]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/cpuset.h>
10 #include <linux/delayacct.h>
11 #include <linux/init_task.h>
12 #include <linux/context_tracking.h>
13
14 #include <linux/blkdev.h>
15 #include <linux/kprobes.h>
16 #include <linux/mmu_context.h>
17 #include <linux/module.h>
18 #include <linux/nmi.h>
19 #include <linux/prefetch.h>
20 #include <linux/profile.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23
24 #include <asm/switch_to.h>
25 #include <asm/tlb.h>
26
27 #include "sched.h"
28 #include "../workqueue_internal.h"
29 #include "../smpboot.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sched.h>
33
34 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
35
36 /*
37 * Debugging: various feature bits
38 */
39
40 #define SCHED_FEAT(name, enabled) \
41 (1UL << __SCHED_FEAT_##name) * enabled |
42
43 const_debug unsigned int sysctl_sched_features =
44 #include "features.h"
45 0;
46
47 #undef SCHED_FEAT
48
49 /*
50 * Number of tasks to iterate in a single balance run.
51 * Limited because this is done with IRQs disabled.
52 */
53 const_debug unsigned int sysctl_sched_nr_migrate = 32;
54
55 /*
56 * period over which we average the RT time consumption, measured
57 * in ms.
58 *
59 * default: 1s
60 */
61 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
62
63 /*
64 * period over which we measure -rt task CPU usage in us.
65 * default: 1s
66 */
67 unsigned int sysctl_sched_rt_period = 1000000;
68
69 __read_mostly int scheduler_running;
70
71 /*
72 * part of the period that we allow rt tasks to run in us.
73 * default: 0.95s
74 */
75 int sysctl_sched_rt_runtime = 950000;
76
77 /* CPUs with isolated domains */
78 cpumask_var_t cpu_isolated_map;
79
80 /*
81 * this_rq_lock - lock this runqueue and disable interrupts.
82 */
83 static struct rq *this_rq_lock(void)
84 __acquires(rq->lock)
85 {
86 struct rq *rq;
87
88 local_irq_disable();
89 rq = this_rq();
90 raw_spin_lock(&rq->lock);
91
92 return rq;
93 }
94
95 /*
96 * __task_rq_lock - lock the rq @p resides on.
97 */
98 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
99 __acquires(rq->lock)
100 {
101 struct rq *rq;
102
103 lockdep_assert_held(&p->pi_lock);
104
105 for (;;) {
106 rq = task_rq(p);
107 raw_spin_lock(&rq->lock);
108 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
109 rq_pin_lock(rq, rf);
110 return rq;
111 }
112 raw_spin_unlock(&rq->lock);
113
114 while (unlikely(task_on_rq_migrating(p)))
115 cpu_relax();
116 }
117 }
118
119 /*
120 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
121 */
122 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
123 __acquires(p->pi_lock)
124 __acquires(rq->lock)
125 {
126 struct rq *rq;
127
128 for (;;) {
129 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
130 rq = task_rq(p);
131 raw_spin_lock(&rq->lock);
132 /*
133 * move_queued_task() task_rq_lock()
134 *
135 * ACQUIRE (rq->lock)
136 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
137 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
138 * [S] ->cpu = new_cpu [L] task_rq()
139 * [L] ->on_rq
140 * RELEASE (rq->lock)
141 *
142 * If we observe the old cpu in task_rq_lock, the acquire of
143 * the old rq->lock will fully serialize against the stores.
144 *
145 * If we observe the new CPU in task_rq_lock, the acquire will
146 * pair with the WMB to ensure we must then also see migrating.
147 */
148 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
149 rq_pin_lock(rq, rf);
150 return rq;
151 }
152 raw_spin_unlock(&rq->lock);
153 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
154
155 while (unlikely(task_on_rq_migrating(p)))
156 cpu_relax();
157 }
158 }
159
160 /*
161 * RQ-clock updating methods:
162 */
163
164 static void update_rq_clock_task(struct rq *rq, s64 delta)
165 {
166 /*
167 * In theory, the compile should just see 0 here, and optimize out the call
168 * to sched_rt_avg_update. But I don't trust it...
169 */
170 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
171 s64 steal = 0, irq_delta = 0;
172 #endif
173 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
174 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
175
176 /*
177 * Since irq_time is only updated on {soft,}irq_exit, we might run into
178 * this case when a previous update_rq_clock() happened inside a
179 * {soft,}irq region.
180 *
181 * When this happens, we stop ->clock_task and only update the
182 * prev_irq_time stamp to account for the part that fit, so that a next
183 * update will consume the rest. This ensures ->clock_task is
184 * monotonic.
185 *
186 * It does however cause some slight miss-attribution of {soft,}irq
187 * time, a more accurate solution would be to update the irq_time using
188 * the current rq->clock timestamp, except that would require using
189 * atomic ops.
190 */
191 if (irq_delta > delta)
192 irq_delta = delta;
193
194 rq->prev_irq_time += irq_delta;
195 delta -= irq_delta;
196 #endif
197 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
198 if (static_key_false((&paravirt_steal_rq_enabled))) {
199 steal = paravirt_steal_clock(cpu_of(rq));
200 steal -= rq->prev_steal_time_rq;
201
202 if (unlikely(steal > delta))
203 steal = delta;
204
205 rq->prev_steal_time_rq += steal;
206 delta -= steal;
207 }
208 #endif
209
210 rq->clock_task += delta;
211
212 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
213 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
214 sched_rt_avg_update(rq, irq_delta + steal);
215 #endif
216 }
217
218 void update_rq_clock(struct rq *rq)
219 {
220 s64 delta;
221
222 lockdep_assert_held(&rq->lock);
223
224 if (rq->clock_update_flags & RQCF_ACT_SKIP)
225 return;
226
227 #ifdef CONFIG_SCHED_DEBUG
228 rq->clock_update_flags |= RQCF_UPDATED;
229 #endif
230 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
231 if (delta < 0)
232 return;
233 rq->clock += delta;
234 update_rq_clock_task(rq, delta);
235 }
236
237
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240 * Use HR-timers to deliver accurate preemption points.
241 */
242
243 static void hrtick_clear(struct rq *rq)
244 {
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247 }
248
249 /*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 raw_spin_lock(&rq->lock);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 raw_spin_unlock(&rq->lock);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282
283 raw_spin_lock(&rq->lock);
284 __hrtick_restart(rq);
285 rq->hrtick_csd_pending = 0;
286 raw_spin_unlock(&rq->lock);
287 }
288
289 /*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 struct hrtimer *timer = &rq->hrtick_timer;
297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
306
307 hrtimer_set_expires(timer, time);
308
309 if (rq == this_rq()) {
310 __hrtick_restart(rq);
311 } else if (!rq->hrtick_csd_pending) {
312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 rq->hrtick_csd_pending = 1;
314 }
315 }
316
317 #else
318 /*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
339
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343 #endif
344
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
347 }
348 #else /* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif /* CONFIG_SCHED_HRTICK */
357
358 /*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361 #define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374 })
375
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387
388 /*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 struct thread_info *ti = task_thread_info(p);
397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410 }
411
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 set_tsk_need_resched(p);
416 return true;
417 }
418
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 return false;
423 }
424 #endif
425 #endif
426
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
437 * barrier implied by the wakeup in wake_up_q().
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449 }
450
451 void wake_up_q(struct wake_q_head *head)
452 {
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* Task can safely be re-inserted now: */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471 }
472
473 /*
474 * resched_curr - mark rq's current task 'to be rescheduled now'.
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
480 void resched_curr(struct rq *rq)
481 {
482 struct task_struct *curr = rq->curr;
483 int cpu;
484
485 lockdep_assert_held(&rq->lock);
486
487 if (test_tsk_need_resched(curr))
488 return;
489
490 cpu = cpu_of(rq);
491
492 if (cpu == smp_processor_id()) {
493 set_tsk_need_resched(curr);
494 set_preempt_need_resched();
495 return;
496 }
497
498 if (set_nr_and_not_polling(curr))
499 smp_send_reschedule(cpu);
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
502 }
503
504 void resched_cpu(int cpu)
505 {
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 return;
511 resched_curr(rq);
512 raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518 * In the semi idle case, use the nearest busy CPU for migrating timers
519 * from an idle CPU. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle CPU will add more delays to the timers than intended
523 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
524 */
525 int get_nohz_timer_target(void)
526 {
527 int i, cpu = smp_processor_id();
528 struct sched_domain *sd;
529
530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 return cpu;
532
533 rcu_read_lock();
534 for_each_domain(cpu, sd) {
535 for_each_cpu(i, sched_domain_span(sd)) {
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 cpu = i;
541 goto unlock;
542 }
543 }
544 }
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
548 unlock:
549 rcu_read_unlock();
550 return cpu;
551 }
552
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753 }
754
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761 }
762
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769 }
770
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777 }
778
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785 }
786
787 void sched_set_stop_task(int cpu, struct task_struct *stop)
788 {
789 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
790 struct task_struct *old_stop = cpu_rq(cpu)->stop;
791
792 if (stop) {
793 /*
794 * Make it appear like a SCHED_FIFO task, its something
795 * userspace knows about and won't get confused about.
796 *
797 * Also, it will make PI more or less work without too
798 * much confusion -- but then, stop work should not
799 * rely on PI working anyway.
800 */
801 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
802
803 stop->sched_class = &stop_sched_class;
804 }
805
806 cpu_rq(cpu)->stop = stop;
807
808 if (old_stop) {
809 /*
810 * Reset it back to a normal scheduling class so that
811 * it can die in pieces.
812 */
813 old_stop->sched_class = &rt_sched_class;
814 }
815 }
816
817 /*
818 * __normal_prio - return the priority that is based on the static prio
819 */
820 static inline int __normal_prio(struct task_struct *p)
821 {
822 return p->static_prio;
823 }
824
825 /*
826 * Calculate the expected normal priority: i.e. priority
827 * without taking RT-inheritance into account. Might be
828 * boosted by interactivity modifiers. Changes upon fork,
829 * setprio syscalls, and whenever the interactivity
830 * estimator recalculates.
831 */
832 static inline int normal_prio(struct task_struct *p)
833 {
834 int prio;
835
836 if (task_has_dl_policy(p))
837 prio = MAX_DL_PRIO-1;
838 else if (task_has_rt_policy(p))
839 prio = MAX_RT_PRIO-1 - p->rt_priority;
840 else
841 prio = __normal_prio(p);
842 return prio;
843 }
844
845 /*
846 * Calculate the current priority, i.e. the priority
847 * taken into account by the scheduler. This value might
848 * be boosted by RT tasks, or might be boosted by
849 * interactivity modifiers. Will be RT if the task got
850 * RT-boosted. If not then it returns p->normal_prio.
851 */
852 static int effective_prio(struct task_struct *p)
853 {
854 p->normal_prio = normal_prio(p);
855 /*
856 * If we are RT tasks or we were boosted to RT priority,
857 * keep the priority unchanged. Otherwise, update priority
858 * to the normal priority:
859 */
860 if (!rt_prio(p->prio))
861 return p->normal_prio;
862 return p->prio;
863 }
864
865 /**
866 * task_curr - is this task currently executing on a CPU?
867 * @p: the task in question.
868 *
869 * Return: 1 if the task is currently executing. 0 otherwise.
870 */
871 inline int task_curr(const struct task_struct *p)
872 {
873 return cpu_curr(task_cpu(p)) == p;
874 }
875
876 /*
877 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
878 * use the balance_callback list if you want balancing.
879 *
880 * this means any call to check_class_changed() must be followed by a call to
881 * balance_callback().
882 */
883 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
884 const struct sched_class *prev_class,
885 int oldprio)
886 {
887 if (prev_class != p->sched_class) {
888 if (prev_class->switched_from)
889 prev_class->switched_from(rq, p);
890
891 p->sched_class->switched_to(rq, p);
892 } else if (oldprio != p->prio || dl_task(p))
893 p->sched_class->prio_changed(rq, p, oldprio);
894 }
895
896 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
897 {
898 const struct sched_class *class;
899
900 if (p->sched_class == rq->curr->sched_class) {
901 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
902 } else {
903 for_each_class(class) {
904 if (class == rq->curr->sched_class)
905 break;
906 if (class == p->sched_class) {
907 resched_curr(rq);
908 break;
909 }
910 }
911 }
912
913 /*
914 * A queue event has occurred, and we're going to schedule. In
915 * this case, we can save a useless back to back clock update.
916 */
917 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
918 rq_clock_skip_update(rq, true);
919 }
920
921 #ifdef CONFIG_SMP
922 /*
923 * This is how migration works:
924 *
925 * 1) we invoke migration_cpu_stop() on the target CPU using
926 * stop_one_cpu().
927 * 2) stopper starts to run (implicitly forcing the migrated thread
928 * off the CPU)
929 * 3) it checks whether the migrated task is still in the wrong runqueue.
930 * 4) if it's in the wrong runqueue then the migration thread removes
931 * it and puts it into the right queue.
932 * 5) stopper completes and stop_one_cpu() returns and the migration
933 * is done.
934 */
935
936 /*
937 * move_queued_task - move a queued task to new rq.
938 *
939 * Returns (locked) new rq. Old rq's lock is released.
940 */
941 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
942 {
943 lockdep_assert_held(&rq->lock);
944
945 p->on_rq = TASK_ON_RQ_MIGRATING;
946 dequeue_task(rq, p, 0);
947 set_task_cpu(p, new_cpu);
948 raw_spin_unlock(&rq->lock);
949
950 rq = cpu_rq(new_cpu);
951
952 raw_spin_lock(&rq->lock);
953 BUG_ON(task_cpu(p) != new_cpu);
954 enqueue_task(rq, p, 0);
955 p->on_rq = TASK_ON_RQ_QUEUED;
956 check_preempt_curr(rq, p, 0);
957
958 return rq;
959 }
960
961 struct migration_arg {
962 struct task_struct *task;
963 int dest_cpu;
964 };
965
966 /*
967 * Move (not current) task off this CPU, onto the destination CPU. We're doing
968 * this because either it can't run here any more (set_cpus_allowed()
969 * away from this CPU, or CPU going down), or because we're
970 * attempting to rebalance this task on exec (sched_exec).
971 *
972 * So we race with normal scheduler movements, but that's OK, as long
973 * as the task is no longer on this CPU.
974 */
975 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
976 {
977 if (unlikely(!cpu_active(dest_cpu)))
978 return rq;
979
980 /* Affinity changed (again). */
981 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
982 return rq;
983
984 rq = move_queued_task(rq, p, dest_cpu);
985
986 return rq;
987 }
988
989 /*
990 * migration_cpu_stop - this will be executed by a highprio stopper thread
991 * and performs thread migration by bumping thread off CPU then
992 * 'pushing' onto another runqueue.
993 */
994 static int migration_cpu_stop(void *data)
995 {
996 struct migration_arg *arg = data;
997 struct task_struct *p = arg->task;
998 struct rq *rq = this_rq();
999
1000 /*
1001 * The original target CPU might have gone down and we might
1002 * be on another CPU but it doesn't matter.
1003 */
1004 local_irq_disable();
1005 /*
1006 * We need to explicitly wake pending tasks before running
1007 * __migrate_task() such that we will not miss enforcing cpus_allowed
1008 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1009 */
1010 sched_ttwu_pending();
1011
1012 raw_spin_lock(&p->pi_lock);
1013 raw_spin_lock(&rq->lock);
1014 /*
1015 * If task_rq(p) != rq, it cannot be migrated here, because we're
1016 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1017 * we're holding p->pi_lock.
1018 */
1019 if (task_rq(p) == rq) {
1020 if (task_on_rq_queued(p))
1021 rq = __migrate_task(rq, p, arg->dest_cpu);
1022 else
1023 p->wake_cpu = arg->dest_cpu;
1024 }
1025 raw_spin_unlock(&rq->lock);
1026 raw_spin_unlock(&p->pi_lock);
1027
1028 local_irq_enable();
1029 return 0;
1030 }
1031
1032 /*
1033 * sched_class::set_cpus_allowed must do the below, but is not required to
1034 * actually call this function.
1035 */
1036 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1037 {
1038 cpumask_copy(&p->cpus_allowed, new_mask);
1039 p->nr_cpus_allowed = cpumask_weight(new_mask);
1040 }
1041
1042 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1043 {
1044 struct rq *rq = task_rq(p);
1045 bool queued, running;
1046
1047 lockdep_assert_held(&p->pi_lock);
1048
1049 queued = task_on_rq_queued(p);
1050 running = task_current(rq, p);
1051
1052 if (queued) {
1053 /*
1054 * Because __kthread_bind() calls this on blocked tasks without
1055 * holding rq->lock.
1056 */
1057 lockdep_assert_held(&rq->lock);
1058 dequeue_task(rq, p, DEQUEUE_SAVE);
1059 }
1060 if (running)
1061 put_prev_task(rq, p);
1062
1063 p->sched_class->set_cpus_allowed(p, new_mask);
1064
1065 if (queued)
1066 enqueue_task(rq, p, ENQUEUE_RESTORE);
1067 if (running)
1068 set_curr_task(rq, p);
1069 }
1070
1071 /*
1072 * Change a given task's CPU affinity. Migrate the thread to a
1073 * proper CPU and schedule it away if the CPU it's executing on
1074 * is removed from the allowed bitmask.
1075 *
1076 * NOTE: the caller must have a valid reference to the task, the
1077 * task must not exit() & deallocate itself prematurely. The
1078 * call is not atomic; no spinlocks may be held.
1079 */
1080 static int __set_cpus_allowed_ptr(struct task_struct *p,
1081 const struct cpumask *new_mask, bool check)
1082 {
1083 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1084 unsigned int dest_cpu;
1085 struct rq_flags rf;
1086 struct rq *rq;
1087 int ret = 0;
1088
1089 rq = task_rq_lock(p, &rf);
1090
1091 if (p->flags & PF_KTHREAD) {
1092 /*
1093 * Kernel threads are allowed on online && !active CPUs
1094 */
1095 cpu_valid_mask = cpu_online_mask;
1096 }
1097
1098 /*
1099 * Must re-check here, to close a race against __kthread_bind(),
1100 * sched_setaffinity() is not guaranteed to observe the flag.
1101 */
1102 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1103 ret = -EINVAL;
1104 goto out;
1105 }
1106
1107 if (cpumask_equal(&p->cpus_allowed, new_mask))
1108 goto out;
1109
1110 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1111 ret = -EINVAL;
1112 goto out;
1113 }
1114
1115 do_set_cpus_allowed(p, new_mask);
1116
1117 if (p->flags & PF_KTHREAD) {
1118 /*
1119 * For kernel threads that do indeed end up on online &&
1120 * !active we want to ensure they are strict per-CPU threads.
1121 */
1122 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1123 !cpumask_intersects(new_mask, cpu_active_mask) &&
1124 p->nr_cpus_allowed != 1);
1125 }
1126
1127 /* Can the task run on the task's current CPU? If so, we're done */
1128 if (cpumask_test_cpu(task_cpu(p), new_mask))
1129 goto out;
1130
1131 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1132 if (task_running(rq, p) || p->state == TASK_WAKING) {
1133 struct migration_arg arg = { p, dest_cpu };
1134 /* Need help from migration thread: drop lock and wait. */
1135 task_rq_unlock(rq, p, &rf);
1136 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1137 tlb_migrate_finish(p->mm);
1138 return 0;
1139 } else if (task_on_rq_queued(p)) {
1140 /*
1141 * OK, since we're going to drop the lock immediately
1142 * afterwards anyway.
1143 */
1144 rq_unpin_lock(rq, &rf);
1145 rq = move_queued_task(rq, p, dest_cpu);
1146 rq_repin_lock(rq, &rf);
1147 }
1148 out:
1149 task_rq_unlock(rq, p, &rf);
1150
1151 return ret;
1152 }
1153
1154 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1155 {
1156 return __set_cpus_allowed_ptr(p, new_mask, false);
1157 }
1158 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1159
1160 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1161 {
1162 #ifdef CONFIG_SCHED_DEBUG
1163 /*
1164 * We should never call set_task_cpu() on a blocked task,
1165 * ttwu() will sort out the placement.
1166 */
1167 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1168 !p->on_rq);
1169
1170 /*
1171 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1172 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1173 * time relying on p->on_rq.
1174 */
1175 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1176 p->sched_class == &fair_sched_class &&
1177 (p->on_rq && !task_on_rq_migrating(p)));
1178
1179 #ifdef CONFIG_LOCKDEP
1180 /*
1181 * The caller should hold either p->pi_lock or rq->lock, when changing
1182 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1183 *
1184 * sched_move_task() holds both and thus holding either pins the cgroup,
1185 * see task_group().
1186 *
1187 * Furthermore, all task_rq users should acquire both locks, see
1188 * task_rq_lock().
1189 */
1190 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1191 lockdep_is_held(&task_rq(p)->lock)));
1192 #endif
1193 #endif
1194
1195 trace_sched_migrate_task(p, new_cpu);
1196
1197 if (task_cpu(p) != new_cpu) {
1198 if (p->sched_class->migrate_task_rq)
1199 p->sched_class->migrate_task_rq(p);
1200 p->se.nr_migrations++;
1201 perf_event_task_migrate(p);
1202 }
1203
1204 __set_task_cpu(p, new_cpu);
1205 }
1206
1207 static void __migrate_swap_task(struct task_struct *p, int cpu)
1208 {
1209 if (task_on_rq_queued(p)) {
1210 struct rq *src_rq, *dst_rq;
1211
1212 src_rq = task_rq(p);
1213 dst_rq = cpu_rq(cpu);
1214
1215 p->on_rq = TASK_ON_RQ_MIGRATING;
1216 deactivate_task(src_rq, p, 0);
1217 set_task_cpu(p, cpu);
1218 activate_task(dst_rq, p, 0);
1219 p->on_rq = TASK_ON_RQ_QUEUED;
1220 check_preempt_curr(dst_rq, p, 0);
1221 } else {
1222 /*
1223 * Task isn't running anymore; make it appear like we migrated
1224 * it before it went to sleep. This means on wakeup we make the
1225 * previous CPU our target instead of where it really is.
1226 */
1227 p->wake_cpu = cpu;
1228 }
1229 }
1230
1231 struct migration_swap_arg {
1232 struct task_struct *src_task, *dst_task;
1233 int src_cpu, dst_cpu;
1234 };
1235
1236 static int migrate_swap_stop(void *data)
1237 {
1238 struct migration_swap_arg *arg = data;
1239 struct rq *src_rq, *dst_rq;
1240 int ret = -EAGAIN;
1241
1242 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1243 return -EAGAIN;
1244
1245 src_rq = cpu_rq(arg->src_cpu);
1246 dst_rq = cpu_rq(arg->dst_cpu);
1247
1248 double_raw_lock(&arg->src_task->pi_lock,
1249 &arg->dst_task->pi_lock);
1250 double_rq_lock(src_rq, dst_rq);
1251
1252 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1253 goto unlock;
1254
1255 if (task_cpu(arg->src_task) != arg->src_cpu)
1256 goto unlock;
1257
1258 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1259 goto unlock;
1260
1261 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1262 goto unlock;
1263
1264 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1265 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1266
1267 ret = 0;
1268
1269 unlock:
1270 double_rq_unlock(src_rq, dst_rq);
1271 raw_spin_unlock(&arg->dst_task->pi_lock);
1272 raw_spin_unlock(&arg->src_task->pi_lock);
1273
1274 return ret;
1275 }
1276
1277 /*
1278 * Cross migrate two tasks
1279 */
1280 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1281 {
1282 struct migration_swap_arg arg;
1283 int ret = -EINVAL;
1284
1285 arg = (struct migration_swap_arg){
1286 .src_task = cur,
1287 .src_cpu = task_cpu(cur),
1288 .dst_task = p,
1289 .dst_cpu = task_cpu(p),
1290 };
1291
1292 if (arg.src_cpu == arg.dst_cpu)
1293 goto out;
1294
1295 /*
1296 * These three tests are all lockless; this is OK since all of them
1297 * will be re-checked with proper locks held further down the line.
1298 */
1299 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1300 goto out;
1301
1302 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1303 goto out;
1304
1305 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1306 goto out;
1307
1308 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1309 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1310
1311 out:
1312 return ret;
1313 }
1314
1315 /*
1316 * wait_task_inactive - wait for a thread to unschedule.
1317 *
1318 * If @match_state is nonzero, it's the @p->state value just checked and
1319 * not expected to change. If it changes, i.e. @p might have woken up,
1320 * then return zero. When we succeed in waiting for @p to be off its CPU,
1321 * we return a positive number (its total switch count). If a second call
1322 * a short while later returns the same number, the caller can be sure that
1323 * @p has remained unscheduled the whole time.
1324 *
1325 * The caller must ensure that the task *will* unschedule sometime soon,
1326 * else this function might spin for a *long* time. This function can't
1327 * be called with interrupts off, or it may introduce deadlock with
1328 * smp_call_function() if an IPI is sent by the same process we are
1329 * waiting to become inactive.
1330 */
1331 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1332 {
1333 int running, queued;
1334 struct rq_flags rf;
1335 unsigned long ncsw;
1336 struct rq *rq;
1337
1338 for (;;) {
1339 /*
1340 * We do the initial early heuristics without holding
1341 * any task-queue locks at all. We'll only try to get
1342 * the runqueue lock when things look like they will
1343 * work out!
