]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/core.c
2e3b983da836a70bc642489e6779b7e8fbf2433b
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
169 }
170
171 static void sched_feat_enable(int i)
172 {
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180
181 static int sched_feat_set(char *cmp)
182 {
183 int i;
184 int neg = 0;
185
186 if (strncmp(cmp, "NO_", 3) == 0) {
187 neg = 1;
188 cmp += 3;
189 }
190
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 if (neg) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
196 } else {
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
199 }
200 break;
201 }
202 }
203
204 return i;
205 }
206
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210 {
211 char buf[64];
212 char *cmp;
213 int i;
214 struct inode *inode;
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
232
233 *ppos += cnt;
234
235 return cnt;
236 }
237
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 return single_open(filp, sched_feat_show, NULL);
241 }
242
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
249 };
250
251 static __init int sched_init_debug(void)
252 {
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260
261 /*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
267 /*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
275 /*
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
278 */
279 unsigned int sysctl_sched_rt_period = 1000000;
280
281 __read_mostly int scheduler_running;
282
283 /*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287 int sysctl_sched_rt_runtime = 950000;
288
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291
292 /*
293 * this_rq_lock - lock this runqueue and disable interrupts.
294 */
295 static struct rq *this_rq_lock(void)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 local_irq_disable();
301 rq = this_rq();
302 raw_spin_lock(&rq->lock);
303
304 return rq;
305 }
306
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309 * Use HR-timers to deliver accurate preemption points.
310 */
311
312 static void hrtick_clear(struct rq *rq)
313 {
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316 }
317
318 /*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
328 raw_spin_lock(&rq->lock);
329 update_rq_clock(rq);
330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 raw_spin_unlock(&rq->lock);
332
333 return HRTIMER_NORESTART;
334 }
335
336 #ifdef CONFIG_SMP
337
338 static void __hrtick_restart(struct rq *rq)
339 {
340 struct hrtimer *timer = &rq->hrtick_timer;
341
342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344
345 /*
346 * called from hardirq (IPI) context
347 */
348 static void __hrtick_start(void *arg)
349 {
350 struct rq *rq = arg;
351
352 raw_spin_lock(&rq->lock);
353 __hrtick_restart(rq);
354 rq->hrtick_csd_pending = 0;
355 raw_spin_unlock(&rq->lock);
356 }
357
358 /*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 struct hrtimer *timer = &rq->hrtick_timer;
366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
375
376 hrtimer_set_expires(timer, time);
377
378 if (rq == this_rq()) {
379 __hrtick_restart(rq);
380 } else if (!rq->hrtick_csd_pending) {
381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 rq->hrtick_csd_pending = 1;
383 }
384 }
385
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
398 hrtick_clear(cpu_rq(cpu));
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403 }
404
405 static __init void init_hrtick(void)
406 {
407 hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
424 }
425
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
435
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439 #endif
440
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
443 }
444 #else /* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif /* CONFIG_SCHED_HRTICK */
457
458 /*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461 #define fetch_or(ptr, val) \
462 ({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470 })
471
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483
484 /*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506 }
507
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 set_tsk_need_resched(p);
512 return true;
513 }
514
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 return false;
519 }
520 #endif
521 #endif
522
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524 {
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545 }
546
547 void wake_up_q(struct wake_q_head *head)
548 {
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567 }
568
569 /*
570 * resched_curr - mark rq's current task 'to be rescheduled now'.
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
576 void resched_curr(struct rq *rq)
577 {
578 struct task_struct *curr = rq->curr;
579 int cpu;
580
581 lockdep_assert_held(&rq->lock);
582
583 if (test_tsk_need_resched(curr))
584 return;
585
586 cpu = cpu_of(rq);
587
588 if (cpu == smp_processor_id()) {
589 set_tsk_need_resched(curr);
590 set_preempt_need_resched();
591 return;
592 }
593
594 if (set_nr_and_not_polling(curr))
595 smp_send_reschedule(cpu);
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
598 }
599
600 void resched_cpu(int cpu)
601 {
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 return;
607 resched_curr(rq);
608 raw_spin_unlock_irqrestore(&rq->lock, flags);
609 }
610
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
613 /*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
621 int get_nohz_timer_target(void)
622 {
623 int i, cpu = smp_processor_id();
624 struct sched_domain *sd;
625
626 if (!idle_cpu(cpu))
627 return cpu;
628
629 rcu_read_lock();
630 for_each_domain(cpu, sd) {
631 for_each_cpu(i, sched_domain_span(sd)) {
632 if (!idle_cpu(i)) {
633 cpu = i;
634 goto unlock;
635 }
636 }
637 }
638 unlock:
639 rcu_read_unlock();
640 return cpu;
641 }
642 /*
643 * When add_timer_on() enqueues a timer into the timer wheel of an
644 * idle CPU then this timer might expire before the next timer event
645 * which is scheduled to wake up that CPU. In case of a completely
646 * idle system the next event might even be infinite time into the
647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648 * leaves the inner idle loop so the newly added timer is taken into
649 * account when the CPU goes back to idle and evaluates the timer
650 * wheel for the next timer event.
651 */
652 static void wake_up_idle_cpu(int cpu)
653 {
654 struct rq *rq = cpu_rq(cpu);
655
656 if (cpu == smp_processor_id())
657 return;
658
659 if (set_nr_and_not_polling(rq->idle))
660 smp_send_reschedule(cpu);
661 else
662 trace_sched_wake_idle_without_ipi(cpu);
663 }
664
665 static bool wake_up_full_nohz_cpu(int cpu)
666 {
667 /*
668 * We just need the target to call irq_exit() and re-evaluate
669 * the next tick. The nohz full kick at least implies that.
670 * If needed we can still optimize that later with an
671 * empty IRQ.
672 */
673 if (tick_nohz_full_cpu(cpu)) {
674 if (cpu != smp_processor_id() ||
675 tick_nohz_tick_stopped())
676 tick_nohz_full_kick_cpu(cpu);
677 return true;
678 }
679
680 return false;
681 }
682
683 void wake_up_nohz_cpu(int cpu)
684 {
685 if (!wake_up_full_nohz_cpu(cpu))
686 wake_up_idle_cpu(cpu);
687 }
688
689 static inline bool got_nohz_idle_kick(void)
690 {
691 int cpu = smp_processor_id();
692
693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 return false;
695
696 if (idle_cpu(cpu) && !need_resched())
697 return true;
698
699 /*
700 * We can't run Idle Load Balance on this CPU for this time so we
701 * cancel it and clear NOHZ_BALANCE_KICK
702 */
703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 return false;
705 }
706
707 #else /* CONFIG_NO_HZ_COMMON */
708
709 static inline bool got_nohz_idle_kick(void)
710 {
711 return false;
712 }
713
714 #endif /* CONFIG_NO_HZ_COMMON */
715
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
718 {
719 /*
720 * FIFO realtime policy runs the highest priority task. Other runnable
721 * tasks are of a lower priority. The scheduler tick does nothing.
722 */
723 if (current->policy == SCHED_FIFO)
724 return true;
725
726 /*
727 * Round-robin realtime tasks time slice with other tasks at the same
728 * realtime priority. Is this task the only one at this priority?
729 */
730 if (current->policy == SCHED_RR) {
731 struct sched_rt_entity *rt_se = &current->rt;
732
733 return rt_se->run_list.prev == rt_se->run_list.next;
734 }
735
736 /*
737 * More than one running task need preemption.
738 * nr_running update is assumed to be visible
739 * after IPI is sent from wakers.
740 */
741 if (this_rq()->nr_running > 1)
742 return false;
743
744 return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747
748 void sched_avg_update(struct rq *rq)
749 {
750 s64 period = sched_avg_period();
751
752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 /*
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
757 */
758 asm("" : "+rm" (rq->age_stamp));
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
761 }
762 }
763
764 #endif /* CONFIG_SMP */
765
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
773 */
774 int walk_tg_tree_from(struct task_group *from,
775 tg_visitor down, tg_visitor up, void *data)
776 {
777 struct task_group *parent, *child;
778 int ret;
779
780 parent = from;
781
782 down:
783 ret = (*down)(parent, data);
784 if (ret)
785 goto out;
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
789
790 up:
791 continue;
792 }
793 ret = (*up)(parent, data);
794 if (ret || parent == from)
795 goto out;
796
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
801 out:
802 return ret;
803 }
804
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 return 0;
808 }
809 #endif
810
811 static void set_load_weight(struct task_struct *p)
812 {
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
815
816 /*
817 * SCHED_IDLE tasks get minimal weight:
818 */
819 if (p->policy == SCHED_IDLE) {
820 load->weight = scale_load(WEIGHT_IDLEPRIO);
821 load->inv_weight = WMULT_IDLEPRIO;
822 return;
823 }
824
825 load->weight = scale_load(prio_to_weight[prio]);
826 load->inv_weight = prio_to_wmult[prio];
827 }
828
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 update_rq_clock(rq);
832 sched_info_queued(rq, p);
833 p->sched_class->enqueue_task(rq, p, flags);
834 }
835
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 update_rq_clock(rq);
839 sched_info_dequeued(rq, p);
840 p->sched_class->dequeue_task(rq, p, flags);
841 }
842
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
847
848 enqueue_task(rq, p, flags);
849 }
850
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
855
856 dequeue_task(rq, p, flags);
857 }
858
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870
871 /*
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
875 *
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
880 *
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
885 */
886 if (irq_delta > delta)
887 irq_delta = delta;
888
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 if (static_key_false((&paravirt_steal_rq_enabled))) {
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
896
897 if (unlikely(steal > delta))
898 steal = delta;
899
900 rq->prev_steal_time_rq += steal;
901 delta -= steal;
902 }
903 #endif
904
905 rq->clock_task += delta;
906
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918 if (stop) {
919 /*
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
922 *
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
926 */
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929 stop->sched_class = &stop_sched_class;
930 }
931
932 cpu_rq(cpu)->stop = stop;
933
934 if (old_stop) {
935 /*
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
938 */
939 old_stop->sched_class = &rt_sched_class;
940 }
941 }
942
943 /*
944 * __normal_prio - return the priority that is based on the static prio
945 */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 return p->static_prio;
949 }
950
951 /*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 int prio;
961
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
969 }
970
971 /*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
978 static int effective_prio(struct task_struct *p)
979 {
980 p->normal_prio = normal_prio(p);
981 /*
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
985 */
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
989 }
990
991 /**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
996 */
997 inline int task_curr(const struct task_struct *p)
998 {
999 return cpu_curr(task_cpu(p)) == p;
1000 }
1001
1002 /*
1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004 * use the balance_callback list if you want balancing.
1005 *
1006 * this means any call to check_class_changed() must be followed by a call to
1007 * balance_callback().
1008 */
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 const struct sched_class *prev_class,
1011 int oldprio)
1012 {
1013 if (prev_class != p->sched_class) {
1014 if (prev_class->switched_from)
1015 prev_class->switched_from(rq, p);
1016
1017 p->sched_class->switched_to(rq, p);
1018 } else if (oldprio != p->prio || dl_task(p))
1019 p->sched_class->prio_changed(rq, p, oldprio);
1020 }
1021
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 {
1024 const struct sched_class *class;
1025
1026 if (p->sched_class == rq->curr->sched_class) {
1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 } else {
1029 for_each_class(class) {
1030 if (class == rq->curr->sched_class)
1031 break;
1032 if (class == p->sched_class) {
1033 resched_curr(rq);
1034 break;
1035 }
1036 }
1037 }
1038
1039 /*
1040 * A queue event has occurred, and we're going to schedule. In
1041 * this case, we can save a useless back to back clock update.
1042 */
1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 rq_clock_skip_update(rq, true);
1045 }
1046
1047 #ifdef CONFIG_SMP
1048 /*
1049 * This is how migration works:
1050 *
1051 * 1) we invoke migration_cpu_stop() on the target CPU using
1052 * stop_one_cpu().
1053 * 2) stopper starts to run (implicitly forcing the migrated thread
1054 * off the CPU)
1055 * 3) it checks whether the migrated task is still in the wrong runqueue.
1056 * 4) if it's in the wrong runqueue then the migration thread removes
1057 * it and puts it into the right queue.
1058 * 5) stopper completes and stop_one_cpu() returns and the migration
1059 * is done.
1060 */
1061
1062 /*
1063 * move_queued_task - move a queued task to new rq.
1064 *
1065 * Returns (locked) new rq. Old rq's lock is released.
1066 */
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1068 {
1069 lockdep_assert_held(&rq->lock);
1070
1071 dequeue_task(rq, p, 0);
1072 p->on_rq = TASK_ON_RQ_MIGRATING;
1073 set_task_cpu(p, new_cpu);
1074 raw_spin_unlock(&rq->lock);
1075
1076 rq = cpu_rq(new_cpu);
1077
1078 raw_spin_lock(&rq->lock);
1079 BUG_ON(task_cpu(p) != new_cpu);
1080 p->on_rq = TASK_ON_RQ_QUEUED;
1081 enqueue_task(rq, p, 0);
1082 check_preempt_curr(rq, p, 0);
1083
1084 return rq;
1085 }
1086
1087 struct migration_arg {
1088 struct task_struct *task;
1089 int dest_cpu;
1090 };
1091
1092 /*
1093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1094 * this because either it can't run here any more (set_cpus_allowed()
1095 * away from this CPU, or CPU going down), or because we're
1096 * attempting to rebalance this task on exec (sched_exec).
1097 *
1098 * So we race with normal scheduler movements, but that's OK, as long
1099 * as the task is no longer on this CPU.
1100 */
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1102 {
1103 if (unlikely(!cpu_active(dest_cpu)))
1104 return rq;
1105
1106 /* Affinity changed (again). */
1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108 return rq;
1109
1110 rq = move_queued_task(rq, p, dest_cpu);
1111
1112 return rq;
1113 }
1114
1115 /*
1116 * migration_cpu_stop - this will be executed by a highprio stopper thread
1117 * and performs thread migration by bumping thread off CPU then
1118 * 'pushing' onto another runqueue.
1119 */
1120 static int migration_cpu_stop(void *data)
1121 {
1122 struct migration_arg *arg = data;
1123 struct task_struct *p = arg->task;
1124 struct rq *rq = this_rq();
1125
1126 /*
1127 * The original target cpu might have gone down and we might
1128 * be on another cpu but it doesn't matter.
1129 */
1130 local_irq_disable();
1131 /*
1132 * We need to explicitly wake pending tasks before running
1133 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 */
1136 sched_ttwu_pending();
1137
1138 raw_spin_lock(&p->pi_lock);
1139 raw_spin_lock(&rq->lock);
1140 /*
1141 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 * we're holding p->pi_lock.
1144 */
1145 if (task_rq(p) == rq && task_on_rq_queued(p))
1146 rq = __migrate_task(rq, p, arg->dest_cpu);
1147 raw_spin_unlock(&rq->lock);
1148 raw_spin_unlock(&p->pi_lock);
1149
1150 local_irq_enable();
1151 return 0;
1152 }
1153
1154 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1155 {
1156 lockdep_assert_held(&p->pi_lock);
1157
1158 if (p->sched_class->set_cpus_allowed)
1159 p->sched_class->set_cpus_allowed(p, new_mask);
1160
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163 }
1164
1165 /*
1166 * Change a given task's CPU affinity. Migrate the thread to a
1167 * proper CPU and schedule it away if the CPU it's executing on
1168 * is removed from the allowed bitmask.
1169 *
1170 * NOTE: the caller must have a valid reference to the task, the
1171 * task must not exit() & deallocate itself prematurely. The
1172 * call is not atomic; no spinlocks may be held.
1173 */
1174 static int __set_cpus_allowed_ptr(struct task_struct *p,
1175 const struct cpumask *new_mask, bool check)
1176 {
1177 unsigned long flags;
1178 struct rq *rq;
1179 unsigned int dest_cpu;
1180 int ret = 0;
1181
1182 rq = task_rq_lock(p, &flags);
1183
1184 /*
1185 * Must re-check here, to close a race against __kthread_bind(),
1186 * sched_setaffinity() is not guaranteed to observe the flag.
1187 */
1188 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1189 ret = -EINVAL;
1190 goto out;
1191 }
1192
1193 if (cpumask_equal(&p->cpus_allowed, new_mask))
1194 goto out;
1195
1196 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1197 ret = -EINVAL;
1198 goto out;
1199 }
1200
1201 do_set_cpus_allowed(p, new_mask);
1202
1203 /* Can the task run on the task's current CPU? If so, we're done */
1204 if (cpumask_test_cpu(task_cpu(p), new_mask))
1205 goto out;
1206
1207 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1208 if (task_running(rq, p) || p->state == TASK_WAKING) {
1209 struct migration_arg arg = { p, dest_cpu };
1210 /* Need help from migration thread: drop lock and wait. */
1211 task_rq_unlock(rq, p, &flags);
1212 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1213 tlb_migrate_finish(p->mm);
1214 return 0;
1215 } else if (task_on_rq_queued(p)) {
1216 /*
1217 * OK, since we're going to drop the lock immediately
1218 * afterwards anyway.
1219 */
1220 lockdep_unpin_lock(&rq->lock);
1221 rq = move_queued_task(rq, p, dest_cpu);
1222 lockdep_pin_lock(&rq->lock);
1223 }
1224 out:
1225 task_rq_unlock(rq, p, &flags);
1226
1227 return ret;
1228 }
1229
1230 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1231 {
1232 return __set_cpus_allowed_ptr(p, new_mask, false);
1233 }
1234 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1235
1236 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1237 {
1238 #ifdef CONFIG_SCHED_DEBUG
1239 /*
1240 * We should never call set_task_cpu() on a blocked task,
1241 * ttwu() will sort out the placement.
1242 */
1243 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1244 !p->on_rq);
1245
1246 #ifdef CONFIG_LOCKDEP
1247 /*
1248 * The caller should hold either p->pi_lock or rq->lock, when changing
1249 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1250 *
1251 * sched_move_task() holds both and thus holding either pins the cgroup,
1252 * see task_group().
1253 *
1254 * Furthermore, all task_rq users should acquire both locks, see
1255 * task_rq_lock().
1256 */
1257 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1258 lockdep_is_held(&task_rq(p)->lock)));
1259 #endif
1260 #endif
1261
1262 trace_sched_migrate_task(p, new_cpu);
1263
1264 if (task_cpu(p) != new_cpu) {
1265 if (p->sched_class->migrate_task_rq)
1266 p->sched_class->migrate_task_rq(p, new_cpu);
1267 p->se.nr_migrations++;
1268 perf_event_task_migrate(p);
1269 }
1270
1271 __set_task_cpu(p, new_cpu);
1272 }
1273
1274 static void __migrate_swap_task(struct task_struct *p, int cpu)
1275 {
1276 if (task_on_rq_queued(p)) {
1277 struct rq *src_rq, *dst_rq;
1278
1279 src_rq = task_rq(p);
1280 dst_rq = cpu_rq(cpu);
1281
1282 deactivate_task(src_rq, p, 0);
1283 set_task_cpu(p, cpu);
1284 activate_task(dst_rq, p, 0);
1285 check_preempt_curr(dst_rq, p, 0);
1286 } else {
1287 /*
1288 * Task isn't running anymore; make it appear like we migrated
1289 * it before it went to sleep. This means on wakeup we make the
1290 * previous cpu our targer instead of where it really is.
1291 */
1292 p->wake_cpu = cpu;
1293 }
1294 }
1295
1296 struct migration_swap_arg {
1297 struct task_struct *src_task, *dst_task;
1298 int src_cpu, dst_cpu;
1299 };
1300
1301 static int migrate_swap_stop(void *data)
1302 {
1303 struct migration_swap_arg *arg = data;
1304 struct rq *src_rq, *dst_rq;
1305 int ret = -EAGAIN;
1306
1307 src_rq = cpu_rq(arg->src_cpu);
1308 dst_rq = cpu_rq(arg->dst_cpu);
1309
1310 double_raw_lock(&arg->src_task->pi_lock,
1311 &arg->dst_task->pi_lock);
1312 double_rq_lock(src_rq, dst_rq);
1313 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1314 goto unlock;
1315
1316 if (task_cpu(arg->src_task) != arg->src_cpu)
1317 goto unlock;
1318
1319 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1320 goto unlock;
1321
1322 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1323 goto unlock;
1324
1325 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1326 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1327
1328 ret = 0;
1329
1330 unlock:
1331 double_rq_unlock(src_rq, dst_rq);
1332 raw_spin_unlock(&arg->dst_task->pi_lock);
1333 raw_spin_unlock(&arg->src_task->pi_lock);
1334
1335 return ret;
1336 }
1337
1338 /*
1339 * Cross migrate two tasks
1340 */
1341 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1342 {
1343 struct migration_swap_arg arg;
1344 int ret = -EINVAL;
1345
1346 arg = (struct migration_swap_arg){
1347 .src_task = cur,
1348 .src_cpu = task_cpu(cur),
1349 .dst_task = p,
1350 .dst_cpu = task_cpu(p),
1351 };
1352
1353 if (arg.src_cpu == arg.dst_cpu)
1354 goto out;
1355
1356 /*
1357 * These three tests are all lockless; this is OK since all of them
1358 * will be re-checked with proper locks held further down the line.
1359 */
1360 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1361 goto out;
1362
1363 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1364 goto out;
1365
1366 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1367 goto out;
1368
1369 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1370 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1371
1372 out:
1373 return ret;
1374 }
1375
1376 /*
1377 * wait_task_inactive - wait for a thread to unschedule.
1378 *
1379 * If @match_state is nonzero, it's the @p->state value just checked and
1380 * not expected to change. If it changes, i.e. @p might have woken up,
1381 * then return zero. When we succeed in waiting for @p to be off its CPU,
1382 * we return a positive number (its total switch count). If a second call
1383 * a short while later returns the same number, the caller can be sure that
1384 * @p has remained unscheduled the whole time.
1385 *
1386 * The caller must ensure that the task *will* unschedule sometime soon,
1387 * else this function might spin for a *long* time. This function can't
1388 * be called with interrupts off, or it may introduce deadlock with
1389 * smp_call_function() if an IPI is sent by the same process we are
1390 * waiting to become inactive.
1391 */
1392 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1393 {
1394 unsigned long flags;
1395 int running, queued;
1396 unsigned long ncsw;
1397 struct rq *rq;
1398
1399 for (;;) {
1400 /*
1401 * We do the initial early heuristics without holding
1402 * any task-queue locks at all. We'll only try to get
1403 * the runqueue lock when things look like they will
1404 * work out!
1405 */
1406 rq = task_rq(p);
1407
1408 /*
1409 * If the task is actively running on another CPU
1410 * still, just relax and busy-wait without holding
1411 * any locks.
1412 *
1413 * NOTE! Since we don't hold any locks, it's not
1414 * even sure that "rq" stays as the right runqueue!
1415 * But we don't care, since "task_running()" will
1416 * return false if the runqueue has changed and p
1417 * is actually now running somewhere else!
1418 */
1419 while (task_running(rq, p)) {
1420 if (match_state && unlikely(p->state != match_state))
1421 return 0;
1422 cpu_relax();
1423 }
1424
1425 /*
1426 * Ok, time to look more closely! We need the rq
1427 * lock now, to be *sure*. If we're wrong, we'll
1428 * just go back and repeat.
1429 */
1430 rq = task_rq_lock(p, &flags);
1431 trace_sched_wait_task(p);
1432 running = task_running(rq, p);
1433 queued = task_on_rq_queued(p);
1434 ncsw = 0;
1435 if (!match_state || p->state == match_state)
1436 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1437 task_rq_unlock(rq, p, &flags);
1438
1439 /*
1440 * If it changed from the expected state, bail out now.
1441 */
1442 if (unlikely(!ncsw))
1443 break;
1444
1445 /*
1446 * Was it really running after all now that we
1447 * checked with the proper locks actually held?
1448 *
1449 * Oops. Go back and try again..
1450 */
1451 if (unlikely(running)) {
1452 cpu_relax();
1453 continue;
1454 }
1455
1456 /*
1457 * It's not enough that it's not actively running,
1458 * it must be off the runqueue _entirely_, and not
1459 * preempted!
1460 *
1461 * So if it was still runnable (but just not actively
1462 * running right now), it's preempted, and we should
1463 * yield - it could be a while.
1464 */
1465 if (unlikely(queued)) {
1466 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1467
1468 set_current_state(TASK_UNINTERRUPTIBLE);
1469 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1470 continue;
1471 }
1472
1473 /*
1474 * Ahh, all good. It wasn't running, and it wasn't
1475 * runnable, which means that it will never become
1476 * running in the future either. We're all done!
1477 */
1478 break;
1479 }
1480
1481 return ncsw;
1482 }
1483
1484 /***
1485 * kick_process - kick a running thread to enter/exit the kernel
1486 * @p: the to-be-kicked thread
1487 *
1488 * Cause a process which is running on another CPU to enter
1489 * kernel-mode, without any delay. (to get signals handled.)
1490 *
1491 * NOTE: this function doesn't have to take the runqueue lock,
1492 * because all it wants to ensure is that the remote task enters
1493 * the kernel. If the IPI races and the task has been migrated
1494 * to another CPU then no harm is done and the purpose has been
1495 * achieved as well.
1496 */
1497 void kick_process(struct task_struct *p)
1498 {
1499 int cpu;
1500
1501 preempt_disable();
1502 cpu = task_cpu(p);
1503 if ((cpu != smp_processor_id()) && task_curr(p))
1504 smp_send_reschedule(cpu);
1505 preempt_enable();
1506 }
1507 EXPORT_SYMBOL_GPL(kick_process);
1508
1509 /*
1510 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1511 */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
1518
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
1529 if (!cpu_online(dest_cpu))
1530 continue;
1531 if (!cpu_active(dest_cpu))
1532 continue;
1533 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1534 return dest_cpu;
1535 }
1536 }
1537
1538 for (;;) {
1539 /* Any allowed, online CPU? */
1540 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1541 if (!cpu_online(dest_cpu))
1542 continue;
1543 if (!cpu_active(dest_cpu))
1544 continue;
1545 goto out;
1546 }
1547
1548 switch (state) {
1549 case cpuset:
1550 /* No more Mr. Nice Guy. */
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554
1555 case possible:
1556 do_set_cpus_allowed(p, cpu_possible_mask);
1557 state = fail;
1558 break;
1559
1560 case fail:
1561 BUG();
1562 break;
1563 }
1564 }
1565
1566 out:
1567 if (state != cpuset) {
1568 /*
1569 * Don't tell them about moving exiting tasks or
1570 * kernel threads (both mm NULL), since they never
1571 * leave kernel.
1572 */
1573 if (p->mm && printk_ratelimit()) {
1574 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575 task_pid_nr(p), p->comm, cpu);
1576 }
1577 }
1578
1579 return dest_cpu;
1580 }
1581
1582 /*
1583 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584 */
1585 static inline
1586 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587 {
1588 lockdep_assert_held(&p->pi_lock);
1589
1590 if (p->nr_cpus_allowed > 1)
1591 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592
1593 /*
1594 * In order not to call set_task_cpu() on a blocking task we need
1595 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1596 * cpu.
1597 *
1598 * Since this is common to all placement strategies, this lives here.
1599 *
1600 * [ this allows ->select_task() to simply return task_cpu(p) and
1601 * not worry about this generic constraint ]
1602 */
1603 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1604 !cpu_online(cpu)))
1605 cpu = select_fallback_rq(task_cpu(p), p);
1606
1607 return cpu;
1608 }
1609
1610 static void update_avg(u64 *avg, u64 sample)
1611 {
1612 s64 diff = sample - *avg;
1613 *avg += diff >> 3;
1614 }
1615
1616 #else
1617
1618 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1619 const struct cpumask *new_mask, bool check)
1620 {
1621 return set_cpus_allowed_ptr(p, new_mask);
1622 }
1623
1624 #endif /* CONFIG_SMP */
1625
1626 static void
1627 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1628 {
1629 #ifdef CONFIG_SCHEDSTATS
1630 struct rq *rq = this_rq();
1631
1632 #ifdef CONFIG_SMP
1633 int this_cpu = smp_processor_id();
1634
1635 if (cpu == this_cpu) {
1636 schedstat_inc(rq, ttwu_local);
1637 schedstat_inc(p, se.statistics.nr_wakeups_local);
1638 } else {
1639 struct sched_domain *sd;
1640
1641 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1642 rcu_read_lock();
1643 for_each_domain(this_cpu, sd) {
1644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1645 schedstat_inc(sd, ttwu_wake_remote);
1646 break;
1647 }
1648 }
1649 rcu_read_unlock();
1650 }
1651
1652 if (wake_flags & WF_MIGRATED)
1653 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1654
1655 #endif /* CONFIG_SMP */
1656
1657 schedstat_inc(rq, ttwu_count);
1658 schedstat_inc(p, se.statistics.nr_wakeups);
1659
1660 if (wake_flags & WF_SYNC)
1661 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1662
1663 #endif /* CONFIG_SCHEDSTATS */
1664 }
1665
1666 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1667 {
1668 activate_task(rq, p, en_flags);
1669 p->on_rq = TASK_ON_RQ_QUEUED;
1670
1671 /* if a worker is waking up, notify workqueue */
1672 if (p->flags & PF_WQ_WORKER)
1673 wq_worker_waking_up(p, cpu_of(rq));
1674 }
1675
1676 /*
1677 * Mark the task runnable and perform wakeup-preemption.
