]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
sched/numa: Use a system-wide search to find swap/migration candidates
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375 static void hrtick_clear(struct rq *rq)
376 {
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379 }
380
381 /*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385 static enum hrtimer_restart hrtick(struct hrtimer *timer)
386 {
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391 raw_spin_lock(&rq->lock);
392 update_rq_clock(rq);
393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394 raw_spin_unlock(&rq->lock);
395
396 return HRTIMER_NORESTART;
397 }
398
399 #ifdef CONFIG_SMP
400
401 static int __hrtick_restart(struct rq *rq)
402 {
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407 }
408
409 /*
410 * called from hardirq (IPI) context
411 */
412 static void __hrtick_start(void *arg)
413 {
414 struct rq *rq = arg;
415
416 raw_spin_lock(&rq->lock);
417 __hrtick_restart(rq);
418 rq->hrtick_csd_pending = 0;
419 raw_spin_unlock(&rq->lock);
420 }
421
422 /*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432 hrtimer_set_expires(timer, time);
433
434 if (rq == this_rq()) {
435 __hrtick_restart(rq);
436 } else if (!rq->hrtick_csd_pending) {
437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438 rq->hrtick_csd_pending = 1;
439 }
440 }
441
442 static int
443 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444 {
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
454 hrtick_clear(cpu_rq(cpu));
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459 }
460
461 static __init void init_hrtick(void)
462 {
463 hotcpu_notifier(hotplug_hrtick, 0);
464 }
465 #else
466 /*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471 void hrtick_start(struct rq *rq, u64 delay)
472 {
473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474 HRTIMER_MODE_REL_PINNED, 0);
475 }
476
477 static inline void init_hrtick(void)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void init_rq_hrtick(struct rq *rq)
483 {
484 #ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
486
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490 #endif
491
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
494 }
495 #else /* CONFIG_SCHED_HRTICK */
496 static inline void hrtick_clear(struct rq *rq)
497 {
498 }
499
500 static inline void init_rq_hrtick(struct rq *rq)
501 {
502 }
503
504 static inline void init_hrtick(void)
505 {
506 }
507 #endif /* CONFIG_SCHED_HRTICK */
508
509 /*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516 void resched_task(struct task_struct *p)
517 {
518 int cpu;
519
520 lockdep_assert_held(&task_rq(p)->lock);
521
522 if (test_tsk_need_resched(p))
523 return;
524
525 set_tsk_need_resched(p);
526
527 cpu = task_cpu(p);
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
530 return;
531 }
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537 }
538
539 void resched_cpu(int cpu)
540 {
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545 return;
546 resched_task(cpu_curr(cpu));
547 raw_spin_unlock_irqrestore(&rq->lock, flags);
548 }
549
550 #ifdef CONFIG_SMP
551 #ifdef CONFIG_NO_HZ_COMMON
552 /*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560 int get_nohz_timer_target(void)
561 {
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
574 }
575 unlock:
576 rcu_read_unlock();
577 return cpu;
578 }
579 /*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589 static void wake_up_idle_cpu(int cpu)
590 {
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
605
606 /*
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
610 */
611 set_tsk_need_resched(rq->idle);
612
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
617 }
618
619 static bool wake_up_full_nohz_cpu(int cpu)
620 {
621 if (tick_nohz_full_cpu(cpu)) {
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629 }
630
631 void wake_up_nohz_cpu(int cpu)
632 {
633 if (!wake_up_full_nohz_cpu(cpu))
634 wake_up_idle_cpu(cpu);
635 }
636
637 static inline bool got_nohz_idle_kick(void)
638 {
639 int cpu = smp_processor_id();
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
653 }
654
655 #else /* CONFIG_NO_HZ_COMMON */
656
657 static inline bool got_nohz_idle_kick(void)
658 {
659 return false;
660 }
661
662 #endif /* CONFIG_NO_HZ_COMMON */
663
664 #ifdef CONFIG_NO_HZ_FULL
665 bool sched_can_stop_tick(void)
666 {
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679 }
680 #endif /* CONFIG_NO_HZ_FULL */
681
682 void sched_avg_update(struct rq *rq)
683 {
684 s64 period = sched_avg_period();
685
686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
696 }
697
698 #endif /* CONFIG_SMP */
699
700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702 /*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708 int walk_tg_tree_from(struct task_group *from,
709 tg_visitor down, tg_visitor up, void *data)
710 {
711 struct task_group *parent, *child;
712 int ret;
713
714 parent = from;
715
716 down:
717 ret = (*down)(parent, data);
718 if (ret)
719 goto out;
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724 up:
725 continue;
726 }
727 ret = (*up)(parent, data);
728 if (ret || parent == from)
729 goto out;
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
735 out:
736 return ret;
737 }
738
739 int tg_nop(struct task_group *tg, void *data)
740 {
741 return 0;
742 }
743 #endif
744
745 static void set_load_weight(struct task_struct *p)
746 {
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
754 load->weight = scale_load(WEIGHT_IDLEPRIO);
755 load->inv_weight = WMULT_IDLEPRIO;
756 return;
757 }
758
759 load->weight = scale_load(prio_to_weight[prio]);
760 load->inv_weight = prio_to_wmult[prio];
761 }
762
763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 sched_info_queued(rq, p);
767 p->sched_class->enqueue_task(rq, p, flags);
768 }
769
770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771 {
772 update_rq_clock(rq);
773 sched_info_dequeued(rq, p);
774 p->sched_class->dequeue_task(rq, p, flags);
775 }
776
777 void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
782 enqueue_task(rq, p, flags);
783 }
784
785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
790 dequeue_task(rq, p, flags);
791 }
792
793 static void update_rq_clock_task(struct rq *rq, s64 delta)
794 {
795 /*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801 #endif
802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
825 #endif
826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827 if (static_key_false((&paravirt_steal_rq_enabled))) {
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843 #endif
844
845 rq->clock_task += delta;
846
847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850 #endif
851 }
852
853 void sched_set_stop_task(int cpu, struct task_struct *stop)
854 {
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881 }
882
883 /*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886 static inline int __normal_prio(struct task_struct *p)
887 {
888 return p->static_prio;
889 }
890
891 /*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898 static inline int normal_prio(struct task_struct *p)
899 {
900 int prio;
901
902 if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907 }
908
909 /*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916 static int effective_prio(struct task_struct *p)
917 {
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927 }
928
929 /**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988 #ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
1009 p->se.nr_migrations++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 }
1012
1013 __set_task_cpu(p, new_cpu);
1014 }
1015
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036 }
1037
1038 struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041 };
1042
1043 static int migrate_swap_stop(void *data)
1044 {
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070 unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072
1073 return ret;
1074 }
1075
1076 /*
1077 * Cross migrate two tasks
1078 */
1079 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1080 {
1081 struct migration_swap_arg arg;
1082 int ret = -EINVAL;
1083
1084 get_online_cpus();
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1097 goto out;
1098
1099 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1100 goto out;
1101
1102 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1103 goto out;
1104
1105 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1106
1107 out:
1108 put_online_cpus();
1109 return ret;
1110 }
1111
1112 struct migration_arg {
1113 struct task_struct *task;
1114 int dest_cpu;
1115 };
1116
1117 static int migration_cpu_stop(void *data);
1118
1119 /*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
1122 * If @match_state is nonzero, it's the @p->state value just checked and
1123 * not expected to change. If it changes, i.e. @p might have woken up,
1124 * then return zero. When we succeed in waiting for @p to be off its CPU,
1125 * we return a positive number (its total switch count). If a second call
1126 * a short while later returns the same number, the caller can be sure that
1127 * @p has remained unscheduled the whole time.
1128 *
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
1135 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1136 {
1137 unsigned long flags;
1138 int running, on_rq;
1139 unsigned long ncsw;
1140 struct rq *rq;
1141
1142 for (;;) {
1143 /*
1144 * We do the initial early heuristics without holding
1145 * any task-queue locks at all. We'll only try to get
1146 * the runqueue lock when things look like they will
1147 * work out!
1148 */
1149 rq = task_rq(p);
1150
1151 /*
1152 * If the task is actively running on another CPU
1153 * still, just relax and busy-wait without holding
1154 * any locks.
1155 *
1156 * NOTE! Since we don't hold any locks, it's not
1157 * even sure that "rq" stays as the right runqueue!
1158 * But we don't care, since "task_running()" will
1159 * return false if the runqueue has changed and p
1160 * is actually now running somewhere else!
1161 */
1162 while (task_running(rq, p)) {
1163 if (match_state && unlikely(p->state != match_state))
1164 return 0;
1165 cpu_relax();
1166 }
1167
1168 /*
1169 * Ok, time to look more closely! We need the rq
1170 * lock now, to be *sure*. If we're wrong, we'll
1171 * just go back and repeat.
1172 */
1173 rq = task_rq_lock(p, &flags);
1174 trace_sched_wait_task(p);
1175 running = task_running(rq, p);
1176 on_rq = p->on_rq;
1177 ncsw = 0;
1178 if (!match_state || p->state == match_state)
1179 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1180 task_rq_unlock(rq, p, &flags);
1181
1182 /*
1183 * If it changed from the expected state, bail out now.
1184 */
1185 if (unlikely(!ncsw))
1186 break;
1187
1188 /*
1189 * Was it really running after all now that we
1190 * checked with the proper locks actually held?
1191 *
1192 * Oops. Go back and try again..
1193 */
1194 if (unlikely(running)) {
1195 cpu_relax();
1196 continue;
1197 }
1198
1199 /*
1200 * It's not enough that it's not actively running,
1201 * it must be off the runqueue _entirely_, and not
1202 * preempted!
1203 *
1204 * So if it was still runnable (but just not actively
1205 * running right now), it's preempted, and we should
1206 * yield - it could be a while.
1207 */
1208 if (unlikely(on_rq)) {
1209 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1210
1211 set_current_state(TASK_UNINTERRUPTIBLE);
1212 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1213 continue;
1214 }
1215
1216 /*
1217 * Ahh, all good. It wasn't running, and it wasn't
1218 * runnable, which means that it will never become
1219 * running in the future either. We're all done!
1220 */
1221 break;
1222 }
1223
1224 return ncsw;
1225 }
1226
1227 /***
1228 * kick_process - kick a running thread to enter/exit the kernel
1229 * @p: the to-be-kicked thread
1230 *
1231 * Cause a process which is running on another CPU to enter
1232 * kernel-mode, without any delay. (to get signals handled.)
1233 *
1234 * NOTE: this function doesn't have to take the runqueue lock,
1235 * because all it wants to ensure is that the remote task enters
1236 * the kernel. If the IPI races and the task has been migrated
1237 * to another CPU then no harm is done and the purpose has been
1238 * achieved as well.
1239 */
1240 void kick_process(struct task_struct *p)
1241 {
1242 int cpu;
1243
1244 preempt_disable();
1245 cpu = task_cpu(p);
1246 if ((cpu != smp_processor_id()) && task_curr(p))
1247 smp_send_reschedule(cpu);
1248 preempt_enable();
1249 }
1250 EXPORT_SYMBOL_GPL(kick_process);
1251 #endif /* CONFIG_SMP */
1252
1253 #ifdef CONFIG_SMP
1254 /*
1255 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1256 */
1257 static int select_fallback_rq(int cpu, struct task_struct *p)
1258 {
1259 int nid = cpu_to_node(cpu);
1260 const struct cpumask *nodemask = NULL;
1261 enum { cpuset, possible, fail } state = cpuset;
1262 int dest_cpu;
1263
1264 /*
1265 * If the node that the cpu is on has been offlined, cpu_to_node()
1266 * will return -1. There is no cpu on the node, and we should
1267 * select the cpu on the other node.
1268 */
1269 if (nid != -1) {
1270 nodemask = cpumask_of_node(nid);
1271
1272 /* Look for allowed, online CPU in same node. */
1273 for_each_cpu(dest_cpu, nodemask) {
1274 if (!cpu_online(dest_cpu))
1275 continue;
1276 if (!cpu_active(dest_cpu))
1277 continue;
1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 return dest_cpu;
1280 }
1281 }
1282
1283 for (;;) {
1284 /* Any allowed, online CPU? */
1285 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1286 if (!cpu_online(dest_cpu))
1287 continue;
1288 if (!cpu_active(dest_cpu))
1289 continue;
1290 goto out;
1291 }
1292
1293 switch (state) {
1294 case cpuset:
1295 /* No more Mr. Nice Guy. */
1296 cpuset_cpus_allowed_fallback(p);
1297 state = possible;
1298 break;
1299
1300 case possible:
1301 do_set_cpus_allowed(p, cpu_possible_mask);
1302 state = fail;
1303 break;
1304
1305 case fail:
1306 BUG();
1307 break;
1308 }
1309 }
1310
1311 out:
1312 if (state != cpuset) {
1313 /*
1314 * Don't tell them about moving exiting tasks or
1315 * kernel threads (both mm NULL), since they never
1316 * leave kernel.
1317 */
1318 if (p->mm && printk_ratelimit()) {
1319 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1320 task_pid_nr(p), p->comm, cpu);
1321 }
1322 }
1323
1324 return dest_cpu;
1325 }
1326
1327 /*
1328 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1329 */
1330 static inline
1331 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1332 {
1333 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1334
1335 /*
1336 * In order not to call set_task_cpu() on a blocking task we need
1337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1338 * cpu.
1339 *
1340 * Since this is common to all placement strategies, this lives here.
1341 *
1342 * [ this allows ->select_task() to simply return task_cpu(p) and
1343 * not worry about this generic constraint ]
1344 */
1345 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1346 !cpu_online(cpu)))
1347 cpu = select_fallback_rq(task_cpu(p), p);
1348
1349 return cpu;
1350 }
1351
1352 static void update_avg(u64 *avg, u64 sample)
1353 {
1354 s64 diff = sample - *avg;
1355 *avg += diff >> 3;
1356 }
1357 #endif
1358
1359 static void
1360 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1361 {
1362 #ifdef CONFIG_SCHEDSTATS
1363 struct rq *rq = this_rq();
1364
1365 #ifdef CONFIG_SMP
1366 int this_cpu = smp_processor_id();
1367
1368 if (cpu == this_cpu) {
1369 schedstat_inc(rq, ttwu_local);
1370 schedstat_inc(p, se.statistics.nr_wakeups_local);
1371 } else {
1372 struct sched_domain *sd;
1373
1374 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1375 rcu_read_lock();
1376 for_each_domain(this_cpu, sd) {
1377 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1378 schedstat_inc(sd, ttwu_wake_remote);
1379 break;
1380 }
1381 }
1382 rcu_read_unlock();
1383 }
1384
1385 if (wake_flags & WF_MIGRATED)
1386 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1387
1388 #endif /* CONFIG_SMP */
1389
1390 schedstat_inc(rq, ttwu_count);
1391 schedstat_inc(p, se.statistics.nr_wakeups);
1392
1393 if (wake_flags & WF_SYNC)
1394 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1395
1396 #endif /* CONFIG_SCHEDSTATS */
1397 }
1398
1399 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1400 {
1401 activate_task(rq, p, en_flags);
1402 p->on_rq = 1;
1403
1404 /* if a worker is waking up, notify workqueue */
1405 if (p->flags & PF_WQ_WORKER)
1406 wq_worker_waking_up(p, cpu_of(rq));
1407 }
1408
1409 /*
1410 * Mark the task runnable and perform wakeup-preemption.
1411 */
1412 static void
1413 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1414 {
1415 check_preempt_curr(rq, p, wake_flags);
1416 trace_sched_wakeup(p, true);
1417
1418 p->state = TASK_RUNNING;
1419 #ifdef CONFIG_SMP
1420 if (p->sched_class->task_woken)
1421 p->sched_class->task_woken(rq, p);
1422
1423 if (rq->idle_stamp) {
1424 u64 delta = rq_clock(rq) - rq->idle_stamp;
1425 u64 max = 2*rq->max_idle_balance_cost;
1426
1427 update_avg(&rq->avg_idle, delta);
1428
1429 if (rq->avg_idle > max)
1430 rq->avg_idle = max;
1431
1432 rq->idle_stamp = 0;
1433 }
1434 #endif
1435 }
1436
1437 static void
1438 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1439 {
1440 #ifdef CONFIG_SMP
1441 if (p->sched_contributes_to_load)
1442 rq->nr_uninterruptible--;
1443 #endif
1444
1445 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1446 ttwu_do_wakeup(rq, p, wake_flags);
1447 }
1448
1449 /*
1450 * Called in case the task @p isn't fully descheduled from its runqueue,
1451 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1452 * since all we need to do is flip p->state to TASK_RUNNING, since
1453 * the task is still ->on_rq.
1454 */
1455 static int ttwu_remote(struct task_struct *p, int wake_flags)
1456 {
1457 struct rq *rq;
1458 int ret = 0;
1459
1460 rq = __task_rq_lock(p);
1461 if (p->on_rq) {
1462 /* check_preempt_curr() may use rq clock */
1463 update_rq_clock(rq);
1464 ttwu_do_wakeup(rq, p, wake_flags);
1465 ret = 1;
1466 }
1467 __task_rq_unlock(rq);
1468
1469 return ret;
1470 }
1471
1472 #ifdef CONFIG_SMP
1473 static void sched_ttwu_pending(void)
1474 {
1475 struct rq *rq = this_rq();
1476 struct llist_node *llist = llist_del_all(&rq->wake_list);
1477 struct task_struct *p;
1478
1479 raw_spin_lock(&rq->lock);
1480
1481 while (llist) {
1482 p = llist_entry(llist, struct task_struct, wake_entry);
1483 llist = llist_next(llist);
1484 ttwu_do_activate(rq, p, 0);
1485 }
1486
1487 raw_spin_unlock(&rq->lock);
1488 }
1489
1490 void scheduler_ipi(void)
1491 {
1492 /*
1493 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1494 * TIF_NEED_RESCHED remotely (for the first time) will also send
1495 * this IPI.
1496 */
1497 if (tif_need_resched())
1498 set_preempt_need_resched();
1499
1500 if (llist_empty(&this_rq()->wake_list)
1501 && !tick_nohz_full_cpu(smp_processor_id())
1502 && !got_nohz_idle_kick())
1503 return;
1504
1505 /*
1506 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1507 * traditionally all their work was done from the interrupt return
1508 * path. Now that we actually do some work, we need to make sure
1509 * we do call them.
1510 *
1511 * Some archs already do call them, luckily irq_enter/exit nest
1512 * properly.
1513 *
1514 * Arguably we should visit all archs and update all handlers,
1515 * however a fair share of IPIs are still resched only so this would
1516 * somewhat pessimize the simple resched case.
1517 */
1518 irq_enter();
1519 tick_nohz_full_check();
1520 sched_ttwu_pending();
1521
1522 /*
1523 * Check if someone kicked us for doing the nohz idle load balance.
1524 */
1525 if (unlikely(got_nohz_idle_kick())) {
1526 this_rq()->idle_balance = 1;
1527 raise_softirq_irqoff(SCHED_SOFTIRQ);
1528 }
1529 irq_exit();
1530 }
1531
1532 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1533 {
1534 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1535 smp_send_reschedule(cpu);
1536 }
1537
1538 bool cpus_share_cache(int this_cpu, int that_cpu)
1539 {
1540 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1541 }
1542 #endif /* CONFIG_SMP */
1543
1544 static void ttwu_queue(struct task_struct *p, int cpu)
1545 {
1546 struct rq *rq = cpu_rq(cpu);
1547
1548 #if defined(CONFIG_SMP)
1549 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1550 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1551 ttwu_queue_remote(p, cpu);
1552 return;
1553 }
1554 #endif
1555
1556 raw_spin_lock(&rq->lock);
1557 ttwu_do_activate(rq, p, 0);
1558 raw_spin_unlock(&rq->lock);
1559 }
1560
1561 /**
1562 * try_to_wake_up - wake up a thread
1563 * @p: the thread to be awakened
1564 * @state: the mask of task states that can be woken
1565 * @wake_flags: wake modifier flags (WF_*)
1566 *
1567 * Put it on the run-queue if it's not already there. The "current"
1568 * thread is always on the run-queue (except when the actual
1569 * re-schedule is in progress), and as such you're allowed to do
1570 * the simpler "current->state = TASK_RUNNING" to mark yourself
1571 * runnable without the overhead of this.
1572 *
1573 * Return: %true if @p was woken up, %false if it was already running.
1574 * or @state didn't match @p's state.
1575 */
1576 static int
1577 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1578 {
1579 unsigned long flags;
1580 int cpu, success = 0;
1581
1582 /*
1583 * If we are going to wake up a thread waiting for CONDITION we
1584 * need to ensure that CONDITION=1 done by the caller can not be
1585 * reordered with p->state check below. This pairs with mb() in
1586 * set_current_state() the waiting thread does.
1587 */
1588 smp_mb__before_spinlock();
1589 raw_spin_lock_irqsave(&p->pi_lock, flags);
1590 if (!(p->state & state))
1591 goto out;
1592
1593 success = 1; /* we're going to change ->state */
1594 cpu = task_cpu(p);
1595
1596 if (p->on_rq && ttwu_remote(p, wake_flags))
1597 goto stat;
1598
1599 #ifdef CONFIG_SMP
1600 /*
1601 * If the owning (remote) cpu is still in the middle of schedule() with
1602 * this task as prev, wait until its done referencing the task.
1603 */
1604 while (p->on_cpu)
1605 cpu_relax();
1606 /*
1607 * Pairs with the smp_wmb() in finish_lock_switch().
1608 */
1609 smp_rmb();
1610
1611 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1612 p->state = TASK_WAKING;
1613
1614 if (p->sched_class->task_waking)
1615 p->sched_class->task_waking(p);
1616
1617 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1618 if (task_cpu(p) != cpu) {
1619 wake_flags |= WF_MIGRATED;
1620 set_task_cpu(p, cpu);
1621 }
1622 #endif /* CONFIG_SMP */
1623
1624 ttwu_queue(p, cpu);
1625 stat:
1626 ttwu_stat(p, cpu, wake_flags);
1627 out:
1628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1629
1630 return success;
1631 }
1632
1633 /**
1634 * try_to_wake_up_local - try to wake up a local task with rq lock held
1635 * @p: the thread to be awakened
1636 *
1637 * Put @p on the run-queue if it's not already there. The caller must
1638 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1639 * the current task.
1640 */
1641 static void try_to_wake_up_local(struct task_struct *p)
1642 {
1643 struct rq *rq = task_rq(p);
1644
1645 if (WARN_ON_ONCE(rq != this_rq()) ||
1646 WARN_ON_ONCE(p == current))
1647 return;
1648
1649 lockdep_assert_held(&rq->lock);
1650
1651 if (!raw_spin_trylock(&p->pi_lock)) {
1652 raw_spin_unlock(&rq->lock);
1653 raw_spin_lock(&p->pi_lock);
1654 raw_spin_lock(&rq->lock);
1655 }
1656
1657 if (!(p->state & TASK_NORMAL))
1658 goto out;
1659
1660 if (!p->on_rq)
1661 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1662
1663 ttwu_do_wakeup(rq, p, 0);
1664 ttwu_stat(p, smp_processor_id(), 0);
1665 out:
1666 raw_spin_unlock(&p->pi_lock);
1667 }
1668
1669 /**
1670 * wake_up_process - Wake up a specific process
1671 * @p: The process to be woken up.
1672 *
1673 * Attempt to wake up the nominated process and move it to the set of runnable
1674 * processes.
1675 *
1676 * Return: 1 if the process was woken up, 0 if it was already running.
1677 *
1678 * It may be assumed that this function implies a write memory barrier before
1679 * changing the task state if and only if any tasks are woken up.
1680 */
1681 int wake_up_process(struct task_struct *p)
1682 {
1683 WARN_ON(task_is_stopped_or_traced(p));
1684 return try_to_wake_up(p, TASK_NORMAL, 0);
1685 }
1686 EXPORT_SYMBOL(wake_up_process);
1687
1688 int wake_up_state(struct task_struct *p, unsigned int state)
1689 {
1690 return try_to_wake_up(p, state, 0);
1691 }
1692
1693 /*
1694 * Perform scheduler related setup for a newly forked process p.
1695 * p is forked by current.