1344 */
1345 rq = task_rq(p);
1346
1347 /*
1348 * If the task is actively running on another CPU
1349 * still, just relax and busy-wait without holding
1350 * any locks.
1351 *
1352 * NOTE! Since we don't hold any locks, it's not
1353 * even sure that "rq" stays as the right runqueue!
1354 * But we don't care, since "task_running()" will
1355 * return false if the runqueue has changed and p
1356 * is actually now running somewhere else!
1357 */
1358 while (task_running(rq, p)) {
1359 if (match_state && unlikely(p->state != match_state))
1360 return 0;
1361 cpu_relax();
1362 }
1363
1364 /*
1365 * Ok, time to look more closely! We need the rq
1366 * lock now, to be *sure*. If we're wrong, we'll
1367 * just go back and repeat.
1368 */
1369 rq = task_rq_lock(p, &rf);
1370 trace_sched_wait_task(p);
1371 running = task_running(rq, p);
1372 queued = task_on_rq_queued(p);
1373 ncsw = 0;
1374 if (!match_state || p->state == match_state)
1375 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1376 task_rq_unlock(rq, p, &rf);
1377
1378 /*
1379 * If it changed from the expected state, bail out now.
1380 */
1381 if (unlikely(!ncsw))
1382 break;
1383
1384 /*
1385 * Was it really running after all now that we
1386 * checked with the proper locks actually held?
1387 *
1388 * Oops. Go back and try again..
1389 */
1390 if (unlikely(running)) {
1391 cpu_relax();
1392 continue;
1393 }
1394
1395 /*
1396 * It's not enough that it's not actively running,
1397 * it must be off the runqueue _entirely_, and not
1398 * preempted!
1399 *
1400 * So if it was still runnable (but just not actively
1401 * running right now), it's preempted, and we should
1402 * yield - it could be a while.
1403 */
1404 if (unlikely(queued)) {
1405 ktime_t to = NSEC_PER_SEC / HZ;
1406
1407 set_current_state(TASK_UNINTERRUPTIBLE);
1408 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1409 continue;
1410 }
1411
1412 /*
1413 * Ahh, all good. It wasn't running, and it wasn't
1414 * runnable, which means that it will never become
1415 * running in the future either. We're all done!
1416 */
1417 break;
1418 }
1419
1420 return ncsw;
1421 }
1422
1423 /***
1424 * kick_process - kick a running thread to enter/exit the kernel
1425 * @p: the to-be-kicked thread
1426 *
1427 * Cause a process which is running on another CPU to enter
1428 * kernel-mode, without any delay. (to get signals handled.)
1429 *
1430 * NOTE: this function doesn't have to take the runqueue lock,
1431 * because all it wants to ensure is that the remote task enters
1432 * the kernel. If the IPI races and the task has been migrated
1433 * to another CPU then no harm is done and the purpose has been
1434 * achieved as well.
1435 */
1436 void kick_process(struct task_struct *p)
1437 {
1438 int cpu;
1439
1440 preempt_disable();
1441 cpu = task_cpu(p);
1442 if ((cpu != smp_processor_id()) && task_curr(p))
1443 smp_send_reschedule(cpu);
1444 preempt_enable();
1445 }
1446 EXPORT_SYMBOL_GPL(kick_process);
1447
1448 /*
1449 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1450 *
1451 * A few notes on cpu_active vs cpu_online:
1452 *
1453 * - cpu_active must be a subset of cpu_online
1454 *
1455 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1456 * see __set_cpus_allowed_ptr(). At this point the newly online
1457 * CPU isn't yet part of the sched domains, and balancing will not
1458 * see it.
1459 *
1460 * - on CPU-down we clear cpu_active() to mask the sched domains and
1461 * avoid the load balancer to place new tasks on the to be removed
1462 * CPU. Existing tasks will remain running there and will be taken
1463 * off.
1464 *
1465 * This means that fallback selection must not select !active CPUs.
1466 * And can assume that any active CPU must be online. Conversely
1467 * select_task_rq() below may allow selection of !active CPUs in order
1468 * to satisfy the above rules.
1469 */
1470 static int select_fallback_rq(int cpu, struct task_struct *p)
1471 {
1472 int nid = cpu_to_node(cpu);
1473 const struct cpumask *nodemask = NULL;
1474 enum { cpuset, possible, fail } state = cpuset;
1475 int dest_cpu;
1476
1477 /*
1478 * If the node that the CPU is on has been offlined, cpu_to_node()
1479 * will return -1. There is no CPU on the node, and we should
1480 * select the CPU on the other node.
1481 */
1482 if (nid != -1) {
1483 nodemask = cpumask_of_node(nid);
1484
1485 /* Look for allowed, online CPU in same node. */
1486 for_each_cpu(dest_cpu, nodemask) {
1487 if (!cpu_active(dest_cpu))
1488 continue;
1489 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1490 return dest_cpu;
1491 }
1492 }
1493
1494 for (;;) {
1495 /* Any allowed, online CPU? */
1496 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1497 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1498 continue;
1499 if (!cpu_online(dest_cpu))
1500 continue;
1501 goto out;
1502 }
1503
1504 /* No more Mr. Nice Guy. */
1505 switch (state) {
1506 case cpuset:
1507 if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 cpuset_cpus_allowed_fallback(p);
1509 state = possible;
1510 break;
1511 }
1512 /* Fall-through */
1513 case possible:
1514 do_set_cpus_allowed(p, cpu_possible_mask);
1515 state = fail;
1516 break;
1517
1518 case fail:
1519 BUG();
1520 break;
1521 }
1522 }
1523
1524 out:
1525 if (state != cpuset) {
1526 /*
1527 * Don't tell them about moving exiting tasks or
1528 * kernel threads (both mm NULL), since they never
1529 * leave kernel.
1530 */
1531 if (p->mm && printk_ratelimit()) {
1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 task_pid_nr(p), p->comm, cpu);
1534 }
1535 }
1536
1537 return dest_cpu;
1538 }
1539
1540 /*
1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542 */
1543 static inline
1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545 {
1546 lockdep_assert_held(&p->pi_lock);
1547
1548 if (tsk_nr_cpus_allowed(p) > 1)
1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 else
1551 cpu = cpumask_any(tsk_cpus_allowed(p));
1552
1553 /*
1554 * In order not to call set_task_cpu() on a blocking task we need
1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 * CPU.
1557 *
1558 * Since this is common to all placement strategies, this lives here.
1559 *
1560 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 * not worry about this generic constraint ]
1562 */
1563 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1564 !cpu_online(cpu)))
1565 cpu = select_fallback_rq(task_cpu(p), p);
1566
1567 return cpu;
1568 }
1569
1570 static void update_avg(u64 *avg, u64 sample)
1571 {
1572 s64 diff = sample - *avg;
1573 *avg += diff >> 3;
1574 }
1575
1576 #else
1577
1578 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1579 const struct cpumask *new_mask, bool check)
1580 {
1581 return set_cpus_allowed_ptr(p, new_mask);
1582 }
1583
1584 #endif /* CONFIG_SMP */
1585
1586 static void
1587 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1588 {
1589 struct rq *rq;
1590
1591 if (!schedstat_enabled())
1592 return;
1593
1594 rq = this_rq();
1595
1596 #ifdef CONFIG_SMP
1597 if (cpu == rq->cpu) {
1598 schedstat_inc(rq->ttwu_local);
1599 schedstat_inc(p->se.statistics.nr_wakeups_local);
1600 } else {
1601 struct sched_domain *sd;
1602
1603 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1604 rcu_read_lock();
1605 for_each_domain(rq->cpu, sd) {
1606 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1607 schedstat_inc(sd->ttwu_wake_remote);
1608 break;
1609 }
1610 }
1611 rcu_read_unlock();
1612 }
1613
1614 if (wake_flags & WF_MIGRATED)
1615 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1616 #endif /* CONFIG_SMP */
1617
1618 schedstat_inc(rq->ttwu_count);
1619 schedstat_inc(p->se.statistics.nr_wakeups);
1620
1621 if (wake_flags & WF_SYNC)
1622 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1623 }
1624
1625 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1626 {
1627 activate_task(rq, p, en_flags);
1628 p->on_rq = TASK_ON_RQ_QUEUED;
1629
1630 /* If a worker is waking up, notify the workqueue: */
1631 if (p->flags & PF_WQ_WORKER)
1632 wq_worker_waking_up(p, cpu_of(rq));
1633 }
1634
1635 /*
1636 * Mark the task runnable and perform wakeup-preemption.
1637 */
1638 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1639 struct rq_flags *rf)
1640 {
1641 check_preempt_curr(rq, p, wake_flags);
1642 p->state = TASK_RUNNING;
1643 trace_sched_wakeup(p);
1644
1645 #ifdef CONFIG_SMP
1646 if (p->sched_class->task_woken) {
1647 /*
1648 * Our task @p is fully woken up and running; so its safe to
1649 * drop the rq->lock, hereafter rq is only used for statistics.
1650 */
1651 rq_unpin_lock(rq, rf);
1652 p->sched_class->task_woken(rq, p);
1653 rq_repin_lock(rq, rf);
1654 }
1655
1656 if (rq->idle_stamp) {
1657 u64 delta = rq_clock(rq) - rq->idle_stamp;
1658 u64 max = 2*rq->max_idle_balance_cost;
1659
1660 update_avg(&rq->avg_idle, delta);
1661
1662 if (rq->avg_idle > max)
1663 rq->avg_idle = max;
1664
1665 rq->idle_stamp = 0;
1666 }
1667 #endif
1668 }
1669
1670 static void
1671 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1672 struct rq_flags *rf)
1673 {
1674 int en_flags = ENQUEUE_WAKEUP;
1675
1676 lockdep_assert_held(&rq->lock);
1677
1678 #ifdef CONFIG_SMP
1679 if (p->sched_contributes_to_load)
1680 rq->nr_uninterruptible--;
1681
1682 if (wake_flags & WF_MIGRATED)
1683 en_flags |= ENQUEUE_MIGRATED;
1684 #endif
1685
1686 ttwu_activate(rq, p, en_flags);
1687 ttwu_do_wakeup(rq, p, wake_flags, rf);
1688 }
1689
1690 /*
1691 * Called in case the task @p isn't fully descheduled from its runqueue,
1692 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1693 * since all we need to do is flip p->state to TASK_RUNNING, since
1694 * the task is still ->on_rq.
1695 */
1696 static int ttwu_remote(struct task_struct *p, int wake_flags)
1697 {
1698 struct rq_flags rf;
1699 struct rq *rq;
1700 int ret = 0;
1701
1702 rq = __task_rq_lock(p, &rf);
1703 if (task_on_rq_queued(p)) {
1704 /* check_preempt_curr() may use rq clock */
1705 update_rq_clock(rq);
1706 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1707 ret = 1;
1708 }
1709 __task_rq_unlock(rq, &rf);
1710
1711 return ret;
1712 }
1713
1714 #ifdef CONFIG_SMP
1715 void sched_ttwu_pending(void)
1716 {
1717 struct rq *rq = this_rq();
1718 struct llist_node *llist = llist_del_all(&rq->wake_list);
1719 struct task_struct *p;
1720 unsigned long flags;
1721 struct rq_flags rf;
1722
1723 if (!llist)
1724 return;
1725
1726 raw_spin_lock_irqsave(&rq->lock, flags);
1727 rq_pin_lock(rq, &rf);
1728
1729 while (llist) {
1730 int wake_flags = 0;
1731
1732 p = llist_entry(llist, struct task_struct, wake_entry);
1733 llist = llist_next(llist);
1734
1735 if (p->sched_remote_wakeup)
1736 wake_flags = WF_MIGRATED;
1737
1738 ttwu_do_activate(rq, p, wake_flags, &rf);
1739 }
1740
1741 rq_unpin_lock(rq, &rf);
1742 raw_spin_unlock_irqrestore(&rq->lock, flags);
1743 }
1744
1745 void scheduler_ipi(void)
1746 {
1747 /*
1748 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1749 * TIF_NEED_RESCHED remotely (for the first time) will also send
1750 * this IPI.
1751 */
1752 preempt_fold_need_resched();
1753
1754 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1755 return;
1756
1757 /*
1758 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1759 * traditionally all their work was done from the interrupt return
1760 * path. Now that we actually do some work, we need to make sure
1761 * we do call them.
1762 *
1763 * Some archs already do call them, luckily irq_enter/exit nest
1764 * properly.
1765 *
1766 * Arguably we should visit all archs and update all handlers,
1767 * however a fair share of IPIs are still resched only so this would
1768 * somewhat pessimize the simple resched case.
1769 */
1770 irq_enter();
1771 sched_ttwu_pending();
1772
1773 /*
1774 * Check if someone kicked us for doing the nohz idle load balance.
1775 */
1776 if (unlikely(got_nohz_idle_kick())) {
1777 this_rq()->idle_balance = 1;
1778 raise_softirq_irqoff(SCHED_SOFTIRQ);
1779 }
1780 irq_exit();
1781 }
1782
1783 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1784 {
1785 struct rq *rq = cpu_rq(cpu);
1786
1787 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1788
1789 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1790 if (!set_nr_if_polling(rq->idle))
1791 smp_send_reschedule(cpu);
1792 else
1793 trace_sched_wake_idle_without_ipi(cpu);
1794 }
1795 }
1796
1797 void wake_up_if_idle(int cpu)
1798 {
1799 struct rq *rq = cpu_rq(cpu);
1800 unsigned long flags;
1801
1802 rcu_read_lock();
1803
1804 if (!is_idle_task(rcu_dereference(rq->curr)))
1805 goto out;
1806
1807 if (set_nr_if_polling(rq->idle)) {
1808 trace_sched_wake_idle_without_ipi(cpu);
1809 } else {
1810 raw_spin_lock_irqsave(&rq->lock, flags);
1811 if (is_idle_task(rq->curr))
1812 smp_send_reschedule(cpu);
1813 /* Else CPU is not idle, do nothing here: */
1814 raw_spin_unlock_irqrestore(&rq->lock, flags);
1815 }
1816
1817 out:
1818 rcu_read_unlock();
1819 }
1820
1821 bool cpus_share_cache(int this_cpu, int that_cpu)
1822 {
1823 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1824 }
1825 #endif /* CONFIG_SMP */
1826
1827 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 struct rq *rq = cpu_rq(cpu);
1830 struct rq_flags rf;
1831
1832 #if defined(CONFIG_SMP)
1833 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1834 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1835 ttwu_queue_remote(p, cpu, wake_flags);
1836 return;
1837 }
1838 #endif
1839
1840 raw_spin_lock(&rq->lock);
1841 rq_pin_lock(rq, &rf);
1842 ttwu_do_activate(rq, p, wake_flags, &rf);
1843 rq_unpin_lock(rq, &rf);
1844 raw_spin_unlock(&rq->lock);
1845 }
1846
1847 /*
1848 * Notes on Program-Order guarantees on SMP systems.
1849 *
1850 * MIGRATION
1851 *
1852 * The basic program-order guarantee on SMP systems is that when a task [t]
1853 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1854 * execution on its new CPU [c1].
1855 *
1856 * For migration (of runnable tasks) this is provided by the following means:
1857 *
1858 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1859 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1860 * rq(c1)->lock (if not at the same time, then in that order).
1861 * C) LOCK of the rq(c1)->lock scheduling in task
1862 *
1863 * Transitivity guarantees that B happens after A and C after B.
1864 * Note: we only require RCpc transitivity.
1865 * Note: the CPU doing B need not be c0 or c1
1866 *
1867 * Example:
1868 *
1869 * CPU0 CPU1 CPU2
1870 *
1871 * LOCK rq(0)->lock
1872 * sched-out X
1873 * sched-in Y
1874 * UNLOCK rq(0)->lock
1875 *
1876 * LOCK rq(0)->lock // orders against CPU0
1877 * dequeue X
1878 * UNLOCK rq(0)->lock
1879 *
1880 * LOCK rq(1)->lock
1881 * enqueue X
1882 * UNLOCK rq(1)->lock
1883 *
1884 * LOCK rq(1)->lock // orders against CPU2
1885 * sched-out Z
1886 * sched-in X
1887 * UNLOCK rq(1)->lock
1888 *
1889 *
1890 * BLOCKING -- aka. SLEEP + WAKEUP
1891 *
1892 * For blocking we (obviously) need to provide the same guarantee as for
1893 * migration. However the means are completely different as there is no lock
1894 * chain to provide order. Instead we do:
1895 *
1896 * 1) smp_store_release(X->on_cpu, 0)
1897 * 2) smp_cond_load_acquire(!X->on_cpu)
1898 *
1899 * Example:
1900 *
1901 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1902 *
1903 * LOCK rq(0)->lock LOCK X->pi_lock
1904 * dequeue X
1905 * sched-out X
1906 * smp_store_release(X->on_cpu, 0);
1907 *
1908 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1909 * X->state = WAKING
1910 * set_task_cpu(X,2)
1911 *
1912 * LOCK rq(2)->lock
1913 * enqueue X
1914 * X->state = RUNNING
1915 * UNLOCK rq(2)->lock
1916 *
1917 * LOCK rq(2)->lock // orders against CPU1
1918 * sched-out Z
1919 * sched-in X
1920 * UNLOCK rq(2)->lock
1921 *
1922 * UNLOCK X->pi_lock
1923 * UNLOCK rq(0)->lock
1924 *
1925 *
1926 * However; for wakeups there is a second guarantee we must provide, namely we
1927 * must observe the state that lead to our wakeup. That is, not only must our
1928 * task observe its own prior state, it must also observe the stores prior to
1929 * its wakeup.
1930 *
1931 * This means that any means of doing remote wakeups must order the CPU doing
1932 * the wakeup against the CPU the task is going to end up running on. This,
1933 * however, is already required for the regular Program-Order guarantee above,
1934 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1935 *
1936 */
1937
1938 /**
1939 * try_to_wake_up - wake up a thread
1940 * @p: the thread to be awakened
1941 * @state: the mask of task states that can be woken
1942 * @wake_flags: wake modifier flags (WF_*)
1943 *
1944 * If (@state & @p->state) @p->state = TASK_RUNNING.
1945 *
1946 * If the task was not queued/runnable, also place it back on a runqueue.
1947 *
1948 * Atomic against schedule() which would dequeue a task, also see
1949 * set_current_state().
1950 *
1951 * Return: %true if @p->state changes (an actual wakeup was done),
1952 * %false otherwise.
1953 */
1954 static int
1955 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1956 {
1957 unsigned long flags;
1958 int cpu, success = 0;
1959
1960 /*
1961 * If we are going to wake up a thread waiting for CONDITION we
1962 * need to ensure that CONDITION=1 done by the caller can not be
1963 * reordered with p->state check below. This pairs with mb() in
1964 * set_current_state() the waiting thread does.
1965 */
1966 smp_mb__before_spinlock();
1967 raw_spin_lock_irqsave(&p->pi_lock, flags);
1968 if (!(p->state & state))
1969 goto out;
1970
1971 trace_sched_waking(p);
1972
1973 /* We're going to change ->state: */
1974 success = 1;
1975 cpu = task_cpu(p);
1976
1977 /*
1978 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1979 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1980 * in smp_cond_load_acquire() below.
1981 *
1982 * sched_ttwu_pending() try_to_wake_up()
1983 * [S] p->on_rq = 1; [L] P->state
1984 * UNLOCK rq->lock -----.
1985 * \
1986 * +--- RMB
1987 * schedule() /
1988 * LOCK rq->lock -----'
1989 * UNLOCK rq->lock
1990 *
1991 * [task p]
1992 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1993 *
1994 * Pairs with the UNLOCK+LOCK on rq->lock from the
1995 * last wakeup of our task and the schedule that got our task
1996 * current.
1997 */
1998 smp_rmb();
1999 if (p->on_rq && ttwu_remote(p, wake_flags))
2000 goto stat;
2001
2002 #ifdef CONFIG_SMP
2003 /*
2004 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2005 * possible to, falsely, observe p->on_cpu == 0.
2006 *
2007 * One must be running (->on_cpu == 1) in order to remove oneself
2008 * from the runqueue.
2009 *
2010 * [S] ->on_cpu = 1; [L] ->on_rq
2011 * UNLOCK rq->lock
2012 * RMB
2013 * LOCK rq->lock
2014 * [S] ->on_rq = 0; [L] ->on_cpu
2015 *
2016 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2017 * from the consecutive calls to schedule(); the first switching to our
2018 * task, the second putting it to sleep.
2019 */
2020 smp_rmb();
2021
2022 /*
2023 * If the owning (remote) CPU is still in the middle of schedule() with
2024 * this task as prev, wait until its done referencing the task.
2025 *
2026 * Pairs with the smp_store_release() in finish_lock_switch().
2027 *
2028 * This ensures that tasks getting woken will be fully ordered against
2029 * their previous state and preserve Program Order.
2030 */
2031 smp_cond_load_acquire(&p->on_cpu, !VAL);
2032
2033 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2034 p->state = TASK_WAKING;
2035
2036 if (p->in_iowait) {
2037 delayacct_blkio_end();
2038 atomic_dec(&task_rq(p)->nr_iowait);
2039 }
2040
2041 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2042 if (task_cpu(p) != cpu) {
2043 wake_flags |= WF_MIGRATED;
2044 set_task_cpu(p, cpu);
2045 }
2046
2047 #else /* CONFIG_SMP */
2048
2049 if (p->in_iowait) {
2050 delayacct_blkio_end();
2051 atomic_dec(&task_rq(p)->nr_iowait);
2052 }
2053
2054 #endif /* CONFIG_SMP */
2055
2056 ttwu_queue(p, cpu, wake_flags);
2057 stat:
2058 ttwu_stat(p, cpu, wake_flags);
2059 out:
2060 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2061
2062 return success;
2063 }
2064
2065 /**
2066 * try_to_wake_up_local - try to wake up a local task with rq lock held
2067 * @p: the thread to be awakened
2068 * @cookie: context's cookie for pinning
2069 *
2070 * Put @p on the run-queue if it's not already there. The caller must
2071 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2072 * the current task.
2073 */
2074 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2075 {
2076 struct rq *rq = task_rq(p);
2077
2078 if (WARN_ON_ONCE(rq != this_rq()) ||
2079 WARN_ON_ONCE(p == current))
2080 return;
2081
2082 lockdep_assert_held(&rq->lock);
2083
2084 if (!raw_spin_trylock(&p->pi_lock)) {
2085 /*
2086 * This is OK, because current is on_cpu, which avoids it being
2087 * picked for load-balance and preemption/IRQs are still
2088 * disabled avoiding further scheduler activity on it and we've
2089 * not yet picked a replacement task.
2090 */
2091 rq_unpin_lock(rq, rf);
2092 raw_spin_unlock(&rq->lock);
2093 raw_spin_lock(&p->pi_lock);
2094 raw_spin_lock(&rq->lock);
2095 rq_repin_lock(rq, rf);
2096 }
2097
2098 if (!(p->state & TASK_NORMAL))
2099 goto out;
2100
2101 trace_sched_waking(p);
2102
2103 if (!task_on_rq_queued(p)) {
2104 if (p->in_iowait) {
2105 delayacct_blkio_end();
2106 atomic_dec(&rq->nr_iowait);
2107 }
2108 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2109 }
2110
2111 ttwu_do_wakeup(rq, p, 0, rf);
2112 ttwu_stat(p, smp_processor_id(), 0);
2113 out:
2114 raw_spin_unlock(&p->pi_lock);
2115 }
2116
2117 /**
2118 * wake_up_process - Wake up a specific process
2119 * @p: The process to be woken up.
2120 *
2121 * Attempt to wake up the nominated process and move it to the set of runnable
2122 * processes.
2123 *
2124 * Return: 1 if the process was woken up, 0 if it was already running.
2125 *
2126 * It may be assumed that this function implies a write memory barrier before
2127 * changing the task state if and only if any tasks are woken up.
2128 */
2129 int wake_up_process(struct task_struct *p)
2130 {
2131 return try_to_wake_up(p, TASK_NORMAL, 0);
2132 }
2133 EXPORT_SYMBOL(wake_up_process);
2134
2135 int wake_up_state(struct task_struct *p, unsigned int state)
2136 {
2137 return try_to_wake_up(p, state, 0);
2138 }
2139
2140 /*
2141 * This function clears the sched_dl_entity static params.
2142 */
2143 void __dl_clear_params(struct task_struct *p)
2144 {
2145 struct sched_dl_entity *dl_se = &p->dl;
2146
2147 dl_se->dl_runtime = 0;
2148 dl_se->dl_deadline = 0;
2149 dl_se->dl_period = 0;
2150 dl_se->flags = 0;
2151 dl_se->dl_bw = 0;
2152
2153 dl_se->dl_throttled = 0;
2154 dl_se->dl_yielded = 0;
2155 }
2156
2157 /*
2158 * Perform scheduler related setup for a newly forked process p.
2159 * p is forked by current.