1678 */
1679 static void
1680 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1681 {
1682 check_preempt_curr(rq, p, wake_flags);
1683 p->state = TASK_RUNNING;
1684 trace_sched_wakeup(p);
1685
1686 #ifdef CONFIG_SMP
1687 if (p->sched_class->task_woken) {
1688 /*
1689 * Our task @p is fully woken up and running; so its safe to
1690 * drop the rq->lock, hereafter rq is only used for statistics.
1691 */
1692 lockdep_unpin_lock(&rq->lock);
1693 p->sched_class->task_woken(rq, p);
1694 lockdep_pin_lock(&rq->lock);
1695 }
1696
1697 if (rq->idle_stamp) {
1698 u64 delta = rq_clock(rq) - rq->idle_stamp;
1699 u64 max = 2*rq->max_idle_balance_cost;
1700
1701 update_avg(&rq->avg_idle, delta);
1702
1703 if (rq->avg_idle > max)
1704 rq->avg_idle = max;
1705
1706 rq->idle_stamp = 0;
1707 }
1708 #endif
1709 }
1710
1711 static void
1712 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1713 {
1714 lockdep_assert_held(&rq->lock);
1715
1716 #ifdef CONFIG_SMP
1717 if (p->sched_contributes_to_load)
1718 rq->nr_uninterruptible--;
1719 #endif
1720
1721 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1722 ttwu_do_wakeup(rq, p, wake_flags);
1723 }
1724
1725 /*
1726 * Called in case the task @p isn't fully descheduled from its runqueue,
1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728 * since all we need to do is flip p->state to TASK_RUNNING, since
1729 * the task is still ->on_rq.
1730 */
1731 static int ttwu_remote(struct task_struct *p, int wake_flags)
1732 {
1733 struct rq *rq;
1734 int ret = 0;
1735
1736 rq = __task_rq_lock(p);
1737 if (task_on_rq_queued(p)) {
1738 /* check_preempt_curr() may use rq clock */
1739 update_rq_clock(rq);
1740 ttwu_do_wakeup(rq, p, wake_flags);
1741 ret = 1;
1742 }
1743 __task_rq_unlock(rq);
1744
1745 return ret;
1746 }
1747
1748 #ifdef CONFIG_SMP
1749 void sched_ttwu_pending(void)
1750 {
1751 struct rq *rq = this_rq();
1752 struct llist_node *llist = llist_del_all(&rq->wake_list);
1753 struct task_struct *p;
1754 unsigned long flags;
1755
1756 if (!llist)
1757 return;
1758
1759 raw_spin_lock_irqsave(&rq->lock, flags);
1760 lockdep_pin_lock(&rq->lock);
1761
1762 while (llist) {
1763 p = llist_entry(llist, struct task_struct, wake_entry);
1764 llist = llist_next(llist);
1765 ttwu_do_activate(rq, p, 0);
1766 }
1767
1768 lockdep_unpin_lock(&rq->lock);
1769 raw_spin_unlock_irqrestore(&rq->lock, flags);
1770 }
1771
1772 void scheduler_ipi(void)
1773 {
1774 /*
1775 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1776 * TIF_NEED_RESCHED remotely (for the first time) will also send
1777 * this IPI.
1778 */
1779 preempt_fold_need_resched();
1780
1781 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1782 return;
1783
1784 /*
1785 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1786 * traditionally all their work was done from the interrupt return
1787 * path. Now that we actually do some work, we need to make sure
1788 * we do call them.
1789 *
1790 * Some archs already do call them, luckily irq_enter/exit nest
1791 * properly.
1792 *
1793 * Arguably we should visit all archs and update all handlers,
1794 * however a fair share of IPIs are still resched only so this would
1795 * somewhat pessimize the simple resched case.
1796 */
1797 irq_enter();
1798 sched_ttwu_pending();
1799
1800 /*
1801 * Check if someone kicked us for doing the nohz idle load balance.
1802 */
1803 if (unlikely(got_nohz_idle_kick())) {
1804 this_rq()->idle_balance = 1;
1805 raise_softirq_irqoff(SCHED_SOFTIRQ);
1806 }
1807 irq_exit();
1808 }
1809
1810 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1811 {
1812 struct rq *rq = cpu_rq(cpu);
1813
1814 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1815 if (!set_nr_if_polling(rq->idle))
1816 smp_send_reschedule(cpu);
1817 else
1818 trace_sched_wake_idle_without_ipi(cpu);
1819 }
1820 }
1821
1822 void wake_up_if_idle(int cpu)
1823 {
1824 struct rq *rq = cpu_rq(cpu);
1825 unsigned long flags;
1826
1827 rcu_read_lock();
1828
1829 if (!is_idle_task(rcu_dereference(rq->curr)))
1830 goto out;
1831
1832 if (set_nr_if_polling(rq->idle)) {
1833 trace_sched_wake_idle_without_ipi(cpu);
1834 } else {
1835 raw_spin_lock_irqsave(&rq->lock, flags);
1836 if (is_idle_task(rq->curr))
1837 smp_send_reschedule(cpu);
1838 /* Else cpu is not in idle, do nothing here */
1839 raw_spin_unlock_irqrestore(&rq->lock, flags);
1840 }
1841
1842 out:
1843 rcu_read_unlock();
1844 }
1845
1846 bool cpus_share_cache(int this_cpu, int that_cpu)
1847 {
1848 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1849 }
1850 #endif /* CONFIG_SMP */
1851
1852 static void ttwu_queue(struct task_struct *p, int cpu)
1853 {
1854 struct rq *rq = cpu_rq(cpu);
1855
1856 #if defined(CONFIG_SMP)
1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1858 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1859 ttwu_queue_remote(p, cpu);
1860 return;
1861 }
1862 #endif
1863
1864 raw_spin_lock(&rq->lock);
1865 lockdep_pin_lock(&rq->lock);
1866 ttwu_do_activate(rq, p, 0);
1867 lockdep_unpin_lock(&rq->lock);
1868 raw_spin_unlock(&rq->lock);
1869 }
1870
1871 /**
1872 * try_to_wake_up - wake up a thread
1873 * @p: the thread to be awakened
1874 * @state: the mask of task states that can be woken
1875 * @wake_flags: wake modifier flags (WF_*)
1876 *
1877 * Put it on the run-queue if it's not already there. The "current"
1878 * thread is always on the run-queue (except when the actual
1879 * re-schedule is in progress), and as such you're allowed to do
1880 * the simpler "current->state = TASK_RUNNING" to mark yourself
1881 * runnable without the overhead of this.
1882 *
1883 * Return: %true if @p was woken up, %false if it was already running.
1884 * or @state didn't match @p's state.
1885 */
1886 static int
1887 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1888 {
1889 unsigned long flags;
1890 int cpu, success = 0;
1891
1892 /*
1893 * If we are going to wake up a thread waiting for CONDITION we
1894 * need to ensure that CONDITION=1 done by the caller can not be
1895 * reordered with p->state check below. This pairs with mb() in
1896 * set_current_state() the waiting thread does.
1897 */
1898 smp_mb__before_spinlock();
1899 raw_spin_lock_irqsave(&p->pi_lock, flags);
1900 if (!(p->state & state))
1901 goto out;
1902
1903 trace_sched_waking(p);
1904
1905 success = 1; /* we're going to change ->state */
1906 cpu = task_cpu(p);
1907
1908 if (p->on_rq && ttwu_remote(p, wake_flags))
1909 goto stat;
1910
1911 #ifdef CONFIG_SMP
1912 /*
1913 * If the owning (remote) cpu is still in the middle of schedule() with
1914 * this task as prev, wait until its done referencing the task.
1915 */
1916 while (p->on_cpu)
1917 cpu_relax();
1918 /*
1919 * Pairs with the smp_wmb() in finish_lock_switch().
1920 */
1921 smp_rmb();
1922
1923 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1924 p->state = TASK_WAKING;
1925
1926 if (p->sched_class->task_waking)
1927 p->sched_class->task_waking(p);
1928
1929 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1930 if (task_cpu(p) != cpu) {
1931 wake_flags |= WF_MIGRATED;
1932 set_task_cpu(p, cpu);
1933 }
1934 #endif /* CONFIG_SMP */
1935
1936 ttwu_queue(p, cpu);
1937 stat:
1938 ttwu_stat(p, cpu, wake_flags);
1939 out:
1940 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1941
1942 return success;
1943 }
1944
1945 /**
1946 * try_to_wake_up_local - try to wake up a local task with rq lock held
1947 * @p: the thread to be awakened
1948 *
1949 * Put @p on the run-queue if it's not already there. The caller must
1950 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1951 * the current task.
1952 */
1953 static void try_to_wake_up_local(struct task_struct *p)
1954 {
1955 struct rq *rq = task_rq(p);
1956
1957 if (WARN_ON_ONCE(rq != this_rq()) ||
1958 WARN_ON_ONCE(p == current))
1959 return;
1960
1961 lockdep_assert_held(&rq->lock);
1962
1963 if (!raw_spin_trylock(&p->pi_lock)) {
1964 /*
1965 * This is OK, because current is on_cpu, which avoids it being
1966 * picked for load-balance and preemption/IRQs are still
1967 * disabled avoiding further scheduler activity on it and we've
1968 * not yet picked a replacement task.
1969 */
1970 lockdep_unpin_lock(&rq->lock);
1971 raw_spin_unlock(&rq->lock);
1972 raw_spin_lock(&p->pi_lock);
1973 raw_spin_lock(&rq->lock);
1974 lockdep_pin_lock(&rq->lock);
1975 }
1976
1977 if (!(p->state & TASK_NORMAL))
1978 goto out;
1979
1980 trace_sched_waking(p);
1981
1982 if (!task_on_rq_queued(p))
1983 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1984
1985 ttwu_do_wakeup(rq, p, 0);
1986 ttwu_stat(p, smp_processor_id(), 0);
1987 out:
1988 raw_spin_unlock(&p->pi_lock);
1989 }
1990
1991 /**
1992 * wake_up_process - Wake up a specific process
1993 * @p: The process to be woken up.
1994 *
1995 * Attempt to wake up the nominated process and move it to the set of runnable
1996 * processes.
1997 *
1998 * Return: 1 if the process was woken up, 0 if it was already running.
1999 *
2000 * It may be assumed that this function implies a write memory barrier before
2001 * changing the task state if and only if any tasks are woken up.
2002 */
2003 int wake_up_process(struct task_struct *p)
2004 {
2005 WARN_ON(task_is_stopped_or_traced(p));
2006 return try_to_wake_up(p, TASK_NORMAL, 0);
2007 }
2008 EXPORT_SYMBOL(wake_up_process);
2009
2010 int wake_up_state(struct task_struct *p, unsigned int state)
2011 {
2012 return try_to_wake_up(p, state, 0);
2013 }
2014
2015 /*
2016 * This function clears the sched_dl_entity static params.
2017 */
2018 void __dl_clear_params(struct task_struct *p)
2019 {
2020 struct sched_dl_entity *dl_se = &p->dl;
2021
2022 dl_se->dl_runtime = 0;
2023 dl_se->dl_deadline = 0;
2024 dl_se->dl_period = 0;
2025 dl_se->flags = 0;
2026 dl_se->dl_bw = 0;
2027
2028 dl_se->dl_throttled = 0;
2029 dl_se->dl_new = 1;
2030 dl_se->dl_yielded = 0;
2031 }
2032
2033 /*
2034 * Perform scheduler related setup for a newly forked process p.
2035 * p is forked by current.
2036 *
2037 * __sched_fork() is basic setup used by init_idle() too:
2038 */
2039 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2040 {
2041 p->on_rq = 0;
2042
2043 p->se.on_rq = 0;
2044 p->se.exec_start = 0;
2045 p->se.sum_exec_runtime = 0;
2046 p->se.prev_sum_exec_runtime = 0;
2047 p->se.nr_migrations = 0;
2048 p->se.vruntime = 0;
2049 INIT_LIST_HEAD(&p->se.group_node);
2050
2051 #ifdef CONFIG_SCHEDSTATS
2052 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2053 #endif
2054
2055 RB_CLEAR_NODE(&p->dl.rb_node);
2056 init_dl_task_timer(&p->dl);
2057 __dl_clear_params(p);
2058
2059 INIT_LIST_HEAD(&p->rt.run_list);
2060
2061 #ifdef CONFIG_PREEMPT_NOTIFIERS
2062 INIT_HLIST_HEAD(&p->preempt_notifiers);
2063 #endif
2064
2065 #ifdef CONFIG_NUMA_BALANCING
2066 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2067 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2068 p->mm->numa_scan_seq = 0;
2069 }
2070
2071 if (clone_flags & CLONE_VM)
2072 p->numa_preferred_nid = current->numa_preferred_nid;
2073 else
2074 p->numa_preferred_nid = -1;
2075
2076 p->node_stamp = 0ULL;
2077 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2078 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2079 p->numa_work.next = &p->numa_work;
2080 p->numa_faults = NULL;
2081 p->last_task_numa_placement = 0;
2082 p->last_sum_exec_runtime = 0;
2083
2084 p->numa_group = NULL;
2085 #endif /* CONFIG_NUMA_BALANCING */
2086 }
2087
2088 #ifdef CONFIG_NUMA_BALANCING
2089 #ifdef CONFIG_SCHED_DEBUG
2090 void set_numabalancing_state(bool enabled)
2091 {
2092 if (enabled)
2093 sched_feat_set("NUMA");
2094 else
2095 sched_feat_set("NO_NUMA");
2096 }
2097 #else
2098 __read_mostly bool numabalancing_enabled;
2099
2100 void set_numabalancing_state(bool enabled)
2101 {
2102 numabalancing_enabled = enabled;
2103 }
2104 #endif /* CONFIG_SCHED_DEBUG */
2105
2106 #ifdef CONFIG_PROC_SYSCTL
2107 int sysctl_numa_balancing(struct ctl_table *table, int write,
2108 void __user *buffer, size_t *lenp, loff_t *ppos)
2109 {
2110 struct ctl_table t;
2111 int err;
2112 int state = numabalancing_enabled;
2113
2114 if (write && !capable(CAP_SYS_ADMIN))
2115 return -EPERM;
2116
2117 t = *table;
2118 t.data = &state;
2119 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2120 if (err < 0)
2121 return err;
2122 if (write)
2123 set_numabalancing_state(state);
2124 return err;
2125 }
2126 #endif
2127 #endif
2128
2129 /*
2130 * fork()/clone()-time setup:
2131 */
2132 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2133 {
2134 unsigned long flags;
2135 int cpu = get_cpu();
2136
2137 __sched_fork(clone_flags, p);
2138 /*
2139 * We mark the process as running here. This guarantees that
2140 * nobody will actually run it, and a signal or other external
2141 * event cannot wake it up and insert it on the runqueue either.
2142 */
2143 p->state = TASK_RUNNING;
2144
2145 /*
2146 * Make sure we do not leak PI boosting priority to the child.
2147 */
2148 p->prio = current->normal_prio;
2149
2150 /*
2151 * Revert to default priority/policy on fork if requested.
2152 */
2153 if (unlikely(p->sched_reset_on_fork)) {
2154 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2155 p->policy = SCHED_NORMAL;
2156 p->static_prio = NICE_TO_PRIO(0);
2157 p->rt_priority = 0;
2158 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2159 p->static_prio = NICE_TO_PRIO(0);
2160
2161 p->prio = p->normal_prio = __normal_prio(p);
2162 set_load_weight(p);
2163
2164 /*
2165 * We don't need the reset flag anymore after the fork. It has
2166 * fulfilled its duty:
2167 */
2168 p->sched_reset_on_fork = 0;
2169 }
2170
2171 if (dl_prio(p->prio)) {
2172 put_cpu();
2173 return -EAGAIN;
2174 } else if (rt_prio(p->prio)) {
2175 p->sched_class = &rt_sched_class;
2176 } else {
2177 p->sched_class = &fair_sched_class;
2178 }
2179
2180 if (p->sched_class->task_fork)
2181 p->sched_class->task_fork(p);
2182
2183 /*
2184 * The child is not yet in the pid-hash so no cgroup attach races,
2185 * and the cgroup is pinned to this child due to cgroup_fork()
2186 * is ran before sched_fork().
2187 *
2188 * Silence PROVE_RCU.
2189 */
2190 raw_spin_lock_irqsave(&p->pi_lock, flags);
2191 set_task_cpu(p, cpu);
2192 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2193
2194 #ifdef CONFIG_SCHED_INFO
2195 if (likely(sched_info_on()))
2196 memset(&p->sched_info, 0, sizeof(p->sched_info));
2197 #endif
2198 #if defined(CONFIG_SMP)
2199 p->on_cpu = 0;
2200 #endif
2201 init_task_preempt_count(p);
2202 #ifdef CONFIG_SMP
2203 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2204 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2205 #endif
2206
2207 put_cpu();
2208 return 0;
2209 }
2210
2211 unsigned long to_ratio(u64 period, u64 runtime)
2212 {
2213 if (runtime == RUNTIME_INF)
2214 return 1ULL << 20;
2215
2216 /*
2217 * Doing this here saves a lot of checks in all
2218 * the calling paths, and returning zero seems
2219 * safe for them anyway.
2220 */
2221 if (period == 0)
2222 return 0;
2223
2224 return div64_u64(runtime << 20, period);
2225 }
2226
2227 #ifdef CONFIG_SMP
2228 inline struct dl_bw *dl_bw_of(int i)
2229 {
2230 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2231 "sched RCU must be held");
2232 return &cpu_rq(i)->rd->dl_bw;
2233 }
2234
2235 static inline int dl_bw_cpus(int i)
2236 {
2237 struct root_domain *rd = cpu_rq(i)->rd;
2238 int cpus = 0;
2239
2240 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2241 "sched RCU must be held");
2242 for_each_cpu_and(i, rd->span, cpu_active_mask)
2243 cpus++;
2244
2245 return cpus;
2246 }
2247 #else
2248 inline struct dl_bw *dl_bw_of(int i)
2249 {
2250 return &cpu_rq(i)->dl.dl_bw;
2251 }
2252
2253 static inline int dl_bw_cpus(int i)
2254 {
2255 return 1;
2256 }
2257 #endif
2258
2259 /*
2260 * We must be sure that accepting a new task (or allowing changing the
2261 * parameters of an existing one) is consistent with the bandwidth
2262 * constraints. If yes, this function also accordingly updates the currently
2263 * allocated bandwidth to reflect the new situation.
2264 *
2265 * This function is called while holding p's rq->lock.
2266 *
2267 * XXX we should delay bw change until the task's 0-lag point, see
2268 * __setparam_dl().
2269 */
2270 static int dl_overflow(struct task_struct *p, int policy,
2271 const struct sched_attr *attr)
2272 {
2273
2274 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2275 u64 period = attr->sched_period ?: attr->sched_deadline;
2276 u64 runtime = attr->sched_runtime;
2277 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2278 int cpus, err = -1;
2279
2280 if (new_bw == p->dl.dl_bw)
2281 return 0;
2282
2283 /*
2284 * Either if a task, enters, leave, or stays -deadline but changes
2285 * its parameters, we may need to update accordingly the total
2286 * allocated bandwidth of the container.
2287 */
2288 raw_spin_lock(&dl_b->lock);
2289 cpus = dl_bw_cpus(task_cpu(p));
2290 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2291 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2292 __dl_add(dl_b, new_bw);
2293 err = 0;
2294 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2295 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2296 __dl_clear(dl_b, p->dl.dl_bw);
2297 __dl_add(dl_b, new_bw);
2298 err = 0;
2299 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2300 __dl_clear(dl_b, p->dl.dl_bw);
2301 err = 0;
2302 }
2303 raw_spin_unlock(&dl_b->lock);
2304
2305 return err;
2306 }
2307
2308 extern void init_dl_bw(struct dl_bw *dl_b);
2309
2310 /*
2311 * wake_up_new_task - wake up a newly created task for the first time.
2312 *
2313 * This function will do some initial scheduler statistics housekeeping
2314 * that must be done for every newly created context, then puts the task
2315 * on the runqueue and wakes it.
2316 */
2317 void wake_up_new_task(struct task_struct *p)
2318 {
2319 unsigned long flags;
2320 struct rq *rq;
2321
2322 raw_spin_lock_irqsave(&p->pi_lock, flags);
2323 #ifdef CONFIG_SMP
2324 /*
2325 * Fork balancing, do it here and not earlier because:
2326 * - cpus_allowed can change in the fork path
2327 * - any previously selected cpu might disappear through hotplug
2328 */
2329 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2330 #endif
2331
2332 /* Initialize new task's runnable average */
2333 init_entity_runnable_average(&p->se);
2334 rq = __task_rq_lock(p);
2335 activate_task(rq, p, 0);
2336 p->on_rq = TASK_ON_RQ_QUEUED;
2337 trace_sched_wakeup_new(p);
2338 check_preempt_curr(rq, p, WF_FORK);
2339 #ifdef CONFIG_SMP
2340 if (p->sched_class->task_woken)
2341 p->sched_class->task_woken(rq, p);
2342 #endif
2343 task_rq_unlock(rq, p, &flags);
2344 }
2345
2346 #ifdef CONFIG_PREEMPT_NOTIFIERS
2347
2348 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2349
2350 void preempt_notifier_inc(void)
2351 {
2352 static_key_slow_inc(&preempt_notifier_key);
2353 }
2354 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2355
2356 void preempt_notifier_dec(void)
2357 {
2358 static_key_slow_dec(&preempt_notifier_key);
2359 }
2360 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2361
2362 /**
2363 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2364 * @notifier: notifier struct to register
2365 */
2366 void preempt_notifier_register(struct preempt_notifier *notifier)
2367 {
2368 if (!static_key_false(&preempt_notifier_key))
2369 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2370
2371 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2372 }
2373 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2374
2375 /**
2376 * preempt_notifier_unregister - no longer interested in preemption notifications
2377 * @notifier: notifier struct to unregister
2378 *
2379 * This is *not* safe to call from within a preemption notifier.
2380 */
2381 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2382 {
2383 hlist_del(&notifier->link);
2384 }
2385 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2386
2387 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2388 {
2389 struct preempt_notifier *notifier;
2390
2391 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2392 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2393 }
2394
2395 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2396 {
2397 if (static_key_false(&preempt_notifier_key))
2398 __fire_sched_in_preempt_notifiers(curr);
2399 }
2400
2401 static void
2402 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2403 struct task_struct *next)
2404 {
2405 struct preempt_notifier *notifier;
2406
2407 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2408 notifier->ops->sched_out(notifier, next);
2409 }
2410
2411 static __always_inline void
2412 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2413 struct task_struct *next)
2414 {
2415 if (static_key_false(&preempt_notifier_key))
2416 __fire_sched_out_preempt_notifiers(curr, next);
2417 }
2418
2419 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2420
2421 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2422 {
2423 }
2424
2425 static inline void
2426 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2427 struct task_struct *next)
2428 {
2429 }
2430
2431 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2432
2433 /**
2434 * prepare_task_switch - prepare to switch tasks
2435 * @rq: the runqueue preparing to switch
2436 * @prev: the current task that is being switched out
2437 * @next: the task we are going to switch to.
2438 *
2439 * This is called with the rq lock held and interrupts off. It must
2440 * be paired with a subsequent finish_task_switch after the context
2441 * switch.
2442 *
2443 * prepare_task_switch sets up locking and calls architecture specific
2444 * hooks.
2445 */
2446 static inline void
2447 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2448 struct task_struct *next)
2449 {
2450 trace_sched_switch(prev, next);
2451 sched_info_switch(rq, prev, next);
2452 perf_event_task_sched_out(prev, next);
2453 fire_sched_out_preempt_notifiers(prev, next);
2454 prepare_lock_switch(rq, next);
2455 prepare_arch_switch(next);
2456 }
2457
2458 /**
2459 * finish_task_switch - clean up after a task-switch
2460 * @prev: the thread we just switched away from.
2461 *
2462 * finish_task_switch must be called after the context switch, paired
2463 * with a prepare_task_switch call before the context switch.
2464 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2465 * and do any other architecture-specific cleanup actions.
2466 *
2467 * Note that we may have delayed dropping an mm in context_switch(). If
2468 * so, we finish that here outside of the runqueue lock. (Doing it
2469 * with the lock held can cause deadlocks; see schedule() for
2470 * details.)
2471 *
2472 * The context switch have flipped the stack from under us and restored the
2473 * local variables which were saved when this task called schedule() in the
2474 * past. prev == current is still correct but we need to recalculate this_rq
2475 * because prev may have moved to another CPU.
2476 */
2477 static struct rq *finish_task_switch(struct task_struct *prev)
2478 __releases(rq->lock)
2479 {
2480 struct rq *rq = this_rq();
2481 struct mm_struct *mm = rq->prev_mm;
2482 long prev_state;
2483
2484 rq->prev_mm = NULL;
2485
2486 /*
2487 * A task struct has one reference for the use as "current".
2488 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2489 * schedule one last time. The schedule call will never return, and
2490 * the scheduled task must drop that reference.
2491 * The test for TASK_DEAD must occur while the runqueue locks are
2492 * still held, otherwise prev could be scheduled on another cpu, die
2493 * there before we look at prev->state, and then the reference would
2494 * be dropped twice.
2495 * Manfred Spraul <manfred@colorfullife.com>
2496 */
2497 prev_state = prev->state;
2498 vtime_task_switch(prev);
2499 perf_event_task_sched_in(prev, current);
2500 finish_lock_switch(rq, prev);
2501 finish_arch_post_lock_switch();
2502
2503 fire_sched_in_preempt_notifiers(current);
2504 if (mm)
2505 mmdrop(mm);
2506 if (unlikely(prev_state == TASK_DEAD)) {
2507 if (prev->sched_class->task_dead)
2508 prev->sched_class->task_dead(prev);
2509
2510 /*
2511 * Remove function-return probe instances associated with this
2512 * task and put them back on the free list.
2513 */
2514 kprobe_flush_task(prev);
2515 put_task_struct(prev);
2516 }
2517
2518 tick_nohz_task_switch(current);
2519 return rq;
2520 }
2521
2522 #ifdef CONFIG_SMP
2523
2524 /* rq->lock is NOT held, but preemption is disabled */
2525 static void __balance_callback(struct rq *rq)
2526 {
2527 struct callback_head *head, *next;
2528 void (*func)(struct rq *rq);
2529 unsigned long flags;
2530
2531 raw_spin_lock_irqsave(&rq->lock, flags);
2532 head = rq->balance_callback;
2533 rq->balance_callback = NULL;
2534 while (head) {
2535 func = (void (*)(struct rq *))head->func;
2536 next = head->next;
2537 head->next = NULL;
2538 head = next;
2539
2540 func(rq);
2541 }
2542 raw_spin_unlock_irqrestore(&rq->lock, flags);
2543 }
2544
2545 static inline void balance_callback(struct rq *rq)
2546 {
2547 if (unlikely(rq->balance_callback))
2548 __balance_callback(rq);
2549 }
2550
2551 #else
2552
2553 static inline void balance_callback(struct rq *rq)
2554 {
2555 }
2556
2557 #endif
2558
2559 /**
2560 * schedule_tail - first thing a freshly forked thread must call.
2561 * @prev: the thread we just switched away from.
2562 */
2563 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2564 __releases(rq->lock)
2565 {
2566 struct rq *rq;
2567
2568 /* finish_task_switch() drops rq->lock and enables preemtion */
2569 preempt_disable();
2570 rq = finish_task_switch(prev);
2571 balance_callback(rq);
2572 preempt_enable();
2573
2574 if (current->set_child_tid)
2575 put_user(task_pid_vnr(current), current->set_child_tid);
2576 }
2577
2578 /*
2579 * context_switch - switch to the new MM and the new thread's register state.
2580 */
2581 static inline struct rq *
2582 context_switch(struct rq *rq, struct task_struct *prev,
2583 struct task_struct *next)
2584 {
2585 struct mm_struct *mm, *oldmm;
2586
2587 prepare_task_switch(rq, prev, next);
2588
2589 mm = next->mm;
2590 oldmm = prev->active_mm;
2591 /*
2592 * For paravirt, this is coupled with an exit in switch_to to
2593 * combine the page table reload and the switch backend into
2594 * one hypercall.