1696 *
1697 * __sched_fork() is basic setup used by init_idle() too:
1698 */
1699 static void __sched_fork(struct task_struct *p)
1700 {
1701 p->on_rq = 0;
1702
1703 p->se.on_rq = 0;
1704 p->se.exec_start = 0;
1705 p->se.sum_exec_runtime = 0;
1706 p->se.prev_sum_exec_runtime = 0;
1707 p->se.nr_migrations = 0;
1708 p->se.vruntime = 0;
1709 INIT_LIST_HEAD(&p->se.group_node);
1710
1711 #ifdef CONFIG_SCHEDSTATS
1712 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1713 #endif
1714
1715 INIT_LIST_HEAD(&p->rt.run_list);
1716
1717 #ifdef CONFIG_PREEMPT_NOTIFIERS
1718 INIT_HLIST_HEAD(&p->preempt_notifiers);
1719 #endif
1720
1721 #ifdef CONFIG_NUMA_BALANCING
1722 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1723 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1724 p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1725 p->mm->numa_scan_seq = 0;
1726 }
1727
1728 p->node_stamp = 0ULL;
1729 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1730 p->numa_migrate_seq = 1;
1731 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1732 p->numa_preferred_nid = -1;
1733 p->numa_work.next = &p->numa_work;
1734 p->numa_faults = NULL;
1735 p->numa_faults_buffer = NULL;
1736 #endif /* CONFIG_NUMA_BALANCING */
1737 }
1738
1739 #ifdef CONFIG_NUMA_BALANCING
1740 #ifdef CONFIG_SCHED_DEBUG
1741 void set_numabalancing_state(bool enabled)
1742 {
1743 if (enabled)
1744 sched_feat_set("NUMA");
1745 else
1746 sched_feat_set("NO_NUMA");
1747 }
1748 #else
1749 __read_mostly bool numabalancing_enabled;
1750
1751 void set_numabalancing_state(bool enabled)
1752 {
1753 numabalancing_enabled = enabled;
1754 }
1755 #endif /* CONFIG_SCHED_DEBUG */
1756 #endif /* CONFIG_NUMA_BALANCING */
1757
1758 /*
1759 * fork()/clone()-time setup:
1760 */
1761 void sched_fork(struct task_struct *p)
1762 {
1763 unsigned long flags;
1764 int cpu = get_cpu();
1765
1766 __sched_fork(p);
1767 /*
1768 * We mark the process as running here. This guarantees that
1769 * nobody will actually run it, and a signal or other external
1770 * event cannot wake it up and insert it on the runqueue either.
1771 */
1772 p->state = TASK_RUNNING;
1773
1774 /*
1775 * Make sure we do not leak PI boosting priority to the child.
1776 */
1777 p->prio = current->normal_prio;
1778
1779 /*
1780 * Revert to default priority/policy on fork if requested.
1781 */
1782 if (unlikely(p->sched_reset_on_fork)) {
1783 if (task_has_rt_policy(p)) {
1784 p->policy = SCHED_NORMAL;
1785 p->static_prio = NICE_TO_PRIO(0);
1786 p->rt_priority = 0;
1787 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1788 p->static_prio = NICE_TO_PRIO(0);
1789
1790 p->prio = p->normal_prio = __normal_prio(p);
1791 set_load_weight(p);
1792
1793 /*
1794 * We don't need the reset flag anymore after the fork. It has
1795 * fulfilled its duty:
1796 */
1797 p->sched_reset_on_fork = 0;
1798 }
1799
1800 if (!rt_prio(p->prio))
1801 p->sched_class = &fair_sched_class;
1802
1803 if (p->sched_class->task_fork)
1804 p->sched_class->task_fork(p);
1805
1806 /*
1807 * The child is not yet in the pid-hash so no cgroup attach races,
1808 * and the cgroup is pinned to this child due to cgroup_fork()
1809 * is ran before sched_fork().
1810 *
1811 * Silence PROVE_RCU.
1812 */
1813 raw_spin_lock_irqsave(&p->pi_lock, flags);
1814 set_task_cpu(p, cpu);
1815 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1816
1817 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1818 if (likely(sched_info_on()))
1819 memset(&p->sched_info, 0, sizeof(p->sched_info));
1820 #endif
1821 #if defined(CONFIG_SMP)
1822 p->on_cpu = 0;
1823 #endif
1824 init_task_preempt_count(p);
1825 #ifdef CONFIG_SMP
1826 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1827 #endif
1828
1829 put_cpu();
1830 }
1831
1832 /*
1833 * wake_up_new_task - wake up a newly created task for the first time.
1834 *
1835 * This function will do some initial scheduler statistics housekeeping
1836 * that must be done for every newly created context, then puts the task
1837 * on the runqueue and wakes it.
1838 */
1839 void wake_up_new_task(struct task_struct *p)
1840 {
1841 unsigned long flags;
1842 struct rq *rq;
1843
1844 raw_spin_lock_irqsave(&p->pi_lock, flags);
1845 #ifdef CONFIG_SMP
1846 /*
1847 * Fork balancing, do it here and not earlier because:
1848 * - cpus_allowed can change in the fork path
1849 * - any previously selected cpu might disappear through hotplug
1850 */
1851 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1852 #endif
1853
1854 /* Initialize new task's runnable average */
1855 init_task_runnable_average(p);
1856 rq = __task_rq_lock(p);
1857 activate_task(rq, p, 0);
1858 p->on_rq = 1;
1859 trace_sched_wakeup_new(p, true);
1860 check_preempt_curr(rq, p, WF_FORK);
1861 #ifdef CONFIG_SMP
1862 if (p->sched_class->task_woken)
1863 p->sched_class->task_woken(rq, p);
1864 #endif
1865 task_rq_unlock(rq, p, &flags);
1866 }
1867
1868 #ifdef CONFIG_PREEMPT_NOTIFIERS
1869
1870 /**
1871 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1872 * @notifier: notifier struct to register
1873 */
1874 void preempt_notifier_register(struct preempt_notifier *notifier)
1875 {
1876 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1877 }
1878 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1879
1880 /**
1881 * preempt_notifier_unregister - no longer interested in preemption notifications
1882 * @notifier: notifier struct to unregister
1883 *
1884 * This is safe to call from within a preemption notifier.
1885 */
1886 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1887 {
1888 hlist_del(&notifier->link);
1889 }
1890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1891
1892 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1893 {
1894 struct preempt_notifier *notifier;
1895
1896 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1897 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1898 }
1899
1900 static void
1901 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1902 struct task_struct *next)
1903 {
1904 struct preempt_notifier *notifier;
1905
1906 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1907 notifier->ops->sched_out(notifier, next);
1908 }
1909
1910 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1911
1912 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1913 {
1914 }
1915
1916 static void
1917 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1918 struct task_struct *next)
1919 {
1920 }
1921
1922 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1923
1924 /**
1925 * prepare_task_switch - prepare to switch tasks
1926 * @rq: the runqueue preparing to switch
1927 * @prev: the current task that is being switched out
1928 * @next: the task we are going to switch to.
1929 *
1930 * This is called with the rq lock held and interrupts off. It must
1931 * be paired with a subsequent finish_task_switch after the context
1932 * switch.
1933 *
1934 * prepare_task_switch sets up locking and calls architecture specific
1935 * hooks.
1936 */
1937 static inline void
1938 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1939 struct task_struct *next)
1940 {
1941 trace_sched_switch(prev, next);
1942 sched_info_switch(rq, prev, next);
1943 perf_event_task_sched_out(prev, next);
1944 fire_sched_out_preempt_notifiers(prev, next);
1945 prepare_lock_switch(rq, next);
1946 prepare_arch_switch(next);
1947 }
1948
1949 /**
1950 * finish_task_switch - clean up after a task-switch
1951 * @rq: runqueue associated with task-switch
1952 * @prev: the thread we just switched away from.
1953 *
1954 * finish_task_switch must be called after the context switch, paired
1955 * with a prepare_task_switch call before the context switch.
1956 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1957 * and do any other architecture-specific cleanup actions.
1958 *
1959 * Note that we may have delayed dropping an mm in context_switch(). If
1960 * so, we finish that here outside of the runqueue lock. (Doing it
1961 * with the lock held can cause deadlocks; see schedule() for
1962 * details.)
1963 */
1964 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1965 __releases(rq->lock)
1966 {
1967 struct mm_struct *mm = rq->prev_mm;
1968 long prev_state;
1969
1970 rq->prev_mm = NULL;
1971
1972 /*
1973 * A task struct has one reference for the use as "current".
1974 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1975 * schedule one last time. The schedule call will never return, and
1976 * the scheduled task must drop that reference.
1977 * The test for TASK_DEAD must occur while the runqueue locks are
1978 * still held, otherwise prev could be scheduled on another cpu, die
1979 * there before we look at prev->state, and then the reference would
1980 * be dropped twice.
1981 * Manfred Spraul <manfred@colorfullife.com>
1982 */
1983 prev_state = prev->state;
1984 vtime_task_switch(prev);
1985 finish_arch_switch(prev);
1986 perf_event_task_sched_in(prev, current);
1987 finish_lock_switch(rq, prev);
1988 finish_arch_post_lock_switch();
1989
1990 fire_sched_in_preempt_notifiers(current);
1991 if (mm)
1992 mmdrop(mm);
1993 if (unlikely(prev_state == TASK_DEAD)) {
1994 task_numa_free(prev);
1995
1996 /*
1997 * Remove function-return probe instances associated with this
1998 * task and put them back on the free list.
1999 */
2000 kprobe_flush_task(prev);
2001 put_task_struct(prev);
2002 }
2003
2004 tick_nohz_task_switch(current);
2005 }
2006
2007 #ifdef CONFIG_SMP
2008
2009 /* assumes rq->lock is held */
2010 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2011 {
2012 if (prev->sched_class->pre_schedule)
2013 prev->sched_class->pre_schedule(rq, prev);
2014 }
2015
2016 /* rq->lock is NOT held, but preemption is disabled */
2017 static inline void post_schedule(struct rq *rq)
2018 {
2019 if (rq->post_schedule) {
2020 unsigned long flags;
2021
2022 raw_spin_lock_irqsave(&rq->lock, flags);
2023 if (rq->curr->sched_class->post_schedule)
2024 rq->curr->sched_class->post_schedule(rq);
2025 raw_spin_unlock_irqrestore(&rq->lock, flags);
2026
2027 rq->post_schedule = 0;
2028 }
2029 }
2030
2031 #else
2032
2033 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2034 {
2035 }
2036
2037 static inline void post_schedule(struct rq *rq)
2038 {
2039 }
2040
2041 #endif
2042
2043 /**
2044 * schedule_tail - first thing a freshly forked thread must call.
2045 * @prev: the thread we just switched away from.
2046 */
2047 asmlinkage void schedule_tail(struct task_struct *prev)
2048 __releases(rq->lock)
2049 {
2050 struct rq *rq = this_rq();
2051
2052 finish_task_switch(rq, prev);
2053
2054 /*
2055 * FIXME: do we need to worry about rq being invalidated by the
2056 * task_switch?
2057 */
2058 post_schedule(rq);
2059
2060 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2061 /* In this case, finish_task_switch does not reenable preemption */
2062 preempt_enable();
2063 #endif
2064 if (current->set_child_tid)
2065 put_user(task_pid_vnr(current), current->set_child_tid);
2066 }
2067
2068 /*
2069 * context_switch - switch to the new MM and the new
2070 * thread's register state.
2071 */
2072 static inline void
2073 context_switch(struct rq *rq, struct task_struct *prev,
2074 struct task_struct *next)
2075 {
2076 struct mm_struct *mm, *oldmm;
2077
2078 prepare_task_switch(rq, prev, next);
2079
2080 mm = next->mm;
2081 oldmm = prev->active_mm;
2082 /*
2083 * For paravirt, this is coupled with an exit in switch_to to
2084 * combine the page table reload and the switch backend into
2085 * one hypercall.
2086 */
2087 arch_start_context_switch(prev);
2088
2089 if (!mm) {
2090 next->active_mm = oldmm;
2091 atomic_inc(&oldmm->mm_count);
2092 enter_lazy_tlb(oldmm, next);
2093 } else
2094 switch_mm(oldmm, mm, next);
2095
2096 if (!prev->mm) {
2097 prev->active_mm = NULL;
2098 rq->prev_mm = oldmm;
2099 }
2100 /*
2101 * Since the runqueue lock will be released by the next
2102 * task (which is an invalid locking op but in the case
2103 * of the scheduler it's an obvious special-case), so we
2104 * do an early lockdep release here:
2105 */
2106 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2107 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2108 #endif
2109
2110 context_tracking_task_switch(prev, next);
2111 /* Here we just switch the register state and the stack. */
2112 switch_to(prev, next, prev);
2113
2114 barrier();
2115 /*
2116 * this_rq must be evaluated again because prev may have moved
2117 * CPUs since it called schedule(), thus the 'rq' on its stack
2118 * frame will be invalid.
2119 */
2120 finish_task_switch(this_rq(), prev);
2121 }
2122
2123 /*
2124 * nr_running and nr_context_switches:
2125 *
2126 * externally visible scheduler statistics: current number of runnable
2127 * threads, total number of context switches performed since bootup.
2128 */
2129 unsigned long nr_running(void)
2130 {
2131 unsigned long i, sum = 0;
2132
2133 for_each_online_cpu(i)
2134 sum += cpu_rq(i)->nr_running;
2135
2136 return sum;
2137 }
2138
2139 unsigned long long nr_context_switches(void)
2140 {
2141 int i;
2142 unsigned long long sum = 0;
2143
2144 for_each_possible_cpu(i)
2145 sum += cpu_rq(i)->nr_switches;
2146
2147 return sum;
2148 }
2149
2150 unsigned long nr_iowait(void)
2151 {
2152 unsigned long i, sum = 0;
2153
2154 for_each_possible_cpu(i)
2155 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2156
2157 return sum;
2158 }
2159
2160 unsigned long nr_iowait_cpu(int cpu)
2161 {
2162 struct rq *this = cpu_rq(cpu);
2163 return atomic_read(&this->nr_iowait);
2164 }
2165
2166 #ifdef CONFIG_SMP
2167
2168 /*
2169 * sched_exec - execve() is a valuable balancing opportunity, because at
2170 * this point the task has the smallest effective memory and cache footprint.
2171 */
2172 void sched_exec(void)
2173 {
2174 struct task_struct *p = current;
2175 unsigned long flags;
2176 int dest_cpu;
2177
2178 raw_spin_lock_irqsave(&p->pi_lock, flags);
2179 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2180 if (dest_cpu == smp_processor_id())
2181 goto unlock;
2182
2183 if (likely(cpu_active(dest_cpu))) {
2184 struct migration_arg arg = { p, dest_cpu };
2185
2186 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2187 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2188 return;
2189 }
2190 unlock:
2191 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2192 }
2193
2194 #endif
2195
2196 DEFINE_PER_CPU(struct kernel_stat, kstat);
2197 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2198
2199 EXPORT_PER_CPU_SYMBOL(kstat);
2200 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2201
2202 /*
2203 * Return any ns on the sched_clock that have not yet been accounted in
2204 * @p in case that task is currently running.
2205 *
2206 * Called with task_rq_lock() held on @rq.
2207 */
2208 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2209 {
2210 u64 ns = 0;
2211
2212 if (task_current(rq, p)) {
2213 update_rq_clock(rq);
2214 ns = rq_clock_task(rq) - p->se.exec_start;
2215 if ((s64)ns < 0)
2216 ns = 0;
2217 }
2218
2219 return ns;
2220 }
2221
2222 unsigned long long task_delta_exec(struct task_struct *p)
2223 {
2224 unsigned long flags;
2225 struct rq *rq;
2226 u64 ns = 0;
2227
2228 rq = task_rq_lock(p, &flags);
2229 ns = do_task_delta_exec(p, rq);
2230 task_rq_unlock(rq, p, &flags);
2231
2232 return ns;
2233 }
2234
2235 /*
2236 * Return accounted runtime for the task.
2237 * In case the task is currently running, return the runtime plus current's
2238 * pending runtime that have not been accounted yet.
2239 */
2240 unsigned long long task_sched_runtime(struct task_struct *p)
2241 {
2242 unsigned long flags;
2243 struct rq *rq;
2244 u64 ns = 0;
2245
2246 rq = task_rq_lock(p, &flags);
2247 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2248 task_rq_unlock(rq, p, &flags);
2249
2250 return ns;
2251 }
2252
2253 /*
2254 * This function gets called by the timer code, with HZ frequency.
2255 * We call it with interrupts disabled.
2256 */
2257 void scheduler_tick(void)
2258 {
2259 int cpu = smp_processor_id();
2260 struct rq *rq = cpu_rq(cpu);
2261 struct task_struct *curr = rq->curr;
2262
2263 sched_clock_tick();
2264
2265 raw_spin_lock(&rq->lock);
2266 update_rq_clock(rq);
2267 curr->sched_class->task_tick(rq, curr, 0);
2268 update_cpu_load_active(rq);
2269 raw_spin_unlock(&rq->lock);
2270
2271 perf_event_task_tick();
2272
2273 #ifdef CONFIG_SMP
2274 rq->idle_balance = idle_cpu(cpu);
2275 trigger_load_balance(rq, cpu);
2276 #endif
2277 rq_last_tick_reset(rq);
2278 }
2279
2280 #ifdef CONFIG_NO_HZ_FULL
2281 /**
2282 * scheduler_tick_max_deferment
2283 *
2284 * Keep at least one tick per second when a single
2285 * active task is running because the scheduler doesn't
2286 * yet completely support full dynticks environment.
2287 *
2288 * This makes sure that uptime, CFS vruntime, load
2289 * balancing, etc... continue to move forward, even
2290 * with a very low granularity.
2291 *
2292 * Return: Maximum deferment in nanoseconds.
2293 */
2294 u64 scheduler_tick_max_deferment(void)
2295 {
2296 struct rq *rq = this_rq();
2297 unsigned long next, now = ACCESS_ONCE(jiffies);
2298
2299 next = rq->last_sched_tick + HZ;
2300
2301 if (time_before_eq(next, now))
2302 return 0;
2303
2304 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2305 }
2306 #endif
2307
2308 notrace unsigned long get_parent_ip(unsigned long addr)
2309 {
2310 if (in_lock_functions(addr)) {
2311 addr = CALLER_ADDR2;
2312 if (in_lock_functions(addr))
2313 addr = CALLER_ADDR3;
2314 }
2315 return addr;
2316 }
2317
2318 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2319 defined(CONFIG_PREEMPT_TRACER))
2320
2321 void __kprobes preempt_count_add(int val)
2322 {
2323 #ifdef CONFIG_DEBUG_PREEMPT
2324 /*
2325 * Underflow?
2326 */
2327 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2328 return;
2329 #endif
2330 __preempt_count_add(val);
2331 #ifdef CONFIG_DEBUG_PREEMPT
2332 /*
2333 * Spinlock count overflowing soon?
2334 */
2335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2336 PREEMPT_MASK - 10);
2337 #endif
2338 if (preempt_count() == val)
2339 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2340 }
2341 EXPORT_SYMBOL(preempt_count_add);
2342
2343 void __kprobes preempt_count_sub(int val)
2344 {
2345 #ifdef CONFIG_DEBUG_PREEMPT
2346 /*
2347 * Underflow?
2348 */
2349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2350 return;
2351 /*
2352 * Is the spinlock portion underflowing?
2353 */
2354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2355 !(preempt_count() & PREEMPT_MASK)))
2356 return;
2357 #endif
2358
2359 if (preempt_count() == val)
2360 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2361 __preempt_count_sub(val);
2362 }
2363 EXPORT_SYMBOL(preempt_count_sub);
2364
2365 #endif
2366
2367 /*
2368 * Print scheduling while atomic bug:
2369 */
2370 static noinline void __schedule_bug(struct task_struct *prev)
2371 {
2372 if (oops_in_progress)
2373 return;
2374
2375 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2376 prev->comm, prev->pid, preempt_count());
2377
2378 debug_show_held_locks(prev);
2379 print_modules();
2380 if (irqs_disabled())
2381 print_irqtrace_events(prev);
2382 dump_stack();
2383 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2384 }
2385
2386 /*
2387 * Various schedule()-time debugging checks and statistics:
2388 */
2389 static inline void schedule_debug(struct task_struct *prev)
2390 {
2391 /*
2392 * Test if we are atomic. Since do_exit() needs to call into
2393 * schedule() atomically, we ignore that path for now.
2394 * Otherwise, whine if we are scheduling when we should not be.
2395 */
2396 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2397 __schedule_bug(prev);
2398 rcu_sleep_check();
2399
2400 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2401
2402 schedstat_inc(this_rq(), sched_count);
2403 }
2404
2405 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2406 {
2407 if (prev->on_rq || rq->skip_clock_update < 0)
2408 update_rq_clock(rq);
2409 prev->sched_class->put_prev_task(rq, prev);
2410 }
2411
2412 /*
2413 * Pick up the highest-prio task:
2414 */
2415 static inline struct task_struct *
2416 pick_next_task(struct rq *rq)
2417 {
2418 const struct sched_class *class;
2419 struct task_struct *p;
2420
2421 /*
2422 * Optimization: we know that if all tasks are in
2423 * the fair class we can call that function directly:
2424 */
2425 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2426 p = fair_sched_class.pick_next_task(rq);
2427 if (likely(p))
2428 return p;
2429 }
2430
2431 for_each_class(class) {
2432 p = class->pick_next_task(rq);
2433 if (p)
2434 return p;
2435 }
2436
2437 BUG(); /* the idle class will always have a runnable task */
2438 }
2439
2440 /*
2441 * __schedule() is the main scheduler function.
2442 *
2443 * The main means of driving the scheduler and thus entering this function are:
2444 *
2445 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2446 *
2447 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2448 * paths. For example, see arch/x86/entry_64.S.
2449 *
2450 * To drive preemption between tasks, the scheduler sets the flag in timer
2451 * interrupt handler scheduler_tick().
2452 *
2453 * 3. Wakeups don't really cause entry into schedule(). They add a
2454 * task to the run-queue and that's it.
2455 *
2456 * Now, if the new task added to the run-queue preempts the current
2457 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2458 * called on the nearest possible occasion:
2459 *
2460 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2461 *
2462 * - in syscall or exception context, at the next outmost
2463 * preempt_enable(). (this might be as soon as the wake_up()'s
2464 * spin_unlock()!)
2465 *
2466 * - in IRQ context, return from interrupt-handler to
2467 * preemptible context
2468 *
2469 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2470 * then at the next:
2471 *
2472 * - cond_resched() call
2473 * - explicit schedule() call
2474 * - return from syscall or exception to user-space
2475 * - return from interrupt-handler to user-space
2476 */
2477 static void __sched __schedule(void)
2478 {
2479 struct task_struct *prev, *next;
2480 unsigned long *switch_count;
2481 struct rq *rq;
2482 int cpu;
2483
2484 need_resched:
2485 preempt_disable();
2486 cpu = smp_processor_id();
2487 rq = cpu_rq(cpu);
2488 rcu_note_context_switch(cpu);
2489 prev = rq->curr;
2490
2491 schedule_debug(prev);
2492
2493 if (sched_feat(HRTICK))
2494 hrtick_clear(rq);
2495
2496 /*
2497 * Make sure that signal_pending_state()->signal_pending() below
2498 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2499 * done by the caller to avoid the race with signal_wake_up().
2500 */
2501 smp_mb__before_spinlock();
2502 raw_spin_lock_irq(&rq->lock);
2503
2504 switch_count = &prev->nivcsw;
2505 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2506 if (unlikely(signal_pending_state(prev->state, prev))) {
2507 prev->state = TASK_RUNNING;
2508 } else {
2509 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2510 prev->on_rq = 0;
2511
2512 /*
2513 * If a worker went to sleep, notify and ask workqueue
2514 * whether it wants to wake up a task to maintain
2515 * concurrency.
2516 */
2517 if (prev->flags & PF_WQ_WORKER) {
2518 struct task_struct *to_wakeup;
2519
2520 to_wakeup = wq_worker_sleeping(prev, cpu);
2521 if (to_wakeup)
2522 try_to_wake_up_local(to_wakeup);
2523 }
2524 }
2525 switch_count = &prev->nvcsw;
2526 }
2527
2528 pre_schedule(rq, prev);
2529
2530 if (unlikely(!rq->nr_running))
2531 idle_balance(cpu, rq);
2532
2533 put_prev_task(rq, prev);
2534 next = pick_next_task(rq);
2535 clear_tsk_need_resched(prev);
2536 clear_preempt_need_resched();
2537 rq->skip_clock_update = 0;
2538
2539 if (likely(prev != next)) {
2540 rq->nr_switches++;
2541 rq->curr = next;
2542 ++*switch_count;
2543
2544 context_switch(rq, prev, next); /* unlocks the rq */
2545 /*
2546 * The context switch have flipped the stack from under us
2547 * and restored the local variables which were saved when
2548 * this task called schedule() in the past. prev == current
2549 * is still correct, but it can be moved to another cpu/rq.
2550 */
2551 cpu = smp_processor_id();
2552 rq = cpu_rq(cpu);
2553 } else
2554 raw_spin_unlock_irq(&rq->lock);
2555
2556 post_schedule(rq);
2557
2558 sched_preempt_enable_no_resched();
2559 if (need_resched())
2560 goto need_resched;
2561 }
2562
2563 static inline void sched_submit_work(struct task_struct *tsk)
2564 {
2565 if (!tsk->state || tsk_is_pi_blocked(tsk))
2566 return;
2567 /*
2568 * If we are going to sleep and we have plugged IO queued,
2569 * make sure to submit it to avoid deadlocks.