2160 *
2161 * __sched_fork() is basic setup used by init_idle() too:
2162 */
2163 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 p->on_rq = 0;
2166
2167 p->se.on_rq = 0;
2168 p->se.exec_start = 0;
2169 p->se.sum_exec_runtime = 0;
2170 p->se.prev_sum_exec_runtime = 0;
2171 p->se.nr_migrations = 0;
2172 p->se.vruntime = 0;
2173 INIT_LIST_HEAD(&p->se.group_node);
2174
2175 #ifdef CONFIG_FAIR_GROUP_SCHED
2176 p->se.cfs_rq = NULL;
2177 #endif
2178
2179 #ifdef CONFIG_SCHEDSTATS
2180 /* Even if schedstat is disabled, there should not be garbage */
2181 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 #endif
2183
2184 RB_CLEAR_NODE(&p->dl.rb_node);
2185 init_dl_task_timer(&p->dl);
2186 __dl_clear_params(p);
2187
2188 INIT_LIST_HEAD(&p->rt.run_list);
2189 p->rt.timeout = 0;
2190 p->rt.time_slice = sched_rr_timeslice;
2191 p->rt.on_rq = 0;
2192 p->rt.on_list = 0;
2193
2194 #ifdef CONFIG_PREEMPT_NOTIFIERS
2195 INIT_HLIST_HEAD(&p->preempt_notifiers);
2196 #endif
2197
2198 #ifdef CONFIG_NUMA_BALANCING
2199 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2200 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2201 p->mm->numa_scan_seq = 0;
2202 }
2203
2204 if (clone_flags & CLONE_VM)
2205 p->numa_preferred_nid = current->numa_preferred_nid;
2206 else
2207 p->numa_preferred_nid = -1;
2208
2209 p->node_stamp = 0ULL;
2210 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2211 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2212 p->numa_work.next = &p->numa_work;
2213 p->numa_faults = NULL;
2214 p->last_task_numa_placement = 0;
2215 p->last_sum_exec_runtime = 0;
2216
2217 p->numa_group = NULL;
2218 #endif /* CONFIG_NUMA_BALANCING */
2219 }
2220
2221 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222
2223 #ifdef CONFIG_NUMA_BALANCING
2224
2225 void set_numabalancing_state(bool enabled)
2226 {
2227 if (enabled)
2228 static_branch_enable(&sched_numa_balancing);
2229 else
2230 static_branch_disable(&sched_numa_balancing);
2231 }
2232
2233 #ifdef CONFIG_PROC_SYSCTL
2234 int sysctl_numa_balancing(struct ctl_table *table, int write,
2235 void __user *buffer, size_t *lenp, loff_t *ppos)
2236 {
2237 struct ctl_table t;
2238 int err;
2239 int state = static_branch_likely(&sched_numa_balancing);
2240
2241 if (write && !capable(CAP_SYS_ADMIN))
2242 return -EPERM;
2243
2244 t = *table;
2245 t.data = &state;
2246 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2247 if (err < 0)
2248 return err;
2249 if (write)
2250 set_numabalancing_state(state);
2251 return err;
2252 }
2253 #endif
2254 #endif
2255
2256 #ifdef CONFIG_SCHEDSTATS
2257
2258 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2259 static bool __initdata __sched_schedstats = false;
2260
2261 static void set_schedstats(bool enabled)
2262 {
2263 if (enabled)
2264 static_branch_enable(&sched_schedstats);
2265 else
2266 static_branch_disable(&sched_schedstats);
2267 }
2268
2269 void force_schedstat_enabled(void)
2270 {
2271 if (!schedstat_enabled()) {
2272 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2273 static_branch_enable(&sched_schedstats);
2274 }
2275 }
2276
2277 static int __init setup_schedstats(char *str)
2278 {
2279 int ret = 0;
2280 if (!str)
2281 goto out;
2282
2283 /*
2284 * This code is called before jump labels have been set up, so we can't
2285 * change the static branch directly just yet. Instead set a temporary
2286 * variable so init_schedstats() can do it later.
2287 */
2288 if (!strcmp(str, "enable")) {
2289 __sched_schedstats = true;
2290 ret = 1;
2291 } else if (!strcmp(str, "disable")) {
2292 __sched_schedstats = false;
2293 ret = 1;
2294 }
2295 out:
2296 if (!ret)
2297 pr_warn("Unable to parse schedstats=\n");
2298
2299 return ret;
2300 }
2301 __setup("schedstats=", setup_schedstats);
2302
2303 static void __init init_schedstats(void)
2304 {
2305 set_schedstats(__sched_schedstats);
2306 }
2307
2308 #ifdef CONFIG_PROC_SYSCTL
2309 int sysctl_schedstats(struct ctl_table *table, int write,
2310 void __user *buffer, size_t *lenp, loff_t *ppos)
2311 {
2312 struct ctl_table t;
2313 int err;
2314 int state = static_branch_likely(&sched_schedstats);
2315
2316 if (write && !capable(CAP_SYS_ADMIN))
2317 return -EPERM;
2318
2319 t = *table;
2320 t.data = &state;
2321 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2322 if (err < 0)
2323 return err;
2324 if (write)
2325 set_schedstats(state);
2326 return err;
2327 }
2328 #endif /* CONFIG_PROC_SYSCTL */
2329 #else /* !CONFIG_SCHEDSTATS */
2330 static inline void init_schedstats(void) {}
2331 #endif /* CONFIG_SCHEDSTATS */
2332
2333 /*
2334 * fork()/clone()-time setup:
2335 */
2336 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2337 {
2338 unsigned long flags;
2339 int cpu = get_cpu();
2340
2341 __sched_fork(clone_flags, p);
2342 /*
2343 * We mark the process as NEW here. This guarantees that
2344 * nobody will actually run it, and a signal or other external
2345 * event cannot wake it up and insert it on the runqueue either.
2346 */
2347 p->state = TASK_NEW;
2348
2349 /*
2350 * Make sure we do not leak PI boosting priority to the child.
2351 */
2352 p->prio = current->normal_prio;
2353
2354 /*
2355 * Revert to default priority/policy on fork if requested.
2356 */
2357 if (unlikely(p->sched_reset_on_fork)) {
2358 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2359 p->policy = SCHED_NORMAL;
2360 p->static_prio = NICE_TO_PRIO(0);
2361 p->rt_priority = 0;
2362 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2363 p->static_prio = NICE_TO_PRIO(0);
2364
2365 p->prio = p->normal_prio = __normal_prio(p);
2366 set_load_weight(p);
2367
2368 /*
2369 * We don't need the reset flag anymore after the fork. It has
2370 * fulfilled its duty:
2371 */
2372 p->sched_reset_on_fork = 0;
2373 }
2374
2375 if (dl_prio(p->prio)) {
2376 put_cpu();
2377 return -EAGAIN;
2378 } else if (rt_prio(p->prio)) {
2379 p->sched_class = &rt_sched_class;
2380 } else {
2381 p->sched_class = &fair_sched_class;
2382 }
2383
2384 init_entity_runnable_average(&p->se);
2385
2386 /*
2387 * The child is not yet in the pid-hash so no cgroup attach races,
2388 * and the cgroup is pinned to this child due to cgroup_fork()
2389 * is ran before sched_fork().
2390 *
2391 * Silence PROVE_RCU.
2392 */
2393 raw_spin_lock_irqsave(&p->pi_lock, flags);
2394 /*
2395 * We're setting the CPU for the first time, we don't migrate,
2396 * so use __set_task_cpu().
2397 */
2398 __set_task_cpu(p, cpu);
2399 if (p->sched_class->task_fork)
2400 p->sched_class->task_fork(p);
2401 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2402
2403 #ifdef CONFIG_SCHED_INFO
2404 if (likely(sched_info_on()))
2405 memset(&p->sched_info, 0, sizeof(p->sched_info));
2406 #endif
2407 #if defined(CONFIG_SMP)
2408 p->on_cpu = 0;
2409 #endif
2410 init_task_preempt_count(p);
2411 #ifdef CONFIG_SMP
2412 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2413 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2414 #endif
2415
2416 put_cpu();
2417 return 0;
2418 }
2419
2420 unsigned long to_ratio(u64 period, u64 runtime)
2421 {
2422 if (runtime == RUNTIME_INF)
2423 return 1ULL << 20;
2424
2425 /*
2426 * Doing this here saves a lot of checks in all
2427 * the calling paths, and returning zero seems
2428 * safe for them anyway.
2429 */
2430 if (period == 0)
2431 return 0;
2432
2433 return div64_u64(runtime << 20, period);
2434 }
2435
2436 #ifdef CONFIG_SMP
2437 inline struct dl_bw *dl_bw_of(int i)
2438 {
2439 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2440 "sched RCU must be held");
2441 return &cpu_rq(i)->rd->dl_bw;
2442 }
2443
2444 static inline int dl_bw_cpus(int i)
2445 {
2446 struct root_domain *rd = cpu_rq(i)->rd;
2447 int cpus = 0;
2448
2449 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2450 "sched RCU must be held");
2451 for_each_cpu_and(i, rd->span, cpu_active_mask)
2452 cpus++;
2453
2454 return cpus;
2455 }
2456 #else
2457 inline struct dl_bw *dl_bw_of(int i)
2458 {
2459 return &cpu_rq(i)->dl.dl_bw;
2460 }
2461
2462 static inline int dl_bw_cpus(int i)
2463 {
2464 return 1;
2465 }
2466 #endif
2467
2468 /*
2469 * We must be sure that accepting a new task (or allowing changing the
2470 * parameters of an existing one) is consistent with the bandwidth
2471 * constraints. If yes, this function also accordingly updates the currently
2472 * allocated bandwidth to reflect the new situation.
2473 *
2474 * This function is called while holding p's rq->lock.
2475 *
2476 * XXX we should delay bw change until the task's 0-lag point, see
2477 * __setparam_dl().
2478 */
2479 static int dl_overflow(struct task_struct *p, int policy,
2480 const struct sched_attr *attr)
2481 {
2482
2483 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2484 u64 period = attr->sched_period ?: attr->sched_deadline;
2485 u64 runtime = attr->sched_runtime;
2486 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2487 int cpus, err = -1;
2488
2489 /* !deadline task may carry old deadline bandwidth */
2490 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2491 return 0;
2492
2493 /*
2494 * Either if a task, enters, leave, or stays -deadline but changes
2495 * its parameters, we may need to update accordingly the total
2496 * allocated bandwidth of the container.
2497 */
2498 raw_spin_lock(&dl_b->lock);
2499 cpus = dl_bw_cpus(task_cpu(p));
2500 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2501 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2502 __dl_add(dl_b, new_bw);
2503 err = 0;
2504 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2505 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2506 __dl_clear(dl_b, p->dl.dl_bw);
2507 __dl_add(dl_b, new_bw);
2508 err = 0;
2509 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2510 __dl_clear(dl_b, p->dl.dl_bw);
2511 err = 0;
2512 }
2513 raw_spin_unlock(&dl_b->lock);
2514
2515 return err;
2516 }
2517
2518 extern void init_dl_bw(struct dl_bw *dl_b);
2519
2520 /*
2521 * wake_up_new_task - wake up a newly created task for the first time.
2522 *
2523 * This function will do some initial scheduler statistics housekeeping
2524 * that must be done for every newly created context, then puts the task
2525 * on the runqueue and wakes it.
2526 */
2527 void wake_up_new_task(struct task_struct *p)
2528 {
2529 struct rq_flags rf;
2530 struct rq *rq;
2531
2532 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2533 p->state = TASK_RUNNING;
2534 #ifdef CONFIG_SMP
2535 /*
2536 * Fork balancing, do it here and not earlier because:
2537 * - cpus_allowed can change in the fork path
2538 * - any previously selected CPU might disappear through hotplug
2539 *
2540 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2541 * as we're not fully set-up yet.
2542 */
2543 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2544 #endif
2545 rq = __task_rq_lock(p, &rf);
2546 update_rq_clock(rq);
2547 post_init_entity_util_avg(&p->se);
2548
2549 activate_task(rq, p, 0);
2550 p->on_rq = TASK_ON_RQ_QUEUED;
2551 trace_sched_wakeup_new(p);
2552 check_preempt_curr(rq, p, WF_FORK);
2553 #ifdef CONFIG_SMP
2554 if (p->sched_class->task_woken) {
2555 /*
2556 * Nothing relies on rq->lock after this, so its fine to
2557 * drop it.
2558 */
2559 rq_unpin_lock(rq, &rf);
2560 p->sched_class->task_woken(rq, p);
2561 rq_repin_lock(rq, &rf);
2562 }
2563 #endif
2564 task_rq_unlock(rq, p, &rf);
2565 }
2566
2567 #ifdef CONFIG_PREEMPT_NOTIFIERS
2568
2569 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2570
2571 void preempt_notifier_inc(void)
2572 {
2573 static_key_slow_inc(&preempt_notifier_key);
2574 }
2575 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2576
2577 void preempt_notifier_dec(void)
2578 {
2579 static_key_slow_dec(&preempt_notifier_key);
2580 }
2581 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2582
2583 /**
2584 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2585 * @notifier: notifier struct to register
2586 */
2587 void preempt_notifier_register(struct preempt_notifier *notifier)
2588 {
2589 if (!static_key_false(&preempt_notifier_key))
2590 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2591
2592 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2593 }
2594 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2595
2596 /**
2597 * preempt_notifier_unregister - no longer interested in preemption notifications
2598 * @notifier: notifier struct to unregister
2599 *
2600 * This is *not* safe to call from within a preemption notifier.
2601 */
2602 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2603 {
2604 hlist_del(&notifier->link);
2605 }
2606 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2607
2608 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2609 {
2610 struct preempt_notifier *notifier;
2611
2612 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2613 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2614 }
2615
2616 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2617 {
2618 if (static_key_false(&preempt_notifier_key))
2619 __fire_sched_in_preempt_notifiers(curr);
2620 }
2621
2622 static void
2623 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2624 struct task_struct *next)
2625 {
2626 struct preempt_notifier *notifier;
2627
2628 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2629 notifier->ops->sched_out(notifier, next);
2630 }
2631
2632 static __always_inline void
2633 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2634 struct task_struct *next)
2635 {
2636 if (static_key_false(&preempt_notifier_key))
2637 __fire_sched_out_preempt_notifiers(curr, next);
2638 }
2639
2640 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2641
2642 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643 {
2644 }
2645
2646 static inline void
2647 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
2649 {
2650 }
2651
2652 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2653
2654 /**
2655 * prepare_task_switch - prepare to switch tasks
2656 * @rq: the runqueue preparing to switch
2657 * @prev: the current task that is being switched out
2658 * @next: the task we are going to switch to.
2659 *
2660 * This is called with the rq lock held and interrupts off. It must
2661 * be paired with a subsequent finish_task_switch after the context
2662 * switch.
2663 *
2664 * prepare_task_switch sets up locking and calls architecture specific
2665 * hooks.
2666 */
2667 static inline void
2668 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2669 struct task_struct *next)
2670 {
2671 sched_info_switch(rq, prev, next);
2672 perf_event_task_sched_out(prev, next);
2673 fire_sched_out_preempt_notifiers(prev, next);
2674 prepare_lock_switch(rq, next);
2675 prepare_arch_switch(next);
2676 }
2677
2678 /**
2679 * finish_task_switch - clean up after a task-switch
2680 * @prev: the thread we just switched away from.
2681 *
2682 * finish_task_switch must be called after the context switch, paired
2683 * with a prepare_task_switch call before the context switch.
2684 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2685 * and do any other architecture-specific cleanup actions.
2686 *
2687 * Note that we may have delayed dropping an mm in context_switch(). If
2688 * so, we finish that here outside of the runqueue lock. (Doing it
2689 * with the lock held can cause deadlocks; see schedule() for
2690 * details.)
2691 *
2692 * The context switch have flipped the stack from under us and restored the
2693 * local variables which were saved when this task called schedule() in the
2694 * past. prev == current is still correct but we need to recalculate this_rq
2695 * because prev may have moved to another CPU.
2696 */
2697 static struct rq *finish_task_switch(struct task_struct *prev)
2698 __releases(rq->lock)
2699 {
2700 struct rq *rq = this_rq();
2701 struct mm_struct *mm = rq->prev_mm;
2702 long prev_state;
2703
2704 /*
2705 * The previous task will have left us with a preempt_count of 2
2706 * because it left us after:
2707 *
2708 * schedule()
2709 * preempt_disable(); // 1
2710 * __schedule()
2711 * raw_spin_lock_irq(&rq->lock) // 2
2712 *
2713 * Also, see FORK_PREEMPT_COUNT.
2714 */
2715 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2716 "corrupted preempt_count: %s/%d/0x%x\n",
2717 current->comm, current->pid, preempt_count()))
2718 preempt_count_set(FORK_PREEMPT_COUNT);
2719
2720 rq->prev_mm = NULL;
2721
2722 /*
2723 * A task struct has one reference for the use as "current".
2724 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2725 * schedule one last time. The schedule call will never return, and
2726 * the scheduled task must drop that reference.
2727 *
2728 * We must observe prev->state before clearing prev->on_cpu (in
2729 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2730 * running on another CPU and we could rave with its RUNNING -> DEAD
2731 * transition, resulting in a double drop.
2732 */
2733 prev_state = prev->state;
2734 vtime_task_switch(prev);
2735 perf_event_task_sched_in(prev, current);
2736 finish_lock_switch(rq, prev);
2737 finish_arch_post_lock_switch();
2738
2739 fire_sched_in_preempt_notifiers(current);
2740 if (mm)
2741 mmdrop(mm);
2742 if (unlikely(prev_state == TASK_DEAD)) {
2743 if (prev->sched_class->task_dead)
2744 prev->sched_class->task_dead(prev);
2745
2746 /*
2747 * Remove function-return probe instances associated with this
2748 * task and put them back on the free list.
2749 */
2750 kprobe_flush_task(prev);
2751
2752 /* Task is done with its stack. */
2753 put_task_stack(prev);
2754
2755 put_task_struct(prev);
2756 }
2757
2758 tick_nohz_task_switch();
2759 return rq;
2760 }
2761
2762 #ifdef CONFIG_SMP
2763
2764 /* rq->lock is NOT held, but preemption is disabled */
2765 static void __balance_callback(struct rq *rq)
2766 {
2767 struct callback_head *head, *next;
2768 void (*func)(struct rq *rq);
2769 unsigned long flags;
2770
2771 raw_spin_lock_irqsave(&rq->lock, flags);
2772 head = rq->balance_callback;
2773 rq->balance_callback = NULL;
2774 while (head) {
2775 func = (void (*)(struct rq *))head->func;
2776 next = head->next;
2777 head->next = NULL;
2778 head = next;
2779
2780 func(rq);
2781 }
2782 raw_spin_unlock_irqrestore(&rq->lock, flags);
2783 }
2784
2785 static inline void balance_callback(struct rq *rq)
2786 {
2787 if (unlikely(rq->balance_callback))
2788 __balance_callback(rq);
2789 }
2790
2791 #else
2792
2793 static inline void balance_callback(struct rq *rq)
2794 {
2795 }
2796
2797 #endif
2798
2799 /**
2800 * schedule_tail - first thing a freshly forked thread must call.
2801 * @prev: the thread we just switched away from.
2802 */
2803 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2804 __releases(rq->lock)
2805 {
2806 struct rq *rq;
2807
2808 /*
2809 * New tasks start with FORK_PREEMPT_COUNT, see there and
2810 * finish_task_switch() for details.
2811 *
2812 * finish_task_switch() will drop rq->lock() and lower preempt_count
2813 * and the preempt_enable() will end up enabling preemption (on
2814 * PREEMPT_COUNT kernels).
2815 */
2816
2817 rq = finish_task_switch(prev);
2818 balance_callback(rq);
2819 preempt_enable();
2820
2821 if (current->set_child_tid)
2822 put_user(task_pid_vnr(current), current->set_child_tid);
2823 }
2824
2825 /*
2826 * context_switch - switch to the new MM and the new thread's register state.
2827 */
2828 static __always_inline struct rq *
2829 context_switch(struct rq *rq, struct task_struct *prev,
2830 struct task_struct *next, struct rq_flags *rf)
2831 {
2832 struct mm_struct *mm, *oldmm;
2833
2834 prepare_task_switch(rq, prev, next);
2835
2836 mm = next->mm;
2837 oldmm = prev->active_mm;
2838 /*
2839 * For paravirt, this is coupled with an exit in switch_to to
2840 * combine the page table reload and the switch backend into
2841 * one hypercall.
2842 */
2843 arch_start_context_switch(prev);
2844
2845 if (!mm) {
2846 next->active_mm = oldmm;
2847 atomic_inc(&oldmm->mm_count);
2848 enter_lazy_tlb(oldmm, next);
2849 } else
2850 switch_mm_irqs_off(oldmm, mm, next);
2851
2852 if (!prev->mm) {
2853 prev->active_mm = NULL;
2854 rq->prev_mm = oldmm;
2855 }
2856
2857 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2858
2859 /*
2860 * Since the runqueue lock will be released by the next
2861 * task (which is an invalid locking op but in the case
2862 * of the scheduler it's an obvious special-case), so we
2863 * do an early lockdep release here:
2864 */
2865 rq_unpin_lock(rq, rf);
2866 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2867
2868 /* Here we just switch the register state and the stack. */
2869 switch_to(prev, next, prev);
2870 barrier();
2871
2872 return finish_task_switch(prev);
2873 }
2874
2875 /*
2876 * nr_running and nr_context_switches:
2877 *
2878 * externally visible scheduler statistics: current number of runnable
2879 * threads, total number of context switches performed since bootup.
2880 */
2881 unsigned long nr_running(void)
2882 {
2883 unsigned long i, sum = 0;
2884
2885 for_each_online_cpu(i)
2886 sum += cpu_rq(i)->nr_running;
2887
2888 return sum;
2889 }
2890
2891 /*
2892 * Check if only the current task is running on the CPU.
2893 *
2894 * Caution: this function does not check that the caller has disabled
2895 * preemption, thus the result might have a time-of-check-to-time-of-use
2896 * race. The caller is responsible to use it correctly, for example:
2897 *
2898 * - from a non-preemptable section (of course)
2899 *
2900 * - from a thread that is bound to a single CPU
2901 *
2902 * - in a loop with very short iterations (e.g. a polling loop)
2903 */
2904 bool single_task_running(void)
2905 {
2906 return raw_rq()->nr_running == 1;
2907 }
2908 EXPORT_SYMBOL(single_task_running);
2909
2910 unsigned long long nr_context_switches(void)
2911 {
2912 int i;
2913 unsigned long long sum = 0;
2914
2915 for_each_possible_cpu(i)
2916 sum += cpu_rq(i)->nr_switches;
2917
2918 return sum;
2919 }
2920
2921 /*
2922 * IO-wait accounting, and how its mostly bollocks (on SMP).
2923 *
2924 * The idea behind IO-wait account is to account the idle time that we could
2925 * have spend running if it were not for IO. That is, if we were to improve the
2926 * storage performance, we'd have a proportional reduction in IO-wait time.
2927 *
2928 * This all works nicely on UP, where, when a task blocks on IO, we account
2929 * idle time as IO-wait, because if the storage were faster, it could've been
2930 * running and we'd not be idle.
2931 *
2932 * This has been extended to SMP, by doing the same for each CPU. This however
2933 * is broken.
2934 *
2935 * Imagine for instance the case where two tasks block on one CPU, only the one
2936 * CPU will have IO-wait accounted, while the other has regular idle. Even
2937 * though, if the storage were faster, both could've ran at the same time,
2938 * utilising both CPUs.
2939 *
2940 * This means, that when looking globally, the current IO-wait accounting on
2941 * SMP is a lower bound, by reason of under accounting.
2942 *
2943 * Worse, since the numbers are provided per CPU, they are sometimes
2944 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2945 * associated with any one particular CPU, it can wake to another CPU than it
2946 * blocked on. This means the per CPU IO-wait number is meaningless.
2947 *
2948 * Task CPU affinities can make all that even more 'interesting'.
2949 */
2950
2951 unsigned long nr_iowait(void)
2952 {
2953 unsigned long i, sum = 0;
2954
2955 for_each_possible_cpu(i)
2956 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2957
2958 return sum;
2959 }
2960
2961 /*
2962 * Consumers of these two interfaces, like for example the cpufreq menu
2963 * governor are using nonsensical data. Boosting frequency for a CPU that has
2964 * IO-wait which might not even end up running the task when it does become
2965 * runnable.
2966 */
2967
2968 unsigned long nr_iowait_cpu(int cpu)
2969 {
2970 struct rq *this = cpu_rq(cpu);
2971 return atomic_read(&this->nr_iowait);
2972 }
2973
2974 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2975 {
2976 struct rq *rq = this_rq();
2977 *nr_waiters = atomic_read(&rq->nr_iowait);
2978 *load = rq->load.weight;
2979 }
2980
2981 #ifdef CONFIG_SMP
2982
2983 /*
2984 * sched_exec - execve() is a valuable balancing opportunity, because at
2985 * this point the task has the smallest effective memory and cache footprint.
2986 */
2987 void sched_exec(void)
2988 {
2989 struct task_struct *p = current;
2990 unsigned long flags;
2991 int dest_cpu;
2992
2993 raw_spin_lock_irqsave(&p->pi_lock, flags);
2994 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2995 if (dest_cpu == smp_processor_id())
2996 goto unlock;
2997
2998 if (likely(cpu_active(dest_cpu))) {
2999 struct migration_arg arg = { p, dest_cpu };
3000
3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3002 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3003 return;
3004 }
3005 unlock:
3006 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3007 }
3008
3009 #endif
3010
3011 DEFINE_PER_CPU(struct kernel_stat, kstat);
3012 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3013
3014 EXPORT_PER_CPU_SYMBOL(kstat);
3015 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3016
3017 /*
3018 * The function fair_sched_class.update_curr accesses the struct curr
3019 * and its field curr->exec_start; when called from task_sched_runtime(),
3020 * we observe a high rate of cache misses in practice.
