]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/core.c
Merge branch 'linus' into sched/core, to resolve conflicts
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299 /*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
303 __acquires(rq->lock)
304 {
305 struct rq *rq;
306
307 lockdep_assert_held(&p->pi_lock);
308
309 for (;;) {
310 rq = task_rq(p);
311 raw_spin_lock(&rq->lock);
312 if (likely(rq == task_rq(p)))
313 return rq;
314 raw_spin_unlock(&rq->lock);
315 }
316 }
317
318 /*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 __acquires(p->pi_lock)
323 __acquires(rq->lock)
324 {
325 struct rq *rq;
326
327 for (;;) {
328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 rq = task_rq(p);
330 raw_spin_lock(&rq->lock);
331 if (likely(rq == task_rq(p)))
332 return rq;
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 }
336 }
337
338 static void __task_rq_unlock(struct rq *rq)
339 __releases(rq->lock)
340 {
341 raw_spin_unlock(&rq->lock);
342 }
343
344 static inline void
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 __releases(rq->lock)
347 __releases(p->pi_lock)
348 {
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351 }
352
353 /*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356 static struct rq *this_rq_lock(void)
357 __acquires(rq->lock)
358 {
359 struct rq *rq;
360
361 local_irq_disable();
362 rq = this_rq();
363 raw_spin_lock(&rq->lock);
364
365 return rq;
366 }
367
368 #ifdef CONFIG_SCHED_HRTICK
369 /*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398
399 static int __hrtick_restart(struct rq *rq)
400 {
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405 }
406
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 __hrtick_restart(rq);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 __hrtick_restart(rq);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 void resched_task(struct task_struct *p)
515 {
516 int cpu;
517
518 lockdep_assert_held(&task_rq(p)->lock);
519
520 if (test_tsk_need_resched(p))
521 return;
522
523 set_tsk_need_resched(p);
524
525 cpu = task_cpu(p);
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
528 return;
529 }
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535 }
536
537 void resched_cpu(int cpu)
538 {
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 return;
544 resched_task(cpu_curr(cpu));
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
546 }
547
548 #ifdef CONFIG_SMP
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558 int get_nohz_timer_target(void)
559 {
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573 unlock:
574 rcu_read_unlock();
575 return cpu;
576 }
577 /*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
603
604 /*
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
608 */
609 set_tsk_need_resched(rq->idle);
610
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
615 }
616
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679
680 void sched_avg_update(struct rq *rq)
681 {
682 s64 period = sched_avg_period();
683
684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
694 }
695
696 #endif /* CONFIG_SMP */
697
698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700 /*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706 int walk_tg_tree_from(struct task_group *from,
707 tg_visitor down, tg_visitor up, void *data)
708 {
709 struct task_group *parent, *child;
710 int ret;
711
712 parent = from;
713
714 down:
715 ret = (*down)(parent, data);
716 if (ret)
717 goto out;
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722 up:
723 continue;
724 }
725 ret = (*up)(parent, data);
726 if (ret || parent == from)
727 goto out;
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
733 out:
734 return ret;
735 }
736
737 int tg_nop(struct task_group *tg, void *data)
738 {
739 return 0;
740 }
741 #endif
742
743 static void set_load_weight(struct task_struct *p)
744 {
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
752 load->weight = scale_load(WEIGHT_IDLEPRIO);
753 load->inv_weight = WMULT_IDLEPRIO;
754 return;
755 }
756
757 load->weight = scale_load(prio_to_weight[prio]);
758 load->inv_weight = prio_to_wmult[prio];
759 }
760
761 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762 {
763 update_rq_clock(rq);
764 sched_info_queued(rq, p);
765 p->sched_class->enqueue_task(rq, p, flags);
766 }
767
768 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769 {
770 update_rq_clock(rq);
771 sched_info_dequeued(rq, p);
772 p->sched_class->dequeue_task(rq, p, flags);
773 }
774
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
780 enqueue_task(rq, p, flags);
781 }
782
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
788 dequeue_task(rq, p, flags);
789 }
790
791 static void update_rq_clock_task(struct rq *rq, s64 delta)
792 {
793 /*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799 #endif
800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
823 #endif
824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825 if (static_key_false((&paravirt_steal_rq_enabled))) {
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841 #endif
842
843 rq->clock_task += delta;
844
845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848 #endif
849 }
850
851 void sched_set_stop_task(int cpu, struct task_struct *stop)
852 {
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879 }
880
881 /*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884 static inline int __normal_prio(struct task_struct *p)
885 {
886 return p->static_prio;
887 }
888
889 /*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896 static inline int normal_prio(struct task_struct *p)
897 {
898 int prio;
899
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907 }
908
909 /*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916 static int effective_prio(struct task_struct *p)
917 {
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927 }
928
929 /**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio || dl_task(p))
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988 #ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
1009 p->se.nr_migrations++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 }
1012
1013 __set_task_cpu(p, new_cpu);
1014 }
1015
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036 }
1037
1038 struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041 };
1042
1043 static int migrate_swap_stop(void *data)
1044 {
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072 unlock:
1073 double_rq_unlock(src_rq, dst_rq);
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077 return ret;
1078 }
1079
1080 /*
1081 * Cross migrate two tasks
1082 */
1083 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084 {
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114 out:
1115 return ret;
1116 }
1117
1118 struct migration_arg {
1119 struct task_struct *task;
1120 int dest_cpu;
1121 };
1122
1123 static int migration_cpu_stop(void *data);
1124
1125 /*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142 {
1143 unsigned long flags;
1144 int running, on_rq;
1145 unsigned long ncsw;
1146 struct rq *rq;
1147
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
1156
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
1171 cpu_relax();
1172 }
1173
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
1180 trace_sched_wait_task(p);
1181 running = task_running(rq, p);
1182 on_rq = p->on_rq;
1183 ncsw = 0;
1184 if (!match_state || p->state == match_state)
1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186 task_rq_unlock(rq, p, &flags);
1187
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
1204
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
1210 * So if it was still runnable (but just not actively
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 continue;
1220 }
1221
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
1229
1230 return ncsw;
1231 }
1232
1233 /***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246 void kick_process(struct task_struct *p)
1247 {
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255 }
1256 EXPORT_SYMBOL_GPL(kick_process);
1257 #endif /* CONFIG_SMP */
1258
1259 #ifdef CONFIG_SMP
1260 /*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263 static int select_fallback_rq(int cpu, struct task_struct *p)
1264 {
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
1287 }
1288
1289 for (;;) {
1290 /* Any allowed, online CPU? */
1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
1298
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317 out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
1328 }
1329
1330 return dest_cpu;
1331 }
1332
1333 /*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336 static inline
1337 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338 {
1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352 !cpu_online(cpu)))
1353 cpu = select_fallback_rq(task_cpu(p), p);
1354
1355 return cpu;
1356 }
1357
1358 static void update_avg(u64 *avg, u64 sample)
1359 {
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362 }
1363 #endif
1364
1365 static void
1366 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367 {
1368 #ifdef CONFIG_SCHEDSTATS
1369 struct rq *rq = this_rq();
1370
1371 #ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381 rcu_read_lock();
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
1388 rcu_read_unlock();
1389 }
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394 #endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
1397 schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399 if (wake_flags & WF_SYNC)
1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402 #endif /* CONFIG_SCHEDSTATS */
1403 }
1404
1405 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406 {
1407 activate_task(rq, p, en_flags);
1408 p->on_rq = 1;
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
1413 }
1414
1415 /*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418 static void
1419 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420 {
1421 check_preempt_curr(rq, p, wake_flags);
1422 trace_sched_wakeup(p, true);
1423
1424 p->state = TASK_RUNNING;
1425 #ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
1429 if (rq->idle_stamp) {
1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
1431 u64 max = 2*rq->max_idle_balance_cost;
1432
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
1436 rq->avg_idle = max;
1437
1438 rq->idle_stamp = 0;
1439 }
1440 #endif
1441 }
1442
1443 static void
1444 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445 {
1446 #ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449 #endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453 }
1454
1455 /*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461 static int ttwu_remote(struct task_struct *p, int wake_flags)
1462 {
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476 }
1477
1478 #ifdef CONFIG_SMP
1479 static void sched_ttwu_pending(void)
1480 {
1481 struct rq *rq = this_rq();
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
1484
1485 raw_spin_lock(&rq->lock);
1486
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494 }
1495
1496 void scheduler_ipi(void)
1497 {
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
1503 preempt_fold_need_resched();
1504
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
1524 tick_nohz_full_check();
1525 sched_ttwu_pending();
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
1530 if (unlikely(got_nohz_idle_kick())) {
1531 this_rq()->idle_balance = 1;
1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 }
1534 irq_exit();
1535 }
1536
1537 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538 {
1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 smp_send_reschedule(cpu);
1541 }
1542
1543 bool cpus_share_cache(int this_cpu, int that_cpu)
1544 {
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546 }
1547 #endif /* CONFIG_SMP */
1548
1549 static void ttwu_queue(struct task_struct *p, int cpu)
1550 {
1551 struct rq *rq = cpu_rq(cpu);
1552
1553 #if defined(CONFIG_SMP)
1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559 #endif
1560
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
1564 }
1565
1566 /**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581 static int
1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583 {
1584 unsigned long flags;
1585 int cpu, success = 0;
1586
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 if (!(p->state & state))
1596 goto out;
1597
1598 success = 1; /* we're going to change ->state */
1599 cpu = task_cpu(p);
1600
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1603
1604 #ifdef CONFIG_SMP
1605 /*
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
1608 */
1609 while (p->on_cpu)
1610 cpu_relax();
1611 /*
1612 * Pairs with the smp_wmb() in finish_lock_switch().
1613 */
1614 smp_rmb();
1615
1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 p->state = TASK_WAKING;
1618
1619 if (p->sched_class->task_waking)
1620 p->sched_class->task_waking(p);
1621
1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
1625 set_task_cpu(p, cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628
1629 ttwu_queue(p, cpu);
1630 stat:
1631 ttwu_stat(p, cpu, wake_flags);
1632 out:
1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635 return success;
1636 }
1637
1638 /**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646 static void try_to_wake_up_local(struct task_struct *p)
1647 {
1648 struct rq *rq = task_rq(p);
1649
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
1654 lockdep_assert_held(&rq->lock);
1655
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
1662 if (!(p->state & TASK_NORMAL))
1663 goto out;
1664
1665 if (!p->on_rq)
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668 ttwu_do_wakeup(rq, p, 0);
1669 ttwu_stat(p, smp_processor_id(), 0);
1670 out:
1671 raw_spin_unlock(&p->pi_lock);
1672 }
1673
1674 /**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686 int wake_up_process(struct task_struct *p)
1687 {
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 return try_to_wake_up(p, state, 0);
1696 }
1697
1698 /*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705 {
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
1724 p->dl.dl_period = 0;
1725 p->dl.flags = 0;
1726
1727 INIT_LIST_HEAD(&p->rt.run_list);
1728
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731 #endif
1732
1733 #ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747 p->numa_work.next = &p->numa_work;
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
1755 #endif /* CONFIG_NUMA_BALANCING */
1756 }
1757
1758 #ifdef CONFIG_NUMA_BALANCING
1759 #ifdef CONFIG_SCHED_DEBUG
1760 void set_numabalancing_state(bool enabled)
1761 {
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766 }
1767 #else
1768 __read_mostly bool numabalancing_enabled;
1769
1770 void set_numabalancing_state(bool enabled)
1771 {
1772 numabalancing_enabled = enabled;
1773 }
1774 #endif /* CONFIG_SCHED_DEBUG */
1775
1776 #ifdef CONFIG_PROC_SYSCTL
1777 int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779 {
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795 }
1796 #endif
1797 #endif
1798
1799 /*
1800 * fork()/clone()-time setup:
1801 */
1802 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803 {
1804 unsigned long flags;
1805 int cpu = get_cpu();
1806
1807 __sched_fork(clone_flags, p);
1808 /*
1809 * We mark the process as running here. This guarantees that
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
1813 p->state = TASK_RUNNING;
1814
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825 p->policy = SCHED_NORMAL;
1826 p->static_prio = NICE_TO_PRIO(0);
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
1833
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
1840
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
1847 p->sched_class = &fair_sched_class;
1848 }
1849
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
1861 set_task_cpu(p, cpu);
1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865 if (likely(sched_info_on()))
1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1867 #endif
1868 #if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
1870 #endif
1871 init_task_preempt_count(p);
1872 #ifdef CONFIG_SMP
1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875 #endif
1876
1877 put_cpu();
1878 return 0;
1879 }
1880
1881 unsigned long to_ratio(u64 period, u64 runtime)
1882 {
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895 }
1896
1897 #ifdef CONFIG_SMP
1898 inline struct dl_bw *dl_bw_of(int i)
1899 {
1900 return &cpu_rq(i)->rd->dl_bw;
1901 }
1902
1903 static inline int dl_bw_cpus(int i)
1904 {
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
1912 }
1913 #else
1914 inline struct dl_bw *dl_bw_of(int i)
1915 {
1916 return &cpu_rq(i)->dl.dl_bw;
1917 }
1918
1919 static inline int dl_bw_cpus(int i)
1920 {
1921 return 1;
1922 }
1923 #endif
1924
1925 static inline
1926 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927 {
1928 dl_b->total_bw -= tsk_bw;
1929 }
1930
1931 static inline
1932 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933 {
1934 dl_b->total_bw += tsk_bw;
1935 }
1936
1937 static inline
1938 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939 {
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942 }
1943
1944 /*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952 static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954 {
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960 int cpus, err = -1;
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
1971 cpus = dl_bw_cpus(task_cpu(p));
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988 }
1989
1990 extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992 /*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999 void wake_up_new_task(struct task_struct *p)
2000 {
2001 unsigned long flags;
2002 struct rq *rq;
2003
2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
2005 #ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
2010 */
2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012 #endif
2013
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
2016 rq = __task_rq_lock(p);
2017 activate_task(rq, p, 0);
2018 p->on_rq = 1;
2019 trace_sched_wakeup_new(p, true);
2020 check_preempt_curr(rq, p, WF_FORK);
2021 #ifdef CONFIG_SMP
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
2024 #endif
2025 task_rq_unlock(rq, p, &flags);
2026 }
2027
2028 #ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030 /**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034 void preempt_notifier_register(struct preempt_notifier *notifier)
2035 {
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037 }
2038 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040 /**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047 {
2048 hlist_del(&notifier->link);
2049 }
2050 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053 {
2054 struct preempt_notifier *notifier;
2055
2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058 }
2059
2060 static void
2061 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063 {
2064 struct preempt_notifier *notifier;
2065
2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067 notifier->ops->sched_out(notifier, next);
2068 }
2069
2070 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073 {
2074 }
2075
2076 static void
2077 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079 {
2080 }
2081
2082 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084 /**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097 static inline void
2098 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
2100 {
2101 trace_sched_switch(prev, next);
2102 sched_info_switch(rq, prev, next);
2103 perf_event_task_sched_out(prev, next);
2104 fire_sched_out_preempt_notifiers(prev, next);
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107 }
2108
2109 /**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125 __releases(rq->lock)
2126 {
2127 struct mm_struct *mm = rq->prev_mm;
2128 long prev_state;
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
2137 * The test for TASK_DEAD must occur while the runqueue locks are
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
2143 prev_state = prev->state;
2144 vtime_task_switch(prev);
2145 finish_arch_switch(prev);
2146 perf_event_task_sched_in(prev, current);
2147 finish_lock_switch(rq, prev);
2148 finish_arch_post_lock_switch();
2149
2150 fire_sched_in_preempt_notifiers(current);
2151 if (mm)
2152 mmdrop(mm);
2153 if (unlikely(prev_state == TASK_DEAD)) {
2154 task_numa_free(prev);
2155
2156 if (prev->sched_class->task_dead)
2157 prev->sched_class->task_dead(prev);
2158
2159 /*
2160 * Remove function-return probe instances associated with this
2161 * task and put them back on the free list.
2162 */
2163 kprobe_flush_task(prev);
2164 put_task_struct(prev);
2165 }
2166
2167 tick_nohz_task_switch(current);
2168 }
2169
2170 #ifdef CONFIG_SMP
2171
2172 /* assumes rq->lock is held */
2173 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2174 {
2175 if (prev->sched_class->pre_schedule)
2176 prev->sched_class->pre_schedule(rq, prev);
2177 }
2178
2179 /* rq->lock is NOT held, but preemption is disabled */
2180 static inline void post_schedule(struct rq *rq)
2181 {
2182 if (rq->post_schedule) {
2183 unsigned long flags;
2184
2185 raw_spin_lock_irqsave(&rq->lock, flags);
2186 if (rq->curr->sched_class->post_schedule)
2187 rq->curr->sched_class->post_schedule(rq);
2188 raw_spin_unlock_irqrestore(&rq->lock, flags);
2189
2190 rq->post_schedule = 0;
2191 }
2192 }
2193
2194 #else
2195
2196 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2197 {
2198 }
2199
2200 static inline void post_schedule(struct rq *rq)
2201 {
2202 }
2203
2204 #endif
2205
2206 /**
2207 * schedule_tail - first thing a freshly forked thread must call.
2208 * @prev: the thread we just switched away from.
2209 */
2210 asmlinkage void schedule_tail(struct task_struct *prev)
2211 __releases(rq->lock)
2212 {
2213 struct rq *rq = this_rq();
2214
2215 finish_task_switch(rq, prev);
2216
2217 /*
2218 * FIXME: do we need to worry about rq being invalidated by the
2219 * task_switch?
2220 */
2221 post_schedule(rq);
2222
2223 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2224 /* In this case, finish_task_switch does not reenable preemption */
2225 preempt_enable();
2226 #endif
2227 if (current->set_child_tid)
2228 put_user(task_pid_vnr(current), current->set_child_tid);
2229 }
2230
2231 /*
2232 * context_switch - switch to the new MM and the new
2233 * thread's register state.
2234 */
2235 static inline void
2236 context_switch(struct rq *rq, struct task_struct *prev,
2237 struct task_struct *next)
2238 {
2239 struct mm_struct *mm, *oldmm;
2240
2241 prepare_task_switch(rq, prev, next);
2242
2243 mm = next->mm;
2244 oldmm = prev->active_mm;
2245 /*
2246 * For paravirt, this is coupled with an exit in switch_to to
2247 * combine the page table reload and the switch backend into
2248 * one hypercall.
2249 */
2250 arch_start_context_switch(prev);
2251
2252 if (!mm) {
2253 next->active_mm = oldmm;
2254 atomic_inc(&oldmm->mm_count);
2255 enter_lazy_tlb(oldmm, next);
2256 } else
2257 switch_mm(oldmm, mm, next);
2258
2259 if (!prev->mm) {
2260 prev->active_mm = NULL;
2261 rq->prev_mm = oldmm;
2262 }
2263 /*
2264 * Since the runqueue lock will be released by the next
2265 * task (which is an invalid locking op but in the case
2266 * of the scheduler it's an obvious special-case), so we
2267 * do an early lockdep release here:
2268 */
2269 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2270 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2271 #endif
2272
2273 context_tracking_task_switch(prev, next);
2274 /* Here we just switch the register state and the stack. */
2275 switch_to(prev, next, prev);
2276
2277 barrier();
2278 /*
2279 * this_rq must be evaluated again because prev may have moved
2280 * CPUs since it called schedule(), thus the 'rq' on its stack
2281 * frame will be invalid.
2282 */
2283 finish_task_switch(this_rq(), prev);
2284 }
2285
2286 /*
2287 * nr_running and nr_context_switches:
2288 *
2289 * externally visible scheduler statistics: current number of runnable
2290 * threads, total number of context switches performed since bootup.
2291 */
2292 unsigned long nr_running(void)
2293 {
2294 unsigned long i, sum = 0;
2295
2296 for_each_online_cpu(i)
2297 sum += cpu_rq(i)->nr_running;
2298
2299 return sum;
2300 }
2301
2302 unsigned long long nr_context_switches(void)
2303 {
2304 int i;
2305 unsigned long long sum = 0;
2306
2307 for_each_possible_cpu(i)
2308 sum += cpu_rq(i)->nr_switches;
2309
2310 return sum;
2311 }
2312
2313 unsigned long nr_iowait(void)
2314 {
2315 unsigned long i, sum = 0;
2316
2317 for_each_possible_cpu(i)
2318 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2319
2320 return sum;
2321 }
2322
2323 unsigned long nr_iowait_cpu(int cpu)
2324 {
2325 struct rq *this = cpu_rq(cpu);
2326 return atomic_read(&this->nr_iowait);
2327 }
2328
2329 #ifdef CONFIG_SMP
2330
2331 /*
2332 * sched_exec - execve() is a valuable balancing opportunity, because at
2333 * this point the task has the smallest effective memory and cache footprint.
2334 */
2335 void sched_exec(void)
2336 {
2337 struct task_struct *p = current;
2338 unsigned long flags;
2339 int dest_cpu;
2340
2341 raw_spin_lock_irqsave(&p->pi_lock, flags);
2342 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2343 if (dest_cpu == smp_processor_id())
2344 goto unlock;
2345
2346 if (likely(cpu_active(dest_cpu))) {
2347 struct migration_arg arg = { p, dest_cpu };
2348
2349 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2350 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2351 return;
2352 }
2353 unlock:
2354 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2355 }
2356
2357 #endif
2358
2359 DEFINE_PER_CPU(struct kernel_stat, kstat);
2360 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2361
2362 EXPORT_PER_CPU_SYMBOL(kstat);
2363 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2364
2365 /*
2366 * Return any ns on the sched_clock that have not yet been accounted in
2367 * @p in case that task is currently running.
2368 *
2369 * Called with task_rq_lock() held on @rq.
2370 */
2371 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2372 {
2373 u64 ns = 0;
2374
2375 if (task_current(rq, p)) {
2376 update_rq_clock(rq);
2377 ns = rq_clock_task(rq) - p->se.exec_start;
2378 if ((s64)ns < 0)
2379 ns = 0;
2380 }
2381
2382 return ns;
2383 }
2384
2385 unsigned long long task_delta_exec(struct task_struct *p)
2386 {
2387 unsigned long flags;
2388 struct rq *rq;
2389 u64 ns = 0;
2390
2391 rq = task_rq_lock(p, &flags);
2392 ns = do_task_delta_exec(p, rq);
2393 task_rq_unlock(rq, p, &flags);
2394
2395 return ns;
2396 }
2397
2398 /*
2399 * Return accounted runtime for the task.
2400 * In case the task is currently running, return the runtime plus current's
2401 * pending runtime that have not been accounted yet.
2402 */
2403 unsigned long long task_sched_runtime(struct task_struct *p)
2404 {
2405 unsigned long flags;
2406 struct rq *rq;
2407 u64 ns = 0;
2408
2409 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2410 /*
2411 * 64-bit doesn't need locks to atomically read a 64bit value.
2412 * So we have a optimization chance when the task's delta_exec is 0.
2413 * Reading ->on_cpu is racy, but this is ok.
2414 *
2415 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2416 * If we race with it entering cpu, unaccounted time is 0. This is
2417 * indistinguishable from the read occurring a few cycles earlier.
2418 */
2419 if (!p->on_cpu)
2420 return p->se.sum_exec_runtime;
2421 #endif
2422
2423 rq = task_rq_lock(p, &flags);
2424 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2425 task_rq_unlock(rq, p, &flags);
2426
2427 return ns;
2428 }
2429
2430 /*
2431 * This function gets called by the timer code, with HZ frequency.
