sched_attr *attr)
3935 {
3936 struct sched_dl_entity *dl_se = &p->dl;
3937
3938 if (dl_se->dl_runtime != attr->sched_runtime ||
3939 dl_se->dl_deadline != attr->sched_deadline ||
3940 dl_se->dl_period != attr->sched_period ||
3941 dl_se->flags != attr->sched_flags)
3942 return true;
3943
3944 return false;
3945 }
3946
3947 static int __sched_setscheduler(struct task_struct *p,
3948 const struct sched_attr *attr,
3949 bool user, bool pi)
3950 {
3951 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3952 MAX_RT_PRIO - 1 - attr->sched_priority;
3953 int retval, oldprio, oldpolicy = -1, queued, running;
3954 int new_effective_prio, policy = attr->sched_policy;
3955 unsigned long flags;
3956 const struct sched_class *prev_class;
3957 struct rq *rq;
3958 int reset_on_fork;
3959 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3960
3961 /* may grab non-irq protected spin_locks */
3962 BUG_ON(in_interrupt());
3963 recheck:
3964 /* double check policy once rq lock held */
3965 if (policy < 0) {
3966 reset_on_fork = p->sched_reset_on_fork;
3967 policy = oldpolicy = p->policy;
3968 } else {
3969 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3970
3971 if (!valid_policy(policy))
3972 return -EINVAL;
3973 }
3974
3975 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3976 return -EINVAL;
3977
3978 /*
3979 * Valid priorities for SCHED_FIFO and SCHED_RR are
3980 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3981 * SCHED_BATCH and SCHED_IDLE is 0.
3982 */
3983 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3984 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3985 return -EINVAL;
3986 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3987 (rt_policy(policy) != (attr->sched_priority != 0)))
3988 return -EINVAL;
3989
3990 /*
3991 * Allow unprivileged RT tasks to decrease priority:
3992 */
3993 if (user && !capable(CAP_SYS_NICE)) {
3994 if (fair_policy(policy)) {
3995 if (attr->sched_nice < task_nice(p) &&
3996 !can_nice(p, attr->sched_nice))
3997 return -EPERM;
3998 }
3999
4000 if (rt_policy(policy)) {
4001 unsigned long rlim_rtprio =
4002 task_rlimit(p, RLIMIT_RTPRIO);
4003
4004 /* can't set/change the rt policy */
4005 if (policy != p->policy && !rlim_rtprio)
4006 return -EPERM;
4007
4008 /* can't increase priority */
4009 if (attr->sched_priority > p->rt_priority &&
4010 attr->sched_priority > rlim_rtprio)
4011 return -EPERM;
4012 }
4013
4014 /*
4015 * Can't set/change SCHED_DEADLINE policy at all for now
4016 * (safest behavior); in the future we would like to allow
4017 * unprivileged DL tasks to increase their relative deadline
4018 * or reduce their runtime (both ways reducing utilization)
4019 */
4020 if (dl_policy(policy))
4021 return -EPERM;
4022
4023 /*
4024 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4025 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4026 */
4027 if (idle_policy(p->policy) && !idle_policy(policy)) {
4028 if (!can_nice(p, task_nice(p)))
4029 return -EPERM;
4030 }
4031
4032 /* can't change other user's priorities */
4033 if (!check_same_owner(p))
4034 return -EPERM;
4035
4036 /* Normal users shall not reset the sched_reset_on_fork flag */
4037 if (p->sched_reset_on_fork && !reset_on_fork)
4038 return -EPERM;
4039 }
4040
4041 if (user) {
4042 retval = security_task_setscheduler(p);
4043 if (retval)
4044 return retval;
4045 }
4046
4047 /*
4048 * make sure no PI-waiters arrive (or leave) while we are
4049 * changing the priority of the task:
4050 *
4051 * To be able to change p->policy safely, the appropriate
4052 * runqueue lock must be held.
4053 */
4054 rq = task_rq_lock(p, &flags);
4055
4056 /*
4057 * Changing the policy of the stop threads its a very bad idea
4058 */
4059 if (p == rq->stop) {
4060 task_rq_unlock(rq, p, &flags);
4061 return -EINVAL;
4062 }
4063
4064 /*
4065 * If not changing anything there's no need to proceed further,
4066 * but store a possible modification of reset_on_fork.
4067 */
4068 if (unlikely(policy == p->policy)) {
4069 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4070 goto change;
4071 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4072 goto change;
4073 if (dl_policy(policy) && dl_param_changed(p, attr))
4074 goto change;
4075
4076 p->sched_reset_on_fork = reset_on_fork;
4077 task_rq_unlock(rq, p, &flags);
4078 return 0;
4079 }
4080 change:
4081
4082 if (user) {
4083 #ifdef CONFIG_RT_GROUP_SCHED
4084 /*
4085 * Do not allow realtime tasks into groups that have no runtime
4086 * assigned.
4087 */
4088 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4089 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4090 !task_group_is_autogroup(task_group(p))) {
4091 task_rq_unlock(rq, p, &flags);
4092 return -EPERM;
4093 }
4094 #endif
4095 #ifdef CONFIG_SMP
4096 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4097 cpumask_t *span = rq->rd->span;
4098
4099 /*
4100 * Don't allow tasks with an affinity mask smaller than
4101 * the entire root_domain to become SCHED_DEADLINE. We
4102 * will also fail if there's no bandwidth available.
4103 */
4104 if (!cpumask_subset(span, &p->cpus_allowed) ||
4105 rq->rd->dl_bw.bw == 0) {
4106 task_rq_unlock(rq, p, &flags);
4107 return -EPERM;
4108 }
4109 }
4110 #endif
4111 }
4112
4113 /* recheck policy now with rq lock held */
4114 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4115 policy = oldpolicy = -1;
4116 task_rq_unlock(rq, p, &flags);
4117 goto recheck;
4118 }
4119
4120 /*
4121 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4122 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4123 * is available.
4124 */
4125 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4126 task_rq_unlock(rq, p, &flags);
4127 return -EBUSY;
4128 }
4129
4130 p->sched_reset_on_fork = reset_on_fork;
4131 oldprio = p->prio;
4132
4133 if (pi) {
4134 /*
4135 * Take priority boosted tasks into account. If the new
4136 * effective priority is unchanged, we just store the new
4137 * normal parameters and do not touch the scheduler class and
4138 * the runqueue. This will be done when the task deboost
4139 * itself.
4140 */
4141 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4142 if (new_effective_prio == oldprio)
4143 queue_flags &= ~DEQUEUE_MOVE;
4144 }
4145
4146 queued = task_on_rq_queued(p);
4147 running = task_current(rq, p);
4148 if (queued)
4149 dequeue_task(rq, p, queue_flags);
4150 if (running)
4151 put_prev_task(rq, p);
4152
4153 prev_class = p->sched_class;
4154 __setscheduler(rq, p, attr, pi);
4155
4156 if (running)
4157 p->sched_class->set_curr_task(rq);
4158 if (queued) {
4159 /*
4160 * We enqueue to tail when the priority of a task is
4161 * increased (user space view).
4162 */
4163 if (oldprio < p->prio)
4164 queue_flags |= ENQUEUE_HEAD;
4165
4166 enqueue_task(rq, p, queue_flags);
4167 }
4168
4169 check_class_changed(rq, p, prev_class, oldprio);
4170 preempt_disable(); /* avoid rq from going away on us */
4171 task_rq_unlock(rq, p, &flags);
4172
4173 if (pi)
4174 rt_mutex_adjust_pi(p);
4175
4176 /*
4177 * Run balance callbacks after we've adjusted the PI chain.
4178 */
4179 balance_callback(rq);
4180 preempt_enable();
4181
4182 return 0;
4183 }
4184
4185 static int _sched_setscheduler(struct task_struct *p, int policy,
4186 const struct sched_param *param, bool check)
4187 {
4188 struct sched_attr attr = {
4189 .sched_policy = policy,
4190 .sched_priority = param->sched_priority,
4191 .sched_nice = PRIO_TO_NICE(p->static_prio),
4192 };
4193
4194 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4195 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4196 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4197 policy &= ~SCHED_RESET_ON_FORK;
4198 attr.sched_policy = policy;
4199 }
4200
4201 return __sched_setscheduler(p, &attr, check, true);
4202 }
4203 /**
4204 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4205 * @p: the task in question.
4206 * @policy: new policy.
4207 * @param: structure containing the new RT priority.
4208 *
4209 * Return: 0 on success. An error code otherwise.
4210 *
4211 * NOTE that the task may be already dead.
4212 */
4213 int sched_setscheduler(struct task_struct *p, int policy,
4214 const struct sched_param *param)
4215 {
4216 return _sched_setscheduler(p, policy, param, true);
4217 }
4218 EXPORT_SYMBOL_GPL(sched_setscheduler);
4219
4220 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4221 {
4222 return __sched_setscheduler(p, attr, true, true);
4223 }
4224 EXPORT_SYMBOL_GPL(sched_setattr);
4225
4226 /**
4227 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4228 * @p: the task in question.
4229 * @policy: new policy.
4230 * @param: structure containing the new RT priority.
4231 *
4232 * Just like sched_setscheduler, only don't bother checking if the
4233 * current context has permission. For example, this is needed in
4234 * stop_machine(): we create temporary high priority worker threads,
4235 * but our caller might not have that capability.
4236 *
4237 * Return: 0 on success. An error code otherwise.
4238 */
4239 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4240 const struct sched_param *param)
4241 {
4242 return _sched_setscheduler(p, policy, param, false);
4243 }
4244 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4245
4246 static int
4247 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4248 {
4249 struct sched_param lparam;
4250 struct task_struct *p;
4251 int retval;
4252
4253 if (!param || pid < 0)
4254 return -EINVAL;
4255 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4256 return -EFAULT;
4257
4258 rcu_read_lock();
4259 retval = -ESRCH;
4260 p = find_process_by_pid(pid);
4261 if (p != NULL)
4262 retval = sched_setscheduler(p, policy, &lparam);
4263 rcu_read_unlock();
4264
4265 return retval;
4266 }
4267
4268 /*
4269 * Mimics kernel/events/core.c perf_copy_attr().
4270 */
4271 static int sched_copy_attr(struct sched_attr __user *uattr,
4272 struct sched_attr *attr)
4273 {
4274 u32 size;
4275 int ret;
4276
4277 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4278 return -EFAULT;
4279
4280 /*
4281 * zero the full structure, so that a short copy will be nice.
4282 */
4283 memset(attr, 0, sizeof(*attr));
4284
4285 ret = get_user(size, &uattr->size);
4286 if (ret)
4287 return ret;
4288
4289 if (size > PAGE_SIZE) /* silly large */
4290 goto err_size;
4291
4292 if (!size) /* abi compat */
4293 size = SCHED_ATTR_SIZE_VER0;
4294
4295 if (size < SCHED_ATTR_SIZE_VER0)
4296 goto err_size;
4297
4298 /*
4299 * If we're handed a bigger struct than we know of,
4300 * ensure all the unknown bits are 0 - i.e. new
4301 * user-space does not rely on any kernel feature
4302 * extensions we dont know about yet.
4303 */
4304 if (size > sizeof(*attr)) {
4305 unsigned char __user *addr;
4306 unsigned char __user *end;
4307 unsigned char val;
4308
4309 addr = (void __user *)uattr + sizeof(*attr);
4310 end = (void __user *)uattr + size;
4311
4312 for (; addr < end; addr++) {
4313 ret = get_user(val, addr);
4314 if (ret)
4315 return ret;
4316 if (val)
4317 goto err_size;
4318 }
4319 size = sizeof(*attr);
4320 }
4321
4322 ret = copy_from_user(attr, uattr, size);
4323 if (ret)
4324 return -EFAULT;
4325
4326 /*
4327 * XXX: do we want to be lenient like existing syscalls; or do we want
4328 * to be strict and return an error on out-of-bounds values?
4329 */
4330 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4331
4332 return 0;
4333
4334 err_size:
4335 put_user(sizeof(*attr), &uattr->size);
4336 return -E2BIG;
4337 }
4338
4339 /**
4340 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4341 * @pid: the pid in question.
4342 * @policy: new policy.
4343 * @param: structure containing the new RT priority.
4344 *
4345 * Return: 0 on success. An error code otherwise.
4346 */
4347 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4348 struct sched_param __user *, param)
4349 {
4350 /* negative values for policy are not valid */
4351 if (policy < 0)
4352 return -EINVAL;
4353
4354 return do_sched_setscheduler(pid, policy, param);
4355 }
4356
4357 /**
4358 * sys_sched_setparam - set/change the RT priority of a thread
4359 * @pid: the pid in question.
4360 * @param: structure containing the new RT priority.
4361 *
4362 * Return: 0 on success. An error code otherwise.
4363 */
4364 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4365 {
4366 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4367 }
4368
4369 /**
4370 * sys_sched_setattr - same as above, but with extended sched_attr
4371 * @pid: the pid in question.
4372 * @uattr: structure containing the extended parameters.
4373 * @flags: for future extension.
4374 */
4375 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4376 unsigned int, flags)
4377 {
4378 struct sched_attr attr;
4379 struct task_struct *p;
4380 int retval;
4381
4382 if (!uattr || pid < 0 || flags)
4383 return -EINVAL;
4384
4385 retval = sched_copy_attr(uattr, &attr);
4386 if (retval)
4387 return retval;
4388
4389 if ((int)attr.sched_policy < 0)
4390 return -EINVAL;
4391
4392 rcu_read_lock();
4393 retval = -ESRCH;
4394 p = find_process_by_pid(pid);
4395 if (p != NULL)
4396 retval = sched_setattr(p, &attr);
4397 rcu_read_unlock();
4398
4399 return retval;
4400 }
4401
4402 /**
4403 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4404 * @pid: the pid in question.
4405 *
4406 * Return: On success, the policy of the thread. Otherwise, a negative error
4407 * code.
4408 */
4409 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4410 {
4411 struct task_struct *p;
4412 int retval;
4413
4414 if (pid < 0)
4415 return -EINVAL;
4416
4417 retval = -ESRCH;
4418 rcu_read_lock();
4419 p = find_process_by_pid(pid);
4420 if (p) {
4421 retval = security_task_getscheduler(p);
4422 if (!retval)
4423 retval = p->policy
4424 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4425 }
4426 rcu_read_unlock();
4427 return retval;
4428 }
4429
4430 /**
4431 * sys_sched_getparam - get the RT priority of a thread
4432 * @pid: the pid in question.
4433 * @param: structure containing the RT priority.
4434 *
4435 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4436 * code.
4437 */
4438 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4439 {
4440 struct sched_param lp = { .sched_priority = 0 };
4441 struct task_struct *p;
4442 int retval;
4443
4444 if (!param || pid < 0)
4445 return -EINVAL;
4446
4447 rcu_read_lock();
4448 p = find_process_by_pid(pid);
4449 retval = -ESRCH;
4450 if (!p)
4451 goto out_unlock;
4452
4453 retval = security_task_getscheduler(p);
4454 if (retval)
4455 goto out_unlock;
4456
4457 if (task_has_rt_policy(p))
4458 lp.sched_priority = p->rt_priority;
4459 rcu_read_unlock();
4460
4461 /*
4462 * This one might sleep, we cannot do it with a spinlock held ...
4463 */
4464 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4465
4466 return retval;
4467
4468 out_unlock:
4469 rcu_read_unlock();
4470 return retval;
4471 }
4472
4473 static int sched_read_attr(struct sched_attr __user *uattr,
4474 struct sched_attr *attr,
4475 unsigned int usize)
4476 {
4477 int ret;
4478
4479 if (!access_ok(VERIFY_WRITE, uattr, usize))
4480 return -EFAULT;
4481
4482 /*
4483 * If we're handed a smaller struct than we know of,
4484 * ensure all the unknown bits are 0 - i.e. old
4485 * user-space does not get uncomplete information.
4486 */
4487 if (usize < sizeof(*attr)) {
4488 unsigned char *addr;
4489 unsigned char *end;
4490
4491 addr = (void *)attr + usize;
4492 end = (void *)attr + sizeof(*attr);
4493
4494 for (; addr < end; addr++) {
4495 if (*addr)
4496 return -EFBIG;
4497 }
4498
4499 attr->size = usize;
4500 }
4501
4502 ret = copy_to_user(uattr, attr, attr->size);
4503 if (ret)
4504 return -EFAULT;
4505
4506 return 0;
4507 }
4508
4509 /**
4510 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4511 * @pid: the pid in question.
4512 * @uattr: structure containing the extended parameters.
4513 * @size: sizeof(attr) for fwd/bwd comp.
4514 * @flags: for future extension.