2595 */
2596 arch_start_context_switch(prev);
2597
2598 if (!mm) {
2599 next->active_mm = oldmm;
2600 atomic_inc(&oldmm->mm_count);
2601 enter_lazy_tlb(oldmm, next);
2602 } else
2603 switch_mm(oldmm, mm, next);
2604
2605 if (!prev->mm) {
2606 prev->active_mm = NULL;
2607 rq->prev_mm = oldmm;
2608 }
2609 /*
2610 * Since the runqueue lock will be released by the next
2611 * task (which is an invalid locking op but in the case
2612 * of the scheduler it's an obvious special-case), so we
2613 * do an early lockdep release here:
2614 */
2615 lockdep_unpin_lock(&rq->lock);
2616 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2617
2618 /* Here we just switch the register state and the stack. */
2619 switch_to(prev, next, prev);
2620 barrier();
2621
2622 return finish_task_switch(prev);
2623 }
2624
2625 /*
2626 * nr_running and nr_context_switches:
2627 *
2628 * externally visible scheduler statistics: current number of runnable
2629 * threads, total number of context switches performed since bootup.
2630 */
2631 unsigned long nr_running(void)
2632 {
2633 unsigned long i, sum = 0;
2634
2635 for_each_online_cpu(i)
2636 sum += cpu_rq(i)->nr_running;
2637
2638 return sum;
2639 }
2640
2641 /*
2642 * Check if only the current task is running on the cpu.
2643 */
2644 bool single_task_running(void)
2645 {
2646 if (cpu_rq(smp_processor_id())->nr_running == 1)
2647 return true;
2648 else
2649 return false;
2650 }
2651 EXPORT_SYMBOL(single_task_running);
2652
2653 unsigned long long nr_context_switches(void)
2654 {
2655 int i;
2656 unsigned long long sum = 0;
2657
2658 for_each_possible_cpu(i)
2659 sum += cpu_rq(i)->nr_switches;
2660
2661 return sum;
2662 }
2663
2664 unsigned long nr_iowait(void)
2665 {
2666 unsigned long i, sum = 0;
2667
2668 for_each_possible_cpu(i)
2669 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2670
2671 return sum;
2672 }
2673
2674 unsigned long nr_iowait_cpu(int cpu)
2675 {
2676 struct rq *this = cpu_rq(cpu);
2677 return atomic_read(&this->nr_iowait);
2678 }
2679
2680 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2681 {
2682 struct rq *rq = this_rq();
2683 *nr_waiters = atomic_read(&rq->nr_iowait);
2684 *load = rq->load.weight;
2685 }
2686
2687 #ifdef CONFIG_SMP
2688
2689 /*
2690 * sched_exec - execve() is a valuable balancing opportunity, because at
2691 * this point the task has the smallest effective memory and cache footprint.
2692 */
2693 void sched_exec(void)
2694 {
2695 struct task_struct *p = current;
2696 unsigned long flags;
2697 int dest_cpu;
2698
2699 raw_spin_lock_irqsave(&p->pi_lock, flags);
2700 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2701 if (dest_cpu == smp_processor_id())
2702 goto unlock;
2703
2704 if (likely(cpu_active(dest_cpu))) {
2705 struct migration_arg arg = { p, dest_cpu };
2706
2707 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2708 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2709 return;
2710 }
2711 unlock:
2712 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2713 }
2714
2715 #endif
2716
2717 DEFINE_PER_CPU(struct kernel_stat, kstat);
2718 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2719
2720 EXPORT_PER_CPU_SYMBOL(kstat);
2721 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2722
2723 /*
2724 * Return accounted runtime for the task.
2725 * In case the task is currently running, return the runtime plus current's
2726 * pending runtime that have not been accounted yet.
2727 */
2728 unsigned long long task_sched_runtime(struct task_struct *p)
2729 {
2730 unsigned long flags;
2731 struct rq *rq;
2732 u64 ns;
2733
2734 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2735 /*
2736 * 64-bit doesn't need locks to atomically read a 64bit value.
2737 * So we have a optimization chance when the task's delta_exec is 0.
2738 * Reading ->on_cpu is racy, but this is ok.
2739 *
2740 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2741 * If we race with it entering cpu, unaccounted time is 0. This is
2742 * indistinguishable from the read occurring a few cycles earlier.
2743 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2744 * been accounted, so we're correct here as well.
2745 */
2746 if (!p->on_cpu || !task_on_rq_queued(p))
2747 return p->se.sum_exec_runtime;
2748 #endif
2749
2750 rq = task_rq_lock(p, &flags);
2751 /*
2752 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2753 * project cycles that may never be accounted to this
2754 * thread, breaking clock_gettime().
2755 */
2756 if (task_current(rq, p) && task_on_rq_queued(p)) {
2757 update_rq_clock(rq);
2758 p->sched_class->update_curr(rq);
2759 }
2760 ns = p->se.sum_exec_runtime;
2761 task_rq_unlock(rq, p, &flags);
2762
2763 return ns;
2764 }
2765
2766 /*
2767 * This function gets called by the timer code, with HZ frequency.
2768 * We call it with interrupts disabled.
2769 */
2770 void scheduler_tick(void)
2771 {
2772 int cpu = smp_processor_id();
2773 struct rq *rq = cpu_rq(cpu);
2774 struct task_struct *curr = rq->curr;
2775
2776 sched_clock_tick();
2777
2778 raw_spin_lock(&rq->lock);
2779 update_rq_clock(rq);
2780 curr->sched_class->task_tick(rq, curr, 0);
2781 update_cpu_load_active(rq);
2782 calc_global_load_tick(rq);
2783 raw_spin_unlock(&rq->lock);
2784
2785 perf_event_task_tick();
2786
2787 #ifdef CONFIG_SMP
2788 rq->idle_balance = idle_cpu(cpu);
2789 trigger_load_balance(rq);
2790 #endif
2791 rq_last_tick_reset(rq);
2792 }
2793
2794 #ifdef CONFIG_NO_HZ_FULL
2795 /**
2796 * scheduler_tick_max_deferment
2797 *
2798 * Keep at least one tick per second when a single
2799 * active task is running because the scheduler doesn't
2800 * yet completely support full dynticks environment.
2801 *
2802 * This makes sure that uptime, CFS vruntime, load
2803 * balancing, etc... continue to move forward, even
2804 * with a very low granularity.
2805 *
2806 * Return: Maximum deferment in nanoseconds.
2807 */
2808 u64 scheduler_tick_max_deferment(void)
2809 {
2810 struct rq *rq = this_rq();
2811 unsigned long next, now = READ_ONCE(jiffies);
2812
2813 next = rq->last_sched_tick + HZ;
2814
2815 if (time_before_eq(next, now))
2816 return 0;
2817
2818 return jiffies_to_nsecs(next - now);
2819 }
2820 #endif
2821
2822 notrace unsigned long get_parent_ip(unsigned long addr)
2823 {
2824 if (in_lock_functions(addr)) {
2825 addr = CALLER_ADDR2;
2826 if (in_lock_functions(addr))
2827 addr = CALLER_ADDR3;
2828 }
2829 return addr;
2830 }
2831
2832 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2833 defined(CONFIG_PREEMPT_TRACER))
2834
2835 void preempt_count_add(int val)
2836 {
2837 #ifdef CONFIG_DEBUG_PREEMPT
2838 /*
2839 * Underflow?
2840 */
2841 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2842 return;
2843 #endif
2844 __preempt_count_add(val);
2845 #ifdef CONFIG_DEBUG_PREEMPT
2846 /*
2847 * Spinlock count overflowing soon?
2848 */
2849 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2850 PREEMPT_MASK - 10);
2851 #endif
2852 if (preempt_count() == val) {
2853 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2854 #ifdef CONFIG_DEBUG_PREEMPT
2855 current->preempt_disable_ip = ip;
2856 #endif
2857 trace_preempt_off(CALLER_ADDR0, ip);
2858 }
2859 }
2860 EXPORT_SYMBOL(preempt_count_add);
2861 NOKPROBE_SYMBOL(preempt_count_add);
2862
2863 void preempt_count_sub(int val)
2864 {
2865 #ifdef CONFIG_DEBUG_PREEMPT
2866 /*
2867 * Underflow?
2868 */
2869 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2870 return;
2871 /*
2872 * Is the spinlock portion underflowing?
2873 */
2874 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2875 !(preempt_count() & PREEMPT_MASK)))
2876 return;
2877 #endif
2878
2879 if (preempt_count() == val)
2880 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2881 __preempt_count_sub(val);
2882 }
2883 EXPORT_SYMBOL(preempt_count_sub);
2884 NOKPROBE_SYMBOL(preempt_count_sub);
2885
2886 #endif
2887
2888 /*
2889 * Print scheduling while atomic bug:
2890 */
2891 static noinline void __schedule_bug(struct task_struct *prev)
2892 {
2893 if (oops_in_progress)
2894 return;
2895
2896 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2897 prev->comm, prev->pid, preempt_count());
2898
2899 debug_show_held_locks(prev);
2900 print_modules();
2901 if (irqs_disabled())
2902 print_irqtrace_events(prev);
2903 #ifdef CONFIG_DEBUG_PREEMPT
2904 if (in_atomic_preempt_off()) {
2905 pr_err("Preemption disabled at:");
2906 print_ip_sym(current->preempt_disable_ip);
2907 pr_cont("\n");
2908 }
2909 #endif
2910 dump_stack();
2911 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2912 }
2913
2914 /*
2915 * Various schedule()-time debugging checks and statistics:
2916 */
2917 static inline void schedule_debug(struct task_struct *prev)
2918 {
2919 #ifdef CONFIG_SCHED_STACK_END_CHECK
2920 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2921 #endif
2922 /*
2923 * Test if we are atomic. Since do_exit() needs to call into
2924 * schedule() atomically, we ignore that path. Otherwise whine
2925 * if we are scheduling when we should not.
2926 */
2927 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2928 __schedule_bug(prev);
2929 rcu_sleep_check();
2930
2931 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2932
2933 schedstat_inc(this_rq(), sched_count);
2934 }
2935
2936 /*
2937 * Pick up the highest-prio task:
2938 */
2939 static inline struct task_struct *
2940 pick_next_task(struct rq *rq, struct task_struct *prev)
2941 {
2942 const struct sched_class *class = &fair_sched_class;
2943 struct task_struct *p;
2944
2945 /*
2946 * Optimization: we know that if all tasks are in
2947 * the fair class we can call that function directly:
2948 */
2949 if (likely(prev->sched_class == class &&
2950 rq->nr_running == rq->cfs.h_nr_running)) {
2951 p = fair_sched_class.pick_next_task(rq, prev);
2952 if (unlikely(p == RETRY_TASK))
2953 goto again;
2954
2955 /* assumes fair_sched_class->next == idle_sched_class */
2956 if (unlikely(!p))
2957 p = idle_sched_class.pick_next_task(rq, prev);
2958
2959 return p;
2960 }
2961
2962 again:
2963 for_each_class(class) {
2964 p = class->pick_next_task(rq, prev);
2965 if (p) {
2966 if (unlikely(p == RETRY_TASK))
2967 goto again;
2968 return p;
2969 }
2970 }
2971
2972 BUG(); /* the idle class will always have a runnable task */
2973 }
2974
2975 /*
2976 * __schedule() is the main scheduler function.
2977 *
2978 * The main means of driving the scheduler and thus entering this function are:
2979 *
2980 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2981 *
2982 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2983 * paths. For example, see arch/x86/entry_64.S.
2984 *
2985 * To drive preemption between tasks, the scheduler sets the flag in timer
2986 * interrupt handler scheduler_tick().
2987 *
2988 * 3. Wakeups don't really cause entry into schedule(). They add a
2989 * task to the run-queue and that's it.
2990 *
2991 * Now, if the new task added to the run-queue preempts the current
2992 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2993 * called on the nearest possible occasion:
2994 *
2995 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2996 *
2997 * - in syscall or exception context, at the next outmost
2998 * preempt_enable(). (this might be as soon as the wake_up()'s
2999 * spin_unlock()!)
3000 *
3001 * - in IRQ context, return from interrupt-handler to
3002 * preemptible context
3003 *
3004 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3005 * then at the next:
3006 *
3007 * - cond_resched() call
3008 * - explicit schedule() call
3009 * - return from syscall or exception to user-space
3010 * - return from interrupt-handler to user-space
3011 *
3012 * WARNING: must be called with preemption disabled!
3013 */
3014 static void __sched __schedule(void)
3015 {
3016 struct task_struct *prev, *next;
3017 unsigned long *switch_count;
3018 struct rq *rq;
3019 int cpu;
3020
3021 cpu = smp_processor_id();
3022 rq = cpu_rq(cpu);
3023 rcu_note_context_switch();
3024 prev = rq->curr;
3025
3026 schedule_debug(prev);
3027
3028 if (sched_feat(HRTICK))
3029 hrtick_clear(rq);
3030
3031 /*
3032 * Make sure that signal_pending_state()->signal_pending() below
3033 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3034 * done by the caller to avoid the race with signal_wake_up().
3035 */
3036 smp_mb__before_spinlock();
3037 raw_spin_lock_irq(&rq->lock);
3038 lockdep_pin_lock(&rq->lock);
3039
3040 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3041
3042 switch_count = &prev->nivcsw;
3043 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3044 if (unlikely(signal_pending_state(prev->state, prev))) {
3045 prev->state = TASK_RUNNING;
3046 } else {
3047 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3048 prev->on_rq = 0;
3049
3050 /*
3051 * If a worker went to sleep, notify and ask workqueue
3052 * whether it wants to wake up a task to maintain
3053 * concurrency.
3054 */
3055 if (prev->flags & PF_WQ_WORKER) {
3056 struct task_struct *to_wakeup;
3057
3058 to_wakeup = wq_worker_sleeping(prev, cpu);
3059 if (to_wakeup)
3060 try_to_wake_up_local(to_wakeup);
3061 }
3062 }
3063 switch_count = &prev->nvcsw;
3064 }
3065
3066 if (task_on_rq_queued(prev))
3067 update_rq_clock(rq);
3068
3069 next = pick_next_task(rq, prev);
3070 clear_tsk_need_resched(prev);
3071 clear_preempt_need_resched();
3072 rq->clock_skip_update = 0;
3073
3074 if (likely(prev != next)) {
3075 rq->nr_switches++;
3076 rq->curr = next;
3077 ++*switch_count;
3078
3079 rq = context_switch(rq, prev, next); /* unlocks the rq */
3080 cpu = cpu_of(rq);
3081 } else {
3082 lockdep_unpin_lock(&rq->lock);
3083 raw_spin_unlock_irq(&rq->lock);
3084 }
3085
3086 balance_callback(rq);
3087 }
3088
3089 static inline void sched_submit_work(struct task_struct *tsk)
3090 {
3091 if (!tsk->state || tsk_is_pi_blocked(tsk))
3092 return;
3093 /*
3094 * If we are going to sleep and we have plugged IO queued,
3095 * make sure to submit it to avoid deadlocks.
3096 */
3097 if (blk_needs_flush_plug(tsk))
3098 blk_schedule_flush_plug(tsk);
3099 }
3100
3101 asmlinkage __visible void __sched schedule(void)
3102 {
3103 struct task_struct *tsk = current;
3104
3105 sched_submit_work(tsk);
3106 do {
3107 preempt_disable();
3108 __schedule();
3109 sched_preempt_enable_no_resched();
3110 } while (need_resched());
3111 }
3112 EXPORT_SYMBOL(schedule);
3113
3114 #ifdef CONFIG_CONTEXT_TRACKING
3115 asmlinkage __visible void __sched schedule_user(void)
3116 {
3117 /*
3118 * If we come here after a random call to set_need_resched(),
3119 * or we have been woken up remotely but the IPI has not yet arrived,
3120 * we haven't yet exited the RCU idle mode. Do it here manually until
3121 * we find a better solution.
3122 *
3123 * NB: There are buggy callers of this function. Ideally we
3124 * should warn if prev_state != CONTEXT_USER, but that will trigger
3125 * too frequently to make sense yet.
3126 */
3127 enum ctx_state prev_state = exception_enter();
3128 schedule();
3129 exception_exit(prev_state);
3130 }
3131 #endif
3132
3133 /**
3134 * schedule_preempt_disabled - called with preemption disabled
3135 *
3136 * Returns with preemption disabled. Note: preempt_count must be 1
3137 */
3138 void __sched schedule_preempt_disabled(void)
3139 {
3140 sched_preempt_enable_no_resched();
3141 schedule();
3142 preempt_disable();
3143 }
3144
3145 static void __sched notrace preempt_schedule_common(void)
3146 {
3147 do {
3148 preempt_active_enter();
3149 __schedule();
3150 preempt_active_exit();
3151
3152 /*
3153 * Check again in case we missed a preemption opportunity
3154 * between schedule and now.
3155 */
3156 } while (need_resched());
3157 }
3158
3159 #ifdef CONFIG_PREEMPT
3160 /*
3161 * this is the entry point to schedule() from in-kernel preemption
3162 * off of preempt_enable. Kernel preemptions off return from interrupt
3163 * occur there and call schedule directly.
3164 */
3165 asmlinkage __visible void __sched notrace preempt_schedule(void)
3166 {
3167 /*
3168 * If there is a non-zero preempt_count or interrupts are disabled,
3169 * we do not want to preempt the current task. Just return..
3170 */
3171 if (likely(!preemptible()))
3172 return;
3173
3174 preempt_schedule_common();
3175 }
3176 NOKPROBE_SYMBOL(preempt_schedule);
3177 EXPORT_SYMBOL(preempt_schedule);
3178
3179 /**
3180 * preempt_schedule_notrace - preempt_schedule called by tracing
3181 *
3182 * The tracing infrastructure uses preempt_enable_notrace to prevent
3183 * recursion and tracing preempt enabling caused by the tracing
3184 * infrastructure itself. But as tracing can happen in areas coming
3185 * from userspace or just about to enter userspace, a preempt enable
3186 * can occur before user_exit() is called. This will cause the scheduler
3187 * to be called when the system is still in usermode.
3188 *
3189 * To prevent this, the preempt_enable_notrace will use this function
3190 * instead of preempt_schedule() to exit user context if needed before
3191 * calling the scheduler.
3192 */
3193 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3194 {
3195 enum ctx_state prev_ctx;
3196
3197 if (likely(!preemptible()))
3198 return;
3199
3200 do {
3201 /*
3202 * Use raw __prempt_count() ops that don't call function.
3203 * We can't call functions before disabling preemption which
3204 * disarm preemption tracing recursions.
3205 */
3206 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3207 barrier();
3208 /*
3209 * Needs preempt disabled in case user_exit() is traced
3210 * and the tracer calls preempt_enable_notrace() causing
3211 * an infinite recursion.
3212 */
3213 prev_ctx = exception_enter();
3214 __schedule();
3215 exception_exit(prev_ctx);
3216
3217 barrier();
3218 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3219 } while (need_resched());
3220 }
3221 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3222
3223 #endif /* CONFIG_PREEMPT */
3224
3225 /*
3226 * this is the entry point to schedule() from kernel preemption
3227 * off of irq context.
3228 * Note, that this is called and return with irqs disabled. This will
3229 * protect us against recursive calling from irq.
3230 */
3231 asmlinkage __visible void __sched preempt_schedule_irq(void)
3232 {
3233 enum ctx_state prev_state;
3234
3235 /* Catch callers which need to be fixed */
3236 BUG_ON(preempt_count() || !irqs_disabled());
3237
3238 prev_state = exception_enter();
3239
3240 do {
3241 preempt_active_enter();
3242 local_irq_enable();
3243 __schedule();
3244 local_irq_disable();
3245 preempt_active_exit();
3246 } while (need_resched());
3247
3248 exception_exit(prev_state);
3249 }
3250
3251 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3252 void *key)
3253 {
3254 return try_to_wake_up(curr->private, mode, wake_flags);
3255 }
3256 EXPORT_SYMBOL(default_wake_function);
3257
3258 #ifdef CONFIG_RT_MUTEXES
3259
3260 /*
3261 * rt_mutex_setprio - set the current priority of a task
3262 * @p: task
3263 * @prio: prio value (kernel-internal form)
3264 *
3265 * This function changes the 'effective' priority of a task. It does
3266 * not touch ->normal_prio like __setscheduler().
3267 *
3268 * Used by the rt_mutex code to implement priority inheritance
3269 * logic. Call site only calls if the priority of the task changed.
3270 */
3271 void rt_mutex_setprio(struct task_struct *p, int prio)
3272 {
3273 int oldprio, queued, running, enqueue_flag = 0;
3274 struct rq *rq;
3275 const struct sched_class *prev_class;
3276
3277 BUG_ON(prio > MAX_PRIO);
3278
3279 rq = __task_rq_lock(p);
3280
3281 /*
3282 * Idle task boosting is a nono in general. There is one
3283 * exception, when PREEMPT_RT and NOHZ is active:
3284 *
3285 * The idle task calls get_next_timer_interrupt() and holds
3286 * the timer wheel base->lock on the CPU and another CPU wants
3287 * to access the timer (probably to cancel it). We can safely
3288 * ignore the boosting request, as the idle CPU runs this code
3289 * with interrupts disabled and will complete the lock
3290 * protected section without being interrupted. So there is no
3291 * real need to boost.
3292 */
3293 if (unlikely(p == rq->idle)) {
3294 WARN_ON(p != rq->curr);
3295 WARN_ON(p->pi_blocked_on);
3296 goto out_unlock;
3297 }
3298
3299 trace_sched_pi_setprio(p, prio);
3300 oldprio = p->prio;
3301 prev_class = p->sched_class;
3302 queued = task_on_rq_queued(p);
3303 running = task_current(rq, p);
3304 if (queued)
3305 dequeue_task(rq, p, 0);
3306 if (running)
3307 put_prev_task(rq, p);
3308
3309 /*
3310 * Boosting condition are:
3311 * 1. -rt task is running and holds mutex A
3312 * --> -dl task blocks on mutex A
3313 *
3314 * 2. -dl task is running and holds mutex A
3315 * --> -dl task blocks on mutex A and could preempt the
3316 * running task
3317 */
3318 if (dl_prio(prio)) {
3319 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3320 if (!dl_prio(p->normal_prio) ||
3321 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3322 p->dl.dl_boosted = 1;
3323 enqueue_flag = ENQUEUE_REPLENISH;
3324 } else
3325 p->dl.dl_boosted = 0;
3326 p->sched_class = &dl_sched_class;
3327 } else if (rt_prio(prio)) {
3328 if (dl_prio(oldprio))
3329 p->dl.dl_boosted = 0;
3330 if (oldprio < prio)
3331 enqueue_flag = ENQUEUE_HEAD;
3332 p->sched_class = &rt_sched_class;
3333 } else {
3334 if (dl_prio(oldprio))
3335 p->dl.dl_boosted = 0;
3336 if (rt_prio(oldprio))
3337 p->rt.timeout = 0;
3338 p->sched_class = &fair_sched_class;
3339 }
3340
3341 p->prio = prio;
3342
3343 if (running)
3344 p->sched_class->set_curr_task(rq);
3345 if (queued)
3346 enqueue_task(rq, p, enqueue_flag);
3347
3348 check_class_changed(rq, p, prev_class, oldprio);
3349 out_unlock:
3350 preempt_disable(); /* avoid rq from going away on us */
3351 __task_rq_unlock(rq);
3352
3353 balance_callback(rq);
3354 preempt_enable();
3355 }
3356 #endif
3357
3358 void set_user_nice(struct task_struct *p, long nice)
3359 {
3360 int old_prio, delta, queued;
3361 unsigned long flags;
3362 struct rq *rq;
3363
3364 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3365 return;
3366 /*
3367 * We have to be careful, if called from sys_setpriority(),
3368 * the task might be in the middle of scheduling on another CPU.
3369 */
3370 rq = task_rq_lock(p, &flags);
3371 /*
3372 * The RT priorities are set via sched_setscheduler(), but we still
3373 * allow the 'normal' nice value to be set - but as expected
3374 * it wont have any effect on scheduling until the task is
3375 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3376 */
3377 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3378 p->static_prio = NICE_TO_PRIO(nice);
3379 goto out_unlock;
3380 }
3381 queued = task_on_rq_queued(p);
3382 if (queued)
3383 dequeue_task(rq, p, 0);
3384
3385 p->static_prio = NICE_TO_PRIO(nice);
3386 set_load_weight(p);
3387 old_prio = p->prio;
3388 p->prio = effective_prio(p);
3389 delta = p->prio - old_prio;
3390
3391 if (queued) {
3392 enqueue_task(rq, p, 0);
3393 /*
3394 * If the task increased its priority or is running and
3395 * lowered its priority, then reschedule its CPU:
3396 */
3397 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3398 resched_curr(rq);
3399 }
3400 out_unlock:
3401 task_rq_unlock(rq, p, &flags);
3402 }
3403 EXPORT_SYMBOL(set_user_nice);
3404
3405 /*
3406 * can_nice - check if a task can reduce its nice value
3407 * @p: task
3408 * @nice: nice value
3409 */
3410 int can_nice(const struct task_struct *p, const int nice)
3411 {
3412 /* convert nice value [19,-20] to rlimit style value [1,40] */
3413 int nice_rlim = nice_to_rlimit(nice);
3414
3415 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3416 capable(CAP_SYS_NICE));
3417 }
3418
3419 #ifdef __ARCH_WANT_SYS_NICE
3420
3421 /*
3422 * sys_nice - change the priority of the current process.
3423 * @increment: priority increment
3424 *
3425 * sys_setpriority is a more generic, but much slower function that
3426 * does similar things.
3427 */
3428 SYSCALL_DEFINE1(nice, int, increment)
3429 {
3430 long nice, retval;
3431
3432 /*
3433 * Setpriority might change our priority at the same moment.
3434 * We don't have to worry. Conceptually one call occurs first
3435 * and we have a single winner.
3436 */
3437 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3438 nice = task_nice(current) + increment;
3439
3440 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3441 if (increment < 0 && !can_nice(current, nice))
3442 return -EPERM;
3443
3444 retval = security_task_setnice(current, nice);
3445 if (retval)
3446 return retval;
3447
3448 set_user_nice(current, nice);
3449 return 0;
3450 }
3451
3452 #endif
3453
3454 /**
3455 * task_prio - return the priority value of a given task.
3456 * @p: the task in question.
3457 *
3458 * Return: The priority value as seen by users in /proc.
3459 * RT tasks are offset by -200. Normal tasks are centered
3460 * around 0, value goes from -16 to +15.
3461 */
3462 int task_prio(const struct task_struct *p)
3463 {
3464 return p->prio - MAX_RT_PRIO;
3465 }
3466
3467 /**
3468 * idle_cpu - is a given cpu idle currently?
3469 * @cpu: the processor in question.
3470 *
3471 * Return: 1 if the CPU is currently idle. 0 otherwise.
3472 */
3473 int idle_cpu(int cpu)
3474 {
3475 struct rq *rq = cpu_rq(cpu);
3476
3477 if (rq->curr != rq->idle)
3478 return 0;
3479
3480 if (rq->nr_running)
3481 return 0;
3482
3483 #ifdef CONFIG_SMP
3484 if (!llist_empty(&rq->wake_list))
3485 return 0;
3486 #endif
3487
3488 return 1;
3489 }
3490
3491 /**
3492 * idle_task - return the idle task for a given cpu.
3493 * @cpu: the processor in question.
3494 *
3495 * Return: The idle task for the cpu @cpu.
3496 */
3497 struct task_struct *idle_task(int cpu)
3498 {
3499 return cpu_rq(cpu)->idle;
3500 }
3501
3502 /**
3503 * find_process_by_pid - find a process with a matching PID value.
3504 * @pid: the pid in question.
3505 *
3506 * The task of @pid, if found. %NULL otherwise.
3507 */
3508 static struct task_struct *find_process_by_pid(pid_t pid)
3509 {
3510 return pid ? find_task_by_vpid(pid) : current;
3511 }
3512
3513 /*
3514 * This function initializes the sched_dl_entity of a newly becoming
3515 * SCHED_DEADLINE task.
3516 *
3517 * Only the static values are considered here, the actual runtime and the
3518 * absolute deadline will be properly calculated when the task is enqueued
3519 * for the first time with its new policy.
3520 */
3521 static void
3522 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3523 {
3524 struct sched_dl_entity *dl_se = &p->dl;
3525
3526 dl_se->dl_runtime = attr->sched_runtime;
3527 dl_se->dl_deadline = attr->sched_deadline;
3528 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3529 dl_se->flags = attr->sched_flags;
3530 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3531
3532 /*
3533 * Changing the parameters of a task is 'tricky' and we're not doing
3534 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3535 *
3536 * What we SHOULD do is delay the bandwidth release until the 0-lag
3537 * point. This would include retaining the task_struct until that time
3538 * and change dl_overflow() to not immediately decrement the current
3539 * amount.
3540 *
3541 * Instead we retain the current runtime/deadline and let the new
3542 * parameters take effect after the current reservation period lapses.
3543 * This is safe (albeit pessimistic) because the 0-lag point is always
3544 * before the current scheduling deadline.
3545 *
3546 * We can still have temporary overloads because we do not delay the
3547 * change in bandwidth until that time; so admission control is
3548 * not on the safe side. It does however guarantee tasks will never
3549 * consume more than promised.