2570 */
2571 if (blk_needs_flush_plug(tsk))
2572 blk_schedule_flush_plug(tsk);
2573 }
2574
2575 asmlinkage void __sched schedule(void)
2576 {
2577 struct task_struct *tsk = current;
2578
2579 sched_submit_work(tsk);
2580 __schedule();
2581 }
2582 EXPORT_SYMBOL(schedule);
2583
2584 #ifdef CONFIG_CONTEXT_TRACKING
2585 asmlinkage void __sched schedule_user(void)
2586 {
2587 /*
2588 * If we come here after a random call to set_need_resched(),
2589 * or we have been woken up remotely but the IPI has not yet arrived,
2590 * we haven't yet exited the RCU idle mode. Do it here manually until
2591 * we find a better solution.
2592 */
2593 user_exit();
2594 schedule();
2595 user_enter();
2596 }
2597 #endif
2598
2599 /**
2600 * schedule_preempt_disabled - called with preemption disabled
2601 *
2602 * Returns with preemption disabled. Note: preempt_count must be 1
2603 */
2604 void __sched schedule_preempt_disabled(void)
2605 {
2606 sched_preempt_enable_no_resched();
2607 schedule();
2608 preempt_disable();
2609 }
2610
2611 #ifdef CONFIG_PREEMPT
2612 /*
2613 * this is the entry point to schedule() from in-kernel preemption
2614 * off of preempt_enable. Kernel preemptions off return from interrupt
2615 * occur there and call schedule directly.
2616 */
2617 asmlinkage void __sched notrace preempt_schedule(void)
2618 {
2619 /*
2620 * If there is a non-zero preempt_count or interrupts are disabled,
2621 * we do not want to preempt the current task. Just return..
2622 */
2623 if (likely(!preemptible()))
2624 return;
2625
2626 do {
2627 __preempt_count_add(PREEMPT_ACTIVE);
2628 __schedule();
2629 __preempt_count_sub(PREEMPT_ACTIVE);
2630
2631 /*
2632 * Check again in case we missed a preemption opportunity
2633 * between schedule and now.
2634 */
2635 barrier();
2636 } while (need_resched());
2637 }
2638 EXPORT_SYMBOL(preempt_schedule);
2639
2640 /*
2641 * this is the entry point to schedule() from kernel preemption
2642 * off of irq context.
2643 * Note, that this is called and return with irqs disabled. This will
2644 * protect us against recursive calling from irq.
2645 */
2646 asmlinkage void __sched preempt_schedule_irq(void)
2647 {
2648 enum ctx_state prev_state;
2649
2650 /* Catch callers which need to be fixed */
2651 BUG_ON(preempt_count() || !irqs_disabled());
2652
2653 prev_state = exception_enter();
2654
2655 do {
2656 __preempt_count_add(PREEMPT_ACTIVE);
2657 local_irq_enable();
2658 __schedule();
2659 local_irq_disable();
2660 __preempt_count_sub(PREEMPT_ACTIVE);
2661
2662 /*
2663 * Check again in case we missed a preemption opportunity
2664 * between schedule and now.
2665 */
2666 barrier();
2667 } while (need_resched());
2668
2669 exception_exit(prev_state);
2670 }
2671
2672 #endif /* CONFIG_PREEMPT */
2673
2674 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2675 void *key)
2676 {
2677 return try_to_wake_up(curr->private, mode, wake_flags);
2678 }
2679 EXPORT_SYMBOL(default_wake_function);
2680
2681 /*
2682 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2683 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2684 * number) then we wake all the non-exclusive tasks and one exclusive task.
2685 *
2686 * There are circumstances in which we can try to wake a task which has already
2687 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2688 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2689 */
2690 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2691 int nr_exclusive, int wake_flags, void *key)
2692 {
2693 wait_queue_t *curr, *next;
2694
2695 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2696 unsigned flags = curr->flags;
2697
2698 if (curr->func(curr, mode, wake_flags, key) &&
2699 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2700 break;
2701 }
2702 }
2703
2704 /**
2705 * __wake_up - wake up threads blocked on a waitqueue.
2706 * @q: the waitqueue
2707 * @mode: which threads
2708 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2709 * @key: is directly passed to the wakeup function
2710 *
2711 * It may be assumed that this function implies a write memory barrier before
2712 * changing the task state if and only if any tasks are woken up.
2713 */
2714 void __wake_up(wait_queue_head_t *q, unsigned int mode,
2715 int nr_exclusive, void *key)
2716 {
2717 unsigned long flags;
2718
2719 spin_lock_irqsave(&q->lock, flags);
2720 __wake_up_common(q, mode, nr_exclusive, 0, key);
2721 spin_unlock_irqrestore(&q->lock, flags);
2722 }
2723 EXPORT_SYMBOL(__wake_up);
2724
2725 /*
2726 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2727 */
2728 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2729 {
2730 __wake_up_common(q, mode, nr, 0, NULL);
2731 }
2732 EXPORT_SYMBOL_GPL(__wake_up_locked);
2733
2734 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2735 {
2736 __wake_up_common(q, mode, 1, 0, key);
2737 }
2738 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2739
2740 /**
2741 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2742 * @q: the waitqueue
2743 * @mode: which threads
2744 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2745 * @key: opaque value to be passed to wakeup targets
2746 *
2747 * The sync wakeup differs that the waker knows that it will schedule
2748 * away soon, so while the target thread will be woken up, it will not
2749 * be migrated to another CPU - ie. the two threads are 'synchronized'
2750 * with each other. This can prevent needless bouncing between CPUs.
2751 *
2752 * On UP it can prevent extra preemption.
2753 *
2754 * It may be assumed that this function implies a write memory barrier before
2755 * changing the task state if and only if any tasks are woken up.
2756 */
2757 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2758 int nr_exclusive, void *key)
2759 {
2760 unsigned long flags;
2761 int wake_flags = WF_SYNC;
2762
2763 if (unlikely(!q))
2764 return;
2765
2766 if (unlikely(nr_exclusive != 1))
2767 wake_flags = 0;
2768
2769 spin_lock_irqsave(&q->lock, flags);
2770 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2771 spin_unlock_irqrestore(&q->lock, flags);
2772 }
2773 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2774
2775 /*
2776 * __wake_up_sync - see __wake_up_sync_key()
2777 */
2778 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2779 {
2780 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2781 }
2782 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2783
2784 /**
2785 * complete: - signals a single thread waiting on this completion
2786 * @x: holds the state of this particular completion
2787 *
2788 * This will wake up a single thread waiting on this completion. Threads will be
2789 * awakened in the same order in which they were queued.
2790 *
2791 * See also complete_all(), wait_for_completion() and related routines.
2792 *
2793 * It may be assumed that this function implies a write memory barrier before
2794 * changing the task state if and only if any tasks are woken up.
2795 */
2796 void complete(struct completion *x)
2797 {
2798 unsigned long flags;
2799
2800 spin_lock_irqsave(&x->wait.lock, flags);
2801 x->done++;
2802 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2803 spin_unlock_irqrestore(&x->wait.lock, flags);
2804 }
2805 EXPORT_SYMBOL(complete);
2806
2807 /**
2808 * complete_all: - signals all threads waiting on this completion
2809 * @x: holds the state of this particular completion
2810 *
2811 * This will wake up all threads waiting on this particular completion event.
2812 *
2813 * It may be assumed that this function implies a write memory barrier before
2814 * changing the task state if and only if any tasks are woken up.
2815 */
2816 void complete_all(struct completion *x)
2817 {
2818 unsigned long flags;
2819
2820 spin_lock_irqsave(&x->wait.lock, flags);
2821 x->done += UINT_MAX/2;
2822 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2823 spin_unlock_irqrestore(&x->wait.lock, flags);
2824 }
2825 EXPORT_SYMBOL(complete_all);
2826
2827 static inline long __sched
2828 do_wait_for_common(struct completion *x,
2829 long (*action)(long), long timeout, int state)
2830 {
2831 if (!x->done) {
2832 DECLARE_WAITQUEUE(wait, current);
2833
2834 __add_wait_queue_tail_exclusive(&x->wait, &wait);
2835 do {
2836 if (signal_pending_state(state, current)) {
2837 timeout = -ERESTARTSYS;
2838 break;
2839 }
2840 __set_current_state(state);
2841 spin_unlock_irq(&x->wait.lock);
2842 timeout = action(timeout);
2843 spin_lock_irq(&x->wait.lock);
2844 } while (!x->done && timeout);
2845 __remove_wait_queue(&x->wait, &wait);
2846 if (!x->done)
2847 return timeout;
2848 }
2849 x->done--;
2850 return timeout ?: 1;
2851 }
2852
2853 static inline long __sched
2854 __wait_for_common(struct completion *x,
2855 long (*action)(long), long timeout, int state)
2856 {
2857 might_sleep();
2858
2859 spin_lock_irq(&x->wait.lock);
2860 timeout = do_wait_for_common(x, action, timeout, state);
2861 spin_unlock_irq(&x->wait.lock);
2862 return timeout;
2863 }
2864
2865 static long __sched
2866 wait_for_common(struct completion *x, long timeout, int state)
2867 {
2868 return __wait_for_common(x, schedule_timeout, timeout, state);
2869 }
2870
2871 static long __sched
2872 wait_for_common_io(struct completion *x, long timeout, int state)
2873 {
2874 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2875 }
2876
2877 /**
2878 * wait_for_completion: - waits for completion of a task
2879 * @x: holds the state of this particular completion
2880 *
2881 * This waits to be signaled for completion of a specific task. It is NOT
2882 * interruptible and there is no timeout.
2883 *
2884 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2885 * and interrupt capability. Also see complete().
2886 */
2887 void __sched wait_for_completion(struct completion *x)
2888 {
2889 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2890 }
2891 EXPORT_SYMBOL(wait_for_completion);
2892
2893 /**
2894 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2895 * @x: holds the state of this particular completion
2896 * @timeout: timeout value in jiffies
2897 *
2898 * This waits for either a completion of a specific task to be signaled or for a
2899 * specified timeout to expire. The timeout is in jiffies. It is not
2900 * interruptible.
2901 *
2902 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2903 * till timeout) if completed.
2904 */
2905 unsigned long __sched
2906 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2907 {
2908 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2909 }
2910 EXPORT_SYMBOL(wait_for_completion_timeout);
2911
2912 /**
2913 * wait_for_completion_io: - waits for completion of a task
2914 * @x: holds the state of this particular completion
2915 *
2916 * This waits to be signaled for completion of a specific task. It is NOT
2917 * interruptible and there is no timeout. The caller is accounted as waiting
2918 * for IO.
2919 */
2920 void __sched wait_for_completion_io(struct completion *x)
2921 {
2922 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2923 }
2924 EXPORT_SYMBOL(wait_for_completion_io);
2925
2926 /**
2927 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2928 * @x: holds the state of this particular completion
2929 * @timeout: timeout value in jiffies
2930 *
2931 * This waits for either a completion of a specific task to be signaled or for a
2932 * specified timeout to expire. The timeout is in jiffies. It is not
2933 * interruptible. The caller is accounted as waiting for IO.
2934 *
2935 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2936 * till timeout) if completed.
2937 */
2938 unsigned long __sched
2939 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2940 {
2941 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2942 }
2943 EXPORT_SYMBOL(wait_for_completion_io_timeout);
2944
2945 /**
2946 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2947 * @x: holds the state of this particular completion
2948 *
2949 * This waits for completion of a specific task to be signaled. It is
2950 * interruptible.
2951 *
2952 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2953 */
2954 int __sched wait_for_completion_interruptible(struct completion *x)
2955 {
2956 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2957 if (t == -ERESTARTSYS)
2958 return t;
2959 return 0;
2960 }
2961 EXPORT_SYMBOL(wait_for_completion_interruptible);
2962
2963 /**
2964 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2965 * @x: holds the state of this particular completion
2966 * @timeout: timeout value in jiffies
2967 *
2968 * This waits for either a completion of a specific task to be signaled or for a
2969 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2970 *
2971 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2972 * or number of jiffies left till timeout) if completed.
2973 */
2974 long __sched
2975 wait_for_completion_interruptible_timeout(struct completion *x,
2976 unsigned long timeout)
2977 {
2978 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2979 }
2980 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2981
2982 /**
2983 * wait_for_completion_killable: - waits for completion of a task (killable)
2984 * @x: holds the state of this particular completion
2985 *
2986 * This waits to be signaled for completion of a specific task. It can be
2987 * interrupted by a kill signal.
2988 *
2989 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2990 */
2991 int __sched wait_for_completion_killable(struct completion *x)
2992 {
2993 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2994 if (t == -ERESTARTSYS)
2995 return t;
2996 return 0;
2997 }
2998 EXPORT_SYMBOL(wait_for_completion_killable);
2999
3000 /**
3001 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3002 * @x: holds the state of this particular completion
3003 * @timeout: timeout value in jiffies
3004 *
3005 * This waits for either a completion of a specific task to be
3006 * signaled or for a specified timeout to expire. It can be
3007 * interrupted by a kill signal. The timeout is in jiffies.
3008 *
3009 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3010 * or number of jiffies left till timeout) if completed.
3011 */
3012 long __sched
3013 wait_for_completion_killable_timeout(struct completion *x,
3014 unsigned long timeout)
3015 {
3016 return wait_for_common(x, timeout, TASK_KILLABLE);
3017 }
3018 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3019
3020 /**
3021 * try_wait_for_completion - try to decrement a completion without blocking
3022 * @x: completion structure
3023 *
3024 * Return: 0 if a decrement cannot be done without blocking
3025 * 1 if a decrement succeeded.
3026 *
3027 * If a completion is being used as a counting completion,
3028 * attempt to decrement the counter without blocking. This
3029 * enables us to avoid waiting if the resource the completion
3030 * is protecting is not available.
3031 */
3032 bool try_wait_for_completion(struct completion *x)
3033 {
3034 unsigned long flags;
3035 int ret = 1;
3036
3037 spin_lock_irqsave(&x->wait.lock, flags);
3038 if (!x->done)
3039 ret = 0;
3040 else
3041 x->done--;
3042 spin_unlock_irqrestore(&x->wait.lock, flags);
3043 return ret;
3044 }
3045 EXPORT_SYMBOL(try_wait_for_completion);
3046
3047 /**
3048 * completion_done - Test to see if a completion has any waiters
3049 * @x: completion structure
3050 *
3051 * Return: 0 if there are waiters (wait_for_completion() in progress)
3052 * 1 if there are no waiters.
3053 *
3054 */
3055 bool completion_done(struct completion *x)
3056 {
3057 unsigned long flags;
3058 int ret = 1;
3059
3060 spin_lock_irqsave(&x->wait.lock, flags);
3061 if (!x->done)
3062 ret = 0;
3063 spin_unlock_irqrestore(&x->wait.lock, flags);
3064 return ret;
3065 }
3066 EXPORT_SYMBOL(completion_done);
3067
3068 static long __sched
3069 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3070 {
3071 unsigned long flags;
3072 wait_queue_t wait;
3073
3074 init_waitqueue_entry(&wait, current);
3075
3076 __set_current_state(state);
3077
3078 spin_lock_irqsave(&q->lock, flags);
3079 __add_wait_queue(q, &wait);
3080 spin_unlock(&q->lock);
3081 timeout = schedule_timeout(timeout);
3082 spin_lock_irq(&q->lock);
3083 __remove_wait_queue(q, &wait);
3084 spin_unlock_irqrestore(&q->lock, flags);
3085
3086 return timeout;
3087 }
3088
3089 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3090 {
3091 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3092 }
3093 EXPORT_SYMBOL(interruptible_sleep_on);
3094
3095 long __sched
3096 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3097 {
3098 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3099 }
3100 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3101
3102 void __sched sleep_on(wait_queue_head_t *q)
3103 {
3104 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3105 }
3106 EXPORT_SYMBOL(sleep_on);
3107
3108 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3109 {
3110 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3111 }
3112 EXPORT_SYMBOL(sleep_on_timeout);
3113
3114 #ifdef CONFIG_RT_MUTEXES
3115
3116 /*
3117 * rt_mutex_setprio - set the current priority of a task
3118 * @p: task
3119 * @prio: prio value (kernel-internal form)
3120 *
3121 * This function changes the 'effective' priority of a task. It does
3122 * not touch ->normal_prio like __setscheduler().
3123 *
3124 * Used by the rt_mutex code to implement priority inheritance logic.
3125 */
3126 void rt_mutex_setprio(struct task_struct *p, int prio)
3127 {
3128 int oldprio, on_rq, running;
3129 struct rq *rq;
3130 const struct sched_class *prev_class;
3131
3132 BUG_ON(prio < 0 || prio > MAX_PRIO);
3133
3134 rq = __task_rq_lock(p);
3135
3136 /*
3137 * Idle task boosting is a nono in general. There is one
3138 * exception, when PREEMPT_RT and NOHZ is active:
3139 *
3140 * The idle task calls get_next_timer_interrupt() and holds
3141 * the timer wheel base->lock on the CPU and another CPU wants
3142 * to access the timer (probably to cancel it). We can safely
3143 * ignore the boosting request, as the idle CPU runs this code
3144 * with interrupts disabled and will complete the lock
3145 * protected section without being interrupted. So there is no
3146 * real need to boost.
3147 */
3148 if (unlikely(p == rq->idle)) {
3149 WARN_ON(p != rq->curr);
3150 WARN_ON(p->pi_blocked_on);
3151 goto out_unlock;
3152 }
3153
3154 trace_sched_pi_setprio(p, prio);
3155 oldprio = p->prio;
3156 prev_class = p->sched_class;
3157 on_rq = p->on_rq;
3158 running = task_current(rq, p);
3159 if (on_rq)
3160 dequeue_task(rq, p, 0);
3161 if (running)
3162 p->sched_class->put_prev_task(rq, p);
3163
3164 if (rt_prio(prio))
3165 p->sched_class = &rt_sched_class;
3166 else
3167 p->sched_class = &fair_sched_class;
3168
3169 p->prio = prio;
3170
3171 if (running)
3172 p->sched_class->set_curr_task(rq);
3173 if (on_rq)
3174 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3175
3176 check_class_changed(rq, p, prev_class, oldprio);
3177 out_unlock:
3178 __task_rq_unlock(rq);
3179 }
3180 #endif
3181 void set_user_nice(struct task_struct *p, long nice)
3182 {
3183 int old_prio, delta, on_rq;
3184 unsigned long flags;
3185 struct rq *rq;
3186
3187 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3188 return;
3189 /*
3190 * We have to be careful, if called from sys_setpriority(),
3191 * the task might be in the middle of scheduling on another CPU.
3192 */
3193 rq = task_rq_lock(p, &flags);
3194 /*
3195 * The RT priorities are set via sched_setscheduler(), but we still
3196 * allow the 'normal' nice value to be set - but as expected
3197 * it wont have any effect on scheduling until the task is
3198 * SCHED_FIFO/SCHED_RR:
3199 */
3200 if (task_has_rt_policy(p)) {
3201 p->static_prio = NICE_TO_PRIO(nice);
3202 goto out_unlock;
3203 }
3204 on_rq = p->on_rq;
3205 if (on_rq)
3206 dequeue_task(rq, p, 0);
3207
3208 p->static_prio = NICE_TO_PRIO(nice);
3209 set_load_weight(p);
3210 old_prio = p->prio;
3211 p->prio = effective_prio(p);
3212 delta = p->prio - old_prio;
3213
3214 if (on_rq) {
3215 enqueue_task(rq, p, 0);
3216 /*
3217 * If the task increased its priority or is running and
3218 * lowered its priority, then reschedule its CPU:
3219 */
3220 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3221 resched_task(rq->curr);
3222 }
3223 out_unlock:
3224 task_rq_unlock(rq, p, &flags);
3225 }
3226 EXPORT_SYMBOL(set_user_nice);
3227
3228 /*
3229 * can_nice - check if a task can reduce its nice value
3230 * @p: task
3231 * @nice: nice value
3232 */
3233 int can_nice(const struct task_struct *p, const int nice)
3234 {
3235 /* convert nice value [19,-20] to rlimit style value [1,40] */
3236 int nice_rlim = 20 - nice;
3237
3238 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3239 capable(CAP_SYS_NICE));
3240 }
3241
3242 #ifdef __ARCH_WANT_SYS_NICE
3243
3244 /*
3245 * sys_nice - change the priority of the current process.
3246 * @increment: priority increment
3247 *
3248 * sys_setpriority is a more generic, but much slower function that
3249 * does similar things.
3250 */
3251 SYSCALL_DEFINE1(nice, int, increment)
3252 {
3253 long nice, retval;
3254
3255 /*
3256 * Setpriority might change our priority at the same moment.
3257 * We don't have to worry. Conceptually one call occurs first
3258 * and we have a single winner.
3259 */
3260 if (increment < -40)
3261 increment = -40;
3262 if (increment > 40)
3263 increment = 40;
3264
3265 nice = TASK_NICE(current) + increment;
3266 if (nice < -20)
3267 nice = -20;
3268 if (nice > 19)
3269 nice = 19;
3270
3271 if (increment < 0 && !can_nice(current, nice))
3272 return -EPERM;
3273
3274 retval = security_task_setnice(current, nice);
3275 if (retval)
3276 return retval;
3277
3278 set_user_nice(current, nice);
3279 return 0;
3280 }
3281
3282 #endif
3283
3284 /**
3285 * task_prio - return the priority value of a given task.
3286 * @p: the task in question.
3287 *
3288 * Return: The priority value as seen by users in /proc.
3289 * RT tasks are offset by -200. Normal tasks are centered
3290 * around 0, value goes from -16 to +15.
3291 */
3292 int task_prio(const struct task_struct *p)
3293 {
3294 return p->prio - MAX_RT_PRIO;
3295 }
3296
3297 /**
3298 * task_nice - return the nice value of a given task.
3299 * @p: the task in question.
3300 *
3301 * Return: The nice value [ -20 ... 0 ... 19 ].
3302 */
3303 int task_nice(const struct task_struct *p)
3304 {
3305 return TASK_NICE(p);
3306 }
3307 EXPORT_SYMBOL(task_nice);
3308
3309 /**
3310 * idle_cpu - is a given cpu idle currently?
3311 * @cpu: the processor in question.
3312 *
3313 * Return: 1 if the CPU is currently idle. 0 otherwise.
3314 */
3315 int idle_cpu(int cpu)
3316 {
3317 struct rq *rq = cpu_rq(cpu);
3318
3319 if (rq->curr != rq->idle)
3320 return 0;
3321
3322 if (rq->nr_running)
3323 return 0;
3324
3325 #ifdef CONFIG_SMP
3326 if (!llist_empty(&rq->wake_list))
3327 return 0;
3328 #endif
3329
3330 return 1;
3331 }
3332
3333 /**
3334 * idle_task - return the idle task for a given cpu.
3335 * @cpu: the processor in question.
3336 *
3337 * Return: The idle task for the cpu @cpu.
3338 */
3339 struct task_struct *idle_task(int cpu)
3340 {
3341 return cpu_rq(cpu)->idle;
3342 }
3343
3344 /**
3345 * find_process_by_pid - find a process with a matching PID value.
3346 * @pid: the pid in question.
3347 *
3348 * The task of @pid, if found. %NULL otherwise.
3349 */
3350 static struct task_struct *find_process_by_pid(pid_t pid)
3351 {
3352 return pid ? find_task_by_vpid(pid) : current;
3353 }
3354
3355 /* Actually do priority change: must hold rq lock. */
3356 static void
3357 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3358 {
3359 p->policy = policy;
3360 p->rt_priority = prio;
3361 p->normal_prio = normal_prio(p);
3362 /* we are holding p->pi_lock already */
3363 p->prio = rt_mutex_getprio(p);
3364 if (rt_prio(p->prio))
3365 p->sched_class = &rt_sched_class;
3366 else
3367 p->sched_class = &fair_sched_class;
3368 set_load_weight(p);
3369 }
3370
3371 /*
3372 * check the target process has a UID that matches the current process's
3373 */
3374 static bool check_same_owner(struct task_struct *p)
3375 {
3376 const struct cred *cred = current_cred(), *pcred;
3377 bool match;
3378
3379 rcu_read_lock();
3380 pcred = __task_cred(p);
3381 match = (uid_eq(cred->euid, pcred->euid) ||
3382 uid_eq(cred->euid, pcred->uid));
3383 rcu_read_unlock();
3384 return match;
3385 }
3386
3387 static int __sched_setscheduler(struct task_struct *p, int policy,
3388 const struct sched_param *param, bool user)
3389 {
3390 int retval, oldprio, oldpolicy = -1, on_rq, running;
3391 unsigned long flags;
3392 const struct sched_class *prev_class;
3393 struct rq *rq;
3394 int reset_on_fork;
3395
3396 /* may grab non-irq protected spin_locks */
3397 BUG_ON(in_interrupt());
3398 recheck:
3399 /* double check policy once rq lock held */
3400 if (policy < 0) {
3401 reset_on_fork = p->sched_reset_on_fork;
3402 policy = oldpolicy = p->policy;
3403 } else {
3404 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3405 policy &= ~SCHED_RESET_ON_FORK;
3406
3407 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3408 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3409 policy != SCHED_IDLE)
3410 return -EINVAL;
3411 }
3412
3413 /*
3414 * Valid priorities for SCHED_FIFO and SCHED_RR are
3415 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3416 * SCHED_BATCH and SCHED_IDLE is 0.