2432 * We call it with interrupts disabled.
2433 */
2434 void scheduler_tick(void)
2435 {
2436 int cpu = smp_processor_id();
2437 struct rq *rq = cpu_rq(cpu);
2438 struct task_struct *curr = rq->curr;
2439
2440 sched_clock_tick();
2441
2442 raw_spin_lock(&rq->lock);
2443 update_rq_clock(rq);
2444 curr->sched_class->task_tick(rq, curr, 0);
2445 update_cpu_load_active(rq);
2446 raw_spin_unlock(&rq->lock);
2447
2448 perf_event_task_tick();
2449
2450 #ifdef CONFIG_SMP
2451 rq->idle_balance = idle_cpu(cpu);
2452 trigger_load_balance(rq);
2453 #endif
2454 rq_last_tick_reset(rq);
2455 }
2456
2457 #ifdef CONFIG_NO_HZ_FULL
2458 /**
2459 * scheduler_tick_max_deferment
2460 *
2461 * Keep at least one tick per second when a single
2462 * active task is running because the scheduler doesn't
2463 * yet completely support full dynticks environment.
2464 *
2465 * This makes sure that uptime, CFS vruntime, load
2466 * balancing, etc... continue to move forward, even
2467 * with a very low granularity.
2468 *
2469 * Return: Maximum deferment in nanoseconds.
2470 */
2471 u64 scheduler_tick_max_deferment(void)
2472 {
2473 struct rq *rq = this_rq();
2474 unsigned long next, now = ACCESS_ONCE(jiffies);
2475
2476 next = rq->last_sched_tick + HZ;
2477
2478 if (time_before_eq(next, now))
2479 return 0;
2480
2481 return jiffies_to_nsecs(next - now);
2482 }
2483 #endif
2484
2485 notrace unsigned long get_parent_ip(unsigned long addr)
2486 {
2487 if (in_lock_functions(addr)) {
2488 addr = CALLER_ADDR2;
2489 if (in_lock_functions(addr))
2490 addr = CALLER_ADDR3;
2491 }
2492 return addr;
2493 }
2494
2495 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2496 defined(CONFIG_PREEMPT_TRACER))
2497
2498 void __kprobes preempt_count_add(int val)
2499 {
2500 #ifdef CONFIG_DEBUG_PREEMPT
2501 /*
2502 * Underflow?
2503 */
2504 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2505 return;
2506 #endif
2507 __preempt_count_add(val);
2508 #ifdef CONFIG_DEBUG_PREEMPT
2509 /*
2510 * Spinlock count overflowing soon?
2511 */
2512 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2513 PREEMPT_MASK - 10);
2514 #endif
2515 if (preempt_count() == val)
2516 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2517 }
2518 EXPORT_SYMBOL(preempt_count_add);
2519
2520 void __kprobes preempt_count_sub(int val)
2521 {
2522 #ifdef CONFIG_DEBUG_PREEMPT
2523 /*
2524 * Underflow?
2525 */
2526 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2527 return;
2528 /*
2529 * Is the spinlock portion underflowing?
2530 */
2531 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2532 !(preempt_count() & PREEMPT_MASK)))
2533 return;
2534 #endif
2535
2536 if (preempt_count() == val)
2537 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2538 __preempt_count_sub(val);
2539 }
2540 EXPORT_SYMBOL(preempt_count_sub);
2541
2542 #endif
2543
2544 /*
2545 * Print scheduling while atomic bug:
2546 */
2547 static noinline void __schedule_bug(struct task_struct *prev)
2548 {
2549 if (oops_in_progress)
2550 return;
2551
2552 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2553 prev->comm, prev->pid, preempt_count());
2554
2555 debug_show_held_locks(prev);
2556 print_modules();
2557 if (irqs_disabled())
2558 print_irqtrace_events(prev);
2559 dump_stack();
2560 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2561 }
2562
2563 /*
2564 * Various schedule()-time debugging checks and statistics:
2565 */
2566 static inline void schedule_debug(struct task_struct *prev)
2567 {
2568 /*
2569 * Test if we are atomic. Since do_exit() needs to call into
2570 * schedule() atomically, we ignore that path. Otherwise whine
2571 * if we are scheduling when we should not.
2572 */
2573 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2574 __schedule_bug(prev);
2575 rcu_sleep_check();
2576
2577 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2578
2579 schedstat_inc(this_rq(), sched_count);
2580 }
2581
2582 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2583 {
2584 if (prev->on_rq || rq->skip_clock_update < 0)
2585 update_rq_clock(rq);
2586 prev->sched_class->put_prev_task(rq, prev);
2587 }
2588
2589 /*
2590 * Pick up the highest-prio task:
2591 */
2592 static inline struct task_struct *
2593 pick_next_task(struct rq *rq)
2594 {
2595 const struct sched_class *class;
2596 struct task_struct *p;
2597
2598 /*
2599 * Optimization: we know that if all tasks are in
2600 * the fair class we can call that function directly:
2601 */
2602 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2603 p = fair_sched_class.pick_next_task(rq);
2604 if (likely(p))
2605 return p;
2606 }
2607
2608 for_each_class(class) {
2609 p = class->pick_next_task(rq);
2610 if (p)
2611 return p;
2612 }
2613
2614 BUG(); /* the idle class will always have a runnable task */
2615 }
2616
2617 /*
2618 * __schedule() is the main scheduler function.
2619 *
2620 * The main means of driving the scheduler and thus entering this function are:
2621 *
2622 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2623 *
2624 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2625 * paths. For example, see arch/x86/entry_64.S.
2626 *
2627 * To drive preemption between tasks, the scheduler sets the flag in timer
2628 * interrupt handler scheduler_tick().
2629 *
2630 * 3. Wakeups don't really cause entry into schedule(). They add a
2631 * task to the run-queue and that's it.
2632 *
2633 * Now, if the new task added to the run-queue preempts the current
2634 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2635 * called on the nearest possible occasion:
2636 *
2637 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2638 *
2639 * - in syscall or exception context, at the next outmost
2640 * preempt_enable(). (this might be as soon as the wake_up()'s
2641 * spin_unlock()!)
2642 *
2643 * - in IRQ context, return from interrupt-handler to
2644 * preemptible context
2645 *
2646 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2647 * then at the next:
2648 *
2649 * - cond_resched() call
2650 * - explicit schedule() call
2651 * - return from syscall or exception to user-space
2652 * - return from interrupt-handler to user-space
2653 */
2654 static void __sched __schedule(void)
2655 {
2656 struct task_struct *prev, *next;
2657 unsigned long *switch_count;
2658 struct rq *rq;
2659 int cpu;
2660
2661 need_resched:
2662 preempt_disable();
2663 cpu = smp_processor_id();
2664 rq = cpu_rq(cpu);
2665 rcu_note_context_switch(cpu);
2666 prev = rq->curr;
2667
2668 schedule_debug(prev);
2669
2670 if (sched_feat(HRTICK))
2671 hrtick_clear(rq);
2672
2673 /*
2674 * Make sure that signal_pending_state()->signal_pending() below
2675 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2676 * done by the caller to avoid the race with signal_wake_up().
2677 */
2678 smp_mb__before_spinlock();
2679 raw_spin_lock_irq(&rq->lock);
2680
2681 switch_count = &prev->nivcsw;
2682 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2683 if (unlikely(signal_pending_state(prev->state, prev))) {
2684 prev->state = TASK_RUNNING;
2685 } else {
2686 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2687 prev->on_rq = 0;
2688
2689 /*
2690 * If a worker went to sleep, notify and ask workqueue
2691 * whether it wants to wake up a task to maintain
2692 * concurrency.
2693 */
2694 if (prev->flags & PF_WQ_WORKER) {
2695 struct task_struct *to_wakeup;
2696
2697 to_wakeup = wq_worker_sleeping(prev, cpu);
2698 if (to_wakeup)
2699 try_to_wake_up_local(to_wakeup);
2700 }
2701 }
2702 switch_count = &prev->nvcsw;
2703 }
2704
2705 pre_schedule(rq, prev);
2706
2707 if (unlikely(!rq->nr_running))
2708 idle_balance(cpu, rq);
2709
2710 put_prev_task(rq, prev);
2711 next = pick_next_task(rq);
2712 clear_tsk_need_resched(prev);
2713 clear_preempt_need_resched();
2714 rq->skip_clock_update = 0;
2715
2716 if (likely(prev != next)) {
2717 rq->nr_switches++;
2718 rq->curr = next;
2719 ++*switch_count;
2720
2721 context_switch(rq, prev, next); /* unlocks the rq */
2722 /*
2723 * The context switch have flipped the stack from under us
2724 * and restored the local variables which were saved when
2725 * this task called schedule() in the past. prev == current
2726 * is still correct, but it can be moved to another cpu/rq.
2727 */
2728 cpu = smp_processor_id();
2729 rq = cpu_rq(cpu);
2730 } else
2731 raw_spin_unlock_irq(&rq->lock);
2732
2733 post_schedule(rq);
2734
2735 sched_preempt_enable_no_resched();
2736 if (need_resched())
2737 goto need_resched;
2738 }
2739
2740 static inline void sched_submit_work(struct task_struct *tsk)
2741 {
2742 if (!tsk->state || tsk_is_pi_blocked(tsk))
2743 return;
2744 /*
2745 * If we are going to sleep and we have plugged IO queued,
2746 * make sure to submit it to avoid deadlocks.
2747 */
2748 if (blk_needs_flush_plug(tsk))
2749 blk_schedule_flush_plug(tsk);
2750 }
2751
2752 asmlinkage void __sched schedule(void)
2753 {
2754 struct task_struct *tsk = current;
2755
2756 sched_submit_work(tsk);
2757 __schedule();
2758 }
2759 EXPORT_SYMBOL(schedule);
2760
2761 #ifdef CONFIG_CONTEXT_TRACKING
2762 asmlinkage void __sched schedule_user(void)
2763 {
2764 /*
2765 * If we come here after a random call to set_need_resched(),
2766 * or we have been woken up remotely but the IPI has not yet arrived,
2767 * we haven't yet exited the RCU idle mode. Do it here manually until
2768 * we find a better solution.
2769 */
2770 user_exit();
2771 schedule();
2772 user_enter();
2773 }
2774 #endif
2775
2776 /**
2777 * schedule_preempt_disabled - called with preemption disabled
2778 *
2779 * Returns with preemption disabled. Note: preempt_count must be 1
2780 */
2781 void __sched schedule_preempt_disabled(void)
2782 {
2783 sched_preempt_enable_no_resched();
2784 schedule();
2785 preempt_disable();
2786 }
2787
2788 #ifdef CONFIG_PREEMPT
2789 /*
2790 * this is the entry point to schedule() from in-kernel preemption
2791 * off of preempt_enable. Kernel preemptions off return from interrupt
2792 * occur there and call schedule directly.
2793 */
2794 asmlinkage void __sched notrace preempt_schedule(void)
2795 {
2796 /*
2797 * If there is a non-zero preempt_count or interrupts are disabled,
2798 * we do not want to preempt the current task. Just return..
2799 */
2800 if (likely(!preemptible()))
2801 return;
2802
2803 do {
2804 __preempt_count_add(PREEMPT_ACTIVE);
2805 __schedule();
2806 __preempt_count_sub(PREEMPT_ACTIVE);
2807
2808 /*
2809 * Check again in case we missed a preemption opportunity
2810 * between schedule and now.
2811 */
2812 barrier();
2813 } while (need_resched());
2814 }
2815 EXPORT_SYMBOL(preempt_schedule);
2816 #endif /* CONFIG_PREEMPT */
2817
2818 /*
2819 * this is the entry point to schedule() from kernel preemption
2820 * off of irq context.
2821 * Note, that this is called and return with irqs disabled. This will
2822 * protect us against recursive calling from irq.
2823 */
2824 asmlinkage void __sched preempt_schedule_irq(void)
2825 {
2826 enum ctx_state prev_state;
2827
2828 /* Catch callers which need to be fixed */
2829 BUG_ON(preempt_count() || !irqs_disabled());
2830
2831 prev_state = exception_enter();
2832
2833 do {
2834 __preempt_count_add(PREEMPT_ACTIVE);
2835 local_irq_enable();
2836 __schedule();
2837 local_irq_disable();
2838 __preempt_count_sub(PREEMPT_ACTIVE);
2839
2840 /*
2841 * Check again in case we missed a preemption opportunity
2842 * between schedule and now.
2843 */
2844 barrier();
2845 } while (need_resched());
2846
2847 exception_exit(prev_state);
2848 }
2849
2850 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2851 void *key)
2852 {
2853 return try_to_wake_up(curr->private, mode, wake_flags);
2854 }
2855 EXPORT_SYMBOL(default_wake_function);
2856
2857 static long __sched
2858 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2859 {
2860 unsigned long flags;
2861 wait_queue_t wait;
2862
2863 init_waitqueue_entry(&wait, current);
2864
2865 __set_current_state(state);
2866
2867 spin_lock_irqsave(&q->lock, flags);
2868 __add_wait_queue(q, &wait);
2869 spin_unlock(&q->lock);
2870 timeout = schedule_timeout(timeout);
2871 spin_lock_irq(&q->lock);
2872 __remove_wait_queue(q, &wait);
2873 spin_unlock_irqrestore(&q->lock, flags);
2874
2875 return timeout;
2876 }
2877
2878 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2879 {
2880 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2881 }
2882 EXPORT_SYMBOL(interruptible_sleep_on);
2883
2884 long __sched
2885 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2886 {
2887 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2888 }
2889 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2890
2891 void __sched sleep_on(wait_queue_head_t *q)
2892 {
2893 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2894 }
2895 EXPORT_SYMBOL(sleep_on);
2896
2897 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2898 {
2899 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2900 }
2901 EXPORT_SYMBOL(sleep_on_timeout);
2902
2903 #ifdef CONFIG_RT_MUTEXES
2904
2905 /*
2906 * rt_mutex_setprio - set the current priority of a task
2907 * @p: task
2908 * @prio: prio value (kernel-internal form)
2909 *
2910 * This function changes the 'effective' priority of a task. It does
2911 * not touch ->normal_prio like __setscheduler().
2912 *
2913 * Used by the rt_mutex code to implement priority inheritance logic.
2914 */
2915 void rt_mutex_setprio(struct task_struct *p, int prio)
2916 {
2917 int oldprio, on_rq, running, enqueue_flag = 0;
2918 struct rq *rq;
2919 const struct sched_class *prev_class;
2920
2921 BUG_ON(prio > MAX_PRIO);
2922
2923 rq = __task_rq_lock(p);
2924
2925 /*
2926 * Idle task boosting is a nono in general. There is one
2927 * exception, when PREEMPT_RT and NOHZ is active:
2928 *
2929 * The idle task calls get_next_timer_interrupt() and holds
2930 * the timer wheel base->lock on the CPU and another CPU wants
2931 * to access the timer (probably to cancel it). We can safely
2932 * ignore the boosting request, as the idle CPU runs this code
2933 * with interrupts disabled and will complete the lock
2934 * protected section without being interrupted. So there is no
2935 * real need to boost.
2936 */
2937 if (unlikely(p == rq->idle)) {
2938 WARN_ON(p != rq->curr);
2939 WARN_ON(p->pi_blocked_on);
2940 goto out_unlock;
2941 }
2942
2943 trace_sched_pi_setprio(p, prio);
2944 p->pi_top_task = rt_mutex_get_top_task(p);
2945 oldprio = p->prio;
2946 prev_class = p->sched_class;
2947 on_rq = p->on_rq;
2948 running = task_current(rq, p);
2949 if (on_rq)
2950 dequeue_task(rq, p, 0);
2951 if (running)
2952 p->sched_class->put_prev_task(rq, p);
2953
2954 /*
2955 * Boosting condition are:
2956 * 1. -rt task is running and holds mutex A
2957 * --> -dl task blocks on mutex A
2958 *
2959 * 2. -dl task is running and holds mutex A
2960 * --> -dl task blocks on mutex A and could preempt the
2961 * running task
2962 */
2963 if (dl_prio(prio)) {
2964 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2965 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2966 p->dl.dl_boosted = 1;
2967 p->dl.dl_throttled = 0;
2968 enqueue_flag = ENQUEUE_REPLENISH;
2969 } else
2970 p->dl.dl_boosted = 0;
2971 p->sched_class = &dl_sched_class;
2972 } else if (rt_prio(prio)) {
2973 if (dl_prio(oldprio))
2974 p->dl.dl_boosted = 0;
2975 if (oldprio < prio)
2976 enqueue_flag = ENQUEUE_HEAD;
2977 p->sched_class = &rt_sched_class;
2978 } else {
2979 if (dl_prio(oldprio))
2980 p->dl.dl_boosted = 0;
2981 p->sched_class = &fair_sched_class;
2982 }
2983
2984 p->prio = prio;
2985
2986 if (running)
2987 p->sched_class->set_curr_task(rq);
2988 if (on_rq)
2989 enqueue_task(rq, p, enqueue_flag);
2990
2991 check_class_changed(rq, p, prev_class, oldprio);
2992 out_unlock:
2993 __task_rq_unlock(rq);
2994 }
2995 #endif
2996
2997 void set_user_nice(struct task_struct *p, long nice)
2998 {
2999 int old_prio, delta, on_rq;
3000 unsigned long flags;
3001 struct rq *rq;
3002
3003 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3004 return;
3005 /*
3006 * We have to be careful, if called from sys_setpriority(),
3007 * the task might be in the middle of scheduling on another CPU.
3008 */
3009 rq = task_rq_lock(p, &flags);
3010 /*
3011 * The RT priorities are set via sched_setscheduler(), but we still
3012 * allow the 'normal' nice value to be set - but as expected
3013 * it wont have any effect on scheduling until the task is
3014 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3015 */
3016 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3017 p->static_prio = NICE_TO_PRIO(nice);
3018 goto out_unlock;
3019 }
3020 on_rq = p->on_rq;
3021 if (on_rq)
3022 dequeue_task(rq, p, 0);
3023
3024 p->static_prio = NICE_TO_PRIO(nice);
3025 set_load_weight(p);
3026 old_prio = p->prio;
3027 p->prio = effective_prio(p);
3028 delta = p->prio - old_prio;
3029
3030 if (on_rq) {
3031 enqueue_task(rq, p, 0);
3032 /*
3033 * If the task increased its priority or is running and
3034 * lowered its priority, then reschedule its CPU:
3035 */
3036 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3037 resched_task(rq->curr);
3038 }
3039 out_unlock:
3040 task_rq_unlock(rq, p, &flags);
3041 }
3042 EXPORT_SYMBOL(set_user_nice);
3043
3044 /*
3045 * can_nice - check if a task can reduce its nice value
3046 * @p: task
3047 * @nice: nice value
3048 */
3049 int can_nice(const struct task_struct *p, const int nice)
3050 {
3051 /* convert nice value [19,-20] to rlimit style value [1,40] */
3052 int nice_rlim = 20 - nice;
3053
3054 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3055 capable(CAP_SYS_NICE));
3056 }
3057
3058 #ifdef __ARCH_WANT_SYS_NICE
3059
3060 /*
3061 * sys_nice - change the priority of the current process.
3062 * @increment: priority increment
3063 *
3064 * sys_setpriority is a more generic, but much slower function that
3065 * does similar things.
3066 */
3067 SYSCALL_DEFINE1(nice, int, increment)
3068 {
3069 long nice, retval;
3070
3071 /*
3072 * Setpriority might change our priority at the same moment.
3073 * We don't have to worry. Conceptually one call occurs first
3074 * and we have a single winner.
3075 */
3076 if (increment < -40)
3077 increment = -40;
3078 if (increment > 40)
3079 increment = 40;
3080
3081 nice = TASK_NICE(current) + increment;
3082 if (nice < -20)
3083 nice = -20;
3084 if (nice > 19)
3085 nice = 19;
3086
3087 if (increment < 0 && !can_nice(current, nice))
3088 return -EPERM;
3089
3090 retval = security_task_setnice(current, nice);
3091 if (retval)
3092 return retval;
3093
3094 set_user_nice(current, nice);
3095 return 0;
3096 }
3097
3098 #endif
3099
3100 /**
3101 * task_prio - return the priority value of a given task.
3102 * @p: the task in question.
3103 *
3104 * Return: The priority value as seen by users in /proc.
3105 * RT tasks are offset by -200. Normal tasks are centered
3106 * around 0, value goes from -16 to +15.
3107 */
3108 int task_prio(const struct task_struct *p)
3109 {
3110 return p->prio - MAX_RT_PRIO;
3111 }
3112
3113 /**
3114 * task_nice - return the nice value of a given task.
3115 * @p: the task in question.
3116 *
3117 * Return: The nice value [ -20 ... 0 ... 19 ].
3118 */
3119 int task_nice(const struct task_struct *p)
3120 {
3121 return TASK_NICE(p);
3122 }
3123 EXPORT_SYMBOL(task_nice);
3124
3125 /**
3126 * idle_cpu - is a given cpu idle currently?
3127 * @cpu: the processor in question.
3128 *
3129 * Return: 1 if the CPU is currently idle. 0 otherwise.
3130 */
3131 int idle_cpu(int cpu)
3132 {
3133 struct rq *rq = cpu_rq(cpu);
3134
3135 if (rq->curr != rq->idle)
3136 return 0;
3137
3138 if (rq->nr_running)
3139 return 0;
3140
3141 #ifdef CONFIG_SMP
3142 if (!llist_empty(&rq->wake_list))
3143 return 0;
3144 #endif
3145
3146 return 1;
3147 }
3148
3149 /**
3150 * idle_task - return the idle task for a given cpu.
3151 * @cpu: the processor in question.
3152 *
3153 * Return: The idle task for the cpu @cpu.
3154 */
3155 struct task_struct *idle_task(int cpu)
3156 {
3157 return cpu_rq(cpu)->idle;
3158 }
3159
3160 /**
3161 * find_process_by_pid - find a process with a matching PID value.
3162 * @pid: the pid in question.
3163 *
3164 * The task of @pid, if found. %NULL otherwise.
3165 */
3166 static struct task_struct *find_process_by_pid(pid_t pid)
3167 {
3168 return pid ? find_task_by_vpid(pid) : current;
3169 }
3170
3171 /*
3172 * This function initializes the sched_dl_entity of a newly becoming
3173 * SCHED_DEADLINE task.
3174 *
3175 * Only the static values are considered here, the actual runtime and the
3176 * absolute deadline will be properly calculated when the task is enqueued
3177 * for the first time with its new policy.
3178 */
3179 static void
3180 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3181 {
3182 struct sched_dl_entity *dl_se = &p->dl;
3183
3184 init_dl_task_timer(dl_se);
3185 dl_se->dl_runtime = attr->sched_runtime;
3186 dl_se->dl_deadline = attr->sched_deadline;
3187 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3188 dl_se->flags = attr->sched_flags;
3189 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3190 dl_se->dl_throttled = 0;
3191 dl_se->dl_new = 1;
3192 }
3193
3194 /* Actually do priority change: must hold pi & rq lock. */
3195 static void __setscheduler(struct rq *rq, struct task_struct *p,
3196 const struct sched_attr *attr)
3197 {
3198 int policy = attr->sched_policy;
3199
3200 if (policy == -1) /* setparam */
3201 policy = p->policy;
3202
3203 p->policy = policy;
3204
3205 if (dl_policy(policy))
3206 __setparam_dl(p, attr);
3207 else if (fair_policy(policy))
3208 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3209
3210 /*
3211 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3212 * !rt_policy. Always setting this ensures that things like
3213 * getparam()/getattr() don't report silly values for !rt tasks.