3550 */
3551 }
3552
3553 /*
3554 * sched_setparam() passes in -1 for its policy, to let the functions
3555 * it calls know not to change it.
3556 */
3557 #define SETPARAM_POLICY -1
3558
3559 static void __setscheduler_params(struct task_struct *p,
3560 const struct sched_attr *attr)
3561 {
3562 int policy = attr->sched_policy;
3563
3564 if (policy == SETPARAM_POLICY)
3565 policy = p->policy;
3566
3567 p->policy = policy;
3568
3569 if (dl_policy(policy))
3570 __setparam_dl(p, attr);
3571 else if (fair_policy(policy))
3572 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3573
3574 /*
3575 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3576 * !rt_policy. Always setting this ensures that things like
3577 * getparam()/getattr() don't report silly values for !rt tasks.
3578 */
3579 p->rt_priority = attr->sched_priority;
3580 p->normal_prio = normal_prio(p);
3581 set_load_weight(p);
3582 }
3583
3584 /* Actually do priority change: must hold pi & rq lock. */
3585 static void __setscheduler(struct rq *rq, struct task_struct *p,
3586 const struct sched_attr *attr, bool keep_boost)
3587 {
3588 __setscheduler_params(p, attr);
3589
3590 /*
3591 * Keep a potential priority boosting if called from
3592 * sched_setscheduler().
3593 */
3594 if (keep_boost)
3595 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3596 else
3597 p->prio = normal_prio(p);
3598
3599 if (dl_prio(p->prio))
3600 p->sched_class = &dl_sched_class;
3601 else if (rt_prio(p->prio))
3602 p->sched_class = &rt_sched_class;
3603 else
3604 p->sched_class = &fair_sched_class;
3605 }
3606
3607 static void
3608 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3609 {
3610 struct sched_dl_entity *dl_se = &p->dl;
3611
3612 attr->sched_priority = p->rt_priority;
3613 attr->sched_runtime = dl_se->dl_runtime;
3614 attr->sched_deadline = dl_se->dl_deadline;
3615 attr->sched_period = dl_se->dl_period;
3616 attr->sched_flags = dl_se->flags;
3617 }
3618
3619 /*
3620 * This function validates the new parameters of a -deadline task.
3621 * We ask for the deadline not being zero, and greater or equal
3622 * than the runtime, as well as the period of being zero or
3623 * greater than deadline. Furthermore, we have to be sure that
3624 * user parameters are above the internal resolution of 1us (we
3625 * check sched_runtime only since it is always the smaller one) and
3626 * below 2^63 ns (we have to check both sched_deadline and
3627 * sched_period, as the latter can be zero).
3628 */
3629 static bool
3630 __checkparam_dl(const struct sched_attr *attr)
3631 {
3632 /* deadline != 0 */
3633 if (attr->sched_deadline == 0)
3634 return false;
3635
3636 /*
3637 * Since we truncate DL_SCALE bits, make sure we're at least
3638 * that big.
3639 */
3640 if (attr->sched_runtime < (1ULL << DL_SCALE))
3641 return false;
3642
3643 /*
3644 * Since we use the MSB for wrap-around and sign issues, make
3645 * sure it's not set (mind that period can be equal to zero).
3646 */
3647 if (attr->sched_deadline & (1ULL << 63) ||
3648 attr->sched_period & (1ULL << 63))
3649 return false;
3650
3651 /* runtime <= deadline <= period (if period != 0) */
3652 if ((attr->sched_period != 0 &&
3653 attr->sched_period < attr->sched_deadline) ||
3654 attr->sched_deadline < attr->sched_runtime)
3655 return false;
3656
3657 return true;
3658 }
3659
3660 /*
3661 * check the target process has a UID that matches the current process's
3662 */
3663 static bool check_same_owner(struct task_struct *p)
3664 {
3665 const struct cred *cred = current_cred(), *pcred;
3666 bool match;
3667
3668 rcu_read_lock();
3669 pcred = __task_cred(p);
3670 match = (uid_eq(cred->euid, pcred->euid) ||
3671 uid_eq(cred->euid, pcred->uid));
3672 rcu_read_unlock();
3673 return match;
3674 }
3675
3676 static bool dl_param_changed(struct task_struct *p,
3677 const struct sched_attr *attr)
3678 {
3679 struct sched_dl_entity *dl_se = &p->dl;
3680
3681 if (dl_se->dl_runtime != attr->sched_runtime ||
3682 dl_se->dl_deadline != attr->sched_deadline ||
3683 dl_se->dl_period != attr->sched_period ||
3684 dl_se->flags != attr->sched_flags)
3685 return true;
3686
3687 return false;
3688 }
3689
3690 static int __sched_setscheduler(struct task_struct *p,
3691 const struct sched_attr *attr,
3692 bool user, bool pi)
3693 {
3694 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3695 MAX_RT_PRIO - 1 - attr->sched_priority;
3696 int retval, oldprio, oldpolicy = -1, queued, running;
3697 int new_effective_prio, policy = attr->sched_policy;
3698 unsigned long flags;
3699 const struct sched_class *prev_class;
3700 struct rq *rq;
3701 int reset_on_fork;
3702
3703 /* may grab non-irq protected spin_locks */
3704 BUG_ON(in_interrupt());
3705 recheck:
3706 /* double check policy once rq lock held */
3707 if (policy < 0) {
3708 reset_on_fork = p->sched_reset_on_fork;
3709 policy = oldpolicy = p->policy;
3710 } else {
3711 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3712
3713 if (policy != SCHED_DEADLINE &&
3714 policy != SCHED_FIFO && policy != SCHED_RR &&
3715 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3716 policy != SCHED_IDLE)
3717 return -EINVAL;
3718 }
3719
3720 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3721 return -EINVAL;
3722
3723 /*
3724 * Valid priorities for SCHED_FIFO and SCHED_RR are
3725 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3726 * SCHED_BATCH and SCHED_IDLE is 0.
3727 */
3728 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3729 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3730 return -EINVAL;
3731 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3732 (rt_policy(policy) != (attr->sched_priority != 0)))
3733 return -EINVAL;
3734
3735 /*
3736 * Allow unprivileged RT tasks to decrease priority:
3737 */
3738 if (user && !capable(CAP_SYS_NICE)) {
3739 if (fair_policy(policy)) {
3740 if (attr->sched_nice < task_nice(p) &&
3741 !can_nice(p, attr->sched_nice))
3742 return -EPERM;
3743 }
3744
3745 if (rt_policy(policy)) {
3746 unsigned long rlim_rtprio =
3747 task_rlimit(p, RLIMIT_RTPRIO);
3748
3749 /* can't set/change the rt policy */
3750 if (policy != p->policy && !rlim_rtprio)
3751 return -EPERM;
3752
3753 /* can't increase priority */
3754 if (attr->sched_priority > p->rt_priority &&
3755 attr->sched_priority > rlim_rtprio)
3756 return -EPERM;
3757 }
3758
3759 /*
3760 * Can't set/change SCHED_DEADLINE policy at all for now
3761 * (safest behavior); in the future we would like to allow
3762 * unprivileged DL tasks to increase their relative deadline
3763 * or reduce their runtime (both ways reducing utilization)
3764 */
3765 if (dl_policy(policy))
3766 return -EPERM;
3767
3768 /*
3769 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3770 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3771 */
3772 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3773 if (!can_nice(p, task_nice(p)))
3774 return -EPERM;
3775 }
3776
3777 /* can't change other user's priorities */
3778 if (!check_same_owner(p))
3779 return -EPERM;
3780
3781 /* Normal users shall not reset the sched_reset_on_fork flag */
3782 if (p->sched_reset_on_fork && !reset_on_fork)
3783 return -EPERM;
3784 }
3785
3786 if (user) {
3787 retval = security_task_setscheduler(p);
3788 if (retval)
3789 return retval;
3790 }
3791
3792 /*
3793 * make sure no PI-waiters arrive (or leave) while we are
3794 * changing the priority of the task:
3795 *
3796 * To be able to change p->policy safely, the appropriate
3797 * runqueue lock must be held.
3798 */
3799 rq = task_rq_lock(p, &flags);
3800
3801 /*
3802 * Changing the policy of the stop threads its a very bad idea
3803 */
3804 if (p == rq->stop) {
3805 task_rq_unlock(rq, p, &flags);
3806 return -EINVAL;
3807 }
3808
3809 /*
3810 * If not changing anything there's no need to proceed further,
3811 * but store a possible modification of reset_on_fork.
3812 */
3813 if (unlikely(policy == p->policy)) {
3814 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3815 goto change;
3816 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3817 goto change;
3818 if (dl_policy(policy) && dl_param_changed(p, attr))
3819 goto change;
3820
3821 p->sched_reset_on_fork = reset_on_fork;
3822 task_rq_unlock(rq, p, &flags);
3823 return 0;
3824 }
3825 change:
3826
3827 if (user) {
3828 #ifdef CONFIG_RT_GROUP_SCHED
3829 /*
3830 * Do not allow realtime tasks into groups that have no runtime
3831 * assigned.
3832 */
3833 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3834 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3835 !task_group_is_autogroup(task_group(p))) {
3836 task_rq_unlock(rq, p, &flags);
3837 return -EPERM;
3838 }
3839 #endif
3840 #ifdef CONFIG_SMP
3841 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3842 cpumask_t *span = rq->rd->span;
3843
3844 /*
3845 * Don't allow tasks with an affinity mask smaller than
3846 * the entire root_domain to become SCHED_DEADLINE. We
3847 * will also fail if there's no bandwidth available.
3848 */
3849 if (!cpumask_subset(span, &p->cpus_allowed) ||
3850 rq->rd->dl_bw.bw == 0) {
3851 task_rq_unlock(rq, p, &flags);
3852 return -EPERM;
3853 }
3854 }
3855 #endif
3856 }
3857
3858 /* recheck policy now with rq lock held */
3859 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3860 policy = oldpolicy = -1;
3861 task_rq_unlock(rq, p, &flags);
3862 goto recheck;
3863 }
3864
3865 /*
3866 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3867 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3868 * is available.
3869 */
3870 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3871 task_rq_unlock(rq, p, &flags);
3872 return -EBUSY;
3873 }
3874
3875 p->sched_reset_on_fork = reset_on_fork;
3876 oldprio = p->prio;
3877
3878 if (pi) {
3879 /*
3880 * Take priority boosted tasks into account. If the new
3881 * effective priority is unchanged, we just store the new
3882 * normal parameters and do not touch the scheduler class and
3883 * the runqueue. This will be done when the task deboost
3884 * itself.
3885 */
3886 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3887 if (new_effective_prio == oldprio) {
3888 __setscheduler_params(p, attr);
3889 task_rq_unlock(rq, p, &flags);
3890 return 0;
3891 }
3892 }
3893
3894 queued = task_on_rq_queued(p);
3895 running = task_current(rq, p);
3896 if (queued)
3897 dequeue_task(rq, p, 0);
3898 if (running)
3899 put_prev_task(rq, p);
3900
3901 prev_class = p->sched_class;
3902 __setscheduler(rq, p, attr, pi);
3903
3904 if (running)
3905 p->sched_class->set_curr_task(rq);
3906 if (queued) {
3907 /*
3908 * We enqueue to tail when the priority of a task is
3909 * increased (user space view).
3910 */
3911 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3912 }
3913
3914 check_class_changed(rq, p, prev_class, oldprio);
3915 preempt_disable(); /* avoid rq from going away on us */
3916 task_rq_unlock(rq, p, &flags);
3917
3918 if (pi)
3919 rt_mutex_adjust_pi(p);
3920
3921 /*
3922 * Run balance callbacks after we've adjusted the PI chain.
3923 */
3924 balance_callback(rq);
3925 preempt_enable();
3926
3927 return 0;
3928 }
3929
3930 static int _sched_setscheduler(struct task_struct *p, int policy,
3931 const struct sched_param *param, bool check)
3932 {
3933 struct sched_attr attr = {
3934 .sched_policy = policy,
3935 .sched_priority = param->sched_priority,
3936 .sched_nice = PRIO_TO_NICE(p->static_prio),
3937 };
3938
3939 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3940 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3941 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3942 policy &= ~SCHED_RESET_ON_FORK;
3943 attr.sched_policy = policy;
3944 }
3945
3946 return __sched_setscheduler(p, &attr, check, true);
3947 }
3948 /**
3949 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3950 * @p: the task in question.
3951 * @policy: new policy.
3952 * @param: structure containing the new RT priority.
3953 *
3954 * Return: 0 on success. An error code otherwise.
3955 *
3956 * NOTE that the task may be already dead.
3957 */
3958 int sched_setscheduler(struct task_struct *p, int policy,
3959 const struct sched_param *param)
3960 {
3961 return _sched_setscheduler(p, policy, param, true);
3962 }
3963 EXPORT_SYMBOL_GPL(sched_setscheduler);
3964
3965 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3966 {
3967 return __sched_setscheduler(p, attr, true, true);
3968 }
3969 EXPORT_SYMBOL_GPL(sched_setattr);
3970
3971 /**
3972 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3973 * @p: the task in question.
3974 * @policy: new policy.
3975 * @param: structure containing the new RT priority.
3976 *
3977 * Just like sched_setscheduler, only don't bother checking if the
3978 * current context has permission. For example, this is needed in
3979 * stop_machine(): we create temporary high priority worker threads,
3980 * but our caller might not have that capability.
3981 *
3982 * Return: 0 on success. An error code otherwise.
3983 */
3984 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3985 const struct sched_param *param)
3986 {
3987 return _sched_setscheduler(p, policy, param, false);
3988 }
3989
3990 static int
3991 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3992 {
3993 struct sched_param lparam;
3994 struct task_struct *p;
3995 int retval;
3996
3997 if (!param || pid < 0)
3998 return -EINVAL;
3999 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4000 return -EFAULT;
4001
4002 rcu_read_lock();
4003 retval = -ESRCH;
4004 p = find_process_by_pid(pid);
4005 if (p != NULL)
4006 retval = sched_setscheduler(p, policy, &lparam);
4007 rcu_read_unlock();
4008
4009 return retval;
4010 }
4011
4012 /*
4013 * Mimics kernel/events/core.c perf_copy_attr().
4014 */
4015 static int sched_copy_attr(struct sched_attr __user *uattr,
4016 struct sched_attr *attr)
4017 {
4018 u32 size;
4019 int ret;
4020
4021 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4022 return -EFAULT;
4023
4024 /*
4025 * zero the full structure, so that a short copy will be nice.
4026 */
4027 memset(attr, 0, sizeof(*attr));
4028
4029 ret = get_user(size, &uattr->size);
4030 if (ret)
4031 return ret;
4032
4033 if (size > PAGE_SIZE) /* silly large */
4034 goto err_size;
4035
4036 if (!size) /* abi compat */
4037 size = SCHED_ATTR_SIZE_VER0;
4038
4039 if (size < SCHED_ATTR_SIZE_VER0)
4040 goto err_size;
4041
4042 /*
4043 * If we're handed a bigger struct than we know of,
4044 * ensure all the unknown bits are 0 - i.e. new
4045 * user-space does not rely on any kernel feature
4046 * extensions we dont know about yet.
4047 */
4048 if (size > sizeof(*attr)) {
4049 unsigned char __user *addr;
4050 unsigned char __user *end;
4051 unsigned char val;
4052
4053 addr = (void __user *)uattr + sizeof(*attr);
4054 end = (void __user *)uattr + size;
4055
4056 for (; addr < end; addr++) {
4057 ret = get_user(val, addr);
4058 if (ret)
4059 return ret;
4060 if (val)
4061 goto err_size;
4062 }
4063 size = sizeof(*attr);
4064 }
4065
4066 ret = copy_from_user(attr, uattr, size);
4067 if (ret)
4068 return -EFAULT;
4069
4070 /*
4071 * XXX: do we want to be lenient like existing syscalls; or do we want
4072 * to be strict and return an error on out-of-bounds values?
4073 */
4074 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4075
4076 return 0;
4077
4078 err_size:
4079 put_user(sizeof(*attr), &uattr->size);
4080 return -E2BIG;
4081 }
4082
4083 /**
4084 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4085 * @pid: the pid in question.
4086 * @policy: new policy.
4087 * @param: structure containing the new RT priority.
4088 *
4089 * Return: 0 on success. An error code otherwise.
4090 */
4091 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4092 struct sched_param __user *, param)
4093 {
4094 /* negative values for policy are not valid */
4095 if (policy < 0)
4096 return -EINVAL;
4097
4098 return do_sched_setscheduler(pid, policy, param);
4099 }
4100
4101 /**
4102 * sys_sched_setparam - set/change the RT priority of a thread
4103 * @pid: the pid in question.
4104 * @param: structure containing the new RT priority.
4105 *
4106 * Return: 0 on success. An error code otherwise.
4107 */
4108 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4109 {
4110 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4111 }
4112
4113 /**
4114 * sys_sched_setattr - same as above, but with extended sched_attr
4115 * @pid: the pid in question.
4116 * @uattr: structure containing the extended parameters.
4117 * @flags: for future extension.
4118 */
4119 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4120 unsigned int, flags)
4121 {
4122 struct sched_attr attr;
4123 struct task_struct *p;
4124 int retval;
4125
4126 if (!uattr || pid < 0 || flags)
4127 return -EINVAL;
4128
4129 retval = sched_copy_attr(uattr, &attr);
4130 if (retval)
4131 return retval;
4132
4133 if ((int)attr.sched_policy < 0)
4134 return -EINVAL;
4135
4136 rcu_read_lock();
4137 retval = -ESRCH;
4138 p = find_process_by_pid(pid);
4139 if (p != NULL)
4140 retval = sched_setattr(p, &attr);
4141 rcu_read_unlock();
4142
4143 return retval;
4144 }
4145
4146 /**
4147 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4148 * @pid: the pid in question.
4149 *
4150 * Return: On success, the policy of the thread. Otherwise, a negative error
4151 * code.
4152 */
4153 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4154 {
4155 struct task_struct *p;
4156 int retval;
4157
4158 if (pid < 0)
4159 return -EINVAL;
4160
4161 retval = -ESRCH;
4162 rcu_read_lock();
4163 p = find_process_by_pid(pid);
4164 if (p) {
4165 retval = security_task_getscheduler(p);
4166 if (!retval)
4167 retval = p->policy
4168 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4169 }
4170 rcu_read_unlock();
4171 return retval;
4172 }
4173
4174 /**
4175 * sys_sched_getparam - get the RT priority of a thread
4176 * @pid: the pid in question.
4177 * @param: structure containing the RT priority.
4178 *
4179 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4180 * code.
4181 */
4182 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4183 {
4184 struct sched_param lp = { .sched_priority = 0 };
4185 struct task_struct *p;
4186 int retval;
4187
4188 if (!param || pid < 0)
4189 return -EINVAL;
4190
4191 rcu_read_lock();
4192 p = find_process_by_pid(pid);
4193 retval = -ESRCH;
4194 if (!p)
4195 goto out_unlock;
4196
4197 retval = security_task_getscheduler(p);
4198 if (retval)
4199 goto out_unlock;
4200
4201 if (task_has_rt_policy(p))
4202 lp.sched_priority = p->rt_priority;
4203 rcu_read_unlock();
4204
4205 /*
4206 * This one might sleep, we cannot do it with a spinlock held ...
4207 */
4208 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4209
4210 return retval;
4211
4212 out_unlock:
4213 rcu_read_unlock();
4214 return retval;
4215 }
4216
4217 static int sched_read_attr(struct sched_attr __user *uattr,
4218 struct sched_attr *attr,
4219 unsigned int usize)
4220 {
4221 int ret;
4222
4223 if (!access_ok(VERIFY_WRITE, uattr, usize))
4224 return -EFAULT;
4225
4226 /*
4227 * If we're handed a smaller struct than we know of,
4228 * ensure all the unknown bits are 0 - i.e. old
4229 * user-space does not get uncomplete information.
4230 */
4231 if (usize < sizeof(*attr)) {
4232 unsigned char *addr;
4233 unsigned char *end;
4234
4235 addr = (void *)attr + usize;
4236 end = (void *)attr + sizeof(*attr);
4237
4238 for (; addr < end; addr++) {
4239 if (*addr)
4240 return -EFBIG;
4241 }
4242
4243 attr->size = usize;
4244 }
4245
4246 ret = copy_to_user(uattr, attr, attr->size);
4247 if (ret)
4248 return -EFAULT;
4249
4250 return 0;
4251 }
4252
4253 /**
4254 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4255 * @pid: the pid in question.
4256 * @uattr: structure containing the extended parameters.
4257 * @size: sizeof(attr) for fwd/bwd comp.
4258 * @flags: for future extension.
4259 */
4260 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4261 unsigned int, size, unsigned int, flags)
4262 {
4263 struct sched_attr attr = {
4264 .size = sizeof(struct sched_attr),
4265 };
4266 struct task_struct *p;
4267 int retval;
4268
4269 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4270 size < SCHED_ATTR_SIZE_VER0 || flags)
4271 return -EINVAL;
4272
4273 rcu_read_lock();
4274 p = find_process_by_pid(pid);
4275 retval = -ESRCH;
4276 if (!p)
4277 goto out_unlock;
4278
4279 retval = security_task_getscheduler(p);
4280 if (retval)
4281 goto out_unlock;
4282
4283 attr.sched_policy = p->policy;
4284 if (p->sched_reset_on_fork)
4285 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4286 if (task_has_dl_policy(p))
4287 __getparam_dl(p, &attr);
4288 else if (task_has_rt_policy(p))
4289 attr.sched_priority = p->rt_priority;
4290 else
4291 attr.sched_nice = task_nice(p);
4292
4293 rcu_read_unlock();
4294
4295 retval = sched_read_attr(uattr, &attr, size);
4296 return retval;
4297
4298 out_unlock:
4299 rcu_read_unlock();
4300 return retval;
4301 }
4302
4303 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4304 {
4305 cpumask_var_t cpus_allowed, new_mask;
4306 struct task_struct *p;
4307 int retval;
4308
4309 rcu_read_lock();
4310
4311 p = find_process_by_pid(pid);
4312 if (!p) {
4313 rcu_read_unlock();
4314 return -ESRCH;
4315 }
4316
4317 /* Prevent p going away */
4318 get_task_struct(p);
4319 rcu_read_unlock();
4320
4321 if (p->flags & PF_NO_SETAFFINITY) {
4322 retval = -EINVAL;
4323 goto out_put_task;
4324 }
4325 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4326 retval = -ENOMEM;
4327 goto out_put_task;
4328 }
4329 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4330 retval = -ENOMEM;
4331 goto out_free_cpus_allowed;
4332 }
4333 retval = -EPERM;
4334 if (!check_same_owner(p)) {
4335 rcu_read_lock();
4336 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4337 rcu_read_unlock();
4338 goto out_free_new_mask;
4339 }
4340 rcu_read_unlock();
4341 }
4342
4343 retval = security_task_setscheduler(p);
4344 if (retval)
4345 goto out_free_new_mask;
4346
4347
4348 cpuset_cpus_allowed(p, cpus_allowed);
4349 cpumask_and(new_mask, in_mask, cpus_allowed);
4350
4351 /*
4352 * Since bandwidth control happens on root_domain basis,
4353 * if admission test is enabled, we only admit -deadline
4354 * tasks allowed to run on all the CPUs in the task's
4355 * root_domain.
4356 */
4357 #ifdef CONFIG_SMP
4358 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4359 rcu_read_lock();
4360 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4361 retval = -EBUSY;
4362 rcu_read_unlock();
4363 goto out_free_new_mask;
4364 }
4365 rcu_read_unlock();
4366 }
4367 #endif
4368 again:
4369 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4370
4371 if (!retval) {
4372 cpuset_cpus_allowed(p, cpus_allowed);
4373 if (!cpumask_subset(new_mask, cpus_allowed)) {
4374 /*
4375 * We must have raced with a concurrent cpuset
4376 * update. Just reset the cpus_allowed to the
4377 * cpuset's cpus_allowed
4378 */
4379 cpumask_copy(new_mask, cpus_allowed);
4380 goto again;
4381 }
4382 }
4383 out_free_new_mask:
4384 free_cpumask_var(new_mask);
4385 out_free_cpus_allowed:
4386 free_cpumask_var(cpus_allowed);
4387 out_put_task:
4388 put_task_struct(p);
4389 return retval;
4390 }
4391
4392 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4393 struct cpumask *new_mask)
4394 {
4395 if (len < cpumask_size())
4396 cpumask_clear(new_mask);
4397 else if (len > cpumask_size())
4398 len = cpumask_size();
4399
4400 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4401 }
4402
4403 /**
4404 * sys_sched_setaffinity - set the cpu affinity of a process
4405 * @pid: pid of the process
4406 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4407 * @user_mask_ptr: user-space pointer to the new cpu mask
4408 *
4409 * Return: 0 on success. An error code otherwise.
4410 */
4411 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4412 unsigned long __user *, user_mask_ptr)
4413 {
4414 cpumask_var_t new_mask;
4415 int retval;
4416
4417 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4418 return -ENOMEM;
4419
4420 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4421 if (retval == 0)
4422 retval = sched_setaffinity(pid, new_mask);
4423 free_cpumask_var(new_mask);
4424 return retval;
4425 }
4426
4427 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4428 {
4429 struct task_struct *p;
4430 unsigned long flags;
4431 int retval;
4432
4433 rcu_read_lock();
4434
4435 retval = -ESRCH;
4436 p = find_process_by_pid(pid);
4437 if (!p)
4438 goto out_unlock;
4439
4440 retval = security_task_getscheduler(p);
4441 if (retval)
4442 goto out_unlock;
4443
4444 raw_spin_lock_irqsave(&p->pi_lock, flags);
4445 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4446 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4447
4448 out_unlock:
4449 rcu_read_unlock();
4450
4451 return retval;
4452 }
4453
4454 /**
4455 * sys_sched_getaffinity - get the cpu affinity of a process
4456 * @pid: pid of the process
4457 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4458 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4459 *
4460 * Return: 0 on success. An error code otherwise.
4461 */
4462 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4463 unsigned long __user *, user_mask_ptr)
4464 {
4465 int ret;
4466 cpumask_var_t mask;
4467
4468 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4469 return -EINVAL;
4470 if (len & (sizeof(unsigned long)-1))
4471 return -EINVAL;
4472
4473 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4474 return -ENOMEM;
4475
4476 ret = sched_getaffinity(pid, mask);
4477 if (ret == 0) {
4478 size_t retlen = min_t(size_t, len, cpumask_size());
4479
4480 if (copy_to_user(user_mask_ptr, mask, retlen))
4481 ret = -EFAULT;
4482 else
4483 ret = retlen;
4484 }
4485 free_cpumask_var(mask);
4486
4487 return ret;
4488 }
4489
4490 /**
4491 * sys_sched_yield - yield the current processor to other threads.
4492 *
4493 * This function yields the current CPU to other tasks. If there are no
4494 * other threads running on this CPU then this function will return.
4495 *
4496 * Return: 0.
4497 */
4498 SYSCALL_DEFINE0(sched_yield)
4499 {
4500 struct rq *rq = this_rq_lock();
4501
4502 schedstat_inc(rq, yld_count);
4503 current->sched_class->yield_task(rq);
4504
4505 /*
4506 * Since we are going to call schedule() anyway, there's
4507 * no need to preempt or enable interrupts:
4508 */
4509 __release(rq->lock);
4510 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4511 do_raw_spin_unlock(&rq->lock);
4512 sched_preempt_enable_no_resched();
4513
4514 schedule();
4515
4516 return 0;
4517 }
4518
4519 int __sched _cond_resched(void)
4520 {
4521 if (should_resched(0)) {
4522 preempt_schedule_common();
4523 return 1;
4524 }
4525 return 0;
4526 }
4527 EXPORT_SYMBOL(_cond_resched);
4528
4529 /*
4530 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4531 * call schedule, and on return reacquire the lock.
4532 *
4533 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4534 * operations here to prevent schedule() from being called twice (once via
4535 * spin_unlock(), once by hand).
4536 */
4537 int __cond_resched_lock(spinlock_t *lock)
4538 {
4539 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4540 int ret = 0;
4541
4542 lockdep_assert_held(lock);
4543
4544 if (spin_needbreak(lock) || resched) {
4545 spin_unlock(lock);
4546 if (resched)
4547 preempt_schedule_common();
4548 else
4549 cpu_relax();
4550 ret = 1;
4551 spin_lock(lock);
4552 }
4553 return ret;
4554 }
4555 EXPORT_SYMBOL(__cond_resched_lock);
4556
4557 int __sched __cond_resched_softirq(void)
4558 {
4559 BUG_ON(!in_softirq());
4560
4561 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4562 local_bh_enable();
4563 preempt_schedule_common();
4564 local_bh_disable();
4565 return 1;
4566 }
4567 return 0;
4568 }
4569 EXPORT_SYMBOL(__cond_resched_softirq);
4570
4571 /**
4572 * yield - yield the current processor to other threads.