3417 */
3418 if (param->sched_priority < 0 ||
3419 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3420 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3421 return -EINVAL;
3422 if (rt_policy(policy) != (param->sched_priority != 0))
3423 return -EINVAL;
3424
3425 /*
3426 * Allow unprivileged RT tasks to decrease priority:
3427 */
3428 if (user && !capable(CAP_SYS_NICE)) {
3429 if (rt_policy(policy)) {
3430 unsigned long rlim_rtprio =
3431 task_rlimit(p, RLIMIT_RTPRIO);
3432
3433 /* can't set/change the rt policy */
3434 if (policy != p->policy && !rlim_rtprio)
3435 return -EPERM;
3436
3437 /* can't increase priority */
3438 if (param->sched_priority > p->rt_priority &&
3439 param->sched_priority > rlim_rtprio)
3440 return -EPERM;
3441 }
3442
3443 /*
3444 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3445 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3446 */
3447 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3448 if (!can_nice(p, TASK_NICE(p)))
3449 return -EPERM;
3450 }
3451
3452 /* can't change other user's priorities */
3453 if (!check_same_owner(p))
3454 return -EPERM;
3455
3456 /* Normal users shall not reset the sched_reset_on_fork flag */
3457 if (p->sched_reset_on_fork && !reset_on_fork)
3458 return -EPERM;
3459 }
3460
3461 if (user) {
3462 retval = security_task_setscheduler(p);
3463 if (retval)
3464 return retval;
3465 }
3466
3467 /*
3468 * make sure no PI-waiters arrive (or leave) while we are
3469 * changing the priority of the task:
3470 *
3471 * To be able to change p->policy safely, the appropriate
3472 * runqueue lock must be held.
3473 */
3474 rq = task_rq_lock(p, &flags);
3475
3476 /*
3477 * Changing the policy of the stop threads its a very bad idea
3478 */
3479 if (p == rq->stop) {
3480 task_rq_unlock(rq, p, &flags);
3481 return -EINVAL;
3482 }
3483
3484 /*
3485 * If not changing anything there's no need to proceed further:
3486 */
3487 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3488 param->sched_priority == p->rt_priority))) {
3489 task_rq_unlock(rq, p, &flags);
3490 return 0;
3491 }
3492
3493 #ifdef CONFIG_RT_GROUP_SCHED
3494 if (user) {
3495 /*
3496 * Do not allow realtime tasks into groups that have no runtime
3497 * assigned.
3498 */
3499 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3500 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3501 !task_group_is_autogroup(task_group(p))) {
3502 task_rq_unlock(rq, p, &flags);
3503 return -EPERM;
3504 }
3505 }
3506 #endif
3507
3508 /* recheck policy now with rq lock held */
3509 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3510 policy = oldpolicy = -1;
3511 task_rq_unlock(rq, p, &flags);
3512 goto recheck;
3513 }
3514 on_rq = p->on_rq;
3515 running = task_current(rq, p);
3516 if (on_rq)
3517 dequeue_task(rq, p, 0);
3518 if (running)
3519 p->sched_class->put_prev_task(rq, p);
3520
3521 p->sched_reset_on_fork = reset_on_fork;
3522
3523 oldprio = p->prio;
3524 prev_class = p->sched_class;
3525 __setscheduler(rq, p, policy, param->sched_priority);
3526
3527 if (running)
3528 p->sched_class->set_curr_task(rq);
3529 if (on_rq)
3530 enqueue_task(rq, p, 0);
3531
3532 check_class_changed(rq, p, prev_class, oldprio);
3533 task_rq_unlock(rq, p, &flags);
3534
3535 rt_mutex_adjust_pi(p);
3536
3537 return 0;
3538 }
3539
3540 /**
3541 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3542 * @p: the task in question.
3543 * @policy: new policy.
3544 * @param: structure containing the new RT priority.
3545 *
3546 * Return: 0 on success. An error code otherwise.
3547 *
3548 * NOTE that the task may be already dead.
3549 */
3550 int sched_setscheduler(struct task_struct *p, int policy,
3551 const struct sched_param *param)
3552 {
3553 return __sched_setscheduler(p, policy, param, true);
3554 }
3555 EXPORT_SYMBOL_GPL(sched_setscheduler);
3556
3557 /**
3558 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3559 * @p: the task in question.
3560 * @policy: new policy.
3561 * @param: structure containing the new RT priority.
3562 *
3563 * Just like sched_setscheduler, only don't bother checking if the
3564 * current context has permission. For example, this is needed in
3565 * stop_machine(): we create temporary high priority worker threads,
3566 * but our caller might not have that capability.
3567 *
3568 * Return: 0 on success. An error code otherwise.
3569 */
3570 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3571 const struct sched_param *param)
3572 {
3573 return __sched_setscheduler(p, policy, param, false);
3574 }
3575
3576 static int
3577 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3578 {
3579 struct sched_param lparam;
3580 struct task_struct *p;
3581 int retval;
3582
3583 if (!param || pid < 0)
3584 return -EINVAL;
3585 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3586 return -EFAULT;
3587
3588 rcu_read_lock();
3589 retval = -ESRCH;
3590 p = find_process_by_pid(pid);
3591 if (p != NULL)
3592 retval = sched_setscheduler(p, policy, &lparam);
3593 rcu_read_unlock();
3594
3595 return retval;
3596 }
3597
3598 /**
3599 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3600 * @pid: the pid in question.
3601 * @policy: new policy.
3602 * @param: structure containing the new RT priority.
3603 *
3604 * Return: 0 on success. An error code otherwise.
3605 */
3606 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3607 struct sched_param __user *, param)
3608 {
3609 /* negative values for policy are not valid */
3610 if (policy < 0)
3611 return -EINVAL;
3612
3613 return do_sched_setscheduler(pid, policy, param);
3614 }
3615
3616 /**
3617 * sys_sched_setparam - set/change the RT priority of a thread
3618 * @pid: the pid in question.
3619 * @param: structure containing the new RT priority.
3620 *
3621 * Return: 0 on success. An error code otherwise.
3622 */
3623 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3624 {
3625 return do_sched_setscheduler(pid, -1, param);
3626 }
3627
3628 /**
3629 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3630 * @pid: the pid in question.
3631 *
3632 * Return: On success, the policy of the thread. Otherwise, a negative error
3633 * code.
3634 */
3635 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3636 {
3637 struct task_struct *p;
3638 int retval;
3639
3640 if (pid < 0)
3641 return -EINVAL;
3642
3643 retval = -ESRCH;
3644 rcu_read_lock();
3645 p = find_process_by_pid(pid);
3646 if (p) {
3647 retval = security_task_getscheduler(p);
3648 if (!retval)
3649 retval = p->policy
3650 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3651 }
3652 rcu_read_unlock();
3653 return retval;
3654 }
3655
3656 /**
3657 * sys_sched_getparam - get the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the RT priority.
3660 *
3661 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3662 * code.
3663 */
3664 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3665 {
3666 struct sched_param lp;
3667 struct task_struct *p;
3668 int retval;
3669
3670 if (!param || pid < 0)
3671 return -EINVAL;
3672
3673 rcu_read_lock();
3674 p = find_process_by_pid(pid);
3675 retval = -ESRCH;
3676 if (!p)
3677 goto out_unlock;
3678
3679 retval = security_task_getscheduler(p);
3680 if (retval)
3681 goto out_unlock;
3682
3683 lp.sched_priority = p->rt_priority;
3684 rcu_read_unlock();
3685
3686 /*
3687 * This one might sleep, we cannot do it with a spinlock held ...
3688 */
3689 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3690
3691 return retval;
3692
3693 out_unlock:
3694 rcu_read_unlock();
3695 return retval;
3696 }
3697
3698 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3699 {
3700 cpumask_var_t cpus_allowed, new_mask;
3701 struct task_struct *p;
3702 int retval;
3703
3704 get_online_cpus();
3705 rcu_read_lock();
3706
3707 p = find_process_by_pid(pid);
3708 if (!p) {
3709 rcu_read_unlock();
3710 put_online_cpus();
3711 return -ESRCH;
3712 }
3713
3714 /* Prevent p going away */
3715 get_task_struct(p);
3716 rcu_read_unlock();
3717
3718 if (p->flags & PF_NO_SETAFFINITY) {
3719 retval = -EINVAL;
3720 goto out_put_task;
3721 }
3722 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3723 retval = -ENOMEM;
3724 goto out_put_task;
3725 }
3726 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3727 retval = -ENOMEM;
3728 goto out_free_cpus_allowed;
3729 }
3730 retval = -EPERM;
3731 if (!check_same_owner(p)) {
3732 rcu_read_lock();
3733 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3734 rcu_read_unlock();
3735 goto out_unlock;
3736 }
3737 rcu_read_unlock();
3738 }
3739
3740 retval = security_task_setscheduler(p);
3741 if (retval)
3742 goto out_unlock;
3743
3744 cpuset_cpus_allowed(p, cpus_allowed);
3745 cpumask_and(new_mask, in_mask, cpus_allowed);
3746 again:
3747 retval = set_cpus_allowed_ptr(p, new_mask);
3748
3749 if (!retval) {
3750 cpuset_cpus_allowed(p, cpus_allowed);
3751 if (!cpumask_subset(new_mask, cpus_allowed)) {
3752 /*
3753 * We must have raced with a concurrent cpuset
3754 * update. Just reset the cpus_allowed to the
3755 * cpuset's cpus_allowed
3756 */
3757 cpumask_copy(new_mask, cpus_allowed);
3758 goto again;
3759 }
3760 }
3761 out_unlock:
3762 free_cpumask_var(new_mask);
3763 out_free_cpus_allowed:
3764 free_cpumask_var(cpus_allowed);
3765 out_put_task:
3766 put_task_struct(p);
3767 put_online_cpus();
3768 return retval;
3769 }
3770
3771 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3772 struct cpumask *new_mask)
3773 {
3774 if (len < cpumask_size())
3775 cpumask_clear(new_mask);
3776 else if (len > cpumask_size())
3777 len = cpumask_size();
3778
3779 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3780 }
3781
3782 /**
3783 * sys_sched_setaffinity - set the cpu affinity of a process
3784 * @pid: pid of the process
3785 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3786 * @user_mask_ptr: user-space pointer to the new cpu mask
3787 *
3788 * Return: 0 on success. An error code otherwise.
3789 */
3790 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3791 unsigned long __user *, user_mask_ptr)
3792 {
3793 cpumask_var_t new_mask;
3794 int retval;
3795
3796 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3797 return -ENOMEM;
3798
3799 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3800 if (retval == 0)
3801 retval = sched_setaffinity(pid, new_mask);
3802 free_cpumask_var(new_mask);
3803 return retval;
3804 }
3805
3806 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3807 {
3808 struct task_struct *p;
3809 unsigned long flags;
3810 int retval;
3811
3812 get_online_cpus();
3813 rcu_read_lock();
3814
3815 retval = -ESRCH;
3816 p = find_process_by_pid(pid);
3817 if (!p)
3818 goto out_unlock;
3819
3820 retval = security_task_getscheduler(p);
3821 if (retval)
3822 goto out_unlock;
3823
3824 raw_spin_lock_irqsave(&p->pi_lock, flags);
3825 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3826 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3827
3828 out_unlock:
3829 rcu_read_unlock();
3830 put_online_cpus();
3831
3832 return retval;
3833 }
3834
3835 /**
3836 * sys_sched_getaffinity - get the cpu affinity of a process
3837 * @pid: pid of the process
3838 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3839 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3840 *
3841 * Return: 0 on success. An error code otherwise.
3842 */
3843 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3844 unsigned long __user *, user_mask_ptr)
3845 {
3846 int ret;
3847 cpumask_var_t mask;
3848
3849 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3850 return -EINVAL;
3851 if (len & (sizeof(unsigned long)-1))
3852 return -EINVAL;
3853
3854 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3855 return -ENOMEM;
3856
3857 ret = sched_getaffinity(pid, mask);
3858 if (ret == 0) {
3859 size_t retlen = min_t(size_t, len, cpumask_size());
3860
3861 if (copy_to_user(user_mask_ptr, mask, retlen))
3862 ret = -EFAULT;
3863 else
3864 ret = retlen;
3865 }
3866 free_cpumask_var(mask);
3867
3868 return ret;
3869 }
3870
3871 /**
3872 * sys_sched_yield - yield the current processor to other threads.
3873 *
3874 * This function yields the current CPU to other tasks. If there are no
3875 * other threads running on this CPU then this function will return.
3876 *
3877 * Return: 0.
3878 */
3879 SYSCALL_DEFINE0(sched_yield)
3880 {
3881 struct rq *rq = this_rq_lock();
3882
3883 schedstat_inc(rq, yld_count);
3884 current->sched_class->yield_task(rq);
3885
3886 /*
3887 * Since we are going to call schedule() anyway, there's
3888 * no need to preempt or enable interrupts:
3889 */
3890 __release(rq->lock);
3891 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3892 do_raw_spin_unlock(&rq->lock);
3893 sched_preempt_enable_no_resched();
3894
3895 schedule();
3896
3897 return 0;
3898 }
3899
3900 static void __cond_resched(void)
3901 {
3902 __preempt_count_add(PREEMPT_ACTIVE);
3903 __schedule();
3904 __preempt_count_sub(PREEMPT_ACTIVE);
3905 }
3906
3907 int __sched _cond_resched(void)
3908 {
3909 if (should_resched()) {
3910 __cond_resched();
3911 return 1;
3912 }
3913 return 0;
3914 }
3915 EXPORT_SYMBOL(_cond_resched);
3916
3917 /*
3918 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3919 * call schedule, and on return reacquire the lock.
3920 *
3921 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3922 * operations here to prevent schedule() from being called twice (once via
3923 * spin_unlock(), once by hand).
3924 */
3925 int __cond_resched_lock(spinlock_t *lock)
3926 {
3927 int resched = should_resched();
3928 int ret = 0;
3929
3930 lockdep_assert_held(lock);
3931
3932 if (spin_needbreak(lock) || resched) {
3933 spin_unlock(lock);
3934 if (resched)
3935 __cond_resched();
3936 else
3937 cpu_relax();
3938 ret = 1;
3939 spin_lock(lock);
3940 }
3941 return ret;
3942 }
3943 EXPORT_SYMBOL(__cond_resched_lock);
3944
3945 int __sched __cond_resched_softirq(void)
3946 {
3947 BUG_ON(!in_softirq());
3948
3949 if (should_resched()) {
3950 local_bh_enable();
3951 __cond_resched();
3952 local_bh_disable();
3953 return 1;
3954 }
3955 return 0;
3956 }
3957 EXPORT_SYMBOL(__cond_resched_softirq);
3958
3959 /**
3960 * yield - yield the current processor to other threads.
3961 *
3962 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3963 *
3964 * The scheduler is at all times free to pick the calling task as the most
3965 * eligible task to run, if removing the yield() call from your code breaks
3966 * it, its already broken.
3967 *
3968 * Typical broken usage is:
3969 *
3970 * while (!event)
3971 * yield();
3972 *
3973 * where one assumes that yield() will let 'the other' process run that will
3974 * make event true. If the current task is a SCHED_FIFO task that will never
3975 * happen. Never use yield() as a progress guarantee!!
3976 *
3977 * If you want to use yield() to wait for something, use wait_event().
3978 * If you want to use yield() to be 'nice' for others, use cond_resched().
3979 * If you still want to use yield(), do not!
3980 */
3981 void __sched yield(void)
3982 {
3983 set_current_state(TASK_RUNNING);
3984 sys_sched_yield();
3985 }
3986 EXPORT_SYMBOL(yield);
3987
3988 /**
3989 * yield_to - yield the current processor to another thread in
3990 * your thread group, or accelerate that thread toward the
3991 * processor it's on.
3992 * @p: target task
3993 * @preempt: whether task preemption is allowed or not
3994 *
3995 * It's the caller's job to ensure that the target task struct
3996 * can't go away on us before we can do any checks.
3997 *
3998 * Return:
3999 * true (>0) if we indeed boosted the target task.
4000 * false (0) if we failed to boost the target.
4001 * -ESRCH if there's no task to yield to.
4002 */
4003 bool __sched yield_to(struct task_struct *p, bool preempt)
4004 {
4005 struct task_struct *curr = current;
4006 struct rq *rq, *p_rq;
4007 unsigned long flags;
4008 int yielded = 0;
4009
4010 local_irq_save(flags);
4011 rq = this_rq();
4012
4013 again:
4014 p_rq = task_rq(p);
4015 /*
4016 * If we're the only runnable task on the rq and target rq also
4017 * has only one task, there's absolutely no point in yielding.
4018 */
4019 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4020 yielded = -ESRCH;
4021 goto out_irq;
4022 }
4023
4024 double_rq_lock(rq, p_rq);
4025 while (task_rq(p) != p_rq) {
4026 double_rq_unlock(rq, p_rq);
4027 goto again;
4028 }
4029
4030 if (!curr->sched_class->yield_to_task)
4031 goto out_unlock;
4032
4033 if (curr->sched_class != p->sched_class)
4034 goto out_unlock;
4035
4036 if (task_running(p_rq, p) || p->state)
4037 goto out_unlock;
4038
4039 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4040 if (yielded) {
4041 schedstat_inc(rq, yld_count);
4042 /*
4043 * Make p's CPU reschedule; pick_next_entity takes care of
4044 * fairness.
4045 */
4046 if (preempt && rq != p_rq)
4047 resched_task(p_rq->curr);
4048 }
4049
4050 out_unlock:
4051 double_rq_unlock(rq, p_rq);
4052 out_irq:
4053 local_irq_restore(flags);
4054
4055 if (yielded > 0)
4056 schedule();
4057
4058 return yielded;
4059 }
4060 EXPORT_SYMBOL_GPL(yield_to);
4061
4062 /*
4063 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4064 * that process accounting knows that this is a task in IO wait state.
4065 */
4066 void __sched io_schedule(void)
4067 {
4068 struct rq *rq = raw_rq();
4069
4070 delayacct_blkio_start();
4071 atomic_inc(&rq->nr_iowait);
4072 blk_flush_plug(current);
4073 current->in_iowait = 1;
4074 schedule();
4075 current->in_iowait = 0;
4076 atomic_dec(&rq->nr_iowait);
4077 delayacct_blkio_end();
4078 }
4079 EXPORT_SYMBOL(io_schedule);
4080
4081 long __sched io_schedule_timeout(long timeout)
4082 {
4083 struct rq *rq = raw_rq();
4084 long ret;
4085
4086 delayacct_blkio_start();
4087 atomic_inc(&rq->nr_iowait);
4088 blk_flush_plug(current);
4089 current->in_iowait = 1;
4090 ret = schedule_timeout(timeout);
4091 current->in_iowait = 0;
4092 atomic_dec(&rq->nr_iowait);
4093 delayacct_blkio_end();
4094 return ret;
4095 }
4096
4097 /**
4098 * sys_sched_get_priority_max - return maximum RT priority.
4099 * @policy: scheduling class.
4100 *
4101 * Return: On success, this syscall returns the maximum
4102 * rt_priority that can be used by a given scheduling class.
4103 * On failure, a negative error code is returned.
4104 */
4105 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4106 {
4107 int ret = -EINVAL;
4108
4109 switch (policy) {
4110 case SCHED_FIFO:
4111 case SCHED_RR:
4112 ret = MAX_USER_RT_PRIO-1;
4113 break;
4114 case SCHED_NORMAL:
4115 case SCHED_BATCH:
4116 case SCHED_IDLE:
4117 ret = 0;
4118 break;
4119 }
4120 return ret;
4121 }
4122
4123 /**
4124 * sys_sched_get_priority_min - return minimum RT priority.
4125 * @policy: scheduling class.
4126 *
4127 * Return: On success, this syscall returns the minimum
4128 * rt_priority that can be used by a given scheduling class.
4129 * On failure, a negative error code is returned.
4130 */
4131 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4132 {
4133 int ret = -EINVAL;
4134
4135 switch (policy) {
4136 case SCHED_FIFO:
4137 case SCHED_RR:
4138 ret = 1;
4139 break;
4140 case SCHED_NORMAL:
4141 case SCHED_BATCH:
4142 case SCHED_IDLE:
4143 ret = 0;
4144 }
4145 return ret;
4146 }
4147
4148 /**
4149 * sys_sched_rr_get_interval - return the default timeslice of a process.
4150 * @pid: pid of the process.
4151 * @interval: userspace pointer to the timeslice value.
4152 *
4153 * this syscall writes the default timeslice value of a given process
4154 * into the user-space timespec buffer. A value of '0' means infinity.
4155 *
4156 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4157 * an error code.
4158 */
4159 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4160 struct timespec __user *, interval)
4161 {
4162 struct task_struct *p;
4163 unsigned int time_slice;
4164 unsigned long flags;
4165 struct rq *rq;
4166 int retval;
4167 struct timespec t;
4168
4169 if (pid < 0)
4170 return -EINVAL;
4171
4172 retval = -ESRCH;
4173 rcu_read_lock();
4174 p = find_process_by_pid(pid);
4175 if (!p)
4176 goto out_unlock;
4177
4178 retval = security_task_getscheduler(p);
4179 if (retval)
4180 goto out_unlock;
4181
4182 rq = task_rq_lock(p, &flags);
4183 time_slice = p->sched_class->get_rr_interval(rq, p);
4184 task_rq_unlock(rq, p, &flags);
4185
4186 rcu_read_unlock();
4187 jiffies_to_timespec(time_slice, &t);
4188 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4189 return retval;
4190
4191 out_unlock:
4192 rcu_read_unlock();
4193 return retval;
4194 }
4195
4196 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4197
4198 void sched_show_task(struct task_struct *p)
4199 {
4200 unsigned long free = 0;
4201 int ppid;
4202 unsigned state;
4203
4204 state = p->state ? __ffs(p->state) + 1 : 0;
4205 printk(KERN_INFO "%-15.15s %c", p->comm,
4206 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4207 #if BITS_PER_LONG == 32
4208 if (state == TASK_RUNNING)
4209 printk(KERN_CONT " running ");
4210 else
4211 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4212 #else
4213 if (state == TASK_RUNNING)
4214 printk(KERN_CONT " running task ");
4215 else
4216 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4217 #endif
4218 #ifdef CONFIG_DEBUG_STACK_USAGE
4219 free = stack_not_used(p);
4220 #endif
4221 rcu_read_lock();
4222 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4223 rcu_read_unlock();
4224 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4225 task_pid_nr(p), ppid,
4226 (unsigned long)task_thread_info(p)->flags);
4227
4228 print_worker_info(KERN_INFO, p);
4229 show_stack(p, NULL);
4230 }
4231
4232 void show_state_filter(unsigned long state_filter)
4233 {
4234 struct task_struct *g, *p;
4235
4236 #if BITS_PER_LONG == 32
4237 printk(KERN_INFO
4238 " task PC stack pid father\n");
4239 #else
4240 printk(KERN_INFO
4241 " task PC stack pid father\n");
4242 #endif
4243 rcu_read_lock();
4244 do_each_thread(g, p) {
4245 /*
4246 * reset the NMI-timeout, listing all files on a slow
4247 * console might take a lot of time:
4248 */
4249 touch_nmi_watchdog();
4250 if (!state_filter || (p->state & state_filter))
4251 sched_show_task(p);
4252 } while_each_thread(g, p);
4253
4254 touch_all_softlockup_watchdogs();
4255
4256 #ifdef CONFIG_SCHED_DEBUG
4257 sysrq_sched_debug_show();
4258 #endif
4259 rcu_read_unlock();
4260 /*
4261 * Only show locks if all tasks are dumped:
4262 */
4263 if (!state_filter)
4264 debug_show_all_locks();
4265 }
4266
4267 void init_idle_bootup_task(struct task_struct *idle)
4268 {
4269 idle->sched_class = &idle_sched_class;
4270 }
4271
4272 /**
4273 * init_idle - set up an idle thread for a given CPU
4274 * @idle: task in question
4275 * @cpu: cpu the idle task belongs to
4276 *
4277 * NOTE: this function does not set the idle thread's NEED_RESCHED
4278 * flag, to make booting more robust.
4279 */
4280 void init_idle(struct task_struct *idle, int cpu)
4281 {
4282 struct rq *rq = cpu_rq(cpu);
4283 unsigned long flags;
4284
4285 raw_spin_lock_irqsave(&rq->lock, flags);
4286
4287 __sched_fork(idle);
4288 idle->state = TASK_RUNNING;
4289 idle->se.exec_start = sched_clock();
4290
4291 do_set_cpus_allowed(idle, cpumask_of(cpu));
4292 /*
4293 * We're having a chicken and egg problem, even though we are
4294 * holding rq->lock, the cpu isn't yet set to this cpu so the
4295 * lockdep check in task_group() will fail.