3214 */
3215 p->rt_priority = attr->sched_priority;
3216
3217 p->normal_prio = normal_prio(p);
3218 p->prio = rt_mutex_getprio(p);
3219
3220 if (dl_prio(p->prio))
3221 p->sched_class = &dl_sched_class;
3222 else if (rt_prio(p->prio))
3223 p->sched_class = &rt_sched_class;
3224 else
3225 p->sched_class = &fair_sched_class;
3226
3227 set_load_weight(p);
3228 }
3229
3230 static void
3231 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3232 {
3233 struct sched_dl_entity *dl_se = &p->dl;
3234
3235 attr->sched_priority = p->rt_priority;
3236 attr->sched_runtime = dl_se->dl_runtime;
3237 attr->sched_deadline = dl_se->dl_deadline;
3238 attr->sched_period = dl_se->dl_period;
3239 attr->sched_flags = dl_se->flags;
3240 }
3241
3242 /*
3243 * This function validates the new parameters of a -deadline task.
3244 * We ask for the deadline not being zero, and greater or equal
3245 * than the runtime, as well as the period of being zero or
3246 * greater than deadline. Furthermore, we have to be sure that
3247 * user parameters are above the internal resolution (1us); we
3248 * check sched_runtime only since it is always the smaller one.
3249 */
3250 static bool
3251 __checkparam_dl(const struct sched_attr *attr)
3252 {
3253 return attr && attr->sched_deadline != 0 &&
3254 (attr->sched_period == 0 ||
3255 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3256 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3257 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3258 }
3259
3260 /*
3261 * check the target process has a UID that matches the current process's
3262 */
3263 static bool check_same_owner(struct task_struct *p)
3264 {
3265 const struct cred *cred = current_cred(), *pcred;
3266 bool match;
3267
3268 rcu_read_lock();
3269 pcred = __task_cred(p);
3270 match = (uid_eq(cred->euid, pcred->euid) ||
3271 uid_eq(cred->euid, pcred->uid));
3272 rcu_read_unlock();
3273 return match;
3274 }
3275
3276 static int __sched_setscheduler(struct task_struct *p,
3277 const struct sched_attr *attr,
3278 bool user)
3279 {
3280 int retval, oldprio, oldpolicy = -1, on_rq, running;
3281 int policy = attr->sched_policy;
3282 unsigned long flags;
3283 const struct sched_class *prev_class;
3284 struct rq *rq;
3285 int reset_on_fork;
3286
3287 /* may grab non-irq protected spin_locks */
3288 BUG_ON(in_interrupt());
3289 recheck:
3290 /* double check policy once rq lock held */
3291 if (policy < 0) {
3292 reset_on_fork = p->sched_reset_on_fork;
3293 policy = oldpolicy = p->policy;
3294 } else {
3295 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3296
3297 if (policy != SCHED_DEADLINE &&
3298 policy != SCHED_FIFO && policy != SCHED_RR &&
3299 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3300 policy != SCHED_IDLE)
3301 return -EINVAL;
3302 }
3303
3304 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3305 return -EINVAL;
3306
3307 /*
3308 * Valid priorities for SCHED_FIFO and SCHED_RR are
3309 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3310 * SCHED_BATCH and SCHED_IDLE is 0.
3311 */
3312 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3313 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3314 return -EINVAL;
3315 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3316 (rt_policy(policy) != (attr->sched_priority != 0)))
3317 return -EINVAL;
3318
3319 /*
3320 * Allow unprivileged RT tasks to decrease priority:
3321 */
3322 if (user && !capable(CAP_SYS_NICE)) {
3323 if (fair_policy(policy)) {
3324 if (attr->sched_nice < TASK_NICE(p) &&
3325 !can_nice(p, attr->sched_nice))
3326 return -EPERM;
3327 }
3328
3329 if (rt_policy(policy)) {
3330 unsigned long rlim_rtprio =
3331 task_rlimit(p, RLIMIT_RTPRIO);
3332
3333 /* can't set/change the rt policy */
3334 if (policy != p->policy && !rlim_rtprio)
3335 return -EPERM;
3336
3337 /* can't increase priority */
3338 if (attr->sched_priority > p->rt_priority &&
3339 attr->sched_priority > rlim_rtprio)
3340 return -EPERM;
3341 }
3342
3343 /*
3344 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3345 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3346 */
3347 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3348 if (!can_nice(p, TASK_NICE(p)))
3349 return -EPERM;
3350 }
3351
3352 /* can't change other user's priorities */
3353 if (!check_same_owner(p))
3354 return -EPERM;
3355
3356 /* Normal users shall not reset the sched_reset_on_fork flag */
3357 if (p->sched_reset_on_fork && !reset_on_fork)
3358 return -EPERM;
3359 }
3360
3361 if (user) {
3362 retval = security_task_setscheduler(p);
3363 if (retval)
3364 return retval;
3365 }
3366
3367 /*
3368 * make sure no PI-waiters arrive (or leave) while we are
3369 * changing the priority of the task:
3370 *
3371 * To be able to change p->policy safely, the appropriate
3372 * runqueue lock must be held.
3373 */
3374 rq = task_rq_lock(p, &flags);
3375
3376 /*
3377 * Changing the policy of the stop threads its a very bad idea
3378 */
3379 if (p == rq->stop) {
3380 task_rq_unlock(rq, p, &flags);
3381 return -EINVAL;
3382 }
3383
3384 /*
3385 * If not changing anything there's no need to proceed further:
3386 */
3387 if (unlikely(policy == p->policy)) {
3388 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3389 goto change;
3390 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3391 goto change;
3392 if (dl_policy(policy))
3393 goto change;
3394
3395 task_rq_unlock(rq, p, &flags);
3396 return 0;
3397 }
3398 change:
3399
3400 if (user) {
3401 #ifdef CONFIG_RT_GROUP_SCHED
3402 /*
3403 * Do not allow realtime tasks into groups that have no runtime
3404 * assigned.
3405 */
3406 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3407 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3408 !task_group_is_autogroup(task_group(p))) {
3409 task_rq_unlock(rq, p, &flags);
3410 return -EPERM;
3411 }
3412 #endif
3413 #ifdef CONFIG_SMP
3414 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3415 cpumask_t *span = rq->rd->span;
3416
3417 /*
3418 * Don't allow tasks with an affinity mask smaller than
3419 * the entire root_domain to become SCHED_DEADLINE. We
3420 * will also fail if there's no bandwidth available.
3421 */
3422 if (!cpumask_subset(span, &p->cpus_allowed) ||
3423 rq->rd->dl_bw.bw == 0) {
3424 task_rq_unlock(rq, p, &flags);
3425 return -EPERM;
3426 }
3427 }
3428 #endif
3429 }
3430
3431 /* recheck policy now with rq lock held */
3432 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3433 policy = oldpolicy = -1;
3434 task_rq_unlock(rq, p, &flags);
3435 goto recheck;
3436 }
3437
3438 /*
3439 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3440 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3441 * is available.
3442 */
3443 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3444 task_rq_unlock(rq, p, &flags);
3445 return -EBUSY;
3446 }
3447
3448 on_rq = p->on_rq;
3449 running = task_current(rq, p);
3450 if (on_rq)
3451 dequeue_task(rq, p, 0);
3452 if (running)
3453 p->sched_class->put_prev_task(rq, p);
3454
3455 p->sched_reset_on_fork = reset_on_fork;
3456
3457 oldprio = p->prio;
3458 prev_class = p->sched_class;
3459 __setscheduler(rq, p, attr);
3460
3461 if (running)
3462 p->sched_class->set_curr_task(rq);
3463 if (on_rq)
3464 enqueue_task(rq, p, 0);
3465
3466 check_class_changed(rq, p, prev_class, oldprio);
3467 task_rq_unlock(rq, p, &flags);
3468
3469 rt_mutex_adjust_pi(p);
3470
3471 return 0;
3472 }
3473
3474 static int _sched_setscheduler(struct task_struct *p, int policy,
3475 const struct sched_param *param, bool check)
3476 {
3477 struct sched_attr attr = {
3478 .sched_policy = policy,
3479 .sched_priority = param->sched_priority,
3480 .sched_nice = PRIO_TO_NICE(p->static_prio),
3481 };
3482
3483 /*
3484 * Fixup the legacy SCHED_RESET_ON_FORK hack
3485 */
3486 if (policy & SCHED_RESET_ON_FORK) {
3487 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3488 policy &= ~SCHED_RESET_ON_FORK;
3489 attr.sched_policy = policy;
3490 }
3491
3492 return __sched_setscheduler(p, &attr, check);
3493 }
3494 /**
3495 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3496 * @p: the task in question.
3497 * @policy: new policy.
3498 * @param: structure containing the new RT priority.
3499 *
3500 * Return: 0 on success. An error code otherwise.
3501 *
3502 * NOTE that the task may be already dead.
3503 */
3504 int sched_setscheduler(struct task_struct *p, int policy,
3505 const struct sched_param *param)
3506 {
3507 return _sched_setscheduler(p, policy, param, true);
3508 }
3509 EXPORT_SYMBOL_GPL(sched_setscheduler);
3510
3511 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3512 {
3513 return __sched_setscheduler(p, attr, true);
3514 }
3515 EXPORT_SYMBOL_GPL(sched_setattr);
3516
3517 /**
3518 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3519 * @p: the task in question.
3520 * @policy: new policy.
3521 * @param: structure containing the new RT priority.
3522 *
3523 * Just like sched_setscheduler, only don't bother checking if the
3524 * current context has permission. For example, this is needed in
3525 * stop_machine(): we create temporary high priority worker threads,
3526 * but our caller might not have that capability.
3527 *
3528 * Return: 0 on success. An error code otherwise.
3529 */
3530 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3531 const struct sched_param *param)
3532 {
3533 return _sched_setscheduler(p, policy, param, false);
3534 }
3535
3536 static int
3537 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3538 {
3539 struct sched_param lparam;
3540 struct task_struct *p;
3541 int retval;
3542
3543 if (!param || pid < 0)
3544 return -EINVAL;
3545 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3546 return -EFAULT;
3547
3548 rcu_read_lock();
3549 retval = -ESRCH;
3550 p = find_process_by_pid(pid);
3551 if (p != NULL)
3552 retval = sched_setscheduler(p, policy, &lparam);
3553 rcu_read_unlock();
3554
3555 return retval;
3556 }
3557
3558 /*
3559 * Mimics kernel/events/core.c perf_copy_attr().
3560 */
3561 static int sched_copy_attr(struct sched_attr __user *uattr,
3562 struct sched_attr *attr)
3563 {
3564 u32 size;
3565 int ret;
3566
3567 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3568 return -EFAULT;
3569
3570 /*
3571 * zero the full structure, so that a short copy will be nice.
3572 */
3573 memset(attr, 0, sizeof(*attr));
3574
3575 ret = get_user(size, &uattr->size);
3576 if (ret)
3577 return ret;
3578
3579 if (size > PAGE_SIZE) /* silly large */
3580 goto err_size;
3581
3582 if (!size) /* abi compat */
3583 size = SCHED_ATTR_SIZE_VER0;
3584
3585 if (size < SCHED_ATTR_SIZE_VER0)
3586 goto err_size;
3587
3588 /*
3589 * If we're handed a bigger struct than we know of,
3590 * ensure all the unknown bits are 0 - i.e. new
3591 * user-space does not rely on any kernel feature
3592 * extensions we dont know about yet.
3593 */
3594 if (size > sizeof(*attr)) {
3595 unsigned char __user *addr;
3596 unsigned char __user *end;
3597 unsigned char val;
3598
3599 addr = (void __user *)uattr + sizeof(*attr);
3600 end = (void __user *)uattr + size;
3601
3602 for (; addr < end; addr++) {
3603 ret = get_user(val, addr);
3604 if (ret)
3605 return ret;
3606 if (val)
3607 goto err_size;
3608 }
3609 size = sizeof(*attr);
3610 }
3611
3612 ret = copy_from_user(attr, uattr, size);
3613 if (ret)
3614 return -EFAULT;
3615
3616 /*
3617 * XXX: do we want to be lenient like existing syscalls; or do we want
3618 * to be strict and return an error on out-of-bounds values?
3619 */
3620 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3621
3622 out:
3623 return ret;
3624
3625 err_size:
3626 put_user(sizeof(*attr), &uattr->size);
3627 ret = -E2BIG;
3628 goto out;
3629 }
3630
3631 /**
3632 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3633 * @pid: the pid in question.
3634 * @policy: new policy.
3635 * @param: structure containing the new RT priority.
3636 *
3637 * Return: 0 on success. An error code otherwise.
3638 */
3639 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3640 struct sched_param __user *, param)
3641 {
3642 /* negative values for policy are not valid */
3643 if (policy < 0)
3644 return -EINVAL;
3645
3646 return do_sched_setscheduler(pid, policy, param);
3647 }
3648
3649 /**
3650 * sys_sched_setparam - set/change the RT priority of a thread
3651 * @pid: the pid in question.
3652 * @param: structure containing the new RT priority.
3653 *
3654 * Return: 0 on success. An error code otherwise.
3655 */
3656 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3657 {
3658 return do_sched_setscheduler(pid, -1, param);
3659 }
3660
3661 /**
3662 * sys_sched_setattr - same as above, but with extended sched_attr
3663 * @pid: the pid in question.
3664 * @uattr: structure containing the extended parameters.
3665 */
3666 SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3667 {
3668 struct sched_attr attr;
3669 struct task_struct *p;
3670 int retval;
3671
3672 if (!uattr || pid < 0)
3673 return -EINVAL;
3674
3675 if (sched_copy_attr(uattr, &attr))
3676 return -EFAULT;
3677
3678 rcu_read_lock();
3679 retval = -ESRCH;
3680 p = find_process_by_pid(pid);
3681 if (p != NULL)
3682 retval = sched_setattr(p, &attr);
3683 rcu_read_unlock();
3684
3685 return retval;
3686 }
3687
3688 /**
3689 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3690 * @pid: the pid in question.
3691 *
3692 * Return: On success, the policy of the thread. Otherwise, a negative error
3693 * code.
3694 */
3695 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3696 {
3697 struct task_struct *p;
3698 int retval;
3699
3700 if (pid < 0)
3701 return -EINVAL;
3702
3703 retval = -ESRCH;
3704 rcu_read_lock();
3705 p = find_process_by_pid(pid);
3706 if (p) {
3707 retval = security_task_getscheduler(p);
3708 if (!retval)
3709 retval = p->policy
3710 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3711 }
3712 rcu_read_unlock();
3713 return retval;
3714 }
3715
3716 /**
3717 * sys_sched_getparam - get the RT priority of a thread
3718 * @pid: the pid in question.
3719 * @param: structure containing the RT priority.
3720 *
3721 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3722 * code.
3723 */
3724 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3725 {
3726 struct sched_param lp;
3727 struct task_struct *p;
3728 int retval;
3729
3730 if (!param || pid < 0)
3731 return -EINVAL;
3732
3733 rcu_read_lock();
3734 p = find_process_by_pid(pid);
3735 retval = -ESRCH;
3736 if (!p)
3737 goto out_unlock;
3738
3739 retval = security_task_getscheduler(p);
3740 if (retval)
3741 goto out_unlock;
3742
3743 if (task_has_dl_policy(p)) {
3744 retval = -EINVAL;
3745 goto out_unlock;
3746 }
3747 lp.sched_priority = p->rt_priority;
3748 rcu_read_unlock();
3749
3750 /*
3751 * This one might sleep, we cannot do it with a spinlock held ...
3752 */
3753 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3754
3755 return retval;
3756
3757 out_unlock:
3758 rcu_read_unlock();
3759 return retval;
3760 }
3761
3762 static int sched_read_attr(struct sched_attr __user *uattr,
3763 struct sched_attr *attr,
3764 unsigned int usize)
3765 {
3766 int ret;
3767
3768 if (!access_ok(VERIFY_WRITE, uattr, usize))
3769 return -EFAULT;
3770
3771 /*
3772 * If we're handed a smaller struct than we know of,
3773 * ensure all the unknown bits are 0 - i.e. old
3774 * user-space does not get uncomplete information.
3775 */
3776 if (usize < sizeof(*attr)) {
3777 unsigned char *addr;
3778 unsigned char *end;
3779
3780 addr = (void *)attr + usize;
3781 end = (void *)attr + sizeof(*attr);
3782
3783 for (; addr < end; addr++) {
3784 if (*addr)
3785 goto err_size;
3786 }
3787
3788 attr->size = usize;
3789 }
3790
3791 ret = copy_to_user(uattr, attr, usize);
3792 if (ret)
3793 return -EFAULT;
3794
3795 out:
3796 return ret;
3797
3798 err_size:
3799 ret = -E2BIG;
3800 goto out;
3801 }
3802
3803 /**
3804 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3805 * @pid: the pid in question.
3806 * @uattr: structure containing the extended parameters.
3807 * @size: sizeof(attr) for fwd/bwd comp.
3808 */
3809 SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3810 unsigned int, size)
3811 {
3812 struct sched_attr attr = {
3813 .size = sizeof(struct sched_attr),
3814 };
3815 struct task_struct *p;
3816 int retval;
3817
3818 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3819 size < SCHED_ATTR_SIZE_VER0)
3820 return -EINVAL;
3821
3822 rcu_read_lock();
3823 p = find_process_by_pid(pid);
3824 retval = -ESRCH;
3825 if (!p)
3826 goto out_unlock;
3827
3828 retval = security_task_getscheduler(p);
3829 if (retval)
3830 goto out_unlock;
3831
3832 attr.sched_policy = p->policy;
3833 if (p->sched_reset_on_fork)
3834 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3835 if (task_has_dl_policy(p))
3836 __getparam_dl(p, &attr);
3837 else if (task_has_rt_policy(p))
3838 attr.sched_priority = p->rt_priority;
3839 else
3840 attr.sched_nice = TASK_NICE(p);
3841
3842 rcu_read_unlock();
3843
3844 retval = sched_read_attr(uattr, &attr, size);
3845 return retval;
3846
3847 out_unlock:
3848 rcu_read_unlock();
3849 return retval;
3850 }
3851
3852 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3853 {
3854 cpumask_var_t cpus_allowed, new_mask;
3855 struct task_struct *p;
3856 int retval;
3857
3858 rcu_read_lock();
3859
3860 p = find_process_by_pid(pid);
3861 if (!p) {
3862 rcu_read_unlock();
3863 return -ESRCH;
3864 }
3865
3866 /* Prevent p going away */
3867 get_task_struct(p);
3868 rcu_read_unlock();
3869
3870 if (p->flags & PF_NO_SETAFFINITY) {
3871 retval = -EINVAL;
3872 goto out_put_task;
3873 }
3874 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3875 retval = -ENOMEM;
3876 goto out_put_task;
3877 }
3878 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3879 retval = -ENOMEM;
3880 goto out_free_cpus_allowed;
3881 }
3882 retval = -EPERM;
3883 if (!check_same_owner(p)) {
3884 rcu_read_lock();
3885 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3886 rcu_read_unlock();
3887 goto out_unlock;
3888 }
3889 rcu_read_unlock();
3890 }
3891
3892 retval = security_task_setscheduler(p);
3893 if (retval)
3894 goto out_unlock;
3895
3896
3897 cpuset_cpus_allowed(p, cpus_allowed);
3898 cpumask_and(new_mask, in_mask, cpus_allowed);
3899
3900 /*
3901 * Since bandwidth control happens on root_domain basis,
3902 * if admission test is enabled, we only admit -deadline
3903 * tasks allowed to run on all the CPUs in the task's
3904 * root_domain.
3905 */
3906 #ifdef CONFIG_SMP
3907 if (task_has_dl_policy(p)) {
3908 const struct cpumask *span = task_rq(p)->rd->span;
3909
3910 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3911 retval = -EBUSY;
3912 goto out_unlock;
3913 }
3914 }
3915 #endif
3916 again:
3917 retval = set_cpus_allowed_ptr(p, new_mask);
3918
3919 if (!retval) {
3920 cpuset_cpus_allowed(p, cpus_allowed);
3921 if (!cpumask_subset(new_mask, cpus_allowed)) {
3922 /*
3923 * We must have raced with a concurrent cpuset
3924 * update. Just reset the cpus_allowed to the
3925 * cpuset's cpus_allowed
3926 */
3927 cpumask_copy(new_mask, cpus_allowed);
3928 goto again;
3929 }
3930 }
3931 out_unlock:
3932 free_cpumask_var(new_mask);
3933 out_free_cpus_allowed:
3934 free_cpumask_var(cpus_allowed);
3935 out_put_task:
3936 put_task_struct(p);
3937 return retval;
3938 }
3939
3940 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3941 struct cpumask *new_mask)
3942 {
3943 if (len < cpumask_size())
3944 cpumask_clear(new_mask);
3945 else if (len > cpumask_size())
3946 len = cpumask_size();
3947
3948 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3949 }
3950
3951 /**
3952 * sys_sched_setaffinity - set the cpu affinity of a process
3953 * @pid: pid of the process
3954 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3955 * @user_mask_ptr: user-space pointer to the new cpu mask
3956 *
3957 * Return: 0 on success. An error code otherwise.
3958 */
3959 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3960 unsigned long __user *, user_mask_ptr)
3961 {
3962 cpumask_var_t new_mask;
3963 int retval;
3964
3965 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3966 return -ENOMEM;
3967
3968 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3969 if (retval == 0)
3970 retval = sched_setaffinity(pid, new_mask);
3971 free_cpumask_var(new_mask);
3972 return retval;
3973 }
3974
3975 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3976 {
3977 struct task_struct *p;
3978 unsigned long flags;
3979 int retval;
3980
3981 rcu_read_lock();
3982
3983 retval = -ESRCH;
3984 p = find_process_by_pid(pid);
3985 if (!p)
3986 goto out_unlock;
3987
3988 retval = security_task_getscheduler(p);
3989 if (retval)
3990 goto out_unlock;
3991
3992 raw_spin_lock_irqsave(&p->pi_lock, flags);
3993 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3995
3996 out_unlock:
3997 rcu_read_unlock();
3998
3999 return retval;
4000 }
4001
4002 /**
4003 * sys_sched_getaffinity - get the cpu affinity of a process
4004 * @pid: pid of the process
4005 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4006 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4007 *
4008 * Return: 0 on success. An error code otherwise.
4009 */
4010 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4011 unsigned long __user *, user_mask_ptr)
4012 {
4013 int ret;
4014 cpumask_var_t mask;
4015
4016 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4017 return -EINVAL;
4018 if (len & (sizeof(unsigned long)-1))
4019 return -EINVAL;
4020
4021 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4022 return -ENOMEM;
4023
4024 ret = sched_getaffinity(pid, mask);
4025 if (ret == 0) {
4026 size_t retlen = min_t(size_t, len, cpumask_size());
4027
4028 if (copy_to_user(user_mask_ptr, mask, retlen))
4029 ret = -EFAULT;
4030 else
4031 ret = retlen;
4032 }
4033 free_cpumask_var(mask);
4034
4035 return ret;
4036 }
4037
4038 /**
4039 * sys_sched_yield - yield the current processor to other threads.