4515 */
4516 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4517 unsigned int, size, unsigned int, flags)
4518 {
4519 struct sched_attr attr = {
4520 .size = sizeof(struct sched_attr),
4521 };
4522 struct task_struct *p;
4523 int retval;
4524
4525 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4526 size < SCHED_ATTR_SIZE_VER0 || flags)
4527 return -EINVAL;
4528
4529 rcu_read_lock();
4530 p = find_process_by_pid(pid);
4531 retval = -ESRCH;
4532 if (!p)
4533 goto out_unlock;
4534
4535 retval = security_task_getscheduler(p);
4536 if (retval)
4537 goto out_unlock;
4538
4539 attr.sched_policy = p->policy;
4540 if (p->sched_reset_on_fork)
4541 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4542 if (task_has_dl_policy(p))
4543 __getparam_dl(p, &attr);
4544 else if (task_has_rt_policy(p))
4545 attr.sched_priority = p->rt_priority;
4546 else
4547 attr.sched_nice = task_nice(p);
4548
4549 rcu_read_unlock();
4550
4551 retval = sched_read_attr(uattr, &attr, size);
4552 return retval;
4553
4554 out_unlock:
4555 rcu_read_unlock();
4556 return retval;
4557 }
4558
4559 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4560 {
4561 cpumask_var_t cpus_allowed, new_mask;
4562 struct task_struct *p;
4563 int retval;
4564
4565 rcu_read_lock();
4566
4567 p = find_process_by_pid(pid);
4568 if (!p) {
4569 rcu_read_unlock();
4570 return -ESRCH;
4571 }
4572
4573 /* Prevent p going away */
4574 get_task_struct(p);
4575 rcu_read_unlock();
4576
4577 if (p->flags & PF_NO_SETAFFINITY) {
4578 retval = -EINVAL;
4579 goto out_put_task;
4580 }
4581 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4582 retval = -ENOMEM;
4583 goto out_put_task;
4584 }
4585 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4586 retval = -ENOMEM;
4587 goto out_free_cpus_allowed;
4588 }
4589 retval = -EPERM;
4590 if (!check_same_owner(p)) {
4591 rcu_read_lock();
4592 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4593 rcu_read_unlock();
4594 goto out_free_new_mask;
4595 }
4596 rcu_read_unlock();
4597 }
4598
4599 retval = security_task_setscheduler(p);
4600 if (retval)
4601 goto out_free_new_mask;
4602
4603
4604 cpuset_cpus_allowed(p, cpus_allowed);
4605 cpumask_and(new_mask, in_mask, cpus_allowed);
4606
4607 /*
4608 * Since bandwidth control happens on root_domain basis,
4609 * if admission test is enabled, we only admit -deadline
4610 * tasks allowed to run on all the CPUs in the task's
4611 * root_domain.
4612 */
4613 #ifdef CONFIG_SMP
4614 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4615 rcu_read_lock();
4616 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4617 retval = -EBUSY;
4618 rcu_read_unlock();
4619 goto out_free_new_mask;
4620 }
4621 rcu_read_unlock();
4622 }
4623 #endif
4624 again:
4625 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4626
4627 if (!retval) {
4628 cpuset_cpus_allowed(p, cpus_allowed);
4629 if (!cpumask_subset(new_mask, cpus_allowed)) {
4630 /*
4631 * We must have raced with a concurrent cpuset
4632 * update. Just reset the cpus_allowed to the
4633 * cpuset's cpus_allowed
4634 */
4635 cpumask_copy(new_mask, cpus_allowed);
4636 goto again;
4637 }
4638 }
4639 out_free_new_mask:
4640 free_cpumask_var(new_mask);
4641 out_free_cpus_allowed:
4642 free_cpumask_var(cpus_allowed);
4643 out_put_task:
4644 put_task_struct(p);
4645 return retval;
4646 }
4647
4648 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4649 struct cpumask *new_mask)
4650 {
4651 if (len < cpumask_size())
4652 cpumask_clear(new_mask);
4653 else if (len > cpumask_size())
4654 len = cpumask_size();
4655
4656 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4657 }
4658
4659 /**
4660 * sys_sched_setaffinity - set the cpu affinity of a process
4661 * @pid: pid of the process
4662 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4663 * @user_mask_ptr: user-space pointer to the new cpu mask
4664 *
4665 * Return: 0 on success. An error code otherwise.
4666 */
4667 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4668 unsigned long __user *, user_mask_ptr)
4669 {
4670 cpumask_var_t new_mask;
4671 int retval;
4672
4673 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4674 return -ENOMEM;
4675
4676 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4677 if (retval == 0)
4678 retval = sched_setaffinity(pid, new_mask);
4679 free_cpumask_var(new_mask);
4680 return retval;
4681 }
4682
4683 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4684 {
4685 struct task_struct *p;
4686 unsigned long flags;
4687 int retval;
4688
4689 rcu_read_lock();
4690
4691 retval = -ESRCH;
4692 p = find_process_by_pid(pid);
4693 if (!p)
4694 goto out_unlock;
4695
4696 retval = security_task_getscheduler(p);
4697 if (retval)
4698 goto out_unlock;
4699
4700 raw_spin_lock_irqsave(&p->pi_lock, flags);
4701 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4702 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4703
4704 out_unlock:
4705 rcu_read_unlock();
4706
4707 return retval;
4708 }
4709
4710 /**
4711 * sys_sched_getaffinity - get the cpu affinity of a process
4712 * @pid: pid of the process
4713 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4714 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4715 *
4716 * Return: 0 on success. An error code otherwise.
4717 */
4718 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4719 unsigned long __user *, user_mask_ptr)
4720 {
4721 int ret;
4722 cpumask_var_t mask;
4723
4724 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4725 return -EINVAL;
4726 if (len & (sizeof(unsigned long)-1))
4727 return -EINVAL;
4728
4729 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4730 return -ENOMEM;
4731
4732 ret = sched_getaffinity(pid, mask);
4733 if (ret == 0) {
4734 size_t retlen = min_t(size_t, len, cpumask_size());
4735
4736 if (copy_to_user(user_mask_ptr, mask, retlen))
4737 ret = -EFAULT;
4738 else
4739 ret = retlen;
4740 }
4741 free_cpumask_var(mask);
4742
4743 return ret;
4744 }
4745
4746 /**
4747 * sys_sched_yield - yield the current processor to other threads.
4748 *
4749 * This function yields the current CPU to other tasks. If there are no
4750 * other threads running on this CPU then this function will return.
4751 *
4752 * Return: 0.
4753 */
4754 SYSCALL_DEFINE0(sched_yield)
4755 {
4756 struct rq *rq = this_rq_lock();
4757
4758 schedstat_inc(rq, yld_count);
4759 current->sched_class->yield_task(rq);
4760
4761 /*
4762 * Since we are going to call schedule() anyway, there's
4763 * no need to preempt or enable interrupts:
4764 */
4765 __release(rq->lock);
4766 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4767 do_raw_spin_unlock(&rq->lock);
4768 sched_preempt_enable_no_resched();
4769
4770 schedule();
4771
4772 return 0;
4773 }
4774
4775 int __sched _cond_resched(void)
4776 {
4777 if (should_resched(0)) {
4778 preempt_schedule_common();
4779 return 1;
4780 }
4781 return 0;
4782 }
4783 EXPORT_SYMBOL(_cond_resched);
4784
4785 /*
4786 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4787 * call schedule, and on return reacquire the lock.
4788 *
4789 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4790 * operations here to prevent schedule() from being called twice (once via
4791 * spin_unlock(), once by hand).
4792 */
4793 int __cond_resched_lock(spinlock_t *lock)
4794 {
4795 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4796 int ret = 0;
4797
4798 lockdep_assert_held(lock);
4799
4800 if (spin_needbreak(lock) || resched) {
4801 spin_unlock(lock);
4802 if (resched)
4803 preempt_schedule_common();
4804 else
4805 cpu_relax();
4806 ret = 1;
4807 spin_lock(lock);
4808 }
4809 return ret;
4810 }
4811 EXPORT_SYMBOL(__cond_resched_lock);
4812
4813 int __sched __cond_resched_softirq(void)
4814 {
4815 BUG_ON(!in_softirq());
4816
4817 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4818 local_bh_enable();
4819 preempt_schedule_common();
4820 local_bh_disable();
4821 return 1;
4822 }
4823 return 0;
4824 }
4825 EXPORT_SYMBOL(__cond_resched_softirq);
4826
4827 /**
4828 * yield - yield the current processor to other threads.
4829 *
4830 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4831 *
4832 * The scheduler is at all times free to pick the calling task as the most
4833 * eligible task to run, if removing the yield() call from your code breaks
4834 * it, its already broken.
4835 *
4836 * Typical broken usage is:
4837 *
4838 * while (!event)
4839 * yield();
4840 *
4841 * where one assumes that yield() will let 'the other' process run that will
4842 * make event true. If the current task is a SCHED_FIFO task that will never
4843 * happen. Never use yield() as a progress guarantee!!
4844 *
4845 * If you want to use yield() to wait for something, use wait_event().
4846 * If you want to use yield() to be 'nice' for others, use cond_resched().
4847 * If you still want to use yield(), do not!
4848 */
4849 void __sched yield(void)
4850 {
4851 set_current_state(TASK_RUNNING);
4852 sys_sched_yield();
4853 }
4854 EXPORT_SYMBOL(yield);
4855
4856 /**
4857 * yield_to - yield the current processor to another thread in
4858 * your thread group, or accelerate that thread toward the
4859 * processor it's on.
4860 * @p: target task
4861 * @preempt: whether task preemption is allowed or not
4862 *
4863 * It's the caller's job to ensure that the target task struct
4864 * can't go away on us before we can do any checks.
4865 *
4866 * Return:
4867 * true (>0) if we indeed boosted the target task.
4868 * false (0) if we failed to boost the target.
4869 * -ESRCH if there's no task to yield to.
4870 */
4871 int __sched yield_to(struct task_struct *p, bool preempt)
4872 {
4873 struct task_struct *curr = current;
4874 struct rq *rq, *p_rq;
4875 unsigned long flags;
4876 int yielded = 0;
4877
4878 local_irq_save(flags);
4879 rq = this_rq();
4880
4881 again:
4882 p_rq = task_rq(p);
4883 /*
4884 * If we're the only runnable task on the rq and target rq also
4885 * has only one task, there's absolutely no point in yielding.
4886 */
4887 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4888 yielded = -ESRCH;
4889 goto out_irq;
4890 }
4891
4892 double_rq_lock(rq, p_rq);
4893 if (task_rq(p) != p_rq) {
4894 double_rq_unlock(rq, p_rq);
4895 goto again;
4896 }
4897
4898 if (!curr->sched_class->yield_to_task)
4899 goto out_unlock;
4900
4901 if (curr->sched_class != p->sched_class)
4902 goto out_unlock;
4903
4904 if (task_running(p_rq, p) || p->state)
4905 goto out_unlock;
4906
4907 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4908 if (yielded) {
4909 schedstat_inc(rq, yld_count);
4910 /*
4911 * Make p's CPU reschedule; pick_next_entity takes care of
4912 * fairness.
4913 */
4914 if (preempt && rq != p_rq)
4915 resched_curr(p_rq);
4916 }
4917
4918 out_unlock:
4919 double_rq_unlock(rq, p_rq);
4920 out_irq:
4921 local_irq_restore(flags);
4922
4923 if (yielded > 0)
4924 schedule();
4925
4926 return yielded;
4927 }
4928 EXPORT_SYMBOL_GPL(yield_to);
4929
4930 /*
4931 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4932 * that process accounting knows that this is a task in IO wait state.
4933 */
4934 long __sched io_schedule_timeout(long timeout)
4935 {
4936 int old_iowait = current->in_iowait;
4937 struct rq *rq;
4938 long ret;
4939
4940 current->in_iowait = 1;
4941 blk_schedule_flush_plug(current);
4942
4943 delayacct_blkio_start();
4944 rq = raw_rq();
4945 atomic_inc(&rq->nr_iowait);
4946 ret = schedule_timeout(timeout);
4947 current->in_iowait = old_iowait;
4948 atomic_dec(&rq->nr_iowait);
4949 delayacct_blkio_end();
4950
4951 return ret;
4952 }
4953 EXPORT_SYMBOL(io_schedule_timeout);
4954
4955 /**
4956 * sys_sched_get_priority_max - return maximum RT priority.
4957 * @policy: scheduling class.
4958 *
4959 * Return: On success, this syscall returns the maximum
4960 * rt_priority that can be used by a given scheduling class.
4961 * On failure, a negative error code is returned.
4962 */
4963 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4964 {
4965 int ret = -EINVAL;
4966
4967 switch (policy) {
4968 case SCHED_FIFO:
4969 case SCHED_RR:
4970 ret = MAX_USER_RT_PRIO-1;
4971 break;
4972 case SCHED_DEADLINE:
4973 case SCHED_NORMAL:
4974 case SCHED_BATCH:
4975 case SCHED_IDLE:
4976 ret = 0;
4977 break;
4978 }
4979 return ret;
4980 }
4981
4982 /**
4983 * sys_sched_get_priority_min - return minimum RT priority.
4984 * @policy: scheduling class.
4985 *
4986 * Return: On success, this syscall returns the minimum
4987 * rt_priority that can be used by a given scheduling class.
4988 * On failure, a negative error code is returned.
4989 */
4990 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4991 {
4992 int ret = -EINVAL;
4993
4994 switch (policy) {
4995 case SCHED_FIFO:
4996 case SCHED_RR:
4997 ret = 1;
4998 break;
4999 case SCHED_DEADLINE:
5000 case SCHED_NORMAL:
5001 case SCHED_BATCH:
5002 case SCHED_IDLE:
5003 ret = 0;
5004 }
5005 return ret;
5006 }
5007
5008 /**
5009 * sys_sched_rr_get_interval - return the default timeslice of a process.
5010 * @pid: pid of the process.
5011 * @interval: userspace pointer to the timeslice value.
5012 *
5013 * this syscall writes the default timeslice value of a given process
5014 * into the user-space timespec buffer. A value of '0' means infinity.
5015 *
5016 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5017 * an error code.
5018 */
5019 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5020 struct timespec __user *, interval)
5021 {
5022 struct task_struct *p;
5023 unsigned int time_slice;
5024 unsigned long flags;
5025 struct rq *rq;
5026 int retval;
5027 struct timespec t;
5028
5029 if (pid < 0)
5030 return -EINVAL;
5031
5032 retval = -ESRCH;
5033 rcu_read_lock();
5034 p = find_process_by_pid(pid);
5035 if (!p)
5036 goto out_unlock;
5037
5038 retval = security_task_getscheduler(p);
5039 if (retval)
5040 goto out_unlock;
5041
5042 rq = task_rq_lock(p, &flags);
5043 time_slice = 0;
5044 if (p->sched_class->get_rr_interval)
5045 time_slice = p->sched_class->get_rr_interval(rq, p);
5046 task_rq_unlock(rq, p, &flags);
5047
5048 rcu_read_unlock();
5049 jiffies_to_timespec(time_slice, &t);
5050 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5051 return retval;
5052
5053 out_unlock:
5054 rcu_read_unlock();
5055 return retval;
5056 }
5057
5058 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5059
5060 void sched_show_task(struct task_struct *p)
5061 {
5062 unsigned long free = 0;
5063 int ppid;
5064 unsigned long state = p->state;
5065
5066 if (state)
5067 state = __ffs(state) + 1;
5068 printk(KERN_INFO "%-15.15s %c", p->comm,
5069 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5070 #if BITS_PER_LONG == 32
5071 if (state == TASK_RUNNING)
5072 printk(KERN_CONT " running ");
5073 else
5074 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5075 #else
5076 if (state == TASK_RUNNING)
5077 printk(KERN_CONT " running task ");
5078 else
5079 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5080 #endif
5081 #ifdef CONFIG_DEBUG_STACK_USAGE
5082 free = stack_not_used(p);
5083 #endif
5084 ppid = 0;
5085 rcu_read_lock();
5086 if (pid_alive(p))
5087 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5088 rcu_read_unlock();
5089 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5090 task_pid_nr(p), ppid,
5091 (unsigned long)task_thread_info(p)->flags);
5092
5093 print_worker_info(KERN_INFO, p);
5094 show_stack(p, NULL);
5095 }
5096
5097 void show_state_filter(unsigned long state_filter)
5098 {
5099 struct task_struct *g, *p;
5100
5101 #if BITS_PER_LONG == 32
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
5104 #else
5105 printk(KERN_INFO
5106 " task PC stack pid father\n");
5107 #endif
5108 rcu_read_lock();
5109 for_each_process_thread(g, p) {
5110 /*
5111 * reset the NMI-timeout, listing all files on a slow
5112 * console might take a lot of time:
5113 */
5114 touch_nmi_watchdog();
5115 if (!state_filter || (p->state & state_filter))
5116 sched_show_task(p);
5117 }
5118
5119 touch_all_softlockup_watchdogs();
5120
5121 #ifdef CONFIG_SCHED_DEBUG
5122 if (!state_filter)
5123 sysrq_sched_debug_show();
5124 #endif
5125 rcu_read_unlock();
5126 /*
5127 * Only show locks if all tasks are dumped:
5128 */
5129 if (!state_filter)
5130 debug_show_all_locks();
5131 }
5132
5133 void init_idle_bootup_task(struct task_struct *idle)
5134 {
5135 idle->sched_class = &idle_sched_class;
5136 }
5137
5138 /**
5139 * init_idle - set up an idle thread for a given CPU
5140 * @idle: task in question
5141 * @cpu: cpu the idle task belongs to
5142 *
5143 * NOTE: this function does not set the idle thread's NEED_RESCHED
5144 * flag, to make booting more robust.