3021 * Prefetching this data results in improved performance.
3022 */
3023 static inline void prefetch_curr_exec_start(struct task_struct *p)
3024 {
3025 #ifdef CONFIG_FAIR_GROUP_SCHED
3026 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3027 #else
3028 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3029 #endif
3030 prefetch(curr);
3031 prefetch(&curr->exec_start);
3032 }
3033
3034 /*
3035 * Return accounted runtime for the task.
3036 * In case the task is currently running, return the runtime plus current's
3037 * pending runtime that have not been accounted yet.
3038 */
3039 unsigned long long task_sched_runtime(struct task_struct *p)
3040 {
3041 struct rq_flags rf;
3042 struct rq *rq;
3043 u64 ns;
3044
3045 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3046 /*
3047 * 64-bit doesn't need locks to atomically read a 64bit value.
3048 * So we have a optimization chance when the task's delta_exec is 0.
3049 * Reading ->on_cpu is racy, but this is ok.
3050 *
3051 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3052 * If we race with it entering CPU, unaccounted time is 0. This is
3053 * indistinguishable from the read occurring a few cycles earlier.
3054 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3055 * been accounted, so we're correct here as well.
3056 */
3057 if (!p->on_cpu || !task_on_rq_queued(p))
3058 return p->se.sum_exec_runtime;
3059 #endif
3060
3061 rq = task_rq_lock(p, &rf);
3062 /*
3063 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3064 * project cycles that may never be accounted to this
3065 * thread, breaking clock_gettime().
3066 */
3067 if (task_current(rq, p) && task_on_rq_queued(p)) {
3068 prefetch_curr_exec_start(p);
3069 update_rq_clock(rq);
3070 p->sched_class->update_curr(rq);
3071 }
3072 ns = p->se.sum_exec_runtime;
3073 task_rq_unlock(rq, p, &rf);
3074
3075 return ns;
3076 }
3077
3078 /*
3079 * This function gets called by the timer code, with HZ frequency.
3080 * We call it with interrupts disabled.
3081 */
3082 void scheduler_tick(void)
3083 {
3084 int cpu = smp_processor_id();
3085 struct rq *rq = cpu_rq(cpu);
3086 struct task_struct *curr = rq->curr;
3087
3088 sched_clock_tick();
3089
3090 raw_spin_lock(&rq->lock);
3091 update_rq_clock(rq);
3092 curr->sched_class->task_tick(rq, curr, 0);
3093 cpu_load_update_active(rq);
3094 calc_global_load_tick(rq);
3095 raw_spin_unlock(&rq->lock);
3096
3097 perf_event_task_tick();
3098
3099 #ifdef CONFIG_SMP
3100 rq->idle_balance = idle_cpu(cpu);
3101 trigger_load_balance(rq);
3102 #endif
3103 rq_last_tick_reset(rq);
3104 }
3105
3106 #ifdef CONFIG_NO_HZ_FULL
3107 /**
3108 * scheduler_tick_max_deferment
3109 *
3110 * Keep at least one tick per second when a single
3111 * active task is running because the scheduler doesn't
3112 * yet completely support full dynticks environment.
3113 *
3114 * This makes sure that uptime, CFS vruntime, load
3115 * balancing, etc... continue to move forward, even
3116 * with a very low granularity.
3117 *
3118 * Return: Maximum deferment in nanoseconds.
3119 */
3120 u64 scheduler_tick_max_deferment(void)
3121 {
3122 struct rq *rq = this_rq();
3123 unsigned long next, now = READ_ONCE(jiffies);
3124
3125 next = rq->last_sched_tick + HZ;
3126
3127 if (time_before_eq(next, now))
3128 return 0;
3129
3130 return jiffies_to_nsecs(next - now);
3131 }
3132 #endif
3133
3134 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3135 defined(CONFIG_PREEMPT_TRACER))
3136 /*
3137 * If the value passed in is equal to the current preempt count
3138 * then we just disabled preemption. Start timing the latency.
3139 */
3140 static inline void preempt_latency_start(int val)
3141 {
3142 if (preempt_count() == val) {
3143 unsigned long ip = get_lock_parent_ip();
3144 #ifdef CONFIG_DEBUG_PREEMPT
3145 current->preempt_disable_ip = ip;
3146 #endif
3147 trace_preempt_off(CALLER_ADDR0, ip);
3148 }
3149 }
3150
3151 void preempt_count_add(int val)
3152 {
3153 #ifdef CONFIG_DEBUG_PREEMPT
3154 /*
3155 * Underflow?
3156 */
3157 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3158 return;
3159 #endif
3160 __preempt_count_add(val);
3161 #ifdef CONFIG_DEBUG_PREEMPT
3162 /*
3163 * Spinlock count overflowing soon?
3164 */
3165 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3166 PREEMPT_MASK - 10);
3167 #endif
3168 preempt_latency_start(val);
3169 }
3170 EXPORT_SYMBOL(preempt_count_add);
3171 NOKPROBE_SYMBOL(preempt_count_add);
3172
3173 /*
3174 * If the value passed in equals to the current preempt count
3175 * then we just enabled preemption. Stop timing the latency.
3176 */
3177 static inline void preempt_latency_stop(int val)
3178 {
3179 if (preempt_count() == val)
3180 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3181 }
3182
3183 void preempt_count_sub(int val)
3184 {
3185 #ifdef CONFIG_DEBUG_PREEMPT
3186 /*
3187 * Underflow?
3188 */
3189 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3190 return;
3191 /*
3192 * Is the spinlock portion underflowing?
3193 */
3194 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3195 !(preempt_count() & PREEMPT_MASK)))
3196 return;
3197 #endif
3198
3199 preempt_latency_stop(val);
3200 __preempt_count_sub(val);
3201 }
3202 EXPORT_SYMBOL(preempt_count_sub);
3203 NOKPROBE_SYMBOL(preempt_count_sub);
3204
3205 #else
3206 static inline void preempt_latency_start(int val) { }
3207 static inline void preempt_latency_stop(int val) { }
3208 #endif
3209
3210 /*
3211 * Print scheduling while atomic bug:
3212 */
3213 static noinline void __schedule_bug(struct task_struct *prev)
3214 {
3215 /* Save this before calling printk(), since that will clobber it */
3216 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3217
3218 if (oops_in_progress)
3219 return;
3220
3221 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3222 prev->comm, prev->pid, preempt_count());
3223
3224 debug_show_held_locks(prev);
3225 print_modules();
3226 if (irqs_disabled())
3227 print_irqtrace_events(prev);
3228 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3229 && in_atomic_preempt_off()) {
3230 pr_err("Preemption disabled at:");
3231 print_ip_sym(preempt_disable_ip);
3232 pr_cont("\n");
3233 }
3234 if (panic_on_warn)
3235 panic("scheduling while atomic\n");
3236
3237 dump_stack();
3238 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3239 }
3240
3241 /*
3242 * Various schedule()-time debugging checks and statistics:
3243 */
3244 static inline void schedule_debug(struct task_struct *prev)
3245 {
3246 #ifdef CONFIG_SCHED_STACK_END_CHECK
3247 if (task_stack_end_corrupted(prev))
3248 panic("corrupted stack end detected inside scheduler\n");
3249 #endif
3250
3251 if (unlikely(in_atomic_preempt_off())) {
3252 __schedule_bug(prev);
3253 preempt_count_set(PREEMPT_DISABLED);
3254 }
3255 rcu_sleep_check();
3256
3257 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3258
3259 schedstat_inc(this_rq()->sched_count);
3260 }
3261
3262 /*
3263 * Pick up the highest-prio task:
3264 */
3265 static inline struct task_struct *
3266 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3267 {
3268 const struct sched_class *class;
3269 struct task_struct *p;
3270
3271 /*
3272 * Optimization: we know that if all tasks are in
3273 * the fair class we can call that function directly:
3274 */
3275 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3276 p = fair_sched_class.pick_next_task(rq, prev, rf);
3277 if (unlikely(p == RETRY_TASK))
3278 goto again;
3279
3280 /* Assumes fair_sched_class->next == idle_sched_class */
3281 if (unlikely(!p))
3282 p = idle_sched_class.pick_next_task(rq, prev, rf);
3283
3284 return p;
3285 }
3286
3287 again:
3288 for_each_class(class) {
3289 p = class->pick_next_task(rq, prev, rf);
3290 if (p) {
3291 if (unlikely(p == RETRY_TASK))
3292 goto again;
3293 return p;
3294 }
3295 }
3296
3297 /* The idle class should always have a runnable task: */
3298 BUG();
3299 }
3300
3301 /*
3302 * __schedule() is the main scheduler function.
3303 *
3304 * The main means of driving the scheduler and thus entering this function are:
3305 *
3306 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3307 *
3308 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3309 * paths. For example, see arch/x86/entry_64.S.
3310 *
3311 * To drive preemption between tasks, the scheduler sets the flag in timer
3312 * interrupt handler scheduler_tick().
3313 *
3314 * 3. Wakeups don't really cause entry into schedule(). They add a
3315 * task to the run-queue and that's it.
3316 *
3317 * Now, if the new task added to the run-queue preempts the current
3318 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3319 * called on the nearest possible occasion:
3320 *
3321 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3322 *
3323 * - in syscall or exception context, at the next outmost
3324 * preempt_enable(). (this might be as soon as the wake_up()'s
3325 * spin_unlock()!)
3326 *
3327 * - in IRQ context, return from interrupt-handler to
3328 * preemptible context
3329 *
3330 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3331 * then at the next:
3332 *
3333 * - cond_resched() call
3334 * - explicit schedule() call
3335 * - return from syscall or exception to user-space
3336 * - return from interrupt-handler to user-space
3337 *
3338 * WARNING: must be called with preemption disabled!
3339 */
3340 static void __sched notrace __schedule(bool preempt)
3341 {
3342 struct task_struct *prev, *next;
3343 unsigned long *switch_count;
3344 struct rq_flags rf;
3345 struct rq *rq;
3346 int cpu;
3347
3348 cpu = smp_processor_id();
3349 rq = cpu_rq(cpu);
3350 prev = rq->curr;
3351
3352 schedule_debug(prev);
3353
3354 if (sched_feat(HRTICK))
3355 hrtick_clear(rq);
3356
3357 local_irq_disable();
3358 rcu_note_context_switch();
3359
3360 /*
3361 * Make sure that signal_pending_state()->signal_pending() below
3362 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3363 * done by the caller to avoid the race with signal_wake_up().
3364 */
3365 smp_mb__before_spinlock();
3366 raw_spin_lock(&rq->lock);
3367 rq_pin_lock(rq, &rf);
3368
3369 /* Promote REQ to ACT */
3370 rq->clock_update_flags <<= 1;
3371
3372 switch_count = &prev->nivcsw;
3373 if (!preempt && prev->state) {
3374 if (unlikely(signal_pending_state(prev->state, prev))) {
3375 prev->state = TASK_RUNNING;
3376 } else {
3377 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3378 prev->on_rq = 0;
3379
3380 if (prev->in_iowait) {
3381 atomic_inc(&rq->nr_iowait);
3382 delayacct_blkio_start();
3383 }
3384
3385 /*
3386 * If a worker went to sleep, notify and ask workqueue
3387 * whether it wants to wake up a task to maintain
3388 * concurrency.
3389 */
3390 if (prev->flags & PF_WQ_WORKER) {
3391 struct task_struct *to_wakeup;
3392
3393 to_wakeup = wq_worker_sleeping(prev);
3394 if (to_wakeup)
3395 try_to_wake_up_local(to_wakeup, &rf);
3396 }
3397 }
3398 switch_count = &prev->nvcsw;
3399 }
3400
3401 if (task_on_rq_queued(prev))
3402 update_rq_clock(rq);
3403
3404 next = pick_next_task(rq, prev, &rf);
3405 clear_tsk_need_resched(prev);
3406 clear_preempt_need_resched();
3407
3408 if (likely(prev != next)) {
3409 rq->nr_switches++;
3410 rq->curr = next;
3411 ++*switch_count;
3412
3413 trace_sched_switch(preempt, prev, next);
3414
3415 /* Also unlocks the rq: */
3416 rq = context_switch(rq, prev, next, &rf);
3417 } else {
3418 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3419 rq_unpin_lock(rq, &rf);
3420 raw_spin_unlock_irq(&rq->lock);
3421 }
3422
3423 balance_callback(rq);
3424 }
3425
3426 void __noreturn do_task_dead(void)
3427 {
3428 /*
3429 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3430 * when the following two conditions become true.
3431 * - There is race condition of mmap_sem (It is acquired by
3432 * exit_mm()), and
3433 * - SMI occurs before setting TASK_RUNINNG.
3434 * (or hypervisor of virtual machine switches to other guest)
3435 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3436 *
3437 * To avoid it, we have to wait for releasing tsk->pi_lock which
3438 * is held by try_to_wake_up()
3439 */
3440 smp_mb();
3441 raw_spin_unlock_wait(&current->pi_lock);
3442
3443 /* Causes final put_task_struct in finish_task_switch(): */
3444 __set_current_state(TASK_DEAD);
3445
3446 /* Tell freezer to ignore us: */
3447 current->flags |= PF_NOFREEZE;
3448
3449 __schedule(false);
3450 BUG();
3451
3452 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3453 for (;;)
3454 cpu_relax();
3455 }
3456
3457 static inline void sched_submit_work(struct task_struct *tsk)
3458 {
3459 if (!tsk->state || tsk_is_pi_blocked(tsk))
3460 return;
3461 /*
3462 * If we are going to sleep and we have plugged IO queued,
3463 * make sure to submit it to avoid deadlocks.
3464 */
3465 if (blk_needs_flush_plug(tsk))
3466 blk_schedule_flush_plug(tsk);
3467 }
3468
3469 asmlinkage __visible void __sched schedule(void)
3470 {
3471 struct task_struct *tsk = current;
3472
3473 sched_submit_work(tsk);
3474 do {
3475 preempt_disable();
3476 __schedule(false);
3477 sched_preempt_enable_no_resched();
3478 } while (need_resched());
3479 }
3480 EXPORT_SYMBOL(schedule);
3481
3482 #ifdef CONFIG_CONTEXT_TRACKING
3483 asmlinkage __visible void __sched schedule_user(void)
3484 {
3485 /*
3486 * If we come here after a random call to set_need_resched(),
3487 * or we have been woken up remotely but the IPI has not yet arrived,
3488 * we haven't yet exited the RCU idle mode. Do it here manually until
3489 * we find a better solution.
3490 *
3491 * NB: There are buggy callers of this function. Ideally we
3492 * should warn if prev_state != CONTEXT_USER, but that will trigger
3493 * too frequently to make sense yet.
3494 */
3495 enum ctx_state prev_state = exception_enter();
3496 schedule();
3497 exception_exit(prev_state);
3498 }
3499 #endif
3500
3501 /**
3502 * schedule_preempt_disabled - called with preemption disabled
3503 *
3504 * Returns with preemption disabled. Note: preempt_count must be 1
3505 */
3506 void __sched schedule_preempt_disabled(void)
3507 {
3508 sched_preempt_enable_no_resched();
3509 schedule();
3510 preempt_disable();
3511 }
3512
3513 static void __sched notrace preempt_schedule_common(void)
3514 {
3515 do {
3516 /*
3517 * Because the function tracer can trace preempt_count_sub()
3518 * and it also uses preempt_enable/disable_notrace(), if
3519 * NEED_RESCHED is set, the preempt_enable_notrace() called
3520 * by the function tracer will call this function again and
3521 * cause infinite recursion.
3522 *
3523 * Preemption must be disabled here before the function
3524 * tracer can trace. Break up preempt_disable() into two
3525 * calls. One to disable preemption without fear of being
3526 * traced. The other to still record the preemption latency,
3527 * which can also be traced by the function tracer.
3528 */
3529 preempt_disable_notrace();
3530 preempt_latency_start(1);
3531 __schedule(true);
3532 preempt_latency_stop(1);
3533 preempt_enable_no_resched_notrace();
3534
3535 /*
3536 * Check again in case we missed a preemption opportunity
3537 * between schedule and now.
3538 */
3539 } while (need_resched());
3540 }
3541
3542 #ifdef CONFIG_PREEMPT
3543 /*
3544 * this is the entry point to schedule() from in-kernel preemption
3545 * off of preempt_enable. Kernel preemptions off return from interrupt
3546 * occur there and call schedule directly.
3547 */
3548 asmlinkage __visible void __sched notrace preempt_schedule(void)
3549 {
3550 /*
3551 * If there is a non-zero preempt_count or interrupts are disabled,
3552 * we do not want to preempt the current task. Just return..
3553 */
3554 if (likely(!preemptible()))
3555 return;
3556
3557 preempt_schedule_common();
3558 }
3559 NOKPROBE_SYMBOL(preempt_schedule);
3560 EXPORT_SYMBOL(preempt_schedule);
3561
3562 /**
3563 * preempt_schedule_notrace - preempt_schedule called by tracing
3564 *
3565 * The tracing infrastructure uses preempt_enable_notrace to prevent
3566 * recursion and tracing preempt enabling caused by the tracing
3567 * infrastructure itself. But as tracing can happen in areas coming
3568 * from userspace or just about to enter userspace, a preempt enable
3569 * can occur before user_exit() is called. This will cause the scheduler
3570 * to be called when the system is still in usermode.
3571 *
3572 * To prevent this, the preempt_enable_notrace will use this function
3573 * instead of preempt_schedule() to exit user context if needed before
3574 * calling the scheduler.
3575 */
3576 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3577 {
3578 enum ctx_state prev_ctx;
3579
3580 if (likely(!preemptible()))
3581 return;
3582
3583 do {
3584 /*
3585 * Because the function tracer can trace preempt_count_sub()
3586 * and it also uses preempt_enable/disable_notrace(), if
3587 * NEED_RESCHED is set, the preempt_enable_notrace() called
3588 * by the function tracer will call this function again and
3589 * cause infinite recursion.
3590 *
3591 * Preemption must be disabled here before the function
3592 * tracer can trace. Break up preempt_disable() into two
3593 * calls. One to disable preemption without fear of being
3594 * traced. The other to still record the preemption latency,
3595 * which can also be traced by the function tracer.
3596 */
3597 preempt_disable_notrace();
3598 preempt_latency_start(1);
3599 /*
3600 * Needs preempt disabled in case user_exit() is traced
3601 * and the tracer calls preempt_enable_notrace() causing
3602 * an infinite recursion.
3603 */
3604 prev_ctx = exception_enter();
3605 __schedule(true);
3606 exception_exit(prev_ctx);
3607
3608 preempt_latency_stop(1);
3609 preempt_enable_no_resched_notrace();
3610 } while (need_resched());
3611 }
3612 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3613
3614 #endif /* CONFIG_PREEMPT */
3615
3616 /*
3617 * this is the entry point to schedule() from kernel preemption
3618 * off of irq context.
3619 * Note, that this is called and return with irqs disabled. This will
3620 * protect us against recursive calling from irq.
3621 */
3622 asmlinkage __visible void __sched preempt_schedule_irq(void)
3623 {
3624 enum ctx_state prev_state;
3625
3626 /* Catch callers which need to be fixed */
3627 BUG_ON(preempt_count() || !irqs_disabled());
3628
3629 prev_state = exception_enter();
3630
3631 do {
3632 preempt_disable();
3633 local_irq_enable();
3634 __schedule(true);
3635 local_irq_disable();
3636 sched_preempt_enable_no_resched();
3637 } while (need_resched());
3638
3639 exception_exit(prev_state);
3640 }
3641
3642 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3643 void *key)
3644 {
3645 return try_to_wake_up(curr->private, mode, wake_flags);
3646 }
3647 EXPORT_SYMBOL(default_wake_function);
3648
3649 #ifdef CONFIG_RT_MUTEXES
3650
3651 /*
3652 * rt_mutex_setprio - set the current priority of a task
3653 * @p: task
3654 * @prio: prio value (kernel-internal form)
3655 *
3656 * This function changes the 'effective' priority of a task. It does
3657 * not touch ->normal_prio like __setscheduler().
3658 *
3659 * Used by the rt_mutex code to implement priority inheritance
3660 * logic. Call site only calls if the priority of the task changed.
3661 */
3662 void rt_mutex_setprio(struct task_struct *p, int prio)
3663 {
3664 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3665 const struct sched_class *prev_class;
3666 struct rq_flags rf;
3667 struct rq *rq;
3668
3669 BUG_ON(prio > MAX_PRIO);
3670
3671 rq = __task_rq_lock(p, &rf);
3672 update_rq_clock(rq);
3673
3674 /*
3675 * Idle task boosting is a nono in general. There is one
3676 * exception, when PREEMPT_RT and NOHZ is active:
3677 *
3678 * The idle task calls get_next_timer_interrupt() and holds
3679 * the timer wheel base->lock on the CPU and another CPU wants
3680 * to access the timer (probably to cancel it). We can safely
3681 * ignore the boosting request, as the idle CPU runs this code
3682 * with interrupts disabled and will complete the lock
3683 * protected section without being interrupted. So there is no
3684 * real need to boost.
3685 */
3686 if (unlikely(p == rq->idle)) {
3687 WARN_ON(p != rq->curr);
3688 WARN_ON(p->pi_blocked_on);
3689 goto out_unlock;
3690 }
3691
3692 trace_sched_pi_setprio(p, prio);
3693 oldprio = p->prio;
3694
3695 if (oldprio == prio)
3696 queue_flag &= ~DEQUEUE_MOVE;
3697
3698 prev_class = p->sched_class;
3699 queued = task_on_rq_queued(p);
3700 running = task_current(rq, p);
3701 if (queued)
3702 dequeue_task(rq, p, queue_flag);
3703 if (running)
3704 put_prev_task(rq, p);
3705
3706 /*
3707 * Boosting condition are:
3708 * 1. -rt task is running and holds mutex A
3709 * --> -dl task blocks on mutex A
3710 *
3711 * 2. -dl task is running and holds mutex A
3712 * --> -dl task blocks on mutex A and could preempt the
3713 * running task
3714 */
3715 if (dl_prio(prio)) {
3716 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3717 if (!dl_prio(p->normal_prio) ||
3718 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3719 p->dl.dl_boosted = 1;
3720 queue_flag |= ENQUEUE_REPLENISH;
3721 } else
3722 p->dl.dl_boosted = 0;
3723 p->sched_class = &dl_sched_class;
3724 } else if (rt_prio(prio)) {
3725 if (dl_prio(oldprio))
3726 p->dl.dl_boosted = 0;
3727 if (oldprio < prio)
3728 queue_flag |= ENQUEUE_HEAD;
3729 p->sched_class = &rt_sched_class;
3730 } else {
3731 if (dl_prio(oldprio))
3732 p->dl.dl_boosted = 0;
3733 if (rt_prio(oldprio))
3734 p->rt.timeout = 0;
3735 p->sched_class = &fair_sched_class;
3736 }
3737
3738 p->prio = prio;
3739
3740 if (queued)
3741 enqueue_task(rq, p, queue_flag);
3742 if (running)
3743 set_curr_task(rq, p);
3744
3745 check_class_changed(rq, p, prev_class, oldprio);
3746 out_unlock:
3747 /* Avoid rq from going away on us: */
3748 preempt_disable();
3749 __task_rq_unlock(rq, &rf);
3750
3751 balance_callback(rq);
3752 preempt_enable();
3753 }
3754 #endif
3755
3756 void set_user_nice(struct task_struct *p, long nice)
3757 {
3758 bool queued, running;
3759 int old_prio, delta;
3760 struct rq_flags rf;
3761 struct rq *rq;
3762
3763 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3764 return;
3765 /*
3766 * We have to be careful, if called from sys_setpriority(),
3767 * the task might be in the middle of scheduling on another CPU.
3768 */
3769 rq = task_rq_lock(p, &rf);
3770 update_rq_clock(rq);
3771
3772 /*
3773 * The RT priorities are set via sched_setscheduler(), but we still
3774 * allow the 'normal' nice value to be set - but as expected
3775 * it wont have any effect on scheduling until the task is
3776 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3777 */
3778 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3779 p->static_prio = NICE_TO_PRIO(nice);
3780 goto out_unlock;
3781 }
3782 queued = task_on_rq_queued(p);
3783 running = task_current(rq, p);
3784 if (queued)
3785 dequeue_task(rq, p, DEQUEUE_SAVE);
3786 if (running)
3787 put_prev_task(rq, p);
3788
3789 p->static_prio = NICE_TO_PRIO(nice);
3790 set_load_weight(p);
3791 old_prio = p->prio;
3792 p->prio = effective_prio(p);
3793 delta = p->prio - old_prio;
3794
3795 if (queued) {
3796 enqueue_task(rq, p, ENQUEUE_RESTORE);
3797 /*
3798 * If the task increased its priority or is running and
3799 * lowered its priority, then reschedule its CPU:
3800 */
3801 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3802 resched_curr(rq);
3803 }
3804 if (running)
3805 set_curr_task(rq, p);
3806 out_unlock:
3807 task_rq_unlock(rq, p, &rf);
3808 }
3809 EXPORT_SYMBOL(set_user_nice);
3810
3811 /*
3812 * can_nice - check if a task can reduce its nice value
3813 * @p: task
3814 * @nice: nice value
3815 */
3816 int can_nice(const struct task_struct *p, const int nice)
3817 {
3818 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3819 int nice_rlim = nice_to_rlimit(nice);
3820
3821 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3822 capable(CAP_SYS_NICE));
3823 }
3824
3825 #ifdef __ARCH_WANT_SYS_NICE
3826
3827 /*
3828 * sys_nice - change the priority of the current process.