4573 *
4574 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4575 *
4576 * The scheduler is at all times free to pick the calling task as the most
4577 * eligible task to run, if removing the yield() call from your code breaks
4578 * it, its already broken.
4579 *
4580 * Typical broken usage is:
4581 *
4582 * while (!event)
4583 * yield();
4584 *
4585 * where one assumes that yield() will let 'the other' process run that will
4586 * make event true. If the current task is a SCHED_FIFO task that will never
4587 * happen. Never use yield() as a progress guarantee!!
4588 *
4589 * If you want to use yield() to wait for something, use wait_event().
4590 * If you want to use yield() to be 'nice' for others, use cond_resched().
4591 * If you still want to use yield(), do not!
4592 */
4593 void __sched yield(void)
4594 {
4595 set_current_state(TASK_RUNNING);
4596 sys_sched_yield();
4597 }
4598 EXPORT_SYMBOL(yield);
4599
4600 /**
4601 * yield_to - yield the current processor to another thread in
4602 * your thread group, or accelerate that thread toward the
4603 * processor it's on.
4604 * @p: target task
4605 * @preempt: whether task preemption is allowed or not
4606 *
4607 * It's the caller's job to ensure that the target task struct
4608 * can't go away on us before we can do any checks.
4609 *
4610 * Return:
4611 * true (>0) if we indeed boosted the target task.
4612 * false (0) if we failed to boost the target.
4613 * -ESRCH if there's no task to yield to.
4614 */
4615 int __sched yield_to(struct task_struct *p, bool preempt)
4616 {
4617 struct task_struct *curr = current;
4618 struct rq *rq, *p_rq;
4619 unsigned long flags;
4620 int yielded = 0;
4621
4622 local_irq_save(flags);
4623 rq = this_rq();
4624
4625 again:
4626 p_rq = task_rq(p);
4627 /*
4628 * If we're the only runnable task on the rq and target rq also
4629 * has only one task, there's absolutely no point in yielding.
4630 */
4631 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4632 yielded = -ESRCH;
4633 goto out_irq;
4634 }
4635
4636 double_rq_lock(rq, p_rq);
4637 if (task_rq(p) != p_rq) {
4638 double_rq_unlock(rq, p_rq);
4639 goto again;
4640 }
4641
4642 if (!curr->sched_class->yield_to_task)
4643 goto out_unlock;
4644
4645 if (curr->sched_class != p->sched_class)
4646 goto out_unlock;
4647
4648 if (task_running(p_rq, p) || p->state)
4649 goto out_unlock;
4650
4651 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4652 if (yielded) {
4653 schedstat_inc(rq, yld_count);
4654 /*
4655 * Make p's CPU reschedule; pick_next_entity takes care of
4656 * fairness.
4657 */
4658 if (preempt && rq != p_rq)
4659 resched_curr(p_rq);
4660 }
4661
4662 out_unlock:
4663 double_rq_unlock(rq, p_rq);
4664 out_irq:
4665 local_irq_restore(flags);
4666
4667 if (yielded > 0)
4668 schedule();
4669
4670 return yielded;
4671 }
4672 EXPORT_SYMBOL_GPL(yield_to);
4673
4674 /*
4675 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4676 * that process accounting knows that this is a task in IO wait state.
4677 */
4678 long __sched io_schedule_timeout(long timeout)
4679 {
4680 int old_iowait = current->in_iowait;
4681 struct rq *rq;
4682 long ret;
4683
4684 current->in_iowait = 1;
4685 blk_schedule_flush_plug(current);
4686
4687 delayacct_blkio_start();
4688 rq = raw_rq();
4689 atomic_inc(&rq->nr_iowait);
4690 ret = schedule_timeout(timeout);
4691 current->in_iowait = old_iowait;
4692 atomic_dec(&rq->nr_iowait);
4693 delayacct_blkio_end();
4694
4695 return ret;
4696 }
4697 EXPORT_SYMBOL(io_schedule_timeout);
4698
4699 /**
4700 * sys_sched_get_priority_max - return maximum RT priority.
4701 * @policy: scheduling class.
4702 *
4703 * Return: On success, this syscall returns the maximum
4704 * rt_priority that can be used by a given scheduling class.
4705 * On failure, a negative error code is returned.
4706 */
4707 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4708 {
4709 int ret = -EINVAL;
4710
4711 switch (policy) {
4712 case SCHED_FIFO:
4713 case SCHED_RR:
4714 ret = MAX_USER_RT_PRIO-1;
4715 break;
4716 case SCHED_DEADLINE:
4717 case SCHED_NORMAL:
4718 case SCHED_BATCH:
4719 case SCHED_IDLE:
4720 ret = 0;
4721 break;
4722 }
4723 return ret;
4724 }
4725
4726 /**
4727 * sys_sched_get_priority_min - return minimum RT priority.
4728 * @policy: scheduling class.
4729 *
4730 * Return: On success, this syscall returns the minimum
4731 * rt_priority that can be used by a given scheduling class.
4732 * On failure, a negative error code is returned.
4733 */
4734 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4735 {
4736 int ret = -EINVAL;
4737
4738 switch (policy) {
4739 case SCHED_FIFO:
4740 case SCHED_RR:
4741 ret = 1;
4742 break;
4743 case SCHED_DEADLINE:
4744 case SCHED_NORMAL:
4745 case SCHED_BATCH:
4746 case SCHED_IDLE:
4747 ret = 0;
4748 }
4749 return ret;
4750 }
4751
4752 /**
4753 * sys_sched_rr_get_interval - return the default timeslice of a process.
4754 * @pid: pid of the process.
4755 * @interval: userspace pointer to the timeslice value.
4756 *
4757 * this syscall writes the default timeslice value of a given process
4758 * into the user-space timespec buffer. A value of '0' means infinity.
4759 *
4760 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4761 * an error code.
4762 */
4763 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4764 struct timespec __user *, interval)
4765 {
4766 struct task_struct *p;
4767 unsigned int time_slice;
4768 unsigned long flags;
4769 struct rq *rq;
4770 int retval;
4771 struct timespec t;
4772
4773 if (pid < 0)
4774 return -EINVAL;
4775
4776 retval = -ESRCH;
4777 rcu_read_lock();
4778 p = find_process_by_pid(pid);
4779 if (!p)
4780 goto out_unlock;
4781
4782 retval = security_task_getscheduler(p);
4783 if (retval)
4784 goto out_unlock;
4785
4786 rq = task_rq_lock(p, &flags);
4787 time_slice = 0;
4788 if (p->sched_class->get_rr_interval)
4789 time_slice = p->sched_class->get_rr_interval(rq, p);
4790 task_rq_unlock(rq, p, &flags);
4791
4792 rcu_read_unlock();
4793 jiffies_to_timespec(time_slice, &t);
4794 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4795 return retval;
4796
4797 out_unlock:
4798 rcu_read_unlock();
4799 return retval;
4800 }
4801
4802 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4803
4804 void sched_show_task(struct task_struct *p)
4805 {
4806 unsigned long free = 0;
4807 int ppid;
4808 unsigned long state = p->state;
4809
4810 if (state)
4811 state = __ffs(state) + 1;
4812 printk(KERN_INFO "%-15.15s %c", p->comm,
4813 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4814 #if BITS_PER_LONG == 32
4815 if (state == TASK_RUNNING)
4816 printk(KERN_CONT " running ");
4817 else
4818 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4819 #else
4820 if (state == TASK_RUNNING)
4821 printk(KERN_CONT " running task ");
4822 else
4823 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4824 #endif
4825 #ifdef CONFIG_DEBUG_STACK_USAGE
4826 free = stack_not_used(p);
4827 #endif
4828 ppid = 0;
4829 rcu_read_lock();
4830 if (pid_alive(p))
4831 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4832 rcu_read_unlock();
4833 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4834 task_pid_nr(p), ppid,
4835 (unsigned long)task_thread_info(p)->flags);
4836
4837 print_worker_info(KERN_INFO, p);
4838 show_stack(p, NULL);
4839 }
4840
4841 void show_state_filter(unsigned long state_filter)
4842 {
4843 struct task_struct *g, *p;
4844
4845 #if BITS_PER_LONG == 32
4846 printk(KERN_INFO
4847 " task PC stack pid father\n");
4848 #else
4849 printk(KERN_INFO
4850 " task PC stack pid father\n");
4851 #endif
4852 rcu_read_lock();
4853 for_each_process_thread(g, p) {
4854 /*
4855 * reset the NMI-timeout, listing all files on a slow
4856 * console might take a lot of time:
4857 */
4858 touch_nmi_watchdog();
4859 if (!state_filter || (p->state & state_filter))
4860 sched_show_task(p);
4861 }
4862
4863 touch_all_softlockup_watchdogs();
4864
4865 #ifdef CONFIG_SCHED_DEBUG
4866 sysrq_sched_debug_show();
4867 #endif
4868 rcu_read_unlock();
4869 /*
4870 * Only show locks if all tasks are dumped:
4871 */
4872 if (!state_filter)
4873 debug_show_all_locks();
4874 }
4875
4876 void init_idle_bootup_task(struct task_struct *idle)
4877 {
4878 idle->sched_class = &idle_sched_class;
4879 }
4880
4881 /**
4882 * init_idle - set up an idle thread for a given CPU
4883 * @idle: task in question
4884 * @cpu: cpu the idle task belongs to
4885 *
4886 * NOTE: this function does not set the idle thread's NEED_RESCHED
4887 * flag, to make booting more robust.
4888 */
4889 void init_idle(struct task_struct *idle, int cpu)
4890 {
4891 struct rq *rq = cpu_rq(cpu);
4892 unsigned long flags;
4893
4894 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4895 raw_spin_lock(&rq->lock);
4896
4897 __sched_fork(0, idle);
4898 idle->state = TASK_RUNNING;
4899 idle->se.exec_start = sched_clock();
4900
4901 do_set_cpus_allowed(idle, cpumask_of(cpu));
4902 /*
4903 * We're having a chicken and egg problem, even though we are
4904 * holding rq->lock, the cpu isn't yet set to this cpu so the
4905 * lockdep check in task_group() will fail.
4906 *
4907 * Similar case to sched_fork(). / Alternatively we could
4908 * use task_rq_lock() here and obtain the other rq->lock.
4909 *
4910 * Silence PROVE_RCU
4911 */
4912 rcu_read_lock();
4913 __set_task_cpu(idle, cpu);
4914 rcu_read_unlock();
4915
4916 rq->curr = rq->idle = idle;
4917 idle->on_rq = TASK_ON_RQ_QUEUED;
4918 #if defined(CONFIG_SMP)
4919 idle->on_cpu = 1;
4920 #endif
4921 raw_spin_unlock(&rq->lock);
4922 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4923
4924 /* Set the preempt count _outside_ the spinlocks! */
4925 init_idle_preempt_count(idle, cpu);
4926
4927 /*
4928 * The idle tasks have their own, simple scheduling class:
4929 */
4930 idle->sched_class = &idle_sched_class;
4931 ftrace_graph_init_idle_task(idle, cpu);
4932 vtime_init_idle(idle, cpu);
4933 #if defined(CONFIG_SMP)
4934 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4935 #endif
4936 }
4937
4938 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4939 const struct cpumask *trial)
4940 {
4941 int ret = 1, trial_cpus;
4942 struct dl_bw *cur_dl_b;
4943 unsigned long flags;
4944
4945 if (!cpumask_weight(cur))
4946 return ret;
4947
4948 rcu_read_lock_sched();
4949 cur_dl_b = dl_bw_of(cpumask_any(cur));
4950 trial_cpus = cpumask_weight(trial);
4951
4952 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4953 if (cur_dl_b->bw != -1 &&
4954 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4955 ret = 0;
4956 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4957 rcu_read_unlock_sched();
4958
4959 return ret;
4960 }
4961
4962 int task_can_attach(struct task_struct *p,
4963 const struct cpumask *cs_cpus_allowed)
4964 {
4965 int ret = 0;
4966
4967 /*
4968 * Kthreads which disallow setaffinity shouldn't be moved
4969 * to a new cpuset; we don't want to change their cpu
4970 * affinity and isolating such threads by their set of
4971 * allowed nodes is unnecessary. Thus, cpusets are not
4972 * applicable for such threads. This prevents checking for
4973 * success of set_cpus_allowed_ptr() on all attached tasks
4974 * before cpus_allowed may be changed.
4975 */
4976 if (p->flags & PF_NO_SETAFFINITY) {
4977 ret = -EINVAL;
4978 goto out;
4979 }
4980
4981 #ifdef CONFIG_SMP
4982 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4983 cs_cpus_allowed)) {
4984 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4985 cs_cpus_allowed);
4986 struct dl_bw *dl_b;
4987 bool overflow;
4988 int cpus;
4989 unsigned long flags;
4990
4991 rcu_read_lock_sched();
4992 dl_b = dl_bw_of(dest_cpu);
4993 raw_spin_lock_irqsave(&dl_b->lock, flags);
4994 cpus = dl_bw_cpus(dest_cpu);
4995 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4996 if (overflow)
4997 ret = -EBUSY;
4998 else {
4999 /*
5000 * We reserve space for this task in the destination
5001 * root_domain, as we can't fail after this point.
5002 * We will free resources in the source root_domain
5003 * later on (see set_cpus_allowed_dl()).
5004 */
5005 __dl_add(dl_b, p->dl.dl_bw);
5006 }
5007 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5008 rcu_read_unlock_sched();
5009
5010 }
5011 #endif
5012 out:
5013 return ret;
5014 }
5015
5016 #ifdef CONFIG_SMP
5017
5018 #ifdef CONFIG_NUMA_BALANCING
5019 /* Migrate current task p to target_cpu */
5020 int migrate_task_to(struct task_struct *p, int target_cpu)
5021 {
5022 struct migration_arg arg = { p, target_cpu };
5023 int curr_cpu = task_cpu(p);
5024
5025 if (curr_cpu == target_cpu)
5026 return 0;
5027
5028 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5029 return -EINVAL;
5030
5031 /* TODO: This is not properly updating schedstats */
5032
5033 trace_sched_move_numa(p, curr_cpu, target_cpu);
5034 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5035 }
5036
5037 /*
5038 * Requeue a task on a given node and accurately track the number of NUMA
5039 * tasks on the runqueues
5040 */
5041 void sched_setnuma(struct task_struct *p, int nid)
5042 {
5043 struct rq *rq;
5044 unsigned long flags;
5045 bool queued, running;
5046
5047 rq = task_rq_lock(p, &flags);
5048 queued = task_on_rq_queued(p);
5049 running = task_current(rq, p);
5050
5051 if (queued)
5052 dequeue_task(rq, p, 0);
5053 if (running)
5054 put_prev_task(rq, p);
5055
5056 p->numa_preferred_nid = nid;
5057
5058 if (running)
5059 p->sched_class->set_curr_task(rq);
5060 if (queued)
5061 enqueue_task(rq, p, 0);
5062 task_rq_unlock(rq, p, &flags);
5063 }
5064 #endif /* CONFIG_NUMA_BALANCING */
5065
5066 #ifdef CONFIG_HOTPLUG_CPU
5067 /*
5068 * Ensures that the idle task is using init_mm right before its cpu goes
5069 * offline.
5070 */
5071 void idle_task_exit(void)
5072 {
5073 struct mm_struct *mm = current->active_mm;
5074
5075 BUG_ON(cpu_online(smp_processor_id()));
5076
5077 if (mm != &init_mm) {
5078 switch_mm(mm, &init_mm, current);
5079 finish_arch_post_lock_switch();
5080 }
5081 mmdrop(mm);
5082 }
5083
5084 /*
5085 * Since this CPU is going 'away' for a while, fold any nr_active delta
5086 * we might have. Assumes we're called after migrate_tasks() so that the
5087 * nr_active count is stable.
5088 *
5089 * Also see the comment "Global load-average calculations".
5090 */
5091 static void calc_load_migrate(struct rq *rq)
5092 {
5093 long delta = calc_load_fold_active(rq);
5094 if (delta)
5095 atomic_long_add(delta, &calc_load_tasks);
5096 }
5097
5098 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5099 {
5100 }
5101
5102 static const struct sched_class fake_sched_class = {
5103 .put_prev_task = put_prev_task_fake,
5104 };
5105
5106 static struct task_struct fake_task = {
5107 /*
5108 * Avoid pull_{rt,dl}_task()
5109 */
5110 .prio = MAX_PRIO + 1,
5111 .sched_class = &fake_sched_class,
5112 };
5113
5114 /*
5115 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5116 * try_to_wake_up()->select_task_rq().
5117 *
5118 * Called with rq->lock held even though we'er in stop_machine() and
5119 * there's no concurrency possible, we hold the required locks anyway
5120 * because of lock validation efforts.
5121 */
5122 static void migrate_tasks(struct rq *dead_rq)
5123 {
5124 struct rq *rq = dead_rq;
5125 struct task_struct *next, *stop = rq->stop;
5126 int dest_cpu;
5127
5128 /*
5129 * Fudge the rq selection such that the below task selection loop
5130 * doesn't get stuck on the currently eligible stop task.
5131 *
5132 * We're currently inside stop_machine() and the rq is either stuck
5133 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5134 * either way we should never end up calling schedule() until we're
5135 * done here.
5136 */
5137 rq->stop = NULL;
5138
5139 /*
5140 * put_prev_task() and pick_next_task() sched
5141 * class method both need to have an up-to-date
5142 * value of rq->clock[_task]
5143 */
5144 update_rq_clock(rq);
5145
5146 for (;;) {
5147 /*
5148 * There's this thread running, bail when that's the only
5149 * remaining thread.
5150 */
5151 if (rq->nr_running == 1)
5152 break;
5153
5154 /*
5155 * Ensure rq->lock covers the entire task selection
5156 * until the migration.
5157 */
5158 lockdep_pin_lock(&rq->lock);
5159 next = pick_next_task(rq, &fake_task);
5160 BUG_ON(!next);
5161 next->sched_class->put_prev_task(rq, next);
5162
5163 /* Find suitable destination for @next, with force if needed. */
5164 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5165
5166 lockdep_unpin_lock(&rq->lock);
5167 rq = __migrate_task(rq, next, dest_cpu);
5168 if (rq != dead_rq) {
5169 raw_spin_unlock(&rq->lock);
5170 rq = dead_rq;
5171 raw_spin_lock(&rq->lock);
5172 }
5173 }
5174
5175 rq->stop = stop;
5176 }
5177 #endif /* CONFIG_HOTPLUG_CPU */
5178
5179 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5180
5181 static struct ctl_table sd_ctl_dir[] = {
5182 {
5183 .procname = "sched_domain",
5184 .mode = 0555,
5185 },
5186 {}
5187 };
5188
5189 static struct ctl_table sd_ctl_root[] = {
5190 {
5191 .procname = "kernel",
5192 .mode = 0555,
5193 .child = sd_ctl_dir,
5194 },
5195 {}
5196 };
5197
5198 static struct ctl_table *sd_alloc_ctl_entry(int n)
5199 {
5200 struct ctl_table *entry =
5201 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5202
5203 return entry;
5204 }
5205
5206 static void sd_free_ctl_entry(struct ctl_table **tablep)
5207 {
5208 struct ctl_table *entry;
5209
5210 /*
5211 * In the intermediate directories, both the child directory and
5212 * procname are dynamically allocated and could fail but the mode
5213 * will always be set. In the lowest directory the names are
5214 * static strings and all have proc handlers.
5215 */
5216 for (entry = *tablep; entry->mode; entry++) {
5217 if (entry->child)
5218 sd_free_ctl_entry(&entry->child);
5219 if (entry->proc_handler == NULL)
5220 kfree(entry->procname);
5221 }
5222
5223 kfree(*tablep);
5224 *tablep = NULL;
5225 }
5226
5227 static int min_load_idx = 0;
5228 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5229
5230 static void
5231 set_table_entry(struct ctl_table *entry,
5232 const char *procname, void *data, int maxlen,
5233 umode_t mode, proc_handler *proc_handler,
5234 bool load_idx)
5235 {
5236 entry->procname = procname;
5237 entry->data = data;
5238 entry->maxlen = maxlen;
5239 entry->mode = mode;
5240 entry->proc_handler = proc_handler;
5241
5242 if (load_idx) {
5243 entry->extra1 = &min_load_idx;
5244 entry->extra2 = &max_load_idx;
5245 }
5246 }
5247
5248 static struct ctl_table *
5249 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5250 {
5251 struct ctl_table *table = sd_alloc_ctl_entry(14);
5252
5253 if (table == NULL)
5254 return NULL;
5255
5256 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5257 sizeof(long), 0644, proc_doulongvec_minmax, false);
5258 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5259 sizeof(long), 0644, proc_doulongvec_minmax, false);
5260 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5261 sizeof(int), 0644, proc_dointvec_minmax, true);
5262 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5263 sizeof(int), 0644, proc_dointvec_minmax, true);
5264 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5265 sizeof(int), 0644, proc_dointvec_minmax, true);
5266 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5267 sizeof(int), 0644, proc_dointvec_minmax, true);
5268 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5269 sizeof(int), 0644, proc_dointvec_minmax, true);
5270 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5271 sizeof(int), 0644, proc_dointvec_minmax, false);
5272 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5273 sizeof(int), 0644, proc_dointvec_minmax, false);
5274 set_table_entry(&table[9], "cache_nice_tries",
5275 &sd->cache_nice_tries,
5276 sizeof(int), 0644, proc_dointvec_minmax, false);
5277 set_table_entry(&table[10], "flags", &sd->flags,
5278 sizeof(int), 0644, proc_dointvec_minmax, false);
5279 set_table_entry(&table[11], "max_newidle_lb_cost",
5280 &sd->max_newidle_lb_cost,
5281 sizeof(long), 0644, proc_doulongvec_minmax, false);
5282 set_table_entry(&table[12], "name", sd->name,
5283 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5284 /* &table[13] is terminator */
5285
5286 return table;
5287 }
5288
5289 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5290 {
5291 struct ctl_table *entry, *table;
5292 struct sched_domain *sd;
5293 int domain_num = 0, i;
5294 char buf[32];
5295
5296 for_each_domain(cpu, sd)
5297 domain_num++;
5298 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5299 if (table == NULL)
5300 return NULL;
5301
5302 i = 0;
5303 for_each_domain(cpu, sd) {
5304 snprintf(buf, 32, "domain%d", i);
5305 entry->procname = kstrdup(buf, GFP_KERNEL);
5306 entry->mode = 0555;
5307 entry->child = sd_alloc_ctl_domain_table(sd);
5308 entry++;
5309 i++;
5310 }
5311 return table;
5312 }
5313
5314 static struct ctl_table_header *sd_sysctl_header;
5315 static void register_sched_domain_sysctl(void)
5316 {
5317 int i, cpu_num = num_possible_cpus();
5318 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5319 char buf[32];
5320
5321 WARN_ON(sd_ctl_dir[0].child);
5322 sd_ctl_dir[0].child = entry;
5323
5324 if (entry == NULL)
5325 return;
5326
5327 for_each_possible_cpu(i) {
5328 snprintf(buf, 32, "cpu%d", i);
5329 entry->procname = kstrdup(buf, GFP_KERNEL);
5330 entry->mode = 0555;
5331 entry->child = sd_alloc_ctl_cpu_table(i);
5332 entry++;
5333 }
5334
5335 WARN_ON(sd_sysctl_header);
5336 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5337 }
5338
5339 /* may be called multiple times per register */
5340 static void unregister_sched_domain_sysctl(void)
5341 {
5342 unregister_sysctl_table(sd_sysctl_header);
5343 sd_sysctl_header = NULL;
5344 if (sd_ctl_dir[0].child)
5345 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5346 }
5347 #else
5348 static void register_sched_domain_sysctl(void)
5349 {
5350 }
5351 static void unregister_sched_domain_sysctl(void)
5352 {
5353 }
5354 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5355
5356 static void set_rq_online(struct rq *rq)
5357 {
5358 if (!rq->online) {
5359 const struct sched_class *class;
5360
5361 cpumask_set_cpu(rq->cpu, rq->rd->online);
5362 rq->online = 1;
5363
5364 for_each_class(class) {
5365 if (class->rq_online)
5366 class->rq_online(rq);
5367 }
5368 }
5369 }
5370
5371 static void set_rq_offline(struct rq *rq)
5372 {
5373 if (rq->online) {
5374 const struct sched_class *class;
5375
5376 for_each_class(class) {
5377 if (class->rq_offline)
5378 class->rq_offline(rq);
5379 }
5380
5381 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5382 rq->online = 0;
5383 }
5384 }
5385
5386 /*
5387 * migration_call - callback that gets triggered when a CPU is added.
5388 * Here we can start up the necessary migration thread for the new CPU.
5389 */
5390 static int
5391 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5392 {
5393 int cpu = (long)hcpu;
5394 unsigned long flags;
5395 struct rq *rq = cpu_rq(cpu);
5396
5397 switch (action & ~CPU_TASKS_FROZEN) {
5398
5399 case CPU_UP_PREPARE:
5400 rq->calc_load_update = calc_load_update;
5401 break;
5402
5403 case CPU_ONLINE:
5404 /* Update our root-domain */
5405 raw_spin_lock_irqsave(&rq->lock, flags);
5406 if (rq->rd) {
5407 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5408
5409 set_rq_online(rq);
5410 }
5411 raw_spin_unlock_irqrestore(&rq->lock, flags);
5412 break;
5413
5414 #ifdef CONFIG_HOTPLUG_CPU
5415 case CPU_DYING:
5416 sched_ttwu_pending();
5417 /* Update our root-domain */
5418 raw_spin_lock_irqsave(&rq->lock, flags);
5419 if (rq->rd) {
5420 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5421 set_rq_offline(rq);
5422 }
5423 migrate_tasks(rq);
5424 BUG_ON(rq->nr_running != 1); /* the migration thread */
5425 raw_spin_unlock_irqrestore(&rq->lock, flags);
5426 break;
5427
5428 case CPU_DEAD:
5429 calc_load_migrate(rq);
5430 break;
5431 #endif
5432 }
5433
5434 update_max_interval();
5435
5436 return NOTIFY_OK;
5437 }
5438
5439 /*
5440 * Register at high priority so that task migration (migrate_all_tasks)
5441 * happens before everything else. This has to be lower priority than
5442 * the notifier in the perf_event subsystem, though.