4296 *
4297 * Similar case to sched_fork(). / Alternatively we could
4298 * use task_rq_lock() here and obtain the other rq->lock.
4299 *
4300 * Silence PROVE_RCU
4301 */
4302 rcu_read_lock();
4303 __set_task_cpu(idle, cpu);
4304 rcu_read_unlock();
4305
4306 rq->curr = rq->idle = idle;
4307 #if defined(CONFIG_SMP)
4308 idle->on_cpu = 1;
4309 #endif
4310 raw_spin_unlock_irqrestore(&rq->lock, flags);
4311
4312 /* Set the preempt count _outside_ the spinlocks! */
4313 init_idle_preempt_count(idle, cpu);
4314
4315 /*
4316 * The idle tasks have their own, simple scheduling class:
4317 */
4318 idle->sched_class = &idle_sched_class;
4319 ftrace_graph_init_idle_task(idle, cpu);
4320 vtime_init_idle(idle, cpu);
4321 #if defined(CONFIG_SMP)
4322 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4323 #endif
4324 }
4325
4326 #ifdef CONFIG_SMP
4327 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4328 {
4329 if (p->sched_class && p->sched_class->set_cpus_allowed)
4330 p->sched_class->set_cpus_allowed(p, new_mask);
4331
4332 cpumask_copy(&p->cpus_allowed, new_mask);
4333 p->nr_cpus_allowed = cpumask_weight(new_mask);
4334 }
4335
4336 /*
4337 * This is how migration works:
4338 *
4339 * 1) we invoke migration_cpu_stop() on the target CPU using
4340 * stop_one_cpu().
4341 * 2) stopper starts to run (implicitly forcing the migrated thread
4342 * off the CPU)
4343 * 3) it checks whether the migrated task is still in the wrong runqueue.
4344 * 4) if it's in the wrong runqueue then the migration thread removes
4345 * it and puts it into the right queue.
4346 * 5) stopper completes and stop_one_cpu() returns and the migration
4347 * is done.
4348 */
4349
4350 /*
4351 * Change a given task's CPU affinity. Migrate the thread to a
4352 * proper CPU and schedule it away if the CPU it's executing on
4353 * is removed from the allowed bitmask.
4354 *
4355 * NOTE: the caller must have a valid reference to the task, the
4356 * task must not exit() & deallocate itself prematurely. The
4357 * call is not atomic; no spinlocks may be held.
4358 */
4359 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4360 {
4361 unsigned long flags;
4362 struct rq *rq;
4363 unsigned int dest_cpu;
4364 int ret = 0;
4365
4366 rq = task_rq_lock(p, &flags);
4367
4368 if (cpumask_equal(&p->cpus_allowed, new_mask))
4369 goto out;
4370
4371 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4372 ret = -EINVAL;
4373 goto out;
4374 }
4375
4376 do_set_cpus_allowed(p, new_mask);
4377
4378 /* Can the task run on the task's current CPU? If so, we're done */
4379 if (cpumask_test_cpu(task_cpu(p), new_mask))
4380 goto out;
4381
4382 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4383 if (p->on_rq) {
4384 struct migration_arg arg = { p, dest_cpu };
4385 /* Need help from migration thread: drop lock and wait. */
4386 task_rq_unlock(rq, p, &flags);
4387 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4388 tlb_migrate_finish(p->mm);
4389 return 0;
4390 }
4391 out:
4392 task_rq_unlock(rq, p, &flags);
4393
4394 return ret;
4395 }
4396 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4397
4398 /*
4399 * Move (not current) task off this cpu, onto dest cpu. We're doing
4400 * this because either it can't run here any more (set_cpus_allowed()
4401 * away from this CPU, or CPU going down), or because we're
4402 * attempting to rebalance this task on exec (sched_exec).
4403 *
4404 * So we race with normal scheduler movements, but that's OK, as long
4405 * as the task is no longer on this CPU.
4406 *
4407 * Returns non-zero if task was successfully migrated.
4408 */
4409 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4410 {
4411 struct rq *rq_dest, *rq_src;
4412 int ret = 0;
4413
4414 if (unlikely(!cpu_active(dest_cpu)))
4415 return ret;
4416
4417 rq_src = cpu_rq(src_cpu);
4418 rq_dest = cpu_rq(dest_cpu);
4419
4420 raw_spin_lock(&p->pi_lock);
4421 double_rq_lock(rq_src, rq_dest);
4422 /* Already moved. */
4423 if (task_cpu(p) != src_cpu)
4424 goto done;
4425 /* Affinity changed (again). */
4426 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4427 goto fail;
4428
4429 /*
4430 * If we're not on a rq, the next wake-up will ensure we're
4431 * placed properly.
4432 */
4433 if (p->on_rq) {
4434 dequeue_task(rq_src, p, 0);
4435 set_task_cpu(p, dest_cpu);
4436 enqueue_task(rq_dest, p, 0);
4437 check_preempt_curr(rq_dest, p, 0);
4438 }
4439 done:
4440 ret = 1;
4441 fail:
4442 double_rq_unlock(rq_src, rq_dest);
4443 raw_spin_unlock(&p->pi_lock);
4444 return ret;
4445 }
4446
4447 #ifdef CONFIG_NUMA_BALANCING
4448 /* Migrate current task p to target_cpu */
4449 int migrate_task_to(struct task_struct *p, int target_cpu)
4450 {
4451 struct migration_arg arg = { p, target_cpu };
4452 int curr_cpu = task_cpu(p);
4453
4454 if (curr_cpu == target_cpu)
4455 return 0;
4456
4457 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4458 return -EINVAL;
4459
4460 /* TODO: This is not properly updating schedstats */
4461
4462 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4463 }
4464 #endif
4465
4466 /*
4467 * migration_cpu_stop - this will be executed by a highprio stopper thread
4468 * and performs thread migration by bumping thread off CPU then
4469 * 'pushing' onto another runqueue.
4470 */
4471 static int migration_cpu_stop(void *data)
4472 {
4473 struct migration_arg *arg = data;
4474
4475 /*
4476 * The original target cpu might have gone down and we might
4477 * be on another cpu but it doesn't matter.
4478 */
4479 local_irq_disable();
4480 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4481 local_irq_enable();
4482 return 0;
4483 }
4484
4485 #ifdef CONFIG_HOTPLUG_CPU
4486
4487 /*
4488 * Ensures that the idle task is using init_mm right before its cpu goes
4489 * offline.
4490 */
4491 void idle_task_exit(void)
4492 {
4493 struct mm_struct *mm = current->active_mm;
4494
4495 BUG_ON(cpu_online(smp_processor_id()));
4496
4497 if (mm != &init_mm)
4498 switch_mm(mm, &init_mm, current);
4499 mmdrop(mm);
4500 }
4501
4502 /*
4503 * Since this CPU is going 'away' for a while, fold any nr_active delta
4504 * we might have. Assumes we're called after migrate_tasks() so that the
4505 * nr_active count is stable.
4506 *
4507 * Also see the comment "Global load-average calculations".
4508 */
4509 static void calc_load_migrate(struct rq *rq)
4510 {
4511 long delta = calc_load_fold_active(rq);
4512 if (delta)
4513 atomic_long_add(delta, &calc_load_tasks);
4514 }
4515
4516 /*
4517 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4518 * try_to_wake_up()->select_task_rq().
4519 *
4520 * Called with rq->lock held even though we'er in stop_machine() and
4521 * there's no concurrency possible, we hold the required locks anyway
4522 * because of lock validation efforts.
4523 */
4524 static void migrate_tasks(unsigned int dead_cpu)
4525 {
4526 struct rq *rq = cpu_rq(dead_cpu);
4527 struct task_struct *next, *stop = rq->stop;
4528 int dest_cpu;
4529
4530 /*
4531 * Fudge the rq selection such that the below task selection loop
4532 * doesn't get stuck on the currently eligible stop task.
4533 *
4534 * We're currently inside stop_machine() and the rq is either stuck
4535 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4536 * either way we should never end up calling schedule() until we're
4537 * done here.
4538 */
4539 rq->stop = NULL;
4540
4541 /*
4542 * put_prev_task() and pick_next_task() sched
4543 * class method both need to have an up-to-date
4544 * value of rq->clock[_task]
4545 */
4546 update_rq_clock(rq);
4547
4548 for ( ; ; ) {
4549 /*
4550 * There's this thread running, bail when that's the only
4551 * remaining thread.
4552 */
4553 if (rq->nr_running == 1)
4554 break;
4555
4556 next = pick_next_task(rq);
4557 BUG_ON(!next);
4558 next->sched_class->put_prev_task(rq, next);
4559
4560 /* Find suitable destination for @next, with force if needed. */
4561 dest_cpu = select_fallback_rq(dead_cpu, next);
4562 raw_spin_unlock(&rq->lock);
4563
4564 __migrate_task(next, dead_cpu, dest_cpu);
4565
4566 raw_spin_lock(&rq->lock);
4567 }
4568
4569 rq->stop = stop;
4570 }
4571
4572 #endif /* CONFIG_HOTPLUG_CPU */
4573
4574 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4575
4576 static struct ctl_table sd_ctl_dir[] = {
4577 {
4578 .procname = "sched_domain",
4579 .mode = 0555,
4580 },
4581 {}
4582 };
4583
4584 static struct ctl_table sd_ctl_root[] = {
4585 {
4586 .procname = "kernel",
4587 .mode = 0555,
4588 .child = sd_ctl_dir,
4589 },
4590 {}
4591 };
4592
4593 static struct ctl_table *sd_alloc_ctl_entry(int n)
4594 {
4595 struct ctl_table *entry =
4596 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4597
4598 return entry;
4599 }
4600
4601 static void sd_free_ctl_entry(struct ctl_table **tablep)
4602 {
4603 struct ctl_table *entry;
4604
4605 /*
4606 * In the intermediate directories, both the child directory and
4607 * procname are dynamically allocated and could fail but the mode
4608 * will always be set. In the lowest directory the names are
4609 * static strings and all have proc handlers.
4610 */
4611 for (entry = *tablep; entry->mode; entry++) {
4612 if (entry->child)
4613 sd_free_ctl_entry(&entry->child);
4614 if (entry->proc_handler == NULL)
4615 kfree(entry->procname);
4616 }
4617
4618 kfree(*tablep);
4619 *tablep = NULL;
4620 }
4621
4622 static int min_load_idx = 0;
4623 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4624
4625 static void
4626 set_table_entry(struct ctl_table *entry,
4627 const char *procname, void *data, int maxlen,
4628 umode_t mode, proc_handler *proc_handler,
4629 bool load_idx)
4630 {
4631 entry->procname = procname;
4632 entry->data = data;
4633 entry->maxlen = maxlen;
4634 entry->mode = mode;
4635 entry->proc_handler = proc_handler;
4636
4637 if (load_idx) {
4638 entry->extra1 = &min_load_idx;
4639 entry->extra2 = &max_load_idx;
4640 }
4641 }
4642
4643 static struct ctl_table *
4644 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4645 {
4646 struct ctl_table *table = sd_alloc_ctl_entry(13);
4647
4648 if (table == NULL)
4649 return NULL;
4650
4651 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4652 sizeof(long), 0644, proc_doulongvec_minmax, false);
4653 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4654 sizeof(long), 0644, proc_doulongvec_minmax, false);
4655 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4656 sizeof(int), 0644, proc_dointvec_minmax, true);
4657 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4658 sizeof(int), 0644, proc_dointvec_minmax, true);
4659 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4660 sizeof(int), 0644, proc_dointvec_minmax, true);
4661 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4662 sizeof(int), 0644, proc_dointvec_minmax, true);
4663 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4664 sizeof(int), 0644, proc_dointvec_minmax, true);
4665 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4666 sizeof(int), 0644, proc_dointvec_minmax, false);
4667 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4668 sizeof(int), 0644, proc_dointvec_minmax, false);
4669 set_table_entry(&table[9], "cache_nice_tries",
4670 &sd->cache_nice_tries,
4671 sizeof(int), 0644, proc_dointvec_minmax, false);
4672 set_table_entry(&table[10], "flags", &sd->flags,
4673 sizeof(int), 0644, proc_dointvec_minmax, false);
4674 set_table_entry(&table[11], "name", sd->name,
4675 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4676 /* &table[12] is terminator */
4677
4678 return table;
4679 }
4680
4681 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4682 {
4683 struct ctl_table *entry, *table;
4684 struct sched_domain *sd;
4685 int domain_num = 0, i;
4686 char buf[32];
4687
4688 for_each_domain(cpu, sd)
4689 domain_num++;
4690 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4691 if (table == NULL)
4692 return NULL;
4693
4694 i = 0;
4695 for_each_domain(cpu, sd) {
4696 snprintf(buf, 32, "domain%d", i);
4697 entry->procname = kstrdup(buf, GFP_KERNEL);
4698 entry->mode = 0555;
4699 entry->child = sd_alloc_ctl_domain_table(sd);
4700 entry++;
4701 i++;
4702 }
4703 return table;
4704 }
4705
4706 static struct ctl_table_header *sd_sysctl_header;
4707 static void register_sched_domain_sysctl(void)
4708 {
4709 int i, cpu_num = num_possible_cpus();
4710 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4711 char buf[32];
4712
4713 WARN_ON(sd_ctl_dir[0].child);
4714 sd_ctl_dir[0].child = entry;
4715
4716 if (entry == NULL)
4717 return;
4718
4719 for_each_possible_cpu(i) {
4720 snprintf(buf, 32, "cpu%d", i);
4721 entry->procname = kstrdup(buf, GFP_KERNEL);
4722 entry->mode = 0555;
4723 entry->child = sd_alloc_ctl_cpu_table(i);
4724 entry++;
4725 }
4726
4727 WARN_ON(sd_sysctl_header);
4728 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4729 }
4730
4731 /* may be called multiple times per register */
4732 static void unregister_sched_domain_sysctl(void)
4733 {
4734 if (sd_sysctl_header)
4735 unregister_sysctl_table(sd_sysctl_header);
4736 sd_sysctl_header = NULL;
4737 if (sd_ctl_dir[0].child)
4738 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4739 }
4740 #else
4741 static void register_sched_domain_sysctl(void)
4742 {
4743 }
4744 static void unregister_sched_domain_sysctl(void)
4745 {
4746 }
4747 #endif
4748
4749 static void set_rq_online(struct rq *rq)
4750 {
4751 if (!rq->online) {
4752 const struct sched_class *class;
4753
4754 cpumask_set_cpu(rq->cpu, rq->rd->online);
4755 rq->online = 1;
4756
4757 for_each_class(class) {
4758 if (class->rq_online)
4759 class->rq_online(rq);
4760 }
4761 }
4762 }
4763
4764 static void set_rq_offline(struct rq *rq)
4765 {
4766 if (rq->online) {
4767 const struct sched_class *class;
4768
4769 for_each_class(class) {
4770 if (class->rq_offline)
4771 class->rq_offline(rq);
4772 }
4773
4774 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4775 rq->online = 0;
4776 }
4777 }
4778
4779 /*
4780 * migration_call - callback that gets triggered when a CPU is added.
4781 * Here we can start up the necessary migration thread for the new CPU.
4782 */
4783 static int
4784 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4785 {
4786 int cpu = (long)hcpu;
4787 unsigned long flags;
4788 struct rq *rq = cpu_rq(cpu);
4789
4790 switch (action & ~CPU_TASKS_FROZEN) {
4791
4792 case CPU_UP_PREPARE:
4793 rq->calc_load_update = calc_load_update;
4794 break;
4795
4796 case CPU_ONLINE:
4797 /* Update our root-domain */
4798 raw_spin_lock_irqsave(&rq->lock, flags);
4799 if (rq->rd) {
4800 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4801
4802 set_rq_online(rq);
4803 }
4804 raw_spin_unlock_irqrestore(&rq->lock, flags);
4805 break;
4806
4807 #ifdef CONFIG_HOTPLUG_CPU
4808 case CPU_DYING:
4809 sched_ttwu_pending();
4810 /* Update our root-domain */
4811 raw_spin_lock_irqsave(&rq->lock, flags);
4812 if (rq->rd) {
4813 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4814 set_rq_offline(rq);
4815 }
4816 migrate_tasks(cpu);
4817 BUG_ON(rq->nr_running != 1); /* the migration thread */
4818 raw_spin_unlock_irqrestore(&rq->lock, flags);
4819 break;
4820
4821 case CPU_DEAD:
4822 calc_load_migrate(rq);
4823 break;
4824 #endif
4825 }
4826
4827 update_max_interval();
4828
4829 return NOTIFY_OK;
4830 }
4831
4832 /*
4833 * Register at high priority so that task migration (migrate_all_tasks)
4834 * happens before everything else. This has to be lower priority than
4835 * the notifier in the perf_event subsystem, though.
4836 */
4837 static struct notifier_block migration_notifier = {
4838 .notifier_call = migration_call,
4839 .priority = CPU_PRI_MIGRATION,
4840 };
4841
4842 static int sched_cpu_active(struct notifier_block *nfb,
4843 unsigned long action, void *hcpu)
4844 {
4845 switch (action & ~CPU_TASKS_FROZEN) {
4846 case CPU_STARTING:
4847 case CPU_DOWN_FAILED:
4848 set_cpu_active((long)hcpu, true);
4849 return NOTIFY_OK;
4850 default:
4851 return NOTIFY_DONE;
4852 }
4853 }
4854
4855 static int sched_cpu_inactive(struct notifier_block *nfb,
4856 unsigned long action, void *hcpu)
4857 {
4858 switch (action & ~CPU_TASKS_FROZEN) {
4859 case CPU_DOWN_PREPARE:
4860 set_cpu_active((long)hcpu, false);
4861 return NOTIFY_OK;
4862 default:
4863 return NOTIFY_DONE;
4864 }
4865 }
4866
4867 static int __init migration_init(void)
4868 {
4869 void *cpu = (void *)(long)smp_processor_id();
4870 int err;
4871
4872 /* Initialize migration for the boot CPU */
4873 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4874 BUG_ON(err == NOTIFY_BAD);
4875 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4876 register_cpu_notifier(&migration_notifier);
4877
4878 /* Register cpu active notifiers */
4879 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4880 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4881
4882 return 0;
4883 }
4884 early_initcall(migration_init);
4885 #endif
4886
4887 #ifdef CONFIG_SMP
4888
4889 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4890
4891 #ifdef CONFIG_SCHED_DEBUG
4892
4893 static __read_mostly int sched_debug_enabled;
4894
4895 static int __init sched_debug_setup(char *str)
4896 {
4897 sched_debug_enabled = 1;
4898
4899 return 0;
4900 }
4901 early_param("sched_debug", sched_debug_setup);
4902
4903 static inline bool sched_debug(void)
4904 {
4905 return sched_debug_enabled;
4906 }
4907
4908 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4909 struct cpumask *groupmask)
4910 {
4911 struct sched_group *group = sd->groups;
4912 char str[256];
4913
4914 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4915 cpumask_clear(groupmask);
4916
4917 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4918
4919 if (!(sd->flags & SD_LOAD_BALANCE)) {
4920 printk("does not load-balance\n");
4921 if (sd->parent)
4922 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4923 " has parent");
4924 return -1;
4925 }
4926
4927 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4928
4929 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4930 printk(KERN_ERR "ERROR: domain->span does not contain "
4931 "CPU%d\n", cpu);
4932 }
4933 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4934 printk(KERN_ERR "ERROR: domain->groups does not contain"
4935 " CPU%d\n", cpu);
4936 }
4937
4938 printk(KERN_DEBUG "%*s groups:", level + 1, "");
4939 do {
4940 if (!group) {
4941 printk("\n");
4942 printk(KERN_ERR "ERROR: group is NULL\n");
4943 break;
4944 }
4945
4946 /*
4947 * Even though we initialize ->power to something semi-sane,
4948 * we leave power_orig unset. This allows us to detect if
4949 * domain iteration is still funny without causing /0 traps.
4950 */
4951 if (!group->sgp->power_orig) {
4952 printk(KERN_CONT "\n");
4953 printk(KERN_ERR "ERROR: domain->cpu_power not "
4954 "set\n");
4955 break;
4956 }
4957
4958 if (!cpumask_weight(sched_group_cpus(group))) {
4959 printk(KERN_CONT "\n");
4960 printk(KERN_ERR "ERROR: empty group\n");
4961 break;
4962 }
4963
4964 if (!(sd->flags & SD_OVERLAP) &&
4965 cpumask_intersects(groupmask, sched_group_cpus(group))) {
4966 printk(KERN_CONT "\n");
4967 printk(KERN_ERR "ERROR: repeated CPUs\n");
4968 break;
4969 }
4970
4971 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4972
4973 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4974
4975 printk(KERN_CONT " %s", str);
4976 if (group->sgp->power != SCHED_POWER_SCALE) {
4977 printk(KERN_CONT " (cpu_power = %d)",
4978 group->sgp->power);
4979 }
4980
4981 group = group->next;
4982 } while (group != sd->groups);
4983 printk(KERN_CONT "\n");
4984
4985 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4986 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4987
4988 if (sd->parent &&
4989 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4990 printk(KERN_ERR "ERROR: parent span is not a superset "
4991 "of domain->span\n");
4992 return 0;
4993 }
4994
4995 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4996 {
4997 int level = 0;
4998
4999 if (!sched_debug_enabled)
5000 return;
5001
5002 if (!sd) {
5003 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5004 return;
5005 }
5006
5007 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5008
5009 for (;;) {
5010 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5011 break;
5012 level++;
5013 sd = sd->parent;
5014 if (!sd)
5015 break;
5016 }
5017 }
5018 #else /* !CONFIG_SCHED_DEBUG */
5019 # define sched_domain_debug(sd, cpu) do { } while (0)
5020 static inline bool sched_debug(void)
5021 {
5022 return false;
5023 }
5024 #endif /* CONFIG_SCHED_DEBUG */
5025
5026 static int sd_degenerate(struct sched_domain *sd)
5027 {
5028 if (cpumask_weight(sched_domain_span(sd)) == 1)
5029 return 1;
5030
5031 /* Following flags need at least 2 groups */
5032 if (sd->flags & (SD_LOAD_BALANCE |
5033 SD_BALANCE_NEWIDLE |
5034 SD_BALANCE_FORK |
5035 SD_BALANCE_EXEC |
5036 SD_SHARE_CPUPOWER |
5037 SD_SHARE_PKG_RESOURCES)) {
5038 if (sd->groups != sd->groups->next)
5039 return 0;
5040 }
5041
5042 /* Following flags don't use groups */
5043 if (sd->flags & (SD_WAKE_AFFINE))
5044 return 0;
5045
5046 return 1;
5047 }
5048
5049 static int
5050 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5051 {
5052 unsigned long cflags = sd->flags, pflags = parent->flags;
5053
5054 if (sd_degenerate(parent))
5055 return 1;
5056
5057 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5058 return 0;
5059
5060 /* Flags needing groups don't count if only 1 group in parent */
5061 if (parent->groups == parent->groups->next) {
5062 pflags &= ~(SD_LOAD_BALANCE |
5063 SD_BALANCE_NEWIDLE |
5064 SD_BALANCE_FORK |
5065 SD_BALANCE_EXEC |
5066 SD_SHARE_CPUPOWER |
5067 SD_SHARE_PKG_RESOURCES |
5068 SD_PREFER_SIBLING);
5069 if (nr_node_ids == 1)
5070 pflags &= ~SD_SERIALIZE;
5071 }
5072 if (~cflags & pflags)
5073 return 0;
5074
5075 return 1;
5076 }
5077
5078 static void free_rootdomain(struct rcu_head *rcu)
5079 {
5080 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5081
5082 cpupri_cleanup(&rd->cpupri);
5083 free_cpumask_var(rd->rto_mask);
5084 free_cpumask_var(rd->online);
5085 free_cpumask_var(rd->span);
5086 kfree(rd);
5087 }
5088
5089 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5090 {
5091 struct root_domain *old_rd = NULL;
5092 unsigned long flags;
5093
5094 raw_spin_lock_irqsave(&rq->lock, flags);
5095
5096 if (rq->rd) {
5097 old_rd = rq->rd;
5098
5099 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5100 set_rq_offline(rq);
5101
5102 cpumask_clear_cpu(rq->cpu, old_rd->span);
5103
5104 /*
5105 * If we dont want to free the old_rt yet then
5106 * set old_rd to NULL to skip the freeing later
5107 * in this function:
5108 */
5109 if (!atomic_dec_and_test(&old_rd->refcount))
5110 old_rd = NULL;
5111 }
5112
5113 atomic_inc(&rd->refcount);
5114 rq->rd = rd;
5115
5116 cpumask_set_cpu(rq->cpu, rd->span);
5117 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5118 set_rq_online(rq);
5119
5120 raw_spin_unlock_irqrestore(&rq->lock, flags);
5121
5122 if (old_rd)
5123 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5124 }
5125
5126 static int init_rootdomain(struct root_domain *rd)
5127 {
5128 memset(rd, 0, sizeof(*rd));
5129
5130 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5131 goto out;
5132 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5133 goto free_span;
5134 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5135 goto free_online;
5136
5137 if (cpupri_init(&rd->cpupri) != 0)
5138 goto free_rto_mask;
5139 return 0;
5140
5141 free_rto_mask:
5142 free_cpumask_var(rd->rto_mask);
5143 free_online:
5144 free_cpumask_var(rd->online);
5145 free_span:
5146 free_cpumask_var(rd->span);
5147 out:
5148 return -ENOMEM;
5149 }
5150
5151 /*
5152 * By default the system creates a single root-domain with all cpus as
5153 * members (mimicking the global state we have today).