3829 * @increment: priority increment
3830 *
3831 * sys_setpriority is a more generic, but much slower function that
3832 * does similar things.
3833 */
3834 SYSCALL_DEFINE1(nice, int, increment)
3835 {
3836 long nice, retval;
3837
3838 /*
3839 * Setpriority might change our priority at the same moment.
3840 * We don't have to worry. Conceptually one call occurs first
3841 * and we have a single winner.
3842 */
3843 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3844 nice = task_nice(current) + increment;
3845
3846 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3847 if (increment < 0 && !can_nice(current, nice))
3848 return -EPERM;
3849
3850 retval = security_task_setnice(current, nice);
3851 if (retval)
3852 return retval;
3853
3854 set_user_nice(current, nice);
3855 return 0;
3856 }
3857
3858 #endif
3859
3860 /**
3861 * task_prio - return the priority value of a given task.
3862 * @p: the task in question.
3863 *
3864 * Return: The priority value as seen by users in /proc.
3865 * RT tasks are offset by -200. Normal tasks are centered
3866 * around 0, value goes from -16 to +15.
3867 */
3868 int task_prio(const struct task_struct *p)
3869 {
3870 return p->prio - MAX_RT_PRIO;
3871 }
3872
3873 /**
3874 * idle_cpu - is a given CPU idle currently?
3875 * @cpu: the processor in question.
3876 *
3877 * Return: 1 if the CPU is currently idle. 0 otherwise.
3878 */
3879 int idle_cpu(int cpu)
3880 {
3881 struct rq *rq = cpu_rq(cpu);
3882
3883 if (rq->curr != rq->idle)
3884 return 0;
3885
3886 if (rq->nr_running)
3887 return 0;
3888
3889 #ifdef CONFIG_SMP
3890 if (!llist_empty(&rq->wake_list))
3891 return 0;
3892 #endif
3893
3894 return 1;
3895 }
3896
3897 /**
3898 * idle_task - return the idle task for a given CPU.
3899 * @cpu: the processor in question.
3900 *
3901 * Return: The idle task for the CPU @cpu.
3902 */
3903 struct task_struct *idle_task(int cpu)
3904 {
3905 return cpu_rq(cpu)->idle;
3906 }
3907
3908 /**
3909 * find_process_by_pid - find a process with a matching PID value.
3910 * @pid: the pid in question.
3911 *
3912 * The task of @pid, if found. %NULL otherwise.
3913 */
3914 static struct task_struct *find_process_by_pid(pid_t pid)
3915 {
3916 return pid ? find_task_by_vpid(pid) : current;
3917 }
3918
3919 /*
3920 * This function initializes the sched_dl_entity of a newly becoming
3921 * SCHED_DEADLINE task.
3922 *
3923 * Only the static values are considered here, the actual runtime and the
3924 * absolute deadline will be properly calculated when the task is enqueued
3925 * for the first time with its new policy.
3926 */
3927 static void
3928 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3929 {
3930 struct sched_dl_entity *dl_se = &p->dl;
3931
3932 dl_se->dl_runtime = attr->sched_runtime;
3933 dl_se->dl_deadline = attr->sched_deadline;
3934 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3935 dl_se->flags = attr->sched_flags;
3936 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3937
3938 /*
3939 * Changing the parameters of a task is 'tricky' and we're not doing
3940 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3941 *
3942 * What we SHOULD do is delay the bandwidth release until the 0-lag
3943 * point. This would include retaining the task_struct until that time
3944 * and change dl_overflow() to not immediately decrement the current
3945 * amount.
3946 *
3947 * Instead we retain the current runtime/deadline and let the new
3948 * parameters take effect after the current reservation period lapses.
3949 * This is safe (albeit pessimistic) because the 0-lag point is always
3950 * before the current scheduling deadline.
3951 *
3952 * We can still have temporary overloads because we do not delay the
3953 * change in bandwidth until that time; so admission control is
3954 * not on the safe side. It does however guarantee tasks will never
3955 * consume more than promised.
3956 */
3957 }
3958
3959 /*
3960 * sched_setparam() passes in -1 for its policy, to let the functions
3961 * it calls know not to change it.
3962 */
3963 #define SETPARAM_POLICY -1
3964
3965 static void __setscheduler_params(struct task_struct *p,
3966 const struct sched_attr *attr)
3967 {
3968 int policy = attr->sched_policy;
3969
3970 if (policy == SETPARAM_POLICY)
3971 policy = p->policy;
3972
3973 p->policy = policy;
3974
3975 if (dl_policy(policy))
3976 __setparam_dl(p, attr);
3977 else if (fair_policy(policy))
3978 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3979
3980 /*
3981 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3982 * !rt_policy. Always setting this ensures that things like
3983 * getparam()/getattr() don't report silly values for !rt tasks.
3984 */
3985 p->rt_priority = attr->sched_priority;
3986 p->normal_prio = normal_prio(p);
3987 set_load_weight(p);
3988 }
3989
3990 /* Actually do priority change: must hold pi & rq lock. */
3991 static void __setscheduler(struct rq *rq, struct task_struct *p,
3992 const struct sched_attr *attr, bool keep_boost)
3993 {
3994 __setscheduler_params(p, attr);
3995
3996 /*
3997 * Keep a potential priority boosting if called from
3998 * sched_setscheduler().
3999 */
4000 if (keep_boost)
4001 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4002 else
4003 p->prio = normal_prio(p);
4004
4005 if (dl_prio(p->prio))
4006 p->sched_class = &dl_sched_class;
4007 else if (rt_prio(p->prio))
4008 p->sched_class = &rt_sched_class;
4009 else
4010 p->sched_class = &fair_sched_class;
4011 }
4012
4013 static void
4014 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4015 {
4016 struct sched_dl_entity *dl_se = &p->dl;
4017
4018 attr->sched_priority = p->rt_priority;
4019 attr->sched_runtime = dl_se->dl_runtime;
4020 attr->sched_deadline = dl_se->dl_deadline;
4021 attr->sched_period = dl_se->dl_period;
4022 attr->sched_flags = dl_se->flags;
4023 }
4024
4025 /*
4026 * This function validates the new parameters of a -deadline task.
4027 * We ask for the deadline not being zero, and greater or equal
4028 * than the runtime, as well as the period of being zero or
4029 * greater than deadline. Furthermore, we have to be sure that
4030 * user parameters are above the internal resolution of 1us (we
4031 * check sched_runtime only since it is always the smaller one) and
4032 * below 2^63 ns (we have to check both sched_deadline and
4033 * sched_period, as the latter can be zero).
4034 */
4035 static bool
4036 __checkparam_dl(const struct sched_attr *attr)
4037 {
4038 /* deadline != 0 */
4039 if (attr->sched_deadline == 0)
4040 return false;
4041
4042 /*
4043 * Since we truncate DL_SCALE bits, make sure we're at least
4044 * that big.
4045 */
4046 if (attr->sched_runtime < (1ULL << DL_SCALE))
4047 return false;
4048
4049 /*
4050 * Since we use the MSB for wrap-around and sign issues, make
4051 * sure it's not set (mind that period can be equal to zero).
4052 */
4053 if (attr->sched_deadline & (1ULL << 63) ||
4054 attr->sched_period & (1ULL << 63))
4055 return false;
4056
4057 /* runtime <= deadline <= period (if period != 0) */
4058 if ((attr->sched_period != 0 &&
4059 attr->sched_period < attr->sched_deadline) ||
4060 attr->sched_deadline < attr->sched_runtime)
4061 return false;
4062
4063 return true;
4064 }
4065
4066 /*
4067 * Check the target process has a UID that matches the current process's:
4068 */
4069 static bool check_same_owner(struct task_struct *p)
4070 {
4071 const struct cred *cred = current_cred(), *pcred;
4072 bool match;
4073
4074 rcu_read_lock();
4075 pcred = __task_cred(p);
4076 match = (uid_eq(cred->euid, pcred->euid) ||
4077 uid_eq(cred->euid, pcred->uid));
4078 rcu_read_unlock();
4079 return match;
4080 }
4081
4082 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4083 {
4084 struct sched_dl_entity *dl_se = &p->dl;
4085
4086 if (dl_se->dl_runtime != attr->sched_runtime ||
4087 dl_se->dl_deadline != attr->sched_deadline ||
4088 dl_se->dl_period != attr->sched_period ||
4089 dl_se->flags != attr->sched_flags)
4090 return true;
4091
4092 return false;
4093 }
4094
4095 static int __sched_setscheduler(struct task_struct *p,
4096 const struct sched_attr *attr,
4097 bool user, bool pi)
4098 {
4099 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4100 MAX_RT_PRIO - 1 - attr->sched_priority;
4101 int retval, oldprio, oldpolicy = -1, queued, running;
4102 int new_effective_prio, policy = attr->sched_policy;
4103 const struct sched_class *prev_class;
4104 struct rq_flags rf;
4105 int reset_on_fork;
4106 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4107 struct rq *rq;
4108
4109 /* May grab non-irq protected spin_locks: */
4110 BUG_ON(in_interrupt());
4111 recheck:
4112 /* Double check policy once rq lock held: */
4113 if (policy < 0) {
4114 reset_on_fork = p->sched_reset_on_fork;
4115 policy = oldpolicy = p->policy;
4116 } else {
4117 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4118
4119 if (!valid_policy(policy))
4120 return -EINVAL;
4121 }
4122
4123 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4124 return -EINVAL;
4125
4126 /*
4127 * Valid priorities for SCHED_FIFO and SCHED_RR are
4128 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4129 * SCHED_BATCH and SCHED_IDLE is 0.
4130 */
4131 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4132 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4133 return -EINVAL;
4134 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4135 (rt_policy(policy) != (attr->sched_priority != 0)))
4136 return -EINVAL;
4137
4138 /*
4139 * Allow unprivileged RT tasks to decrease priority:
4140 */
4141 if (user && !capable(CAP_SYS_NICE)) {
4142 if (fair_policy(policy)) {
4143 if (attr->sched_nice < task_nice(p) &&
4144 !can_nice(p, attr->sched_nice))
4145 return -EPERM;
4146 }
4147
4148 if (rt_policy(policy)) {
4149 unsigned long rlim_rtprio =
4150 task_rlimit(p, RLIMIT_RTPRIO);
4151
4152 /* Can't set/change the rt policy: */
4153 if (policy != p->policy && !rlim_rtprio)
4154 return -EPERM;
4155
4156 /* Can't increase priority: */
4157 if (attr->sched_priority > p->rt_priority &&
4158 attr->sched_priority > rlim_rtprio)
4159 return -EPERM;
4160 }
4161
4162 /*
4163 * Can't set/change SCHED_DEADLINE policy at all for now
4164 * (safest behavior); in the future we would like to allow
4165 * unprivileged DL tasks to increase their relative deadline
4166 * or reduce their runtime (both ways reducing utilization)
4167 */
4168 if (dl_policy(policy))
4169 return -EPERM;
4170
4171 /*
4172 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4173 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4174 */
4175 if (idle_policy(p->policy) && !idle_policy(policy)) {
4176 if (!can_nice(p, task_nice(p)))
4177 return -EPERM;
4178 }
4179
4180 /* Can't change other user's priorities: */
4181 if (!check_same_owner(p))
4182 return -EPERM;
4183
4184 /* Normal users shall not reset the sched_reset_on_fork flag: */
4185 if (p->sched_reset_on_fork && !reset_on_fork)
4186 return -EPERM;
4187 }
4188
4189 if (user) {
4190 retval = security_task_setscheduler(p);
4191 if (retval)
4192 return retval;
4193 }
4194
4195 /*
4196 * Make sure no PI-waiters arrive (or leave) while we are
4197 * changing the priority of the task:
4198 *
4199 * To be able to change p->policy safely, the appropriate
4200 * runqueue lock must be held.
4201 */
4202 rq = task_rq_lock(p, &rf);
4203 update_rq_clock(rq);
4204
4205 /*
4206 * Changing the policy of the stop threads its a very bad idea:
4207 */
4208 if (p == rq->stop) {
4209 task_rq_unlock(rq, p, &rf);
4210 return -EINVAL;
4211 }
4212
4213 /*
4214 * If not changing anything there's no need to proceed further,
4215 * but store a possible modification of reset_on_fork.
4216 */
4217 if (unlikely(policy == p->policy)) {
4218 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4219 goto change;
4220 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4221 goto change;
4222 if (dl_policy(policy) && dl_param_changed(p, attr))
4223 goto change;
4224
4225 p->sched_reset_on_fork = reset_on_fork;
4226 task_rq_unlock(rq, p, &rf);
4227 return 0;
4228 }
4229 change:
4230
4231 if (user) {
4232 #ifdef CONFIG_RT_GROUP_SCHED
4233 /*
4234 * Do not allow realtime tasks into groups that have no runtime
4235 * assigned.
4236 */
4237 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4238 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4239 !task_group_is_autogroup(task_group(p))) {
4240 task_rq_unlock(rq, p, &rf);
4241 return -EPERM;
4242 }
4243 #endif
4244 #ifdef CONFIG_SMP
4245 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4246 cpumask_t *span = rq->rd->span;
4247
4248 /*
4249 * Don't allow tasks with an affinity mask smaller than
4250 * the entire root_domain to become SCHED_DEADLINE. We
4251 * will also fail if there's no bandwidth available.
4252 */
4253 if (!cpumask_subset(span, &p->cpus_allowed) ||
4254 rq->rd->dl_bw.bw == 0) {
4255 task_rq_unlock(rq, p, &rf);
4256 return -EPERM;
4257 }
4258 }
4259 #endif
4260 }
4261
4262 /* Re-check policy now with rq lock held: */
4263 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4264 policy = oldpolicy = -1;
4265 task_rq_unlock(rq, p, &rf);
4266 goto recheck;
4267 }
4268
4269 /*
4270 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4271 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4272 * is available.
4273 */
4274 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4275 task_rq_unlock(rq, p, &rf);
4276 return -EBUSY;
4277 }
4278
4279 p->sched_reset_on_fork = reset_on_fork;
4280 oldprio = p->prio;
4281
4282 if (pi) {
4283 /*
4284 * Take priority boosted tasks into account. If the new
4285 * effective priority is unchanged, we just store the new
4286 * normal parameters and do not touch the scheduler class and
4287 * the runqueue. This will be done when the task deboost
4288 * itself.
4289 */
4290 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4291 if (new_effective_prio == oldprio)
4292 queue_flags &= ~DEQUEUE_MOVE;
4293 }
4294
4295 queued = task_on_rq_queued(p);
4296 running = task_current(rq, p);
4297 if (queued)
4298 dequeue_task(rq, p, queue_flags);
4299 if (running)
4300 put_prev_task(rq, p);
4301
4302 prev_class = p->sched_class;
4303 __setscheduler(rq, p, attr, pi);
4304
4305 if (queued) {
4306 /*
4307 * We enqueue to tail when the priority of a task is
4308 * increased (user space view).
4309 */
4310 if (oldprio < p->prio)
4311 queue_flags |= ENQUEUE_HEAD;
4312
4313 enqueue_task(rq, p, queue_flags);
4314 }
4315 if (running)
4316 set_curr_task(rq, p);
4317
4318 check_class_changed(rq, p, prev_class, oldprio);
4319
4320 /* Avoid rq from going away on us: */
4321 preempt_disable();
4322 task_rq_unlock(rq, p, &rf);
4323
4324 if (pi)
4325 rt_mutex_adjust_pi(p);
4326
4327 /* Run balance callbacks after we've adjusted the PI chain: */
4328 balance_callback(rq);
4329 preempt_enable();
4330
4331 return 0;
4332 }
4333
4334 static int _sched_setscheduler(struct task_struct *p, int policy,
4335 const struct sched_param *param, bool check)
4336 {
4337 struct sched_attr attr = {
4338 .sched_policy = policy,
4339 .sched_priority = param->sched_priority,
4340 .sched_nice = PRIO_TO_NICE(p->static_prio),
4341 };
4342
4343 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4344 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4345 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4346 policy &= ~SCHED_RESET_ON_FORK;
4347 attr.sched_policy = policy;
4348 }
4349
4350 return __sched_setscheduler(p, &attr, check, true);
4351 }
4352 /**
4353 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4354 * @p: the task in question.
4355 * @policy: new policy.
4356 * @param: structure containing the new RT priority.
4357 *
4358 * Return: 0 on success. An error code otherwise.
4359 *
4360 * NOTE that the task may be already dead.
4361 */
4362 int sched_setscheduler(struct task_struct *p, int policy,
4363 const struct sched_param *param)
4364 {
4365 return _sched_setscheduler(p, policy, param, true);
4366 }
4367 EXPORT_SYMBOL_GPL(sched_setscheduler);
4368
4369 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4370 {
4371 return __sched_setscheduler(p, attr, true, true);
4372 }
4373 EXPORT_SYMBOL_GPL(sched_setattr);
4374
4375 /**
4376 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4377 * @p: the task in question.
4378 * @policy: new policy.
4379 * @param: structure containing the new RT priority.
4380 *
4381 * Just like sched_setscheduler, only don't bother checking if the
4382 * current context has permission. For example, this is needed in
4383 * stop_machine(): we create temporary high priority worker threads,
4384 * but our caller might not have that capability.
4385 *
4386 * Return: 0 on success. An error code otherwise.
4387 */
4388 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4389 const struct sched_param *param)
4390 {
4391 return _sched_setscheduler(p, policy, param, false);
4392 }
4393 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4394
4395 static int
4396 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4397 {
4398 struct sched_param lparam;
4399 struct task_struct *p;
4400 int retval;
4401
4402 if (!param || pid < 0)
4403 return -EINVAL;
4404 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4405 return -EFAULT;
4406
4407 rcu_read_lock();
4408 retval = -ESRCH;
4409 p = find_process_by_pid(pid);
4410 if (p != NULL)
4411 retval = sched_setscheduler(p, policy, &lparam);
4412 rcu_read_unlock();
4413
4414 return retval;
4415 }
4416
4417 /*
4418 * Mimics kernel/events/core.c perf_copy_attr().
4419 */
4420 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4421 {
4422 u32 size;
4423 int ret;
4424
4425 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4426 return -EFAULT;
4427
4428 /* Zero the full structure, so that a short copy will be nice: */
4429 memset(attr, 0, sizeof(*attr));
4430
4431 ret = get_user(size, &uattr->size);
4432 if (ret)
4433 return ret;
4434
4435 /* Bail out on silly large: */
4436 if (size > PAGE_SIZE)
4437 goto err_size;
4438
4439 /* ABI compatibility quirk: */
4440 if (!size)
4441 size = SCHED_ATTR_SIZE_VER0;
4442
4443 if (size < SCHED_ATTR_SIZE_VER0)
4444 goto err_size;
4445
4446 /*
4447 * If we're handed a bigger struct than we know of,
4448 * ensure all the unknown bits are 0 - i.e. new
4449 * user-space does not rely on any kernel feature
4450 * extensions we dont know about yet.
4451 */
4452 if (size > sizeof(*attr)) {
4453 unsigned char __user *addr;
4454 unsigned char __user *end;
4455 unsigned char val;
4456
4457 addr = (void __user *)uattr + sizeof(*attr);
4458 end = (void __user *)uattr + size;
4459
4460 for (; addr < end; addr++) {
4461 ret = get_user(val, addr);
4462 if (ret)
4463 return ret;
4464 if (val)
4465 goto err_size;
4466 }
4467 size = sizeof(*attr);
4468 }
4469
4470 ret = copy_from_user(attr, uattr, size);
4471 if (ret)
4472 return -EFAULT;
4473
4474 /*
4475 * XXX: Do we want to be lenient like existing syscalls; or do we want
4476 * to be strict and return an error on out-of-bounds values?
4477 */
4478 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4479
4480 return 0;
4481
4482 err_size:
4483 put_user(sizeof(*attr), &uattr->size);
4484 return -E2BIG;
4485 }
4486
4487 /**
4488 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4489 * @pid: the pid in question.
4490 * @policy: new policy.
4491 * @param: structure containing the new RT priority.
4492 *
4493 * Return: 0 on success. An error code otherwise.
4494 */
4495 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4496 {
4497 if (policy < 0)
4498 return -EINVAL;
4499
4500 return do_sched_setscheduler(pid, policy, param);
4501 }
4502
4503 /**
4504 * sys_sched_setparam - set/change the RT priority of a thread
4505 * @pid: the pid in question.
4506 * @param: structure containing the new RT priority.
4507 *
4508 * Return: 0 on success. An error code otherwise.
4509 */
4510 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4511 {
4512 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4513 }
4514
4515 /**
4516 * sys_sched_setattr - same as above, but with extended sched_attr
4517 * @pid: the pid in question.
4518 * @uattr: structure containing the extended parameters.
4519 * @flags: for future extension.
4520 */
4521 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4522 unsigned int, flags)
4523 {
4524 struct sched_attr attr;
4525 struct task_struct *p;
4526 int retval;
4527
4528 if (!uattr || pid < 0 || flags)
4529 return -EINVAL;
4530
4531 retval = sched_copy_attr(uattr, &attr);
4532 if (retval)
4533 return retval;
4534
4535 if ((int)attr.sched_policy < 0)
4536 return -EINVAL;
4537
4538 rcu_read_lock();
4539 retval = -ESRCH;
4540 p = find_process_by_pid(pid);
4541 if (p != NULL)
4542 retval = sched_setattr(p, &attr);
4543 rcu_read_unlock();
4544
4545 return retval;
4546 }
4547
4548 /**
4549 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4550 * @pid: the pid in question.
4551 *
4552 * Return: On success, the policy of the thread. Otherwise, a negative error
4553 * code.
4554 */
4555 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4556 {
4557 struct task_struct *p;
4558 int retval;
4559
4560 if (pid < 0)
4561 return -EINVAL;
4562
4563 retval = -ESRCH;
4564 rcu_read_lock();
4565 p = find_process_by_pid(pid);
4566 if (p) {
4567 retval = security_task_getscheduler(p);
4568 if (!retval)
4569 retval = p->policy
4570 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4571 }
4572 rcu_read_unlock();
4573 return retval;
4574 }
4575
4576 /**
4577 * sys_sched_getparam - get the RT priority of a thread
4578 * @pid: the pid in question.
4579 * @param: structure containing the RT priority.
4580 *
4581 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4582 * code.
4583 */
4584 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4585 {
4586 struct sched_param lp = { .sched_priority = 0 };
4587 struct task_struct *p;
4588 int retval;
4589
4590 if (!param || pid < 0)
4591 return -EINVAL;
4592
4593 rcu_read_lock();
4594 p = find_process_by_pid(pid);
4595 retval = -ESRCH;
4596 if (!p)
4597 goto out_unlock;
4598
4599 retval = security_task_getscheduler(p);
4600 if (retval)
4601 goto out_unlock;
4602
4603 if (task_has_rt_policy(p))
4604 lp.sched_priority = p->rt_priority;
4605 rcu_read_unlock();
4606
4607 /*
4608 * This one might sleep, we cannot do it with a spinlock held ...
4609 */
4610 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4611
4612 return retval;
4613
4614 out_unlock:
4615 rcu_read_unlock();
4616 return retval;
4617 }
4618
4619 static int sched_read_attr(struct sched_attr __user *uattr,
4620 struct sched_attr *attr,
4621 unsigned int usize)
4622 {
4623 int ret;
4624
4625 if (!access_ok(VERIFY_WRITE, uattr, usize))
4626 return -EFAULT;
4627
4628 /*
4629 * If we're handed a smaller struct than we know of,
4630 * ensure all the unknown bits are 0 - i.e. old
4631 * user-space does not get uncomplete information.
4632 */
4633 if (usize < sizeof(*attr)) {
4634 unsigned char *addr;
4635 unsigned char *end;
4636
4637 addr = (void *)attr + usize;
4638 end = (void *)attr + sizeof(*attr);
4639
4640 for (; addr < end; addr++) {
4641 if (*addr)
4642 return -EFBIG;
4643 }
4644
4645 attr->size = usize;
4646 }
4647
4648 ret = copy_to_user(uattr, attr, attr->size);
4649 if (ret)
4650 return -EFAULT;
4651
4652 return 0;
4653 }
4654
4655 /**
4656 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4657 * @pid: the pid in question.
4658 * @uattr: structure containing the extended parameters.
4659 * @size: sizeof(attr) for fwd/bwd comp.
4660 * @flags: for future extension.