5145 */
5146 void init_idle(struct task_struct *idle, int cpu)
5147 {
5148 struct rq *rq = cpu_rq(cpu);
5149 unsigned long flags;
5150
5151 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5152 raw_spin_lock(&rq->lock);
5153
5154 __sched_fork(0, idle);
5155 idle->state = TASK_RUNNING;
5156 idle->se.exec_start = sched_clock();
5157
5158 kasan_unpoison_task_stack(idle);
5159
5160 #ifdef CONFIG_SMP
5161 /*
5162 * Its possible that init_idle() gets called multiple times on a task,
5163 * in that case do_set_cpus_allowed() will not do the right thing.
5164 *
5165 * And since this is boot we can forgo the serialization.
5166 */
5167 set_cpus_allowed_common(idle, cpumask_of(cpu));
5168 #endif
5169 /*
5170 * We're having a chicken and egg problem, even though we are
5171 * holding rq->lock, the cpu isn't yet set to this cpu so the
5172 * lockdep check in task_group() will fail.
5173 *
5174 * Similar case to sched_fork(). / Alternatively we could
5175 * use task_rq_lock() here and obtain the other rq->lock.
5176 *
5177 * Silence PROVE_RCU
5178 */
5179 rcu_read_lock();
5180 __set_task_cpu(idle, cpu);
5181 rcu_read_unlock();
5182
5183 rq->curr = rq->idle = idle;
5184 idle->on_rq = TASK_ON_RQ_QUEUED;
5185 #ifdef CONFIG_SMP
5186 idle->on_cpu = 1;
5187 #endif
5188 raw_spin_unlock(&rq->lock);
5189 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5190
5191 /* Set the preempt count _outside_ the spinlocks! */
5192 init_idle_preempt_count(idle, cpu);
5193
5194 /*
5195 * The idle tasks have their own, simple scheduling class:
5196 */
5197 idle->sched_class = &idle_sched_class;
5198 ftrace_graph_init_idle_task(idle, cpu);
5199 vtime_init_idle(idle, cpu);
5200 #ifdef CONFIG_SMP
5201 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5202 #endif
5203 }
5204
5205 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5206 const struct cpumask *trial)
5207 {
5208 int ret = 1, trial_cpus;
5209 struct dl_bw *cur_dl_b;
5210 unsigned long flags;
5211
5212 if (!cpumask_weight(cur))
5213 return ret;
5214
5215 rcu_read_lock_sched();
5216 cur_dl_b = dl_bw_of(cpumask_any(cur));
5217 trial_cpus = cpumask_weight(trial);
5218
5219 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5220 if (cur_dl_b->bw != -1 &&
5221 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5222 ret = 0;
5223 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5224 rcu_read_unlock_sched();
5225
5226 return ret;
5227 }
5228
5229 int task_can_attach(struct task_struct *p,
5230 const struct cpumask *cs_cpus_allowed)
5231 {
5232 int ret = 0;
5233
5234 /*
5235 * Kthreads which disallow setaffinity shouldn't be moved
5236 * to a new cpuset; we don't want to change their cpu
5237 * affinity and isolating such threads by their set of
5238 * allowed nodes is unnecessary. Thus, cpusets are not
5239 * applicable for such threads. This prevents checking for
5240 * success of set_cpus_allowed_ptr() on all attached tasks
5241 * before cpus_allowed may be changed.
5242 */
5243 if (p->flags & PF_NO_SETAFFINITY) {
5244 ret = -EINVAL;
5245 goto out;
5246 }
5247
5248 #ifdef CONFIG_SMP
5249 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5250 cs_cpus_allowed)) {
5251 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5252 cs_cpus_allowed);
5253 struct dl_bw *dl_b;
5254 bool overflow;
5255 int cpus;
5256 unsigned long flags;
5257
5258 rcu_read_lock_sched();
5259 dl_b = dl_bw_of(dest_cpu);
5260 raw_spin_lock_irqsave(&dl_b->lock, flags);
5261 cpus = dl_bw_cpus(dest_cpu);
5262 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5263 if (overflow)
5264 ret = -EBUSY;
5265 else {
5266 /*
5267 * We reserve space for this task in the destination
5268 * root_domain, as we can't fail after this point.
5269 * We will free resources in the source root_domain
5270 * later on (see set_cpus_allowed_dl()).
5271 */
5272 __dl_add(dl_b, p->dl.dl_bw);
5273 }
5274 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5275 rcu_read_unlock_sched();
5276
5277 }
5278 #endif
5279 out:
5280 return ret;
5281 }
5282
5283 #ifdef CONFIG_SMP
5284
5285 #ifdef CONFIG_NUMA_BALANCING
5286 /* Migrate current task p to target_cpu */
5287 int migrate_task_to(struct task_struct *p, int target_cpu)
5288 {
5289 struct migration_arg arg = { p, target_cpu };
5290 int curr_cpu = task_cpu(p);
5291
5292 if (curr_cpu == target_cpu)
5293 return 0;
5294
5295 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5296 return -EINVAL;
5297
5298 /* TODO: This is not properly updating schedstats */
5299
5300 trace_sched_move_numa(p, curr_cpu, target_cpu);
5301 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5302 }
5303
5304 /*
5305 * Requeue a task on a given node and accurately track the number of NUMA
5306 * tasks on the runqueues
5307 */
5308 void sched_setnuma(struct task_struct *p, int nid)
5309 {
5310 struct rq *rq;
5311 unsigned long flags;
5312 bool queued, running;
5313
5314 rq = task_rq_lock(p, &flags);
5315 queued = task_on_rq_queued(p);
5316 running = task_current(rq, p);
5317
5318 if (queued)
5319 dequeue_task(rq, p, DEQUEUE_SAVE);
5320 if (running)
5321 put_prev_task(rq, p);
5322
5323 p->numa_preferred_nid = nid;
5324
5325 if (running)
5326 p->sched_class->set_curr_task(rq);
5327 if (queued)
5328 enqueue_task(rq, p, ENQUEUE_RESTORE);
5329 task_rq_unlock(rq, p, &flags);
5330 }
5331 #endif /* CONFIG_NUMA_BALANCING */
5332
5333 #ifdef CONFIG_HOTPLUG_CPU
5334 /*
5335 * Ensures that the idle task is using init_mm right before its cpu goes
5336 * offline.
5337 */
5338 void idle_task_exit(void)
5339 {
5340 struct mm_struct *mm = current->active_mm;
5341
5342 BUG_ON(cpu_online(smp_processor_id()));
5343
5344 if (mm != &init_mm) {
5345 switch_mm_irqs_off(mm, &init_mm, current);
5346 finish_arch_post_lock_switch();
5347 }
5348 mmdrop(mm);
5349 }
5350
5351 /*
5352 * Since this CPU is going 'away' for a while, fold any nr_active delta
5353 * we might have. Assumes we're called after migrate_tasks() so that the
5354 * nr_active count is stable.
5355 *
5356 * Also see the comment "Global load-average calculations".
5357 */
5358 static void calc_load_migrate(struct rq *rq)
5359 {
5360 long delta = calc_load_fold_active(rq);
5361 if (delta)
5362 atomic_long_add(delta, &calc_load_tasks);
5363 }
5364
5365 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5366 {
5367 }
5368
5369 static const struct sched_class fake_sched_class = {
5370 .put_prev_task = put_prev_task_fake,
5371 };
5372
5373 static struct task_struct fake_task = {
5374 /*
5375 * Avoid pull_{rt,dl}_task()
5376 */
5377 .prio = MAX_PRIO + 1,
5378 .sched_class = &fake_sched_class,
5379 };
5380
5381 /*
5382 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5383 * try_to_wake_up()->select_task_rq().
5384 *
5385 * Called with rq->lock held even though we'er in stop_machine() and
5386 * there's no concurrency possible, we hold the required locks anyway
5387 * because of lock validation efforts.
5388 */
5389 static void migrate_tasks(struct rq *dead_rq)
5390 {
5391 struct rq *rq = dead_rq;
5392 struct task_struct *next, *stop = rq->stop;
5393 int dest_cpu;
5394
5395 /*
5396 * Fudge the rq selection such that the below task selection loop
5397 * doesn't get stuck on the currently eligible stop task.
5398 *
5399 * We're currently inside stop_machine() and the rq is either stuck
5400 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5401 * either way we should never end up calling schedule() until we're
5402 * done here.
5403 */
5404 rq->stop = NULL;
5405
5406 /*
5407 * put_prev_task() and pick_next_task() sched
5408 * class method both need to have an up-to-date
5409 * value of rq->clock[_task]
5410 */
5411 update_rq_clock(rq);
5412
5413 for (;;) {
5414 /*
5415 * There's this thread running, bail when that's the only
5416 * remaining thread.
5417 */
5418 if (rq->nr_running == 1)
5419 break;
5420
5421 /*
5422 * pick_next_task assumes pinned rq->lock.
5423 */
5424 lockdep_pin_lock(&rq->lock);
5425 next = pick_next_task(rq, &fake_task);
5426 BUG_ON(!next);
5427 next->sched_class->put_prev_task(rq, next);
5428
5429 /*
5430 * Rules for changing task_struct::cpus_allowed are holding
5431 * both pi_lock and rq->lock, such that holding either
5432 * stabilizes the mask.
5433 *
5434 * Drop rq->lock is not quite as disastrous as it usually is
5435 * because !cpu_active at this point, which means load-balance
5436 * will not interfere. Also, stop-machine.
5437 */
5438 lockdep_unpin_lock(&rq->lock);
5439 raw_spin_unlock(&rq->lock);
5440 raw_spin_lock(&next->pi_lock);
5441 raw_spin_lock(&rq->lock);
5442
5443 /*
5444 * Since we're inside stop-machine, _nothing_ should have
5445 * changed the task, WARN if weird stuff happened, because in
5446 * that case the above rq->lock drop is a fail too.
5447 */
5448 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5449 raw_spin_unlock(&next->pi_lock);
5450 continue;
5451 }
5452
5453 /* Find suitable destination for @next, with force if needed. */
5454 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5455
5456 rq = __migrate_task(rq, next, dest_cpu);
5457 if (rq != dead_rq) {
5458 raw_spin_unlock(&rq->lock);
5459 rq = dead_rq;
5460 raw_spin_lock(&rq->lock);
5461 }
5462 raw_spin_unlock(&next->pi_lock);
5463 }
5464
5465 rq->stop = stop;
5466 }
5467 #endif /* CONFIG_HOTPLUG_CPU */
5468
5469 static void set_rq_online(struct rq *rq)
5470 {
5471 if (!rq->online) {
5472 const struct sched_class *class;
5473
5474 cpumask_set_cpu(rq->cpu, rq->rd->online);
5475 rq->online = 1;
5476
5477 for_each_class(class) {
5478 if (class->rq_online)
5479 class->rq_online(rq);
5480 }
5481 }
5482 }
5483
5484 static void set_rq_offline(struct rq *rq)
5485 {
5486 if (rq->online) {
5487 const struct sched_class *class;
5488
5489 for_each_class(class) {
5490 if (class->rq_offline)
5491 class->rq_offline(rq);
5492 }
5493
5494 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5495 rq->online = 0;
5496 }
5497 }
5498
5499 /*
5500 * migration_call - callback that gets triggered when a CPU is added.
5501 * Here we can start up the necessary migration thread for the new CPU.
5502 */
5503 static int
5504 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5505 {
5506 int cpu = (long)hcpu;
5507 unsigned long flags;
5508 struct rq *rq = cpu_rq(cpu);
5509
5510 switch (action & ~CPU_TASKS_FROZEN) {
5511
5512 case CPU_UP_PREPARE:
5513 rq->calc_load_update = calc_load_update;
5514 account_reset_rq(rq);
5515 break;
5516
5517 case CPU_ONLINE:
5518 /* Update our root-domain */
5519 raw_spin_lock_irqsave(&rq->lock, flags);
5520 if (rq->rd) {
5521 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5522
5523 set_rq_online(rq);
5524 }
5525 raw_spin_unlock_irqrestore(&rq->lock, flags);
5526 break;
5527
5528 #ifdef CONFIG_HOTPLUG_CPU
5529 case CPU_DYING:
5530 sched_ttwu_pending();
5531 /* Update our root-domain */
5532 raw_spin_lock_irqsave(&rq->lock, flags);
5533 if (rq->rd) {
5534 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5535 set_rq_offline(rq);
5536 }
5537 migrate_tasks(rq);
5538 BUG_ON(rq->nr_running != 1); /* the migration thread */
5539 raw_spin_unlock_irqrestore(&rq->lock, flags);
5540 break;
5541
5542 case CPU_DEAD:
5543 calc_load_migrate(rq);
5544 break;
5545 #endif
5546 }
5547
5548 update_max_interval();
5549
5550 return NOTIFY_OK;
5551 }
5552
5553 /*
5554 * Register at high priority so that task migration (migrate_all_tasks)
5555 * happens before everything else. This has to be lower priority than
5556 * the notifier in the perf_event subsystem, though.