5443 */
5444 static struct notifier_block migration_notifier = {
5445 .notifier_call = migration_call,
5446 .priority = CPU_PRI_MIGRATION,
5447 };
5448
5449 static void set_cpu_rq_start_time(void)
5450 {
5451 int cpu = smp_processor_id();
5452 struct rq *rq = cpu_rq(cpu);
5453 rq->age_stamp = sched_clock_cpu(cpu);
5454 }
5455
5456 static int sched_cpu_active(struct notifier_block *nfb,
5457 unsigned long action, void *hcpu)
5458 {
5459 switch (action & ~CPU_TASKS_FROZEN) {
5460 case CPU_STARTING:
5461 set_cpu_rq_start_time();
5462 return NOTIFY_OK;
5463 case CPU_DOWN_FAILED:
5464 set_cpu_active((long)hcpu, true);
5465 return NOTIFY_OK;
5466 default:
5467 return NOTIFY_DONE;
5468 }
5469 }
5470
5471 static int sched_cpu_inactive(struct notifier_block *nfb,
5472 unsigned long action, void *hcpu)
5473 {
5474 switch (action & ~CPU_TASKS_FROZEN) {
5475 case CPU_DOWN_PREPARE:
5476 set_cpu_active((long)hcpu, false);
5477 return NOTIFY_OK;
5478 default:
5479 return NOTIFY_DONE;
5480 }
5481 }
5482
5483 static int __init migration_init(void)
5484 {
5485 void *cpu = (void *)(long)smp_processor_id();
5486 int err;
5487
5488 /* Initialize migration for the boot CPU */
5489 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5490 BUG_ON(err == NOTIFY_BAD);
5491 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5492 register_cpu_notifier(&migration_notifier);
5493
5494 /* Register cpu active notifiers */
5495 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5496 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5497
5498 return 0;
5499 }
5500 early_initcall(migration_init);
5501
5502 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5503
5504 #ifdef CONFIG_SCHED_DEBUG
5505
5506 static __read_mostly int sched_debug_enabled;
5507
5508 static int __init sched_debug_setup(char *str)
5509 {
5510 sched_debug_enabled = 1;
5511
5512 return 0;
5513 }
5514 early_param("sched_debug", sched_debug_setup);
5515
5516 static inline bool sched_debug(void)
5517 {
5518 return sched_debug_enabled;
5519 }
5520
5521 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5522 struct cpumask *groupmask)
5523 {
5524 struct sched_group *group = sd->groups;
5525
5526 cpumask_clear(groupmask);
5527
5528 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5529
5530 if (!(sd->flags & SD_LOAD_BALANCE)) {
5531 printk("does not load-balance\n");
5532 if (sd->parent)
5533 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5534 " has parent");
5535 return -1;
5536 }
5537
5538 printk(KERN_CONT "span %*pbl level %s\n",
5539 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5540
5541 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5542 printk(KERN_ERR "ERROR: domain->span does not contain "
5543 "CPU%d\n", cpu);
5544 }
5545 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5546 printk(KERN_ERR "ERROR: domain->groups does not contain"
5547 " CPU%d\n", cpu);
5548 }
5549
5550 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5551 do {
5552 if (!group) {
5553 printk("\n");
5554 printk(KERN_ERR "ERROR: group is NULL\n");
5555 break;
5556 }
5557
5558 if (!cpumask_weight(sched_group_cpus(group))) {
5559 printk(KERN_CONT "\n");
5560 printk(KERN_ERR "ERROR: empty group\n");
5561 break;
5562 }
5563
5564 if (!(sd->flags & SD_OVERLAP) &&
5565 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5566 printk(KERN_CONT "\n");
5567 printk(KERN_ERR "ERROR: repeated CPUs\n");
5568 break;
5569 }
5570
5571 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5572
5573 printk(KERN_CONT " %*pbl",
5574 cpumask_pr_args(sched_group_cpus(group)));
5575 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5576 printk(KERN_CONT " (cpu_capacity = %d)",
5577 group->sgc->capacity);
5578 }
5579
5580 group = group->next;
5581 } while (group != sd->groups);
5582 printk(KERN_CONT "\n");
5583
5584 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5585 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5586
5587 if (sd->parent &&
5588 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5589 printk(KERN_ERR "ERROR: parent span is not a superset "
5590 "of domain->span\n");
5591 return 0;
5592 }
5593
5594 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5595 {
5596 int level = 0;
5597
5598 if (!sched_debug_enabled)
5599 return;
5600
5601 if (!sd) {
5602 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5603 return;
5604 }
5605
5606 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5607
5608 for (;;) {
5609 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5610 break;
5611 level++;
5612 sd = sd->parent;
5613 if (!sd)
5614 break;
5615 }
5616 }
5617 #else /* !CONFIG_SCHED_DEBUG */
5618 # define sched_domain_debug(sd, cpu) do { } while (0)
5619 static inline bool sched_debug(void)
5620 {
5621 return false;
5622 }
5623 #endif /* CONFIG_SCHED_DEBUG */
5624
5625 static int sd_degenerate(struct sched_domain *sd)
5626 {
5627 if (cpumask_weight(sched_domain_span(sd)) == 1)
5628 return 1;
5629
5630 /* Following flags need at least 2 groups */
5631 if (sd->flags & (SD_LOAD_BALANCE |
5632 SD_BALANCE_NEWIDLE |
5633 SD_BALANCE_FORK |
5634 SD_BALANCE_EXEC |
5635 SD_SHARE_CPUCAPACITY |
5636 SD_SHARE_PKG_RESOURCES |
5637 SD_SHARE_POWERDOMAIN)) {
5638 if (sd->groups != sd->groups->next)
5639 return 0;
5640 }
5641
5642 /* Following flags don't use groups */
5643 if (sd->flags & (SD_WAKE_AFFINE))
5644 return 0;
5645
5646 return 1;
5647 }
5648
5649 static int
5650 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5651 {
5652 unsigned long cflags = sd->flags, pflags = parent->flags;
5653
5654 if (sd_degenerate(parent))
5655 return 1;
5656
5657 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5658 return 0;
5659
5660 /* Flags needing groups don't count if only 1 group in parent */
5661 if (parent->groups == parent->groups->next) {
5662 pflags &= ~(SD_LOAD_BALANCE |
5663 SD_BALANCE_NEWIDLE |
5664 SD_BALANCE_FORK |
5665 SD_BALANCE_EXEC |
5666 SD_SHARE_CPUCAPACITY |
5667 SD_SHARE_PKG_RESOURCES |
5668 SD_PREFER_SIBLING |
5669 SD_SHARE_POWERDOMAIN);
5670 if (nr_node_ids == 1)
5671 pflags &= ~SD_SERIALIZE;
5672 }
5673 if (~cflags & pflags)
5674 return 0;
5675
5676 return 1;
5677 }
5678
5679 static void free_rootdomain(struct rcu_head *rcu)
5680 {
5681 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5682
5683 cpupri_cleanup(&rd->cpupri);
5684 cpudl_cleanup(&rd->cpudl);
5685 free_cpumask_var(rd->dlo_mask);
5686 free_cpumask_var(rd->rto_mask);
5687 free_cpumask_var(rd->online);
5688 free_cpumask_var(rd->span);
5689 kfree(rd);
5690 }
5691
5692 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5693 {
5694 struct root_domain *old_rd = NULL;
5695 unsigned long flags;
5696
5697 raw_spin_lock_irqsave(&rq->lock, flags);
5698
5699 if (rq->rd) {
5700 old_rd = rq->rd;
5701
5702 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5703 set_rq_offline(rq);
5704
5705 cpumask_clear_cpu(rq->cpu, old_rd->span);
5706
5707 /*
5708 * If we dont want to free the old_rd yet then
5709 * set old_rd to NULL to skip the freeing later
5710 * in this function:
5711 */
5712 if (!atomic_dec_and_test(&old_rd->refcount))
5713 old_rd = NULL;
5714 }
5715
5716 atomic_inc(&rd->refcount);
5717 rq->rd = rd;
5718
5719 cpumask_set_cpu(rq->cpu, rd->span);
5720 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5721 set_rq_online(rq);
5722
5723 raw_spin_unlock_irqrestore(&rq->lock, flags);
5724
5725 if (old_rd)
5726 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5727 }
5728
5729 static int init_rootdomain(struct root_domain *rd)
5730 {
5731 memset(rd, 0, sizeof(*rd));
5732
5733 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5734 goto out;
5735 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5736 goto free_span;
5737 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5738 goto free_online;
5739 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5740 goto free_dlo_mask;
5741
5742 init_dl_bw(&rd->dl_bw);
5743 if (cpudl_init(&rd->cpudl) != 0)
5744 goto free_dlo_mask;
5745
5746 if (cpupri_init(&rd->cpupri) != 0)
5747 goto free_rto_mask;
5748 return 0;
5749
5750 free_rto_mask:
5751 free_cpumask_var(rd->rto_mask);
5752 free_dlo_mask:
5753 free_cpumask_var(rd->dlo_mask);
5754 free_online:
5755 free_cpumask_var(rd->online);
5756 free_span:
5757 free_cpumask_var(rd->span);
5758 out:
5759 return -ENOMEM;
5760 }
5761
5762 /*
5763 * By default the system creates a single root-domain with all cpus as
5764 * members (mimicking the global state we have today).
5765 */
5766 struct root_domain def_root_domain;
5767
5768 static void init_defrootdomain(void)
5769 {
5770 init_rootdomain(&def_root_domain);
5771
5772 atomic_set(&def_root_domain.refcount, 1);
5773 }
5774
5775 static struct root_domain *alloc_rootdomain(void)
5776 {
5777 struct root_domain *rd;
5778
5779 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5780 if (!rd)
5781 return NULL;
5782
5783 if (init_rootdomain(rd) != 0) {
5784 kfree(rd);
5785 return NULL;
5786 }
5787
5788 return rd;
5789 }
5790
5791 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5792 {
5793 struct sched_group *tmp, *first;
5794
5795 if (!sg)
5796 return;
5797
5798 first = sg;
5799 do {
5800 tmp = sg->next;
5801
5802 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5803 kfree(sg->sgc);
5804
5805 kfree(sg);
5806 sg = tmp;
5807 } while (sg != first);
5808 }
5809
5810 static void free_sched_domain(struct rcu_head *rcu)
5811 {
5812 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5813
5814 /*
5815 * If its an overlapping domain it has private groups, iterate and
5816 * nuke them all.
5817 */
5818 if (sd->flags & SD_OVERLAP) {
5819 free_sched_groups(sd->groups, 1);
5820 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5821 kfree(sd->groups->sgc);
5822 kfree(sd->groups);
5823 }
5824 kfree(sd);
5825 }
5826
5827 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5828 {
5829 call_rcu(&sd->rcu, free_sched_domain);
5830 }
5831
5832 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5833 {
5834 for (; sd; sd = sd->parent)
5835 destroy_sched_domain(sd, cpu);
5836 }
5837
5838 /*
5839 * Keep a special pointer to the highest sched_domain that has
5840 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5841 * allows us to avoid some pointer chasing select_idle_sibling().
5842 *
5843 * Also keep a unique ID per domain (we use the first cpu number in
5844 * the cpumask of the domain), this allows us to quickly tell if
5845 * two cpus are in the same cache domain, see cpus_share_cache().
5846 */
5847 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5848 DEFINE_PER_CPU(int, sd_llc_size);
5849 DEFINE_PER_CPU(int, sd_llc_id);
5850 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5851 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5852 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5853
5854 static void update_top_cache_domain(int cpu)
5855 {
5856 struct sched_domain *sd;
5857 struct sched_domain *busy_sd = NULL;
5858 int id = cpu;
5859 int size = 1;
5860
5861 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5862 if (sd) {
5863 id = cpumask_first(sched_domain_span(sd));
5864 size = cpumask_weight(sched_domain_span(sd));
5865 busy_sd = sd->parent; /* sd_busy */
5866 }
5867 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5868
5869 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5870 per_cpu(sd_llc_size, cpu) = size;
5871 per_cpu(sd_llc_id, cpu) = id;
5872
5873 sd = lowest_flag_domain(cpu, SD_NUMA);
5874 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5875
5876 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5877 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5878 }
5879
5880 /*
5881 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5882 * hold the hotplug lock.
5883 */
5884 static void
5885 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5886 {
5887 struct rq *rq = cpu_rq(cpu);
5888 struct sched_domain *tmp;
5889
5890 /* Remove the sched domains which do not contribute to scheduling. */
5891 for (tmp = sd; tmp; ) {
5892 struct sched_domain *parent = tmp->parent;
5893 if (!parent)
5894 break;
5895
5896 if (sd_parent_degenerate(tmp, parent)) {
5897 tmp->parent = parent->parent;
5898 if (parent->parent)
5899 parent->parent->child = tmp;
5900 /*
5901 * Transfer SD_PREFER_SIBLING down in case of a
5902 * degenerate parent; the spans match for this
5903 * so the property transfers.
5904 */
5905 if (parent->flags & SD_PREFER_SIBLING)
5906 tmp->flags |= SD_PREFER_SIBLING;
5907 destroy_sched_domain(parent, cpu);
5908 } else
5909 tmp = tmp->parent;
5910 }
5911
5912 if (sd && sd_degenerate(sd)) {
5913 tmp = sd;
5914 sd = sd->parent;
5915 destroy_sched_domain(tmp, cpu);
5916 if (sd)
5917 sd->child = NULL;
5918 }
5919
5920 sched_domain_debug(sd, cpu);
5921
5922 rq_attach_root(rq, rd);
5923 tmp = rq->sd;
5924 rcu_assign_pointer(rq->sd, sd);
5925 destroy_sched_domains(tmp, cpu);
5926
5927 update_top_cache_domain(cpu);
5928 }
5929
5930 /* Setup the mask of cpus configured for isolated domains */
5931 static int __init isolated_cpu_setup(char *str)
5932 {
5933 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5934 cpulist_parse(str, cpu_isolated_map);
5935 return 1;
5936 }
5937
5938 __setup("isolcpus=", isolated_cpu_setup);
5939
5940 struct s_data {
5941 struct sched_domain ** __percpu sd;
5942 struct root_domain *rd;
5943 };
5944
5945 enum s_alloc {
5946 sa_rootdomain,
5947 sa_sd,
5948 sa_sd_storage,
5949 sa_none,
5950 };
5951
5952 /*
5953 * Build an iteration mask that can exclude certain CPUs from the upwards
5954 * domain traversal.
5955 *
5956 * Asymmetric node setups can result in situations where the domain tree is of
5957 * unequal depth, make sure to skip domains that already cover the entire
5958 * range.
5959 *
5960 * In that case build_sched_domains() will have terminated the iteration early
5961 * and our sibling sd spans will be empty. Domains should always include the
5962 * cpu they're built on, so check that.
5963 *
5964 */
5965 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5966 {
5967 const struct cpumask *span = sched_domain_span(sd);
5968 struct sd_data *sdd = sd->private;
5969 struct sched_domain *sibling;
5970 int i;
5971
5972 for_each_cpu(i, span) {
5973 sibling = *per_cpu_ptr(sdd->sd, i);
5974 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5975 continue;
5976
5977 cpumask_set_cpu(i, sched_group_mask(sg));
5978 }
5979 }
5980
5981 /*
5982 * Return the canonical balance cpu for this group, this is the first cpu
5983 * of this group that's also in the iteration mask.
5984 */
5985 int group_balance_cpu(struct sched_group *sg)
5986 {
5987 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5988 }
5989
5990 static int
5991 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5992 {
5993 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5994 const struct cpumask *span = sched_domain_span(sd);
5995 struct cpumask *covered = sched_domains_tmpmask;
5996 struct sd_data *sdd = sd->private;
5997 struct sched_domain *sibling;
5998 int i;
5999
6000 cpumask_clear(covered);
6001
6002 for_each_cpu(i, span) {
6003 struct cpumask *sg_span;
6004
6005 if (cpumask_test_cpu(i, covered))
6006 continue;
6007
6008 sibling = *per_cpu_ptr(sdd->sd, i);
6009
6010 /* See the comment near build_group_mask(). */
6011 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6012 continue;
6013
6014 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6015 GFP_KERNEL, cpu_to_node(cpu));
6016
6017 if (!sg)
6018 goto fail;
6019
6020 sg_span = sched_group_cpus(sg);
6021 if (sibling->child)
6022 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6023 else
6024 cpumask_set_cpu(i, sg_span);
6025
6026 cpumask_or(covered, covered, sg_span);
6027
6028 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6029 if (atomic_inc_return(&sg->sgc->ref) == 1)
6030 build_group_mask(sd, sg);
6031
6032 /*
6033 * Initialize sgc->capacity such that even if we mess up the
6034 * domains and no possible iteration will get us here, we won't
6035 * die on a /0 trap.
6036 */
6037 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6038
6039 /*
6040 * Make sure the first group of this domain contains the
6041 * canonical balance cpu. Otherwise the sched_domain iteration
6042 * breaks. See update_sg_lb_stats().
6043 */
6044 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6045 group_balance_cpu(sg) == cpu)
6046 groups = sg;
6047
6048 if (!first)
6049 first = sg;
6050 if (last)
6051 last->next = sg;
6052 last = sg;
6053 last->next = first;
6054 }
6055 sd->groups = groups;
6056
6057 return 0;
6058
6059 fail:
6060 free_sched_groups(first, 0);
6061
6062 return -ENOMEM;
6063 }
6064
6065 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6066 {
6067 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6068 struct sched_domain *child = sd->child;
6069
6070 if (child)
6071 cpu = cpumask_first(sched_domain_span(child));
6072
6073 if (sg) {
6074 *sg = *per_cpu_ptr(sdd->sg, cpu);
6075 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6076 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6077 }
6078
6079 return cpu;
6080 }
6081
6082 /*
6083 * build_sched_groups will build a circular linked list of the groups
6084 * covered by the given span, and will set each group's ->cpumask correctly,
6085 * and ->cpu_capacity to 0.
6086 *
6087 * Assumes the sched_domain tree is fully constructed
6088 */
6089 static int
6090 build_sched_groups(struct sched_domain *sd, int cpu)
6091 {
6092 struct sched_group *first = NULL, *last = NULL;
6093 struct sd_data *sdd = sd->private;
6094 const struct cpumask *span = sched_domain_span(sd);
6095 struct cpumask *covered;
6096 int i;
6097
6098 get_group(cpu, sdd, &sd->groups);
6099 atomic_inc(&sd->groups->ref);
6100
6101 if (cpu != cpumask_first(span))
6102 return 0;
6103
6104 lockdep_assert_held(&sched_domains_mutex);
6105 covered = sched_domains_tmpmask;
6106
6107 cpumask_clear(covered);
6108
6109 for_each_cpu(i, span) {
6110 struct sched_group *sg;
6111 int group, j;
6112
6113 if (cpumask_test_cpu(i, covered))
6114 continue;
6115
6116 group = get_group(i, sdd, &sg);
6117 cpumask_setall(sched_group_mask(sg));
6118
6119 for_each_cpu(j, span) {
6120 if (get_group(j, sdd, NULL) != group)
6121 continue;
6122
6123 cpumask_set_cpu(j, covered);
6124 cpumask_set_cpu(j, sched_group_cpus(sg));
6125 }
6126
6127 if (!first)
6128 first = sg;
6129 if (last)
6130 last->next = sg;
6131 last = sg;
6132 }
6133 last->next = first;
6134
6135 return 0;
6136 }
6137
6138 /*
6139 * Initialize sched groups cpu_capacity.
6140 *
6141 * cpu_capacity indicates the capacity of sched group, which is used while
6142 * distributing the load between different sched groups in a sched domain.
6143 * Typically cpu_capacity for all the groups in a sched domain will be same
6144 * unless there are asymmetries in the topology. If there are asymmetries,
6145 * group having more cpu_capacity will pickup more load compared to the
6146 * group having less cpu_capacity.
6147 */
6148 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6149 {
6150 struct sched_group *sg = sd->groups;
6151
6152 WARN_ON(!sg);
6153
6154 do {
6155 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6156 sg = sg->next;
6157 } while (sg != sd->groups);
6158
6159 if (cpu != group_balance_cpu(sg))
6160 return;
6161
6162 update_group_capacity(sd, cpu);
6163 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6164 }
6165
6166 /*
6167 * Initializers for schedule domains
6168 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6169 */
6170
6171 static int default_relax_domain_level = -1;
6172 int sched_domain_level_max;
6173
6174 static int __init setup_relax_domain_level(char *str)
6175 {
6176 if (kstrtoint(str, 0, &default_relax_domain_level))
6177 pr_warn("Unable to set relax_domain_level\n");
6178
6179 return 1;
6180 }
6181 __setup("relax_domain_level=", setup_relax_domain_level);
6182
6183 static void set_domain_attribute(struct sched_domain *sd,
6184 struct sched_domain_attr *attr)
6185 {
6186 int request;
6187
6188 if (!attr || attr->relax_domain_level < 0) {
6189 if (default_relax_domain_level < 0)
6190 return;
6191 else
6192 request = default_relax_domain_level;
6193 } else
6194 request = attr->relax_domain_level;
6195 if (request < sd->level) {
6196 /* turn off idle balance on this domain */
6197 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6198 } else {
6199 /* turn on idle balance on this domain */
6200 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6201 }
6202 }
6203
6204 static void __sdt_free(const struct cpumask *cpu_map);
6205 static int __sdt_alloc(const struct cpumask *cpu_map);
6206
6207 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6208 const struct cpumask *cpu_map)
6209 {
6210 switch (what) {
6211 case sa_rootdomain:
6212 if (!atomic_read(&d->rd->refcount))
6213 free_rootdomain(&d->rd->rcu); /* fall through */
6214 case sa_sd:
6215 free_percpu(d->sd); /* fall through */
6216 case sa_sd_storage:
6217 __sdt_free(cpu_map); /* fall through */
6218 case sa_none:
6219 break;
6220 }
6221 }
6222
6223 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6224 const struct cpumask *cpu_map)
6225 {
6226 memset(d, 0, sizeof(*d));
6227
6228 if (__sdt_alloc(cpu_map))
6229 return sa_sd_storage;
6230 d->sd = alloc_percpu(struct sched_domain *);
6231 if (!d->sd)
6232 return sa_sd_storage;
6233 d->rd = alloc_rootdomain();
6234 if (!d->rd)
6235 return sa_sd;
6236 return sa_rootdomain;
6237 }
6238
6239 /*
6240 * NULL the sd_data elements we've used to build the sched_domain and
6241 * sched_group structure so that the subsequent __free_domain_allocs()
6242 * will not free the data we're using.
6243 */
6244 static void claim_allocations(int cpu, struct sched_domain *sd)
6245 {
6246 struct sd_data *sdd = sd->private;
6247
6248 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6249 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6250
6251 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6252 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6253
6254 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6255 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6256 }
6257
6258 #ifdef CONFIG_NUMA
6259 static int sched_domains_numa_levels;
6260 enum numa_topology_type sched_numa_topology_type;
6261 static int *sched_domains_numa_distance;
6262 int sched_max_numa_distance;
6263 static struct cpumask ***sched_domains_numa_masks;
6264 static int sched_domains_curr_level;
6265 #endif
6266
6267 /*
6268 * SD_flags allowed in topology descriptions.
6269 *
6270 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6271 * SD_SHARE_PKG_RESOURCES - describes shared caches
6272 * SD_NUMA - describes NUMA topologies
6273 * SD_SHARE_POWERDOMAIN - describes shared power domain
6274 *
6275 * Odd one out:
6276 * SD_ASYM_PACKING - describes SMT quirks
6277 */
6278 #define TOPOLOGY_SD_FLAGS \
6279 (SD_SHARE_CPUCAPACITY | \
6280 SD_SHARE_PKG_RESOURCES | \
6281 SD_NUMA | \
6282 SD_ASYM_PACKING | \
6283 SD_SHARE_POWERDOMAIN)
6284
6285 static struct sched_domain *
6286 sd_init(struct sched_domain_topology_level *tl, int cpu)
6287 {
6288 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6289 int sd_weight, sd_flags = 0;
6290
6291 #ifdef CONFIG_NUMA
6292 /*
6293 * Ugly hack to pass state to sd_numa_mask()...
6294 */
6295 sched_domains_curr_level = tl->numa_level;
6296 #endif
6297
6298 sd_weight = cpumask_weight(tl->mask(cpu));
6299
6300 if (tl->sd_flags)
6301 sd_flags = (*tl->sd_flags)();
6302 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6303 "wrong sd_flags in topology description\n"))
6304 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6305
6306 *sd = (struct sched_domain){
6307 .min_interval = sd_weight,
6308 .max_interval = 2*sd_weight,
6309 .busy_factor = 32,
6310 .imbalance_pct = 125,
6311
6312 .cache_nice_tries = 0,
6313 .busy_idx = 0,
6314 .idle_idx = 0,
6315 .newidle_idx = 0,
6316 .wake_idx = 0,
6317 .forkexec_idx = 0,
6318
6319 .flags = 1*SD_LOAD_BALANCE
6320 | 1*SD_BALANCE_NEWIDLE
6321 | 1*SD_BALANCE_EXEC
6322 | 1*SD_BALANCE_FORK
6323 | 0*SD_BALANCE_WAKE
6324 | 1*SD_WAKE_AFFINE
6325 | 0*SD_SHARE_CPUCAPACITY
6326 | 0*SD_SHARE_PKG_RESOURCES
6327 | 0*SD_SERIALIZE
6328 | 0*SD_PREFER_SIBLING
6329 | 0*SD_NUMA
6330 | sd_flags
6331 ,
6332
6333 .last_balance = jiffies,
6334 .balance_interval = sd_weight,
6335 .smt_gain = 0,
6336 .max_newidle_lb_cost = 0,
6337 .next_decay_max_lb_cost = jiffies,
6338 #ifdef CONFIG_SCHED_DEBUG
6339 .name = tl->name,
6340 #endif
6341 };
6342
6343 /*
6344 * Convert topological properties into behaviour.
6345 */
6346
6347 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6348 sd->flags |= SD_PREFER_SIBLING;
6349 sd->imbalance_pct = 110;
6350 sd->smt_gain = 1178; /* ~15% */
6351
6352 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6353 sd->imbalance_pct = 117;
6354 sd->cache_nice_tries = 1;
6355 sd->busy_idx = 2;
6356
6357 #ifdef CONFIG_NUMA
6358 } else if (sd->flags & SD_NUMA) {
6359 sd->cache_nice_tries = 2;
6360 sd->busy_idx = 3;
6361 sd->idle_idx = 2;
6362
6363 sd->flags |= SD_SERIALIZE;
6364 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6365 sd->flags &= ~(SD_BALANCE_EXEC |
6366 SD_BALANCE_FORK |
6367 SD_WAKE_AFFINE);
6368 }
6369
6370 #endif
6371 } else {
6372 sd->flags |= SD_PREFER_SIBLING;
6373 sd->cache_nice_tries = 1;
6374 sd->busy_idx = 2;
6375 sd->idle_idx = 1;
6376 }
6377
6378 sd->private = &tl->data;
6379
6380 return sd;
6381 }
6382
6383 /*
6384 * Topology list, bottom-up.
6385 */
6386 static struct sched_domain_topology_level default_topology[] = {
6387 #ifdef CONFIG_SCHED_SMT
6388 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6389 #endif
6390 #ifdef CONFIG_SCHED_MC
6391 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6392 #endif
6393 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6394 { NULL, },
6395 };
6396
6397 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6398
6399 #define for_each_sd_topology(tl) \
6400 for (tl = sched_domain_topology; tl->mask; tl++)
6401
6402 void set_sched_topology(struct sched_domain_topology_level *tl)
6403 {
6404 sched_domain_topology = tl;
6405 }
6406
6407 #ifdef CONFIG_NUMA
6408
6409 static const struct cpumask *sd_numa_mask(int cpu)
6410 {
6411 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6412 }
6413
6414 static void sched_numa_warn(const char *str)
6415 {
6416 static int done = false;
6417 int i,j;
6418
6419 if (done)
6420 return;
6421
6422 done = true;
6423
6424 printk(KERN_WARNING "ERROR: %s\n\n", str);
6425
6426 for (i = 0; i < nr_node_ids; i++) {
6427 printk(KERN_WARNING " ");
6428 for (j = 0; j < nr_node_ids; j++)
6429 printk(KERN_CONT "%02d ", node_distance(i,j));
6430 printk(KERN_CONT "\n");
6431 }
6432 printk(KERN_WARNING "\n");
6433 }
6434
6435 bool find_numa_distance(int distance)
6436 {
6437 int i;
6438
6439 if (distance == node_distance(0, 0))
6440 return true;
6441
6442 for (i = 0; i < sched_domains_numa_levels; i++) {
6443 if (sched_domains_numa_distance[i] == distance)
6444 return true;
6445 }
6446
6447 return false;
6448 }
6449
6450 /*
6451 * A system can have three types of NUMA topology:
6452 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6453 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6454 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6455 *
6456 * The difference between a glueless mesh topology and a backplane
6457 * topology lies in whether communication between not directly
6458 * connected nodes goes through intermediary nodes (where programs
6459 * could run), or through backplane controllers. This affects
6460 * placement of programs.
6461 *
6462 * The type of topology can be discerned with the following tests:
6463 * - If the maximum distance between any nodes is 1 hop, the system
6464 * is directly connected.
6465 * - If for two nodes A and B, located N > 1 hops away from each other,
6466 * there is an intermediary node C, which is < N hops away from both
6467 * nodes A and B, the system is a glueless mesh.
6468 */
6469 static void init_numa_topology_type(void)
6470 {
6471 int a, b, c, n;
6472
6473 n = sched_max_numa_distance;
6474
6475 if (sched_domains_numa_levels <= 1) {
6476 sched_numa_topology_type = NUMA_DIRECT;
6477 return;
6478 }
6479
6480 for_each_online_node(a) {
6481 for_each_online_node(b) {
6482 /* Find two nodes furthest removed from each other. */
6483 if (node_distance(a, b) < n)
6484 continue;
6485
6486 /* Is there an intermediary node between a and b? */
6487 for_each_online_node(c) {
6488 if (node_distance(a, c) < n &&
6489 node_distance(b, c) < n) {
6490 sched_numa_topology_type =
6491 NUMA_GLUELESS_MESH;
6492 return;
6493 }
6494 }
6495
6496 sched_numa_topology_type = NUMA_BACKPLANE;
6497 return;
6498 }
6499 }
6500 }
6501
6502 static void sched_init_numa(void)
6503 {
6504 int next_distance, curr_distance = node_distance(0, 0);
6505 struct sched_domain_topology_level *tl;
6506 int level = 0;
6507 int i, j, k;
6508
6509 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6510 if (!sched_domains_numa_distance)
6511 return;
6512
6513 /*
6514 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6515 * unique distances in the node_distance() table.
6516 *
6517 * Assumes node_distance(0,j) includes all distances in
6518 * node_distance(i,j) in order to avoid cubic time.
6519 */
6520 next_distance = curr_distance;
6521 for (i = 0; i < nr_node_ids; i++) {
6522 for (j = 0; j < nr_node_ids; j++) {
6523 for (k = 0; k < nr_node_ids; k++) {
6524 int distance = node_distance(i, k);
6525
6526 if (distance > curr_distance &&
6527 (distance < next_distance ||
6528 next_distance == curr_distance))
6529 next_distance = distance;
6530
6531 /*
6532 * While not a strong assumption it would be nice to know
6533 * about cases where if node A is connected to B, B is not
6534 * equally connected to A.