4661 */
4662 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4663 unsigned int, size, unsigned int, flags)
4664 {
4665 struct sched_attr attr = {
4666 .size = sizeof(struct sched_attr),
4667 };
4668 struct task_struct *p;
4669 int retval;
4670
4671 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4672 size < SCHED_ATTR_SIZE_VER0 || flags)
4673 return -EINVAL;
4674
4675 rcu_read_lock();
4676 p = find_process_by_pid(pid);
4677 retval = -ESRCH;
4678 if (!p)
4679 goto out_unlock;
4680
4681 retval = security_task_getscheduler(p);
4682 if (retval)
4683 goto out_unlock;
4684
4685 attr.sched_policy = p->policy;
4686 if (p->sched_reset_on_fork)
4687 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4688 if (task_has_dl_policy(p))
4689 __getparam_dl(p, &attr);
4690 else if (task_has_rt_policy(p))
4691 attr.sched_priority = p->rt_priority;
4692 else
4693 attr.sched_nice = task_nice(p);
4694
4695 rcu_read_unlock();
4696
4697 retval = sched_read_attr(uattr, &attr, size);
4698 return retval;
4699
4700 out_unlock:
4701 rcu_read_unlock();
4702 return retval;
4703 }
4704
4705 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4706 {
4707 cpumask_var_t cpus_allowed, new_mask;
4708 struct task_struct *p;
4709 int retval;
4710
4711 rcu_read_lock();
4712
4713 p = find_process_by_pid(pid);
4714 if (!p) {
4715 rcu_read_unlock();
4716 return -ESRCH;
4717 }
4718
4719 /* Prevent p going away */
4720 get_task_struct(p);
4721 rcu_read_unlock();
4722
4723 if (p->flags & PF_NO_SETAFFINITY) {
4724 retval = -EINVAL;
4725 goto out_put_task;
4726 }
4727 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4728 retval = -ENOMEM;
4729 goto out_put_task;
4730 }
4731 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4732 retval = -ENOMEM;
4733 goto out_free_cpus_allowed;
4734 }
4735 retval = -EPERM;
4736 if (!check_same_owner(p)) {
4737 rcu_read_lock();
4738 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4739 rcu_read_unlock();
4740 goto out_free_new_mask;
4741 }
4742 rcu_read_unlock();
4743 }
4744
4745 retval = security_task_setscheduler(p);
4746 if (retval)
4747 goto out_free_new_mask;
4748
4749
4750 cpuset_cpus_allowed(p, cpus_allowed);
4751 cpumask_and(new_mask, in_mask, cpus_allowed);
4752
4753 /*
4754 * Since bandwidth control happens on root_domain basis,
4755 * if admission test is enabled, we only admit -deadline
4756 * tasks allowed to run on all the CPUs in the task's
4757 * root_domain.
4758 */
4759 #ifdef CONFIG_SMP
4760 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4761 rcu_read_lock();
4762 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4763 retval = -EBUSY;
4764 rcu_read_unlock();
4765 goto out_free_new_mask;
4766 }
4767 rcu_read_unlock();
4768 }
4769 #endif
4770 again:
4771 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4772
4773 if (!retval) {
4774 cpuset_cpus_allowed(p, cpus_allowed);
4775 if (!cpumask_subset(new_mask, cpus_allowed)) {
4776 /*
4777 * We must have raced with a concurrent cpuset
4778 * update. Just reset the cpus_allowed to the
4779 * cpuset's cpus_allowed
4780 */
4781 cpumask_copy(new_mask, cpus_allowed);
4782 goto again;
4783 }
4784 }
4785 out_free_new_mask:
4786 free_cpumask_var(new_mask);
4787 out_free_cpus_allowed:
4788 free_cpumask_var(cpus_allowed);
4789 out_put_task:
4790 put_task_struct(p);
4791 return retval;
4792 }
4793
4794 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4795 struct cpumask *new_mask)
4796 {
4797 if (len < cpumask_size())
4798 cpumask_clear(new_mask);
4799 else if (len > cpumask_size())
4800 len = cpumask_size();
4801
4802 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4803 }
4804
4805 /**
4806 * sys_sched_setaffinity - set the CPU affinity of a process
4807 * @pid: pid of the process
4808 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4809 * @user_mask_ptr: user-space pointer to the new CPU mask
4810 *
4811 * Return: 0 on success. An error code otherwise.
4812 */
4813 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4814 unsigned long __user *, user_mask_ptr)
4815 {
4816 cpumask_var_t new_mask;
4817 int retval;
4818
4819 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4820 return -ENOMEM;
4821
4822 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4823 if (retval == 0)
4824 retval = sched_setaffinity(pid, new_mask);
4825 free_cpumask_var(new_mask);
4826 return retval;
4827 }
4828
4829 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4830 {
4831 struct task_struct *p;
4832 unsigned long flags;
4833 int retval;
4834
4835 rcu_read_lock();
4836
4837 retval = -ESRCH;
4838 p = find_process_by_pid(pid);
4839 if (!p)
4840 goto out_unlock;
4841
4842 retval = security_task_getscheduler(p);
4843 if (retval)
4844 goto out_unlock;
4845
4846 raw_spin_lock_irqsave(&p->pi_lock, flags);
4847 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4848 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4849
4850 out_unlock:
4851 rcu_read_unlock();
4852
4853 return retval;
4854 }
4855
4856 /**
4857 * sys_sched_getaffinity - get the CPU affinity of a process
4858 * @pid: pid of the process
4859 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4860 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4861 *
4862 * Return: size of CPU mask copied to user_mask_ptr on success. An
4863 * error code otherwise.
4864 */
4865 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4866 unsigned long __user *, user_mask_ptr)
4867 {
4868 int ret;
4869 cpumask_var_t mask;
4870
4871 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4872 return -EINVAL;
4873 if (len & (sizeof(unsigned long)-1))
4874 return -EINVAL;
4875
4876 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4877 return -ENOMEM;
4878
4879 ret = sched_getaffinity(pid, mask);
4880 if (ret == 0) {
4881 size_t retlen = min_t(size_t, len, cpumask_size());
4882
4883 if (copy_to_user(user_mask_ptr, mask, retlen))
4884 ret = -EFAULT;
4885 else
4886 ret = retlen;
4887 }
4888 free_cpumask_var(mask);
4889
4890 return ret;
4891 }
4892
4893 /**
4894 * sys_sched_yield - yield the current processor to other threads.
4895 *
4896 * This function yields the current CPU to other tasks. If there are no
4897 * other threads running on this CPU then this function will return.
4898 *
4899 * Return: 0.
4900 */
4901 SYSCALL_DEFINE0(sched_yield)
4902 {
4903 struct rq *rq = this_rq_lock();
4904
4905 schedstat_inc(rq->yld_count);
4906 current->sched_class->yield_task(rq);
4907
4908 /*
4909 * Since we are going to call schedule() anyway, there's
4910 * no need to preempt or enable interrupts:
4911 */
4912 __release(rq->lock);
4913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4914 do_raw_spin_unlock(&rq->lock);
4915 sched_preempt_enable_no_resched();
4916
4917 schedule();
4918
4919 return 0;
4920 }
4921
4922 #ifndef CONFIG_PREEMPT
4923 int __sched _cond_resched(void)
4924 {
4925 if (should_resched(0)) {
4926 preempt_schedule_common();
4927 return 1;
4928 }
4929 return 0;
4930 }
4931 EXPORT_SYMBOL(_cond_resched);
4932 #endif
4933
4934 /*
4935 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4936 * call schedule, and on return reacquire the lock.
4937 *
4938 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4939 * operations here to prevent schedule() from being called twice (once via
4940 * spin_unlock(), once by hand).
4941 */
4942 int __cond_resched_lock(spinlock_t *lock)
4943 {
4944 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4945 int ret = 0;
4946
4947 lockdep_assert_held(lock);
4948
4949 if (spin_needbreak(lock) || resched) {
4950 spin_unlock(lock);
4951 if (resched)
4952 preempt_schedule_common();
4953 else
4954 cpu_relax();
4955 ret = 1;
4956 spin_lock(lock);
4957 }
4958 return ret;
4959 }
4960 EXPORT_SYMBOL(__cond_resched_lock);
4961
4962 int __sched __cond_resched_softirq(void)
4963 {
4964 BUG_ON(!in_softirq());
4965
4966 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4967 local_bh_enable();
4968 preempt_schedule_common();
4969 local_bh_disable();
4970 return 1;
4971 }
4972 return 0;
4973 }
4974 EXPORT_SYMBOL(__cond_resched_softirq);
4975
4976 /**
4977 * yield - yield the current processor to other threads.
4978 *
4979 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4980 *
4981 * The scheduler is at all times free to pick the calling task as the most
4982 * eligible task to run, if removing the yield() call from your code breaks
4983 * it, its already broken.
4984 *
4985 * Typical broken usage is:
4986 *
4987 * while (!event)
4988 * yield();
4989 *
4990 * where one assumes that yield() will let 'the other' process run that will
4991 * make event true. If the current task is a SCHED_FIFO task that will never
4992 * happen. Never use yield() as a progress guarantee!!
4993 *
4994 * If you want to use yield() to wait for something, use wait_event().
4995 * If you want to use yield() to be 'nice' for others, use cond_resched().
4996 * If you still want to use yield(), do not!
4997 */
4998 void __sched yield(void)
4999 {
5000 set_current_state(TASK_RUNNING);
5001 sys_sched_yield();
5002 }
5003 EXPORT_SYMBOL(yield);
5004
5005 /**
5006 * yield_to - yield the current processor to another thread in
5007 * your thread group, or accelerate that thread toward the
5008 * processor it's on.
5009 * @p: target task
5010 * @preempt: whether task preemption is allowed or not
5011 *
5012 * It's the caller's job to ensure that the target task struct
5013 * can't go away on us before we can do any checks.
5014 *
5015 * Return:
5016 * true (>0) if we indeed boosted the target task.
5017 * false (0) if we failed to boost the target.
5018 * -ESRCH if there's no task to yield to.
5019 */
5020 int __sched yield_to(struct task_struct *p, bool preempt)
5021 {
5022 struct task_struct *curr = current;
5023 struct rq *rq, *p_rq;
5024 unsigned long flags;
5025 int yielded = 0;
5026
5027 local_irq_save(flags);
5028 rq = this_rq();
5029
5030 again:
5031 p_rq = task_rq(p);
5032 /*
5033 * If we're the only runnable task on the rq and target rq also
5034 * has only one task, there's absolutely no point in yielding.
5035 */
5036 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5037 yielded = -ESRCH;
5038 goto out_irq;
5039 }
5040
5041 double_rq_lock(rq, p_rq);
5042 if (task_rq(p) != p_rq) {
5043 double_rq_unlock(rq, p_rq);
5044 goto again;
5045 }
5046
5047 if (!curr->sched_class->yield_to_task)
5048 goto out_unlock;
5049
5050 if (curr->sched_class != p->sched_class)
5051 goto out_unlock;
5052
5053 if (task_running(p_rq, p) || p->state)
5054 goto out_unlock;
5055
5056 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5057 if (yielded) {
5058 schedstat_inc(rq->yld_count);
5059 /*
5060 * Make p's CPU reschedule; pick_next_entity takes care of
5061 * fairness.
5062 */
5063 if (preempt && rq != p_rq)
5064 resched_curr(p_rq);
5065 }
5066
5067 out_unlock:
5068 double_rq_unlock(rq, p_rq);
5069 out_irq:
5070 local_irq_restore(flags);
5071
5072 if (yielded > 0)
5073 schedule();
5074
5075 return yielded;
5076 }
5077 EXPORT_SYMBOL_GPL(yield_to);
5078
5079 int io_schedule_prepare(void)
5080 {
5081 int old_iowait = current->in_iowait;
5082
5083 current->in_iowait = 1;
5084 blk_schedule_flush_plug(current);
5085
5086 return old_iowait;
5087 }
5088
5089 void io_schedule_finish(int token)
5090 {
5091 current->in_iowait = token;
5092 }
5093
5094 /*
5095 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5096 * that process accounting knows that this is a task in IO wait state.
5097 */
5098 long __sched io_schedule_timeout(long timeout)
5099 {
5100 int token;
5101 long ret;
5102
5103 token = io_schedule_prepare();
5104 ret = schedule_timeout(timeout);
5105 io_schedule_finish(token);
5106
5107 return ret;
5108 }
5109 EXPORT_SYMBOL(io_schedule_timeout);
5110
5111 void io_schedule(void)
5112 {
5113 int token;
5114
5115 token = io_schedule_prepare();
5116 schedule();
5117 io_schedule_finish(token);
5118 }
5119 EXPORT_SYMBOL(io_schedule);
5120
5121 /**
5122 * sys_sched_get_priority_max - return maximum RT priority.
5123 * @policy: scheduling class.
5124 *
5125 * Return: On success, this syscall returns the maximum
5126 * rt_priority that can be used by a given scheduling class.
5127 * On failure, a negative error code is returned.
5128 */
5129 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5130 {
5131 int ret = -EINVAL;
5132
5133 switch (policy) {
5134 case SCHED_FIFO:
5135 case SCHED_RR:
5136 ret = MAX_USER_RT_PRIO-1;
5137 break;
5138 case SCHED_DEADLINE:
5139 case SCHED_NORMAL:
5140 case SCHED_BATCH:
5141 case SCHED_IDLE:
5142 ret = 0;
5143 break;
5144 }
5145 return ret;
5146 }
5147
5148 /**
5149 * sys_sched_get_priority_min - return minimum RT priority.
5150 * @policy: scheduling class.
5151 *
5152 * Return: On success, this syscall returns the minimum
5153 * rt_priority that can be used by a given scheduling class.
5154 * On failure, a negative error code is returned.
5155 */
5156 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5157 {
5158 int ret = -EINVAL;
5159
5160 switch (policy) {
5161 case SCHED_FIFO:
5162 case SCHED_RR:
5163 ret = 1;
5164 break;
5165 case SCHED_DEADLINE:
5166 case SCHED_NORMAL:
5167 case SCHED_BATCH:
5168 case SCHED_IDLE:
5169 ret = 0;
5170 }
5171 return ret;
5172 }
5173
5174 /**
5175 * sys_sched_rr_get_interval - return the default timeslice of a process.
5176 * @pid: pid of the process.
5177 * @interval: userspace pointer to the timeslice value.
5178 *
5179 * this syscall writes the default timeslice value of a given process
5180 * into the user-space timespec buffer. A value of '0' means infinity.
5181 *
5182 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5183 * an error code.
5184 */
5185 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5186 struct timespec __user *, interval)
5187 {
5188 struct task_struct *p;
5189 unsigned int time_slice;
5190 struct rq_flags rf;
5191 struct timespec t;
5192 struct rq *rq;
5193 int retval;
5194
5195 if (pid < 0)
5196 return -EINVAL;
5197
5198 retval = -ESRCH;
5199 rcu_read_lock();
5200 p = find_process_by_pid(pid);
5201 if (!p)
5202 goto out_unlock;
5203
5204 retval = security_task_getscheduler(p);
5205 if (retval)
5206 goto out_unlock;
5207
5208 rq = task_rq_lock(p, &rf);
5209 time_slice = 0;
5210 if (p->sched_class->get_rr_interval)
5211 time_slice = p->sched_class->get_rr_interval(rq, p);
5212 task_rq_unlock(rq, p, &rf);
5213
5214 rcu_read_unlock();
5215 jiffies_to_timespec(time_slice, &t);
5216 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5217 return retval;
5218
5219 out_unlock:
5220 rcu_read_unlock();
5221 return retval;
5222 }
5223
5224 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5225
5226 void sched_show_task(struct task_struct *p)
5227 {
5228 unsigned long free = 0;
5229 int ppid;
5230 unsigned long state = p->state;
5231
5232 if (!try_get_task_stack(p))
5233 return;
5234 if (state)
5235 state = __ffs(state) + 1;
5236 printk(KERN_INFO "%-15.15s %c", p->comm,
5237 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5238 if (state == TASK_RUNNING)
5239 printk(KERN_CONT " running task ");
5240 #ifdef CONFIG_DEBUG_STACK_USAGE
5241 free = stack_not_used(p);
5242 #endif
5243 ppid = 0;
5244 rcu_read_lock();
5245 if (pid_alive(p))
5246 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5247 rcu_read_unlock();
5248 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5249 task_pid_nr(p), ppid,
5250 (unsigned long)task_thread_info(p)->flags);
5251
5252 print_worker_info(KERN_INFO, p);
5253 show_stack(p, NULL);
5254 put_task_stack(p);
5255 }
5256
5257 void show_state_filter(unsigned long state_filter)
5258 {
5259 struct task_struct *g, *p;
5260
5261 #if BITS_PER_LONG == 32
5262 printk(KERN_INFO
5263 " task PC stack pid father\n");
5264 #else
5265 printk(KERN_INFO
5266 " task PC stack pid father\n");
5267 #endif
5268 rcu_read_lock();
5269 for_each_process_thread(g, p) {
5270 /*
5271 * reset the NMI-timeout, listing all files on a slow
5272 * console might take a lot of time:
5273 * Also, reset softlockup watchdogs on all CPUs, because
5274 * another CPU might be blocked waiting for us to process
5275 * an IPI.
5276 */
5277 touch_nmi_watchdog();
5278 touch_all_softlockup_watchdogs();
5279 if (!state_filter || (p->state & state_filter))
5280 sched_show_task(p);
5281 }
5282
5283 #ifdef CONFIG_SCHED_DEBUG
5284 if (!state_filter)
5285 sysrq_sched_debug_show();
5286 #endif
5287 rcu_read_unlock();
5288 /*
5289 * Only show locks if all tasks are dumped:
5290 */
5291 if (!state_filter)
5292 debug_show_all_locks();
5293 }
5294
5295 void init_idle_bootup_task(struct task_struct *idle)
5296 {
5297 idle->sched_class = &idle_sched_class;
5298 }
5299
5300 /**
5301 * init_idle - set up an idle thread for a given CPU
5302 * @idle: task in question
5303 * @cpu: CPU the idle task belongs to
5304 *
5305 * NOTE: this function does not set the idle thread's NEED_RESCHED
5306 * flag, to make booting more robust.
5307 */
5308 void init_idle(struct task_struct *idle, int cpu)
5309 {
5310 struct rq *rq = cpu_rq(cpu);
5311 unsigned long flags;
5312
5313 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5314 raw_spin_lock(&rq->lock);
5315
5316 __sched_fork(0, idle);
5317 idle->state = TASK_RUNNING;
5318 idle->se.exec_start = sched_clock();
5319 idle->flags |= PF_IDLE;
5320
5321 kasan_unpoison_task_stack(idle);
5322
5323 #ifdef CONFIG_SMP
5324 /*
5325 * Its possible that init_idle() gets called multiple times on a task,
5326 * in that case do_set_cpus_allowed() will not do the right thing.
5327 *
5328 * And since this is boot we can forgo the serialization.
5329 */
5330 set_cpus_allowed_common(idle, cpumask_of(cpu));
5331 #endif
5332 /*
5333 * We're having a chicken and egg problem, even though we are
5334 * holding rq->lock, the CPU isn't yet set to this CPU so the
5335 * lockdep check in task_group() will fail.
5336 *
5337 * Similar case to sched_fork(). / Alternatively we could
5338 * use task_rq_lock() here and obtain the other rq->lock.
5339 *
5340 * Silence PROVE_RCU
5341 */
5342 rcu_read_lock();
5343 __set_task_cpu(idle, cpu);
5344 rcu_read_unlock();
5345
5346 rq->curr = rq->idle = idle;
5347 idle->on_rq = TASK_ON_RQ_QUEUED;
5348 #ifdef CONFIG_SMP
5349 idle->on_cpu = 1;
5350 #endif
5351 raw_spin_unlock(&rq->lock);
5352 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5353
5354 /* Set the preempt count _outside_ the spinlocks! */
5355 init_idle_preempt_count(idle, cpu);
5356
5357 /*
5358 * The idle tasks have their own, simple scheduling class:
5359 */
5360 idle->sched_class = &idle_sched_class;
5361 ftrace_graph_init_idle_task(idle, cpu);
5362 vtime_init_idle(idle, cpu);
5363 #ifdef CONFIG_SMP
5364 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5365 #endif
5366 }
5367
5368 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5369 const struct cpumask *trial)
5370 {
5371 int ret = 1, trial_cpus;
5372 struct dl_bw *cur_dl_b;
5373 unsigned long flags;
5374
5375 if (!cpumask_weight(cur))
5376 return ret;
5377
5378 rcu_read_lock_sched();
5379 cur_dl_b = dl_bw_of(cpumask_any(cur));
5380 trial_cpus = cpumask_weight(trial);
5381
5382 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5383 if (cur_dl_b->bw != -1 &&
5384 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5385 ret = 0;
5386 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5387 rcu_read_unlock_sched();
5388
5389 return ret;
5390 }
5391
5392 int task_can_attach(struct task_struct *p,
5393 const struct cpumask *cs_cpus_allowed)
5394 {
5395 int ret = 0;
5396
5397 /*
5398 * Kthreads which disallow setaffinity shouldn't be moved
5399 * to a new cpuset; we don't want to change their CPU
5400 * affinity and isolating such threads by their set of
5401 * allowed nodes is unnecessary. Thus, cpusets are not
5402 * applicable for such threads. This prevents checking for
5403 * success of set_cpus_allowed_ptr() on all attached tasks
5404 * before cpus_allowed may be changed.
5405 */
5406 if (p->flags & PF_NO_SETAFFINITY) {
5407 ret = -EINVAL;
5408 goto out;
5409 }
5410
5411 #ifdef CONFIG_SMP
5412 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5413 cs_cpus_allowed)) {
5414 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5415 cs_cpus_allowed);
5416 struct dl_bw *dl_b;
5417 bool overflow;
5418 int cpus;
5419 unsigned long flags;
5420
5421 rcu_read_lock_sched();
5422 dl_b = dl_bw_of(dest_cpu);
5423 raw_spin_lock_irqsave(&dl_b->lock, flags);
5424 cpus = dl_bw_cpus(dest_cpu);
5425 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5426 if (overflow)
5427 ret = -EBUSY;
5428 else {
5429 /*
5430 * We reserve space for this task in the destination
5431 * root_domain, as we can't fail after this point.
5432 * We will free resources in the source root_domain
5433 * later on (see set_cpus_allowed_dl()).
5434 */
5435 __dl_add(dl_b, p->dl.dl_bw);
5436 }
5437 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5438 rcu_read_unlock_sched();
5439
5440 }
5441 #endif
5442 out:
5443 return ret;
5444 }
5445
5446 #ifdef CONFIG_SMP
5447
5448 bool sched_smp_initialized __read_mostly;
5449
5450 #ifdef CONFIG_NUMA_BALANCING
5451 /* Migrate current task p to target_cpu */
5452 int migrate_task_to(struct task_struct *p, int target_cpu)
5453 {
5454 struct migration_arg arg = { p, target_cpu };
5455 int curr_cpu = task_cpu(p);
5456
5457 if (curr_cpu == target_cpu)
5458 return 0;
5459
5460 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5461 return -EINVAL;
5462
5463 /* TODO: This is not properly updating schedstats */
5464
5465 trace_sched_move_numa(p, curr_cpu, target_cpu);
5466 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5467 }
5468
5469 /*
5470 * Requeue a task on a given node and accurately track the number of NUMA
5471 * tasks on the runqueues
5472 */
5473 void sched_setnuma(struct task_struct *p, int nid)
5474 {
5475 bool queued, running;
5476 struct rq_flags rf;
5477 struct rq *rq;
5478
5479 rq = task_rq_lock(p, &rf);
5480 queued = task_on_rq_queued(p);
5481 running = task_current(rq, p);
5482
5483 if (queued)
5484 dequeue_task(rq, p, DEQUEUE_SAVE);
5485 if (running)
5486 put_prev_task(rq, p);
5487
5488 p->numa_preferred_nid = nid;
5489
5490 if (queued)
5491 enqueue_task(rq, p, ENQUEUE_RESTORE);
5492 if (running)
5493 set_curr_task(rq, p);
5494 task_rq_unlock(rq, p, &rf);
5495 }
5496 #endif /* CONFIG_NUMA_BALANCING */
5497
5498 #ifdef CONFIG_HOTPLUG_CPU
5499 /*
5500 * Ensure that the idle task is using init_mm right before its CPU goes
5501 * offline.
5502 */
5503 void idle_task_exit(void)
5504 {
5505 struct mm_struct *mm = current->active_mm;
5506
5507 BUG_ON(cpu_online(smp_processor_id()));
5508
5509 if (mm != &init_mm) {
5510 switch_mm_irqs_off(mm, &init_mm, current);
5511 finish_arch_post_lock_switch();
5512 }
5513 mmdrop(mm);
5514 }
5515
5516 /*
5517 * Since this CPU is going 'away' for a while, fold any nr_active delta
5518 * we might have. Assumes we're called after migrate_tasks() so that the
5519 * nr_active count is stable. We need to take the teardown thread which
5520 * is calling this into account, so we hand in adjust = 1 to the load
5521 * calculation.
5522 *
5523 * Also see the comment "Global load-average calculations".
5524 */
5525 static void calc_load_migrate(struct rq *rq)
5526 {
5527 long delta = calc_load_fold_active(rq, 1);
5528 if (delta)
5529 atomic_long_add(delta, &calc_load_tasks);
5530 }
5531
5532 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5533 {
5534 }
5535
5536 static const struct sched_class fake_sched_class = {
5537 .put_prev_task = put_prev_task_fake,
5538 };
5539
5540 static struct task_struct fake_task = {
5541 /*
5542 * Avoid pull_{rt,dl}_task()
5543 */
5544 .prio = MAX_PRIO + 1,
5545 .sched_class = &fake_sched_class,
5546 };
5547
5548 /*
5549 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5550 * try_to_wake_up()->select_task_rq().
5551 *
5552 * Called with rq->lock held even though we'er in stop_machine() and
5553 * there's no concurrency possible, we hold the required locks anyway
5554 * because of lock validation efforts.
5555 */
5556 static void migrate_tasks(struct rq *dead_rq)
5557 {
5558 struct rq *rq = dead_rq;
5559 struct task_struct *next, *stop = rq->stop;
5560 struct rq_flags rf, old_rf;
5561 int dest_cpu;
5562
5563 /*
5564 * Fudge the rq selection such that the below task selection loop
5565 * doesn't get stuck on the currently eligible stop task.