4040 *
4041 * This function yields the current CPU to other tasks. If there are no
4042 * other threads running on this CPU then this function will return.
4043 *
4044 * Return: 0.
4045 */
4046 SYSCALL_DEFINE0(sched_yield)
4047 {
4048 struct rq *rq = this_rq_lock();
4049
4050 schedstat_inc(rq, yld_count);
4051 current->sched_class->yield_task(rq);
4052
4053 /*
4054 * Since we are going to call schedule() anyway, there's
4055 * no need to preempt or enable interrupts:
4056 */
4057 __release(rq->lock);
4058 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4059 do_raw_spin_unlock(&rq->lock);
4060 sched_preempt_enable_no_resched();
4061
4062 schedule();
4063
4064 return 0;
4065 }
4066
4067 static void __cond_resched(void)
4068 {
4069 __preempt_count_add(PREEMPT_ACTIVE);
4070 __schedule();
4071 __preempt_count_sub(PREEMPT_ACTIVE);
4072 }
4073
4074 int __sched _cond_resched(void)
4075 {
4076 if (should_resched()) {
4077 __cond_resched();
4078 return 1;
4079 }
4080 return 0;
4081 }
4082 EXPORT_SYMBOL(_cond_resched);
4083
4084 /*
4085 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4086 * call schedule, and on return reacquire the lock.
4087 *
4088 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4089 * operations here to prevent schedule() from being called twice (once via
4090 * spin_unlock(), once by hand).
4091 */
4092 int __cond_resched_lock(spinlock_t *lock)
4093 {
4094 int resched = should_resched();
4095 int ret = 0;
4096
4097 lockdep_assert_held(lock);
4098
4099 if (spin_needbreak(lock) || resched) {
4100 spin_unlock(lock);
4101 if (resched)
4102 __cond_resched();
4103 else
4104 cpu_relax();
4105 ret = 1;
4106 spin_lock(lock);
4107 }
4108 return ret;
4109 }
4110 EXPORT_SYMBOL(__cond_resched_lock);
4111
4112 int __sched __cond_resched_softirq(void)
4113 {
4114 BUG_ON(!in_softirq());
4115
4116 if (should_resched()) {
4117 local_bh_enable();
4118 __cond_resched();
4119 local_bh_disable();
4120 return 1;
4121 }
4122 return 0;
4123 }
4124 EXPORT_SYMBOL(__cond_resched_softirq);
4125
4126 /**
4127 * yield - yield the current processor to other threads.
4128 *
4129 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4130 *
4131 * The scheduler is at all times free to pick the calling task as the most
4132 * eligible task to run, if removing the yield() call from your code breaks
4133 * it, its already broken.
4134 *
4135 * Typical broken usage is:
4136 *
4137 * while (!event)
4138 * yield();
4139 *
4140 * where one assumes that yield() will let 'the other' process run that will
4141 * make event true. If the current task is a SCHED_FIFO task that will never
4142 * happen. Never use yield() as a progress guarantee!!
4143 *
4144 * If you want to use yield() to wait for something, use wait_event().
4145 * If you want to use yield() to be 'nice' for others, use cond_resched().
4146 * If you still want to use yield(), do not!
4147 */
4148 void __sched yield(void)
4149 {
4150 set_current_state(TASK_RUNNING);
4151 sys_sched_yield();
4152 }
4153 EXPORT_SYMBOL(yield);
4154
4155 /**
4156 * yield_to - yield the current processor to another thread in
4157 * your thread group, or accelerate that thread toward the
4158 * processor it's on.
4159 * @p: target task
4160 * @preempt: whether task preemption is allowed or not
4161 *
4162 * It's the caller's job to ensure that the target task struct
4163 * can't go away on us before we can do any checks.
4164 *
4165 * Return:
4166 * true (>0) if we indeed boosted the target task.
4167 * false (0) if we failed to boost the target.
4168 * -ESRCH if there's no task to yield to.
4169 */
4170 bool __sched yield_to(struct task_struct *p, bool preempt)
4171 {
4172 struct task_struct *curr = current;
4173 struct rq *rq, *p_rq;
4174 unsigned long flags;
4175 int yielded = 0;
4176
4177 local_irq_save(flags);
4178 rq = this_rq();
4179
4180 again:
4181 p_rq = task_rq(p);
4182 /*
4183 * If we're the only runnable task on the rq and target rq also
4184 * has only one task, there's absolutely no point in yielding.
4185 */
4186 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4187 yielded = -ESRCH;
4188 goto out_irq;
4189 }
4190
4191 double_rq_lock(rq, p_rq);
4192 if (task_rq(p) != p_rq) {
4193 double_rq_unlock(rq, p_rq);
4194 goto again;
4195 }
4196
4197 if (!curr->sched_class->yield_to_task)
4198 goto out_unlock;
4199
4200 if (curr->sched_class != p->sched_class)
4201 goto out_unlock;
4202
4203 if (task_running(p_rq, p) || p->state)
4204 goto out_unlock;
4205
4206 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4207 if (yielded) {
4208 schedstat_inc(rq, yld_count);
4209 /*
4210 * Make p's CPU reschedule; pick_next_entity takes care of
4211 * fairness.
4212 */
4213 if (preempt && rq != p_rq)
4214 resched_task(p_rq->curr);
4215 }
4216
4217 out_unlock:
4218 double_rq_unlock(rq, p_rq);
4219 out_irq:
4220 local_irq_restore(flags);
4221
4222 if (yielded > 0)
4223 schedule();
4224
4225 return yielded;
4226 }
4227 EXPORT_SYMBOL_GPL(yield_to);
4228
4229 /*
4230 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4231 * that process accounting knows that this is a task in IO wait state.
4232 */
4233 void __sched io_schedule(void)
4234 {
4235 struct rq *rq = raw_rq();
4236
4237 delayacct_blkio_start();
4238 atomic_inc(&rq->nr_iowait);
4239 blk_flush_plug(current);
4240 current->in_iowait = 1;
4241 schedule();
4242 current->in_iowait = 0;
4243 atomic_dec(&rq->nr_iowait);
4244 delayacct_blkio_end();
4245 }
4246 EXPORT_SYMBOL(io_schedule);
4247
4248 long __sched io_schedule_timeout(long timeout)
4249 {
4250 struct rq *rq = raw_rq();
4251 long ret;
4252
4253 delayacct_blkio_start();
4254 atomic_inc(&rq->nr_iowait);
4255 blk_flush_plug(current);
4256 current->in_iowait = 1;
4257 ret = schedule_timeout(timeout);
4258 current->in_iowait = 0;
4259 atomic_dec(&rq->nr_iowait);
4260 delayacct_blkio_end();
4261 return ret;
4262 }
4263
4264 /**
4265 * sys_sched_get_priority_max - return maximum RT priority.
4266 * @policy: scheduling class.
4267 *
4268 * Return: On success, this syscall returns the maximum
4269 * rt_priority that can be used by a given scheduling class.
4270 * On failure, a negative error code is returned.
4271 */
4272 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4273 {
4274 int ret = -EINVAL;
4275
4276 switch (policy) {
4277 case SCHED_FIFO:
4278 case SCHED_RR:
4279 ret = MAX_USER_RT_PRIO-1;
4280 break;
4281 case SCHED_DEADLINE:
4282 case SCHED_NORMAL:
4283 case SCHED_BATCH:
4284 case SCHED_IDLE:
4285 ret = 0;
4286 break;
4287 }
4288 return ret;
4289 }
4290
4291 /**
4292 * sys_sched_get_priority_min - return minimum RT priority.
4293 * @policy: scheduling class.
4294 *
4295 * Return: On success, this syscall returns the minimum
4296 * rt_priority that can be used by a given scheduling class.
4297 * On failure, a negative error code is returned.
4298 */
4299 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4300 {
4301 int ret = -EINVAL;
4302
4303 switch (policy) {
4304 case SCHED_FIFO:
4305 case SCHED_RR:
4306 ret = 1;
4307 break;
4308 case SCHED_DEADLINE:
4309 case SCHED_NORMAL:
4310 case SCHED_BATCH:
4311 case SCHED_IDLE:
4312 ret = 0;
4313 }
4314 return ret;
4315 }
4316
4317 /**
4318 * sys_sched_rr_get_interval - return the default timeslice of a process.
4319 * @pid: pid of the process.
4320 * @interval: userspace pointer to the timeslice value.
4321 *
4322 * this syscall writes the default timeslice value of a given process
4323 * into the user-space timespec buffer. A value of '0' means infinity.
4324 *
4325 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4326 * an error code.
4327 */
4328 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4329 struct timespec __user *, interval)
4330 {
4331 struct task_struct *p;
4332 unsigned int time_slice;
4333 unsigned long flags;
4334 struct rq *rq;
4335 int retval;
4336 struct timespec t;
4337
4338 if (pid < 0)
4339 return -EINVAL;
4340
4341 retval = -ESRCH;
4342 rcu_read_lock();
4343 p = find_process_by_pid(pid);
4344 if (!p)
4345 goto out_unlock;
4346
4347 retval = security_task_getscheduler(p);
4348 if (retval)
4349 goto out_unlock;
4350
4351 rq = task_rq_lock(p, &flags);
4352 time_slice = 0;
4353 if (p->sched_class->get_rr_interval)
4354 time_slice = p->sched_class->get_rr_interval(rq, p);
4355 task_rq_unlock(rq, p, &flags);
4356
4357 rcu_read_unlock();
4358 jiffies_to_timespec(time_slice, &t);
4359 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4360 return retval;
4361
4362 out_unlock:
4363 rcu_read_unlock();
4364 return retval;
4365 }
4366
4367 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4368
4369 void sched_show_task(struct task_struct *p)
4370 {
4371 unsigned long free = 0;
4372 int ppid;
4373 unsigned state;
4374
4375 state = p->state ? __ffs(p->state) + 1 : 0;
4376 printk(KERN_INFO "%-15.15s %c", p->comm,
4377 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4378 #if BITS_PER_LONG == 32
4379 if (state == TASK_RUNNING)
4380 printk(KERN_CONT " running ");
4381 else
4382 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4383 #else
4384 if (state == TASK_RUNNING)
4385 printk(KERN_CONT " running task ");
4386 else
4387 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4388 #endif
4389 #ifdef CONFIG_DEBUG_STACK_USAGE
4390 free = stack_not_used(p);
4391 #endif
4392 rcu_read_lock();
4393 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4394 rcu_read_unlock();
4395 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4396 task_pid_nr(p), ppid,
4397 (unsigned long)task_thread_info(p)->flags);
4398
4399 print_worker_info(KERN_INFO, p);
4400 show_stack(p, NULL);
4401 }
4402
4403 void show_state_filter(unsigned long state_filter)
4404 {
4405 struct task_struct *g, *p;
4406
4407 #if BITS_PER_LONG == 32
4408 printk(KERN_INFO
4409 " task PC stack pid father\n");
4410 #else
4411 printk(KERN_INFO
4412 " task PC stack pid father\n");
4413 #endif
4414 rcu_read_lock();
4415 do_each_thread(g, p) {
4416 /*
4417 * reset the NMI-timeout, listing all files on a slow
4418 * console might take a lot of time:
4419 */
4420 touch_nmi_watchdog();
4421 if (!state_filter || (p->state & state_filter))
4422 sched_show_task(p);
4423 } while_each_thread(g, p);
4424
4425 touch_all_softlockup_watchdogs();
4426
4427 #ifdef CONFIG_SCHED_DEBUG
4428 sysrq_sched_debug_show();
4429 #endif
4430 rcu_read_unlock();
4431 /*
4432 * Only show locks if all tasks are dumped:
4433 */
4434 if (!state_filter)
4435 debug_show_all_locks();
4436 }
4437
4438 void init_idle_bootup_task(struct task_struct *idle)
4439 {
4440 idle->sched_class = &idle_sched_class;
4441 }
4442
4443 /**
4444 * init_idle - set up an idle thread for a given CPU
4445 * @idle: task in question
4446 * @cpu: cpu the idle task belongs to
4447 *
4448 * NOTE: this function does not set the idle thread's NEED_RESCHED
4449 * flag, to make booting more robust.
4450 */
4451 void init_idle(struct task_struct *idle, int cpu)
4452 {
4453 struct rq *rq = cpu_rq(cpu);
4454 unsigned long flags;
4455
4456 raw_spin_lock_irqsave(&rq->lock, flags);
4457
4458 __sched_fork(0, idle);
4459 idle->state = TASK_RUNNING;
4460 idle->se.exec_start = sched_clock();
4461
4462 do_set_cpus_allowed(idle, cpumask_of(cpu));
4463 /*
4464 * We're having a chicken and egg problem, even though we are
4465 * holding rq->lock, the cpu isn't yet set to this cpu so the
4466 * lockdep check in task_group() will fail.
4467 *
4468 * Similar case to sched_fork(). / Alternatively we could
4469 * use task_rq_lock() here and obtain the other rq->lock.
4470 *
4471 * Silence PROVE_RCU
4472 */
4473 rcu_read_lock();
4474 __set_task_cpu(idle, cpu);
4475 rcu_read_unlock();
4476
4477 rq->curr = rq->idle = idle;
4478 #if defined(CONFIG_SMP)
4479 idle->on_cpu = 1;
4480 #endif
4481 raw_spin_unlock_irqrestore(&rq->lock, flags);
4482
4483 /* Set the preempt count _outside_ the spinlocks! */
4484 init_idle_preempt_count(idle, cpu);
4485
4486 /*
4487 * The idle tasks have their own, simple scheduling class:
4488 */
4489 idle->sched_class = &idle_sched_class;
4490 ftrace_graph_init_idle_task(idle, cpu);
4491 vtime_init_idle(idle, cpu);
4492 #if defined(CONFIG_SMP)
4493 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4494 #endif
4495 }
4496
4497 #ifdef CONFIG_SMP
4498 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4499 {
4500 if (p->sched_class && p->sched_class->set_cpus_allowed)
4501 p->sched_class->set_cpus_allowed(p, new_mask);
4502
4503 cpumask_copy(&p->cpus_allowed, new_mask);
4504 p->nr_cpus_allowed = cpumask_weight(new_mask);
4505 }
4506
4507 /*
4508 * This is how migration works:
4509 *
4510 * 1) we invoke migration_cpu_stop() on the target CPU using
4511 * stop_one_cpu().
4512 * 2) stopper starts to run (implicitly forcing the migrated thread
4513 * off the CPU)
4514 * 3) it checks whether the migrated task is still in the wrong runqueue.
4515 * 4) if it's in the wrong runqueue then the migration thread removes
4516 * it and puts it into the right queue.
4517 * 5) stopper completes and stop_one_cpu() returns and the migration
4518 * is done.
4519 */
4520
4521 /*
4522 * Change a given task's CPU affinity. Migrate the thread to a
4523 * proper CPU and schedule it away if the CPU it's executing on
4524 * is removed from the allowed bitmask.
4525 *
4526 * NOTE: the caller must have a valid reference to the task, the
4527 * task must not exit() & deallocate itself prematurely. The
4528 * call is not atomic; no spinlocks may be held.
4529 */
4530 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4531 {
4532 unsigned long flags;
4533 struct rq *rq;
4534 unsigned int dest_cpu;
4535 int ret = 0;
4536
4537 rq = task_rq_lock(p, &flags);
4538
4539 if (cpumask_equal(&p->cpus_allowed, new_mask))
4540 goto out;
4541
4542 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4543 ret = -EINVAL;
4544 goto out;
4545 }
4546
4547 do_set_cpus_allowed(p, new_mask);
4548
4549 /* Can the task run on the task's current CPU? If so, we're done */
4550 if (cpumask_test_cpu(task_cpu(p), new_mask))
4551 goto out;
4552
4553 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4554 if (p->on_rq) {
4555 struct migration_arg arg = { p, dest_cpu };
4556 /* Need help from migration thread: drop lock and wait. */
4557 task_rq_unlock(rq, p, &flags);
4558 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4559 tlb_migrate_finish(p->mm);
4560 return 0;
4561 }
4562 out:
4563 task_rq_unlock(rq, p, &flags);
4564
4565 return ret;
4566 }
4567 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4568
4569 /*
4570 * Move (not current) task off this cpu, onto dest cpu. We're doing
4571 * this because either it can't run here any more (set_cpus_allowed()
4572 * away from this CPU, or CPU going down), or because we're
4573 * attempting to rebalance this task on exec (sched_exec).
4574 *
4575 * So we race with normal scheduler movements, but that's OK, as long
4576 * as the task is no longer on this CPU.
4577 *
4578 * Returns non-zero if task was successfully migrated.
4579 */
4580 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4581 {
4582 struct rq *rq_dest, *rq_src;
4583 int ret = 0;
4584
4585 if (unlikely(!cpu_active(dest_cpu)))
4586 return ret;
4587
4588 rq_src = cpu_rq(src_cpu);
4589 rq_dest = cpu_rq(dest_cpu);
4590
4591 raw_spin_lock(&p->pi_lock);
4592 double_rq_lock(rq_src, rq_dest);
4593 /* Already moved. */
4594 if (task_cpu(p) != src_cpu)
4595 goto done;
4596 /* Affinity changed (again). */
4597 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4598 goto fail;
4599
4600 /*
4601 * If we're not on a rq, the next wake-up will ensure we're
4602 * placed properly.
4603 */
4604 if (p->on_rq) {
4605 dequeue_task(rq_src, p, 0);
4606 set_task_cpu(p, dest_cpu);
4607 enqueue_task(rq_dest, p, 0);
4608 check_preempt_curr(rq_dest, p, 0);
4609 }
4610 done:
4611 ret = 1;
4612 fail:
4613 double_rq_unlock(rq_src, rq_dest);
4614 raw_spin_unlock(&p->pi_lock);
4615 return ret;
4616 }
4617
4618 #ifdef CONFIG_NUMA_BALANCING
4619 /* Migrate current task p to target_cpu */
4620 int migrate_task_to(struct task_struct *p, int target_cpu)
4621 {
4622 struct migration_arg arg = { p, target_cpu };
4623 int curr_cpu = task_cpu(p);
4624
4625 if (curr_cpu == target_cpu)
4626 return 0;
4627
4628 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4629 return -EINVAL;
4630
4631 /* TODO: This is not properly updating schedstats */
4632
4633 trace_sched_move_numa(p, curr_cpu, target_cpu);
4634 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4635 }
4636
4637 /*
4638 * Requeue a task on a given node and accurately track the number of NUMA
4639 * tasks on the runqueues
4640 */
4641 void sched_setnuma(struct task_struct *p, int nid)
4642 {
4643 struct rq *rq;
4644 unsigned long flags;
4645 bool on_rq, running;
4646
4647 rq = task_rq_lock(p, &flags);
4648 on_rq = p->on_rq;
4649 running = task_current(rq, p);
4650
4651 if (on_rq)
4652 dequeue_task(rq, p, 0);
4653 if (running)
4654 p->sched_class->put_prev_task(rq, p);
4655
4656 p->numa_preferred_nid = nid;
4657
4658 if (running)
4659 p->sched_class->set_curr_task(rq);
4660 if (on_rq)
4661 enqueue_task(rq, p, 0);
4662 task_rq_unlock(rq, p, &flags);
4663 }
4664 #endif
4665
4666 /*
4667 * migration_cpu_stop - this will be executed by a highprio stopper thread
4668 * and performs thread migration by bumping thread off CPU then
4669 * 'pushing' onto another runqueue.
4670 */
4671 static int migration_cpu_stop(void *data)
4672 {
4673 struct migration_arg *arg = data;
4674
4675 /*
4676 * The original target cpu might have gone down and we might
4677 * be on another cpu but it doesn't matter.
4678 */
4679 local_irq_disable();
4680 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4681 local_irq_enable();
4682 return 0;
4683 }
4684
4685 #ifdef CONFIG_HOTPLUG_CPU
4686
4687 /*
4688 * Ensures that the idle task is using init_mm right before its cpu goes
4689 * offline.
4690 */
4691 void idle_task_exit(void)
4692 {
4693 struct mm_struct *mm = current->active_mm;
4694
4695 BUG_ON(cpu_online(smp_processor_id()));
4696
4697 if (mm != &init_mm)
4698 switch_mm(mm, &init_mm, current);
4699 mmdrop(mm);
4700 }
4701
4702 /*
4703 * Since this CPU is going 'away' for a while, fold any nr_active delta
4704 * we might have. Assumes we're called after migrate_tasks() so that the
4705 * nr_active count is stable.
4706 *
4707 * Also see the comment "Global load-average calculations".
4708 */
4709 static void calc_load_migrate(struct rq *rq)
4710 {
4711 long delta = calc_load_fold_active(rq);
4712 if (delta)
4713 atomic_long_add(delta, &calc_load_tasks);
4714 }
4715
4716 /*
4717 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4718 * try_to_wake_up()->select_task_rq().
4719 *
4720 * Called with rq->lock held even though we'er in stop_machine() and
4721 * there's no concurrency possible, we hold the required locks anyway
4722 * because of lock validation efforts.
4723 */
4724 static void migrate_tasks(unsigned int dead_cpu)
4725 {
4726 struct rq *rq = cpu_rq(dead_cpu);
4727 struct task_struct *next, *stop = rq->stop;
4728 int dest_cpu;
4729
4730 /*
4731 * Fudge the rq selection such that the below task selection loop
4732 * doesn't get stuck on the currently eligible stop task.
4733 *
4734 * We're currently inside stop_machine() and the rq is either stuck
4735 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4736 * either way we should never end up calling schedule() until we're
4737 * done here.
4738 */
4739 rq->stop = NULL;
4740
4741 /*
4742 * put_prev_task() and pick_next_task() sched
4743 * class method both need to have an up-to-date
4744 * value of rq->clock[_task]
4745 */
4746 update_rq_clock(rq);
4747
4748 for ( ; ; ) {
4749 /*
4750 * There's this thread running, bail when that's the only
4751 * remaining thread.
4752 */
4753 if (rq->nr_running == 1)
4754 break;
4755
4756 next = pick_next_task(rq);
4757 BUG_ON(!next);
4758 next->sched_class->put_prev_task(rq, next);
4759
4760 /* Find suitable destination for @next, with force if needed. */
4761 dest_cpu = select_fallback_rq(dead_cpu, next);
4762 raw_spin_unlock(&rq->lock);
4763
4764 __migrate_task(next, dead_cpu, dest_cpu);
4765
4766 raw_spin_lock(&rq->lock);
4767 }
4768
4769 rq->stop = stop;
4770 }
4771
4772 #endif /* CONFIG_HOTPLUG_CPU */
4773
4774 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4775
4776 static struct ctl_table sd_ctl_dir[] = {
4777 {
4778 .procname = "sched_domain",
4779 .mode = 0555,
4780 },
4781 {}
4782 };
4783
4784 static struct ctl_table sd_ctl_root[] = {
4785 {
4786 .procname = "kernel",
4787 .mode = 0555,
4788 .child = sd_ctl_dir,
4789 },
4790 {}
4791 };
4792
4793 static struct ctl_table *sd_alloc_ctl_entry(int n)
4794 {
4795 struct ctl_table *entry =
4796 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4797
4798 return entry;
4799 }
4800
4801 static void sd_free_ctl_entry(struct ctl_table **tablep)
4802 {
4803 struct ctl_table *entry;
4804
4805 /*
4806 * In the intermediate directories, both the child directory and
4807 * procname are dynamically allocated and could fail but the mode
4808 * will always be set. In the lowest directory the names are
4809 * static strings and all have proc handlers.