6535 */
6536 if (sched_debug() && node_distance(k, i) != distance)
6537 sched_numa_warn("Node-distance not symmetric");
6538
6539 if (sched_debug() && i && !find_numa_distance(distance))
6540 sched_numa_warn("Node-0 not representative");
6541 }
6542 if (next_distance != curr_distance) {
6543 sched_domains_numa_distance[level++] = next_distance;
6544 sched_domains_numa_levels = level;
6545 curr_distance = next_distance;
6546 } else break;
6547 }
6548
6549 /*
6550 * In case of sched_debug() we verify the above assumption.
6551 */
6552 if (!sched_debug())
6553 break;
6554 }
6555
6556 if (!level)
6557 return;
6558
6559 /*
6560 * 'level' contains the number of unique distances, excluding the
6561 * identity distance node_distance(i,i).
6562 *
6563 * The sched_domains_numa_distance[] array includes the actual distance
6564 * numbers.
6565 */
6566
6567 /*
6568 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6569 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6570 * the array will contain less then 'level' members. This could be
6571 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6572 * in other functions.
6573 *
6574 * We reset it to 'level' at the end of this function.
6575 */
6576 sched_domains_numa_levels = 0;
6577
6578 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6579 if (!sched_domains_numa_masks)
6580 return;
6581
6582 /*
6583 * Now for each level, construct a mask per node which contains all
6584 * cpus of nodes that are that many hops away from us.
6585 */
6586 for (i = 0; i < level; i++) {
6587 sched_domains_numa_masks[i] =
6588 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6589 if (!sched_domains_numa_masks[i])
6590 return;
6591
6592 for (j = 0; j < nr_node_ids; j++) {
6593 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6594 if (!mask)
6595 return;
6596
6597 sched_domains_numa_masks[i][j] = mask;
6598
6599 for (k = 0; k < nr_node_ids; k++) {
6600 if (node_distance(j, k) > sched_domains_numa_distance[i])
6601 continue;
6602
6603 cpumask_or(mask, mask, cpumask_of_node(k));
6604 }
6605 }
6606 }
6607
6608 /* Compute default topology size */
6609 for (i = 0; sched_domain_topology[i].mask; i++);
6610
6611 tl = kzalloc((i + level + 1) *
6612 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6613 if (!tl)
6614 return;
6615
6616 /*
6617 * Copy the default topology bits..
6618 */
6619 for (i = 0; sched_domain_topology[i].mask; i++)
6620 tl[i] = sched_domain_topology[i];
6621
6622 /*
6623 * .. and append 'j' levels of NUMA goodness.
6624 */
6625 for (j = 0; j < level; i++, j++) {
6626 tl[i] = (struct sched_domain_topology_level){
6627 .mask = sd_numa_mask,
6628 .sd_flags = cpu_numa_flags,
6629 .flags = SDTL_OVERLAP,
6630 .numa_level = j,
6631 SD_INIT_NAME(NUMA)
6632 };
6633 }
6634
6635 sched_domain_topology = tl;
6636
6637 sched_domains_numa_levels = level;
6638 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6639
6640 init_numa_topology_type();
6641 }
6642
6643 static void sched_domains_numa_masks_set(int cpu)
6644 {
6645 int i, j;
6646 int node = cpu_to_node(cpu);
6647
6648 for (i = 0; i < sched_domains_numa_levels; i++) {
6649 for (j = 0; j < nr_node_ids; j++) {
6650 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6651 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6652 }
6653 }
6654 }
6655
6656 static void sched_domains_numa_masks_clear(int cpu)
6657 {
6658 int i, j;
6659 for (i = 0; i < sched_domains_numa_levels; i++) {
6660 for (j = 0; j < nr_node_ids; j++)
6661 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6662 }
6663 }
6664
6665 /*
6666 * Update sched_domains_numa_masks[level][node] array when new cpus
6667 * are onlined.
6668 */
6669 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6670 unsigned long action,
6671 void *hcpu)
6672 {
6673 int cpu = (long)hcpu;
6674
6675 switch (action & ~CPU_TASKS_FROZEN) {
6676 case CPU_ONLINE:
6677 sched_domains_numa_masks_set(cpu);
6678 break;
6679
6680 case CPU_DEAD:
6681 sched_domains_numa_masks_clear(cpu);
6682 break;
6683
6684 default:
6685 return NOTIFY_DONE;
6686 }
6687
6688 return NOTIFY_OK;
6689 }
6690 #else
6691 static inline void sched_init_numa(void)
6692 {
6693 }
6694
6695 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6696 unsigned long action,
6697 void *hcpu)
6698 {
6699 return 0;
6700 }
6701 #endif /* CONFIG_NUMA */
6702
6703 static int __sdt_alloc(const struct cpumask *cpu_map)
6704 {
6705 struct sched_domain_topology_level *tl;
6706 int j;
6707
6708 for_each_sd_topology(tl) {
6709 struct sd_data *sdd = &tl->data;
6710
6711 sdd->sd = alloc_percpu(struct sched_domain *);
6712 if (!sdd->sd)
6713 return -ENOMEM;
6714
6715 sdd->sg = alloc_percpu(struct sched_group *);
6716 if (!sdd->sg)
6717 return -ENOMEM;
6718
6719 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6720 if (!sdd->sgc)
6721 return -ENOMEM;
6722
6723 for_each_cpu(j, cpu_map) {
6724 struct sched_domain *sd;
6725 struct sched_group *sg;
6726 struct sched_group_capacity *sgc;
6727
6728 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6729 GFP_KERNEL, cpu_to_node(j));
6730 if (!sd)
6731 return -ENOMEM;
6732
6733 *per_cpu_ptr(sdd->sd, j) = sd;
6734
6735 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6736 GFP_KERNEL, cpu_to_node(j));
6737 if (!sg)
6738 return -ENOMEM;
6739
6740 sg->next = sg;
6741
6742 *per_cpu_ptr(sdd->sg, j) = sg;
6743
6744 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6745 GFP_KERNEL, cpu_to_node(j));
6746 if (!sgc)
6747 return -ENOMEM;
6748
6749 *per_cpu_ptr(sdd->sgc, j) = sgc;
6750 }
6751 }
6752
6753 return 0;
6754 }
6755
6756 static void __sdt_free(const struct cpumask *cpu_map)
6757 {
6758 struct sched_domain_topology_level *tl;
6759 int j;
6760
6761 for_each_sd_topology(tl) {
6762 struct sd_data *sdd = &tl->data;
6763
6764 for_each_cpu(j, cpu_map) {
6765 struct sched_domain *sd;
6766
6767 if (sdd->sd) {
6768 sd = *per_cpu_ptr(sdd->sd, j);
6769 if (sd && (sd->flags & SD_OVERLAP))
6770 free_sched_groups(sd->groups, 0);
6771 kfree(*per_cpu_ptr(sdd->sd, j));
6772 }
6773
6774 if (sdd->sg)
6775 kfree(*per_cpu_ptr(sdd->sg, j));
6776 if (sdd->sgc)
6777 kfree(*per_cpu_ptr(sdd->sgc, j));
6778 }
6779 free_percpu(sdd->sd);
6780 sdd->sd = NULL;
6781 free_percpu(sdd->sg);
6782 sdd->sg = NULL;
6783 free_percpu(sdd->sgc);
6784 sdd->sgc = NULL;
6785 }
6786 }
6787
6788 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6789 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6790 struct sched_domain *child, int cpu)
6791 {
6792 struct sched_domain *sd = sd_init(tl, cpu);
6793 if (!sd)
6794 return child;
6795
6796 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6797 if (child) {
6798 sd->level = child->level + 1;
6799 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6800 child->parent = sd;
6801 sd->child = child;
6802
6803 if (!cpumask_subset(sched_domain_span(child),
6804 sched_domain_span(sd))) {
6805 pr_err("BUG: arch topology borken\n");
6806 #ifdef CONFIG_SCHED_DEBUG
6807 pr_err(" the %s domain not a subset of the %s domain\n",
6808 child->name, sd->name);
6809 #endif
6810 /* Fixup, ensure @sd has at least @child cpus. */
6811 cpumask_or(sched_domain_span(sd),
6812 sched_domain_span(sd),
6813 sched_domain_span(child));
6814 }
6815
6816 }
6817 set_domain_attribute(sd, attr);
6818
6819 return sd;
6820 }
6821
6822 /*
6823 * Build sched domains for a given set of cpus and attach the sched domains
6824 * to the individual cpus
6825 */
6826 static int build_sched_domains(const struct cpumask *cpu_map,
6827 struct sched_domain_attr *attr)
6828 {
6829 enum s_alloc alloc_state;
6830 struct sched_domain *sd;
6831 struct s_data d;
6832 int i, ret = -ENOMEM;
6833
6834 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6835 if (alloc_state != sa_rootdomain)
6836 goto error;
6837
6838 /* Set up domains for cpus specified by the cpu_map. */
6839 for_each_cpu(i, cpu_map) {
6840 struct sched_domain_topology_level *tl;
6841
6842 sd = NULL;
6843 for_each_sd_topology(tl) {
6844 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6845 if (tl == sched_domain_topology)
6846 *per_cpu_ptr(d.sd, i) = sd;
6847 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6848 sd->flags |= SD_OVERLAP;
6849 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6850 break;
6851 }
6852 }
6853
6854 /* Build the groups for the domains */
6855 for_each_cpu(i, cpu_map) {
6856 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6857 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6858 if (sd->flags & SD_OVERLAP) {
6859 if (build_overlap_sched_groups(sd, i))
6860 goto error;
6861 } else {
6862 if (build_sched_groups(sd, i))
6863 goto error;
6864 }
6865 }
6866 }
6867
6868 /* Calculate CPU capacity for physical packages and nodes */
6869 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6870 if (!cpumask_test_cpu(i, cpu_map))
6871 continue;
6872
6873 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6874 claim_allocations(i, sd);
6875 init_sched_groups_capacity(i, sd);
6876 }
6877 }
6878
6879 /* Attach the domains */
6880 rcu_read_lock();
6881 for_each_cpu(i, cpu_map) {
6882 sd = *per_cpu_ptr(d.sd, i);
6883 cpu_attach_domain(sd, d.rd, i);
6884 }
6885 rcu_read_unlock();
6886
6887 ret = 0;
6888 error:
6889 __free_domain_allocs(&d, alloc_state, cpu_map);
6890 return ret;
6891 }
6892
6893 static cpumask_var_t *doms_cur; /* current sched domains */
6894 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6895 static struct sched_domain_attr *dattr_cur;
6896 /* attribues of custom domains in 'doms_cur' */
6897
6898 /*
6899 * Special case: If a kmalloc of a doms_cur partition (array of
6900 * cpumask) fails, then fallback to a single sched domain,
6901 * as determined by the single cpumask fallback_doms.
6902 */
6903 static cpumask_var_t fallback_doms;
6904
6905 /*
6906 * arch_update_cpu_topology lets virtualized architectures update the
6907 * cpu core maps. It is supposed to return 1 if the topology changed
6908 * or 0 if it stayed the same.
6909 */
6910 int __weak arch_update_cpu_topology(void)
6911 {
6912 return 0;
6913 }
6914
6915 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6916 {
6917 int i;
6918 cpumask_var_t *doms;
6919
6920 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6921 if (!doms)
6922 return NULL;
6923 for (i = 0; i < ndoms; i++) {
6924 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6925 free_sched_domains(doms, i);
6926 return NULL;
6927 }
6928 }
6929 return doms;
6930 }
6931
6932 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6933 {
6934 unsigned int i;
6935 for (i = 0; i < ndoms; i++)
6936 free_cpumask_var(doms[i]);
6937 kfree(doms);
6938 }
6939
6940 /*
6941 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6942 * For now this just excludes isolated cpus, but could be used to
6943 * exclude other special cases in the future.
6944 */
6945 static int init_sched_domains(const struct cpumask *cpu_map)
6946 {
6947 int err;
6948
6949 arch_update_cpu_topology();
6950 ndoms_cur = 1;
6951 doms_cur = alloc_sched_domains(ndoms_cur);
6952 if (!doms_cur)
6953 doms_cur = &fallback_doms;
6954 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6955 err = build_sched_domains(doms_cur[0], NULL);
6956 register_sched_domain_sysctl();
6957
6958 return err;
6959 }
6960
6961 /*
6962 * Detach sched domains from a group of cpus specified in cpu_map
6963 * These cpus will now be attached to the NULL domain
6964 */
6965 static void detach_destroy_domains(const struct cpumask *cpu_map)
6966 {
6967 int i;
6968
6969 rcu_read_lock();
6970 for_each_cpu(i, cpu_map)
6971 cpu_attach_domain(NULL, &def_root_domain, i);
6972 rcu_read_unlock();
6973 }
6974
6975 /* handle null as "default" */
6976 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6977 struct sched_domain_attr *new, int idx_new)
6978 {
6979 struct sched_domain_attr tmp;
6980
6981 /* fast path */
6982 if (!new && !cur)
6983 return 1;
6984
6985 tmp = SD_ATTR_INIT;
6986 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6987 new ? (new + idx_new) : &tmp,
6988 sizeof(struct sched_domain_attr));
6989 }
6990
6991 /*
6992 * Partition sched domains as specified by the 'ndoms_new'
6993 * cpumasks in the array doms_new[] of cpumasks. This compares
6994 * doms_new[] to the current sched domain partitioning, doms_cur[].
6995 * It destroys each deleted domain and builds each new domain.
6996 *
6997 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6998 * The masks don't intersect (don't overlap.) We should setup one
6999 * sched domain for each mask. CPUs not in any of the cpumasks will
7000 * not be load balanced. If the same cpumask appears both in the
7001 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7002 * it as it is.
7003 *
7004 * The passed in 'doms_new' should be allocated using
7005 * alloc_sched_domains. This routine takes ownership of it and will
7006 * free_sched_domains it when done with it. If the caller failed the
7007 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7008 * and partition_sched_domains() will fallback to the single partition
7009 * 'fallback_doms', it also forces the domains to be rebuilt.
7010 *
7011 * If doms_new == NULL it will be replaced with cpu_online_mask.
7012 * ndoms_new == 0 is a special case for destroying existing domains,
7013 * and it will not create the default domain.
7014 *
7015 * Call with hotplug lock held
7016 */
7017 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7018 struct sched_domain_attr *dattr_new)
7019 {
7020 int i, j, n;
7021 int new_topology;
7022
7023 mutex_lock(&sched_domains_mutex);
7024
7025 /* always unregister in case we don't destroy any domains */
7026 unregister_sched_domain_sysctl();
7027
7028 /* Let architecture update cpu core mappings. */
7029 new_topology = arch_update_cpu_topology();
7030
7031 n = doms_new ? ndoms_new : 0;
7032
7033 /* Destroy deleted domains */
7034 for (i = 0; i < ndoms_cur; i++) {
7035 for (j = 0; j < n && !new_topology; j++) {
7036 if (cpumask_equal(doms_cur[i], doms_new[j])
7037 && dattrs_equal(dattr_cur, i, dattr_new, j))
7038 goto match1;
7039 }
7040 /* no match - a current sched domain not in new doms_new[] */
7041 detach_destroy_domains(doms_cur[i]);
7042 match1:
7043 ;
7044 }
7045
7046 n = ndoms_cur;
7047 if (doms_new == NULL) {
7048 n = 0;
7049 doms_new = &fallback_doms;
7050 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7051 WARN_ON_ONCE(dattr_new);
7052 }
7053
7054 /* Build new domains */
7055 for (i = 0; i < ndoms_new; i++) {
7056 for (j = 0; j < n && !new_topology; j++) {
7057 if (cpumask_equal(doms_new[i], doms_cur[j])
7058 && dattrs_equal(dattr_new, i, dattr_cur, j))
7059 goto match2;
7060 }
7061 /* no match - add a new doms_new */
7062 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7063 match2:
7064 ;
7065 }
7066
7067 /* Remember the new sched domains */
7068 if (doms_cur != &fallback_doms)
7069 free_sched_domains(doms_cur, ndoms_cur);
7070 kfree(dattr_cur); /* kfree(NULL) is safe */
7071 doms_cur = doms_new;
7072 dattr_cur = dattr_new;
7073 ndoms_cur = ndoms_new;
7074
7075 register_sched_domain_sysctl();
7076
7077 mutex_unlock(&sched_domains_mutex);
7078 }
7079
7080 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7081
7082 /*
7083 * Update cpusets according to cpu_active mask. If cpusets are
7084 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7085 * around partition_sched_domains().
7086 *
7087 * If we come here as part of a suspend/resume, don't touch cpusets because we
7088 * want to restore it back to its original state upon resume anyway.
7089 */
7090 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7091 void *hcpu)
7092 {
7093 switch (action) {
7094 case CPU_ONLINE_FROZEN:
7095 case CPU_DOWN_FAILED_FROZEN:
7096
7097 /*
7098 * num_cpus_frozen tracks how many CPUs are involved in suspend
7099 * resume sequence. As long as this is not the last online
7100 * operation in the resume sequence, just build a single sched
7101 * domain, ignoring cpusets.
7102 */
7103 num_cpus_frozen--;
7104 if (likely(num_cpus_frozen)) {
7105 partition_sched_domains(1, NULL, NULL);
7106 break;
7107 }
7108
7109 /*
7110 * This is the last CPU online operation. So fall through and
7111 * restore the original sched domains by considering the
7112 * cpuset configurations.
7113 */
7114
7115 case CPU_ONLINE:
7116 cpuset_update_active_cpus(true);
7117 break;
7118 default:
7119 return NOTIFY_DONE;
7120 }
7121 return NOTIFY_OK;
7122 }
7123
7124 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7125 void *hcpu)
7126 {
7127 unsigned long flags;
7128 long cpu = (long)hcpu;
7129 struct dl_bw *dl_b;
7130 bool overflow;
7131 int cpus;
7132
7133 switch (action) {
7134 case CPU_DOWN_PREPARE:
7135 rcu_read_lock_sched();
7136 dl_b = dl_bw_of(cpu);
7137
7138 raw_spin_lock_irqsave(&dl_b->lock, flags);
7139 cpus = dl_bw_cpus(cpu);
7140 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7141 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7142
7143 rcu_read_unlock_sched();
7144
7145 if (overflow)
7146 return notifier_from_errno(-EBUSY);
7147 cpuset_update_active_cpus(false);
7148 break;
7149 case CPU_DOWN_PREPARE_FROZEN:
7150 num_cpus_frozen++;
7151 partition_sched_domains(1, NULL, NULL);
7152 break;
7153 default:
7154 return NOTIFY_DONE;
7155 }
7156 return NOTIFY_OK;
7157 }
7158
7159 void __init sched_init_smp(void)
7160 {
7161 cpumask_var_t non_isolated_cpus;
7162
7163 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7164 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7165
7166 /* nohz_full won't take effect without isolating the cpus. */
7167 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7168
7169 sched_init_numa();
7170
7171 /*
7172 * There's no userspace yet to cause hotplug operations; hence all the
7173 * cpu masks are stable and all blatant races in the below code cannot
7174 * happen.
7175 */
7176 mutex_lock(&sched_domains_mutex);
7177 init_sched_domains(cpu_active_mask);
7178 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7179 if (cpumask_empty(non_isolated_cpus))
7180 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7181 mutex_unlock(&sched_domains_mutex);
7182
7183 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7184 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7185 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7186
7187 init_hrtick();
7188
7189 /* Move init over to a non-isolated CPU */
7190 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7191 BUG();
7192 sched_init_granularity();
7193 free_cpumask_var(non_isolated_cpus);
7194
7195 init_sched_rt_class();
7196 init_sched_dl_class();
7197 }
7198 #else
7199 void __init sched_init_smp(void)
7200 {
7201 sched_init_granularity();
7202 }
7203 #endif /* CONFIG_SMP */
7204
7205 int in_sched_functions(unsigned long addr)
7206 {
7207 return in_lock_functions(addr) ||
7208 (addr >= (unsigned long)__sched_text_start
7209 && addr < (unsigned long)__sched_text_end);
7210 }
7211
7212 #ifdef CONFIG_CGROUP_SCHED
7213 /*
7214 * Default task group.
7215 * Every task in system belongs to this group at bootup.
7216 */
7217 struct task_group root_task_group;
7218 LIST_HEAD(task_groups);
7219 #endif
7220
7221 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7222
7223 void __init sched_init(void)
7224 {
7225 int i, j;
7226 unsigned long alloc_size = 0, ptr;
7227
7228 #ifdef CONFIG_FAIR_GROUP_SCHED
7229 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7230 #endif
7231 #ifdef CONFIG_RT_GROUP_SCHED
7232 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7233 #endif
7234 if (alloc_size) {
7235 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7236
7237 #ifdef CONFIG_FAIR_GROUP_SCHED
7238 root_task_group.se = (struct sched_entity **)ptr;
7239 ptr += nr_cpu_ids * sizeof(void **);
7240
7241 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7242 ptr += nr_cpu_ids * sizeof(void **);
7243
7244 #endif /* CONFIG_FAIR_GROUP_SCHED */
7245 #ifdef CONFIG_RT_GROUP_SCHED
7246 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7247 ptr += nr_cpu_ids * sizeof(void **);
7248
7249 root_task_group.rt_rq = (struct rt_rq **)ptr;
7250 ptr += nr_cpu_ids * sizeof(void **);
7251
7252 #endif /* CONFIG_RT_GROUP_SCHED */
7253 }
7254 #ifdef CONFIG_CPUMASK_OFFSTACK
7255 for_each_possible_cpu(i) {
7256 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7257 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7258 }
7259 #endif /* CONFIG_CPUMASK_OFFSTACK */
7260
7261 init_rt_bandwidth(&def_rt_bandwidth,
7262 global_rt_period(), global_rt_runtime());
7263 init_dl_bandwidth(&def_dl_bandwidth,
7264 global_rt_period(), global_rt_runtime());
7265
7266 #ifdef CONFIG_SMP
7267 init_defrootdomain();
7268 #endif
7269
7270 #ifdef CONFIG_RT_GROUP_SCHED
7271 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7272 global_rt_period(), global_rt_runtime());
7273 #endif /* CONFIG_RT_GROUP_SCHED */
7274
7275 #ifdef CONFIG_CGROUP_SCHED
7276 list_add(&root_task_group.list, &task_groups);
7277 INIT_LIST_HEAD(&root_task_group.children);
7278 INIT_LIST_HEAD(&root_task_group.siblings);
7279 autogroup_init(&init_task);
7280
7281 #endif /* CONFIG_CGROUP_SCHED */
7282
7283 for_each_possible_cpu(i) {
7284 struct rq *rq;
7285
7286 rq = cpu_rq(i);
7287 raw_spin_lock_init(&rq->lock);
7288 rq->nr_running = 0;
7289 rq->calc_load_active = 0;
7290 rq->calc_load_update = jiffies + LOAD_FREQ;
7291 init_cfs_rq(&rq->cfs);
7292 init_rt_rq(&rq->rt);
7293 init_dl_rq(&rq->dl);
7294 #ifdef CONFIG_FAIR_GROUP_SCHED
7295 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7296 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7297 /*
7298 * How much cpu bandwidth does root_task_group get?
7299 *
7300 * In case of task-groups formed thr' the cgroup filesystem, it
7301 * gets 100% of the cpu resources in the system. This overall
7302 * system cpu resource is divided among the tasks of
7303 * root_task_group and its child task-groups in a fair manner,
7304 * based on each entity's (task or task-group's) weight
7305 * (se->load.weight).
7306 *
7307 * In other words, if root_task_group has 10 tasks of weight
7308 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7309 * then A0's share of the cpu resource is:
7310 *
7311 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7312 *
7313 * We achieve this by letting root_task_group's tasks sit
7314 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7315 */
7316 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7317 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7318 #endif /* CONFIG_FAIR_GROUP_SCHED */
7319
7320 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7321 #ifdef CONFIG_RT_GROUP_SCHED
7322 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7323 #endif
7324
7325 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7326 rq->cpu_load[j] = 0;
7327
7328 rq->last_load_update_tick = jiffies;
7329
7330 #ifdef CONFIG_SMP
7331 rq->sd = NULL;
7332 rq->rd = NULL;
7333 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7334 rq->balance_callback = NULL;
7335 rq->active_balance = 0;
7336 rq->next_balance = jiffies;
7337 rq->push_cpu = 0;
7338 rq->cpu = i;
7339 rq->online = 0;
7340 rq->idle_stamp = 0;
7341 rq->avg_idle = 2*sysctl_sched_migration_cost;
7342 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7343
7344 INIT_LIST_HEAD(&rq->cfs_tasks);
7345
7346 rq_attach_root(rq, &def_root_domain);
7347 #ifdef CONFIG_NO_HZ_COMMON
7348 rq->nohz_flags = 0;
7349 #endif
7350 #ifdef CONFIG_NO_HZ_FULL
7351 rq->last_sched_tick = 0;
7352 #endif
7353 #endif
7354 init_rq_hrtick(rq);
7355 atomic_set(&rq->nr_iowait, 0);
7356 }
7357
7358 set_load_weight(&init_task);
7359
7360 #ifdef CONFIG_PREEMPT_NOTIFIERS
7361 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7362 #endif
7363
7364 /*
7365 * The boot idle thread does lazy MMU switching as well:
7366 */
7367 atomic_inc(&init_mm.mm_count);
7368 enter_lazy_tlb(&init_mm, current);
7369
7370 /*
7371 * During early bootup we pretend to be a normal task:
7372 */
7373 current->sched_class = &fair_sched_class;
7374
7375 /*
7376 * Make us the idle thread. Technically, schedule() should not be
7377 * called from this thread, however somewhere below it might be,
7378 * but because we are the idle thread, we just pick up running again
7379 * when this runqueue becomes "idle".
7380 */
7381 init_idle(current, smp_processor_id());
7382
7383 calc_load_update = jiffies + LOAD_FREQ;
7384
7385 #ifdef CONFIG_SMP
7386 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7387 /* May be allocated at isolcpus cmdline parse time */
7388 if (cpu_isolated_map == NULL)
7389 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7390 idle_thread_set_boot_cpu();
7391 set_cpu_rq_start_time();
7392 #endif
7393 init_sched_fair_class();
7394
7395 scheduler_running = 1;
7396 }
7397
7398 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7399 static inline int preempt_count_equals(int preempt_offset)
7400 {
7401 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7402
7403 return (nested == preempt_offset);
7404 }
7405
7406 void __might_sleep(const char *file, int line, int preempt_offset)
7407 {
7408 /*
7409 * Blocking primitives will set (and therefore destroy) current->state,
7410 * since we will exit with TASK_RUNNING make sure we enter with it,
7411 * otherwise we will destroy state.
7412 */
7413 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7414 "do not call blocking ops when !TASK_RUNNING; "
7415 "state=%lx set at [<%p>] %pS\n",
7416 current->state,
7417 (void *)current->task_state_change,
7418 (void *)current->task_state_change);
7419
7420 ___might_sleep(file, line, preempt_offset);
7421 }
7422 EXPORT_SYMBOL(__might_sleep);
7423
7424 void ___might_sleep(const char *file, int line, int preempt_offset)
7425 {
7426 static unsigned long prev_jiffy; /* ratelimiting */
7427
7428 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7429 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7430 !is_idle_task(current)) ||
7431 system_state != SYSTEM_RUNNING || oops_in_progress)
7432 return;
7433 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7434 return;
7435 prev_jiffy = jiffies;
7436
7437 printk(KERN_ERR
7438 "BUG: sleeping function called from invalid context at %s:%d\n",
7439 file, line);
7440 printk(KERN_ERR
7441 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7442 in_atomic(), irqs_disabled(),
7443 current->pid, current->comm);
7444
7445 if (task_stack_end_corrupted(current))
7446 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7447
7448 debug_show_held_locks(current);
7449 if (irqs_disabled())
7450 print_irqtrace_events(current);
7451 #ifdef CONFIG_DEBUG_PREEMPT
7452 if (!preempt_count_equals(preempt_offset)) {
7453 pr_err("Preemption disabled at:");
7454 print_ip_sym(current->preempt_disable_ip);
7455 pr_cont("\n");
7456 }
7457 #endif
7458 dump_stack();
7459 }
7460 EXPORT_SYMBOL(___might_sleep);
7461 #endif
7462
7463 #ifdef CONFIG_MAGIC_SYSRQ
7464 void normalize_rt_tasks(void)
7465 {
7466 struct task_struct *g, *p;
7467 struct sched_attr attr = {
7468 .sched_policy = SCHED_NORMAL,
7469 };
7470
7471 read_lock(&tasklist_lock);
7472 for_each_process_thread(g, p) {
7473 /*
7474 * Only normalize user tasks:
7475 */
7476 if (p->flags & PF_KTHREAD)
7477 continue;
7478
7479 p->se.exec_start = 0;
7480 #ifdef CONFIG_SCHEDSTATS
7481 p->se.statistics.wait_start = 0;
7482 p->se.statistics.sleep_start = 0;
7483 p->se.statistics.block_start = 0;
7484 #endif
7485
7486 if (!dl_task(p) && !rt_task(p)) {
7487 /*
7488 * Renice negative nice level userspace
7489 * tasks back to 0:
7490 */
7491 if (task_nice(p) < 0)
7492 set_user_nice(p, 0);
7493 continue;
7494 }
7495
7496 __sched_setscheduler(p, &attr, false, false);
7497 }
7498 read_unlock(&tasklist_lock);
7499 }
7500
7501 #endif /* CONFIG_MAGIC_SYSRQ */
7502
7503 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7504 /*
7505 * These functions are only useful for the IA64 MCA handling, or kdb.