5154 */
5155 struct root_domain def_root_domain;
5156
5157 static void init_defrootdomain(void)
5158 {
5159 init_rootdomain(&def_root_domain);
5160
5161 atomic_set(&def_root_domain.refcount, 1);
5162 }
5163
5164 static struct root_domain *alloc_rootdomain(void)
5165 {
5166 struct root_domain *rd;
5167
5168 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5169 if (!rd)
5170 return NULL;
5171
5172 if (init_rootdomain(rd) != 0) {
5173 kfree(rd);
5174 return NULL;
5175 }
5176
5177 return rd;
5178 }
5179
5180 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5181 {
5182 struct sched_group *tmp, *first;
5183
5184 if (!sg)
5185 return;
5186
5187 first = sg;
5188 do {
5189 tmp = sg->next;
5190
5191 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5192 kfree(sg->sgp);
5193
5194 kfree(sg);
5195 sg = tmp;
5196 } while (sg != first);
5197 }
5198
5199 static void free_sched_domain(struct rcu_head *rcu)
5200 {
5201 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5202
5203 /*
5204 * If its an overlapping domain it has private groups, iterate and
5205 * nuke them all.
5206 */
5207 if (sd->flags & SD_OVERLAP) {
5208 free_sched_groups(sd->groups, 1);
5209 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5210 kfree(sd->groups->sgp);
5211 kfree(sd->groups);
5212 }
5213 kfree(sd);
5214 }
5215
5216 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5217 {
5218 call_rcu(&sd->rcu, free_sched_domain);
5219 }
5220
5221 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5222 {
5223 for (; sd; sd = sd->parent)
5224 destroy_sched_domain(sd, cpu);
5225 }
5226
5227 /*
5228 * Keep a special pointer to the highest sched_domain that has
5229 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5230 * allows us to avoid some pointer chasing select_idle_sibling().
5231 *
5232 * Also keep a unique ID per domain (we use the first cpu number in
5233 * the cpumask of the domain), this allows us to quickly tell if
5234 * two cpus are in the same cache domain, see cpus_share_cache().
5235 */
5236 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5237 DEFINE_PER_CPU(int, sd_llc_size);
5238 DEFINE_PER_CPU(int, sd_llc_id);
5239 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5240
5241 static void update_top_cache_domain(int cpu)
5242 {
5243 struct sched_domain *sd;
5244 int id = cpu;
5245 int size = 1;
5246
5247 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5248 if (sd) {
5249 id = cpumask_first(sched_domain_span(sd));
5250 size = cpumask_weight(sched_domain_span(sd));
5251 }
5252
5253 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5254 per_cpu(sd_llc_size, cpu) = size;
5255 per_cpu(sd_llc_id, cpu) = id;
5256
5257 sd = lowest_flag_domain(cpu, SD_NUMA);
5258 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5259 }
5260
5261 /*
5262 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5263 * hold the hotplug lock.
5264 */
5265 static void
5266 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5267 {
5268 struct rq *rq = cpu_rq(cpu);
5269 struct sched_domain *tmp;
5270
5271 /* Remove the sched domains which do not contribute to scheduling. */
5272 for (tmp = sd; tmp; ) {
5273 struct sched_domain *parent = tmp->parent;
5274 if (!parent)
5275 break;
5276
5277 if (sd_parent_degenerate(tmp, parent)) {
5278 tmp->parent = parent->parent;
5279 if (parent->parent)
5280 parent->parent->child = tmp;
5281 /*
5282 * Transfer SD_PREFER_SIBLING down in case of a
5283 * degenerate parent; the spans match for this
5284 * so the property transfers.
5285 */
5286 if (parent->flags & SD_PREFER_SIBLING)
5287 tmp->flags |= SD_PREFER_SIBLING;
5288 destroy_sched_domain(parent, cpu);
5289 } else
5290 tmp = tmp->parent;
5291 }
5292
5293 if (sd && sd_degenerate(sd)) {
5294 tmp = sd;
5295 sd = sd->parent;
5296 destroy_sched_domain(tmp, cpu);
5297 if (sd)
5298 sd->child = NULL;
5299 }
5300
5301 sched_domain_debug(sd, cpu);
5302
5303 rq_attach_root(rq, rd);
5304 tmp = rq->sd;
5305 rcu_assign_pointer(rq->sd, sd);
5306 destroy_sched_domains(tmp, cpu);
5307
5308 update_top_cache_domain(cpu);
5309 }
5310
5311 /* cpus with isolated domains */
5312 static cpumask_var_t cpu_isolated_map;
5313
5314 /* Setup the mask of cpus configured for isolated domains */
5315 static int __init isolated_cpu_setup(char *str)
5316 {
5317 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5318 cpulist_parse(str, cpu_isolated_map);
5319 return 1;
5320 }
5321
5322 __setup("isolcpus=", isolated_cpu_setup);
5323
5324 static const struct cpumask *cpu_cpu_mask(int cpu)
5325 {
5326 return cpumask_of_node(cpu_to_node(cpu));
5327 }
5328
5329 struct sd_data {
5330 struct sched_domain **__percpu sd;
5331 struct sched_group **__percpu sg;
5332 struct sched_group_power **__percpu sgp;
5333 };
5334
5335 struct s_data {
5336 struct sched_domain ** __percpu sd;
5337 struct root_domain *rd;
5338 };
5339
5340 enum s_alloc {
5341 sa_rootdomain,
5342 sa_sd,
5343 sa_sd_storage,
5344 sa_none,
5345 };
5346
5347 struct sched_domain_topology_level;
5348
5349 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5350 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5351
5352 #define SDTL_OVERLAP 0x01
5353
5354 struct sched_domain_topology_level {
5355 sched_domain_init_f init;
5356 sched_domain_mask_f mask;
5357 int flags;
5358 int numa_level;
5359 struct sd_data data;
5360 };
5361
5362 /*
5363 * Build an iteration mask that can exclude certain CPUs from the upwards
5364 * domain traversal.
5365 *
5366 * Asymmetric node setups can result in situations where the domain tree is of
5367 * unequal depth, make sure to skip domains that already cover the entire
5368 * range.
5369 *
5370 * In that case build_sched_domains() will have terminated the iteration early
5371 * and our sibling sd spans will be empty. Domains should always include the
5372 * cpu they're built on, so check that.
5373 *
5374 */
5375 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5376 {
5377 const struct cpumask *span = sched_domain_span(sd);
5378 struct sd_data *sdd = sd->private;
5379 struct sched_domain *sibling;
5380 int i;
5381
5382 for_each_cpu(i, span) {
5383 sibling = *per_cpu_ptr(sdd->sd, i);
5384 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5385 continue;
5386
5387 cpumask_set_cpu(i, sched_group_mask(sg));
5388 }
5389 }
5390
5391 /*
5392 * Return the canonical balance cpu for this group, this is the first cpu
5393 * of this group that's also in the iteration mask.
5394 */
5395 int group_balance_cpu(struct sched_group *sg)
5396 {
5397 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5398 }
5399
5400 static int
5401 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5402 {
5403 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5404 const struct cpumask *span = sched_domain_span(sd);
5405 struct cpumask *covered = sched_domains_tmpmask;
5406 struct sd_data *sdd = sd->private;
5407 struct sched_domain *child;
5408 int i;
5409
5410 cpumask_clear(covered);
5411
5412 for_each_cpu(i, span) {
5413 struct cpumask *sg_span;
5414
5415 if (cpumask_test_cpu(i, covered))
5416 continue;
5417
5418 child = *per_cpu_ptr(sdd->sd, i);
5419
5420 /* See the comment near build_group_mask(). */
5421 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5422 continue;
5423
5424 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5425 GFP_KERNEL, cpu_to_node(cpu));
5426
5427 if (!sg)
5428 goto fail;
5429
5430 sg_span = sched_group_cpus(sg);
5431 if (child->child) {
5432 child = child->child;
5433 cpumask_copy(sg_span, sched_domain_span(child));
5434 } else
5435 cpumask_set_cpu(i, sg_span);
5436
5437 cpumask_or(covered, covered, sg_span);
5438
5439 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5440 if (atomic_inc_return(&sg->sgp->ref) == 1)
5441 build_group_mask(sd, sg);
5442
5443 /*
5444 * Initialize sgp->power such that even if we mess up the
5445 * domains and no possible iteration will get us here, we won't
5446 * die on a /0 trap.
5447 */
5448 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5449
5450 /*
5451 * Make sure the first group of this domain contains the
5452 * canonical balance cpu. Otherwise the sched_domain iteration
5453 * breaks. See update_sg_lb_stats().
5454 */
5455 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5456 group_balance_cpu(sg) == cpu)
5457 groups = sg;
5458
5459 if (!first)
5460 first = sg;
5461 if (last)
5462 last->next = sg;
5463 last = sg;
5464 last->next = first;
5465 }
5466 sd->groups = groups;
5467
5468 return 0;
5469
5470 fail:
5471 free_sched_groups(first, 0);
5472
5473 return -ENOMEM;
5474 }
5475
5476 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5477 {
5478 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5479 struct sched_domain *child = sd->child;
5480
5481 if (child)
5482 cpu = cpumask_first(sched_domain_span(child));
5483
5484 if (sg) {
5485 *sg = *per_cpu_ptr(sdd->sg, cpu);
5486 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5487 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5488 }
5489
5490 return cpu;
5491 }
5492
5493 /*
5494 * build_sched_groups will build a circular linked list of the groups
5495 * covered by the given span, and will set each group's ->cpumask correctly,
5496 * and ->cpu_power to 0.
5497 *
5498 * Assumes the sched_domain tree is fully constructed
5499 */
5500 static int
5501 build_sched_groups(struct sched_domain *sd, int cpu)
5502 {
5503 struct sched_group *first = NULL, *last = NULL;
5504 struct sd_data *sdd = sd->private;
5505 const struct cpumask *span = sched_domain_span(sd);
5506 struct cpumask *covered;
5507 int i;
5508
5509 get_group(cpu, sdd, &sd->groups);
5510 atomic_inc(&sd->groups->ref);
5511
5512 if (cpu != cpumask_first(span))
5513 return 0;
5514
5515 lockdep_assert_held(&sched_domains_mutex);
5516 covered = sched_domains_tmpmask;
5517
5518 cpumask_clear(covered);
5519
5520 for_each_cpu(i, span) {
5521 struct sched_group *sg;
5522 int group, j;
5523
5524 if (cpumask_test_cpu(i, covered))
5525 continue;
5526
5527 group = get_group(i, sdd, &sg);
5528 cpumask_clear(sched_group_cpus(sg));
5529 sg->sgp->power = 0;
5530 cpumask_setall(sched_group_mask(sg));
5531
5532 for_each_cpu(j, span) {
5533 if (get_group(j, sdd, NULL) != group)
5534 continue;
5535
5536 cpumask_set_cpu(j, covered);
5537 cpumask_set_cpu(j, sched_group_cpus(sg));
5538 }
5539
5540 if (!first)
5541 first = sg;
5542 if (last)
5543 last->next = sg;
5544 last = sg;
5545 }
5546 last->next = first;
5547
5548 return 0;
5549 }
5550
5551 /*
5552 * Initialize sched groups cpu_power.
5553 *
5554 * cpu_power indicates the capacity of sched group, which is used while
5555 * distributing the load between different sched groups in a sched domain.
5556 * Typically cpu_power for all the groups in a sched domain will be same unless
5557 * there are asymmetries in the topology. If there are asymmetries, group
5558 * having more cpu_power will pickup more load compared to the group having
5559 * less cpu_power.
5560 */
5561 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5562 {
5563 struct sched_group *sg = sd->groups;
5564
5565 WARN_ON(!sg);
5566
5567 do {
5568 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5569 sg = sg->next;
5570 } while (sg != sd->groups);
5571
5572 if (cpu != group_balance_cpu(sg))
5573 return;
5574
5575 update_group_power(sd, cpu);
5576 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5577 }
5578
5579 int __weak arch_sd_sibling_asym_packing(void)
5580 {
5581 return 0*SD_ASYM_PACKING;
5582 }
5583
5584 /*
5585 * Initializers for schedule domains
5586 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5587 */
5588
5589 #ifdef CONFIG_SCHED_DEBUG
5590 # define SD_INIT_NAME(sd, type) sd->name = #type
5591 #else
5592 # define SD_INIT_NAME(sd, type) do { } while (0)
5593 #endif
5594
5595 #define SD_INIT_FUNC(type) \
5596 static noinline struct sched_domain * \
5597 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5598 { \
5599 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5600 *sd = SD_##type##_INIT; \
5601 SD_INIT_NAME(sd, type); \
5602 sd->private = &tl->data; \
5603 return sd; \
5604 }
5605
5606 SD_INIT_FUNC(CPU)
5607 #ifdef CONFIG_SCHED_SMT
5608 SD_INIT_FUNC(SIBLING)
5609 #endif
5610 #ifdef CONFIG_SCHED_MC
5611 SD_INIT_FUNC(MC)
5612 #endif
5613 #ifdef CONFIG_SCHED_BOOK
5614 SD_INIT_FUNC(BOOK)
5615 #endif
5616
5617 static int default_relax_domain_level = -1;
5618 int sched_domain_level_max;
5619
5620 static int __init setup_relax_domain_level(char *str)
5621 {
5622 if (kstrtoint(str, 0, &default_relax_domain_level))
5623 pr_warn("Unable to set relax_domain_level\n");
5624
5625 return 1;
5626 }
5627 __setup("relax_domain_level=", setup_relax_domain_level);
5628
5629 static void set_domain_attribute(struct sched_domain *sd,
5630 struct sched_domain_attr *attr)
5631 {
5632 int request;
5633
5634 if (!attr || attr->relax_domain_level < 0) {
5635 if (default_relax_domain_level < 0)
5636 return;
5637 else
5638 request = default_relax_domain_level;
5639 } else
5640 request = attr->relax_domain_level;
5641 if (request < sd->level) {
5642 /* turn off idle balance on this domain */
5643 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5644 } else {
5645 /* turn on idle balance on this domain */
5646 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5647 }
5648 }
5649
5650 static void __sdt_free(const struct cpumask *cpu_map);
5651 static int __sdt_alloc(const struct cpumask *cpu_map);
5652
5653 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5654 const struct cpumask *cpu_map)
5655 {
5656 switch (what) {
5657 case sa_rootdomain:
5658 if (!atomic_read(&d->rd->refcount))
5659 free_rootdomain(&d->rd->rcu); /* fall through */
5660 case sa_sd:
5661 free_percpu(d->sd); /* fall through */
5662 case sa_sd_storage:
5663 __sdt_free(cpu_map); /* fall through */
5664 case sa_none:
5665 break;
5666 }
5667 }
5668
5669 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5670 const struct cpumask *cpu_map)
5671 {
5672 memset(d, 0, sizeof(*d));
5673
5674 if (__sdt_alloc(cpu_map))
5675 return sa_sd_storage;
5676 d->sd = alloc_percpu(struct sched_domain *);
5677 if (!d->sd)
5678 return sa_sd_storage;
5679 d->rd = alloc_rootdomain();
5680 if (!d->rd)
5681 return sa_sd;
5682 return sa_rootdomain;
5683 }
5684
5685 /*
5686 * NULL the sd_data elements we've used to build the sched_domain and
5687 * sched_group structure so that the subsequent __free_domain_allocs()
5688 * will not free the data we're using.
5689 */
5690 static void claim_allocations(int cpu, struct sched_domain *sd)
5691 {
5692 struct sd_data *sdd = sd->private;
5693
5694 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5695 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5696
5697 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5698 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5699
5700 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5701 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5702 }
5703
5704 #ifdef CONFIG_SCHED_SMT
5705 static const struct cpumask *cpu_smt_mask(int cpu)
5706 {
5707 return topology_thread_cpumask(cpu);
5708 }
5709 #endif
5710
5711 /*
5712 * Topology list, bottom-up.
5713 */
5714 static struct sched_domain_topology_level default_topology[] = {
5715 #ifdef CONFIG_SCHED_SMT
5716 { sd_init_SIBLING, cpu_smt_mask, },
5717 #endif
5718 #ifdef CONFIG_SCHED_MC
5719 { sd_init_MC, cpu_coregroup_mask, },
5720 #endif
5721 #ifdef CONFIG_SCHED_BOOK
5722 { sd_init_BOOK, cpu_book_mask, },
5723 #endif
5724 { sd_init_CPU, cpu_cpu_mask, },
5725 { NULL, },
5726 };
5727
5728 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5729
5730 #define for_each_sd_topology(tl) \
5731 for (tl = sched_domain_topology; tl->init; tl++)
5732
5733 #ifdef CONFIG_NUMA
5734
5735 static int sched_domains_numa_levels;
5736 static int *sched_domains_numa_distance;
5737 static struct cpumask ***sched_domains_numa_masks;
5738 static int sched_domains_curr_level;
5739
5740 static inline int sd_local_flags(int level)
5741 {
5742 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5743 return 0;
5744
5745 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5746 }
5747
5748 static struct sched_domain *
5749 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5750 {
5751 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5752 int level = tl->numa_level;
5753 int sd_weight = cpumask_weight(
5754 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5755
5756 *sd = (struct sched_domain){
5757 .min_interval = sd_weight,
5758 .max_interval = 2*sd_weight,
5759 .busy_factor = 32,
5760 .imbalance_pct = 125,
5761 .cache_nice_tries = 2,
5762 .busy_idx = 3,
5763 .idle_idx = 2,
5764 .newidle_idx = 0,
5765 .wake_idx = 0,
5766 .forkexec_idx = 0,
5767
5768 .flags = 1*SD_LOAD_BALANCE
5769 | 1*SD_BALANCE_NEWIDLE
5770 | 0*SD_BALANCE_EXEC
5771 | 0*SD_BALANCE_FORK
5772 | 0*SD_BALANCE_WAKE
5773 | 0*SD_WAKE_AFFINE
5774 | 0*SD_SHARE_CPUPOWER
5775 | 0*SD_SHARE_PKG_RESOURCES
5776 | 1*SD_SERIALIZE
5777 | 0*SD_PREFER_SIBLING
5778 | 1*SD_NUMA
5779 | sd_local_flags(level)
5780 ,
5781 .last_balance = jiffies,
5782 .balance_interval = sd_weight,
5783 };
5784 SD_INIT_NAME(sd, NUMA);
5785 sd->private = &tl->data;
5786
5787 /*
5788 * Ugly hack to pass state to sd_numa_mask()...
5789 */
5790 sched_domains_curr_level = tl->numa_level;
5791
5792 return sd;
5793 }
5794
5795 static const struct cpumask *sd_numa_mask(int cpu)
5796 {
5797 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5798 }
5799
5800 static void sched_numa_warn(const char *str)
5801 {
5802 static int done = false;
5803 int i,j;
5804
5805 if (done)
5806 return;
5807
5808 done = true;
5809
5810 printk(KERN_WARNING "ERROR: %s\n\n", str);
5811
5812 for (i = 0; i < nr_node_ids; i++) {
5813 printk(KERN_WARNING " ");
5814 for (j = 0; j < nr_node_ids; j++)
5815 printk(KERN_CONT "%02d ", node_distance(i,j));
5816 printk(KERN_CONT "\n");
5817 }
5818 printk(KERN_WARNING "\n");
5819 }
5820
5821 static bool find_numa_distance(int distance)
5822 {
5823 int i;
5824
5825 if (distance == node_distance(0, 0))
5826 return true;
5827
5828 for (i = 0; i < sched_domains_numa_levels; i++) {
5829 if (sched_domains_numa_distance[i] == distance)
5830 return true;
5831 }
5832
5833 return false;
5834 }
5835
5836 static void sched_init_numa(void)
5837 {
5838 int next_distance, curr_distance = node_distance(0, 0);
5839 struct sched_domain_topology_level *tl;
5840 int level = 0;
5841 int i, j, k;
5842
5843 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5844 if (!sched_domains_numa_distance)
5845 return;
5846
5847 /*
5848 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5849 * unique distances in the node_distance() table.
5850 *
5851 * Assumes node_distance(0,j) includes all distances in
5852 * node_distance(i,j) in order to avoid cubic time.
5853 */
5854 next_distance = curr_distance;
5855 for (i = 0; i < nr_node_ids; i++) {
5856 for (j = 0; j < nr_node_ids; j++) {
5857 for (k = 0; k < nr_node_ids; k++) {
5858 int distance = node_distance(i, k);
5859
5860 if (distance > curr_distance &&
5861 (distance < next_distance ||
5862 next_distance == curr_distance))
5863 next_distance = distance;
5864
5865 /*
5866 * While not a strong assumption it would be nice to know
5867 * about cases where if node A is connected to B, B is not
5868 * equally connected to A.
5869 */
5870 if (sched_debug() && node_distance(k, i) != distance)
5871 sched_numa_warn("Node-distance not symmetric");
5872
5873 if (sched_debug() && i && !find_numa_distance(distance))
5874 sched_numa_warn("Node-0 not representative");
5875 }
5876 if (next_distance != curr_distance) {
5877 sched_domains_numa_distance[level++] = next_distance;
5878 sched_domains_numa_levels = level;
5879 curr_distance = next_distance;
5880 } else break;
5881 }
5882
5883 /*
5884 * In case of sched_debug() we verify the above assumption.
5885 */
5886 if (!sched_debug())
5887 break;
5888 }
5889 /*
5890 * 'level' contains the number of unique distances, excluding the
5891 * identity distance node_distance(i,i).
5892 *
5893 * The sched_domains_numa_distance[] array includes the actual distance
5894 * numbers.
5895 */
5896
5897 /*
5898 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5899 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5900 * the array will contain less then 'level' members. This could be
5901 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5902 * in other functions.
5903 *
5904 * We reset it to 'level' at the end of this function.
5905 */
5906 sched_domains_numa_levels = 0;
5907
5908 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5909 if (!sched_domains_numa_masks)
5910 return;
5911
5912 /*
5913 * Now for each level, construct a mask per node which contains all
5914 * cpus of nodes that are that many hops away from us.
5915 */
5916 for (i = 0; i < level; i++) {
5917 sched_domains_numa_masks[i] =
5918 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5919 if (!sched_domains_numa_masks[i])
5920 return;
5921
5922 for (j = 0; j < nr_node_ids; j++) {
5923 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5924 if (!mask)
5925 return;
5926
5927 sched_domains_numa_masks[i][j] = mask;
5928
5929 for (k = 0; k < nr_node_ids; k++) {
5930 if (node_distance(j, k) > sched_domains_numa_distance[i])
5931 continue;
5932
5933 cpumask_or(mask, mask, cpumask_of_node(k));
5934 }
5935 }
5936 }
5937
5938 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5939 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5940 if (!tl)
5941 return;
5942
5943 /*
5944 * Copy the default topology bits..
5945 */
5946 for (i = 0; default_topology[i].init; i++)
5947 tl[i] = default_topology[i];
5948
5949 /*
5950 * .. and append 'j' levels of NUMA goodness.
5951 */
5952 for (j = 0; j < level; i++, j++) {
5953 tl[i] = (struct sched_domain_topology_level){
5954 .init = sd_numa_init,
5955 .mask = sd_numa_mask,
5956 .flags = SDTL_OVERLAP,
5957 .numa_level = j,
5958 };
5959 }
5960
5961 sched_domain_topology = tl;
5962
5963 sched_domains_numa_levels = level;
5964 }
5965
5966 static void sched_domains_numa_masks_set(int cpu)
5967 {
5968 int i, j;
5969 int node = cpu_to_node(cpu);
5970
5971 for (i = 0; i < sched_domains_numa_levels; i++) {
5972 for (j = 0; j < nr_node_ids; j++) {
5973 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5974 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5975 }
5976 }
5977 }
5978
5979 static void sched_domains_numa_masks_clear(int cpu)
5980 {
5981 int i, j;
5982 for (i = 0; i < sched_domains_numa_levels; i++) {
5983 for (j = 0; j < nr_node_ids; j++)
5984 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5985 }
5986 }
5987
5988 /*
5989 * Update sched_domains_numa_masks[level][node] array when new cpus
5990 * are onlined.