4810 */
4811 for (entry = *tablep; entry->mode; entry++) {
4812 if (entry->child)
4813 sd_free_ctl_entry(&entry->child);
4814 if (entry->proc_handler == NULL)
4815 kfree(entry->procname);
4816 }
4817
4818 kfree(*tablep);
4819 *tablep = NULL;
4820 }
4821
4822 static int min_load_idx = 0;
4823 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4824
4825 static void
4826 set_table_entry(struct ctl_table *entry,
4827 const char *procname, void *data, int maxlen,
4828 umode_t mode, proc_handler *proc_handler,
4829 bool load_idx)
4830 {
4831 entry->procname = procname;
4832 entry->data = data;
4833 entry->maxlen = maxlen;
4834 entry->mode = mode;
4835 entry->proc_handler = proc_handler;
4836
4837 if (load_idx) {
4838 entry->extra1 = &min_load_idx;
4839 entry->extra2 = &max_load_idx;
4840 }
4841 }
4842
4843 static struct ctl_table *
4844 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4845 {
4846 struct ctl_table *table = sd_alloc_ctl_entry(13);
4847
4848 if (table == NULL)
4849 return NULL;
4850
4851 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4852 sizeof(long), 0644, proc_doulongvec_minmax, false);
4853 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4854 sizeof(long), 0644, proc_doulongvec_minmax, false);
4855 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4856 sizeof(int), 0644, proc_dointvec_minmax, true);
4857 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4858 sizeof(int), 0644, proc_dointvec_minmax, true);
4859 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4860 sizeof(int), 0644, proc_dointvec_minmax, true);
4861 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4862 sizeof(int), 0644, proc_dointvec_minmax, true);
4863 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4864 sizeof(int), 0644, proc_dointvec_minmax, true);
4865 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4866 sizeof(int), 0644, proc_dointvec_minmax, false);
4867 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4868 sizeof(int), 0644, proc_dointvec_minmax, false);
4869 set_table_entry(&table[9], "cache_nice_tries",
4870 &sd->cache_nice_tries,
4871 sizeof(int), 0644, proc_dointvec_minmax, false);
4872 set_table_entry(&table[10], "flags", &sd->flags,
4873 sizeof(int), 0644, proc_dointvec_minmax, false);
4874 set_table_entry(&table[11], "name", sd->name,
4875 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4876 /* &table[12] is terminator */
4877
4878 return table;
4879 }
4880
4881 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4882 {
4883 struct ctl_table *entry, *table;
4884 struct sched_domain *sd;
4885 int domain_num = 0, i;
4886 char buf[32];
4887
4888 for_each_domain(cpu, sd)
4889 domain_num++;
4890 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4891 if (table == NULL)
4892 return NULL;
4893
4894 i = 0;
4895 for_each_domain(cpu, sd) {
4896 snprintf(buf, 32, "domain%d", i);
4897 entry->procname = kstrdup(buf, GFP_KERNEL);
4898 entry->mode = 0555;
4899 entry->child = sd_alloc_ctl_domain_table(sd);
4900 entry++;
4901 i++;
4902 }
4903 return table;
4904 }
4905
4906 static struct ctl_table_header *sd_sysctl_header;
4907 static void register_sched_domain_sysctl(void)
4908 {
4909 int i, cpu_num = num_possible_cpus();
4910 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4911 char buf[32];
4912
4913 WARN_ON(sd_ctl_dir[0].child);
4914 sd_ctl_dir[0].child = entry;
4915
4916 if (entry == NULL)
4917 return;
4918
4919 for_each_possible_cpu(i) {
4920 snprintf(buf, 32, "cpu%d", i);
4921 entry->procname = kstrdup(buf, GFP_KERNEL);
4922 entry->mode = 0555;
4923 entry->child = sd_alloc_ctl_cpu_table(i);
4924 entry++;
4925 }
4926
4927 WARN_ON(sd_sysctl_header);
4928 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4929 }
4930
4931 /* may be called multiple times per register */
4932 static void unregister_sched_domain_sysctl(void)
4933 {
4934 if (sd_sysctl_header)
4935 unregister_sysctl_table(sd_sysctl_header);
4936 sd_sysctl_header = NULL;
4937 if (sd_ctl_dir[0].child)
4938 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4939 }
4940 #else
4941 static void register_sched_domain_sysctl(void)
4942 {
4943 }
4944 static void unregister_sched_domain_sysctl(void)
4945 {
4946 }
4947 #endif
4948
4949 static void set_rq_online(struct rq *rq)
4950 {
4951 if (!rq->online) {
4952 const struct sched_class *class;
4953
4954 cpumask_set_cpu(rq->cpu, rq->rd->online);
4955 rq->online = 1;
4956
4957 for_each_class(class) {
4958 if (class->rq_online)
4959 class->rq_online(rq);
4960 }
4961 }
4962 }
4963
4964 static void set_rq_offline(struct rq *rq)
4965 {
4966 if (rq->online) {
4967 const struct sched_class *class;
4968
4969 for_each_class(class) {
4970 if (class->rq_offline)
4971 class->rq_offline(rq);
4972 }
4973
4974 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4975 rq->online = 0;
4976 }
4977 }
4978
4979 /*
4980 * migration_call - callback that gets triggered when a CPU is added.
4981 * Here we can start up the necessary migration thread for the new CPU.
4982 */
4983 static int
4984 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4985 {
4986 int cpu = (long)hcpu;
4987 unsigned long flags;
4988 struct rq *rq = cpu_rq(cpu);
4989
4990 switch (action & ~CPU_TASKS_FROZEN) {
4991
4992 case CPU_UP_PREPARE:
4993 rq->calc_load_update = calc_load_update;
4994 break;
4995
4996 case CPU_ONLINE:
4997 /* Update our root-domain */
4998 raw_spin_lock_irqsave(&rq->lock, flags);
4999 if (rq->rd) {
5000 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5001
5002 set_rq_online(rq);
5003 }
5004 raw_spin_unlock_irqrestore(&rq->lock, flags);
5005 break;
5006
5007 #ifdef CONFIG_HOTPLUG_CPU
5008 case CPU_DYING:
5009 sched_ttwu_pending();
5010 /* Update our root-domain */
5011 raw_spin_lock_irqsave(&rq->lock, flags);
5012 if (rq->rd) {
5013 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5014 set_rq_offline(rq);
5015 }
5016 migrate_tasks(cpu);
5017 BUG_ON(rq->nr_running != 1); /* the migration thread */
5018 raw_spin_unlock_irqrestore(&rq->lock, flags);
5019 break;
5020
5021 case CPU_DEAD:
5022 calc_load_migrate(rq);
5023 break;
5024 #endif
5025 }
5026
5027 update_max_interval();
5028
5029 return NOTIFY_OK;
5030 }
5031
5032 /*
5033 * Register at high priority so that task migration (migrate_all_tasks)
5034 * happens before everything else. This has to be lower priority than
5035 * the notifier in the perf_event subsystem, though.
5036 */
5037 static struct notifier_block migration_notifier = {
5038 .notifier_call = migration_call,
5039 .priority = CPU_PRI_MIGRATION,
5040 };
5041
5042 static int sched_cpu_active(struct notifier_block *nfb,
5043 unsigned long action, void *hcpu)
5044 {
5045 switch (action & ~CPU_TASKS_FROZEN) {
5046 case CPU_STARTING:
5047 case CPU_DOWN_FAILED:
5048 set_cpu_active((long)hcpu, true);
5049 return NOTIFY_OK;
5050 default:
5051 return NOTIFY_DONE;
5052 }
5053 }
5054
5055 static int sched_cpu_inactive(struct notifier_block *nfb,
5056 unsigned long action, void *hcpu)
5057 {
5058 unsigned long flags;
5059 long cpu = (long)hcpu;
5060
5061 switch (action & ~CPU_TASKS_FROZEN) {
5062 case CPU_DOWN_PREPARE:
5063 set_cpu_active(cpu, false);
5064
5065 /* explicitly allow suspend */
5066 if (!(action & CPU_TASKS_FROZEN)) {
5067 struct dl_bw *dl_b = dl_bw_of(cpu);
5068 bool overflow;
5069 int cpus;
5070
5071 raw_spin_lock_irqsave(&dl_b->lock, flags);
5072 cpus = dl_bw_cpus(cpu);
5073 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5074 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5075
5076 if (overflow)
5077 return notifier_from_errno(-EBUSY);
5078 }
5079 return NOTIFY_OK;
5080 }
5081
5082 return NOTIFY_DONE;
5083 }
5084
5085 static int __init migration_init(void)
5086 {
5087 void *cpu = (void *)(long)smp_processor_id();
5088 int err;
5089
5090 /* Initialize migration for the boot CPU */
5091 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5092 BUG_ON(err == NOTIFY_BAD);
5093 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5094 register_cpu_notifier(&migration_notifier);
5095
5096 /* Register cpu active notifiers */
5097 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5098 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5099
5100 return 0;
5101 }
5102 early_initcall(migration_init);
5103 #endif
5104
5105 #ifdef CONFIG_SMP
5106
5107 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5108
5109 #ifdef CONFIG_SCHED_DEBUG
5110
5111 static __read_mostly int sched_debug_enabled;
5112
5113 static int __init sched_debug_setup(char *str)
5114 {
5115 sched_debug_enabled = 1;
5116
5117 return 0;
5118 }
5119 early_param("sched_debug", sched_debug_setup);
5120
5121 static inline bool sched_debug(void)
5122 {
5123 return sched_debug_enabled;
5124 }
5125
5126 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5127 struct cpumask *groupmask)
5128 {
5129 struct sched_group *group = sd->groups;
5130 char str[256];
5131
5132 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5133 cpumask_clear(groupmask);
5134
5135 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5136
5137 if (!(sd->flags & SD_LOAD_BALANCE)) {
5138 printk("does not load-balance\n");
5139 if (sd->parent)
5140 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5141 " has parent");
5142 return -1;
5143 }
5144
5145 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5146
5147 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5148 printk(KERN_ERR "ERROR: domain->span does not contain "
5149 "CPU%d\n", cpu);
5150 }
5151 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5152 printk(KERN_ERR "ERROR: domain->groups does not contain"
5153 " CPU%d\n", cpu);
5154 }
5155
5156 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5157 do {
5158 if (!group) {
5159 printk("\n");
5160 printk(KERN_ERR "ERROR: group is NULL\n");
5161 break;
5162 }
5163
5164 /*
5165 * Even though we initialize ->power to something semi-sane,
5166 * we leave power_orig unset. This allows us to detect if
5167 * domain iteration is still funny without causing /0 traps.
5168 */
5169 if (!group->sgp->power_orig) {
5170 printk(KERN_CONT "\n");
5171 printk(KERN_ERR "ERROR: domain->cpu_power not "
5172 "set\n");
5173 break;
5174 }
5175
5176 if (!cpumask_weight(sched_group_cpus(group))) {
5177 printk(KERN_CONT "\n");
5178 printk(KERN_ERR "ERROR: empty group\n");
5179 break;
5180 }
5181
5182 if (!(sd->flags & SD_OVERLAP) &&
5183 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5184 printk(KERN_CONT "\n");
5185 printk(KERN_ERR "ERROR: repeated CPUs\n");
5186 break;
5187 }
5188
5189 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5190
5191 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5192
5193 printk(KERN_CONT " %s", str);
5194 if (group->sgp->power != SCHED_POWER_SCALE) {
5195 printk(KERN_CONT " (cpu_power = %d)",
5196 group->sgp->power);
5197 }
5198
5199 group = group->next;
5200 } while (group != sd->groups);
5201 printk(KERN_CONT "\n");
5202
5203 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5204 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5205
5206 if (sd->parent &&
5207 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5208 printk(KERN_ERR "ERROR: parent span is not a superset "
5209 "of domain->span\n");
5210 return 0;
5211 }
5212
5213 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5214 {
5215 int level = 0;
5216
5217 if (!sched_debug_enabled)
5218 return;
5219
5220 if (!sd) {
5221 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5222 return;
5223 }
5224
5225 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5226
5227 for (;;) {
5228 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5229 break;
5230 level++;
5231 sd = sd->parent;
5232 if (!sd)
5233 break;
5234 }
5235 }
5236 #else /* !CONFIG_SCHED_DEBUG */
5237 # define sched_domain_debug(sd, cpu) do { } while (0)
5238 static inline bool sched_debug(void)
5239 {
5240 return false;
5241 }
5242 #endif /* CONFIG_SCHED_DEBUG */
5243
5244 static int sd_degenerate(struct sched_domain *sd)
5245 {
5246 if (cpumask_weight(sched_domain_span(sd)) == 1)
5247 return 1;
5248
5249 /* Following flags need at least 2 groups */
5250 if (sd->flags & (SD_LOAD_BALANCE |
5251 SD_BALANCE_NEWIDLE |
5252 SD_BALANCE_FORK |
5253 SD_BALANCE_EXEC |
5254 SD_SHARE_CPUPOWER |
5255 SD_SHARE_PKG_RESOURCES)) {
5256 if (sd->groups != sd->groups->next)
5257 return 0;
5258 }
5259
5260 /* Following flags don't use groups */
5261 if (sd->flags & (SD_WAKE_AFFINE))
5262 return 0;
5263
5264 return 1;
5265 }
5266
5267 static int
5268 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5269 {
5270 unsigned long cflags = sd->flags, pflags = parent->flags;
5271
5272 if (sd_degenerate(parent))
5273 return 1;
5274
5275 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5276 return 0;
5277
5278 /* Flags needing groups don't count if only 1 group in parent */
5279 if (parent->groups == parent->groups->next) {
5280 pflags &= ~(SD_LOAD_BALANCE |
5281 SD_BALANCE_NEWIDLE |
5282 SD_BALANCE_FORK |
5283 SD_BALANCE_EXEC |
5284 SD_SHARE_CPUPOWER |
5285 SD_SHARE_PKG_RESOURCES |
5286 SD_PREFER_SIBLING);
5287 if (nr_node_ids == 1)
5288 pflags &= ~SD_SERIALIZE;
5289 }
5290 if (~cflags & pflags)
5291 return 0;
5292
5293 return 1;
5294 }
5295
5296 static void free_rootdomain(struct rcu_head *rcu)
5297 {
5298 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5299
5300 cpupri_cleanup(&rd->cpupri);
5301 cpudl_cleanup(&rd->cpudl);
5302 free_cpumask_var(rd->dlo_mask);
5303 free_cpumask_var(rd->rto_mask);
5304 free_cpumask_var(rd->online);
5305 free_cpumask_var(rd->span);
5306 kfree(rd);
5307 }
5308
5309 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5310 {
5311 struct root_domain *old_rd = NULL;
5312 unsigned long flags;
5313
5314 raw_spin_lock_irqsave(&rq->lock, flags);
5315
5316 if (rq->rd) {
5317 old_rd = rq->rd;
5318
5319 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5320 set_rq_offline(rq);
5321
5322 cpumask_clear_cpu(rq->cpu, old_rd->span);
5323
5324 /*
5325 * If we dont want to free the old_rd yet then
5326 * set old_rd to NULL to skip the freeing later
5327 * in this function:
5328 */
5329 if (!atomic_dec_and_test(&old_rd->refcount))
5330 old_rd = NULL;
5331 }
5332
5333 atomic_inc(&rd->refcount);
5334 rq->rd = rd;
5335
5336 cpumask_set_cpu(rq->cpu, rd->span);
5337 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5338 set_rq_online(rq);
5339
5340 raw_spin_unlock_irqrestore(&rq->lock, flags);
5341
5342 if (old_rd)
5343 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5344 }
5345
5346 static int init_rootdomain(struct root_domain *rd)
5347 {
5348 memset(rd, 0, sizeof(*rd));
5349
5350 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5351 goto out;
5352 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5353 goto free_span;
5354 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5355 goto free_online;
5356 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5357 goto free_dlo_mask;
5358
5359 init_dl_bw(&rd->dl_bw);
5360 if (cpudl_init(&rd->cpudl) != 0)
5361 goto free_dlo_mask;
5362
5363 if (cpupri_init(&rd->cpupri) != 0)
5364 goto free_rto_mask;
5365 return 0;
5366
5367 free_rto_mask:
5368 free_cpumask_var(rd->rto_mask);
5369 free_dlo_mask:
5370 free_cpumask_var(rd->dlo_mask);
5371 free_online:
5372 free_cpumask_var(rd->online);
5373 free_span:
5374 free_cpumask_var(rd->span);
5375 out:
5376 return -ENOMEM;
5377 }
5378
5379 /*
5380 * By default the system creates a single root-domain with all cpus as
5381 * members (mimicking the global state we have today).
5382 */
5383 struct root_domain def_root_domain;
5384
5385 static void init_defrootdomain(void)
5386 {
5387 init_rootdomain(&def_root_domain);
5388
5389 atomic_set(&def_root_domain.refcount, 1);
5390 }
5391
5392 static struct root_domain *alloc_rootdomain(void)
5393 {
5394 struct root_domain *rd;
5395
5396 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5397 if (!rd)
5398 return NULL;
5399
5400 if (init_rootdomain(rd) != 0) {
5401 kfree(rd);
5402 return NULL;
5403 }
5404
5405 return rd;
5406 }
5407
5408 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5409 {
5410 struct sched_group *tmp, *first;
5411
5412 if (!sg)
5413 return;
5414
5415 first = sg;
5416 do {
5417 tmp = sg->next;
5418
5419 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5420 kfree(sg->sgp);
5421
5422 kfree(sg);
5423 sg = tmp;
5424 } while (sg != first);
5425 }
5426
5427 static void free_sched_domain(struct rcu_head *rcu)
5428 {
5429 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5430
5431 /*
5432 * If its an overlapping domain it has private groups, iterate and
5433 * nuke them all.
5434 */
5435 if (sd->flags & SD_OVERLAP) {
5436 free_sched_groups(sd->groups, 1);
5437 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5438 kfree(sd->groups->sgp);
5439 kfree(sd->groups);
5440 }
5441 kfree(sd);
5442 }
5443
5444 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5445 {
5446 call_rcu(&sd->rcu, free_sched_domain);
5447 }
5448
5449 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5450 {
5451 for (; sd; sd = sd->parent)
5452 destroy_sched_domain(sd, cpu);
5453 }
5454
5455 /*
5456 * Keep a special pointer to the highest sched_domain that has
5457 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5458 * allows us to avoid some pointer chasing select_idle_sibling().
5459 *
5460 * Also keep a unique ID per domain (we use the first cpu number in
5461 * the cpumask of the domain), this allows us to quickly tell if
5462 * two cpus are in the same cache domain, see cpus_share_cache().
5463 */
5464 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5465 DEFINE_PER_CPU(int, sd_llc_size);
5466 DEFINE_PER_CPU(int, sd_llc_id);
5467 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5468 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5469 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5470
5471 static void update_top_cache_domain(int cpu)
5472 {
5473 struct sched_domain *sd;
5474 struct sched_domain *busy_sd = NULL;
5475 int id = cpu;
5476 int size = 1;
5477
5478 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5479 if (sd) {
5480 id = cpumask_first(sched_domain_span(sd));
5481 size = cpumask_weight(sched_domain_span(sd));
5482 busy_sd = sd->parent; /* sd_busy */
5483 }
5484 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5485
5486 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5487 per_cpu(sd_llc_size, cpu) = size;
5488 per_cpu(sd_llc_id, cpu) = id;
5489
5490 sd = lowest_flag_domain(cpu, SD_NUMA);
5491 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5492
5493 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5494 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5495 }
5496
5497 /*
5498 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5499 * hold the hotplug lock.
5500 */
5501 static void
5502 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5503 {
5504 struct rq *rq = cpu_rq(cpu);
5505 struct sched_domain *tmp;
5506
5507 /* Remove the sched domains which do not contribute to scheduling. */
5508 for (tmp = sd; tmp; ) {
5509 struct sched_domain *parent = tmp->parent;
5510 if (!parent)
5511 break;
5512
5513 if (sd_parent_degenerate(tmp, parent)) {
5514 tmp->parent = parent->parent;
5515 if (parent->parent)
5516 parent->parent->child = tmp;
5517 /*
5518 * Transfer SD_PREFER_SIBLING down in case of a
5519 * degenerate parent; the spans match for this
5520 * so the property transfers.
5521 */
5522 if (parent->flags & SD_PREFER_SIBLING)
5523 tmp->flags |= SD_PREFER_SIBLING;
5524 destroy_sched_domain(parent, cpu);
5525 } else
5526 tmp = tmp->parent;
5527 }
5528
5529 if (sd && sd_degenerate(sd)) {
5530 tmp = sd;
5531 sd = sd->parent;
5532 destroy_sched_domain(tmp, cpu);
5533 if (sd)
5534 sd->child = NULL;
5535 }
5536
5537 sched_domain_debug(sd, cpu);
5538
5539 rq_attach_root(rq, rd);
5540 tmp = rq->sd;
5541 rcu_assign_pointer(rq->sd, sd);
5542 destroy_sched_domains(tmp, cpu);
5543
5544 update_top_cache_domain(cpu);
5545 }
5546
5547 /* cpus with isolated domains */
5548 static cpumask_var_t cpu_isolated_map;
5549
5550 /* Setup the mask of cpus configured for isolated domains */
5551 static int __init isolated_cpu_setup(char *str)
5552 {
5553 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5554 cpulist_parse(str, cpu_isolated_map);
5555 return 1;
5556 }
5557
5558 __setup("isolcpus=", isolated_cpu_setup);
5559
5560 static const struct cpumask *cpu_cpu_mask(int cpu)
5561 {
5562 return cpumask_of_node(cpu_to_node(cpu));
5563 }
5564
5565 struct sd_data {
5566 struct sched_domain **__percpu sd;
5567 struct sched_group **__percpu sg;
5568 struct sched_group_power **__percpu sgp;
5569 };
5570
5571 struct s_data {
5572 struct sched_domain ** __percpu sd;
5573 struct root_domain *rd;
5574 };
5575
5576 enum s_alloc {
5577 sa_rootdomain,
5578 sa_sd,
5579 sa_sd_storage,
5580 sa_none,
5581 };
5582
5583 struct sched_domain_topology_level;
5584
5585 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5586 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5587
5588 #define SDTL_OVERLAP 0x01
5589
5590 struct sched_domain_topology_level {
5591 sched_domain_init_f init;
5592 sched_domain_mask_f mask;
5593 int flags;
5594 int numa_level;
5595 struct sd_data data;
5596 };
5597
5598 /*
5599 * Build an iteration mask that can exclude certain CPUs from the upwards
5600 * domain traversal.
5601 *
5602 * Asymmetric node setups can result in situations where the domain tree is of
5603 * unequal depth, make sure to skip domains that already cover the entire
5604 * range.
5605 *
5606 * In that case build_sched_domains() will have terminated the iteration early
5607 * and our sibling sd spans will be empty. Domains should always include the
5608 * cpu they're built on, so check that.