5566 *
5567 * We're currently inside stop_machine() and the rq is either stuck
5568 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5569 * either way we should never end up calling schedule() until we're
5570 * done here.
5571 */
5572 rq->stop = NULL;
5573
5574 /*
5575 * put_prev_task() and pick_next_task() sched
5576 * class method both need to have an up-to-date
5577 * value of rq->clock[_task]
5578 */
5579 update_rq_clock(rq);
5580
5581 for (;;) {
5582 /*
5583 * There's this thread running, bail when that's the only
5584 * remaining thread:
5585 */
5586 if (rq->nr_running == 1)
5587 break;
5588
5589 /*
5590 * pick_next_task() assumes pinned rq->lock:
5591 */
5592 rq_pin_lock(rq, &rf);
5593 next = pick_next_task(rq, &fake_task, &rf);
5594 BUG_ON(!next);
5595 next->sched_class->put_prev_task(rq, next);
5596
5597 /*
5598 * Rules for changing task_struct::cpus_allowed are holding
5599 * both pi_lock and rq->lock, such that holding either
5600 * stabilizes the mask.
5601 *
5602 * Drop rq->lock is not quite as disastrous as it usually is
5603 * because !cpu_active at this point, which means load-balance
5604 * will not interfere. Also, stop-machine.
5605 */
5606 rq_unpin_lock(rq, &rf);
5607 raw_spin_unlock(&rq->lock);
5608 raw_spin_lock(&next->pi_lock);
5609 raw_spin_lock(&rq->lock);
5610
5611 /*
5612 * Since we're inside stop-machine, _nothing_ should have
5613 * changed the task, WARN if weird stuff happened, because in
5614 * that case the above rq->lock drop is a fail too.
5615 */
5616 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5617 raw_spin_unlock(&next->pi_lock);
5618 continue;
5619 }
5620
5621 /*
5622 * __migrate_task() may return with a different
5623 * rq->lock held and a new cookie in 'rf', but we need
5624 * to preserve rf::clock_update_flags for 'dead_rq'.
5625 */
5626 old_rf = rf;
5627
5628 /* Find suitable destination for @next, with force if needed. */
5629 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5630
5631 rq = __migrate_task(rq, next, dest_cpu);
5632 if (rq != dead_rq) {
5633 raw_spin_unlock(&rq->lock);
5634 rq = dead_rq;
5635 raw_spin_lock(&rq->lock);
5636 rf = old_rf;
5637 }
5638 raw_spin_unlock(&next->pi_lock);
5639 }
5640
5641 rq->stop = stop;
5642 }
5643 #endif /* CONFIG_HOTPLUG_CPU */
5644
5645 void set_rq_online(struct rq *rq)
5646 {
5647 if (!rq->online) {
5648 const struct sched_class *class;
5649
5650 cpumask_set_cpu(rq->cpu, rq->rd->online);
5651 rq->online = 1;
5652
5653 for_each_class(class) {
5654 if (class->rq_online)
5655 class->rq_online(rq);
5656 }
5657 }
5658 }
5659
5660 void set_rq_offline(struct rq *rq)
5661 {
5662 if (rq->online) {
5663 const struct sched_class *class;
5664
5665 for_each_class(class) {
5666 if (class->rq_offline)
5667 class->rq_offline(rq);
5668 }
5669
5670 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5671 rq->online = 0;
5672 }
5673 }
5674
5675 static void set_cpu_rq_start_time(unsigned int cpu)
5676 {
5677 struct rq *rq = cpu_rq(cpu);
5678
5679 rq->age_stamp = sched_clock_cpu(cpu);
5680 }
5681
5682 /*
5683 * used to mark begin/end of suspend/resume:
5684 */
5685 static int num_cpus_frozen;
5686
5687 /*
5688 * Update cpusets according to cpu_active mask. If cpusets are
5689 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5690 * around partition_sched_domains().
5691 *
5692 * If we come here as part of a suspend/resume, don't touch cpusets because we
5693 * want to restore it back to its original state upon resume anyway.
5694 */
5695 static void cpuset_cpu_active(void)
5696 {
5697 if (cpuhp_tasks_frozen) {
5698 /*
5699 * num_cpus_frozen tracks how many CPUs are involved in suspend
5700 * resume sequence. As long as this is not the last online
5701 * operation in the resume sequence, just build a single sched
5702 * domain, ignoring cpusets.
5703 */
5704 num_cpus_frozen--;
5705 if (likely(num_cpus_frozen)) {
5706 partition_sched_domains(1, NULL, NULL);
5707 return;
5708 }
5709 /*
5710 * This is the last CPU online operation. So fall through and
5711 * restore the original sched domains by considering the
5712 * cpuset configurations.
5713 */
5714 }
5715 cpuset_update_active_cpus(true);
5716 }
5717
5718 static int cpuset_cpu_inactive(unsigned int cpu)
5719 {
5720 unsigned long flags;
5721 struct dl_bw *dl_b;
5722 bool overflow;
5723 int cpus;
5724
5725 if (!cpuhp_tasks_frozen) {
5726 rcu_read_lock_sched();
5727 dl_b = dl_bw_of(cpu);
5728
5729 raw_spin_lock_irqsave(&dl_b->lock, flags);
5730 cpus = dl_bw_cpus(cpu);
5731 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5732 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5733
5734 rcu_read_unlock_sched();
5735
5736 if (overflow)
5737 return -EBUSY;
5738 cpuset_update_active_cpus(false);
5739 } else {
5740 num_cpus_frozen++;
5741 partition_sched_domains(1, NULL, NULL);
5742 }
5743 return 0;
5744 }
5745
5746 int sched_cpu_activate(unsigned int cpu)
5747 {
5748 struct rq *rq = cpu_rq(cpu);
5749 unsigned long flags;
5750
5751 set_cpu_active(cpu, true);
5752
5753 if (sched_smp_initialized) {
5754 sched_domains_numa_masks_set(cpu);
5755 cpuset_cpu_active();
5756 }
5757
5758 /*
5759 * Put the rq online, if not already. This happens:
5760 *
5761 * 1) In the early boot process, because we build the real domains
5762 * after all CPUs have been brought up.
5763 *
5764 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5765 * domains.
5766 */
5767 raw_spin_lock_irqsave(&rq->lock, flags);
5768 if (rq->rd) {
5769 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5770 set_rq_online(rq);
5771 }
5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
5773
5774 update_max_interval();
5775
5776 return 0;
5777 }
5778
5779 int sched_cpu_deactivate(unsigned int cpu)
5780 {
5781 int ret;
5782
5783 set_cpu_active(cpu, false);
5784 /*
5785 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5786 * users of this state to go away such that all new such users will
5787 * observe it.
5788 *
5789 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5790 * not imply sync_sched(), so wait for both.
5791 *
5792 * Do sync before park smpboot threads to take care the rcu boost case.
5793 */
5794 if (IS_ENABLED(CONFIG_PREEMPT))
5795 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5796 else
5797 synchronize_rcu();
5798
5799 if (!sched_smp_initialized)
5800 return 0;
5801
5802 ret = cpuset_cpu_inactive(cpu);
5803 if (ret) {
5804 set_cpu_active(cpu, true);
5805 return ret;
5806 }
5807 sched_domains_numa_masks_clear(cpu);
5808 return 0;
5809 }
5810
5811 static void sched_rq_cpu_starting(unsigned int cpu)
5812 {
5813 struct rq *rq = cpu_rq(cpu);
5814
5815 rq->calc_load_update = calc_load_update;
5816 update_max_interval();
5817 }
5818
5819 int sched_cpu_starting(unsigned int cpu)
5820 {
5821 set_cpu_rq_start_time(cpu);
5822 sched_rq_cpu_starting(cpu);
5823 return 0;
5824 }
5825
5826 #ifdef CONFIG_HOTPLUG_CPU
5827 int sched_cpu_dying(unsigned int cpu)
5828 {
5829 struct rq *rq = cpu_rq(cpu);
5830 unsigned long flags;
5831
5832 /* Handle pending wakeups and then migrate everything off */
5833 sched_ttwu_pending();
5834 raw_spin_lock_irqsave(&rq->lock, flags);
5835 if (rq->rd) {
5836 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5837 set_rq_offline(rq);
5838 }
5839 migrate_tasks(rq);
5840 BUG_ON(rq->nr_running != 1);
5841 raw_spin_unlock_irqrestore(&rq->lock, flags);
5842 calc_load_migrate(rq);
5843 update_max_interval();
5844 nohz_balance_exit_idle(cpu);
5845 hrtick_clear(rq);
5846 return 0;
5847 }
5848 #endif
5849
5850 #ifdef CONFIG_SCHED_SMT
5851 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5852
5853 static void sched_init_smt(void)
5854 {
5855 /*
5856 * We've enumerated all CPUs and will assume that if any CPU
5857 * has SMT siblings, CPU0 will too.
5858 */
5859 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5860 static_branch_enable(&sched_smt_present);
5861 }
5862 #else
5863 static inline void sched_init_smt(void) { }
5864 #endif
5865
5866 void __init sched_init_smp(void)
5867 {
5868 cpumask_var_t non_isolated_cpus;
5869
5870 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5871 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5872
5873 sched_init_numa();
5874
5875 /*
5876 * There's no userspace yet to cause hotplug operations; hence all the
5877 * CPU masks are stable and all blatant races in the below code cannot
5878 * happen.
5879 */
5880 mutex_lock(&sched_domains_mutex);
5881 init_sched_domains(cpu_active_mask);
5882 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5883 if (cpumask_empty(non_isolated_cpus))
5884 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5885 mutex_unlock(&sched_domains_mutex);
5886
5887 /* Move init over to a non-isolated CPU */
5888 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5889 BUG();
5890 sched_init_granularity();
5891 free_cpumask_var(non_isolated_cpus);
5892
5893 init_sched_rt_class();
5894 init_sched_dl_class();
5895
5896 sched_init_smt();
5897 sched_clock_init_late();
5898
5899 sched_smp_initialized = true;
5900 }
5901
5902 static int __init migration_init(void)
5903 {
5904 sched_rq_cpu_starting(smp_processor_id());
5905 return 0;
5906 }
5907 early_initcall(migration_init);
5908
5909 #else
5910 void __init sched_init_smp(void)
5911 {
5912 sched_init_granularity();
5913 sched_clock_init_late();
5914 }
5915 #endif /* CONFIG_SMP */
5916
5917 int in_sched_functions(unsigned long addr)
5918 {
5919 return in_lock_functions(addr) ||
5920 (addr >= (unsigned long)__sched_text_start
5921 && addr < (unsigned long)__sched_text_end);
5922 }
5923
5924 #ifdef CONFIG_CGROUP_SCHED
5925 /*
5926 * Default task group.
5927 * Every task in system belongs to this group at bootup.
5928 */
5929 struct task_group root_task_group;
5930 LIST_HEAD(task_groups);
5931
5932 /* Cacheline aligned slab cache for task_group */
5933 static struct kmem_cache *task_group_cache __read_mostly;
5934 #endif
5935
5936 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5937 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5938
5939 #define WAIT_TABLE_BITS 8
5940 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
5941 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
5942
5943 wait_queue_head_t *bit_waitqueue(void *word, int bit)
5944 {
5945 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
5946 unsigned long val = (unsigned long)word << shift | bit;
5947
5948 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
5949 }
5950 EXPORT_SYMBOL(bit_waitqueue);
5951
5952 void __init sched_init(void)
5953 {
5954 int i, j;
5955 unsigned long alloc_size = 0, ptr;
5956
5957 sched_clock_init();
5958
5959 for (i = 0; i < WAIT_TABLE_SIZE; i++)
5960 init_waitqueue_head(bit_wait_table + i);
5961
5962 #ifdef CONFIG_FAIR_GROUP_SCHED
5963 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5964 #endif
5965 #ifdef CONFIG_RT_GROUP_SCHED
5966 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5967 #endif
5968 if (alloc_size) {
5969 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5970
5971 #ifdef CONFIG_FAIR_GROUP_SCHED
5972 root_task_group.se = (struct sched_entity **)ptr;
5973 ptr += nr_cpu_ids * sizeof(void **);
5974
5975 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5976 ptr += nr_cpu_ids * sizeof(void **);
5977
5978 #endif /* CONFIG_FAIR_GROUP_SCHED */
5979 #ifdef CONFIG_RT_GROUP_SCHED
5980 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5981 ptr += nr_cpu_ids * sizeof(void **);
5982
5983 root_task_group.rt_rq = (struct rt_rq **)ptr;
5984 ptr += nr_cpu_ids * sizeof(void **);
5985
5986 #endif /* CONFIG_RT_GROUP_SCHED */
5987 }
5988 #ifdef CONFIG_CPUMASK_OFFSTACK
5989 for_each_possible_cpu(i) {
5990 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5991 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5992 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5993 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5994 }
5995 #endif /* CONFIG_CPUMASK_OFFSTACK */
5996
5997 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5998 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5999
6000 #ifdef CONFIG_SMP
6001 init_defrootdomain();
6002 #endif
6003
6004 #ifdef CONFIG_RT_GROUP_SCHED
6005 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6006 global_rt_period(), global_rt_runtime());
6007 #endif /* CONFIG_RT_GROUP_SCHED */
6008
6009 #ifdef CONFIG_CGROUP_SCHED
6010 task_group_cache = KMEM_CACHE(task_group, 0);
6011
6012 list_add(&root_task_group.list, &task_groups);
6013 INIT_LIST_HEAD(&root_task_group.children);
6014 INIT_LIST_HEAD(&root_task_group.siblings);
6015 autogroup_init(&init_task);
6016 #endif /* CONFIG_CGROUP_SCHED */
6017
6018 for_each_possible_cpu(i) {
6019 struct rq *rq;
6020
6021 rq = cpu_rq(i);
6022 raw_spin_lock_init(&rq->lock);
6023 rq->nr_running = 0;
6024 rq->calc_load_active = 0;
6025 rq->calc_load_update = jiffies + LOAD_FREQ;
6026 init_cfs_rq(&rq->cfs);
6027 init_rt_rq(&rq->rt);
6028 init_dl_rq(&rq->dl);
6029 #ifdef CONFIG_FAIR_GROUP_SCHED
6030 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6031 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6032 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6033 /*
6034 * How much CPU bandwidth does root_task_group get?
6035 *
6036 * In case of task-groups formed thr' the cgroup filesystem, it
6037 * gets 100% of the CPU resources in the system. This overall
6038 * system CPU resource is divided among the tasks of
6039 * root_task_group and its child task-groups in a fair manner,
6040 * based on each entity's (task or task-group's) weight
6041 * (se->load.weight).
6042 *
6043 * In other words, if root_task_group has 10 tasks of weight
6044 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6045 * then A0's share of the CPU resource is:
6046 *
6047 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6048 *
6049 * We achieve this by letting root_task_group's tasks sit
6050 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6051 */
6052 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6053 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6054 #endif /* CONFIG_FAIR_GROUP_SCHED */
6055
6056 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6057 #ifdef CONFIG_RT_GROUP_SCHED
6058 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6059 #endif
6060
6061 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6062 rq->cpu_load[j] = 0;
6063
6064 #ifdef CONFIG_SMP
6065 rq->sd = NULL;
6066 rq->rd = NULL;
6067 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6068 rq->balance_callback = NULL;
6069 rq->active_balance = 0;
6070 rq->next_balance = jiffies;
6071 rq->push_cpu = 0;
6072 rq->cpu = i;
6073 rq->online = 0;
6074 rq->idle_stamp = 0;
6075 rq->avg_idle = 2*sysctl_sched_migration_cost;
6076 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6077
6078 INIT_LIST_HEAD(&rq->cfs_tasks);
6079
6080 rq_attach_root(rq, &def_root_domain);
6081 #ifdef CONFIG_NO_HZ_COMMON
6082 rq->last_load_update_tick = jiffies;
6083 rq->nohz_flags = 0;
6084 #endif
6085 #ifdef CONFIG_NO_HZ_FULL
6086 rq->last_sched_tick = 0;
6087 #endif
6088 #endif /* CONFIG_SMP */
6089 init_rq_hrtick(rq);
6090 atomic_set(&rq->nr_iowait, 0);
6091 }
6092
6093 set_load_weight(&init_task);
6094
6095 /*
6096 * The boot idle thread does lazy MMU switching as well:
6097 */
6098 atomic_inc(&init_mm.mm_count);
6099 enter_lazy_tlb(&init_mm, current);
6100
6101 /*
6102 * Make us the idle thread. Technically, schedule() should not be
6103 * called from this thread, however somewhere below it might be,
6104 * but because we are the idle thread, we just pick up running again
6105 * when this runqueue becomes "idle".
6106 */
6107 init_idle(current, smp_processor_id());
6108
6109 calc_load_update = jiffies + LOAD_FREQ;
6110
6111 #ifdef CONFIG_SMP
6112 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6113 /* May be allocated at isolcpus cmdline parse time */
6114 if (cpu_isolated_map == NULL)
6115 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6116 idle_thread_set_boot_cpu();
6117 set_cpu_rq_start_time(smp_processor_id());
6118 #endif
6119 init_sched_fair_class();
6120
6121 init_schedstats();
6122
6123 scheduler_running = 1;
6124 }
6125
6126 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6127 static inline int preempt_count_equals(int preempt_offset)
6128 {
6129 int nested = preempt_count() + rcu_preempt_depth();
6130
6131 return (nested == preempt_offset);
6132 }
6133
6134 void __might_sleep(const char *file, int line, int preempt_offset)
6135 {
6136 /*
6137 * Blocking primitives will set (and therefore destroy) current->state,
6138 * since we will exit with TASK_RUNNING make sure we enter with it,
6139 * otherwise we will destroy state.
6140 */
6141 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6142 "do not call blocking ops when !TASK_RUNNING; "
6143 "state=%lx set at [<%p>] %pS\n",
6144 current->state,
6145 (void *)current->task_state_change,
6146 (void *)current->task_state_change);
6147
6148 ___might_sleep(file, line, preempt_offset);
6149 }
6150 EXPORT_SYMBOL(__might_sleep);
6151
6152 void ___might_sleep(const char *file, int line, int preempt_offset)
6153 {
6154 /* Ratelimiting timestamp: */
6155 static unsigned long prev_jiffy;
6156
6157 unsigned long preempt_disable_ip;
6158
6159 /* WARN_ON_ONCE() by default, no rate limit required: */
6160 rcu_sleep_check();
6161
6162 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6163 !is_idle_task(current)) ||
6164 system_state != SYSTEM_RUNNING || oops_in_progress)
6165 return;
6166 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6167 return;
6168 prev_jiffy = jiffies;
6169
6170 /* Save this before calling printk(), since that will clobber it: */
6171 preempt_disable_ip = get_preempt_disable_ip(current);
6172
6173 printk(KERN_ERR
6174 "BUG: sleeping function called from invalid context at %s:%d\n",
6175 file, line);
6176 printk(KERN_ERR
6177 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6178 in_atomic(), irqs_disabled(),
6179 current->pid, current->comm);
6180
6181 if (task_stack_end_corrupted(current))
6182 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6183
6184 debug_show_held_locks(current);
6185 if (irqs_disabled())
6186 print_irqtrace_events(current);
6187 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6188 && !preempt_count_equals(preempt_offset)) {
6189 pr_err("Preemption disabled at:");
6190 print_ip_sym(preempt_disable_ip);
6191 pr_cont("\n");
6192 }
6193 dump_stack();
6194 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6195 }
6196 EXPORT_SYMBOL(___might_sleep);
6197 #endif
6198
6199 #ifdef CONFIG_MAGIC_SYSRQ
6200 void normalize_rt_tasks(void)
6201 {
6202 struct task_struct *g, *p;
6203 struct sched_attr attr = {
6204 .sched_policy = SCHED_NORMAL,
6205 };
6206
6207 read_lock(&tasklist_lock);
6208 for_each_process_thread(g, p) {
6209 /*
6210 * Only normalize user tasks:
6211 */
6212 if (p->flags & PF_KTHREAD)
6213 continue;
6214
6215 p->se.exec_start = 0;
6216 schedstat_set(p->se.statistics.wait_start, 0);
6217 schedstat_set(p->se.statistics.sleep_start, 0);
6218 schedstat_set(p->se.statistics.block_start, 0);
6219
6220 if (!dl_task(p) && !rt_task(p)) {
6221 /*
6222 * Renice negative nice level userspace
6223 * tasks back to 0:
6224 */
6225 if (task_nice(p) < 0)
6226 set_user_nice(p, 0);
6227 continue;
6228 }
6229
6230 __sched_setscheduler(p, &attr, false, false);
6231 }
6232 read_unlock(&tasklist_lock);
6233 }
6234
6235 #endif /* CONFIG_MAGIC_SYSRQ */
6236
6237 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6238 /*
6239 * These functions are only useful for the IA64 MCA handling, or kdb.
6240 *
6241 * They can only be called when the whole system has been
6242 * stopped - every CPU needs to be quiescent, and no scheduling
6243 * activity can take place. Using them for anything else would
6244 * be a serious bug, and as a result, they aren't even visible
6245 * under any other configuration.
6246 */
6247
6248 /**
6249 * curr_task - return the current task for a given CPU.
6250 * @cpu: the processor in question.
6251 *
6252 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6253 *
6254 * Return: The current task for @cpu.
6255 */
6256 struct task_struct *curr_task(int cpu)
6257 {
6258 return cpu_curr(cpu);
6259 }
6260
6261 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6262
6263 #ifdef CONFIG_IA64
6264 /**
6265 * set_curr_task - set the current task for a given CPU.
6266 * @cpu: the processor in question.
6267 * @p: the task pointer to set.
6268 *
6269 * Description: This function must only be used when non-maskable interrupts
6270 * are serviced on a separate stack. It allows the architecture to switch the
6271 * notion of the current task on a CPU in a non-blocking manner. This function
6272 * must be called with all CPU's synchronized, and interrupts disabled, the
6273 * and caller must save the original value of the current task (see
6274 * curr_task() above) and restore that value before reenabling interrupts and
6275 * re-starting the system.
6276 *
6277 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6278 */
6279 void ia64_set_curr_task(int cpu, struct task_struct *p)
6280 {
6281 cpu_curr(cpu) = p;
6282 }
6283
6284 #endif
6285
6286 #ifdef CONFIG_CGROUP_SCHED
6287 /* task_group_lock serializes the addition/removal of task groups */
6288 static DEFINE_SPINLOCK(task_group_lock);
6289
6290 static void sched_free_group(struct task_group *tg)
6291 {
6292 free_fair_sched_group(tg);
6293 free_rt_sched_group(tg);
6294 autogroup_free(tg);
6295 kmem_cache_free(task_group_cache, tg);
6296 }
6297
6298 /* allocate runqueue etc for a new task group */
6299 struct task_group *sched_create_group(struct task_group *parent)
6300 {
6301 struct task_group *tg;
6302
6303 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6304 if (!tg)
6305 return ERR_PTR(-ENOMEM);
6306
6307 if (!alloc_fair_sched_group(tg, parent))
6308 goto err;
6309
6310 if (!alloc_rt_sched_group(tg, parent))
6311 goto err;
6312
6313 return tg;
6314
6315 err:
6316 sched_free_group(tg);
6317 return ERR_PTR(-ENOMEM);
6318 }
6319
6320 void sched_online_group(struct task_group *tg, struct task_group *parent)
6321 {
6322 unsigned long flags;
6323
6324 spin_lock_irqsave(&task_group_lock, flags);
6325 list_add_rcu(&tg->list, &task_groups);
6326
6327 /* Root should already exist: */
6328 WARN_ON(!parent);
6329
6330 tg->parent = parent;
6331 INIT_LIST_HEAD(&tg->children);
6332 list_add_rcu(&tg->siblings, &parent->children);
6333 spin_unlock_irqrestore(&task_group_lock, flags);
6334
6335 online_fair_sched_group(tg);
6336 }
6337
6338 /* rcu callback to free various structures associated with a task group */
6339 static void sched_free_group_rcu(struct rcu_head *rhp)
6340 {
6341 /* Now it should be safe to free those cfs_rqs: */
6342 sched_free_group(container_of(rhp, struct task_group, rcu));
6343 }
6344
6345 void sched_destroy_group(struct task_group *tg)
6346 {
6347 /* Wait for possible concurrent references to cfs_rqs complete: */
6348 call_rcu(&tg->rcu, sched_free_group_rcu);
6349 }
6350
6351 void sched_offline_group(struct task_group *tg)
6352 {
6353 unsigned long flags;
6354
6355 /* End participation in shares distribution: */
6356 unregister_fair_sched_group(tg);
6357
6358 spin_lock_irqsave(&task_group_lock, flags);
6359 list_del_rcu(&tg->list);
6360 list_del_rcu(&tg->siblings);
6361 spin_unlock_irqrestore(&task_group_lock, flags);
6362 }
6363
6364 static void sched_change_group(struct task_struct *tsk, int type)
6365 {
6366 struct task_group *tg;
6367
6368 /*
6369 * All callers are synchronized by task_rq_lock(); we do not use RCU
6370 * which is pointless here. Thus, we pass "true" to task_css_check()
6371 * to prevent lockdep warnings.