7506 *
7507 * They can only be called when the whole system has been
7508 * stopped - every CPU needs to be quiescent, and no scheduling
7509 * activity can take place. Using them for anything else would
7510 * be a serious bug, and as a result, they aren't even visible
7511 * under any other configuration.
7512 */
7513
7514 /**
7515 * curr_task - return the current task for a given cpu.
7516 * @cpu: the processor in question.
7517 *
7518 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7519 *
7520 * Return: The current task for @cpu.
7521 */
7522 struct task_struct *curr_task(int cpu)
7523 {
7524 return cpu_curr(cpu);
7525 }
7526
7527 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7528
7529 #ifdef CONFIG_IA64
7530 /**
7531 * set_curr_task - set the current task for a given cpu.
7532 * @cpu: the processor in question.
7533 * @p: the task pointer to set.
7534 *
7535 * Description: This function must only be used when non-maskable interrupts
7536 * are serviced on a separate stack. It allows the architecture to switch the
7537 * notion of the current task on a cpu in a non-blocking manner. This function
7538 * must be called with all CPU's synchronized, and interrupts disabled, the
7539 * and caller must save the original value of the current task (see
7540 * curr_task() above) and restore that value before reenabling interrupts and
7541 * re-starting the system.
7542 *
7543 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7544 */
7545 void set_curr_task(int cpu, struct task_struct *p)
7546 {
7547 cpu_curr(cpu) = p;
7548 }
7549
7550 #endif
7551
7552 #ifdef CONFIG_CGROUP_SCHED
7553 /* task_group_lock serializes the addition/removal of task groups */
7554 static DEFINE_SPINLOCK(task_group_lock);
7555
7556 static void free_sched_group(struct task_group *tg)
7557 {
7558 free_fair_sched_group(tg);
7559 free_rt_sched_group(tg);
7560 autogroup_free(tg);
7561 kfree(tg);
7562 }
7563
7564 /* allocate runqueue etc for a new task group */
7565 struct task_group *sched_create_group(struct task_group *parent)
7566 {
7567 struct task_group *tg;
7568
7569 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7570 if (!tg)
7571 return ERR_PTR(-ENOMEM);
7572
7573 if (!alloc_fair_sched_group(tg, parent))
7574 goto err;
7575
7576 if (!alloc_rt_sched_group(tg, parent))
7577 goto err;
7578
7579 return tg;
7580
7581 err:
7582 free_sched_group(tg);
7583 return ERR_PTR(-ENOMEM);
7584 }
7585
7586 void sched_online_group(struct task_group *tg, struct task_group *parent)
7587 {
7588 unsigned long flags;
7589
7590 spin_lock_irqsave(&task_group_lock, flags);
7591 list_add_rcu(&tg->list, &task_groups);
7592
7593 WARN_ON(!parent); /* root should already exist */
7594
7595 tg->parent = parent;
7596 INIT_LIST_HEAD(&tg->children);
7597 list_add_rcu(&tg->siblings, &parent->children);
7598 spin_unlock_irqrestore(&task_group_lock, flags);
7599 }
7600
7601 /* rcu callback to free various structures associated with a task group */
7602 static void free_sched_group_rcu(struct rcu_head *rhp)
7603 {
7604 /* now it should be safe to free those cfs_rqs */
7605 free_sched_group(container_of(rhp, struct task_group, rcu));
7606 }
7607
7608 /* Destroy runqueue etc associated with a task group */
7609 void sched_destroy_group(struct task_group *tg)
7610 {
7611 /* wait for possible concurrent references to cfs_rqs complete */
7612 call_rcu(&tg->rcu, free_sched_group_rcu);
7613 }
7614
7615 void sched_offline_group(struct task_group *tg)
7616 {
7617 unsigned long flags;
7618 int i;
7619
7620 /* end participation in shares distribution */
7621 for_each_possible_cpu(i)
7622 unregister_fair_sched_group(tg, i);
7623
7624 spin_lock_irqsave(&task_group_lock, flags);
7625 list_del_rcu(&tg->list);
7626 list_del_rcu(&tg->siblings);
7627 spin_unlock_irqrestore(&task_group_lock, flags);
7628 }
7629
7630 /* change task's runqueue when it moves between groups.
7631 * The caller of this function should have put the task in its new group
7632 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7633 * reflect its new group.
7634 */
7635 void sched_move_task(struct task_struct *tsk)
7636 {
7637 struct task_group *tg;
7638 int queued, running;
7639 unsigned long flags;
7640 struct rq *rq;
7641
7642 rq = task_rq_lock(tsk, &flags);
7643
7644 running = task_current(rq, tsk);
7645 queued = task_on_rq_queued(tsk);
7646
7647 if (queued)
7648 dequeue_task(rq, tsk, 0);
7649 if (unlikely(running))
7650 put_prev_task(rq, tsk);
7651
7652 /*
7653 * All callers are synchronized by task_rq_lock(); we do not use RCU
7654 * which is pointless here. Thus, we pass "true" to task_css_check()
7655 * to prevent lockdep warnings.
7656 */
7657 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7658 struct task_group, css);
7659 tg = autogroup_task_group(tsk, tg);
7660 tsk->sched_task_group = tg;
7661
7662 #ifdef CONFIG_FAIR_GROUP_SCHED
7663 if (tsk->sched_class->task_move_group)
7664 tsk->sched_class->task_move_group(tsk, queued);
7665 else
7666 #endif
7667 set_task_rq(tsk, task_cpu(tsk));
7668
7669 if (unlikely(running))
7670 tsk->sched_class->set_curr_task(rq);
7671 if (queued)
7672 enqueue_task(rq, tsk, 0);
7673
7674 task_rq_unlock(rq, tsk, &flags);
7675 }
7676 #endif /* CONFIG_CGROUP_SCHED */
7677
7678 #ifdef CONFIG_RT_GROUP_SCHED
7679 /*
7680 * Ensure that the real time constraints are schedulable.
7681 */
7682 static DEFINE_MUTEX(rt_constraints_mutex);
7683
7684 /* Must be called with tasklist_lock held */
7685 static inline int tg_has_rt_tasks(struct task_group *tg)
7686 {
7687 struct task_struct *g, *p;
7688
7689 /*
7690 * Autogroups do not have RT tasks; see autogroup_create().
7691 */
7692 if (task_group_is_autogroup(tg))
7693 return 0;
7694
7695 for_each_process_thread(g, p) {
7696 if (rt_task(p) && task_group(p) == tg)
7697 return 1;
7698 }
7699
7700 return 0;
7701 }
7702
7703 struct rt_schedulable_data {
7704 struct task_group *tg;
7705 u64 rt_period;
7706 u64 rt_runtime;
7707 };
7708
7709 static int tg_rt_schedulable(struct task_group *tg, void *data)
7710 {
7711 struct rt_schedulable_data *d = data;
7712 struct task_group *child;
7713 unsigned long total, sum = 0;
7714 u64 period, runtime;
7715
7716 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7717 runtime = tg->rt_bandwidth.rt_runtime;
7718
7719 if (tg == d->tg) {
7720 period = d->rt_period;
7721 runtime = d->rt_runtime;
7722 }
7723
7724 /*
7725 * Cannot have more runtime than the period.
7726 */
7727 if (runtime > period && runtime != RUNTIME_INF)
7728 return -EINVAL;
7729
7730 /*
7731 * Ensure we don't starve existing RT tasks.
7732 */
7733 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7734 return -EBUSY;
7735
7736 total = to_ratio(period, runtime);
7737
7738 /*
7739 * Nobody can have more than the global setting allows.
7740 */
7741 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7742 return -EINVAL;
7743
7744 /*
7745 * The sum of our children's runtime should not exceed our own.
7746 */
7747 list_for_each_entry_rcu(child, &tg->children, siblings) {
7748 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7749 runtime = child->rt_bandwidth.rt_runtime;
7750
7751 if (child == d->tg) {
7752 period = d->rt_period;
7753 runtime = d->rt_runtime;
7754 }
7755
7756 sum += to_ratio(period, runtime);
7757 }
7758
7759 if (sum > total)
7760 return -EINVAL;
7761
7762 return 0;
7763 }
7764
7765 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7766 {
7767 int ret;
7768
7769 struct rt_schedulable_data data = {
7770 .tg = tg,
7771 .rt_period = period,
7772 .rt_runtime = runtime,
7773 };
7774
7775 rcu_read_lock();
7776 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7777 rcu_read_unlock();
7778
7779 return ret;
7780 }
7781
7782 static int tg_set_rt_bandwidth(struct task_group *tg,
7783 u64 rt_period, u64 rt_runtime)
7784 {
7785 int i, err = 0;
7786
7787 /*
7788 * Disallowing the root group RT runtime is BAD, it would disallow the
7789 * kernel creating (and or operating) RT threads.
7790 */
7791 if (tg == &root_task_group && rt_runtime == 0)
7792 return -EINVAL;
7793
7794 /* No period doesn't make any sense. */
7795 if (rt_period == 0)
7796 return -EINVAL;
7797
7798 mutex_lock(&rt_constraints_mutex);
7799 read_lock(&tasklist_lock);
7800 err = __rt_schedulable(tg, rt_period, rt_runtime);
7801 if (err)
7802 goto unlock;
7803
7804 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7805 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7806 tg->rt_bandwidth.rt_runtime = rt_runtime;
7807
7808 for_each_possible_cpu(i) {
7809 struct rt_rq *rt_rq = tg->rt_rq[i];
7810
7811 raw_spin_lock(&rt_rq->rt_runtime_lock);
7812 rt_rq->rt_runtime = rt_runtime;
7813 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7814 }
7815 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7816 unlock:
7817 read_unlock(&tasklist_lock);
7818 mutex_unlock(&rt_constraints_mutex);
7819
7820 return err;
7821 }
7822
7823 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7824 {
7825 u64 rt_runtime, rt_period;
7826
7827 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7828 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7829 if (rt_runtime_us < 0)
7830 rt_runtime = RUNTIME_INF;
7831
7832 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7833 }
7834
7835 static long sched_group_rt_runtime(struct task_group *tg)
7836 {
7837 u64 rt_runtime_us;
7838
7839 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7840 return -1;
7841
7842 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7843 do_div(rt_runtime_us, NSEC_PER_USEC);
7844 return rt_runtime_us;
7845 }
7846
7847 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7848 {
7849 u64 rt_runtime, rt_period;
7850
7851 rt_period = rt_period_us * NSEC_PER_USEC;
7852 rt_runtime = tg->rt_bandwidth.rt_runtime;
7853
7854 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7855 }
7856
7857 static long sched_group_rt_period(struct task_group *tg)
7858 {
7859 u64 rt_period_us;
7860
7861 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7862 do_div(rt_period_us, NSEC_PER_USEC);
7863 return rt_period_us;
7864 }
7865 #endif /* CONFIG_RT_GROUP_SCHED */
7866
7867 #ifdef CONFIG_RT_GROUP_SCHED
7868 static int sched_rt_global_constraints(void)
7869 {
7870 int ret = 0;
7871
7872 mutex_lock(&rt_constraints_mutex);
7873 read_lock(&tasklist_lock);
7874 ret = __rt_schedulable(NULL, 0, 0);
7875 read_unlock(&tasklist_lock);
7876 mutex_unlock(&rt_constraints_mutex);
7877
7878 return ret;
7879 }
7880
7881 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7882 {
7883 /* Don't accept realtime tasks when there is no way for them to run */
7884 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7885 return 0;
7886
7887 return 1;
7888 }
7889
7890 #else /* !CONFIG_RT_GROUP_SCHED */
7891 static int sched_rt_global_constraints(void)
7892 {
7893 unsigned long flags;
7894 int i, ret = 0;
7895
7896 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7897 for_each_possible_cpu(i) {
7898 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7899
7900 raw_spin_lock(&rt_rq->rt_runtime_lock);
7901 rt_rq->rt_runtime = global_rt_runtime();
7902 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7903 }
7904 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7905
7906 return ret;
7907 }
7908 #endif /* CONFIG_RT_GROUP_SCHED */
7909
7910 static int sched_dl_global_validate(void)
7911 {
7912 u64 runtime = global_rt_runtime();
7913 u64 period = global_rt_period();
7914 u64 new_bw = to_ratio(period, runtime);
7915 struct dl_bw *dl_b;
7916 int cpu, ret = 0;
7917 unsigned long flags;
7918
7919 /*
7920 * Here we want to check the bandwidth not being set to some
7921 * value smaller than the currently allocated bandwidth in
7922 * any of the root_domains.
7923 *
7924 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7925 * cycling on root_domains... Discussion on different/better
7926 * solutions is welcome!
7927 */
7928 for_each_possible_cpu(cpu) {
7929 rcu_read_lock_sched();
7930 dl_b = dl_bw_of(cpu);
7931
7932 raw_spin_lock_irqsave(&dl_b->lock, flags);
7933 if (new_bw < dl_b->total_bw)
7934 ret = -EBUSY;
7935 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7936
7937 rcu_read_unlock_sched();
7938
7939 if (ret)
7940 break;
7941 }
7942
7943 return ret;
7944 }
7945
7946 static void sched_dl_do_global(void)
7947 {
7948 u64 new_bw = -1;
7949 struct dl_bw *dl_b;
7950 int cpu;
7951 unsigned long flags;
7952
7953 def_dl_bandwidth.dl_period = global_rt_period();
7954 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7955
7956 if (global_rt_runtime() != RUNTIME_INF)
7957 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7958
7959 /*
7960 * FIXME: As above...
7961 */
7962 for_each_possible_cpu(cpu) {
7963 rcu_read_lock_sched();
7964 dl_b = dl_bw_of(cpu);
7965
7966 raw_spin_lock_irqsave(&dl_b->lock, flags);
7967 dl_b->bw = new_bw;
7968 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7969
7970 rcu_read_unlock_sched();
7971 }
7972 }
7973
7974 static int sched_rt_global_validate(void)
7975 {
7976 if (sysctl_sched_rt_period <= 0)
7977 return -EINVAL;
7978
7979 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7980 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7981 return -EINVAL;
7982
7983 return 0;
7984 }
7985
7986 static void sched_rt_do_global(void)
7987 {
7988 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7989 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7990 }
7991
7992 int sched_rt_handler(struct ctl_table *table, int write,
7993 void __user *buffer, size_t *lenp,
7994 loff_t *ppos)
7995 {
7996 int old_period, old_runtime;
7997 static DEFINE_MUTEX(mutex);
7998 int ret;
7999
8000 mutex_lock(&mutex);
8001 old_period = sysctl_sched_rt_period;
8002 old_runtime = sysctl_sched_rt_runtime;
8003
8004 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8005
8006 if (!ret && write) {
8007 ret = sched_rt_global_validate();
8008 if (ret)
8009 goto undo;
8010
8011 ret = sched_dl_global_validate();
8012 if (ret)
8013 goto undo;
8014
8015 ret = sched_rt_global_constraints();
8016 if (ret)
8017 goto undo;
8018
8019 sched_rt_do_global();
8020 sched_dl_do_global();
8021 }
8022 if (0) {
8023 undo:
8024 sysctl_sched_rt_period = old_period;
8025 sysctl_sched_rt_runtime = old_runtime;
8026 }
8027 mutex_unlock(&mutex);
8028
8029 return ret;
8030 }
8031
8032 int sched_rr_handler(struct ctl_table *table, int write,
8033 void __user *buffer, size_t *lenp,
8034 loff_t *ppos)
8035 {
8036 int ret;
8037 static DEFINE_MUTEX(mutex);
8038
8039 mutex_lock(&mutex);
8040 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8041 /* make sure that internally we keep jiffies */
8042 /* also, writing zero resets timeslice to default */
8043 if (!ret && write) {
8044 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8045 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8046 }
8047 mutex_unlock(&mutex);
8048 return ret;
8049 }
8050
8051 #ifdef CONFIG_CGROUP_SCHED
8052
8053 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8054 {
8055 return css ? container_of(css, struct task_group, css) : NULL;
8056 }
8057
8058 static struct cgroup_subsys_state *
8059 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8060 {
8061 struct task_group *parent = css_tg(parent_css);
8062 struct task_group *tg;
8063
8064 if (!parent) {
8065 /* This is early initialization for the top cgroup */
8066 return &root_task_group.css;
8067 }
8068
8069 tg = sched_create_group(parent);
8070 if (IS_ERR(tg))
8071 return ERR_PTR(-ENOMEM);
8072
8073 return &tg->css;
8074 }
8075
8076 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8077 {
8078 struct task_group *tg = css_tg(css);
8079 struct task_group *parent = css_tg(css->parent);
8080
8081 if (parent)
8082 sched_online_group(tg, parent);
8083 return 0;
8084 }
8085
8086 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8087 {
8088 struct task_group *tg = css_tg(css);
8089
8090 sched_destroy_group(tg);
8091 }
8092
8093 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8094 {
8095 struct task_group *tg = css_tg(css);
8096
8097 sched_offline_group(tg);
8098 }
8099
8100 static void cpu_cgroup_fork(struct task_struct *task)
8101 {
8102 sched_move_task(task);
8103 }
8104
8105 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8106 struct cgroup_taskset *tset)
8107 {
8108 struct task_struct *task;
8109
8110 cgroup_taskset_for_each(task, tset) {
8111 #ifdef CONFIG_RT_GROUP_SCHED
8112 if (!sched_rt_can_attach(css_tg(css), task))
8113 return -EINVAL;
8114 #else
8115 /* We don't support RT-tasks being in separate groups */
8116 if (task->sched_class != &fair_sched_class)
8117 return -EINVAL;
8118 #endif
8119 }
8120 return 0;
8121 }
8122
8123 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8124 struct cgroup_taskset *tset)
8125 {
8126 struct task_struct *task;
8127
8128 cgroup_taskset_for_each(task, tset)
8129 sched_move_task(task);
8130 }
8131
8132 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8133 struct cgroup_subsys_state *old_css,
8134 struct task_struct *task)
8135 {
8136 /*
8137 * cgroup_exit() is called in the copy_process() failure path.
8138 * Ignore this case since the task hasn't ran yet, this avoids
8139 * trying to poke a half freed task state from generic code.
8140 */
8141 if (!(task->flags & PF_EXITING))
8142 return;
8143
8144 sched_move_task(task);
8145 }
8146
8147 #ifdef CONFIG_FAIR_GROUP_SCHED
8148 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8149 struct cftype *cftype, u64 shareval)
8150 {
8151 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8152 }
8153
8154 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8155 struct cftype *cft)
8156 {
8157 struct task_group *tg = css_tg(css);
8158
8159 return (u64) scale_load_down(tg->shares);
8160 }
8161
8162 #ifdef CONFIG_CFS_BANDWIDTH
8163 static DEFINE_MUTEX(cfs_constraints_mutex);
8164
8165 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8166 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8167
8168 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8169
8170 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8171 {
8172 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8173 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8174
8175 if (tg == &root_task_group)
8176 return -EINVAL;
8177
8178 /*
8179 * Ensure we have at some amount of bandwidth every period. This is
8180 * to prevent reaching a state of large arrears when throttled via
8181 * entity_tick() resulting in prolonged exit starvation.
8182 */
8183 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8184 return -EINVAL;
8185
8186 /*
8187 * Likewise, bound things on the otherside by preventing insane quota
8188 * periods. This also allows us to normalize in computing quota
8189 * feasibility.
8190 */
8191 if (period > max_cfs_quota_period)
8192 return -EINVAL;
8193
8194 /*
8195 * Prevent race between setting of cfs_rq->runtime_enabled and
8196 * unthrottle_offline_cfs_rqs().
8197 */
8198 get_online_cpus();
8199 mutex_lock(&cfs_constraints_mutex);
8200 ret = __cfs_schedulable(tg, period, quota);
8201 if (ret)
8202 goto out_unlock;
8203
8204 runtime_enabled = quota != RUNTIME_INF;
8205 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8206 /*
8207 * If we need to toggle cfs_bandwidth_used, off->on must occur
8208 * before making related changes, and on->off must occur afterwards
8209 */
8210 if (runtime_enabled && !runtime_was_enabled)
8211 cfs_bandwidth_usage_inc();
8212 raw_spin_lock_irq(&cfs_b->lock);
8213 cfs_b->period = ns_to_ktime(period);
8214 cfs_b->quota = quota;
8215
8216 __refill_cfs_bandwidth_runtime(cfs_b);
8217 /* restart the period timer (if active) to handle new period expiry */
8218 if (runtime_enabled)
8219 start_cfs_bandwidth(cfs_b);
8220 raw_spin_unlock_irq(&cfs_b->lock);
8221
8222 for_each_online_cpu(i) {
8223 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8224 struct rq *rq = cfs_rq->rq;
8225
8226 raw_spin_lock_irq(&rq->lock);
8227 cfs_rq->runtime_enabled = runtime_enabled;
8228 cfs_rq->runtime_remaining = 0;
8229
8230 if (cfs_rq->throttled)
8231 unthrottle_cfs_rq(cfs_rq);
8232 raw_spin_unlock_irq(&rq->lock);
8233 }
8234 if (runtime_was_enabled && !runtime_enabled)
8235 cfs_bandwidth_usage_dec();
8236 out_unlock:
8237 mutex_unlock(&cfs_constraints_mutex);
8238 put_online_cpus();
8239
8240 return ret;
8241 }
8242
8243 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8244 {
8245 u64 quota, period;
8246
8247 period = ktime_to_ns(tg->cfs_bandwidth.period);
8248 if (cfs_quota_us < 0)
8249 quota = RUNTIME_INF;
8250 else
8251 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8252
8253 return tg_set_cfs_bandwidth(tg, period, quota);
8254 }
8255
8256 long tg_get_cfs_quota(struct task_group *tg)
8257 {
8258 u64 quota_us;
8259
8260 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8261 return -1;
8262
8263 quota_us = tg->cfs_bandwidth.quota;
8264 do_div(quota_us, NSEC_PER_USEC);
8265
8266 return quota_us;
8267 }
8268
8269 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8270 {
8271 u64 quota, period;
8272
8273 period = (u64)cfs_period_us * NSEC_PER_USEC;
8274 quota = tg->cfs_bandwidth.quota;
8275
8276 return tg_set_cfs_bandwidth(tg, period, quota);
8277 }
8278
8279 long tg_get_cfs_period(struct task_group *tg)
8280 {
8281 u64 cfs_period_us;
8282
8283 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8284 do_div(cfs_period_us, NSEC_PER_USEC);
8285
8286 return cfs_period_us;
8287 }
8288
8289 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8290 struct cftype *cft)
8291 {
8292 return tg_get_cfs_quota(css_tg(css));
8293 }
8294
8295 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8296 struct cftype *cftype, s64 cfs_quota_us)
8297 {
8298 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8299 }
8300
8301 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8302 struct cftype *cft)
8303 {
8304 return tg_get_cfs_period(css_tg(css));
8305 }
8306
8307 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8308 struct cftype *cftype, u64 cfs_period_us)
8309 {
8310 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8311 }
8312
8313 struct cfs_schedulable_data {
8314 struct task_group *tg;
8315 u64 period, quota;
8316 };
8317
8318 /*
8319 * normalize group quota/period to be quota/max_period
8320 * note: units are usecs
8321 */
8322 static u64 normalize_cfs_quota(struct task_group *tg,
8323 struct cfs_schedulable_data *d)
8324 {
8325 u64 quota, period;
8326
8327 if (tg == d->tg) {
8328 period = d->period;
8329 quota = d->quota;
8330 } else {
8331 period = tg_get_cfs_period(tg);
8332 quota = tg_get_cfs_quota(tg);
8333 }
8334
8335 /* note: these should typically be equivalent */
8336 if (quota == RUNTIME_INF || quota == -1)
8337 return RUNTIME_INF;
8338
8339 return to_ratio(period, quota);
8340 }
8341
8342 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8343 {
8344 struct cfs_schedulable_data *d = data;
8345 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8346 s64 quota = 0, parent_quota = -1;
8347
8348 if (!tg->parent) {
8349 quota = RUNTIME_INF;
8350 } else {
8351 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8352
8353 quota = normalize_cfs_quota(tg, d);
8354 parent_quota = parent_b->hierarchical_quota;
8355
8356 /*
8357 * ensure max(child_quota) <= parent_quota, inherit when no
8358 * limit is set
8359 */
8360 if (quota == RUNTIME_INF)
8361 quota = parent_quota;
8362 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8363 return -EINVAL;
8364 }
8365 cfs_b->hierarchical_quota = quota;
8366
8367 return 0;
8368 }
8369
8370 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8371 {
8372 int ret;
8373 struct cfs_schedulable_data data = {
8374 .tg = tg,
8375 .period = period,
8376 .quota = quota,
8377 };
8378
8379 if (quota != RUNTIME_INF) {
8380 do_div(data.period, NSEC_PER_USEC);
8381 do_div(data.quota, NSEC_PER_USEC);
8382 }
8383
8384 rcu_read_lock();
8385 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8386 rcu_read_unlock();
8387
8388 return ret;
8389 }
8390
8391 static int cpu_stats_show(struct seq_file *sf, void *v)
8392 {
8393 struct task_group *tg = css_tg(seq_css(sf));
8394 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8395
8396 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8397 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8398 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8399
8400 return 0;
8401 }
8402 #endif /* CONFIG_CFS_BANDWIDTH */
8403 #endif /* CONFIG_FAIR_GROUP_SCHED */
8404
8405 #ifdef CONFIG_RT_GROUP_SCHED
8406 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8407 struct cftype *cft, s64 val)
8408 {
8409 return sched_group_set_rt_runtime(css_tg(css), val);
8410 }
8411
8412 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8413 struct cftype *cft)
8414 {
8415 return sched_group_rt_runtime(css_tg(css));
8416 }
8417
8418 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8419 struct cftype *cftype, u64 rt_period_us)
8420 {
8421 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8422 }
8423
8424 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8425 struct cftype *cft)
8426 {
8427 return sched_group_rt_period(css_tg(css));
8428 }
8429 #endif /* CONFIG_RT_GROUP_SCHED */
8430
8431 static struct cftype cpu_files[] = {
8432 #ifdef CONFIG_FAIR_GROUP_SCHED
8433 {
8434 .name = "shares",
8435 .read_u64 = cpu_shares_read_u64,
8436 .write_u64 = cpu_shares_write_u64,
8437 },
8438 #endif
8439 #ifdef CONFIG_CFS_BANDWIDTH
8440 {
8441 .name = "cfs_quota_us",
8442 .read_s64 = cpu_cfs_quota_read_s64,
8443 .write_s64 = cpu_cfs_quota_write_s64,
8444 },
8445 {
8446 .name = "cfs_period_us",
8447 .read_u64 = cpu_cfs_period_read_u64,
8448 .write_u64 = cpu_cfs_period_write_u64,
8449 },
8450 {
8451 .name = "stat",
8452 .seq_show = cpu_stats_show,
8453 },
8454 #endif
8455 #ifdef CONFIG_RT_GROUP_SCHED
8456 {
8457 .name = "rt_runtime_us",
8458 .read_s64 = cpu_rt_runtime_read,
8459 .write_s64 = cpu_rt_runtime_write,
8460 },
8461 {
8462 .name = "rt_period_us",
8463 .read_u64 = cpu_rt_period_read_uint,
8464 .write_u64 = cpu_rt_period_write_uint,
8465 },
8466 #endif
8467 { } /* terminate */
8468 };
8469
8470 struct cgroup_subsys cpu_cgrp_subsys = {
8471 .css_alloc = cpu_cgroup_css_alloc,
8472 .css_free = cpu_cgroup_css_free,
8473 .css_online = cpu_cgroup_css_online,
8474 .css_offline = cpu_cgroup_css_offline,
8475 .fork = cpu_cgroup_fork,
8476 .can_attach = cpu_cgroup_can_attach,
8477 .attach = cpu_cgroup_attach,
8478 .exit = cpu_cgroup_exit,
8479 .legacy_cftypes = cpu_files,
8480 .early_init = 1,
8481 };
8482
8483 #endif /* CONFIG_CGROUP_SCHED */
8484
8485 void dump_cpu_task(int cpu)
8486 {
8487 pr_info("Task dump for CPU %d:\n", cpu);
8488 sched_show_task(cpu_curr(cpu));
8489 }