5609 *
5610 */
5611 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5612 {
5613 const struct cpumask *span = sched_domain_span(sd);
5614 struct sd_data *sdd = sd->private;
5615 struct sched_domain *sibling;
5616 int i;
5617
5618 for_each_cpu(i, span) {
5619 sibling = *per_cpu_ptr(sdd->sd, i);
5620 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5621 continue;
5622
5623 cpumask_set_cpu(i, sched_group_mask(sg));
5624 }
5625 }
5626
5627 /*
5628 * Return the canonical balance cpu for this group, this is the first cpu
5629 * of this group that's also in the iteration mask.
5630 */
5631 int group_balance_cpu(struct sched_group *sg)
5632 {
5633 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5634 }
5635
5636 static int
5637 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5638 {
5639 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5640 const struct cpumask *span = sched_domain_span(sd);
5641 struct cpumask *covered = sched_domains_tmpmask;
5642 struct sd_data *sdd = sd->private;
5643 struct sched_domain *child;
5644 int i;
5645
5646 cpumask_clear(covered);
5647
5648 for_each_cpu(i, span) {
5649 struct cpumask *sg_span;
5650
5651 if (cpumask_test_cpu(i, covered))
5652 continue;
5653
5654 child = *per_cpu_ptr(sdd->sd, i);
5655
5656 /* See the comment near build_group_mask(). */
5657 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5658 continue;
5659
5660 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5661 GFP_KERNEL, cpu_to_node(cpu));
5662
5663 if (!sg)
5664 goto fail;
5665
5666 sg_span = sched_group_cpus(sg);
5667 if (child->child) {
5668 child = child->child;
5669 cpumask_copy(sg_span, sched_domain_span(child));
5670 } else
5671 cpumask_set_cpu(i, sg_span);
5672
5673 cpumask_or(covered, covered, sg_span);
5674
5675 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5676 if (atomic_inc_return(&sg->sgp->ref) == 1)
5677 build_group_mask(sd, sg);
5678
5679 /*
5680 * Initialize sgp->power such that even if we mess up the
5681 * domains and no possible iteration will get us here, we won't
5682 * die on a /0 trap.
5683 */
5684 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5685 sg->sgp->power_orig = sg->sgp->power;
5686
5687 /*
5688 * Make sure the first group of this domain contains the
5689 * canonical balance cpu. Otherwise the sched_domain iteration
5690 * breaks. See update_sg_lb_stats().
5691 */
5692 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5693 group_balance_cpu(sg) == cpu)
5694 groups = sg;
5695
5696 if (!first)
5697 first = sg;
5698 if (last)
5699 last->next = sg;
5700 last = sg;
5701 last->next = first;
5702 }
5703 sd->groups = groups;
5704
5705 return 0;
5706
5707 fail:
5708 free_sched_groups(first, 0);
5709
5710 return -ENOMEM;
5711 }
5712
5713 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5714 {
5715 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5716 struct sched_domain *child = sd->child;
5717
5718 if (child)
5719 cpu = cpumask_first(sched_domain_span(child));
5720
5721 if (sg) {
5722 *sg = *per_cpu_ptr(sdd->sg, cpu);
5723 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5724 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5725 }
5726
5727 return cpu;
5728 }
5729
5730 /*
5731 * build_sched_groups will build a circular linked list of the groups
5732 * covered by the given span, and will set each group's ->cpumask correctly,
5733 * and ->cpu_power to 0.
5734 *
5735 * Assumes the sched_domain tree is fully constructed
5736 */
5737 static int
5738 build_sched_groups(struct sched_domain *sd, int cpu)
5739 {
5740 struct sched_group *first = NULL, *last = NULL;
5741 struct sd_data *sdd = sd->private;
5742 const struct cpumask *span = sched_domain_span(sd);
5743 struct cpumask *covered;
5744 int i;
5745
5746 get_group(cpu, sdd, &sd->groups);
5747 atomic_inc(&sd->groups->ref);
5748
5749 if (cpu != cpumask_first(span))
5750 return 0;
5751
5752 lockdep_assert_held(&sched_domains_mutex);
5753 covered = sched_domains_tmpmask;
5754
5755 cpumask_clear(covered);
5756
5757 for_each_cpu(i, span) {
5758 struct sched_group *sg;
5759 int group, j;
5760
5761 if (cpumask_test_cpu(i, covered))
5762 continue;
5763
5764 group = get_group(i, sdd, &sg);
5765 cpumask_clear(sched_group_cpus(sg));
5766 sg->sgp->power = 0;
5767 cpumask_setall(sched_group_mask(sg));
5768
5769 for_each_cpu(j, span) {
5770 if (get_group(j, sdd, NULL) != group)
5771 continue;
5772
5773 cpumask_set_cpu(j, covered);
5774 cpumask_set_cpu(j, sched_group_cpus(sg));
5775 }
5776
5777 if (!first)
5778 first = sg;
5779 if (last)
5780 last->next = sg;
5781 last = sg;
5782 }
5783 last->next = first;
5784
5785 return 0;
5786 }
5787
5788 /*
5789 * Initialize sched groups cpu_power.
5790 *
5791 * cpu_power indicates the capacity of sched group, which is used while
5792 * distributing the load between different sched groups in a sched domain.
5793 * Typically cpu_power for all the groups in a sched domain will be same unless
5794 * there are asymmetries in the topology. If there are asymmetries, group
5795 * having more cpu_power will pickup more load compared to the group having
5796 * less cpu_power.
5797 */
5798 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5799 {
5800 struct sched_group *sg = sd->groups;
5801
5802 WARN_ON(!sg);
5803
5804 do {
5805 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5806 sg = sg->next;
5807 } while (sg != sd->groups);
5808
5809 if (cpu != group_balance_cpu(sg))
5810 return;
5811
5812 update_group_power(sd, cpu);
5813 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5814 }
5815
5816 int __weak arch_sd_sibling_asym_packing(void)
5817 {
5818 return 0*SD_ASYM_PACKING;
5819 }
5820
5821 /*
5822 * Initializers for schedule domains
5823 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5824 */
5825
5826 #ifdef CONFIG_SCHED_DEBUG
5827 # define SD_INIT_NAME(sd, type) sd->name = #type
5828 #else
5829 # define SD_INIT_NAME(sd, type) do { } while (0)
5830 #endif
5831
5832 #define SD_INIT_FUNC(type) \
5833 static noinline struct sched_domain * \
5834 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5835 { \
5836 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5837 *sd = SD_##type##_INIT; \
5838 SD_INIT_NAME(sd, type); \
5839 sd->private = &tl->data; \
5840 return sd; \
5841 }
5842
5843 SD_INIT_FUNC(CPU)
5844 #ifdef CONFIG_SCHED_SMT
5845 SD_INIT_FUNC(SIBLING)
5846 #endif
5847 #ifdef CONFIG_SCHED_MC
5848 SD_INIT_FUNC(MC)
5849 #endif
5850 #ifdef CONFIG_SCHED_BOOK
5851 SD_INIT_FUNC(BOOK)
5852 #endif
5853
5854 static int default_relax_domain_level = -1;
5855 int sched_domain_level_max;
5856
5857 static int __init setup_relax_domain_level(char *str)
5858 {
5859 if (kstrtoint(str, 0, &default_relax_domain_level))
5860 pr_warn("Unable to set relax_domain_level\n");
5861
5862 return 1;
5863 }
5864 __setup("relax_domain_level=", setup_relax_domain_level);
5865
5866 static void set_domain_attribute(struct sched_domain *sd,
5867 struct sched_domain_attr *attr)
5868 {
5869 int request;
5870
5871 if (!attr || attr->relax_domain_level < 0) {
5872 if (default_relax_domain_level < 0)
5873 return;
5874 else
5875 request = default_relax_domain_level;
5876 } else
5877 request = attr->relax_domain_level;
5878 if (request < sd->level) {
5879 /* turn off idle balance on this domain */
5880 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5881 } else {
5882 /* turn on idle balance on this domain */
5883 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5884 }
5885 }
5886
5887 static void __sdt_free(const struct cpumask *cpu_map);
5888 static int __sdt_alloc(const struct cpumask *cpu_map);
5889
5890 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5891 const struct cpumask *cpu_map)
5892 {
5893 switch (what) {
5894 case sa_rootdomain:
5895 if (!atomic_read(&d->rd->refcount))
5896 free_rootdomain(&d->rd->rcu); /* fall through */
5897 case sa_sd:
5898 free_percpu(d->sd); /* fall through */
5899 case sa_sd_storage:
5900 __sdt_free(cpu_map); /* fall through */
5901 case sa_none:
5902 break;
5903 }
5904 }
5905
5906 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5907 const struct cpumask *cpu_map)
5908 {
5909 memset(d, 0, sizeof(*d));
5910
5911 if (__sdt_alloc(cpu_map))
5912 return sa_sd_storage;
5913 d->sd = alloc_percpu(struct sched_domain *);
5914 if (!d->sd)
5915 return sa_sd_storage;
5916 d->rd = alloc_rootdomain();
5917 if (!d->rd)
5918 return sa_sd;
5919 return sa_rootdomain;
5920 }
5921
5922 /*
5923 * NULL the sd_data elements we've used to build the sched_domain and
5924 * sched_group structure so that the subsequent __free_domain_allocs()
5925 * will not free the data we're using.
5926 */
5927 static void claim_allocations(int cpu, struct sched_domain *sd)
5928 {
5929 struct sd_data *sdd = sd->private;
5930
5931 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5932 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5933
5934 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5935 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5936
5937 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5938 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5939 }
5940
5941 #ifdef CONFIG_SCHED_SMT
5942 static const struct cpumask *cpu_smt_mask(int cpu)
5943 {
5944 return topology_thread_cpumask(cpu);
5945 }
5946 #endif
5947
5948 /*
5949 * Topology list, bottom-up.
5950 */
5951 static struct sched_domain_topology_level default_topology[] = {
5952 #ifdef CONFIG_SCHED_SMT
5953 { sd_init_SIBLING, cpu_smt_mask, },
5954 #endif
5955 #ifdef CONFIG_SCHED_MC
5956 { sd_init_MC, cpu_coregroup_mask, },
5957 #endif
5958 #ifdef CONFIG_SCHED_BOOK
5959 { sd_init_BOOK, cpu_book_mask, },
5960 #endif
5961 { sd_init_CPU, cpu_cpu_mask, },
5962 { NULL, },
5963 };
5964
5965 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5966
5967 #define for_each_sd_topology(tl) \
5968 for (tl = sched_domain_topology; tl->init; tl++)
5969
5970 #ifdef CONFIG_NUMA
5971
5972 static int sched_domains_numa_levels;
5973 static int *sched_domains_numa_distance;
5974 static struct cpumask ***sched_domains_numa_masks;
5975 static int sched_domains_curr_level;
5976
5977 static inline int sd_local_flags(int level)
5978 {
5979 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5980 return 0;
5981
5982 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5983 }
5984
5985 static struct sched_domain *
5986 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5987 {
5988 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5989 int level = tl->numa_level;
5990 int sd_weight = cpumask_weight(
5991 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5992
5993 *sd = (struct sched_domain){
5994 .min_interval = sd_weight,
5995 .max_interval = 2*sd_weight,
5996 .busy_factor = 32,
5997 .imbalance_pct = 125,
5998 .cache_nice_tries = 2,
5999 .busy_idx = 3,
6000 .idle_idx = 2,
6001 .newidle_idx = 0,
6002 .wake_idx = 0,
6003 .forkexec_idx = 0,
6004
6005 .flags = 1*SD_LOAD_BALANCE
6006 | 1*SD_BALANCE_NEWIDLE
6007 | 0*SD_BALANCE_EXEC
6008 | 0*SD_BALANCE_FORK
6009 | 0*SD_BALANCE_WAKE
6010 | 0*SD_WAKE_AFFINE
6011 | 0*SD_SHARE_CPUPOWER
6012 | 0*SD_SHARE_PKG_RESOURCES
6013 | 1*SD_SERIALIZE
6014 | 0*SD_PREFER_SIBLING
6015 | 1*SD_NUMA
6016 | sd_local_flags(level)
6017 ,
6018 .last_balance = jiffies,
6019 .balance_interval = sd_weight,
6020 };
6021 SD_INIT_NAME(sd, NUMA);
6022 sd->private = &tl->data;
6023
6024 /*
6025 * Ugly hack to pass state to sd_numa_mask()...
6026 */
6027 sched_domains_curr_level = tl->numa_level;
6028
6029 return sd;
6030 }
6031
6032 static const struct cpumask *sd_numa_mask(int cpu)
6033 {
6034 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6035 }
6036
6037 static void sched_numa_warn(const char *str)
6038 {
6039 static int done = false;
6040 int i,j;
6041
6042 if (done)
6043 return;
6044
6045 done = true;
6046
6047 printk(KERN_WARNING "ERROR: %s\n\n", str);
6048
6049 for (i = 0; i < nr_node_ids; i++) {
6050 printk(KERN_WARNING " ");
6051 for (j = 0; j < nr_node_ids; j++)
6052 printk(KERN_CONT "%02d ", node_distance(i,j));
6053 printk(KERN_CONT "\n");
6054 }
6055 printk(KERN_WARNING "\n");
6056 }
6057
6058 static bool find_numa_distance(int distance)
6059 {
6060 int i;
6061
6062 if (distance == node_distance(0, 0))
6063 return true;
6064
6065 for (i = 0; i < sched_domains_numa_levels; i++) {
6066 if (sched_domains_numa_distance[i] == distance)
6067 return true;
6068 }
6069
6070 return false;
6071 }
6072
6073 static void sched_init_numa(void)
6074 {
6075 int next_distance, curr_distance = node_distance(0, 0);
6076 struct sched_domain_topology_level *tl;
6077 int level = 0;
6078 int i, j, k;
6079
6080 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6081 if (!sched_domains_numa_distance)
6082 return;
6083
6084 /*
6085 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6086 * unique distances in the node_distance() table.
6087 *
6088 * Assumes node_distance(0,j) includes all distances in
6089 * node_distance(i,j) in order to avoid cubic time.
6090 */
6091 next_distance = curr_distance;
6092 for (i = 0; i < nr_node_ids; i++) {
6093 for (j = 0; j < nr_node_ids; j++) {
6094 for (k = 0; k < nr_node_ids; k++) {
6095 int distance = node_distance(i, k);
6096
6097 if (distance > curr_distance &&
6098 (distance < next_distance ||
6099 next_distance == curr_distance))
6100 next_distance = distance;
6101
6102 /*
6103 * While not a strong assumption it would be nice to know
6104 * about cases where if node A is connected to B, B is not
6105 * equally connected to A.
6106 */
6107 if (sched_debug() && node_distance(k, i) != distance)
6108 sched_numa_warn("Node-distance not symmetric");
6109
6110 if (sched_debug() && i && !find_numa_distance(distance))
6111 sched_numa_warn("Node-0 not representative");
6112 }
6113 if (next_distance != curr_distance) {
6114 sched_domains_numa_distance[level++] = next_distance;
6115 sched_domains_numa_levels = level;
6116 curr_distance = next_distance;
6117 } else break;
6118 }
6119
6120 /*
6121 * In case of sched_debug() we verify the above assumption.
6122 */
6123 if (!sched_debug())
6124 break;
6125 }
6126 /*
6127 * 'level' contains the number of unique distances, excluding the
6128 * identity distance node_distance(i,i).
6129 *
6130 * The sched_domains_numa_distance[] array includes the actual distance
6131 * numbers.
6132 */
6133
6134 /*
6135 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6136 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6137 * the array will contain less then 'level' members. This could be
6138 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6139 * in other functions.
6140 *
6141 * We reset it to 'level' at the end of this function.
6142 */
6143 sched_domains_numa_levels = 0;
6144
6145 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6146 if (!sched_domains_numa_masks)
6147 return;
6148
6149 /*
6150 * Now for each level, construct a mask per node which contains all
6151 * cpus of nodes that are that many hops away from us.
6152 */
6153 for (i = 0; i < level; i++) {
6154 sched_domains_numa_masks[i] =
6155 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6156 if (!sched_domains_numa_masks[i])
6157 return;
6158
6159 for (j = 0; j < nr_node_ids; j++) {
6160 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6161 if (!mask)
6162 return;
6163
6164 sched_domains_numa_masks[i][j] = mask;
6165
6166 for (k = 0; k < nr_node_ids; k++) {
6167 if (node_distance(j, k) > sched_domains_numa_distance[i])
6168 continue;
6169
6170 cpumask_or(mask, mask, cpumask_of_node(k));
6171 }
6172 }
6173 }
6174
6175 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6176 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6177 if (!tl)
6178 return;
6179
6180 /*
6181 * Copy the default topology bits..
6182 */
6183 for (i = 0; default_topology[i].init; i++)
6184 tl[i] = default_topology[i];
6185
6186 /*
6187 * .. and append 'j' levels of NUMA goodness.
6188 */
6189 for (j = 0; j < level; i++, j++) {
6190 tl[i] = (struct sched_domain_topology_level){
6191 .init = sd_numa_init,
6192 .mask = sd_numa_mask,
6193 .flags = SDTL_OVERLAP,
6194 .numa_level = j,
6195 };
6196 }
6197
6198 sched_domain_topology = tl;
6199
6200 sched_domains_numa_levels = level;
6201 }
6202
6203 static void sched_domains_numa_masks_set(int cpu)
6204 {
6205 int i, j;
6206 int node = cpu_to_node(cpu);
6207
6208 for (i = 0; i < sched_domains_numa_levels; i++) {
6209 for (j = 0; j < nr_node_ids; j++) {
6210 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6211 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6212 }
6213 }
6214 }
6215
6216 static void sched_domains_numa_masks_clear(int cpu)
6217 {
6218 int i, j;
6219 for (i = 0; i < sched_domains_numa_levels; i++) {
6220 for (j = 0; j < nr_node_ids; j++)
6221 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6222 }
6223 }
6224
6225 /*
6226 * Update sched_domains_numa_masks[level][node] array when new cpus
6227 * are onlined.
6228 */
6229 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6230 unsigned long action,
6231 void *hcpu)
6232 {
6233 int cpu = (long)hcpu;
6234
6235 switch (action & ~CPU_TASKS_FROZEN) {
6236 case CPU_ONLINE:
6237 sched_domains_numa_masks_set(cpu);
6238 break;
6239
6240 case CPU_DEAD:
6241 sched_domains_numa_masks_clear(cpu);
6242 break;
6243
6244 default:
6245 return NOTIFY_DONE;
6246 }
6247
6248 return NOTIFY_OK;
6249 }
6250 #else
6251 static inline void sched_init_numa(void)
6252 {
6253 }
6254
6255 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6256 unsigned long action,
6257 void *hcpu)
6258 {
6259 return 0;
6260 }
6261 #endif /* CONFIG_NUMA */
6262
6263 static int __sdt_alloc(const struct cpumask *cpu_map)
6264 {
6265 struct sched_domain_topology_level *tl;
6266 int j;
6267
6268 for_each_sd_topology(tl) {
6269 struct sd_data *sdd = &tl->data;
6270
6271 sdd->sd = alloc_percpu(struct sched_domain *);
6272 if (!sdd->sd)
6273 return -ENOMEM;
6274
6275 sdd->sg = alloc_percpu(struct sched_group *);
6276 if (!sdd->sg)
6277 return -ENOMEM;
6278
6279 sdd->sgp = alloc_percpu(struct sched_group_power *);
6280 if (!sdd->sgp)
6281 return -ENOMEM;
6282
6283 for_each_cpu(j, cpu_map) {
6284 struct sched_domain *sd;
6285 struct sched_group *sg;
6286 struct sched_group_power *sgp;
6287
6288 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6289 GFP_KERNEL, cpu_to_node(j));
6290 if (!sd)
6291 return -ENOMEM;
6292
6293 *per_cpu_ptr(sdd->sd, j) = sd;
6294
6295 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6296 GFP_KERNEL, cpu_to_node(j));
6297 if (!sg)
6298 return -ENOMEM;
6299
6300 sg->next = sg;
6301
6302 *per_cpu_ptr(sdd->sg, j) = sg;
6303
6304 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sgp)
6307 return -ENOMEM;
6308
6309 *per_cpu_ptr(sdd->sgp, j) = sgp;
6310 }
6311 }
6312
6313 return 0;
6314 }
6315
6316 static void __sdt_free(const struct cpumask *cpu_map)
6317 {
6318 struct sched_domain_topology_level *tl;
6319 int j;
6320
6321 for_each_sd_topology(tl) {
6322 struct sd_data *sdd = &tl->data;
6323
6324 for_each_cpu(j, cpu_map) {
6325 struct sched_domain *sd;
6326
6327 if (sdd->sd) {
6328 sd = *per_cpu_ptr(sdd->sd, j);
6329 if (sd && (sd->flags & SD_OVERLAP))
6330 free_sched_groups(sd->groups, 0);
6331 kfree(*per_cpu_ptr(sdd->sd, j));
6332 }
6333
6334 if (sdd->sg)
6335 kfree(*per_cpu_ptr(sdd->sg, j));
6336 if (sdd->sgp)
6337 kfree(*per_cpu_ptr(sdd->sgp, j));
6338 }
6339 free_percpu(sdd->sd);
6340 sdd->sd = NULL;
6341 free_percpu(sdd->sg);
6342 sdd->sg = NULL;
6343 free_percpu(sdd->sgp);
6344 sdd->sgp = NULL;
6345 }
6346 }
6347
6348 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6349 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6350 struct sched_domain *child, int cpu)
6351 {
6352 struct sched_domain *sd = tl->init(tl, cpu);
6353 if (!sd)
6354 return child;
6355
6356 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6357 if (child) {
6358 sd->level = child->level + 1;
6359 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6360 child->parent = sd;
6361 sd->child = child;
6362 }
6363 set_domain_attribute(sd, attr);
6364
6365 return sd;
6366 }
6367
6368 /*
6369 * Build sched domains for a given set of cpus and attach the sched domains
6370 * to the individual cpus
6371 */
6372 static int build_sched_domains(const struct cpumask *cpu_map,
6373 struct sched_domain_attr *attr)
6374 {
6375 enum s_alloc alloc_state;
6376 struct sched_domain *sd;
6377 struct s_data d;
6378 int i, ret = -ENOMEM;
6379
6380 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6381 if (alloc_state != sa_rootdomain)
6382 goto error;
6383
6384 /* Set up domains for cpus specified by the cpu_map. */
6385 for_each_cpu(i, cpu_map) {
6386 struct sched_domain_topology_level *tl;
6387
6388 sd = NULL;
6389 for_each_sd_topology(tl) {
6390 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6391 if (tl == sched_domain_topology)
6392 *per_cpu_ptr(d.sd, i) = sd;
6393 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6394 sd->flags |= SD_OVERLAP;
6395 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6396 break;
6397 }
6398 }
6399
6400 /* Build the groups for the domains */
6401 for_each_cpu(i, cpu_map) {
6402 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6403 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6404 if (sd->flags & SD_OVERLAP) {
6405 if (build_overlap_sched_groups(sd, i))
6406 goto error;
6407 } else {
6408 if (build_sched_groups(sd, i))
6409 goto error;
6410 }
6411 }
6412 }
6413
6414 /* Calculate CPU power for physical packages and nodes */
6415 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6416 if (!cpumask_test_cpu(i, cpu_map))
6417 continue;
6418
6419 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6420 claim_allocations(i, sd);
6421 init_sched_groups_power(i, sd);
6422 }
6423 }
6424
6425 /* Attach the domains */
6426 rcu_read_lock();
6427 for_each_cpu(i, cpu_map) {
6428 sd = *per_cpu_ptr(d.sd, i);
6429 cpu_attach_domain(sd, d.rd, i);
6430 }
6431 rcu_read_unlock();
6432
6433 ret = 0;
6434 error:
6435 __free_domain_allocs(&d, alloc_state, cpu_map);
6436 return ret;
6437 }
6438
6439 static cpumask_var_t *doms_cur; /* current sched domains */
6440 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6441 static struct sched_domain_attr *dattr_cur;
6442 /* attribues of custom domains in 'doms_cur' */
6443
6444 /*
6445 * Special case: If a kmalloc of a doms_cur partition (array of
6446 * cpumask) fails, then fallback to a single sched domain,
6447 * as determined by the single cpumask fallback_doms.