5557 */
5558 static struct notifier_block migration_notifier = {
5559 .notifier_call = migration_call,
5560 .priority = CPU_PRI_MIGRATION,
5561 };
5562
5563 static void set_cpu_rq_start_time(void)
5564 {
5565 int cpu = smp_processor_id();
5566 struct rq *rq = cpu_rq(cpu);
5567 rq->age_stamp = sched_clock_cpu(cpu);
5568 }
5569
5570 static int sched_cpu_active(struct notifier_block *nfb,
5571 unsigned long action, void *hcpu)
5572 {
5573 int cpu = (long)hcpu;
5574
5575 switch (action & ~CPU_TASKS_FROZEN) {
5576 case CPU_STARTING:
5577 set_cpu_rq_start_time();
5578 return NOTIFY_OK;
5579
5580 case CPU_DOWN_FAILED:
5581 set_cpu_active(cpu, true);
5582 return NOTIFY_OK;
5583
5584 default:
5585 return NOTIFY_DONE;
5586 }
5587 }
5588
5589 static int sched_cpu_inactive(struct notifier_block *nfb,
5590 unsigned long action, void *hcpu)
5591 {
5592 switch (action & ~CPU_TASKS_FROZEN) {
5593 case CPU_DOWN_PREPARE:
5594 set_cpu_active((long)hcpu, false);
5595 return NOTIFY_OK;
5596 default:
5597 return NOTIFY_DONE;
5598 }
5599 }
5600
5601 static int __init migration_init(void)
5602 {
5603 void *cpu = (void *)(long)smp_processor_id();
5604 int err;
5605
5606 /* Initialize migration for the boot CPU */
5607 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5608 BUG_ON(err == NOTIFY_BAD);
5609 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5610 register_cpu_notifier(&migration_notifier);
5611
5612 /* Register cpu active notifiers */
5613 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5614 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5615
5616 return 0;
5617 }
5618 early_initcall(migration_init);
5619
5620 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5621
5622 #ifdef CONFIG_SCHED_DEBUG
5623
5624 static __read_mostly int sched_debug_enabled;
5625
5626 static int __init sched_debug_setup(char *str)
5627 {
5628 sched_debug_enabled = 1;
5629
5630 return 0;
5631 }
5632 early_param("sched_debug", sched_debug_setup);
5633
5634 static inline bool sched_debug(void)
5635 {
5636 return sched_debug_enabled;
5637 }
5638
5639 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5640 struct cpumask *groupmask)
5641 {
5642 struct sched_group *group = sd->groups;
5643
5644 cpumask_clear(groupmask);
5645
5646 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5647
5648 if (!(sd->flags & SD_LOAD_BALANCE)) {
5649 printk("does not load-balance\n");
5650 if (sd->parent)
5651 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5652 " has parent");
5653 return -1;
5654 }
5655
5656 printk(KERN_CONT "span %*pbl level %s\n",
5657 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5658
5659 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5660 printk(KERN_ERR "ERROR: domain->span does not contain "
5661 "CPU%d\n", cpu);
5662 }
5663 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5664 printk(KERN_ERR "ERROR: domain->groups does not contain"
5665 " CPU%d\n", cpu);
5666 }
5667
5668 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5669 do {
5670 if (!group) {
5671 printk("\n");
5672 printk(KERN_ERR "ERROR: group is NULL\n");
5673 break;
5674 }
5675
5676 if (!cpumask_weight(sched_group_cpus(group))) {
5677 printk(KERN_CONT "\n");
5678 printk(KERN_ERR "ERROR: empty group\n");
5679 break;
5680 }
5681
5682 if (!(sd->flags & SD_OVERLAP) &&
5683 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5684 printk(KERN_CONT "\n");
5685 printk(KERN_ERR "ERROR: repeated CPUs\n");
5686 break;
5687 }
5688
5689 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5690
5691 printk(KERN_CONT " %*pbl",
5692 cpumask_pr_args(sched_group_cpus(group)));
5693 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5694 printk(KERN_CONT " (cpu_capacity = %d)",
5695 group->sgc->capacity);
5696 }
5697
5698 group = group->next;
5699 } while (group != sd->groups);
5700 printk(KERN_CONT "\n");
5701
5702 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5703 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5704
5705 if (sd->parent &&
5706 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5707 printk(KERN_ERR "ERROR: parent span is not a superset "
5708 "of domain->span\n");
5709 return 0;
5710 }
5711
5712 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5713 {
5714 int level = 0;
5715
5716 if (!sched_debug_enabled)
5717 return;
5718
5719 if (!sd) {
5720 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5721 return;
5722 }
5723
5724 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5725
5726 for (;;) {
5727 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5728 break;
5729 level++;
5730 sd = sd->parent;
5731 if (!sd)
5732 break;
5733 }
5734 }
5735 #else /* !CONFIG_SCHED_DEBUG */
5736 # define sched_domain_debug(sd, cpu) do { } while (0)
5737 static inline bool sched_debug(void)
5738 {
5739 return false;
5740 }
5741 #endif /* CONFIG_SCHED_DEBUG */
5742
5743 static int sd_degenerate(struct sched_domain *sd)
5744 {
5745 if (cpumask_weight(sched_domain_span(sd)) == 1)
5746 return 1;
5747
5748 /* Following flags need at least 2 groups */
5749 if (sd->flags & (SD_LOAD_BALANCE |
5750 SD_BALANCE_NEWIDLE |
5751 SD_BALANCE_FORK |
5752 SD_BALANCE_EXEC |
5753 SD_SHARE_CPUCAPACITY |
5754 SD_SHARE_PKG_RESOURCES |
5755 SD_SHARE_POWERDOMAIN)) {
5756 if (sd->groups != sd->groups->next)
5757 return 0;
5758 }
5759
5760 /* Following flags don't use groups */
5761 if (sd->flags & (SD_WAKE_AFFINE))
5762 return 0;
5763
5764 return 1;
5765 }
5766
5767 static int
5768 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5769 {
5770 unsigned long cflags = sd->flags, pflags = parent->flags;
5771
5772 if (sd_degenerate(parent))
5773 return 1;
5774
5775 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5776 return 0;
5777
5778 /* Flags needing groups don't count if only 1 group in parent */
5779 if (parent->groups == parent->groups->next) {
5780 pflags &= ~(SD_LOAD_BALANCE |
5781 SD_BALANCE_NEWIDLE |
5782 SD_BALANCE_FORK |
5783 SD_BALANCE_EXEC |
5784 SD_SHARE_CPUCAPACITY |
5785 SD_SHARE_PKG_RESOURCES |
5786 SD_PREFER_SIBLING |
5787 SD_SHARE_POWERDOMAIN);
5788 if (nr_node_ids == 1)
5789 pflags &= ~SD_SERIALIZE;
5790 }
5791 if (~cflags & pflags)
5792 return 0;
5793
5794 return 1;
5795 }
5796
5797 static void free_rootdomain(struct rcu_head *rcu)
5798 {
5799 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5800
5801 cpupri_cleanup(&rd->cpupri);
5802 cpudl_cleanup(&rd->cpudl);
5803 free_cpumask_var(rd->dlo_mask);
5804 free_cpumask_var(rd->rto_mask);
5805 free_cpumask_var(rd->online);
5806 free_cpumask_var(rd->span);
5807 kfree(rd);
5808 }
5809
5810 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5811 {
5812 struct root_domain *old_rd = NULL;
5813 unsigned long flags;
5814
5815 raw_spin_lock_irqsave(&rq->lock, flags);
5816
5817 if (rq->rd) {
5818 old_rd = rq->rd;
5819
5820 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5821 set_rq_offline(rq);
5822
5823 cpumask_clear_cpu(rq->cpu, old_rd->span);
5824
5825 /*
5826 * If we dont want to free the old_rd yet then
5827 * set old_rd to NULL to skip the freeing later
5828 * in this function:
5829 */
5830 if (!atomic_dec_and_test(&old_rd->refcount))
5831 old_rd = NULL;
5832 }
5833
5834 atomic_inc(&rd->refcount);
5835 rq->rd = rd;
5836
5837 cpumask_set_cpu(rq->cpu, rd->span);
5838 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5839 set_rq_online(rq);
5840
5841 raw_spin_unlock_irqrestore(&rq->lock, flags);
5842
5843 if (old_rd)
5844 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5845 }
5846
5847 static int init_rootdomain(struct root_domain *rd)
5848 {
5849 memset(rd, 0, sizeof(*rd));
5850
5851 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5852 goto out;
5853 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5854 goto free_span;
5855 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5856 goto free_online;
5857 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5858 goto free_dlo_mask;
5859
5860 init_dl_bw(&rd->dl_bw);
5861 if (cpudl_init(&rd->cpudl) != 0)
5862 goto free_dlo_mask;
5863
5864 if (cpupri_init(&rd->cpupri) != 0)
5865 goto free_rto_mask;
5866 return 0;
5867
5868 free_rto_mask:
5869 free_cpumask_var(rd->rto_mask);
5870 free_dlo_mask:
5871 free_cpumask_var(rd->dlo_mask);
5872 free_online:
5873 free_cpumask_var(rd->online);
5874 free_span:
5875 free_cpumask_var(rd->span);
5876 out:
5877 return -ENOMEM;
5878 }
5879
5880 /*
5881 * By default the system creates a single root-domain with all cpus as
5882 * members (mimicking the global state we have today).
5883 */
5884 struct root_domain def_root_domain;
5885
5886 static void init_defrootdomain(void)
5887 {
5888 init_rootdomain(&def_root_domain);
5889
5890 atomic_set(&def_root_domain.refcount, 1);
5891 }
5892
5893 static struct root_domain *alloc_rootdomain(void)
5894 {
5895 struct root_domain *rd;
5896
5897 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5898 if (!rd)
5899 return NULL;
5900
5901 if (init_rootdomain(rd) != 0) {
5902 kfree(rd);
5903 return NULL;
5904 }
5905
5906 return rd;
5907 }
5908
5909 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5910 {
5911 struct sched_group *tmp, *first;
5912
5913 if (!sg)
5914 return;
5915
5916 first = sg;
5917 do {
5918 tmp = sg->next;
5919
5920 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5921 kfree(sg->sgc);
5922
5923 kfree(sg);
5924 sg = tmp;
5925 } while (sg != first);
5926 }
5927
5928 static void free_sched_domain(struct rcu_head *rcu)
5929 {
5930 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5931
5932 /*
5933 * If its an overlapping domain it has private groups, iterate and
5934 * nuke them all.
5935 */
5936 if (sd->flags & SD_OVERLAP) {
5937 free_sched_groups(sd->groups, 1);
5938 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5939 kfree(sd->groups->sgc);
5940 kfree(sd->groups);
5941 }
5942 kfree(sd);
5943 }
5944
5945 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5946 {
5947 call_rcu(&sd->rcu, free_sched_domain);
5948 }
5949
5950 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5951 {
5952 for (; sd; sd = sd->parent)
5953 destroy_sched_domain(sd, cpu);
5954 }
5955
5956 /*
5957 * Keep a special pointer to the highest sched_domain that has
5958 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5959 * allows us to avoid some pointer chasing select_idle_sibling().
5960 *
5961 * Also keep a unique ID per domain (we use the first cpu number in
5962 * the cpumask of the domain), this allows us to quickly tell if
5963 * two cpus are in the same cache domain, see cpus_share_cache().
5964 */
5965 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5966 DEFINE_PER_CPU(int, sd_llc_size);
5967 DEFINE_PER_CPU(int, sd_llc_id);
5968 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5969 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5970 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5971
5972 static void update_top_cache_domain(int cpu)
5973 {
5974 struct sched_domain *sd;
5975 struct sched_domain *busy_sd = NULL;
5976 int id = cpu;
5977 int size = 1;
5978
5979 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5980 if (sd) {
5981 id = cpumask_first(sched_domain_span(sd));
5982 size = cpumask_weight(sched_domain_span(sd));
5983 busy_sd = sd->parent; /* sd_busy */
5984 }
5985 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5986
5987 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5988 per_cpu(sd_llc_size, cpu) = size;
5989 per_cpu(sd_llc_id, cpu) = id;
5990
5991 sd = lowest_flag_domain(cpu, SD_NUMA);
5992 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5993
5994 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5995 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5996 }
5997
5998 /*
5999 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6000 * hold the hotplug lock.
6001 */
6002 static void
6003 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6004 {
6005 struct rq *rq = cpu_rq(cpu);
6006 struct sched_domain *tmp;
6007
6008 /* Remove the sched domains which do not contribute to scheduling. */
6009 for (tmp = sd; tmp; ) {
6010 struct sched_domain *parent = tmp->parent;
6011 if (!parent)
6012 break;
6013
6014 if (sd_parent_degenerate(tmp, parent)) {
6015 tmp->parent = parent->parent;
6016 if (parent->parent)
6017 parent->parent->child = tmp;
6018 /*
6019 * Transfer SD_PREFER_SIBLING down in case of a
6020 * degenerate parent; the spans match for this
6021 * so the property transfers.
6022 */
6023 if (parent->flags & SD_PREFER_SIBLING)
6024 tmp->flags |= SD_PREFER_SIBLING;
6025 destroy_sched_domain(parent, cpu);
6026 } else
6027 tmp = tmp->parent;
6028 }
6029
6030 if (sd && sd_degenerate(sd)) {
6031 tmp = sd;
6032 sd = sd->parent;
6033 destroy_sched_domain(tmp, cpu);
6034 if (sd)
6035 sd->child = NULL;
6036 }
6037
6038 sched_domain_debug(sd, cpu);
6039
6040 rq_attach_root(rq, rd);
6041 tmp = rq->sd;
6042 rcu_assign_pointer(rq->sd, sd);
6043 destroy_sched_domains(tmp, cpu);
6044
6045 update_top_cache_domain(cpu);
6046 }
6047
6048 /* Setup the mask of cpus configured for isolated domains */
6049 static int __init isolated_cpu_setup(char *str)
6050 {
6051 int ret;
6052
6053 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6054 ret = cpulist_parse(str, cpu_isolated_map);
6055 if (ret) {
6056 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6057 return 0;
6058 }
6059 return 1;
6060 }
6061 __setup("isolcpus=", isolated_cpu_setup);
6062
6063 struct s_data {
6064 struct sched_domain ** __percpu sd;
6065 struct root_domain *rd;
6066 };
6067
6068 enum s_alloc {
6069 sa_rootdomain,
6070 sa_sd,
6071 sa_sd_storage,
6072 sa_none,
6073 };
6074
6075 /*
6076 * Build an iteration mask that can exclude certain CPUs from the upwards
6077 * domain traversal.
6078 *
6079 * Asymmetric node setups can result in situations where the domain tree is of
6080 * unequal depth, make sure to skip domains that already cover the entire
6081 * range.
6082 *
6083 * In that case build_sched_domains() will have terminated the iteration early
6084 * and our sibling sd spans will be empty. Domains should always include the
6085 * cpu they're built on, so check that.
6086 *
6087 */
6088 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6089 {
6090 const struct cpumask *span = sched_domain_span(sd);
6091 struct sd_data *sdd = sd->private;
6092 struct sched_domain *sibling;
6093 int i;
6094
6095 for_each_cpu(i, span) {
6096 sibling = *per_cpu_ptr(sdd->sd, i);
6097 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6098 continue;
6099
6100 cpumask_set_cpu(i, sched_group_mask(sg));
6101 }
6102 }
6103
6104 /*
6105 * Return the canonical balance cpu for this group, this is the first cpu
6106 * of this group that's also in the iteration mask.
6107 */
6108 int group_balance_cpu(struct sched_group *sg)
6109 {
6110 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6111 }
6112
6113 static int
6114 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6115 {
6116 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6117 const struct cpumask *span = sched_domain_span(sd);
6118 struct cpumask *covered = sched_domains_tmpmask;
6119 struct sd_data *sdd = sd->private;
6120 struct sched_domain *sibling;
6121 int i;
6122
6123 cpumask_clear(covered);
6124
6125 for_each_cpu(i, span) {
6126 struct cpumask *sg_span;
6127
6128 if (cpumask_test_cpu(i, covered))
6129 continue;
6130
6131 sibling = *per_cpu_ptr(sdd->sd, i);
6132
6133 /* See the comment near build_group_mask(). */
6134 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6135 continue;
6136
6137 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6138 GFP_KERNEL, cpu_to_node(cpu));
6139
6140 if (!sg)
6141 goto fail;
6142
6143 sg_span = sched_group_cpus(sg);
6144 if (sibling->child)
6145 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6146 else
6147 cpumask_set_cpu(i, sg_span);
6148
6149 cpumask_or(covered, covered, sg_span);
6150
6151 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6152 if (atomic_inc_return(&sg->sgc->ref) == 1)
6153 build_group_mask(sd, sg);
6154
6155 /*
6156 * Initialize sgc->capacity such that even if we mess up the
6157 * domains and no possible iteration will get us here, we won't
6158 * die on a /0 trap.
6159 */
6160 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6161
6162 /*
6163 * Make sure the first group of this domain contains the
6164 * canonical balance cpu. Otherwise the sched_domain iteration
6165 * breaks. See update_sg_lb_stats().
6166 */
6167 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6168 group_balance_cpu(sg) == cpu)
6169 groups = sg;
6170
6171 if (!first)
6172 first = sg;
6173 if (last)
6174 last->next = sg;
6175 last = sg;
6176 last->next = first;
6177 }
6178 sd->groups = groups;
6179
6180 return 0;
6181
6182 fail:
6183 free_sched_groups(first, 0);
6184
6185 return -ENOMEM;
6186 }
6187
6188 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6189 {
6190 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6191 struct sched_domain *child = sd->child;
6192
6193 if (child)
6194 cpu = cpumask_first(sched_domain_span(child));
6195
6196 if (sg) {
6197 *sg = *per_cpu_ptr(sdd->sg, cpu);
6198 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6199 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6200 }
6201
6202 return cpu;
6203 }
6204
6205 /*
6206 * build_sched_groups will build a circular linked list of the groups
6207 * covered by the given span, and will set each group's ->cpumask correctly,
6208 * and ->cpu_capacity to 0.
6209 *
6210 * Assumes the sched_domain tree is fully constructed
6211 */
6212 static int
6213 build_sched_groups(struct sched_domain *sd, int cpu)
6214 {
6215 struct sched_group *first = NULL, *last = NULL;
6216 struct sd_data *sdd = sd->private;
6217 const struct cpumask *span = sched_domain_span(sd);
6218 struct cpumask *covered;
6219 int i;
6220
6221 get_group(cpu, sdd, &sd->groups);
6222 atomic_inc(&sd->groups->ref);
6223
6224 if (cpu != cpumask_first(span))
6225 return 0;
6226
6227 lockdep_assert_held(&sched_domains_mutex);
6228 covered = sched_domains_tmpmask;
6229
6230 cpumask_clear(covered);
6231
6232 for_each_cpu(i, span) {
6233 struct sched_group *sg;
6234 int group, j;
6235
6236 if (cpumask_test_cpu(i, covered))
6237 continue;
6238
6239 group = get_group(i, sdd, &sg);
6240 cpumask_setall(sched_group_mask(sg));
6241
6242 for_each_cpu(j, span) {
6243 if (get_group(j, sdd, NULL) != group)
6244 continue;
6245
6246 cpumask_set_cpu(j, covered);
6247 cpumask_set_cpu(j, sched_group_cpus(sg));
6248 }
6249
6250 if (!first)
6251 first = sg;
6252 if (last)
6253 last->next = sg;
6254 last = sg;
6255 }
6256 last->next = first;
6257
6258 return 0;
6259 }
6260
6261 /*
6262 * Initialize sched groups cpu_capacity.
6263 *
6264 * cpu_capacity indicates the capacity of sched group, which is used while
6265 * distributing the load between different sched groups in a sched domain.
6266 * Typically cpu_capacity for all the groups in a sched domain will be same
6267 * unless there are asymmetries in the topology. If there are asymmetries,
6268 * group having more cpu_capacity will pickup more load compared to the
6269 * group having less cpu_capacity.
6270 */
6271 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6272 {
6273 struct sched_group *sg = sd->groups;
6274
6275 WARN_ON(!sg);
6276
6277 do {
6278 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6279 sg = sg->next;
6280 } while (sg != sd->groups);
6281
6282 if (cpu != group_balance_cpu(sg))
6283 return;
6284
6285 update_group_capacity(sd, cpu);
6286 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6287 }
6288
6289 /*
6290 * Initializers for schedule domains
6291 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6292 */
6293
6294 static int default_relax_domain_level = -1;
6295 int sched_domain_level_max;
6296
6297 static int __init setup_relax_domain_level(char *str)
6298 {
6299 if (kstrtoint(str, 0, &default_relax_domain_level))
6300 pr_warn("Unable to set relax_domain_level\n");
6301
6302 return 1;
6303 }
6304 __setup("relax_domain_level=", setup_relax_domain_level);
6305
6306 static void set_domain_attribute(struct sched_domain *sd,
6307 struct sched_domain_attr *attr)
6308 {
6309 int request;
6310
6311 if (!attr || attr->relax_domain_level < 0) {
6312 if (default_relax_domain_level < 0)
6313 return;
6314 else
6315 request = default_relax_domain_level;
6316 } else
6317 request = attr->relax_domain_level;
6318 if (request < sd->level) {
6319 /* turn off idle balance on this domain */
6320 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6321 } else {
6322 /* turn on idle balance on this domain */
6323 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6324 }
6325 }
6326
6327 static void __sdt_free(const struct cpumask *cpu_map);
6328 static int __sdt_alloc(const struct cpumask *cpu_map);
6329
6330 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6331 const struct cpumask *cpu_map)
6332 {
6333 switch (what) {
6334 case sa_rootdomain:
6335 if (!atomic_read(&d->rd->refcount))
6336 free_rootdomain(&d->rd->rcu); /* fall through */
6337 case sa_sd:
6338 free_percpu(d->sd); /* fall through */
6339 case sa_sd_storage:
6340 __sdt_free(cpu_map); /* fall through */
6341 case sa_none:
6342 break;
6343 }
6344 }
6345
6346 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6347 const struct cpumask *cpu_map)
6348 {
6349 memset(d, 0, sizeof(*d));
6350
6351 if (__sdt_alloc(cpu_map))
6352 return sa_sd_storage;
6353 d->sd = alloc_percpu(struct sched_domain *);
6354 if (!d->sd)
6355 return sa_sd_storage;
6356 d->rd = alloc_rootdomain();
6357 if (!d->rd)
6358 return sa_sd;
6359 return sa_rootdomain;
6360 }
6361
6362 /*
6363 * NULL the sd_data elements we've used to build the sched_domain and
6364 * sched_group structure so that the subsequent __free_domain_allocs()
6365 * will not free the data we're using.