6372 */
6373 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6374 struct task_group, css);
6375 tg = autogroup_task_group(tsk, tg);
6376 tsk->sched_task_group = tg;
6377
6378 #ifdef CONFIG_FAIR_GROUP_SCHED
6379 if (tsk->sched_class->task_change_group)
6380 tsk->sched_class->task_change_group(tsk, type);
6381 else
6382 #endif
6383 set_task_rq(tsk, task_cpu(tsk));
6384 }
6385
6386 /*
6387 * Change task's runqueue when it moves between groups.
6388 *
6389 * The caller of this function should have put the task in its new group by
6390 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6391 * its new group.
6392 */
6393 void sched_move_task(struct task_struct *tsk)
6394 {
6395 int queued, running;
6396 struct rq_flags rf;
6397 struct rq *rq;
6398
6399 rq = task_rq_lock(tsk, &rf);
6400 update_rq_clock(rq);
6401
6402 running = task_current(rq, tsk);
6403 queued = task_on_rq_queued(tsk);
6404
6405 if (queued)
6406 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
6407 if (running)
6408 put_prev_task(rq, tsk);
6409
6410 sched_change_group(tsk, TASK_MOVE_GROUP);
6411
6412 if (queued)
6413 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
6414 if (running)
6415 set_curr_task(rq, tsk);
6416
6417 task_rq_unlock(rq, tsk, &rf);
6418 }
6419 #endif /* CONFIG_CGROUP_SCHED */
6420
6421 #ifdef CONFIG_RT_GROUP_SCHED
6422 /*
6423 * Ensure that the real time constraints are schedulable.
6424 */
6425 static DEFINE_MUTEX(rt_constraints_mutex);
6426
6427 /* Must be called with tasklist_lock held */
6428 static inline int tg_has_rt_tasks(struct task_group *tg)
6429 {
6430 struct task_struct *g, *p;
6431
6432 /*
6433 * Autogroups do not have RT tasks; see autogroup_create().
6434 */
6435 if (task_group_is_autogroup(tg))
6436 return 0;
6437
6438 for_each_process_thread(g, p) {
6439 if (rt_task(p) && task_group(p) == tg)
6440 return 1;
6441 }
6442
6443 return 0;
6444 }
6445
6446 struct rt_schedulable_data {
6447 struct task_group *tg;
6448 u64 rt_period;
6449 u64 rt_runtime;
6450 };
6451
6452 static int tg_rt_schedulable(struct task_group *tg, void *data)
6453 {
6454 struct rt_schedulable_data *d = data;
6455 struct task_group *child;
6456 unsigned long total, sum = 0;
6457 u64 period, runtime;
6458
6459 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6460 runtime = tg->rt_bandwidth.rt_runtime;
6461
6462 if (tg == d->tg) {
6463 period = d->rt_period;
6464 runtime = d->rt_runtime;
6465 }
6466
6467 /*
6468 * Cannot have more runtime than the period.
6469 */
6470 if (runtime > period && runtime != RUNTIME_INF)
6471 return -EINVAL;
6472
6473 /*
6474 * Ensure we don't starve existing RT tasks.
6475 */
6476 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6477 return -EBUSY;
6478
6479 total = to_ratio(period, runtime);
6480
6481 /*
6482 * Nobody can have more than the global setting allows.
6483 */
6484 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6485 return -EINVAL;
6486
6487 /*
6488 * The sum of our children's runtime should not exceed our own.
6489 */
6490 list_for_each_entry_rcu(child, &tg->children, siblings) {
6491 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6492 runtime = child->rt_bandwidth.rt_runtime;
6493
6494 if (child == d->tg) {
6495 period = d->rt_period;
6496 runtime = d->rt_runtime;
6497 }
6498
6499 sum += to_ratio(period, runtime);
6500 }
6501
6502 if (sum > total)
6503 return -EINVAL;
6504
6505 return 0;
6506 }
6507
6508 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6509 {
6510 int ret;
6511
6512 struct rt_schedulable_data data = {
6513 .tg = tg,
6514 .rt_period = period,
6515 .rt_runtime = runtime,
6516 };
6517
6518 rcu_read_lock();
6519 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6520 rcu_read_unlock();
6521
6522 return ret;
6523 }
6524
6525 static int tg_set_rt_bandwidth(struct task_group *tg,
6526 u64 rt_period, u64 rt_runtime)
6527 {
6528 int i, err = 0;
6529
6530 /*
6531 * Disallowing the root group RT runtime is BAD, it would disallow the
6532 * kernel creating (and or operating) RT threads.
6533 */
6534 if (tg == &root_task_group && rt_runtime == 0)
6535 return -EINVAL;
6536
6537 /* No period doesn't make any sense. */
6538 if (rt_period == 0)
6539 return -EINVAL;
6540
6541 mutex_lock(&rt_constraints_mutex);
6542 read_lock(&tasklist_lock);
6543 err = __rt_schedulable(tg, rt_period, rt_runtime);
6544 if (err)
6545 goto unlock;
6546
6547 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6548 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6549 tg->rt_bandwidth.rt_runtime = rt_runtime;
6550
6551 for_each_possible_cpu(i) {
6552 struct rt_rq *rt_rq = tg->rt_rq[i];
6553
6554 raw_spin_lock(&rt_rq->rt_runtime_lock);
6555 rt_rq->rt_runtime = rt_runtime;
6556 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6557 }
6558 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6559 unlock:
6560 read_unlock(&tasklist_lock);
6561 mutex_unlock(&rt_constraints_mutex);
6562
6563 return err;
6564 }
6565
6566 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6567 {
6568 u64 rt_runtime, rt_period;
6569
6570 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6571 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6572 if (rt_runtime_us < 0)
6573 rt_runtime = RUNTIME_INF;
6574
6575 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6576 }
6577
6578 static long sched_group_rt_runtime(struct task_group *tg)
6579 {
6580 u64 rt_runtime_us;
6581
6582 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6583 return -1;
6584
6585 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6586 do_div(rt_runtime_us, NSEC_PER_USEC);
6587 return rt_runtime_us;
6588 }
6589
6590 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6591 {
6592 u64 rt_runtime, rt_period;
6593
6594 rt_period = rt_period_us * NSEC_PER_USEC;
6595 rt_runtime = tg->rt_bandwidth.rt_runtime;
6596
6597 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6598 }
6599
6600 static long sched_group_rt_period(struct task_group *tg)
6601 {
6602 u64 rt_period_us;
6603
6604 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6605 do_div(rt_period_us, NSEC_PER_USEC);
6606 return rt_period_us;
6607 }
6608 #endif /* CONFIG_RT_GROUP_SCHED */
6609
6610 #ifdef CONFIG_RT_GROUP_SCHED
6611 static int sched_rt_global_constraints(void)
6612 {
6613 int ret = 0;
6614
6615 mutex_lock(&rt_constraints_mutex);
6616 read_lock(&tasklist_lock);
6617 ret = __rt_schedulable(NULL, 0, 0);
6618 read_unlock(&tasklist_lock);
6619 mutex_unlock(&rt_constraints_mutex);
6620
6621 return ret;
6622 }
6623
6624 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6625 {
6626 /* Don't accept realtime tasks when there is no way for them to run */
6627 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6628 return 0;
6629
6630 return 1;
6631 }
6632
6633 #else /* !CONFIG_RT_GROUP_SCHED */
6634 static int sched_rt_global_constraints(void)
6635 {
6636 unsigned long flags;
6637 int i;
6638
6639 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6640 for_each_possible_cpu(i) {
6641 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6642
6643 raw_spin_lock(&rt_rq->rt_runtime_lock);
6644 rt_rq->rt_runtime = global_rt_runtime();
6645 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6646 }
6647 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6648
6649 return 0;
6650 }
6651 #endif /* CONFIG_RT_GROUP_SCHED */
6652
6653 static int sched_dl_global_validate(void)
6654 {
6655 u64 runtime = global_rt_runtime();
6656 u64 period = global_rt_period();
6657 u64 new_bw = to_ratio(period, runtime);
6658 struct dl_bw *dl_b;
6659 int cpu, ret = 0;
6660 unsigned long flags;
6661
6662 /*
6663 * Here we want to check the bandwidth not being set to some
6664 * value smaller than the currently allocated bandwidth in
6665 * any of the root_domains.
6666 *
6667 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6668 * cycling on root_domains... Discussion on different/better
6669 * solutions is welcome!
6670 */
6671 for_each_possible_cpu(cpu) {
6672 rcu_read_lock_sched();
6673 dl_b = dl_bw_of(cpu);
6674
6675 raw_spin_lock_irqsave(&dl_b->lock, flags);
6676 if (new_bw < dl_b->total_bw)
6677 ret = -EBUSY;
6678 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6679
6680 rcu_read_unlock_sched();
6681
6682 if (ret)
6683 break;
6684 }
6685
6686 return ret;
6687 }
6688
6689 static void sched_dl_do_global(void)
6690 {
6691 u64 new_bw = -1;
6692 struct dl_bw *dl_b;
6693 int cpu;
6694 unsigned long flags;
6695
6696 def_dl_bandwidth.dl_period = global_rt_period();
6697 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6698
6699 if (global_rt_runtime() != RUNTIME_INF)
6700 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6701
6702 /*
6703 * FIXME: As above...
6704 */
6705 for_each_possible_cpu(cpu) {
6706 rcu_read_lock_sched();
6707 dl_b = dl_bw_of(cpu);
6708
6709 raw_spin_lock_irqsave(&dl_b->lock, flags);
6710 dl_b->bw = new_bw;
6711 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6712
6713 rcu_read_unlock_sched();
6714 }
6715 }
6716
6717 static int sched_rt_global_validate(void)
6718 {
6719 if (sysctl_sched_rt_period <= 0)
6720 return -EINVAL;
6721
6722 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6723 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6724 return -EINVAL;
6725
6726 return 0;
6727 }
6728
6729 static void sched_rt_do_global(void)
6730 {
6731 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6732 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6733 }
6734
6735 int sched_rt_handler(struct ctl_table *table, int write,
6736 void __user *buffer, size_t *lenp,
6737 loff_t *ppos)
6738 {
6739 int old_period, old_runtime;
6740 static DEFINE_MUTEX(mutex);
6741 int ret;
6742
6743 mutex_lock(&mutex);
6744 old_period = sysctl_sched_rt_period;
6745 old_runtime = sysctl_sched_rt_runtime;
6746
6747 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6748
6749 if (!ret && write) {
6750 ret = sched_rt_global_validate();
6751 if (ret)
6752 goto undo;
6753
6754 ret = sched_dl_global_validate();
6755 if (ret)
6756 goto undo;
6757
6758 ret = sched_rt_global_constraints();
6759 if (ret)
6760 goto undo;
6761
6762 sched_rt_do_global();
6763 sched_dl_do_global();
6764 }
6765 if (0) {
6766 undo:
6767 sysctl_sched_rt_period = old_period;
6768 sysctl_sched_rt_runtime = old_runtime;
6769 }
6770 mutex_unlock(&mutex);
6771
6772 return ret;
6773 }
6774
6775 int sched_rr_handler(struct ctl_table *table, int write,
6776 void __user *buffer, size_t *lenp,
6777 loff_t *ppos)
6778 {
6779 int ret;
6780 static DEFINE_MUTEX(mutex);
6781
6782 mutex_lock(&mutex);
6783 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6784 /*
6785 * Make sure that internally we keep jiffies.
6786 * Also, writing zero resets the timeslice to default:
6787 */
6788 if (!ret && write) {
6789 sched_rr_timeslice =
6790 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6791 msecs_to_jiffies(sysctl_sched_rr_timeslice);
6792 }
6793 mutex_unlock(&mutex);
6794 return ret;
6795 }
6796
6797 #ifdef CONFIG_CGROUP_SCHED
6798
6799 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6800 {
6801 return css ? container_of(css, struct task_group, css) : NULL;
6802 }
6803
6804 static struct cgroup_subsys_state *
6805 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6806 {
6807 struct task_group *parent = css_tg(parent_css);
6808 struct task_group *tg;
6809
6810 if (!parent) {
6811 /* This is early initialization for the top cgroup */
6812 return &root_task_group.css;
6813 }
6814
6815 tg = sched_create_group(parent);
6816 if (IS_ERR(tg))
6817 return ERR_PTR(-ENOMEM);
6818
6819 sched_online_group(tg, parent);
6820
6821 return &tg->css;
6822 }
6823
6824 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6825 {
6826 struct task_group *tg = css_tg(css);
6827
6828 sched_offline_group(tg);
6829 }
6830
6831 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6832 {
6833 struct task_group *tg = css_tg(css);
6834
6835 /*
6836 * Relies on the RCU grace period between css_released() and this.
6837 */
6838 sched_free_group(tg);
6839 }
6840
6841 /*
6842 * This is called before wake_up_new_task(), therefore we really only
6843 * have to set its group bits, all the other stuff does not apply.
6844 */
6845 static void cpu_cgroup_fork(struct task_struct *task)
6846 {
6847 struct rq_flags rf;
6848 struct rq *rq;
6849
6850 rq = task_rq_lock(task, &rf);
6851
6852 update_rq_clock(rq);
6853 sched_change_group(task, TASK_SET_GROUP);
6854
6855 task_rq_unlock(rq, task, &rf);
6856 }
6857
6858 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6859 {
6860 struct task_struct *task;
6861 struct cgroup_subsys_state *css;
6862 int ret = 0;
6863
6864 cgroup_taskset_for_each(task, css, tset) {
6865 #ifdef CONFIG_RT_GROUP_SCHED
6866 if (!sched_rt_can_attach(css_tg(css), task))
6867 return -EINVAL;
6868 #else
6869 /* We don't support RT-tasks being in separate groups */
6870 if (task->sched_class != &fair_sched_class)
6871 return -EINVAL;
6872 #endif
6873 /*
6874 * Serialize against wake_up_new_task() such that if its
6875 * running, we're sure to observe its full state.
6876 */
6877 raw_spin_lock_irq(&task->pi_lock);
6878 /*
6879 * Avoid calling sched_move_task() before wake_up_new_task()
6880 * has happened. This would lead to problems with PELT, due to
6881 * move wanting to detach+attach while we're not attached yet.
6882 */
6883 if (task->state == TASK_NEW)
6884 ret = -EINVAL;
6885 raw_spin_unlock_irq(&task->pi_lock);
6886
6887 if (ret)
6888 break;
6889 }
6890 return ret;
6891 }
6892
6893 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6894 {
6895 struct task_struct *task;
6896 struct cgroup_subsys_state *css;
6897
6898 cgroup_taskset_for_each(task, css, tset)
6899 sched_move_task(task);
6900 }
6901
6902 #ifdef CONFIG_FAIR_GROUP_SCHED
6903 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6904 struct cftype *cftype, u64 shareval)
6905 {
6906 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6907 }
6908
6909 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6910 struct cftype *cft)
6911 {
6912 struct task_group *tg = css_tg(css);
6913
6914 return (u64) scale_load_down(tg->shares);
6915 }
6916
6917 #ifdef CONFIG_CFS_BANDWIDTH
6918 static DEFINE_MUTEX(cfs_constraints_mutex);
6919
6920 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6921 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6922
6923 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6924
6925 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6926 {
6927 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6928 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6929
6930 if (tg == &root_task_group)
6931 return -EINVAL;
6932
6933 /*
6934 * Ensure we have at some amount of bandwidth every period. This is
6935 * to prevent reaching a state of large arrears when throttled via
6936 * entity_tick() resulting in prolonged exit starvation.
6937 */
6938 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6939 return -EINVAL;
6940
6941 /*
6942 * Likewise, bound things on the otherside by preventing insane quota
6943 * periods. This also allows us to normalize in computing quota
6944 * feasibility.
6945 */
6946 if (period > max_cfs_quota_period)
6947 return -EINVAL;
6948
6949 /*
6950 * Prevent race between setting of cfs_rq->runtime_enabled and
6951 * unthrottle_offline_cfs_rqs().
6952 */
6953 get_online_cpus();
6954 mutex_lock(&cfs_constraints_mutex);
6955 ret = __cfs_schedulable(tg, period, quota);
6956 if (ret)
6957 goto out_unlock;
6958
6959 runtime_enabled = quota != RUNTIME_INF;
6960 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6961 /*
6962 * If we need to toggle cfs_bandwidth_used, off->on must occur
6963 * before making related changes, and on->off must occur afterwards
6964 */
6965 if (runtime_enabled && !runtime_was_enabled)
6966 cfs_bandwidth_usage_inc();
6967 raw_spin_lock_irq(&cfs_b->lock);
6968 cfs_b->period = ns_to_ktime(period);
6969 cfs_b->quota = quota;
6970
6971 __refill_cfs_bandwidth_runtime(cfs_b);
6972
6973 /* Restart the period timer (if active) to handle new period expiry: */
6974 if (runtime_enabled)
6975 start_cfs_bandwidth(cfs_b);
6976
6977 raw_spin_unlock_irq(&cfs_b->lock);
6978
6979 for_each_online_cpu(i) {
6980 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6981 struct rq *rq = cfs_rq->rq;
6982
6983 raw_spin_lock_irq(&rq->lock);
6984 cfs_rq->runtime_enabled = runtime_enabled;
6985 cfs_rq->runtime_remaining = 0;
6986
6987 if (cfs_rq->throttled)
6988 unthrottle_cfs_rq(cfs_rq);
6989 raw_spin_unlock_irq(&rq->lock);
6990 }
6991 if (runtime_was_enabled && !runtime_enabled)
6992 cfs_bandwidth_usage_dec();
6993 out_unlock:
6994 mutex_unlock(&cfs_constraints_mutex);
6995 put_online_cpus();
6996
6997 return ret;
6998 }
6999
7000 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7001 {
7002 u64 quota, period;
7003
7004 period = ktime_to_ns(tg->cfs_bandwidth.period);
7005 if (cfs_quota_us < 0)
7006 quota = RUNTIME_INF;
7007 else
7008 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7009
7010 return tg_set_cfs_bandwidth(tg, period, quota);
7011 }
7012
7013 long tg_get_cfs_quota(struct task_group *tg)
7014 {
7015 u64 quota_us;
7016
7017 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7018 return -1;
7019
7020 quota_us = tg->cfs_bandwidth.quota;
7021 do_div(quota_us, NSEC_PER_USEC);
7022
7023 return quota_us;
7024 }
7025
7026 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7027 {
7028 u64 quota, period;
7029
7030 period = (u64)cfs_period_us * NSEC_PER_USEC;
7031 quota = tg->cfs_bandwidth.quota;
7032
7033 return tg_set_cfs_bandwidth(tg, period, quota);
7034 }
7035
7036 long tg_get_cfs_period(struct task_group *tg)
7037 {
7038 u64 cfs_period_us;
7039
7040 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7041 do_div(cfs_period_us, NSEC_PER_USEC);
7042
7043 return cfs_period_us;
7044 }
7045
7046 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7047 struct cftype *cft)
7048 {
7049 return tg_get_cfs_quota(css_tg(css));
7050 }
7051
7052 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7053 struct cftype *cftype, s64 cfs_quota_us)
7054 {
7055 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7056 }
7057
7058 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7059 struct cftype *cft)
7060 {
7061 return tg_get_cfs_period(css_tg(css));
7062 }
7063
7064 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7065 struct cftype *cftype, u64 cfs_period_us)
7066 {
7067 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7068 }
7069
7070 struct cfs_schedulable_data {
7071 struct task_group *tg;
7072 u64 period, quota;
7073 };
7074
7075 /*
7076 * normalize group quota/period to be quota/max_period
7077 * note: units are usecs
7078 */
7079 static u64 normalize_cfs_quota(struct task_group *tg,
7080 struct cfs_schedulable_data *d)
7081 {
7082 u64 quota, period;
7083
7084 if (tg == d->tg) {
7085 period = d->period;
7086 quota = d->quota;
7087 } else {
7088 period = tg_get_cfs_period(tg);
7089 quota = tg_get_cfs_quota(tg);
7090 }
7091
7092 /* note: these should typically be equivalent */
7093 if (quota == RUNTIME_INF || quota == -1)
7094 return RUNTIME_INF;
7095
7096 return to_ratio(period, quota);
7097 }
7098
7099 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7100 {
7101 struct cfs_schedulable_data *d = data;
7102 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7103 s64 quota = 0, parent_quota = -1;
7104
7105 if (!tg->parent) {
7106 quota = RUNTIME_INF;
7107 } else {
7108 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7109
7110 quota = normalize_cfs_quota(tg, d);
7111 parent_quota = parent_b->hierarchical_quota;
7112
7113 /*
7114 * Ensure max(child_quota) <= parent_quota, inherit when no
7115 * limit is set:
7116 */
7117 if (quota == RUNTIME_INF)
7118 quota = parent_quota;
7119 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7120 return -EINVAL;
7121 }
7122 cfs_b->hierarchical_quota = quota;
7123
7124 return 0;
7125 }
7126
7127 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7128 {
7129 int ret;
7130 struct cfs_schedulable_data data = {
7131 .tg = tg,
7132 .period = period,
7133 .quota = quota,
7134 };
7135
7136 if (quota != RUNTIME_INF) {
7137 do_div(data.period, NSEC_PER_USEC);
7138 do_div(data.quota, NSEC_PER_USEC);
7139 }
7140
7141 rcu_read_lock();
7142 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7143 rcu_read_unlock();
7144
7145 return ret;
7146 }
7147
7148 static int cpu_stats_show(struct seq_file *sf, void *v)
7149 {
7150 struct task_group *tg = css_tg(seq_css(sf));
7151 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7152
7153 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7154 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7155 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7156
7157 return 0;
7158 }
7159 #endif /* CONFIG_CFS_BANDWIDTH */
7160 #endif /* CONFIG_FAIR_GROUP_SCHED */
7161
7162 #ifdef CONFIG_RT_GROUP_SCHED
7163 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7164 struct cftype *cft, s64 val)
7165 {
7166 return sched_group_set_rt_runtime(css_tg(css), val);
7167 }
7168
7169 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7170 struct cftype *cft)
7171 {
7172 return sched_group_rt_runtime(css_tg(css));
7173 }
7174
7175 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7176 struct cftype *cftype, u64 rt_period_us)
7177 {
7178 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7179 }
7180
7181 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7182 struct cftype *cft)
7183 {
7184 return sched_group_rt_period(css_tg(css));
7185 }
7186 #endif /* CONFIG_RT_GROUP_SCHED */
7187
7188 static struct cftype cpu_files[] = {
7189 #ifdef CONFIG_FAIR_GROUP_SCHED
7190 {
7191 .name = "shares",
7192 .read_u64 = cpu_shares_read_u64,
7193 .write_u64 = cpu_shares_write_u64,
7194 },
7195 #endif
7196 #ifdef CONFIG_CFS_BANDWIDTH
7197 {
7198 .name = "cfs_quota_us",
7199 .read_s64 = cpu_cfs_quota_read_s64,
7200 .write_s64 = cpu_cfs_quota_write_s64,
7201 },
7202 {
7203 .name = "cfs_period_us",
7204 .read_u64 = cpu_cfs_period_read_u64,
7205 .write_u64 = cpu_cfs_period_write_u64,
7206 },
7207 {
7208 .name = "stat",
7209 .seq_show = cpu_stats_show,
7210 },
7211 #endif
7212 #ifdef CONFIG_RT_GROUP_SCHED
7213 {
7214 .name = "rt_runtime_us",
7215 .read_s64 = cpu_rt_runtime_read,
7216 .write_s64 = cpu_rt_runtime_write,
7217 },
7218 {
7219 .name = "rt_period_us",
7220 .read_u64 = cpu_rt_period_read_uint,
7221 .write_u64 = cpu_rt_period_write_uint,
7222 },
7223 #endif
7224 { } /* Terminate */
7225 };
7226
7227 struct cgroup_subsys cpu_cgrp_subsys = {
7228 .css_alloc = cpu_cgroup_css_alloc,
7229 .css_released = cpu_cgroup_css_released,
7230 .css_free = cpu_cgroup_css_free,
7231 .fork = cpu_cgroup_fork,
7232 .can_attach = cpu_cgroup_can_attach,
7233 .attach = cpu_cgroup_attach,
7234 .legacy_cftypes = cpu_files,
7235 .early_init = true,
7236 };
7237
7238 #endif /* CONFIG_CGROUP_SCHED */
7239
7240 void dump_cpu_task(int cpu)
7241 {
7242 pr_info("Task dump for CPU %d:\n", cpu);
7243 sched_show_task(cpu_curr(cpu));
7244 }
7245
7246 /*
7247 * Nice levels are multiplicative, with a gentle 10% change for every
7248 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7249 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7250 * that remained on nice 0.
7251 *
7252 * The "10% effect" is relative and cumulative: from _any_ nice level,
7253 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7254 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7255 * If a task goes up by ~10% and another task goes down by ~10% then
7256 * the relative distance between them is ~25%.)
7257 */
7258 const int sched_prio_to_weight[40] = {
7259 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7260 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7261 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7262 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7263 /* 0 */ 1024, 820, 655, 526, 423,
7264 /* 5 */ 335, 272, 215, 172, 137,
7265 /* 10 */ 110, 87, 70, 56, 45,
7266 /* 15 */ 36, 29, 23, 18, 15,
7267 };
7268
7269 /*
7270 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7271 *
7272 * In cases where the weight does not change often, we can use the
7273 * precalculated inverse to speed up arithmetics by turning divisions
7274 * into multiplications:
7275 */
7276 const u32 sched_prio_to_wmult[40] = {
7277 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7278 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7279 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7280 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7281 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7282 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7283 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7284 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7285 };