5991 */
5992 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5993 unsigned long action,
5994 void *hcpu)
5995 {
5996 int cpu = (long)hcpu;
5997
5998 switch (action & ~CPU_TASKS_FROZEN) {
5999 case CPU_ONLINE:
6000 sched_domains_numa_masks_set(cpu);
6001 break;
6002
6003 case CPU_DEAD:
6004 sched_domains_numa_masks_clear(cpu);
6005 break;
6006
6007 default:
6008 return NOTIFY_DONE;
6009 }
6010
6011 return NOTIFY_OK;
6012 }
6013 #else
6014 static inline void sched_init_numa(void)
6015 {
6016 }
6017
6018 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6019 unsigned long action,
6020 void *hcpu)
6021 {
6022 return 0;
6023 }
6024 #endif /* CONFIG_NUMA */
6025
6026 static int __sdt_alloc(const struct cpumask *cpu_map)
6027 {
6028 struct sched_domain_topology_level *tl;
6029 int j;
6030
6031 for_each_sd_topology(tl) {
6032 struct sd_data *sdd = &tl->data;
6033
6034 sdd->sd = alloc_percpu(struct sched_domain *);
6035 if (!sdd->sd)
6036 return -ENOMEM;
6037
6038 sdd->sg = alloc_percpu(struct sched_group *);
6039 if (!sdd->sg)
6040 return -ENOMEM;
6041
6042 sdd->sgp = alloc_percpu(struct sched_group_power *);
6043 if (!sdd->sgp)
6044 return -ENOMEM;
6045
6046 for_each_cpu(j, cpu_map) {
6047 struct sched_domain *sd;
6048 struct sched_group *sg;
6049 struct sched_group_power *sgp;
6050
6051 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6052 GFP_KERNEL, cpu_to_node(j));
6053 if (!sd)
6054 return -ENOMEM;
6055
6056 *per_cpu_ptr(sdd->sd, j) = sd;
6057
6058 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6059 GFP_KERNEL, cpu_to_node(j));
6060 if (!sg)
6061 return -ENOMEM;
6062
6063 sg->next = sg;
6064
6065 *per_cpu_ptr(sdd->sg, j) = sg;
6066
6067 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6068 GFP_KERNEL, cpu_to_node(j));
6069 if (!sgp)
6070 return -ENOMEM;
6071
6072 *per_cpu_ptr(sdd->sgp, j) = sgp;
6073 }
6074 }
6075
6076 return 0;
6077 }
6078
6079 static void __sdt_free(const struct cpumask *cpu_map)
6080 {
6081 struct sched_domain_topology_level *tl;
6082 int j;
6083
6084 for_each_sd_topology(tl) {
6085 struct sd_data *sdd = &tl->data;
6086
6087 for_each_cpu(j, cpu_map) {
6088 struct sched_domain *sd;
6089
6090 if (sdd->sd) {
6091 sd = *per_cpu_ptr(sdd->sd, j);
6092 if (sd && (sd->flags & SD_OVERLAP))
6093 free_sched_groups(sd->groups, 0);
6094 kfree(*per_cpu_ptr(sdd->sd, j));
6095 }
6096
6097 if (sdd->sg)
6098 kfree(*per_cpu_ptr(sdd->sg, j));
6099 if (sdd->sgp)
6100 kfree(*per_cpu_ptr(sdd->sgp, j));
6101 }
6102 free_percpu(sdd->sd);
6103 sdd->sd = NULL;
6104 free_percpu(sdd->sg);
6105 sdd->sg = NULL;
6106 free_percpu(sdd->sgp);
6107 sdd->sgp = NULL;
6108 }
6109 }
6110
6111 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6112 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6113 struct sched_domain *child, int cpu)
6114 {
6115 struct sched_domain *sd = tl->init(tl, cpu);
6116 if (!sd)
6117 return child;
6118
6119 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6120 if (child) {
6121 sd->level = child->level + 1;
6122 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6123 child->parent = sd;
6124 sd->child = child;
6125 }
6126 set_domain_attribute(sd, attr);
6127
6128 return sd;
6129 }
6130
6131 /*
6132 * Build sched domains for a given set of cpus and attach the sched domains
6133 * to the individual cpus
6134 */
6135 static int build_sched_domains(const struct cpumask *cpu_map,
6136 struct sched_domain_attr *attr)
6137 {
6138 enum s_alloc alloc_state;
6139 struct sched_domain *sd;
6140 struct s_data d;
6141 int i, ret = -ENOMEM;
6142
6143 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6144 if (alloc_state != sa_rootdomain)
6145 goto error;
6146
6147 /* Set up domains for cpus specified by the cpu_map. */
6148 for_each_cpu(i, cpu_map) {
6149 struct sched_domain_topology_level *tl;
6150
6151 sd = NULL;
6152 for_each_sd_topology(tl) {
6153 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6154 if (tl == sched_domain_topology)
6155 *per_cpu_ptr(d.sd, i) = sd;
6156 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6157 sd->flags |= SD_OVERLAP;
6158 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6159 break;
6160 }
6161 }
6162
6163 /* Build the groups for the domains */
6164 for_each_cpu(i, cpu_map) {
6165 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6166 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6167 if (sd->flags & SD_OVERLAP) {
6168 if (build_overlap_sched_groups(sd, i))
6169 goto error;
6170 } else {
6171 if (build_sched_groups(sd, i))
6172 goto error;
6173 }
6174 }
6175 }
6176
6177 /* Calculate CPU power for physical packages and nodes */
6178 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6179 if (!cpumask_test_cpu(i, cpu_map))
6180 continue;
6181
6182 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6183 claim_allocations(i, sd);
6184 init_sched_groups_power(i, sd);
6185 }
6186 }
6187
6188 /* Attach the domains */
6189 rcu_read_lock();
6190 for_each_cpu(i, cpu_map) {
6191 sd = *per_cpu_ptr(d.sd, i);
6192 cpu_attach_domain(sd, d.rd, i);
6193 }
6194 rcu_read_unlock();
6195
6196 ret = 0;
6197 error:
6198 __free_domain_allocs(&d, alloc_state, cpu_map);
6199 return ret;
6200 }
6201
6202 static cpumask_var_t *doms_cur; /* current sched domains */
6203 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6204 static struct sched_domain_attr *dattr_cur;
6205 /* attribues of custom domains in 'doms_cur' */
6206
6207 /*
6208 * Special case: If a kmalloc of a doms_cur partition (array of
6209 * cpumask) fails, then fallback to a single sched domain,
6210 * as determined by the single cpumask fallback_doms.
6211 */
6212 static cpumask_var_t fallback_doms;
6213
6214 /*
6215 * arch_update_cpu_topology lets virtualized architectures update the
6216 * cpu core maps. It is supposed to return 1 if the topology changed
6217 * or 0 if it stayed the same.
6218 */
6219 int __attribute__((weak)) arch_update_cpu_topology(void)
6220 {
6221 return 0;
6222 }
6223
6224 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6225 {
6226 int i;
6227 cpumask_var_t *doms;
6228
6229 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6230 if (!doms)
6231 return NULL;
6232 for (i = 0; i < ndoms; i++) {
6233 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6234 free_sched_domains(doms, i);
6235 return NULL;
6236 }
6237 }
6238 return doms;
6239 }
6240
6241 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6242 {
6243 unsigned int i;
6244 for (i = 0; i < ndoms; i++)
6245 free_cpumask_var(doms[i]);
6246 kfree(doms);
6247 }
6248
6249 /*
6250 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6251 * For now this just excludes isolated cpus, but could be used to
6252 * exclude other special cases in the future.
6253 */
6254 static int init_sched_domains(const struct cpumask *cpu_map)
6255 {
6256 int err;
6257
6258 arch_update_cpu_topology();
6259 ndoms_cur = 1;
6260 doms_cur = alloc_sched_domains(ndoms_cur);
6261 if (!doms_cur)
6262 doms_cur = &fallback_doms;
6263 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6264 err = build_sched_domains(doms_cur[0], NULL);
6265 register_sched_domain_sysctl();
6266
6267 return err;
6268 }
6269
6270 /*
6271 * Detach sched domains from a group of cpus specified in cpu_map
6272 * These cpus will now be attached to the NULL domain
6273 */
6274 static void detach_destroy_domains(const struct cpumask *cpu_map)
6275 {
6276 int i;
6277
6278 rcu_read_lock();
6279 for_each_cpu(i, cpu_map)
6280 cpu_attach_domain(NULL, &def_root_domain, i);
6281 rcu_read_unlock();
6282 }
6283
6284 /* handle null as "default" */
6285 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6286 struct sched_domain_attr *new, int idx_new)
6287 {
6288 struct sched_domain_attr tmp;
6289
6290 /* fast path */
6291 if (!new && !cur)
6292 return 1;
6293
6294 tmp = SD_ATTR_INIT;
6295 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6296 new ? (new + idx_new) : &tmp,
6297 sizeof(struct sched_domain_attr));
6298 }
6299
6300 /*
6301 * Partition sched domains as specified by the 'ndoms_new'
6302 * cpumasks in the array doms_new[] of cpumasks. This compares
6303 * doms_new[] to the current sched domain partitioning, doms_cur[].
6304 * It destroys each deleted domain and builds each new domain.
6305 *
6306 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6307 * The masks don't intersect (don't overlap.) We should setup one
6308 * sched domain for each mask. CPUs not in any of the cpumasks will
6309 * not be load balanced. If the same cpumask appears both in the
6310 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6311 * it as it is.
6312 *
6313 * The passed in 'doms_new' should be allocated using
6314 * alloc_sched_domains. This routine takes ownership of it and will
6315 * free_sched_domains it when done with it. If the caller failed the
6316 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6317 * and partition_sched_domains() will fallback to the single partition
6318 * 'fallback_doms', it also forces the domains to be rebuilt.
6319 *
6320 * If doms_new == NULL it will be replaced with cpu_online_mask.
6321 * ndoms_new == 0 is a special case for destroying existing domains,
6322 * and it will not create the default domain.
6323 *
6324 * Call with hotplug lock held
6325 */
6326 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6327 struct sched_domain_attr *dattr_new)
6328 {
6329 int i, j, n;
6330 int new_topology;
6331
6332 mutex_lock(&sched_domains_mutex);
6333
6334 /* always unregister in case we don't destroy any domains */
6335 unregister_sched_domain_sysctl();
6336
6337 /* Let architecture update cpu core mappings. */
6338 new_topology = arch_update_cpu_topology();
6339
6340 n = doms_new ? ndoms_new : 0;
6341
6342 /* Destroy deleted domains */
6343 for (i = 0; i < ndoms_cur; i++) {
6344 for (j = 0; j < n && !new_topology; j++) {
6345 if (cpumask_equal(doms_cur[i], doms_new[j])
6346 && dattrs_equal(dattr_cur, i, dattr_new, j))
6347 goto match1;
6348 }
6349 /* no match - a current sched domain not in new doms_new[] */
6350 detach_destroy_domains(doms_cur[i]);
6351 match1:
6352 ;
6353 }
6354
6355 n = ndoms_cur;
6356 if (doms_new == NULL) {
6357 n = 0;
6358 doms_new = &fallback_doms;
6359 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6360 WARN_ON_ONCE(dattr_new);
6361 }
6362
6363 /* Build new domains */
6364 for (i = 0; i < ndoms_new; i++) {
6365 for (j = 0; j < n && !new_topology; j++) {
6366 if (cpumask_equal(doms_new[i], doms_cur[j])
6367 && dattrs_equal(dattr_new, i, dattr_cur, j))
6368 goto match2;
6369 }
6370 /* no match - add a new doms_new */
6371 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6372 match2:
6373 ;
6374 }
6375
6376 /* Remember the new sched domains */
6377 if (doms_cur != &fallback_doms)
6378 free_sched_domains(doms_cur, ndoms_cur);
6379 kfree(dattr_cur); /* kfree(NULL) is safe */
6380 doms_cur = doms_new;
6381 dattr_cur = dattr_new;
6382 ndoms_cur = ndoms_new;
6383
6384 register_sched_domain_sysctl();
6385
6386 mutex_unlock(&sched_domains_mutex);
6387 }
6388
6389 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6390
6391 /*
6392 * Update cpusets according to cpu_active mask. If cpusets are
6393 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6394 * around partition_sched_domains().
6395 *
6396 * If we come here as part of a suspend/resume, don't touch cpusets because we
6397 * want to restore it back to its original state upon resume anyway.
6398 */
6399 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6400 void *hcpu)
6401 {
6402 switch (action) {
6403 case CPU_ONLINE_FROZEN:
6404 case CPU_DOWN_FAILED_FROZEN:
6405
6406 /*
6407 * num_cpus_frozen tracks how many CPUs are involved in suspend
6408 * resume sequence. As long as this is not the last online
6409 * operation in the resume sequence, just build a single sched
6410 * domain, ignoring cpusets.
6411 */
6412 num_cpus_frozen--;
6413 if (likely(num_cpus_frozen)) {
6414 partition_sched_domains(1, NULL, NULL);
6415 break;
6416 }
6417
6418 /*
6419 * This is the last CPU online operation. So fall through and
6420 * restore the original sched domains by considering the
6421 * cpuset configurations.
6422 */
6423
6424 case CPU_ONLINE:
6425 case CPU_DOWN_FAILED:
6426 cpuset_update_active_cpus(true);
6427 break;
6428 default:
6429 return NOTIFY_DONE;
6430 }
6431 return NOTIFY_OK;
6432 }
6433
6434 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6435 void *hcpu)
6436 {
6437 switch (action) {
6438 case CPU_DOWN_PREPARE:
6439 cpuset_update_active_cpus(false);
6440 break;
6441 case CPU_DOWN_PREPARE_FROZEN:
6442 num_cpus_frozen++;
6443 partition_sched_domains(1, NULL, NULL);
6444 break;
6445 default:
6446 return NOTIFY_DONE;
6447 }
6448 return NOTIFY_OK;
6449 }
6450
6451 void __init sched_init_smp(void)
6452 {
6453 cpumask_var_t non_isolated_cpus;
6454
6455 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6456 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6457
6458 sched_init_numa();
6459
6460 get_online_cpus();
6461 mutex_lock(&sched_domains_mutex);
6462 init_sched_domains(cpu_active_mask);
6463 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6464 if (cpumask_empty(non_isolated_cpus))
6465 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6466 mutex_unlock(&sched_domains_mutex);
6467 put_online_cpus();
6468
6469 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6470 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6471 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6472
6473 init_hrtick();
6474
6475 /* Move init over to a non-isolated CPU */
6476 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6477 BUG();
6478 sched_init_granularity();
6479 free_cpumask_var(non_isolated_cpus);
6480
6481 init_sched_rt_class();
6482 }
6483 #else
6484 void __init sched_init_smp(void)
6485 {
6486 sched_init_granularity();
6487 }
6488 #endif /* CONFIG_SMP */
6489
6490 const_debug unsigned int sysctl_timer_migration = 1;
6491
6492 int in_sched_functions(unsigned long addr)
6493 {
6494 return in_lock_functions(addr) ||
6495 (addr >= (unsigned long)__sched_text_start
6496 && addr < (unsigned long)__sched_text_end);
6497 }
6498
6499 #ifdef CONFIG_CGROUP_SCHED
6500 /*
6501 * Default task group.
6502 * Every task in system belongs to this group at bootup.
6503 */
6504 struct task_group root_task_group;
6505 LIST_HEAD(task_groups);
6506 #endif
6507
6508 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6509
6510 void __init sched_init(void)
6511 {
6512 int i, j;
6513 unsigned long alloc_size = 0, ptr;
6514
6515 #ifdef CONFIG_FAIR_GROUP_SCHED
6516 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6517 #endif
6518 #ifdef CONFIG_RT_GROUP_SCHED
6519 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6520 #endif
6521 #ifdef CONFIG_CPUMASK_OFFSTACK
6522 alloc_size += num_possible_cpus() * cpumask_size();
6523 #endif
6524 if (alloc_size) {
6525 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6526
6527 #ifdef CONFIG_FAIR_GROUP_SCHED
6528 root_task_group.se = (struct sched_entity **)ptr;
6529 ptr += nr_cpu_ids * sizeof(void **);
6530
6531 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6532 ptr += nr_cpu_ids * sizeof(void **);
6533
6534 #endif /* CONFIG_FAIR_GROUP_SCHED */
6535 #ifdef CONFIG_RT_GROUP_SCHED
6536 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6537 ptr += nr_cpu_ids * sizeof(void **);
6538
6539 root_task_group.rt_rq = (struct rt_rq **)ptr;
6540 ptr += nr_cpu_ids * sizeof(void **);
6541
6542 #endif /* CONFIG_RT_GROUP_SCHED */
6543 #ifdef CONFIG_CPUMASK_OFFSTACK
6544 for_each_possible_cpu(i) {
6545 per_cpu(load_balance_mask, i) = (void *)ptr;
6546 ptr += cpumask_size();
6547 }
6548 #endif /* CONFIG_CPUMASK_OFFSTACK */
6549 }
6550
6551 #ifdef CONFIG_SMP
6552 init_defrootdomain();
6553 #endif
6554
6555 init_rt_bandwidth(&def_rt_bandwidth,
6556 global_rt_period(), global_rt_runtime());
6557
6558 #ifdef CONFIG_RT_GROUP_SCHED
6559 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6560 global_rt_period(), global_rt_runtime());
6561 #endif /* CONFIG_RT_GROUP_SCHED */
6562
6563 #ifdef CONFIG_CGROUP_SCHED
6564 list_add(&root_task_group.list, &task_groups);
6565 INIT_LIST_HEAD(&root_task_group.children);
6566 INIT_LIST_HEAD(&root_task_group.siblings);
6567 autogroup_init(&init_task);
6568
6569 #endif /* CONFIG_CGROUP_SCHED */
6570
6571 for_each_possible_cpu(i) {
6572 struct rq *rq;
6573
6574 rq = cpu_rq(i);
6575 raw_spin_lock_init(&rq->lock);
6576 rq->nr_running = 0;
6577 rq->calc_load_active = 0;
6578 rq->calc_load_update = jiffies + LOAD_FREQ;
6579 init_cfs_rq(&rq->cfs);
6580 init_rt_rq(&rq->rt, rq);
6581 #ifdef CONFIG_FAIR_GROUP_SCHED
6582 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6583 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6584 /*
6585 * How much cpu bandwidth does root_task_group get?
6586 *
6587 * In case of task-groups formed thr' the cgroup filesystem, it
6588 * gets 100% of the cpu resources in the system. This overall
6589 * system cpu resource is divided among the tasks of
6590 * root_task_group and its child task-groups in a fair manner,
6591 * based on each entity's (task or task-group's) weight
6592 * (se->load.weight).
6593 *
6594 * In other words, if root_task_group has 10 tasks of weight
6595 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6596 * then A0's share of the cpu resource is:
6597 *
6598 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6599 *
6600 * We achieve this by letting root_task_group's tasks sit
6601 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6602 */
6603 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6604 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6605 #endif /* CONFIG_FAIR_GROUP_SCHED */
6606
6607 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6608 #ifdef CONFIG_RT_GROUP_SCHED
6609 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6610 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6611 #endif
6612
6613 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6614 rq->cpu_load[j] = 0;
6615
6616 rq->last_load_update_tick = jiffies;
6617
6618 #ifdef CONFIG_SMP
6619 rq->sd = NULL;
6620 rq->rd = NULL;
6621 rq->cpu_power = SCHED_POWER_SCALE;
6622 rq->post_schedule = 0;
6623 rq->active_balance = 0;
6624 rq->next_balance = jiffies;
6625 rq->push_cpu = 0;
6626 rq->cpu = i;
6627 rq->online = 0;
6628 rq->idle_stamp = 0;
6629 rq->avg_idle = 2*sysctl_sched_migration_cost;
6630 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6631
6632 INIT_LIST_HEAD(&rq->cfs_tasks);
6633
6634 rq_attach_root(rq, &def_root_domain);
6635 #ifdef CONFIG_NO_HZ_COMMON
6636 rq->nohz_flags = 0;
6637 #endif
6638 #ifdef CONFIG_NO_HZ_FULL
6639 rq->last_sched_tick = 0;
6640 #endif
6641 #endif
6642 init_rq_hrtick(rq);
6643 atomic_set(&rq->nr_iowait, 0);
6644 }
6645
6646 set_load_weight(&init_task);
6647
6648 #ifdef CONFIG_PREEMPT_NOTIFIERS
6649 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6650 #endif
6651
6652 #ifdef CONFIG_RT_MUTEXES
6653 plist_head_init(&init_task.pi_waiters);
6654 #endif
6655
6656 /*
6657 * The boot idle thread does lazy MMU switching as well:
6658 */
6659 atomic_inc(&init_mm.mm_count);
6660 enter_lazy_tlb(&init_mm, current);
6661
6662 /*
6663 * Make us the idle thread. Technically, schedule() should not be
6664 * called from this thread, however somewhere below it might be,
6665 * but because we are the idle thread, we just pick up running again
6666 * when this runqueue becomes "idle".
6667 */
6668 init_idle(current, smp_processor_id());
6669
6670 calc_load_update = jiffies + LOAD_FREQ;
6671
6672 /*
6673 * During early bootup we pretend to be a normal task:
6674 */
6675 current->sched_class = &fair_sched_class;
6676
6677 #ifdef CONFIG_SMP
6678 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6679 /* May be allocated at isolcpus cmdline parse time */
6680 if (cpu_isolated_map == NULL)
6681 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6682 idle_thread_set_boot_cpu();
6683 #endif
6684 init_sched_fair_class();
6685
6686 scheduler_running = 1;
6687 }
6688
6689 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6690 static inline int preempt_count_equals(int preempt_offset)
6691 {
6692 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6693
6694 return (nested == preempt_offset);
6695 }
6696
6697 void __might_sleep(const char *file, int line, int preempt_offset)
6698 {
6699 static unsigned long prev_jiffy; /* ratelimiting */
6700
6701 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6702 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6703 system_state != SYSTEM_RUNNING || oops_in_progress)
6704 return;
6705 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6706 return;
6707 prev_jiffy = jiffies;
6708
6709 printk(KERN_ERR
6710 "BUG: sleeping function called from invalid context at %s:%d\n",
6711 file, line);
6712 printk(KERN_ERR
6713 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6714 in_atomic(), irqs_disabled(),
6715 current->pid, current->comm);
6716
6717 debug_show_held_locks(current);
6718 if (irqs_disabled())
6719 print_irqtrace_events(current);
6720 dump_stack();
6721 }
6722 EXPORT_SYMBOL(__might_sleep);
6723 #endif
6724
6725 #ifdef CONFIG_MAGIC_SYSRQ
6726 static void normalize_task(struct rq *rq, struct task_struct *p)
6727 {
6728 const struct sched_class *prev_class = p->sched_class;
6729 int old_prio = p->prio;
6730 int on_rq;
6731
6732 on_rq = p->on_rq;
6733 if (on_rq)
6734 dequeue_task(rq, p, 0);
6735 __setscheduler(rq, p, SCHED_NORMAL, 0);
6736 if (on_rq) {
6737 enqueue_task(rq, p, 0);
6738 resched_task(rq->curr);
6739 }
6740
6741 check_class_changed(rq, p, prev_class, old_prio);
6742 }
6743
6744 void normalize_rt_tasks(void)
6745 {
6746 struct task_struct *g, *p;
6747 unsigned long flags;
6748 struct rq *rq;
6749
6750 read_lock_irqsave(&tasklist_lock, flags);
6751 do_each_thread(g, p) {
6752 /*
6753 * Only normalize user tasks:
6754 */
6755 if (!p->mm)
6756 continue;
6757
6758 p->se.exec_start = 0;
6759 #ifdef CONFIG_SCHEDSTATS
6760 p->se.statistics.wait_start = 0;
6761 p->se.statistics.sleep_start = 0;
6762 p->se.statistics.block_start = 0;
6763 #endif
6764
6765 if (!rt_task(p)) {
6766 /*
6767 * Renice negative nice level userspace
6768 * tasks back to 0:
6769 */
6770 if (TASK_NICE(p) < 0 && p->mm)
6771 set_user_nice(p, 0);
6772 continue;
6773 }
6774
6775 raw_spin_lock(&p->pi_lock);
6776 rq = __task_rq_lock(p);
6777
6778 normalize_task(rq, p);
6779
6780 __task_rq_unlock(rq);
6781 raw_spin_unlock(&p->pi_lock);
6782 } while_each_thread(g, p);
6783
6784 read_unlock_irqrestore(&tasklist_lock, flags);
6785 }
6786
6787 #endif /* CONFIG_MAGIC_SYSRQ */
6788
6789 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6790 /*
6791 * These functions are only useful for the IA64 MCA handling, or kdb.
6792 *
6793 * They can only be called when the whole system has been
6794 * stopped - every CPU needs to be quiescent, and no scheduling
6795 * activity can take place. Using them for anything else would
6796 * be a serious bug, and as a result, they aren't even visible
6797 * under any other configuration.
6798 */
6799
6800 /**
6801 * curr_task - return the current task for a given cpu.
6802 * @cpu: the processor in question.
6803 *
6804 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6805 *
6806 * Return: The current task for @cpu.