6366 */
6367 static void claim_allocations(int cpu, struct sched_domain *sd)
6368 {
6369 struct sd_data *sdd = sd->private;
6370
6371 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6372 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6373
6374 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6375 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6376
6377 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6378 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6379 }
6380
6381 #ifdef CONFIG_NUMA
6382 static int sched_domains_numa_levels;
6383 enum numa_topology_type sched_numa_topology_type;
6384 static int *sched_domains_numa_distance;
6385 int sched_max_numa_distance;
6386 static struct cpumask ***sched_domains_numa_masks;
6387 static int sched_domains_curr_level;
6388 #endif
6389
6390 /*
6391 * SD_flags allowed in topology descriptions.
6392 *
6393 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6394 * SD_SHARE_PKG_RESOURCES - describes shared caches
6395 * SD_NUMA - describes NUMA topologies
6396 * SD_SHARE_POWERDOMAIN - describes shared power domain
6397 *
6398 * Odd one out:
6399 * SD_ASYM_PACKING - describes SMT quirks
6400 */
6401 #define TOPOLOGY_SD_FLAGS \
6402 (SD_SHARE_CPUCAPACITY | \
6403 SD_SHARE_PKG_RESOURCES | \
6404 SD_NUMA | \
6405 SD_ASYM_PACKING | \
6406 SD_SHARE_POWERDOMAIN)
6407
6408 static struct sched_domain *
6409 sd_init(struct sched_domain_topology_level *tl, int cpu)
6410 {
6411 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6412 int sd_weight, sd_flags = 0;
6413
6414 #ifdef CONFIG_NUMA
6415 /*
6416 * Ugly hack to pass state to sd_numa_mask()...
6417 */
6418 sched_domains_curr_level = tl->numa_level;
6419 #endif
6420
6421 sd_weight = cpumask_weight(tl->mask(cpu));
6422
6423 if (tl->sd_flags)
6424 sd_flags = (*tl->sd_flags)();
6425 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6426 "wrong sd_flags in topology description\n"))
6427 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6428
6429 *sd = (struct sched_domain){
6430 .min_interval = sd_weight,
6431 .max_interval = 2*sd_weight,
6432 .busy_factor = 32,
6433 .imbalance_pct = 125,
6434
6435 .cache_nice_tries = 0,
6436 .busy_idx = 0,
6437 .idle_idx = 0,
6438 .newidle_idx = 0,
6439 .wake_idx = 0,
6440 .forkexec_idx = 0,
6441
6442 .flags = 1*SD_LOAD_BALANCE
6443 | 1*SD_BALANCE_NEWIDLE
6444 | 1*SD_BALANCE_EXEC
6445 | 1*SD_BALANCE_FORK
6446 | 0*SD_BALANCE_WAKE
6447 | 1*SD_WAKE_AFFINE
6448 | 0*SD_SHARE_CPUCAPACITY
6449 | 0*SD_SHARE_PKG_RESOURCES
6450 | 0*SD_SERIALIZE
6451 | 0*SD_PREFER_SIBLING
6452 | 0*SD_NUMA
6453 | sd_flags
6454 ,
6455
6456 .last_balance = jiffies,
6457 .balance_interval = sd_weight,
6458 .smt_gain = 0,
6459 .max_newidle_lb_cost = 0,
6460 .next_decay_max_lb_cost = jiffies,
6461 #ifdef CONFIG_SCHED_DEBUG
6462 .name = tl->name,
6463 #endif
6464 };
6465
6466 /*
6467 * Convert topological properties into behaviour.
6468 */
6469
6470 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6471 sd->flags |= SD_PREFER_SIBLING;
6472 sd->imbalance_pct = 110;
6473 sd->smt_gain = 1178; /* ~15% */
6474
6475 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6476 sd->imbalance_pct = 117;
6477 sd->cache_nice_tries = 1;
6478 sd->busy_idx = 2;
6479
6480 #ifdef CONFIG_NUMA
6481 } else if (sd->flags & SD_NUMA) {
6482 sd->cache_nice_tries = 2;
6483 sd->busy_idx = 3;
6484 sd->idle_idx = 2;
6485
6486 sd->flags |= SD_SERIALIZE;
6487 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6488 sd->flags &= ~(SD_BALANCE_EXEC |
6489 SD_BALANCE_FORK |
6490 SD_WAKE_AFFINE);
6491 }
6492
6493 #endif
6494 } else {
6495 sd->flags |= SD_PREFER_SIBLING;
6496 sd->cache_nice_tries = 1;
6497 sd->busy_idx = 2;
6498 sd->idle_idx = 1;
6499 }
6500
6501 sd->private = &tl->data;
6502
6503 return sd;
6504 }
6505
6506 /*
6507 * Topology list, bottom-up.
6508 */
6509 static struct sched_domain_topology_level default_topology[] = {
6510 #ifdef CONFIG_SCHED_SMT
6511 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6512 #endif
6513 #ifdef CONFIG_SCHED_MC
6514 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6515 #endif
6516 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6517 { NULL, },
6518 };
6519
6520 static struct sched_domain_topology_level *sched_domain_topology =
6521 default_topology;
6522
6523 #define for_each_sd_topology(tl) \
6524 for (tl = sched_domain_topology; tl->mask; tl++)
6525
6526 void set_sched_topology(struct sched_domain_topology_level *tl)
6527 {
6528 sched_domain_topology = tl;
6529 }
6530
6531 #ifdef CONFIG_NUMA
6532
6533 static const struct cpumask *sd_numa_mask(int cpu)
6534 {
6535 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6536 }
6537
6538 static void sched_numa_warn(const char *str)
6539 {
6540 static int done = false;
6541 int i,j;
6542
6543 if (done)
6544 return;
6545
6546 done = true;
6547
6548 printk(KERN_WARNING "ERROR: %s\n\n", str);
6549
6550 for (i = 0; i < nr_node_ids; i++) {
6551 printk(KERN_WARNING " ");
6552 for (j = 0; j < nr_node_ids; j++)
6553 printk(KERN_CONT "%02d ", node_distance(i,j));
6554 printk(KERN_CONT "\n");
6555 }
6556 printk(KERN_WARNING "\n");
6557 }
6558
6559 bool find_numa_distance(int distance)
6560 {
6561 int i;
6562
6563 if (distance == node_distance(0, 0))
6564 return true;
6565
6566 for (i = 0; i < sched_domains_numa_levels; i++) {
6567 if (sched_domains_numa_distance[i] == distance)
6568 return true;
6569 }
6570
6571 return false;
6572 }
6573
6574 /*
6575 * A system can have three types of NUMA topology:
6576 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6577 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6578 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6579 *
6580 * The difference between a glueless mesh topology and a backplane
6581 * topology lies in whether communication between not directly
6582 * connected nodes goes through intermediary nodes (where programs
6583 * could run), or through backplane controllers. This affects
6584 * placement of programs.
6585 *
6586 * The type of topology can be discerned with the following tests:
6587 * - If the maximum distance between any nodes is 1 hop, the system
6588 * is directly connected.
6589 * - If for two nodes A and B, located N > 1 hops away from each other,
6590 * there is an intermediary node C, which is < N hops away from both
6591 * nodes A and B, the system is a glueless mesh.
6592 */
6593 static void init_numa_topology_type(void)
6594 {
6595 int a, b, c, n;
6596
6597 n = sched_max_numa_distance;
6598
6599 if (sched_domains_numa_levels <= 1) {
6600 sched_numa_topology_type = NUMA_DIRECT;
6601 return;
6602 }
6603
6604 for_each_online_node(a) {
6605 for_each_online_node(b) {
6606 /* Find two nodes furthest removed from each other. */
6607 if (node_distance(a, b) < n)
6608 continue;
6609
6610 /* Is there an intermediary node between a and b? */
6611 for_each_online_node(c) {
6612 if (node_distance(a, c) < n &&
6613 node_distance(b, c) < n) {
6614 sched_numa_topology_type =
6615 NUMA_GLUELESS_MESH;
6616 return;
6617 }
6618 }
6619
6620 sched_numa_topology_type = NUMA_BACKPLANE;
6621 return;
6622 }
6623 }
6624 }
6625
6626 static void sched_init_numa(void)
6627 {
6628 int next_distance, curr_distance = node_distance(0, 0);
6629 struct sched_domain_topology_level *tl;
6630 int level = 0;
6631 int i, j, k;
6632
6633 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6634 if (!sched_domains_numa_distance)
6635 return;
6636
6637 /*
6638 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6639 * unique distances in the node_distance() table.
6640 *
6641 * Assumes node_distance(0,j) includes all distances in
6642 * node_distance(i,j) in order to avoid cubic time.
6643 */
6644 next_distance = curr_distance;
6645 for (i = 0; i < nr_node_ids; i++) {
6646 for (j = 0; j < nr_node_ids; j++) {
6647 for (k = 0; k < nr_node_ids; k++) {
6648 int distance = node_distance(i, k);
6649
6650 if (distance > curr_distance &&
6651 (distance < next_distance ||
6652 next_distance == curr_distance))
6653 next_distance = distance;
6654
6655 /*
6656 * While not a strong assumption it would be nice to know
6657 * about cases where if node A is connected to B, B is not
6658 * equally connected to A.
6659 */
6660 if (sched_debug() && node_distance(k, i) != distance)
6661 sched_numa_warn("Node-distance not symmetric");
6662
6663 if (sched_debug() && i && !find_numa_distance(distance))
6664 sched_numa_warn("Node-0 not representative");
6665 }
6666 if (next_distance != curr_distance) {
6667 sched_domains_numa_distance[level++] = next_distance;
6668 sched_domains_numa_levels = level;
6669 curr_distance = next_distance;
6670 } else break;
6671 }
6672
6673 /*
6674 * In case of sched_debug() we verify the above assumption.
6675 */
6676 if (!sched_debug())
6677 break;
6678 }
6679
6680 if (!level)
6681 return;
6682
6683 /*
6684 * 'level' contains the number of unique distances, excluding the
6685 * identity distance node_distance(i,i).
6686 *
6687 * The sched_domains_numa_distance[] array includes the actual distance
6688 * numbers.
6689 */
6690
6691 /*
6692 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6693 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6694 * the array will contain less then 'level' members. This could be
6695 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6696 * in other functions.
6697 *
6698 * We reset it to 'level' at the end of this function.
6699 */
6700 sched_domains_numa_levels = 0;
6701
6702 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6703 if (!sched_domains_numa_masks)
6704 return;
6705
6706 /*
6707 * Now for each level, construct a mask per node which contains all
6708 * cpus of nodes that are that many hops away from us.
6709 */
6710 for (i = 0; i < level; i++) {
6711 sched_domains_numa_masks[i] =
6712 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6713 if (!sched_domains_numa_masks[i])
6714 return;
6715
6716 for (j = 0; j < nr_node_ids; j++) {
6717 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6718 if (!mask)
6719 return;
6720
6721 sched_domains_numa_masks[i][j] = mask;
6722
6723 for_each_node(k) {
6724 if (node_distance(j, k) > sched_domains_numa_distance[i])
6725 continue;
6726
6727 cpumask_or(mask, mask, cpumask_of_node(k));
6728 }
6729 }
6730 }
6731
6732 /* Compute default topology size */
6733 for (i = 0; sched_domain_topology[i].mask; i++);
6734
6735 tl = kzalloc((i + level + 1) *
6736 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6737 if (!tl)
6738 return;
6739
6740 /*
6741 * Copy the default topology bits..
6742 */
6743 for (i = 0; sched_domain_topology[i].mask; i++)
6744 tl[i] = sched_domain_topology[i];
6745
6746 /*
6747 * .. and append 'j' levels of NUMA goodness.
6748 */
6749 for (j = 0; j < level; i++, j++) {
6750 tl[i] = (struct sched_domain_topology_level){
6751 .mask = sd_numa_mask,
6752 .sd_flags = cpu_numa_flags,
6753 .flags = SDTL_OVERLAP,
6754 .numa_level = j,
6755 SD_INIT_NAME(NUMA)
6756 };
6757 }
6758
6759 sched_domain_topology = tl;
6760
6761 sched_domains_numa_levels = level;
6762 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6763
6764 init_numa_topology_type();
6765 }
6766
6767 static void sched_domains_numa_masks_set(int cpu)
6768 {
6769 int i, j;
6770 int node = cpu_to_node(cpu);
6771
6772 for (i = 0; i < sched_domains_numa_levels; i++) {
6773 for (j = 0; j < nr_node_ids; j++) {
6774 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6775 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6776 }
6777 }
6778 }
6779
6780 static void sched_domains_numa_masks_clear(int cpu)
6781 {
6782 int i, j;
6783 for (i = 0; i < sched_domains_numa_levels; i++) {
6784 for (j = 0; j < nr_node_ids; j++)
6785 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6786 }
6787 }
6788
6789 /*
6790 * Update sched_domains_numa_masks[level][node] array when new cpus
6791 * are onlined.