6448 */
6449 static cpumask_var_t fallback_doms;
6450
6451 /*
6452 * arch_update_cpu_topology lets virtualized architectures update the
6453 * cpu core maps. It is supposed to return 1 if the topology changed
6454 * or 0 if it stayed the same.
6455 */
6456 int __attribute__((weak)) arch_update_cpu_topology(void)
6457 {
6458 return 0;
6459 }
6460
6461 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6462 {
6463 int i;
6464 cpumask_var_t *doms;
6465
6466 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6467 if (!doms)
6468 return NULL;
6469 for (i = 0; i < ndoms; i++) {
6470 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6471 free_sched_domains(doms, i);
6472 return NULL;
6473 }
6474 }
6475 return doms;
6476 }
6477
6478 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6479 {
6480 unsigned int i;
6481 for (i = 0; i < ndoms; i++)
6482 free_cpumask_var(doms[i]);
6483 kfree(doms);
6484 }
6485
6486 /*
6487 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6488 * For now this just excludes isolated cpus, but could be used to
6489 * exclude other special cases in the future.
6490 */
6491 static int init_sched_domains(const struct cpumask *cpu_map)
6492 {
6493 int err;
6494
6495 arch_update_cpu_topology();
6496 ndoms_cur = 1;
6497 doms_cur = alloc_sched_domains(ndoms_cur);
6498 if (!doms_cur)
6499 doms_cur = &fallback_doms;
6500 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6501 err = build_sched_domains(doms_cur[0], NULL);
6502 register_sched_domain_sysctl();
6503
6504 return err;
6505 }
6506
6507 /*
6508 * Detach sched domains from a group of cpus specified in cpu_map
6509 * These cpus will now be attached to the NULL domain
6510 */
6511 static void detach_destroy_domains(const struct cpumask *cpu_map)
6512 {
6513 int i;
6514
6515 rcu_read_lock();
6516 for_each_cpu(i, cpu_map)
6517 cpu_attach_domain(NULL, &def_root_domain, i);
6518 rcu_read_unlock();
6519 }
6520
6521 /* handle null as "default" */
6522 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6523 struct sched_domain_attr *new, int idx_new)
6524 {
6525 struct sched_domain_attr tmp;
6526
6527 /* fast path */
6528 if (!new && !cur)
6529 return 1;
6530
6531 tmp = SD_ATTR_INIT;
6532 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6533 new ? (new + idx_new) : &tmp,
6534 sizeof(struct sched_domain_attr));
6535 }
6536
6537 /*
6538 * Partition sched domains as specified by the 'ndoms_new'
6539 * cpumasks in the array doms_new[] of cpumasks. This compares
6540 * doms_new[] to the current sched domain partitioning, doms_cur[].
6541 * It destroys each deleted domain and builds each new domain.
6542 *
6543 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6544 * The masks don't intersect (don't overlap.) We should setup one
6545 * sched domain for each mask. CPUs not in any of the cpumasks will
6546 * not be load balanced. If the same cpumask appears both in the
6547 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6548 * it as it is.
6549 *
6550 * The passed in 'doms_new' should be allocated using
6551 * alloc_sched_domains. This routine takes ownership of it and will
6552 * free_sched_domains it when done with it. If the caller failed the
6553 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6554 * and partition_sched_domains() will fallback to the single partition
6555 * 'fallback_doms', it also forces the domains to be rebuilt.
6556 *
6557 * If doms_new == NULL it will be replaced with cpu_online_mask.
6558 * ndoms_new == 0 is a special case for destroying existing domains,
6559 * and it will not create the default domain.
6560 *
6561 * Call with hotplug lock held
6562 */
6563 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6564 struct sched_domain_attr *dattr_new)
6565 {
6566 int i, j, n;
6567 int new_topology;
6568
6569 mutex_lock(&sched_domains_mutex);
6570
6571 /* always unregister in case we don't destroy any domains */
6572 unregister_sched_domain_sysctl();
6573
6574 /* Let architecture update cpu core mappings. */
6575 new_topology = arch_update_cpu_topology();
6576
6577 n = doms_new ? ndoms_new : 0;
6578
6579 /* Destroy deleted domains */
6580 for (i = 0; i < ndoms_cur; i++) {
6581 for (j = 0; j < n && !new_topology; j++) {
6582 if (cpumask_equal(doms_cur[i], doms_new[j])
6583 && dattrs_equal(dattr_cur, i, dattr_new, j))
6584 goto match1;
6585 }
6586 /* no match - a current sched domain not in new doms_new[] */
6587 detach_destroy_domains(doms_cur[i]);
6588 match1:
6589 ;
6590 }
6591
6592 n = ndoms_cur;
6593 if (doms_new == NULL) {
6594 n = 0;
6595 doms_new = &fallback_doms;
6596 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6597 WARN_ON_ONCE(dattr_new);
6598 }
6599
6600 /* Build new domains */
6601 for (i = 0; i < ndoms_new; i++) {
6602 for (j = 0; j < n && !new_topology; j++) {
6603 if (cpumask_equal(doms_new[i], doms_cur[j])
6604 && dattrs_equal(dattr_new, i, dattr_cur, j))
6605 goto match2;
6606 }
6607 /* no match - add a new doms_new */
6608 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6609 match2:
6610 ;
6611 }
6612
6613 /* Remember the new sched domains */
6614 if (doms_cur != &fallback_doms)
6615 free_sched_domains(doms_cur, ndoms_cur);
6616 kfree(dattr_cur); /* kfree(NULL) is safe */
6617 doms_cur = doms_new;
6618 dattr_cur = dattr_new;
6619 ndoms_cur = ndoms_new;
6620
6621 register_sched_domain_sysctl();
6622
6623 mutex_unlock(&sched_domains_mutex);
6624 }
6625
6626 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6627
6628 /*
6629 * Update cpusets according to cpu_active mask. If cpusets are
6630 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6631 * around partition_sched_domains().
6632 *
6633 * If we come here as part of a suspend/resume, don't touch cpusets because we
6634 * want to restore it back to its original state upon resume anyway.
6635 */
6636 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6637 void *hcpu)
6638 {
6639 switch (action) {
6640 case CPU_ONLINE_FROZEN:
6641 case CPU_DOWN_FAILED_FROZEN:
6642
6643 /*
6644 * num_cpus_frozen tracks how many CPUs are involved in suspend
6645 * resume sequence. As long as this is not the last online
6646 * operation in the resume sequence, just build a single sched
6647 * domain, ignoring cpusets.
6648 */
6649 num_cpus_frozen--;
6650 if (likely(num_cpus_frozen)) {
6651 partition_sched_domains(1, NULL, NULL);
6652 break;
6653 }
6654
6655 /*
6656 * This is the last CPU online operation. So fall through and
6657 * restore the original sched domains by considering the
6658 * cpuset configurations.
6659 */
6660
6661 case CPU_ONLINE:
6662 case CPU_DOWN_FAILED:
6663 cpuset_update_active_cpus(true);
6664 break;
6665 default:
6666 return NOTIFY_DONE;
6667 }
6668 return NOTIFY_OK;
6669 }
6670
6671 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6672 void *hcpu)
6673 {
6674 switch (action) {
6675 case CPU_DOWN_PREPARE:
6676 cpuset_update_active_cpus(false);
6677 break;
6678 case CPU_DOWN_PREPARE_FROZEN:
6679 num_cpus_frozen++;
6680 partition_sched_domains(1, NULL, NULL);
6681 break;
6682 default:
6683 return NOTIFY_DONE;
6684 }
6685 return NOTIFY_OK;
6686 }
6687
6688 void __init sched_init_smp(void)
6689 {
6690 cpumask_var_t non_isolated_cpus;
6691
6692 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6693 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6694
6695 sched_init_numa();
6696
6697 /*
6698 * There's no userspace yet to cause hotplug operations; hence all the
6699 * cpu masks are stable and all blatant races in the below code cannot
6700 * happen.
6701 */
6702 mutex_lock(&sched_domains_mutex);
6703 init_sched_domains(cpu_active_mask);
6704 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6705 if (cpumask_empty(non_isolated_cpus))
6706 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6707 mutex_unlock(&sched_domains_mutex);
6708
6709 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6710 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6711 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6712
6713 init_hrtick();
6714
6715 /* Move init over to a non-isolated CPU */
6716 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6717 BUG();
6718 sched_init_granularity();
6719 free_cpumask_var(non_isolated_cpus);
6720
6721 init_sched_rt_class();
6722 init_sched_dl_class();
6723 }
6724 #else
6725 void __init sched_init_smp(void)
6726 {
6727 sched_init_granularity();
6728 }
6729 #endif /* CONFIG_SMP */
6730
6731 const_debug unsigned int sysctl_timer_migration = 1;
6732
6733 int in_sched_functions(unsigned long addr)
6734 {
6735 return in_lock_functions(addr) ||
6736 (addr >= (unsigned long)__sched_text_start
6737 && addr < (unsigned long)__sched_text_end);
6738 }
6739
6740 #ifdef CONFIG_CGROUP_SCHED
6741 /*
6742 * Default task group.
6743 * Every task in system belongs to this group at bootup.
6744 */
6745 struct task_group root_task_group;
6746 LIST_HEAD(task_groups);
6747 #endif
6748
6749 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6750
6751 void __init sched_init(void)
6752 {
6753 int i, j;
6754 unsigned long alloc_size = 0, ptr;
6755
6756 #ifdef CONFIG_FAIR_GROUP_SCHED
6757 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6758 #endif
6759 #ifdef CONFIG_RT_GROUP_SCHED
6760 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6761 #endif
6762 #ifdef CONFIG_CPUMASK_OFFSTACK
6763 alloc_size += num_possible_cpus() * cpumask_size();
6764 #endif
6765 if (alloc_size) {
6766 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6767
6768 #ifdef CONFIG_FAIR_GROUP_SCHED
6769 root_task_group.se = (struct sched_entity **)ptr;
6770 ptr += nr_cpu_ids * sizeof(void **);
6771
6772 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6773 ptr += nr_cpu_ids * sizeof(void **);
6774
6775 #endif /* CONFIG_FAIR_GROUP_SCHED */
6776 #ifdef CONFIG_RT_GROUP_SCHED
6777 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6778 ptr += nr_cpu_ids * sizeof(void **);
6779
6780 root_task_group.rt_rq = (struct rt_rq **)ptr;
6781 ptr += nr_cpu_ids * sizeof(void **);
6782
6783 #endif /* CONFIG_RT_GROUP_SCHED */
6784 #ifdef CONFIG_CPUMASK_OFFSTACK
6785 for_each_possible_cpu(i) {
6786 per_cpu(load_balance_mask, i) = (void *)ptr;
6787 ptr += cpumask_size();
6788 }
6789 #endif /* CONFIG_CPUMASK_OFFSTACK */
6790 }
6791
6792 init_rt_bandwidth(&def_rt_bandwidth,
6793 global_rt_period(), global_rt_runtime());
6794 init_dl_bandwidth(&def_dl_bandwidth,
6795 global_rt_period(), global_rt_runtime());
6796
6797 #ifdef CONFIG_SMP
6798 init_defrootdomain();
6799 #endif
6800
6801 #ifdef CONFIG_RT_GROUP_SCHED
6802 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6803 global_rt_period(), global_rt_runtime());
6804 #endif /* CONFIG_RT_GROUP_SCHED */
6805
6806 #ifdef CONFIG_CGROUP_SCHED
6807 list_add(&root_task_group.list, &task_groups);
6808 INIT_LIST_HEAD(&root_task_group.children);
6809 INIT_LIST_HEAD(&root_task_group.siblings);
6810 autogroup_init(&init_task);
6811
6812 #endif /* CONFIG_CGROUP_SCHED */
6813
6814 for_each_possible_cpu(i) {
6815 struct rq *rq;
6816
6817 rq = cpu_rq(i);
6818 raw_spin_lock_init(&rq->lock);
6819 rq->nr_running = 0;
6820 rq->calc_load_active = 0;
6821 rq->calc_load_update = jiffies + LOAD_FREQ;
6822 init_cfs_rq(&rq->cfs);
6823 init_rt_rq(&rq->rt, rq);
6824 init_dl_rq(&rq->dl, rq);
6825 #ifdef CONFIG_FAIR_GROUP_SCHED
6826 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6827 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6828 /*
6829 * How much cpu bandwidth does root_task_group get?
6830 *
6831 * In case of task-groups formed thr' the cgroup filesystem, it
6832 * gets 100% of the cpu resources in the system. This overall
6833 * system cpu resource is divided among the tasks of
6834 * root_task_group and its child task-groups in a fair manner,
6835 * based on each entity's (task or task-group's) weight
6836 * (se->load.weight).
6837 *
6838 * In other words, if root_task_group has 10 tasks of weight
6839 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6840 * then A0's share of the cpu resource is:
6841 *
6842 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6843 *
6844 * We achieve this by letting root_task_group's tasks sit
6845 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6846 */
6847 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6848 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6849 #endif /* CONFIG_FAIR_GROUP_SCHED */
6850
6851 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6852 #ifdef CONFIG_RT_GROUP_SCHED
6853 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6854 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6855 #endif
6856
6857 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6858 rq->cpu_load[j] = 0;
6859
6860 rq->last_load_update_tick = jiffies;
6861
6862 #ifdef CONFIG_SMP
6863 rq->sd = NULL;
6864 rq->rd = NULL;
6865 rq->cpu_power = SCHED_POWER_SCALE;
6866 rq->post_schedule = 0;
6867 rq->active_balance = 0;
6868 rq->next_balance = jiffies;
6869 rq->push_cpu = 0;
6870 rq->cpu = i;
6871 rq->online = 0;
6872 rq->idle_stamp = 0;
6873 rq->avg_idle = 2*sysctl_sched_migration_cost;
6874 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6875
6876 INIT_LIST_HEAD(&rq->cfs_tasks);
6877
6878 rq_attach_root(rq, &def_root_domain);
6879 #ifdef CONFIG_NO_HZ_COMMON
6880 rq->nohz_flags = 0;
6881 #endif
6882 #ifdef CONFIG_NO_HZ_FULL
6883 rq->last_sched_tick = 0;
6884 #endif
6885 #endif
6886 init_rq_hrtick(rq);
6887 atomic_set(&rq->nr_iowait, 0);
6888 }
6889
6890 set_load_weight(&init_task);
6891
6892 #ifdef CONFIG_PREEMPT_NOTIFIERS
6893 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6894 #endif
6895
6896 /*
6897 * The boot idle thread does lazy MMU switching as well:
6898 */
6899 atomic_inc(&init_mm.mm_count);
6900 enter_lazy_tlb(&init_mm, current);
6901
6902 /*
6903 * Make us the idle thread. Technically, schedule() should not be
6904 * called from this thread, however somewhere below it might be,
6905 * but because we are the idle thread, we just pick up running again
6906 * when this runqueue becomes "idle".
6907 */
6908 init_idle(current, smp_processor_id());
6909
6910 calc_load_update = jiffies + LOAD_FREQ;
6911
6912 /*
6913 * During early bootup we pretend to be a normal task:
6914 */
6915 current->sched_class = &fair_sched_class;
6916
6917 #ifdef CONFIG_SMP
6918 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6919 /* May be allocated at isolcpus cmdline parse time */
6920 if (cpu_isolated_map == NULL)
6921 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6922 idle_thread_set_boot_cpu();
6923 #endif
6924 init_sched_fair_class();
6925
6926 scheduler_running = 1;
6927 }
6928
6929 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6930 static inline int preempt_count_equals(int preempt_offset)
6931 {
6932 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6933
6934 return (nested == preempt_offset);
6935 }
6936
6937 void __might_sleep(const char *file, int line, int preempt_offset)
6938 {
6939 static unsigned long prev_jiffy; /* ratelimiting */
6940
6941 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6942 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6943 system_state != SYSTEM_RUNNING || oops_in_progress)
6944 return;
6945 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6946 return;
6947 prev_jiffy = jiffies;
6948
6949 printk(KERN_ERR
6950 "BUG: sleeping function called from invalid context at %s:%d\n",
6951 file, line);
6952 printk(KERN_ERR
6953 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6954 in_atomic(), irqs_disabled(),
6955 current->pid, current->comm);
6956
6957 debug_show_held_locks(current);
6958 if (irqs_disabled())
6959 print_irqtrace_events(current);
6960 dump_stack();
6961 }
6962 EXPORT_SYMBOL(__might_sleep);
6963 #endif
6964
6965 #ifdef CONFIG_MAGIC_SYSRQ
6966 static void normalize_task(struct rq *rq, struct task_struct *p)
6967 {
6968 const struct sched_class *prev_class = p->sched_class;
6969 struct sched_attr attr = {
6970 .sched_policy = SCHED_NORMAL,
6971 };
6972 int old_prio = p->prio;
6973 int on_rq;
6974
6975 on_rq = p->on_rq;
6976 if (on_rq)
6977 dequeue_task(rq, p, 0);
6978 __setscheduler(rq, p, &attr);
6979 if (on_rq) {
6980 enqueue_task(rq, p, 0);
6981 resched_task(rq->curr);
6982 }
6983
6984 check_class_changed(rq, p, prev_class, old_prio);
6985 }
6986
6987 void normalize_rt_tasks(void)
6988 {
6989 struct task_struct *g, *p;
6990 unsigned long flags;
6991 struct rq *rq;
6992
6993 read_lock_irqsave(&tasklist_lock, flags);
6994 do_each_thread(g, p) {
6995 /*
6996 * Only normalize user tasks:
6997 */
6998 if (!p->mm)
6999 continue;
7000
7001 p->se.exec_start = 0;
7002 #ifdef CONFIG_SCHEDSTATS
7003 p->se.statistics.wait_start = 0;
7004 p->se.statistics.sleep_start = 0;
7005 p->se.statistics.block_start = 0;
7006 #endif
7007
7008 if (!dl_task(p) && !rt_task(p)) {
7009 /*
7010 * Renice negative nice level userspace
7011 * tasks back to 0:
7012 */
7013 if (TASK_NICE(p) < 0 && p->mm)
7014 set_user_nice(p, 0);
7015 continue;
7016 }
7017
7018 raw_spin_lock(&p->pi_lock);
7019 rq = __task_rq_lock(p);
7020
7021 normalize_task(rq, p);
7022
7023 __task_rq_unlock(rq);
7024 raw_spin_unlock(&p->pi_lock);
7025 } while_each_thread(g, p);
7026
7027 read_unlock_irqrestore(&tasklist_lock, flags);
7028 }
7029
7030 #endif /* CONFIG_MAGIC_SYSRQ */
7031
7032 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7033 /*
7034 * These functions are only useful for the IA64 MCA handling, or kdb.
7035 *
7036 * They can only be called when the whole system has been
7037 * stopped - every CPU needs to be quiescent, and no scheduling
7038 * activity can take place. Using them for anything else would
7039 * be a serious bug, and as a result, they aren't even visible
7040 * under any other configuration.
7041 */
7042
7043 /**
7044 * curr_task - return the current task for a given cpu.
7045 * @cpu: the processor in question.
7046 *
7047 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7048 *
7049 * Return: The current task for @cpu.
7050 */
7051 struct task_struct *curr_task(int cpu)
7052 {
7053 return cpu_curr(cpu);
7054 }
7055
7056 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7057
7058 #ifdef CONFIG_IA64
7059 /**
7060 * set_curr_task - set the current task for a given cpu.
7061 * @cpu: the processor in question.
7062 * @p: the task pointer to set.
7063 *
7064 * Description: This function must only be used when non-maskable interrupts
7065 * are serviced on a separate stack. It allows the architecture to switch the
7066 * notion of the current task on a cpu in a non-blocking manner. This function
7067 * must be called with all CPU's synchronized, and interrupts disabled, the
7068 * and caller must save the original value of the current task (see
7069 * curr_task() above) and restore that value before reenabling interrupts and
7070 * re-starting the system.
7071 *
7072 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7073 */
7074 void set_curr_task(int cpu, struct task_struct *p)
7075 {
7076 cpu_curr(cpu) = p;
7077 }
7078
7079 #endif
7080
7081 #ifdef CONFIG_CGROUP_SCHED
7082 /* task_group_lock serializes the addition/removal of task groups */
7083 static DEFINE_SPINLOCK(task_group_lock);
7084
7085 static void free_sched_group(struct task_group *tg)
7086 {
7087 free_fair_sched_group(tg);
7088 free_rt_sched_group(tg);
7089 autogroup_free(tg);
7090 kfree(tg);
7091 }
7092
7093 /* allocate runqueue etc for a new task group */
7094 struct task_group *sched_create_group(struct task_group *parent)
7095 {
7096 struct task_group *tg;
7097
7098 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7099 if (!tg)
7100 return ERR_PTR(-ENOMEM);
7101
7102 if (!alloc_fair_sched_group(tg, parent))
7103 goto err;
7104
7105 if (!alloc_rt_sched_group(tg, parent))
7106 goto err;
7107
7108 return tg;
7109
7110 err:
7111 free_sched_group(tg);
7112 return ERR_PTR(-ENOMEM);
7113 }
7114
7115 void sched_online_group(struct task_group *tg, struct task_group *parent)
7116 {
7117 unsigned long flags;
7118
7119 spin_lock_irqsave(&task_group_lock, flags);
7120 list_add_rcu(&tg->list, &task_groups);
7121
7122 WARN_ON(!parent); /* root should already exist */
7123
7124 tg->parent = parent;
7125 INIT_LIST_HEAD(&tg->children);
7126 list_add_rcu(&tg->siblings, &parent->children);
7127 spin_unlock_irqrestore(&task_group_lock, flags);
7128 }
7129
7130 /* rcu callback to free various structures associated with a task group */
7131 static void free_sched_group_rcu(struct rcu_head *rhp)
7132 {
7133 /* now it should be safe to free those cfs_rqs */
7134 free_sched_group(container_of(rhp, struct task_group, rcu));
7135 }
7136
7137 /* Destroy runqueue etc associated with a task group */
7138 void sched_destroy_group(struct task_group *tg)
7139 {
7140 /* wait for possible concurrent references to cfs_rqs complete */
7141 call_rcu(&tg->rcu, free_sched_group_rcu);
7142 }
7143
7144 void sched_offline_group(struct task_group *tg)
7145 {
7146 unsigned long flags;
7147 int i;
7148
7149 /* end participation in shares distribution */
7150 for_each_possible_cpu(i)
7151 unregister_fair_sched_group(tg, i);
7152
7153 spin_lock_irqsave(&task_group_lock, flags);
7154 list_del_rcu(&tg->list);
7155 list_del_rcu(&tg->siblings);
7156 spin_unlock_irqrestore(&task_group_lock, flags);
7157 }
7158
7159 /* change task's runqueue when it moves between groups.