6807 */
6808 struct task_struct *curr_task(int cpu)
6809 {
6810 return cpu_curr(cpu);
6811 }
6812
6813 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6814
6815 #ifdef CONFIG_IA64
6816 /**
6817 * set_curr_task - set the current task for a given cpu.
6818 * @cpu: the processor in question.
6819 * @p: the task pointer to set.
6820 *
6821 * Description: This function must only be used when non-maskable interrupts
6822 * are serviced on a separate stack. It allows the architecture to switch the
6823 * notion of the current task on a cpu in a non-blocking manner. This function
6824 * must be called with all CPU's synchronized, and interrupts disabled, the
6825 * and caller must save the original value of the current task (see
6826 * curr_task() above) and restore that value before reenabling interrupts and
6827 * re-starting the system.
6828 *
6829 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6830 */
6831 void set_curr_task(int cpu, struct task_struct *p)
6832 {
6833 cpu_curr(cpu) = p;
6834 }
6835
6836 #endif
6837
6838 #ifdef CONFIG_CGROUP_SCHED
6839 /* task_group_lock serializes the addition/removal of task groups */
6840 static DEFINE_SPINLOCK(task_group_lock);
6841
6842 static void free_sched_group(struct task_group *tg)
6843 {
6844 free_fair_sched_group(tg);
6845 free_rt_sched_group(tg);
6846 autogroup_free(tg);
6847 kfree(tg);
6848 }
6849
6850 /* allocate runqueue etc for a new task group */
6851 struct task_group *sched_create_group(struct task_group *parent)
6852 {
6853 struct task_group *tg;
6854
6855 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6856 if (!tg)
6857 return ERR_PTR(-ENOMEM);
6858
6859 if (!alloc_fair_sched_group(tg, parent))
6860 goto err;
6861
6862 if (!alloc_rt_sched_group(tg, parent))
6863 goto err;
6864
6865 return tg;
6866
6867 err:
6868 free_sched_group(tg);
6869 return ERR_PTR(-ENOMEM);
6870 }
6871
6872 void sched_online_group(struct task_group *tg, struct task_group *parent)
6873 {
6874 unsigned long flags;
6875
6876 spin_lock_irqsave(&task_group_lock, flags);
6877 list_add_rcu(&tg->list, &task_groups);
6878
6879 WARN_ON(!parent); /* root should already exist */
6880
6881 tg->parent = parent;
6882 INIT_LIST_HEAD(&tg->children);
6883 list_add_rcu(&tg->siblings, &parent->children);
6884 spin_unlock_irqrestore(&task_group_lock, flags);
6885 }
6886
6887 /* rcu callback to free various structures associated with a task group */
6888 static void free_sched_group_rcu(struct rcu_head *rhp)
6889 {
6890 /* now it should be safe to free those cfs_rqs */
6891 free_sched_group(container_of(rhp, struct task_group, rcu));
6892 }
6893
6894 /* Destroy runqueue etc associated with a task group */
6895 void sched_destroy_group(struct task_group *tg)
6896 {
6897 /* wait for possible concurrent references to cfs_rqs complete */
6898 call_rcu(&tg->rcu, free_sched_group_rcu);
6899 }
6900
6901 void sched_offline_group(struct task_group *tg)
6902 {
6903 unsigned long flags;
6904 int i;
6905
6906 /* end participation in shares distribution */
6907 for_each_possible_cpu(i)
6908 unregister_fair_sched_group(tg, i);
6909
6910 spin_lock_irqsave(&task_group_lock, flags);
6911 list_del_rcu(&tg->list);
6912 list_del_rcu(&tg->siblings);
6913 spin_unlock_irqrestore(&task_group_lock, flags);
6914 }
6915
6916 /* change task's runqueue when it moves between groups.
6917 * The caller of this function should have put the task in its new group
6918 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6919 * reflect its new group.
6920 */
6921 void sched_move_task(struct task_struct *tsk)
6922 {
6923 struct task_group *tg;
6924 int on_rq, running;
6925 unsigned long flags;
6926 struct rq *rq;
6927
6928 rq = task_rq_lock(tsk, &flags);
6929
6930 running = task_current(rq, tsk);
6931 on_rq = tsk->on_rq;
6932
6933 if (on_rq)
6934 dequeue_task(rq, tsk, 0);
6935 if (unlikely(running))
6936 tsk->sched_class->put_prev_task(rq, tsk);
6937
6938 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6939 lockdep_is_held(&tsk->sighand->siglock)),
6940 struct task_group, css);
6941 tg = autogroup_task_group(tsk, tg);
6942 tsk->sched_task_group = tg;
6943
6944 #ifdef CONFIG_FAIR_GROUP_SCHED
6945 if (tsk->sched_class->task_move_group)
6946 tsk->sched_class->task_move_group(tsk, on_rq);
6947 else
6948 #endif
6949 set_task_rq(tsk, task_cpu(tsk));
6950
6951 if (unlikely(running))
6952 tsk->sched_class->set_curr_task(rq);
6953 if (on_rq)
6954 enqueue_task(rq, tsk, 0);
6955
6956 task_rq_unlock(rq, tsk, &flags);
6957 }
6958 #endif /* CONFIG_CGROUP_SCHED */
6959
6960 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6961 static unsigned long to_ratio(u64 period, u64 runtime)
6962 {
6963 if (runtime == RUNTIME_INF)
6964 return 1ULL << 20;
6965
6966 return div64_u64(runtime << 20, period);
6967 }
6968 #endif
6969
6970 #ifdef CONFIG_RT_GROUP_SCHED
6971 /*
6972 * Ensure that the real time constraints are schedulable.
6973 */
6974 static DEFINE_MUTEX(rt_constraints_mutex);
6975
6976 /* Must be called with tasklist_lock held */
6977 static inline int tg_has_rt_tasks(struct task_group *tg)
6978 {
6979 struct task_struct *g, *p;
6980
6981 do_each_thread(g, p) {
6982 if (rt_task(p) && task_rq(p)->rt.tg == tg)
6983 return 1;
6984 } while_each_thread(g, p);
6985
6986 return 0;
6987 }
6988
6989 struct rt_schedulable_data {
6990 struct task_group *tg;
6991 u64 rt_period;
6992 u64 rt_runtime;
6993 };
6994
6995 static int tg_rt_schedulable(struct task_group *tg, void *data)
6996 {
6997 struct rt_schedulable_data *d = data;
6998 struct task_group *child;
6999 unsigned long total, sum = 0;
7000 u64 period, runtime;
7001
7002 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7003 runtime = tg->rt_bandwidth.rt_runtime;
7004
7005 if (tg == d->tg) {
7006 period = d->rt_period;
7007 runtime = d->rt_runtime;
7008 }
7009
7010 /*
7011 * Cannot have more runtime than the period.
7012 */
7013 if (runtime > period && runtime != RUNTIME_INF)
7014 return -EINVAL;
7015
7016 /*
7017 * Ensure we don't starve existing RT tasks.
7018 */
7019 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7020 return -EBUSY;
7021
7022 total = to_ratio(period, runtime);
7023
7024 /*
7025 * Nobody can have more than the global setting allows.
7026 */
7027 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7028 return -EINVAL;
7029
7030 /*
7031 * The sum of our children's runtime should not exceed our own.
7032 */
7033 list_for_each_entry_rcu(child, &tg->children, siblings) {
7034 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7035 runtime = child->rt_bandwidth.rt_runtime;
7036
7037 if (child == d->tg) {
7038 period = d->rt_period;
7039 runtime = d->rt_runtime;
7040 }
7041
7042 sum += to_ratio(period, runtime);
7043 }
7044
7045 if (sum > total)
7046 return -EINVAL;
7047
7048 return 0;
7049 }
7050
7051 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7052 {
7053 int ret;
7054
7055 struct rt_schedulable_data data = {
7056 .tg = tg,
7057 .rt_period = period,
7058 .rt_runtime = runtime,
7059 };
7060
7061 rcu_read_lock();
7062 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7063 rcu_read_unlock();
7064
7065 return ret;
7066 }
7067
7068 static int tg_set_rt_bandwidth(struct task_group *tg,
7069 u64 rt_period, u64 rt_runtime)
7070 {
7071 int i, err = 0;
7072
7073 mutex_lock(&rt_constraints_mutex);
7074 read_lock(&tasklist_lock);
7075 err = __rt_schedulable(tg, rt_period, rt_runtime);
7076 if (err)
7077 goto unlock;
7078
7079 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7080 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7081 tg->rt_bandwidth.rt_runtime = rt_runtime;
7082
7083 for_each_possible_cpu(i) {
7084 struct rt_rq *rt_rq = tg->rt_rq[i];
7085
7086 raw_spin_lock(&rt_rq->rt_runtime_lock);
7087 rt_rq->rt_runtime = rt_runtime;
7088 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7089 }
7090 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7091 unlock:
7092 read_unlock(&tasklist_lock);
7093 mutex_unlock(&rt_constraints_mutex);
7094
7095 return err;
7096 }
7097
7098 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7099 {
7100 u64 rt_runtime, rt_period;
7101
7102 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7103 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7104 if (rt_runtime_us < 0)
7105 rt_runtime = RUNTIME_INF;
7106
7107 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7108 }
7109
7110 static long sched_group_rt_runtime(struct task_group *tg)
7111 {
7112 u64 rt_runtime_us;
7113
7114 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7115 return -1;
7116
7117 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7118 do_div(rt_runtime_us, NSEC_PER_USEC);
7119 return rt_runtime_us;
7120 }
7121
7122 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7123 {
7124 u64 rt_runtime, rt_period;
7125
7126 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7127 rt_runtime = tg->rt_bandwidth.rt_runtime;
7128
7129 if (rt_period == 0)
7130 return -EINVAL;
7131
7132 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7133 }
7134
7135 static long sched_group_rt_period(struct task_group *tg)
7136 {
7137 u64 rt_period_us;
7138
7139 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7140 do_div(rt_period_us, NSEC_PER_USEC);
7141 return rt_period_us;
7142 }
7143
7144 static int sched_rt_global_constraints(void)
7145 {
7146 u64 runtime, period;
7147 int ret = 0;
7148
7149 if (sysctl_sched_rt_period <= 0)
7150 return -EINVAL;
7151
7152 runtime = global_rt_runtime();
7153 period = global_rt_period();
7154
7155 /*
7156 * Sanity check on the sysctl variables.
7157 */
7158 if (runtime > period && runtime != RUNTIME_INF)
7159 return -EINVAL;
7160
7161 mutex_lock(&rt_constraints_mutex);
7162 read_lock(&tasklist_lock);
7163 ret = __rt_schedulable(NULL, 0, 0);
7164 read_unlock(&tasklist_lock);
7165 mutex_unlock(&rt_constraints_mutex);
7166
7167 return ret;
7168 }
7169
7170 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7171 {
7172 /* Don't accept realtime tasks when there is no way for them to run */
7173 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7174 return 0;
7175
7176 return 1;
7177 }
7178
7179 #else /* !CONFIG_RT_GROUP_SCHED */
7180 static int sched_rt_global_constraints(void)
7181 {
7182 unsigned long flags;
7183 int i;
7184
7185 if (sysctl_sched_rt_period <= 0)
7186 return -EINVAL;
7187
7188 /*
7189 * There's always some RT tasks in the root group
7190 * -- migration, kstopmachine etc..
7191 */
7192 if (sysctl_sched_rt_runtime == 0)
7193 return -EBUSY;
7194
7195 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7196 for_each_possible_cpu(i) {
7197 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7198
7199 raw_spin_lock(&rt_rq->rt_runtime_lock);
7200 rt_rq->rt_runtime = global_rt_runtime();
7201 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7202 }
7203 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7204
7205 return 0;
7206 }
7207 #endif /* CONFIG_RT_GROUP_SCHED */
7208
7209 int sched_rr_handler(struct ctl_table *table, int write,
7210 void __user *buffer, size_t *lenp,
7211 loff_t *ppos)
7212 {
7213 int ret;
7214 static DEFINE_MUTEX(mutex);
7215
7216 mutex_lock(&mutex);
7217 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7218 /* make sure that internally we keep jiffies */
7219 /* also, writing zero resets timeslice to default */
7220 if (!ret && write) {
7221 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7222 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7223 }
7224 mutex_unlock(&mutex);
7225 return ret;
7226 }
7227
7228 int sched_rt_handler(struct ctl_table *table, int write,
7229 void __user *buffer, size_t *lenp,
7230 loff_t *ppos)
7231 {
7232 int ret;
7233 int old_period, old_runtime;
7234 static DEFINE_MUTEX(mutex);
7235
7236 mutex_lock(&mutex);
7237 old_period = sysctl_sched_rt_period;
7238 old_runtime = sysctl_sched_rt_runtime;
7239
7240 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7241
7242 if (!ret && write) {
7243 ret = sched_rt_global_constraints();
7244 if (ret) {
7245 sysctl_sched_rt_period = old_period;
7246 sysctl_sched_rt_runtime = old_runtime;
7247 } else {
7248 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7249 def_rt_bandwidth.rt_period =
7250 ns_to_ktime(global_rt_period());
7251 }
7252 }
7253 mutex_unlock(&mutex);
7254
7255 return ret;
7256 }
7257
7258 #ifdef CONFIG_CGROUP_SCHED
7259
7260 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7261 {
7262 return css ? container_of(css, struct task_group, css) : NULL;
7263 }
7264
7265 static struct cgroup_subsys_state *
7266 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7267 {
7268 struct task_group *parent = css_tg(parent_css);
7269 struct task_group *tg;
7270
7271 if (!parent) {
7272 /* This is early initialization for the top cgroup */
7273 return &root_task_group.css;
7274 }
7275
7276 tg = sched_create_group(parent);
7277 if (IS_ERR(tg))
7278 return ERR_PTR(-ENOMEM);
7279
7280 return &tg->css;
7281 }
7282
7283 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7284 {
7285 struct task_group *tg = css_tg(css);
7286 struct task_group *parent = css_tg(css_parent(css));
7287
7288 if (parent)
7289 sched_online_group(tg, parent);
7290 return 0;
7291 }
7292
7293 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7294 {
7295 struct task_group *tg = css_tg(css);
7296
7297 sched_destroy_group(tg);
7298 }
7299
7300 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7301 {
7302 struct task_group *tg = css_tg(css);
7303
7304 sched_offline_group(tg);
7305 }
7306
7307 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7308 struct cgroup_taskset *tset)
7309 {
7310 struct task_struct *task;
7311
7312 cgroup_taskset_for_each(task, css, tset) {
7313 #ifdef CONFIG_RT_GROUP_SCHED
7314 if (!sched_rt_can_attach(css_tg(css), task))
7315 return -EINVAL;
7316 #else
7317 /* We don't support RT-tasks being in separate groups */
7318 if (task->sched_class != &fair_sched_class)
7319 return -EINVAL;
7320 #endif
7321 }
7322 return 0;
7323 }
7324
7325 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7326 struct cgroup_taskset *tset)
7327 {
7328 struct task_struct *task;
7329
7330 cgroup_taskset_for_each(task, css, tset)
7331 sched_move_task(task);
7332 }
7333
7334 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7335 struct cgroup_subsys_state *old_css,
7336 struct task_struct *task)
7337 {
7338 /*
7339 * cgroup_exit() is called in the copy_process() failure path.
7340 * Ignore this case since the task hasn't ran yet, this avoids
7341 * trying to poke a half freed task state from generic code.
7342 */
7343 if (!(task->flags & PF_EXITING))
7344 return;
7345
7346 sched_move_task(task);
7347 }
7348
7349 #ifdef CONFIG_FAIR_GROUP_SCHED
7350 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7351 struct cftype *cftype, u64 shareval)
7352 {
7353 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7354 }
7355
7356 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7357 struct cftype *cft)
7358 {
7359 struct task_group *tg = css_tg(css);
7360
7361 return (u64) scale_load_down(tg->shares);
7362 }
7363
7364 #ifdef CONFIG_CFS_BANDWIDTH
7365 static DEFINE_MUTEX(cfs_constraints_mutex);
7366
7367 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7368 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7369
7370 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7371
7372 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7373 {
7374 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7375 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7376
7377 if (tg == &root_task_group)
7378 return -EINVAL;
7379
7380 /*
7381 * Ensure we have at some amount of bandwidth every period. This is
7382 * to prevent reaching a state of large arrears when throttled via
7383 * entity_tick() resulting in prolonged exit starvation.
7384 */
7385 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7386 return -EINVAL;
7387
7388 /*
7389 * Likewise, bound things on the otherside by preventing insane quota
7390 * periods. This also allows us to normalize in computing quota
7391 * feasibility.
7392 */
7393 if (period > max_cfs_quota_period)
7394 return -EINVAL;
7395
7396 mutex_lock(&cfs_constraints_mutex);
7397 ret = __cfs_schedulable(tg, period, quota);
7398 if (ret)
7399 goto out_unlock;
7400
7401 runtime_enabled = quota != RUNTIME_INF;
7402 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7403 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7404 raw_spin_lock_irq(&cfs_b->lock);
7405 cfs_b->period = ns_to_ktime(period);
7406 cfs_b->quota = quota;
7407
7408 __refill_cfs_bandwidth_runtime(cfs_b);
7409 /* restart the period timer (if active) to handle new period expiry */
7410 if (runtime_enabled && cfs_b->timer_active) {
7411 /* force a reprogram */
7412 cfs_b->timer_active = 0;
7413 __start_cfs_bandwidth(cfs_b);
7414 }
7415 raw_spin_unlock_irq(&cfs_b->lock);
7416
7417 for_each_possible_cpu(i) {
7418 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7419 struct rq *rq = cfs_rq->rq;
7420
7421 raw_spin_lock_irq(&rq->lock);
7422 cfs_rq->runtime_enabled = runtime_enabled;
7423 cfs_rq->runtime_remaining = 0;
7424
7425 if (cfs_rq->throttled)
7426 unthrottle_cfs_rq(cfs_rq);
7427 raw_spin_unlock_irq(&rq->lock);
7428 }
7429 out_unlock:
7430 mutex_unlock(&cfs_constraints_mutex);
7431
7432 return ret;
7433 }
7434
7435 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7436 {
7437 u64 quota, period;
7438
7439 period = ktime_to_ns(tg->cfs_bandwidth.period);
7440 if (cfs_quota_us < 0)
7441 quota = RUNTIME_INF;
7442 else
7443 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7444
7445 return tg_set_cfs_bandwidth(tg, period, quota);
7446 }
7447
7448 long tg_get_cfs_quota(struct task_group *tg)
7449 {
7450 u64 quota_us;
7451
7452 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7453 return -1;
7454
7455 quota_us = tg->cfs_bandwidth.quota;
7456 do_div(quota_us, NSEC_PER_USEC);
7457
7458 return quota_us;
7459 }
7460
7461 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7462 {
7463 u64 quota, period;
7464
7465 period = (u64)cfs_period_us * NSEC_PER_USEC;
7466 quota = tg->cfs_bandwidth.quota;
7467
7468 return tg_set_cfs_bandwidth(tg, period, quota);
7469 }
7470
7471 long tg_get_cfs_period(struct task_group *tg)
7472 {
7473 u64 cfs_period_us;
7474
7475 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7476 do_div(cfs_period_us, NSEC_PER_USEC);
7477
7478 return cfs_period_us;
7479 }
7480
7481 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7482 struct cftype *cft)
7483 {
7484 return tg_get_cfs_quota(css_tg(css));
7485 }
7486
7487 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7488 struct cftype *cftype, s64 cfs_quota_us)
7489 {
7490 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7491 }
7492
7493 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7494 struct cftype *cft)
7495 {
7496 return tg_get_cfs_period(css_tg(css));
7497 }
7498
7499 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7500 struct cftype *cftype, u64 cfs_period_us)
7501 {
7502 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7503 }
7504
7505 struct cfs_schedulable_data {
7506 struct task_group *tg;
7507 u64 period, quota;
7508 };
7509
7510 /*
7511 * normalize group quota/period to be quota/max_period
7512 * note: units are usecs
7513 */
7514 static u64 normalize_cfs_quota(struct task_group *tg,
7515 struct cfs_schedulable_data *d)
7516 {
7517 u64 quota, period;
7518
7519 if (tg == d->tg) {
7520 period = d->period;
7521 quota = d->quota;
7522 } else {
7523 period = tg_get_cfs_period(tg);
7524 quota = tg_get_cfs_quota(tg);
7525 }
7526
7527 /* note: these should typically be equivalent */
7528 if (quota == RUNTIME_INF || quota == -1)
7529 return RUNTIME_INF;
7530
7531 return to_ratio(period, quota);
7532 }
7533
7534 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7535 {
7536 struct cfs_schedulable_data *d = data;
7537 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7538 s64 quota = 0, parent_quota = -1;
7539
7540 if (!tg->parent) {
7541 quota = RUNTIME_INF;
7542 } else {
7543 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7544
7545 quota = normalize_cfs_quota(tg, d);
7546 parent_quota = parent_b->hierarchal_quota;
7547
7548 /*
7549 * ensure max(child_quota) <= parent_quota, inherit when no
7550 * limit is set
7551 */
7552 if (quota == RUNTIME_INF)
7553 quota = parent_quota;
7554 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7555 return -EINVAL;
7556 }
7557 cfs_b->hierarchal_quota = quota;
7558
7559 return 0;
7560 }
7561
7562 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7563 {
7564 int ret;
7565 struct cfs_schedulable_data data = {
7566 .tg = tg,
7567 .period = period,
7568 .quota = quota,
7569 };
7570
7571 if (quota != RUNTIME_INF) {
7572 do_div(data.period, NSEC_PER_USEC);
7573 do_div(data.quota, NSEC_PER_USEC);
7574 }
7575
7576 rcu_read_lock();
7577 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7578 rcu_read_unlock();
7579
7580 return ret;
7581 }
7582
7583 static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7584 struct cgroup_map_cb *cb)
7585 {
7586 struct task_group *tg = css_tg(css);
7587 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7588
7589 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7590 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7591 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7592
7593 return 0;
7594 }
7595 #endif /* CONFIG_CFS_BANDWIDTH */
7596 #endif /* CONFIG_FAIR_GROUP_SCHED */
7597
7598 #ifdef CONFIG_RT_GROUP_SCHED
7599 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7600 struct cftype *cft, s64 val)
7601 {
7602 return sched_group_set_rt_runtime(css_tg(css), val);
7603 }
7604
7605 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7606 struct cftype *cft)
7607 {
7608 return sched_group_rt_runtime(css_tg(css));
7609 }
7610
7611 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7612 struct cftype *cftype, u64 rt_period_us)
7613 {
7614 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7615 }
7616
7617 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7618 struct cftype *cft)
7619 {
7620 return sched_group_rt_period(css_tg(css));
7621 }
7622 #endif /* CONFIG_RT_GROUP_SCHED */
7623
7624 static struct cftype cpu_files[] = {
7625 #ifdef CONFIG_FAIR_GROUP_SCHED
7626 {
7627 .name = "shares",
7628 .read_u64 = cpu_shares_read_u64,
7629 .write_u64 = cpu_shares_write_u64,
7630 },
7631 #endif
7632 #ifdef CONFIG_CFS_BANDWIDTH
7633 {
7634 .name = "cfs_quota_us",
7635 .read_s64 = cpu_cfs_quota_read_s64,
7636 .write_s64 = cpu_cfs_quota_write_s64,
7637 },
7638 {
7639 .name = "cfs_period_us",
7640 .read_u64 = cpu_cfs_period_read_u64,
7641 .write_u64 = cpu_cfs_period_write_u64,
7642 },
7643 {
7644 .name = "stat",
7645 .read_map = cpu_stats_show,
7646 },
7647 #endif
7648 #ifdef CONFIG_RT_GROUP_SCHED
7649 {
7650 .name = "rt_runtime_us",
7651 .read_s64 = cpu_rt_runtime_read,
7652 .write_s64 = cpu_rt_runtime_write,
7653 },
7654 {
7655 .name = "rt_period_us",
7656 .read_u64 = cpu_rt_period_read_uint,
7657 .write_u64 = cpu_rt_period_write_uint,
7658 },
7659 #endif
7660 { } /* terminate */
7661 };
7662
7663 struct cgroup_subsys cpu_cgroup_subsys = {
7664 .name = "cpu",
7665 .css_alloc = cpu_cgroup_css_alloc,
7666 .css_free = cpu_cgroup_css_free,
7667 .css_online = cpu_cgroup_css_online,
7668 .css_offline = cpu_cgroup_css_offline,
7669 .can_attach = cpu_cgroup_can_attach,
7670 .attach = cpu_cgroup_attach,
7671 .exit = cpu_cgroup_exit,
7672 .subsys_id = cpu_cgroup_subsys_id,
7673 .base_cftypes = cpu_files,
7674 .early_init = 1,
7675 };
7676
7677 #endif /* CONFIG_CGROUP_SCHED */
7678
7679 void dump_cpu_task(int cpu)
7680 {
7681 pr_info("Task dump for CPU %d:\n", cpu);
7682 sched_show_task(cpu_curr(cpu));
7683 }