6792 */
6793 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6794 unsigned long action,
6795 void *hcpu)
6796 {
6797 int cpu = (long)hcpu;
6798
6799 switch (action & ~CPU_TASKS_FROZEN) {
6800 case CPU_ONLINE:
6801 sched_domains_numa_masks_set(cpu);
6802 break;
6803
6804 case CPU_DEAD:
6805 sched_domains_numa_masks_clear(cpu);
6806 break;
6807
6808 default:
6809 return NOTIFY_DONE;
6810 }
6811
6812 return NOTIFY_OK;
6813 }
6814 #else
6815 static inline void sched_init_numa(void)
6816 {
6817 }
6818
6819 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6820 unsigned long action,
6821 void *hcpu)
6822 {
6823 return 0;
6824 }
6825 #endif /* CONFIG_NUMA */
6826
6827 static int __sdt_alloc(const struct cpumask *cpu_map)
6828 {
6829 struct sched_domain_topology_level *tl;
6830 int j;
6831
6832 for_each_sd_topology(tl) {
6833 struct sd_data *sdd = &tl->data;
6834
6835 sdd->sd = alloc_percpu(struct sched_domain *);
6836 if (!sdd->sd)
6837 return -ENOMEM;
6838
6839 sdd->sg = alloc_percpu(struct sched_group *);
6840 if (!sdd->sg)
6841 return -ENOMEM;
6842
6843 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6844 if (!sdd->sgc)
6845 return -ENOMEM;
6846
6847 for_each_cpu(j, cpu_map) {
6848 struct sched_domain *sd;
6849 struct sched_group *sg;
6850 struct sched_group_capacity *sgc;
6851
6852 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6853 GFP_KERNEL, cpu_to_node(j));
6854 if (!sd)
6855 return -ENOMEM;
6856
6857 *per_cpu_ptr(sdd->sd, j) = sd;
6858
6859 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6860 GFP_KERNEL, cpu_to_node(j));
6861 if (!sg)
6862 return -ENOMEM;
6863
6864 sg->next = sg;
6865
6866 *per_cpu_ptr(sdd->sg, j) = sg;
6867
6868 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6869 GFP_KERNEL, cpu_to_node(j));
6870 if (!sgc)
6871 return -ENOMEM;
6872
6873 *per_cpu_ptr(sdd->sgc, j) = sgc;
6874 }
6875 }
6876
6877 return 0;
6878 }
6879
6880 static void __sdt_free(const struct cpumask *cpu_map)
6881 {
6882 struct sched_domain_topology_level *tl;
6883 int j;
6884
6885 for_each_sd_topology(tl) {
6886 struct sd_data *sdd = &tl->data;
6887
6888 for_each_cpu(j, cpu_map) {
6889 struct sched_domain *sd;
6890
6891 if (sdd->sd) {
6892 sd = *per_cpu_ptr(sdd->sd, j);
6893 if (sd && (sd->flags & SD_OVERLAP))
6894 free_sched_groups(sd->groups, 0);
6895 kfree(*per_cpu_ptr(sdd->sd, j));
6896 }
6897
6898 if (sdd->sg)
6899 kfree(*per_cpu_ptr(sdd->sg, j));
6900 if (sdd->sgc)
6901 kfree(*per_cpu_ptr(sdd->sgc, j));
6902 }
6903 free_percpu(sdd->sd);
6904 sdd->sd = NULL;
6905 free_percpu(sdd->sg);
6906 sdd->sg = NULL;
6907 free_percpu(sdd->sgc);
6908 sdd->sgc = NULL;
6909 }
6910 }
6911
6912 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6913 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6914 struct sched_domain *child, int cpu)
6915 {
6916 struct sched_domain *sd = sd_init(tl, cpu);
6917 if (!sd)
6918 return child;
6919
6920 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6921 if (child) {
6922 sd->level = child->level + 1;
6923 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6924 child->parent = sd;
6925 sd->child = child;
6926
6927 if (!cpumask_subset(sched_domain_span(child),
6928 sched_domain_span(sd))) {
6929 pr_err("BUG: arch topology borken\n");
6930 #ifdef CONFIG_SCHED_DEBUG
6931 pr_err(" the %s domain not a subset of the %s domain\n",
6932 child->name, sd->name);
6933 #endif
6934 /* Fixup, ensure @sd has at least @child cpus. */
6935 cpumask_or(sched_domain_span(sd),
6936 sched_domain_span(sd),
6937 sched_domain_span(child));
6938 }
6939
6940 }
6941 set_domain_attribute(sd, attr);
6942
6943 return sd;
6944 }
6945
6946 /*
6947 * Build sched domains for a given set of cpus and attach the sched domains
6948 * to the individual cpus
6949 */
6950 static int build_sched_domains(const struct cpumask *cpu_map,
6951 struct sched_domain_attr *attr)
6952 {
6953 enum s_alloc alloc_state;
6954 struct sched_domain *sd;
6955 struct s_data d;
6956 int i, ret = -ENOMEM;
6957
6958 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6959 if (alloc_state != sa_rootdomain)
6960 goto error;
6961
6962 /* Set up domains for cpus specified by the cpu_map. */
6963 for_each_cpu(i, cpu_map) {
6964 struct sched_domain_topology_level *tl;
6965
6966 sd = NULL;
6967 for_each_sd_topology(tl) {
6968 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6969 if (tl == sched_domain_topology)
6970 *per_cpu_ptr(d.sd, i) = sd;
6971 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6972 sd->flags |= SD_OVERLAP;
6973 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6974 break;
6975 }
6976 }
6977
6978 /* Build the groups for the domains */
6979 for_each_cpu(i, cpu_map) {
6980 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6981 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6982 if (sd->flags & SD_OVERLAP) {
6983 if (build_overlap_sched_groups(sd, i))
6984 goto error;
6985 } else {
6986 if (build_sched_groups(sd, i))
6987 goto error;
6988 }
6989 }
6990 }
6991
6992 /* Calculate CPU capacity for physical packages and nodes */
6993 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6994 if (!cpumask_test_cpu(i, cpu_map))
6995 continue;
6996
6997 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6998 claim_allocations(i, sd);
6999 init_sched_groups_capacity(i, sd);
7000 }
7001 }
7002
7003 /* Attach the domains */
7004 rcu_read_lock();
7005 for_each_cpu(i, cpu_map) {
7006 sd = *per_cpu_ptr(d.sd, i);
7007 cpu_attach_domain(sd, d.rd, i);
7008 }
7009 rcu_read_unlock();
7010
7011 ret = 0;
7012 error:
7013 __free_domain_allocs(&d, alloc_state, cpu_map);
7014 return ret;
7015 }
7016
7017 static cpumask_var_t *doms_cur; /* current sched domains */
7018 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7019 static struct sched_domain_attr *dattr_cur;
7020 /* attribues of custom domains in 'doms_cur' */
7021
7022 /*
7023 * Special case: If a kmalloc of a doms_cur partition (array of
7024 * cpumask) fails, then fallback to a single sched domain,
7025 * as determined by the single cpumask fallback_doms.
7026 */
7027 static cpumask_var_t fallback_doms;
7028
7029 /*
7030 * arch_update_cpu_topology lets virtualized architectures update the
7031 * cpu core maps. It is supposed to return 1 if the topology changed
7032 * or 0 if it stayed the same.
7033 */
7034 int __weak arch_update_cpu_topology(void)
7035 {
7036 return 0;
7037 }
7038
7039 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7040 {
7041 int i;
7042 cpumask_var_t *doms;
7043
7044 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7045 if (!doms)
7046 return NULL;
7047 for (i = 0; i < ndoms; i++) {
7048 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7049 free_sched_domains(doms, i);
7050 return NULL;
7051 }
7052 }
7053 return doms;
7054 }
7055
7056 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7057 {
7058 unsigned int i;
7059 for (i = 0; i < ndoms; i++)
7060 free_cpumask_var(doms[i]);
7061 kfree(doms);
7062 }
7063
7064 /*
7065 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7066 * For now this just excludes isolated cpus, but could be used to
7067 * exclude other special cases in the future.
7068 */
7069 static int init_sched_domains(const struct cpumask *cpu_map)
7070 {
7071 int err;
7072
7073 arch_update_cpu_topology();
7074 ndoms_cur = 1;
7075 doms_cur = alloc_sched_domains(ndoms_cur);
7076 if (!doms_cur)
7077 doms_cur = &fallback_doms;
7078 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7079 err = build_sched_domains(doms_cur[0], NULL);
7080 register_sched_domain_sysctl();
7081
7082 return err;
7083 }
7084
7085 /*
7086 * Detach sched domains from a group of cpus specified in cpu_map
7087 * These cpus will now be attached to the NULL domain
7088 */
7089 static void detach_destroy_domains(const struct cpumask *cpu_map)
7090 {
7091 int i;
7092
7093 rcu_read_lock();
7094 for_each_cpu(i, cpu_map)
7095 cpu_attach_domain(NULL, &def_root_domain, i);
7096 rcu_read_unlock();
7097 }
7098
7099 /* handle null as "default" */
7100 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7101 struct sched_domain_attr *new, int idx_new)
7102 {
7103 struct sched_domain_attr tmp;
7104
7105 /* fast path */
7106 if (!new && !cur)
7107 return 1;
7108
7109 tmp = SD_ATTR_INIT;
7110 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7111 new ? (new + idx_new) : &tmp,
7112 sizeof(struct sched_domain_attr));
7113 }
7114
7115 /*
7116 * Partition sched domains as specified by the 'ndoms_new'
7117 * cpumasks in the array doms_new[] of cpumasks. This compares
7118 * doms_new[] to the current sched domain partitioning, doms_cur[].
7119 * It destroys each deleted domain and builds each new domain.
7120 *
7121 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7122 * The masks don't intersect (don't overlap.) We should setup one
7123 * sched domain for each mask. CPUs not in any of the cpumasks will
7124 * not be load balanced. If the same cpumask appears both in the
7125 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7126 * it as it is.
7127 *
7128 * The passed in 'doms_new' should be allocated using
7129 * alloc_sched_domains. This routine takes ownership of it and will
7130 * free_sched_domains it when done with it. If the caller failed the
7131 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7132 * and partition_sched_domains() will fallback to the single partition
7133 * 'fallback_doms', it also forces the domains to be rebuilt.
7134 *
7135 * If doms_new == NULL it will be replaced with cpu_online_mask.
7136 * ndoms_new == 0 is a special case for destroying existing domains,
7137 * and it will not create the default domain.
7138 *
7139 * Call with hotplug lock held
7140 */
7141 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7142 struct sched_domain_attr *dattr_new)
7143 {
7144 int i, j, n;
7145 int new_topology;
7146
7147 mutex_lock(&sched_domains_mutex);
7148
7149 /* always unregister in case we don't destroy any domains */
7150 unregister_sched_domain_sysctl();
7151
7152 /* Let architecture update cpu core mappings. */
7153 new_topology = arch_update_cpu_topology();
7154
7155 n = doms_new ? ndoms_new : 0;
7156
7157 /* Destroy deleted domains */
7158 for (i = 0; i < ndoms_cur; i++) {
7159 for (j = 0; j < n && !new_topology; j++) {
7160 if (cpumask_equal(doms_cur[i], doms_new[j])
7161 && dattrs_equal(dattr_cur, i, dattr_new, j))
7162 goto match1;
7163 }
7164 /* no match - a current sched domain not in new doms_new[] */
7165 detach_destroy_domains(doms_cur[i]);
7166 match1:
7167 ;
7168 }
7169
7170 n = ndoms_cur;
7171 if (doms_new == NULL) {
7172 n = 0;
7173 doms_new = &fallback_doms;
7174 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7175 WARN_ON_ONCE(dattr_new);
7176 }
7177
7178 /* Build new domains */
7179 for (i = 0; i < ndoms_new; i++) {
7180 for (j = 0; j < n && !new_topology; j++) {
7181 if (cpumask_equal(doms_new[i], doms_cur[j])
7182 && dattrs_equal(dattr_new, i, dattr_cur, j))
7183 goto match2;
7184 }
7185 /* no match - add a new doms_new */
7186 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7187 match2:
7188 ;
7189 }
7190
7191 /* Remember the new sched domains */
7192 if (doms_cur != &fallback_doms)
7193 free_sched_domains(doms_cur, ndoms_cur);
7194 kfree(dattr_cur); /* kfree(NULL) is safe */
7195 doms_cur = doms_new;
7196 dattr_cur = dattr_new;
7197 ndoms_cur = ndoms_new;
7198
7199 register_sched_domain_sysctl();
7200
7201 mutex_unlock(&sched_domains_mutex);
7202 }
7203
7204 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7205
7206 /*
7207 * Update cpusets according to cpu_active mask. If cpusets are
7208 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7209 * around partition_sched_domains().
7210 *
7211 * If we come here as part of a suspend/resume, don't touch cpusets because we
7212 * want to restore it back to its original state upon resume anyway.
7213 */
7214 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7215 void *hcpu)
7216 {
7217 switch (action) {
7218 case CPU_ONLINE_FROZEN:
7219 case CPU_DOWN_FAILED_FROZEN:
7220
7221 /*
7222 * num_cpus_frozen tracks how many CPUs are involved in suspend
7223 * resume sequence. As long as this is not the last online
7224 * operation in the resume sequence, just build a single sched
7225 * domain, ignoring cpusets.
7226 */
7227 num_cpus_frozen--;
7228 if (likely(num_cpus_frozen)) {
7229 partition_sched_domains(1, NULL, NULL);
7230 break;
7231 }
7232
7233 /*
7234 * This is the last CPU online operation. So fall through and
7235 * restore the original sched domains by considering the
7236 * cpuset configurations.
7237 */
7238
7239 case CPU_ONLINE:
7240 cpuset_update_active_cpus(true);
7241 break;
7242 default:
7243 return NOTIFY_DONE;
7244 }
7245 return NOTIFY_OK;
7246 }
7247
7248 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7249 void *hcpu)
7250 {
7251 unsigned long flags;
7252 long cpu = (long)hcpu;
7253 struct dl_bw *dl_b;
7254 bool overflow;
7255 int cpus;
7256
7257 switch (action) {
7258 case CPU_DOWN_PREPARE:
7259 rcu_read_lock_sched();
7260 dl_b = dl_bw_of(cpu);
7261
7262 raw_spin_lock_irqsave(&dl_b->lock, flags);
7263 cpus = dl_bw_cpus(cpu);
7264 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7265 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7266
7267 rcu_read_unlock_sched();
7268
7269 if (overflow)
7270 return notifier_from_errno(-EBUSY);
7271 cpuset_update_active_cpus(false);
7272 break;
7273 case CPU_DOWN_PREPARE_FROZEN:
7274 num_cpus_frozen++;
7275 partition_sched_domains(1, NULL, NULL);
7276 break;
7277 default:
7278 return NOTIFY_DONE;
7279 }
7280 return NOTIFY_OK;
7281 }
7282
7283 void __init sched_init_smp(void)
7284 {
7285 cpumask_var_t non_isolated_cpus;
7286
7287 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7288 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7289
7290 sched_init_numa();
7291
7292 /*
7293 * There's no userspace yet to cause hotplug operations; hence all the
7294 * cpu masks are stable and all blatant races in the below code cannot
7295 * happen.
7296 */
7297 mutex_lock(&sched_domains_mutex);
7298 init_sched_domains(cpu_active_mask);
7299 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7300 if (cpumask_empty(non_isolated_cpus))
7301 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7302 mutex_unlock(&sched_domains_mutex);
7303
7304 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7305 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7306 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7307
7308 init_hrtick();
7309
7310 /* Move init over to a non-isolated CPU */
7311 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7312 BUG();
7313 sched_init_granularity();
7314 free_cpumask_var(non_isolated_cpus);
7315
7316 init_sched_rt_class();
7317 init_sched_dl_class();
7318 }
7319 #else
7320 void __init sched_init_smp(void)
7321 {
7322 sched_init_granularity();
7323 }
7324 #endif /* CONFIG_SMP */
7325
7326 int in_sched_functions(unsigned long addr)
7327 {
7328 return in_lock_functions(addr) ||
7329 (addr >= (unsigned long)__sched_text_start
7330 && addr < (unsigned long)__sched_text_end);
7331 }
7332
7333 #ifdef CONFIG_CGROUP_SCHED
7334 /*
7335 * Default task group.
7336 * Every task in system belongs to this group at bootup.
7337 */
7338 struct task_group root_task_group;
7339 LIST_HEAD(task_groups);
7340
7341 /* Cacheline aligned slab cache for task_group */
7342 static struct kmem_cache *task_group_cache __read_mostly;
7343 #endif
7344
7345 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7346
7347 void __init sched_init(void)
7348 {
7349 int i, j;
7350 unsigned long alloc_size = 0, ptr;
7351
7352 #ifdef CONFIG_FAIR_GROUP_SCHED
7353 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7354 #endif
7355 #ifdef CONFIG_RT_GROUP_SCHED
7356 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7357 #endif
7358 if (alloc_size) {
7359 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7360
7361 #ifdef CONFIG_FAIR_GROUP_SCHED
7362 root_task_group.se = (struct sched_entity **)ptr;
7363 ptr += nr_cpu_ids * sizeof(void **);
7364
7365 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7366 ptr += nr_cpu_ids * sizeof(void **);
7367
7368 #endif /* CONFIG_FAIR_GROUP_SCHED */
7369 #ifdef CONFIG_RT_GROUP_SCHED
7370 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7371 ptr += nr_cpu_ids * sizeof(void **);
7372
7373 root_task_group.rt_rq = (struct rt_rq **)ptr;
7374 ptr += nr_cpu_ids * sizeof(void **);
7375
7376 #endif /* CONFIG_RT_GROUP_SCHED */
7377 }
7378 #ifdef CONFIG_CPUMASK_OFFSTACK
7379 for_each_possible_cpu(i) {
7380 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7381 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7382 }
7383 #endif /* CONFIG_CPUMASK_OFFSTACK */
7384
7385 init_rt_bandwidth(&def_rt_bandwidth,
7386 global_rt_period(), global_rt_runtime());
7387 init_dl_bandwidth(&def_dl_bandwidth,
7388 global_rt_period(), global_rt_runtime());
7389
7390 #ifdef CONFIG_SMP
7391 init_defrootdomain();
7392 #endif
7393
7394 #ifdef CONFIG_RT_GROUP_SCHED
7395 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7396 global_rt_period(), global_rt_runtime());
7397 #endif /* CONFIG_RT_GROUP_SCHED */
7398
7399 #ifdef CONFIG_CGROUP_SCHED
7400 task_group_cache = KMEM_CACHE(task_group, 0);
7401
7402 list_add(&root_task_group.list, &task_groups);
7403 INIT_LIST_HEAD(&root_task_group.children);
7404 INIT_LIST_HEAD(&root_task_group.siblings);
7405 autogroup_init(&init_task);
7406 #endif /* CONFIG_CGROUP_SCHED */
7407
7408 for_each_possible_cpu(i) {
7409 struct rq *rq;
7410
7411 rq = cpu_rq(i);
7412 raw_spin_lock_init(&rq->lock);
7413 rq->nr_running = 0;
7414 rq->calc_load_active = 0;
7415 rq->calc_load_update = jiffies + LOAD_FREQ;
7416 init_cfs_rq(&rq->cfs);
7417 init_rt_rq(&rq->rt);
7418 init_dl_rq(&rq->dl);
7419 #ifdef CONFIG_FAIR_GROUP_SCHED
7420 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7421 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7422 /*
7423 * How much cpu bandwidth does root_task_group get?
7424 *
7425 * In case of task-groups formed thr' the cgroup filesystem, it
7426 * gets 100% of the cpu resources in the system. This overall
7427 * system cpu resource is divided among the tasks of
7428 * root_task_group and its child task-groups in a fair manner,
7429 * based on each entity's (task or task-group's) weight
7430 * (se->load.weight).