7160 * The caller of this function should have put the task in its new group
7161 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7162 * reflect its new group.
7163 */
7164 void sched_move_task(struct task_struct *tsk)
7165 {
7166 struct task_group *tg;
7167 int on_rq, running;
7168 unsigned long flags;
7169 struct rq *rq;
7170
7171 rq = task_rq_lock(tsk, &flags);
7172
7173 running = task_current(rq, tsk);
7174 on_rq = tsk->on_rq;
7175
7176 if (on_rq)
7177 dequeue_task(rq, tsk, 0);
7178 if (unlikely(running))
7179 tsk->sched_class->put_prev_task(rq, tsk);
7180
7181 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7182 lockdep_is_held(&tsk->sighand->siglock)),
7183 struct task_group, css);
7184 tg = autogroup_task_group(tsk, tg);
7185 tsk->sched_task_group = tg;
7186
7187 #ifdef CONFIG_FAIR_GROUP_SCHED
7188 if (tsk->sched_class->task_move_group)
7189 tsk->sched_class->task_move_group(tsk, on_rq);
7190 else
7191 #endif
7192 set_task_rq(tsk, task_cpu(tsk));
7193
7194 if (unlikely(running))
7195 tsk->sched_class->set_curr_task(rq);
7196 if (on_rq)
7197 enqueue_task(rq, tsk, 0);
7198
7199 task_rq_unlock(rq, tsk, &flags);
7200 }
7201 #endif /* CONFIG_CGROUP_SCHED */
7202
7203 #ifdef CONFIG_RT_GROUP_SCHED
7204 /*
7205 * Ensure that the real time constraints are schedulable.
7206 */
7207 static DEFINE_MUTEX(rt_constraints_mutex);
7208
7209 /* Must be called with tasklist_lock held */
7210 static inline int tg_has_rt_tasks(struct task_group *tg)
7211 {
7212 struct task_struct *g, *p;
7213
7214 do_each_thread(g, p) {
7215 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7216 return 1;
7217 } while_each_thread(g, p);
7218
7219 return 0;
7220 }
7221
7222 struct rt_schedulable_data {
7223 struct task_group *tg;
7224 u64 rt_period;
7225 u64 rt_runtime;
7226 };
7227
7228 static int tg_rt_schedulable(struct task_group *tg, void *data)
7229 {
7230 struct rt_schedulable_data *d = data;
7231 struct task_group *child;
7232 unsigned long total, sum = 0;
7233 u64 period, runtime;
7234
7235 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7236 runtime = tg->rt_bandwidth.rt_runtime;
7237
7238 if (tg == d->tg) {
7239 period = d->rt_period;
7240 runtime = d->rt_runtime;
7241 }
7242
7243 /*
7244 * Cannot have more runtime than the period.
7245 */
7246 if (runtime > period && runtime != RUNTIME_INF)
7247 return -EINVAL;
7248
7249 /*
7250 * Ensure we don't starve existing RT tasks.
7251 */
7252 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7253 return -EBUSY;
7254
7255 total = to_ratio(period, runtime);
7256
7257 /*
7258 * Nobody can have more than the global setting allows.
7259 */
7260 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7261 return -EINVAL;
7262
7263 /*
7264 * The sum of our children's runtime should not exceed our own.
7265 */
7266 list_for_each_entry_rcu(child, &tg->children, siblings) {
7267 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7268 runtime = child->rt_bandwidth.rt_runtime;
7269
7270 if (child == d->tg) {
7271 period = d->rt_period;
7272 runtime = d->rt_runtime;
7273 }
7274
7275 sum += to_ratio(period, runtime);
7276 }
7277
7278 if (sum > total)
7279 return -EINVAL;
7280
7281 return 0;
7282 }
7283
7284 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7285 {
7286 int ret;
7287
7288 struct rt_schedulable_data data = {
7289 .tg = tg,
7290 .rt_period = period,
7291 .rt_runtime = runtime,
7292 };
7293
7294 rcu_read_lock();
7295 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7296 rcu_read_unlock();
7297
7298 return ret;
7299 }
7300
7301 static int tg_set_rt_bandwidth(struct task_group *tg,
7302 u64 rt_period, u64 rt_runtime)
7303 {
7304 int i, err = 0;
7305
7306 mutex_lock(&rt_constraints_mutex);
7307 read_lock(&tasklist_lock);
7308 err = __rt_schedulable(tg, rt_period, rt_runtime);
7309 if (err)
7310 goto unlock;
7311
7312 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7313 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7314 tg->rt_bandwidth.rt_runtime = rt_runtime;
7315
7316 for_each_possible_cpu(i) {
7317 struct rt_rq *rt_rq = tg->rt_rq[i];
7318
7319 raw_spin_lock(&rt_rq->rt_runtime_lock);
7320 rt_rq->rt_runtime = rt_runtime;
7321 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7322 }
7323 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7324 unlock:
7325 read_unlock(&tasklist_lock);
7326 mutex_unlock(&rt_constraints_mutex);
7327
7328 return err;
7329 }
7330
7331 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7332 {
7333 u64 rt_runtime, rt_period;
7334
7335 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7336 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7337 if (rt_runtime_us < 0)
7338 rt_runtime = RUNTIME_INF;
7339
7340 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7341 }
7342
7343 static long sched_group_rt_runtime(struct task_group *tg)
7344 {
7345 u64 rt_runtime_us;
7346
7347 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7348 return -1;
7349
7350 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7351 do_div(rt_runtime_us, NSEC_PER_USEC);
7352 return rt_runtime_us;
7353 }
7354
7355 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7356 {
7357 u64 rt_runtime, rt_period;
7358
7359 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7360 rt_runtime = tg->rt_bandwidth.rt_runtime;
7361
7362 if (rt_period == 0)
7363 return -EINVAL;
7364
7365 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7366 }
7367
7368 static long sched_group_rt_period(struct task_group *tg)
7369 {
7370 u64 rt_period_us;
7371
7372 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7373 do_div(rt_period_us, NSEC_PER_USEC);
7374 return rt_period_us;
7375 }
7376 #endif /* CONFIG_RT_GROUP_SCHED */
7377
7378 #ifdef CONFIG_RT_GROUP_SCHED
7379 static int sched_rt_global_constraints(void)
7380 {
7381 int ret = 0;
7382
7383 mutex_lock(&rt_constraints_mutex);
7384 read_lock(&tasklist_lock);
7385 ret = __rt_schedulable(NULL, 0, 0);
7386 read_unlock(&tasklist_lock);
7387 mutex_unlock(&rt_constraints_mutex);
7388
7389 return ret;
7390 }
7391
7392 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7393 {
7394 /* Don't accept realtime tasks when there is no way for them to run */
7395 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7396 return 0;
7397
7398 return 1;
7399 }
7400
7401 #else /* !CONFIG_RT_GROUP_SCHED */
7402 static int sched_rt_global_constraints(void)
7403 {
7404 unsigned long flags;
7405 int i, ret = 0;
7406
7407 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7408 for_each_possible_cpu(i) {
7409 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7410
7411 raw_spin_lock(&rt_rq->rt_runtime_lock);
7412 rt_rq->rt_runtime = global_rt_runtime();
7413 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7414 }
7415 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7416
7417 return ret;
7418 }
7419 #endif /* CONFIG_RT_GROUP_SCHED */
7420
7421 static int sched_dl_global_constraints(void)
7422 {
7423 u64 runtime = global_rt_runtime();
7424 u64 period = global_rt_period();
7425 u64 new_bw = to_ratio(period, runtime);
7426 int cpu, ret = 0;
7427
7428 /*
7429 * Here we want to check the bandwidth not being set to some
7430 * value smaller than the currently allocated bandwidth in
7431 * any of the root_domains.
7432 *
7433 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7434 * cycling on root_domains... Discussion on different/better
7435 * solutions is welcome!
7436 */
7437 for_each_possible_cpu(cpu) {
7438 struct dl_bw *dl_b = dl_bw_of(cpu);
7439
7440 raw_spin_lock(&dl_b->lock);
7441 if (new_bw < dl_b->total_bw)
7442 ret = -EBUSY;
7443 raw_spin_unlock(&dl_b->lock);
7444
7445 if (ret)
7446 break;
7447 }
7448
7449 return ret;
7450 }
7451
7452 static void sched_dl_do_global(void)
7453 {
7454 u64 new_bw = -1;
7455 int cpu;
7456
7457 def_dl_bandwidth.dl_period = global_rt_period();
7458 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7459
7460 if (global_rt_runtime() != RUNTIME_INF)
7461 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7462
7463 /*
7464 * FIXME: As above...
7465 */
7466 for_each_possible_cpu(cpu) {
7467 struct dl_bw *dl_b = dl_bw_of(cpu);
7468
7469 raw_spin_lock(&dl_b->lock);
7470 dl_b->bw = new_bw;
7471 raw_spin_unlock(&dl_b->lock);
7472 }
7473 }
7474
7475 static int sched_rt_global_validate(void)
7476 {
7477 if (sysctl_sched_rt_period <= 0)
7478 return -EINVAL;
7479
7480 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7481 return -EINVAL;
7482
7483 return 0;
7484 }
7485
7486 static void sched_rt_do_global(void)
7487 {
7488 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7489 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7490 }
7491
7492 int sched_rt_handler(struct ctl_table *table, int write,
7493 void __user *buffer, size_t *lenp,
7494 loff_t *ppos)
7495 {
7496 int old_period, old_runtime;
7497 static DEFINE_MUTEX(mutex);
7498 int ret;
7499
7500 mutex_lock(&mutex);
7501 old_period = sysctl_sched_rt_period;
7502 old_runtime = sysctl_sched_rt_runtime;
7503
7504 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7505
7506 if (!ret && write) {
7507 ret = sched_rt_global_validate();
7508 if (ret)
7509 goto undo;
7510
7511 ret = sched_rt_global_constraints();
7512 if (ret)
7513 goto undo;
7514
7515 ret = sched_dl_global_constraints();
7516 if (ret)
7517 goto undo;
7518
7519 sched_rt_do_global();
7520 sched_dl_do_global();
7521 }
7522 if (0) {
7523 undo:
7524 sysctl_sched_rt_period = old_period;
7525 sysctl_sched_rt_runtime = old_runtime;
7526 }
7527 mutex_unlock(&mutex);
7528
7529 return ret;
7530 }
7531
7532 int sched_rr_handler(struct ctl_table *table, int write,
7533 void __user *buffer, size_t *lenp,
7534 loff_t *ppos)
7535 {
7536 int ret;
7537 static DEFINE_MUTEX(mutex);
7538
7539 mutex_lock(&mutex);
7540 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7541 /* make sure that internally we keep jiffies */
7542 /* also, writing zero resets timeslice to default */
7543 if (!ret && write) {
7544 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7545 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7546 }
7547 mutex_unlock(&mutex);
7548 return ret;
7549 }
7550
7551 #ifdef CONFIG_CGROUP_SCHED
7552
7553 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7554 {
7555 return css ? container_of(css, struct task_group, css) : NULL;
7556 }
7557
7558 static struct cgroup_subsys_state *
7559 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7560 {
7561 struct task_group *parent = css_tg(parent_css);
7562 struct task_group *tg;
7563
7564 if (!parent) {
7565 /* This is early initialization for the top cgroup */
7566 return &root_task_group.css;
7567 }
7568
7569 tg = sched_create_group(parent);
7570 if (IS_ERR(tg))
7571 return ERR_PTR(-ENOMEM);
7572
7573 return &tg->css;
7574 }
7575
7576 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7577 {
7578 struct task_group *tg = css_tg(css);
7579 struct task_group *parent = css_tg(css_parent(css));
7580
7581 if (parent)
7582 sched_online_group(tg, parent);
7583 return 0;
7584 }
7585
7586 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7587 {
7588 struct task_group *tg = css_tg(css);
7589
7590 sched_destroy_group(tg);
7591 }
7592
7593 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7594 {
7595 struct task_group *tg = css_tg(css);
7596
7597 sched_offline_group(tg);
7598 }
7599
7600 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7601 struct cgroup_taskset *tset)
7602 {
7603 struct task_struct *task;
7604
7605 cgroup_taskset_for_each(task, css, tset) {
7606 #ifdef CONFIG_RT_GROUP_SCHED
7607 if (!sched_rt_can_attach(css_tg(css), task))
7608 return -EINVAL;
7609 #else
7610 /* We don't support RT-tasks being in separate groups */
7611 if (task->sched_class != &fair_sched_class)
7612 return -EINVAL;
7613 #endif
7614 }
7615 return 0;
7616 }
7617
7618 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7619 struct cgroup_taskset *tset)
7620 {
7621 struct task_struct *task;
7622
7623 cgroup_taskset_for_each(task, css, tset)
7624 sched_move_task(task);
7625 }
7626
7627 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7628 struct cgroup_subsys_state *old_css,
7629 struct task_struct *task)
7630 {
7631 /*
7632 * cgroup_exit() is called in the copy_process() failure path.
7633 * Ignore this case since the task hasn't ran yet, this avoids
7634 * trying to poke a half freed task state from generic code.
7635 */
7636 if (!(task->flags & PF_EXITING))
7637 return;
7638
7639 sched_move_task(task);
7640 }
7641
7642 #ifdef CONFIG_FAIR_GROUP_SCHED
7643 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7644 struct cftype *cftype, u64 shareval)
7645 {
7646 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7647 }
7648
7649 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7650 struct cftype *cft)
7651 {
7652 struct task_group *tg = css_tg(css);
7653
7654 return (u64) scale_load_down(tg->shares);
7655 }
7656
7657 #ifdef CONFIG_CFS_BANDWIDTH
7658 static DEFINE_MUTEX(cfs_constraints_mutex);
7659
7660 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7661 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7662
7663 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7664
7665 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7666 {
7667 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7668 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7669
7670 if (tg == &root_task_group)
7671 return -EINVAL;
7672
7673 /*
7674 * Ensure we have at some amount of bandwidth every period. This is
7675 * to prevent reaching a state of large arrears when throttled via
7676 * entity_tick() resulting in prolonged exit starvation.
7677 */
7678 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7679 return -EINVAL;
7680
7681 /*
7682 * Likewise, bound things on the otherside by preventing insane quota
7683 * periods. This also allows us to normalize in computing quota
7684 * feasibility.
7685 */
7686 if (period > max_cfs_quota_period)
7687 return -EINVAL;
7688
7689 mutex_lock(&cfs_constraints_mutex);
7690 ret = __cfs_schedulable(tg, period, quota);
7691 if (ret)
7692 goto out_unlock;
7693
7694 runtime_enabled = quota != RUNTIME_INF;
7695 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7696 /*
7697 * If we need to toggle cfs_bandwidth_used, off->on must occur
7698 * before making related changes, and on->off must occur afterwards
7699 */
7700 if (runtime_enabled && !runtime_was_enabled)
7701 cfs_bandwidth_usage_inc();
7702 raw_spin_lock_irq(&cfs_b->lock);
7703 cfs_b->period = ns_to_ktime(period);
7704 cfs_b->quota = quota;
7705
7706 __refill_cfs_bandwidth_runtime(cfs_b);
7707 /* restart the period timer (if active) to handle new period expiry */
7708 if (runtime_enabled && cfs_b->timer_active) {
7709 /* force a reprogram */
7710 cfs_b->timer_active = 0;
7711 __start_cfs_bandwidth(cfs_b);
7712 }
7713 raw_spin_unlock_irq(&cfs_b->lock);
7714
7715 for_each_possible_cpu(i) {
7716 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7717 struct rq *rq = cfs_rq->rq;
7718
7719 raw_spin_lock_irq(&rq->lock);
7720 cfs_rq->runtime_enabled = runtime_enabled;
7721 cfs_rq->runtime_remaining = 0;
7722
7723 if (cfs_rq->throttled)
7724 unthrottle_cfs_rq(cfs_rq);
7725 raw_spin_unlock_irq(&rq->lock);
7726 }
7727 if (runtime_was_enabled && !runtime_enabled)
7728 cfs_bandwidth_usage_dec();
7729 out_unlock:
7730 mutex_unlock(&cfs_constraints_mutex);
7731
7732 return ret;
7733 }
7734
7735 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7736 {
7737 u64 quota, period;
7738
7739 period = ktime_to_ns(tg->cfs_bandwidth.period);
7740 if (cfs_quota_us < 0)
7741 quota = RUNTIME_INF;
7742 else
7743 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7744
7745 return tg_set_cfs_bandwidth(tg, period, quota);
7746 }
7747
7748 long tg_get_cfs_quota(struct task_group *tg)
7749 {
7750 u64 quota_us;
7751
7752 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7753 return -1;
7754
7755 quota_us = tg->cfs_bandwidth.quota;
7756 do_div(quota_us, NSEC_PER_USEC);
7757
7758 return quota_us;
7759 }
7760
7761 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7762 {
7763 u64 quota, period;
7764
7765 period = (u64)cfs_period_us * NSEC_PER_USEC;
7766 quota = tg->cfs_bandwidth.quota;
7767
7768 return tg_set_cfs_bandwidth(tg, period, quota);
7769 }
7770
7771 long tg_get_cfs_period(struct task_group *tg)
7772 {
7773 u64 cfs_period_us;
7774
7775 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7776 do_div(cfs_period_us, NSEC_PER_USEC);
7777
7778 return cfs_period_us;
7779 }
7780
7781 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7782 struct cftype *cft)
7783 {
7784 return tg_get_cfs_quota(css_tg(css));
7785 }
7786
7787 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7788 struct cftype *cftype, s64 cfs_quota_us)
7789 {
7790 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7791 }
7792
7793 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7794 struct cftype *cft)
7795 {
7796 return tg_get_cfs_period(css_tg(css));
7797 }
7798
7799 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7800 struct cftype *cftype, u64 cfs_period_us)
7801 {
7802 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7803 }
7804
7805 struct cfs_schedulable_data {
7806 struct task_group *tg;
7807 u64 period, quota;
7808 };
7809
7810 /*
7811 * normalize group quota/period to be quota/max_period
7812 * note: units are usecs
7813 */
7814 static u64 normalize_cfs_quota(struct task_group *tg,
7815 struct cfs_schedulable_data *d)
7816 {
7817 u64 quota, period;
7818
7819 if (tg == d->tg) {
7820 period = d->period;
7821 quota = d->quota;
7822 } else {
7823 period = tg_get_cfs_period(tg);
7824 quota = tg_get_cfs_quota(tg);
7825 }
7826
7827 /* note: these should typically be equivalent */
7828 if (quota == RUNTIME_INF || quota == -1)
7829 return RUNTIME_INF;
7830
7831 return to_ratio(period, quota);
7832 }
7833
7834 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7835 {
7836 struct cfs_schedulable_data *d = data;
7837 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7838 s64 quota = 0, parent_quota = -1;
7839
7840 if (!tg->parent) {
7841 quota = RUNTIME_INF;
7842 } else {
7843 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7844
7845 quota = normalize_cfs_quota(tg, d);
7846 parent_quota = parent_b->hierarchal_quota;
7847
7848 /*
7849 * ensure max(child_quota) <= parent_quota, inherit when no
7850 * limit is set
7851 */
7852 if (quota == RUNTIME_INF)
7853 quota = parent_quota;
7854 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7855 return -EINVAL;
7856 }
7857 cfs_b->hierarchal_quota = quota;
7858
7859 return 0;
7860 }
7861
7862 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7863 {
7864 int ret;
7865 struct cfs_schedulable_data data = {
7866 .tg = tg,
7867 .period = period,
7868 .quota = quota,
7869 };
7870
7871 if (quota != RUNTIME_INF) {
7872 do_div(data.period, NSEC_PER_USEC);
7873 do_div(data.quota, NSEC_PER_USEC);
7874 }
7875
7876 rcu_read_lock();
7877 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7878 rcu_read_unlock();
7879
7880 return ret;
7881 }
7882
7883 static int cpu_stats_show(struct seq_file *sf, void *v)
7884 {
7885 struct task_group *tg = css_tg(seq_css(sf));
7886 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7887
7888 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7889 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7890 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7891
7892 return 0;
7893 }
7894 #endif /* CONFIG_CFS_BANDWIDTH */
7895 #endif /* CONFIG_FAIR_GROUP_SCHED */
7896
7897 #ifdef CONFIG_RT_GROUP_SCHED
7898 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7899 struct cftype *cft, s64 val)
7900 {
7901 return sched_group_set_rt_runtime(css_tg(css), val);
7902 }
7903
7904 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7905 struct cftype *cft)
7906 {
7907 return sched_group_rt_runtime(css_tg(css));
7908 }
7909
7910 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7911 struct cftype *cftype, u64 rt_period_us)
7912 {
7913 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7914 }
7915
7916 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7917 struct cftype *cft)
7918 {
7919 return sched_group_rt_period(css_tg(css));
7920 }
7921 #endif /* CONFIG_RT_GROUP_SCHED */
7922
7923 static struct cftype cpu_files[] = {
7924 #ifdef CONFIG_FAIR_GROUP_SCHED
7925 {
7926 .name = "shares",
7927 .read_u64 = cpu_shares_read_u64,
7928 .write_u64 = cpu_shares_write_u64,
7929 },
7930 #endif
7931 #ifdef CONFIG_CFS_BANDWIDTH
7932 {
7933 .name = "cfs_quota_us",
7934 .read_s64 = cpu_cfs_quota_read_s64,
7935 .write_s64 = cpu_cfs_quota_write_s64,
7936 },
7937 {
7938 .name = "cfs_period_us",
7939 .read_u64 = cpu_cfs_period_read_u64,
7940 .write_u64 = cpu_cfs_period_write_u64,
7941 },
7942 {
7943 .name = "stat",
7944 .seq_show = cpu_stats_show,
7945 },
7946 #endif
7947 #ifdef CONFIG_RT_GROUP_SCHED
7948 {
7949 .name = "rt_runtime_us",
7950 .read_s64 = cpu_rt_runtime_read,
7951 .write_s64 = cpu_rt_runtime_write,
7952 },
7953 {
7954 .name = "rt_period_us",
7955 .read_u64 = cpu_rt_period_read_uint,
7956 .write_u64 = cpu_rt_period_write_uint,
7957 },
7958 #endif
7959 { } /* terminate */
7960 };
7961
7962 struct cgroup_subsys cpu_cgroup_subsys = {
7963 .name = "cpu",
7964 .css_alloc = cpu_cgroup_css_alloc,
7965 .css_free = cpu_cgroup_css_free,
7966 .css_online = cpu_cgroup_css_online,
7967 .css_offline = cpu_cgroup_css_offline,
7968 .can_attach = cpu_cgroup_can_attach,
7969 .attach = cpu_cgroup_attach,
7970 .exit = cpu_cgroup_exit,
7971 .subsys_id = cpu_cgroup_subsys_id,
7972 .base_cftypes = cpu_files,
7973 .early_init = 1,
7974 };
7975
7976 #endif /* CONFIG_CGROUP_SCHED */
7977
7978 void dump_cpu_task(int cpu)
7979 {
7980 pr_info("Task dump for CPU %d:\n", cpu);
7981 sched_show_task(cpu_curr(cpu));
7982 }