7431 *
7432 * In other words, if root_task_group has 10 tasks of weight
7433 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7434 * then A0's share of the cpu resource is:
7435 *
7436 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7437 *
7438 * We achieve this by letting root_task_group's tasks sit
7439 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7440 */
7441 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7442 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7443 #endif /* CONFIG_FAIR_GROUP_SCHED */
7444
7445 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7446 #ifdef CONFIG_RT_GROUP_SCHED
7447 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7448 #endif
7449
7450 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7451 rq->cpu_load[j] = 0;
7452
7453 #ifdef CONFIG_SMP
7454 rq->sd = NULL;
7455 rq->rd = NULL;
7456 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7457 rq->balance_callback = NULL;
7458 rq->active_balance = 0;
7459 rq->next_balance = jiffies;
7460 rq->push_cpu = 0;
7461 rq->cpu = i;
7462 rq->online = 0;
7463 rq->idle_stamp = 0;
7464 rq->avg_idle = 2*sysctl_sched_migration_cost;
7465 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7466
7467 INIT_LIST_HEAD(&rq->cfs_tasks);
7468
7469 rq_attach_root(rq, &def_root_domain);
7470 #ifdef CONFIG_NO_HZ_COMMON
7471 rq->last_load_update_tick = jiffies;
7472 rq->nohz_flags = 0;
7473 #endif
7474 #ifdef CONFIG_NO_HZ_FULL
7475 rq->last_sched_tick = 0;
7476 #endif
7477 #endif /* CONFIG_SMP */
7478 init_rq_hrtick(rq);
7479 atomic_set(&rq->nr_iowait, 0);
7480 }
7481
7482 set_load_weight(&init_task);
7483
7484 #ifdef CONFIG_PREEMPT_NOTIFIERS
7485 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7486 #endif
7487
7488 /*
7489 * The boot idle thread does lazy MMU switching as well:
7490 */
7491 atomic_inc(&init_mm.mm_count);
7492 enter_lazy_tlb(&init_mm, current);
7493
7494 /*
7495 * During early bootup we pretend to be a normal task:
7496 */
7497 current->sched_class = &fair_sched_class;
7498
7499 /*
7500 * Make us the idle thread. Technically, schedule() should not be
7501 * called from this thread, however somewhere below it might be,
7502 * but because we are the idle thread, we just pick up running again
7503 * when this runqueue becomes "idle".
7504 */
7505 init_idle(current, smp_processor_id());
7506
7507 calc_load_update = jiffies + LOAD_FREQ;
7508
7509 #ifdef CONFIG_SMP
7510 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7511 /* May be allocated at isolcpus cmdline parse time */
7512 if (cpu_isolated_map == NULL)
7513 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7514 idle_thread_set_boot_cpu();
7515 set_cpu_rq_start_time();
7516 #endif
7517 init_sched_fair_class();
7518
7519 scheduler_running = 1;
7520 }
7521
7522 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7523 static inline int preempt_count_equals(int preempt_offset)
7524 {
7525 int nested = preempt_count() + rcu_preempt_depth();
7526
7527 return (nested == preempt_offset);
7528 }
7529
7530 void __might_sleep(const char *file, int line, int preempt_offset)
7531 {
7532 /*
7533 * Blocking primitives will set (and therefore destroy) current->state,
7534 * since we will exit with TASK_RUNNING make sure we enter with it,
7535 * otherwise we will destroy state.
7536 */
7537 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7538 "do not call blocking ops when !TASK_RUNNING; "
7539 "state=%lx set at [<%p>] %pS\n",
7540 current->state,
7541 (void *)current->task_state_change,
7542 (void *)current->task_state_change);
7543
7544 ___might_sleep(file, line, preempt_offset);
7545 }
7546 EXPORT_SYMBOL(__might_sleep);
7547
7548 void ___might_sleep(const char *file, int line, int preempt_offset)
7549 {
7550 static unsigned long prev_jiffy; /* ratelimiting */
7551
7552 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7553 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7554 !is_idle_task(current)) ||
7555 system_state != SYSTEM_RUNNING || oops_in_progress)
7556 return;
7557 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7558 return;
7559 prev_jiffy = jiffies;
7560
7561 printk(KERN_ERR
7562 "BUG: sleeping function called from invalid context at %s:%d\n",
7563 file, line);
7564 printk(KERN_ERR
7565 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7566 in_atomic(), irqs_disabled(),
7567 current->pid, current->comm);
7568
7569 if (task_stack_end_corrupted(current))
7570 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7571
7572 debug_show_held_locks(current);
7573 if (irqs_disabled())
7574 print_irqtrace_events(current);
7575 #ifdef CONFIG_DEBUG_PREEMPT
7576 if (!preempt_count_equals(preempt_offset)) {
7577 pr_err("Preemption disabled at:");
7578 print_ip_sym(current->preempt_disable_ip);
7579 pr_cont("\n");
7580 }
7581 #endif
7582 dump_stack();
7583 }
7584 EXPORT_SYMBOL(___might_sleep);
7585 #endif
7586
7587 #ifdef CONFIG_MAGIC_SYSRQ
7588 void normalize_rt_tasks(void)
7589 {
7590 struct task_struct *g, *p;
7591 struct sched_attr attr = {
7592 .sched_policy = SCHED_NORMAL,
7593 };
7594
7595 read_lock(&tasklist_lock);
7596 for_each_process_thread(g, p) {
7597 /*
7598 * Only normalize user tasks:
7599 */
7600 if (p->flags & PF_KTHREAD)
7601 continue;
7602
7603 p->se.exec_start = 0;
7604 #ifdef CONFIG_SCHEDSTATS
7605 p->se.statistics.wait_start = 0;
7606 p->se.statistics.sleep_start = 0;
7607 p->se.statistics.block_start = 0;
7608 #endif
7609
7610 if (!dl_task(p) && !rt_task(p)) {
7611 /*
7612 * Renice negative nice level userspace
7613 * tasks back to 0:
7614 */
7615 if (task_nice(p) < 0)
7616 set_user_nice(p, 0);
7617 continue;
7618 }
7619
7620 __sched_setscheduler(p, &attr, false, false);
7621 }
7622 read_unlock(&tasklist_lock);
7623 }
7624
7625 #endif /* CONFIG_MAGIC_SYSRQ */
7626
7627 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7628 /*
7629 * These functions are only useful for the IA64 MCA handling, or kdb.
7630 *
7631 * They can only be called when the whole system has been
7632 * stopped - every CPU needs to be quiescent, and no scheduling
7633 * activity can take place. Using them for anything else would
7634 * be a serious bug, and as a result, they aren't even visible
7635 * under any other configuration.
7636 */
7637
7638 /**
7639 * curr_task - return the current task for a given cpu.
7640 * @cpu: the processor in question.
7641 *
7642 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7643 *
7644 * Return: The current task for @cpu.
7645 */
7646 struct task_struct *curr_task(int cpu)
7647 {
7648 return cpu_curr(cpu);
7649 }
7650
7651 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7652
7653 #ifdef CONFIG_IA64
7654 /**
7655 * set_curr_task - set the current task for a given cpu.
7656 * @cpu: the processor in question.
7657 * @p: the task pointer to set.
7658 *
7659 * Description: This function must only be used when non-maskable interrupts
7660 * are serviced on a separate stack. It allows the architecture to switch the
7661 * notion of the current task on a cpu in a non-blocking manner. This function
7662 * must be called with all CPU's synchronized, and interrupts disabled, the
7663 * and caller must save the original value of the current task (see
7664 * curr_task() above) and restore that value before reenabling interrupts and
7665 * re-starting the system.
7666 *
7667 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7668 */
7669 void set_curr_task(int cpu, struct task_struct *p)
7670 {
7671 cpu_curr(cpu) = p;
7672 }
7673
7674 #endif
7675
7676 #ifdef CONFIG_CGROUP_SCHED
7677 /* task_group_lock serializes the addition/removal of task groups */
7678 static DEFINE_SPINLOCK(task_group_lock);
7679
7680 static void sched_free_group(struct task_group *tg)
7681 {
7682 free_fair_sched_group(tg);
7683 free_rt_sched_group(tg);
7684 autogroup_free(tg);
7685 kmem_cache_free(task_group_cache, tg);
7686 }
7687
7688 /* allocate runqueue etc for a new task group */
7689 struct task_group *sched_create_group(struct task_group *parent)
7690 {
7691 struct task_group *tg;
7692
7693 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7694 if (!tg)
7695 return ERR_PTR(-ENOMEM);
7696
7697 if (!alloc_fair_sched_group(tg, parent))
7698 goto err;
7699
7700 if (!alloc_rt_sched_group(tg, parent))
7701 goto err;
7702
7703 return tg;
7704
7705 err:
7706 sched_free_group(tg);
7707 return ERR_PTR(-ENOMEM);
7708 }
7709
7710 void sched_online_group(struct task_group *tg, struct task_group *parent)
7711 {
7712 unsigned long flags;
7713
7714 spin_lock_irqsave(&task_group_lock, flags);
7715 list_add_rcu(&tg->list, &task_groups);
7716
7717 WARN_ON(!parent); /* root should already exist */
7718
7719 tg->parent = parent;
7720 INIT_LIST_HEAD(&tg->children);
7721 list_add_rcu(&tg->siblings, &parent->children);
7722 spin_unlock_irqrestore(&task_group_lock, flags);
7723 }
7724
7725 /* rcu callback to free various structures associated with a task group */
7726 static void sched_free_group_rcu(struct rcu_head *rhp)
7727 {
7728 /* now it should be safe to free those cfs_rqs */
7729 sched_free_group(container_of(rhp, struct task_group, rcu));
7730 }
7731
7732 void sched_destroy_group(struct task_group *tg)
7733 {
7734 /* wait for possible concurrent references to cfs_rqs complete */
7735 call_rcu(&tg->rcu, sched_free_group_rcu);
7736 }
7737
7738 void sched_offline_group(struct task_group *tg)
7739 {
7740 unsigned long flags;
7741
7742 /* end participation in shares distribution */
7743 unregister_fair_sched_group(tg);
7744
7745 spin_lock_irqsave(&task_group_lock, flags);
7746 list_del_rcu(&tg->list);
7747 list_del_rcu(&tg->siblings);
7748 spin_unlock_irqrestore(&task_group_lock, flags);
7749 }
7750
7751 /* change task's runqueue when it moves between groups.
7752 * The caller of this function should have put the task in its new group
7753 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7754 * reflect its new group.
7755 */
7756 void sched_move_task(struct task_struct *tsk)
7757 {
7758 struct task_group *tg;
7759 int queued, running;
7760 unsigned long flags;
7761 struct rq *rq;
7762
7763 rq = task_rq_lock(tsk, &flags);
7764
7765 running = task_current(rq, tsk);
7766 queued = task_on_rq_queued(tsk);
7767
7768 if (queued)
7769 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7770 if (unlikely(running))
7771 put_prev_task(rq, tsk);
7772
7773 /*
7774 * All callers are synchronized by task_rq_lock(); we do not use RCU
7775 * which is pointless here. Thus, we pass "true" to task_css_check()
7776 * to prevent lockdep warnings.
7777 */
7778 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7779 struct task_group, css);
7780 tg = autogroup_task_group(tsk, tg);
7781 tsk->sched_task_group = tg;
7782
7783 #ifdef CONFIG_FAIR_GROUP_SCHED
7784 if (tsk->sched_class->task_move_group)
7785 tsk->sched_class->task_move_group(tsk);
7786 else
7787 #endif
7788 set_task_rq(tsk, task_cpu(tsk));
7789
7790 if (unlikely(running))
7791 tsk->sched_class->set_curr_task(rq);
7792 if (queued)
7793 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7794
7795 task_rq_unlock(rq, tsk, &flags);
7796 }
7797 #endif /* CONFIG_CGROUP_SCHED */
7798
7799 #ifdef CONFIG_RT_GROUP_SCHED
7800 /*
7801 * Ensure that the real time constraints are schedulable.
7802 */
7803 static DEFINE_MUTEX(rt_constraints_mutex);
7804
7805 /* Must be called with tasklist_lock held */
7806 static inline int tg_has_rt_tasks(struct task_group *tg)
7807 {
7808 struct task_struct *g, *p;
7809
7810 /*
7811 * Autogroups do not have RT tasks; see autogroup_create().
7812 */
7813 if (task_group_is_autogroup(tg))
7814 return 0;
7815
7816 for_each_process_thread(g, p) {
7817 if (rt_task(p) && task_group(p) == tg)
7818 return 1;
7819 }
7820
7821 return 0;
7822 }
7823
7824 struct rt_schedulable_data {
7825 struct task_group *tg;
7826 u64 rt_period;
7827 u64 rt_runtime;
7828 };
7829
7830 static int tg_rt_schedulable(struct task_group *tg, void *data)
7831 {
7832 struct rt_schedulable_data *d = data;
7833 struct task_group *child;
7834 unsigned long total, sum = 0;
7835 u64 period, runtime;
7836
7837 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7838 runtime = tg->rt_bandwidth.rt_runtime;
7839
7840 if (tg == d->tg) {
7841 period = d->rt_period;
7842 runtime = d->rt_runtime;
7843 }
7844
7845 /*
7846 * Cannot have more runtime than the period.
7847 */
7848 if (runtime > period && runtime != RUNTIME_INF)
7849 return -EINVAL;
7850
7851 /*
7852 * Ensure we don't starve existing RT tasks.
7853 */
7854 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7855 return -EBUSY;
7856
7857 total = to_ratio(period, runtime);
7858
7859 /*
7860 * Nobody can have more than the global setting allows.
7861 */
7862 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7863 return -EINVAL;
7864
7865 /*
7866 * The sum of our children's runtime should not exceed our own.
7867 */
7868 list_for_each_entry_rcu(child, &tg->children, siblings) {
7869 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7870 runtime = child->rt_bandwidth.rt_runtime;
7871
7872 if (child == d->tg) {
7873 period = d->rt_period;
7874 runtime = d->rt_runtime;
7875 }
7876
7877 sum += to_ratio(period, runtime);
7878 }
7879
7880 if (sum > total)
7881 return -EINVAL;
7882
7883 return 0;
7884 }
7885
7886 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7887 {
7888 int ret;
7889
7890 struct rt_schedulable_data data = {
7891 .tg = tg,
7892 .rt_period = period,
7893 .rt_runtime = runtime,
7894 };
7895
7896 rcu_read_lock();
7897 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7898 rcu_read_unlock();
7899
7900 return ret;
7901 }
7902
7903 static int tg_set_rt_bandwidth(struct task_group *tg,
7904 u64 rt_period, u64 rt_runtime)
7905 {
7906 int i, err = 0;
7907
7908 /*
7909 * Disallowing the root group RT runtime is BAD, it would disallow the
7910 * kernel creating (and or operating) RT threads.
7911 */
7912 if (tg == &root_task_group && rt_runtime == 0)
7913 return -EINVAL;
7914
7915 /* No period doesn't make any sense. */
7916 if (rt_period == 0)
7917 return -EINVAL;
7918
7919 mutex_lock(&rt_constraints_mutex);
7920 read_lock(&tasklist_lock);
7921 err = __rt_schedulable(tg, rt_period, rt_runtime);
7922 if (err)
7923 goto unlock;
7924
7925 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7926 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7927 tg->rt_bandwidth.rt_runtime = rt_runtime;
7928
7929 for_each_possible_cpu(i) {
7930 struct rt_rq *rt_rq = tg->rt_rq[i];
7931
7932 raw_spin_lock(&rt_rq->rt_runtime_lock);
7933 rt_rq->rt_runtime = rt_runtime;
7934 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7935 }
7936 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7937 unlock:
7938 read_unlock(&tasklist_lock);
7939 mutex_unlock(&rt_constraints_mutex);
7940
7941 return err;
7942 }
7943
7944 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7945 {
7946 u64 rt_runtime, rt_period;
7947
7948 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7949 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7950 if (rt_runtime_us < 0)
7951 rt_runtime = RUNTIME_INF;
7952
7953 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7954 }
7955
7956 static long sched_group_rt_runtime(struct task_group *tg)
7957 {
7958 u64 rt_runtime_us;
7959
7960 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7961 return -1;
7962
7963 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7964 do_div(rt_runtime_us, NSEC_PER_USEC);
7965 return rt_runtime_us;
7966 }
7967
7968 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7969 {
7970 u64 rt_runtime, rt_period;
7971
7972 rt_period = rt_period_us * NSEC_PER_USEC;
7973 rt_runtime = tg->rt_bandwidth.rt_runtime;
7974
7975 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7976 }
7977
7978 static long sched_group_rt_period(struct task_group *tg)
7979 {
7980 u64 rt_period_us;
7981
7982 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7983 do_div(rt_period_us, NSEC_PER_USEC);
7984 return rt_period_us;
7985 }
7986 #endif /* CONFIG_RT_GROUP_SCHED */
7987
7988 #ifdef CONFIG_RT_GROUP_SCHED
7989 static int sched_rt_global_constraints(void)
7990 {
7991 int ret = 0;
7992
7993 mutex_lock(&rt_constraints_mutex);
7994 read_lock(&tasklist_lock);
7995 ret = __rt_schedulable(NULL, 0, 0);
7996 read_unlock(&tasklist_lock);
7997 mutex_unlock(&rt_constraints_mutex);
7998
7999 return ret;
8000 }
8001
8002 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8003 {
8004 /* Don't accept realtime tasks when there is no way for them to run */
8005 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8006 return 0;
8007
8008 return 1;
8009 }
8010
8011 #else /* !CONFIG_RT_GROUP_SCHED */
8012 static int sched_rt_global_constraints(void)
8013 {
8014 unsigned long flags;
8015 int i, ret = 0;
8016
8017 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8018 for_each_possible_cpu(i) {
8019 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8020
8021 raw_spin_lock(&rt_rq->rt_runtime_lock);
8022 rt_rq->rt_runtime = global_rt_runtime();
8023 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8024 }
8025 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8026
8027 return ret;
8028 }
8029 #endif /* CONFIG_RT_GROUP_SCHED */
8030
8031 static int sched_dl_global_validate(void)
8032 {
8033 u64 runtime = global_rt_runtime();
8034 u64 period = global_rt_period();
8035 u64 new_bw = to_ratio(period, runtime);
8036 struct dl_bw *dl_b;
8037 int cpu, ret = 0;
8038 unsigned long flags;
8039
8040 /*
8041 * Here we want to check the bandwidth not being set to some
8042 * value smaller than the currently allocated bandwidth in
8043 * any of the root_domains.
8044 *
8045 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8046 * cycling on root_domains... Discussion on different/better
8047 * solutions is welcome!
8048 */
8049 for_each_possible_cpu(cpu) {
8050 rcu_read_lock_sched();
8051 dl_b = dl_bw_of(cpu);
8052
8053 raw_spin_lock_irqsave(&dl_b->lock, flags);
8054 if (new_bw < dl_b->total_bw)
8055 ret = -EBUSY;
8056 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8057
8058 rcu_read_unlock_sched();
8059
8060 if (ret)
8061 break;
8062 }
8063
8064 return ret;
8065 }
8066
8067 static void sched_dl_do_global(void)
8068 {
8069 u64 new_bw = -1;
8070 struct dl_bw *dl_b;
8071 int cpu;
8072 unsigned long flags;
8073
8074 def_dl_bandwidth.dl_period = global_rt_period();
8075 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8076
8077 if (global_rt_runtime() != RUNTIME_INF)
8078 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8079
8080 /*
8081 * FIXME: As above...
8082 */
8083 for_each_possible_cpu(cpu) {
8084 rcu_read_lock_sched();
8085 dl_b = dl_bw_of(cpu);
8086
8087 raw_spin_lock_irqsave(&dl_b->lock, flags);
8088 dl_b->bw = new_bw;
8089 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8090
8091 rcu_read_unlock_sched();
8092 }
8093 }
8094
8095 static int sched_rt_global_validate(void)
8096 {
8097 if (sysctl_sched_rt_period <= 0)
8098 return -EINVAL;
8099
8100 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8101 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8102 return -EINVAL;
8103
8104 return 0;
8105 }
8106
8107 static void sched_rt_do_global(void)
8108 {
8109 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8110 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8111 }
8112
8113 int sched_rt_handler(struct ctl_table *table, int write,
8114 void __user *buffer, size_t *lenp,
8115 loff_t *ppos)
8116 {
8117 int old_period, old_runtime;
8118 static DEFINE_MUTEX(mutex);
8119 int ret;
8120
8121 mutex_lock(&mutex);
8122 old_period = sysctl_sched_rt_period;
8123 old_runtime = sysctl_sched_rt_runtime;
8124
8125 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8126
8127 if (!ret && write) {
8128 ret = sched_rt_global_validate();
8129 if (ret)
8130 goto undo;
8131
8132 ret = sched_dl_global_validate();
8133 if (ret)
8134 goto undo;
8135
8136 ret = sched_rt_global_constraints();
8137 if (ret)
8138 goto undo;
8139
8140 sched_rt_do_global();
8141 sched_dl_do_global();
8142 }
8143 if (0) {
8144 undo:
8145 sysctl_sched_rt_period = old_period;
8146 sysctl_sched_rt_runtime = old_runtime;
8147 }
8148 mutex_unlock(&mutex);
8149
8150 return ret;
8151 }
8152
8153 int sched_rr_handler(struct ctl_table *table, int write,
8154 void __user *buffer, size_t *lenp,
8155 loff_t *ppos)
8156 {
8157 int ret;
8158 static DEFINE_MUTEX(mutex);
8159
8160 mutex_lock(&mutex);
8161 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8162 /* make sure that internally we keep jiffies */
8163 /* also, writing zero resets timeslice to default */
8164 if (!ret && write) {
8165 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8166 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8167 }
8168 mutex_unlock(&mutex);
8169 return ret;
8170 }
8171
8172 #ifdef CONFIG_CGROUP_SCHED
8173
8174 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8175 {
8176 return css ? container_of(css, struct task_group, css) : NULL;
8177 }
8178
8179 static struct cgroup_subsys_state *
8180 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8181 {
8182 struct task_group *parent = css_tg(parent_css);
8183 struct task_group *tg;
8184
8185 if (!parent) {
8186 /* This is early initialization for the top cgroup */
8187 return &root_task_group.css;
8188 }
8189
8190 tg = sched_create_group(parent);
8191 if (IS_ERR(tg))
8192 return ERR_PTR(-ENOMEM);
8193
8194 sched_online_group(tg, parent);
8195
8196 return &tg->css;
8197 }
8198
8199 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8200 {
8201 struct task_group *tg = css_tg(css);
8202
8203 sched_offline_group(tg);
8204 }
8205
8206 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8207 {
8208 struct task_group *tg = css_tg(css);
8209
8210 /*
8211 * Relies on the RCU grace period between css_released() and this.
8212 */
8213 sched_free_group(tg);
8214 }
8215
8216 static void cpu_cgroup_fork(struct task_struct *task)
8217 {
8218 sched_move_task(task);
8219 }
8220
8221 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8222 {
8223 struct task_struct *task;
8224 struct cgroup_subsys_state *css;
8225
8226 cgroup_taskset_for_each(task, css, tset) {
8227 #ifdef CONFIG_RT_GROUP_SCHED
8228 if (!sched_rt_can_attach(css_tg(css), task))
8229 return -EINVAL;
8230 #else
8231 /* We don't support RT-tasks being in separate groups */
8232 if (task->sched_class != &fair_sched_class)
8233 return -EINVAL;
8234 #endif
8235 }
8236 return 0;
8237 }
8238
8239 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8240 {
8241 struct task_struct *task;
8242 struct cgroup_subsys_state *css;
8243
8244 cgroup_taskset_for_each(task, css, tset)
8245 sched_move_task(task);
8246 }
8247
8248 #ifdef CONFIG_FAIR_GROUP_SCHED
8249 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8250 struct cftype *cftype, u64 shareval)
8251 {
8252 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8253 }
8254
8255 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8256 struct cftype *cft)
8257 {
8258 struct task_group *tg = css_tg(css);
8259
8260 return (u64) scale_load_down(tg->shares);
8261 }
8262
8263 #ifdef CONFIG_CFS_BANDWIDTH
8264 static DEFINE_MUTEX(cfs_constraints_mutex);
8265
8266 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8267 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8268
8269 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8270
8271 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8272 {
8273 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8274 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8275
8276 if (tg == &root_task_group)
8277 return -EINVAL;
8278
8279 /*
8280 * Ensure we have at some amount of bandwidth every period. This is
8281 * to prevent reaching a state of large arrears when throttled via
8282 * entity_tick() resulting in prolonged exit starvation.
8283 */
8284 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8285 return -EINVAL;
8286
8287 /*
8288 * Likewise, bound things on the otherside by preventing insane quota
8289 * periods. This also allows us to normalize in computing quota
8290 * feasibility.
8291 */
8292 if (period > max_cfs_quota_period)
8293 return -EINVAL;
8294
8295 /*
8296 * Prevent race between setting of cfs_rq->runtime_enabled and
8297 * unthrottle_offline_cfs_rqs().
8298 */
8299 get_online_cpus();
8300 mutex_lock(&cfs_constraints_mutex);
8301 ret = __cfs_schedulable(tg, period, quota);
8302 if (ret)
8303 goto out_unlock;
8304
8305 runtime_enabled = quota != RUNTIME_INF;
8306 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8307 /*
8308 * If we need to toggle cfs_bandwidth_used, off->on must occur
8309 * before making related changes, and on->off must occur afterwards
8310 */
8311 if (runtime_enabled && !runtime_was_enabled)
8312 cfs_bandwidth_usage_inc();
8313 raw_spin_lock_irq(&cfs_b->lock);
8314 cfs_b->period = ns_to_ktime(period);
8315 cfs_b->quota = quota;
8316
8317 __refill_cfs_bandwidth_runtime(cfs_b);
8318 /* restart the period timer (if active) to handle new period expiry */
8319 if (runtime_enabled)
8320 start_cfs_bandwidth(cfs_b);
8321 raw_spin_unlock_irq(&cfs_b->lock);
8322
8323 for_each_online_cpu(i) {
8324 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8325 struct rq *rq = cfs_rq->rq;
8326
8327 raw_spin_lock_irq(&rq->lock);
8328 cfs_rq->runtime_enabled = runtime_enabled;
8329 cfs_rq->runtime_remaining = 0;
8330
8331 if (cfs_rq->throttled)
8332 unthrottle_cfs_rq(cfs_rq);
8333 raw_spin_unlock_irq(&rq->lock);
8334 }
8335 if (runtime_was_enabled && !runtime_enabled)
8336 cfs_bandwidth_usage_dec();
8337 out_unlock:
8338 mutex_unlock(&cfs_constraints_mutex);
8339 put_online_cpus();
8340
8341 return ret;
8342 }
8343
8344 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8345 {
8346 u64 quota, period;
8347
8348 period = ktime_to_ns(tg->cfs_bandwidth.period);
8349 if (cfs_quota_us < 0)
8350 quota = RUNTIME_INF;
8351 else
8352 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8353
8354 return tg_set_cfs_bandwidth(tg, period, quota);
8355 }
8356
8357 long tg_get_cfs_quota(struct task_group *tg)
8358 {
8359 u64 quota_us;
8360
8361 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8362 return -1;
8363
8364 quota_us = tg->cfs_bandwidth.quota;
8365 do_div(quota_us, NSEC_PER_USEC);
8366
8367 return quota_us;
8368 }
8369
8370 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8371 {
8372 u64 quota, period;
8373
8374 period = (u64)cfs_period_us * NSEC_PER_USEC;
8375 quota = tg->cfs_bandwidth.quota;
8376
8377 return tg_set_cfs_bandwidth(tg, period, quota);
8378 }
8379
8380 long tg_get_cfs_period(struct task_group *tg)
8381 {
8382 u64 cfs_period_us;
8383
8384 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8385 do_div(cfs_period_us, NSEC_PER_USEC);
8386
8387 return cfs_period_us;
8388 }
8389
8390 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8391 struct cftype *cft)
8392 {
8393 return tg_get_cfs_quota(css_tg(css));
8394 }
8395
8396 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8397 struct cftype *cftype, s64 cfs_quota_us)
8398 {
8399 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8400 }
8401
8402 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8403 struct cftype *cft)
8404 {
8405 return tg_get_cfs_period(css_tg(css));
8406 }
8407
8408 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8409 struct cftype *cftype, u64 cfs_period_us)
8410 {
8411 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8412 }
8413
8414 struct cfs_schedulable_data {
8415 struct task_group *tg;
8416 u64 period, quota;
8417 };
8418
8419 /*
8420 * normalize group quota/period to be quota/max_period
8421 * note: units are usecs
8422 */
8423 static u64 normalize_cfs_quota(struct task_group *tg,
8424 struct cfs_schedulable_data *d)
8425 {
8426 u64 quota, period;
8427
8428 if (tg == d->tg) {
8429 period = d->period;
8430 quota = d->quota;
8431 } else {
8432 period = tg_get_cfs_period(tg);
8433 quota = tg_get_cfs_quota(tg);
8434 }
8435
8436 /* note: these should typically be equivalent */
8437 if (quota == RUNTIME_INF || quota == -1)
8438 return RUNTIME_INF;
8439
8440 return to_ratio(period, quota);
8441 }
8442
8443 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8444 {
8445 struct cfs_schedulable_data *d = data;
8446 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8447 s64 quota = 0, parent_quota = -1;
8448
8449 if (!tg->parent) {
8450 quota = RUNTIME_INF;
8451 } else {
8452 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8453
8454 quota = normalize_cfs_quota(tg, d);
8455 parent_quota = parent_b->hierarchical_quota;
8456
8457 /*
8458 * ensure max(child_quota) <= parent_quota, inherit when no
8459 * limit is set
8460 */
8461 if (quota == RUNTIME_INF)
8462 quota = parent_quota;
8463 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8464 return -EINVAL;
8465 }
8466 cfs_b->hierarchical_quota = quota;
8467
8468 return 0;
8469 }
8470
8471 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8472 {
8473 int ret;
8474 struct cfs_schedulable_data data = {
8475 .tg = tg,
8476 .period = period,
8477 .quota = quota,
8478 };
8479
8480 if (quota != RUNTIME_INF) {
8481 do_div(data.period, NSEC_PER_USEC);
8482 do_div(data.quota, NSEC_PER_USEC);
8483 }
8484
8485 rcu_read_lock();
8486 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8487 rcu_read_unlock();
8488
8489 return ret;
8490 }
8491
8492 static int cpu_stats_show(struct seq_file *sf, void *v)
8493 {
8494 struct task_group *tg = css_tg(seq_css(sf));
8495 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8496
8497 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8498 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8499 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8500
8501 return 0;
8502 }
8503 #endif /* CONFIG_CFS_BANDWIDTH */
8504 #endif /* CONFIG_FAIR_GROUP_SCHED */
8505
8506 #ifdef CONFIG_RT_GROUP_SCHED
8507 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8508 struct cftype *cft, s64 val)
8509 {
8510 return sched_group_set_rt_runtime(css_tg(css), val);
8511 }
8512
8513 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8514 struct cftype *cft)
8515 {
8516 return sched_group_rt_runtime(css_tg(css));
8517 }
8518
8519 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8520 struct cftype *cftype, u64 rt_period_us)
8521 {
8522 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8523 }
8524
8525 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8526 struct cftype *cft)
8527 {
8528 return sched_group_rt_period(css_tg(css));
8529 }
8530 #endif /* CONFIG_RT_GROUP_SCHED */
8531
8532 static struct cftype cpu_files[] = {
8533 #ifdef CONFIG_FAIR_GROUP_SCHED
8534 {
8535 .name = "shares",
8536 .read_u64 = cpu_shares_read_u64,
8537 .write_u64 = cpu_shares_write_u64,
8538 },
8539 #endif
8540 #ifdef CONFIG_CFS_BANDWIDTH
8541 {
8542 .name = "cfs_quota_us",
8543 .read_s64 = cpu_cfs_quota_read_s64,
8544 .write_s64 = cpu_cfs_quota_write_s64,
8545 },
8546 {
8547 .name = "cfs_period_us",
8548 .read_u64 = cpu_cfs_period_read_u64,
8549 .write_u64 = cpu_cfs_period_write_u64,
8550 },
8551 {
8552 .name = "stat",
8553 .seq_show = cpu_stats_show,
8554 },
8555 #endif
8556 #ifdef CONFIG_RT_GROUP_SCHED
8557 {
8558 .name = "rt_runtime_us",
8559 .read_s64 = cpu_rt_runtime_read,
8560 .write_s64 = cpu_rt_runtime_write,
8561 },
8562 {
8563 .name = "rt_period_us",
8564 .read_u64 = cpu_rt_period_read_uint,
8565 .write_u64 = cpu_rt_period_write_uint,
8566 },
8567 #endif
8568 { } /* terminate */
8569 };
8570
8571 struct cgroup_subsys cpu_cgrp_subsys = {
8572 .css_alloc = cpu_cgroup_css_alloc,
8573 .css_released = cpu_cgroup_css_released,
8574 .css_free = cpu_cgroup_css_free,
8575 .fork = cpu_cgroup_fork,
8576 .can_attach = cpu_cgroup_can_attach,
8577 .attach = cpu_cgroup_attach,
8578 .legacy_cftypes = cpu_files,
8579 .early_init = true,
8580 };
8581
8582 #endif /* CONFIG_CGROUP_SCHED */
8583
8584 void dump_cpu_task(int cpu)
8585 {
8586 pr_info("Task dump for CPU %d:\n", cpu);
8587 sched_show_task(cpu_curr(cpu));
8588 }
8589
8590 /*
8591 * Nice levels are multiplicative, with a gentle 10% change for every
8592 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8593 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8594 * that remained on nice 0.
8595 *
8596 * The "10% effect" is relative and cumulative: from _any_ nice level,
8597 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8598 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8599 * If a task goes up by ~10% and another task goes down by ~10% then
8600 * the relative distance between them is ~25%.)
8601 */
8602 const int sched_prio_to_weight[40] = {
8603 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8604 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8605 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8606 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8607 /* 0 */ 1024, 820, 655, 526, 423,
8608 /* 5 */ 335, 272, 215, 172, 137,
8609 /* 10 */ 110, 87, 70, 56, 45,
8610 /* 15 */ 36, 29, 23, 18, 15,
8611 };
8612
8613 /*
8614 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8615 *
8616 * In cases where the weight does not change often, we can use the
8617 * precalculated inverse to speed up arithmetics by turning divisions
8618 * into multiplications:
8619 */
8620 const u32 sched_prio_to_wmult[40] = {
8621 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8622 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8623 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8624 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8625 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8626 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8627 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8628 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8629 };