]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/sched/core.c
3f1890a4d67ab319eaf1bed304f91048e7d2a52f
[mirror_ubuntu-focal-kernel.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20
21 #include "pelt.h"
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25
26 /*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40 /*
41 * Debugging: various feature bits
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
46 */
47 #define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 0;
52 #undef SCHED_FEAT
53 #endif
54
55 /*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
61 /*
62 * period over which we measure -rt task CPU usage in us.
63 * default: 1s
64 */
65 unsigned int sysctl_sched_rt_period = 1000000;
66
67 __read_mostly int scheduler_running;
68
69 /*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73 int sysctl_sched_rt_runtime = 950000;
74
75 /*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 __acquires(rq->lock)
80 {
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 rq_pin_lock(rq, rf);
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97 }
98
99 /*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105 {
106 struct rq *rq;
107
108 for (;;) {
109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
122 * If we observe the old CPU in task_rq_lock(), the acquire of
123 * the old rq->lock will fully serialize against the stores.
124 *
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 rq_pin_lock(rq, rf);
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139 }
140
141 /*
142 * RQ-clock updating methods:
143 */
144
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147 /*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188 #endif
189
190 rq->clock_task += delta;
191
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 update_rq_clock_pelt(rq, delta);
197 }
198
199 void update_rq_clock(struct rq *rq)
200 {
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208 #ifdef CONFIG_SCHED_DEBUG
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219 }
220
221
222 #ifdef CONFIG_SCHED_HRTICK
223 /*
224 * Use HR-timers to deliver accurate preemption points.
225 */
226
227 static void hrtick_clear(struct rq *rq)
228 {
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231 }
232
233 /*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 struct rq_flags rf;
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
244 rq_lock(rq, &rf);
245 update_rq_clock(rq);
246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 rq_unlock(rq, &rf);
248
249 return HRTIMER_NORESTART;
250 }
251
252 #ifdef CONFIG_SMP
253
254 static void __hrtick_restart(struct rq *rq)
255 {
256 struct hrtimer *timer = &rq->hrtick_timer;
257
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259 }
260
261 /*
262 * called from hardirq (IPI) context
263 */
264 static void __hrtick_start(void *arg)
265 {
266 struct rq *rq = arg;
267 struct rq_flags rf;
268
269 rq_lock(rq, &rf);
270 __hrtick_restart(rq);
271 rq->hrtick_csd_pending = 0;
272 rq_unlock(rq, &rf);
273 }
274
275 /*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
292
293 hrtimer_set_expires(timer, time);
294
295 if (rq == this_rq()) {
296 __hrtick_restart(rq);
297 } else if (!rq->hrtick_csd_pending) {
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 rq->hrtick_csd_pending = 1;
300 }
301 }
302
303 #else
304 /*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED_HARD);
318 }
319 #endif /* CONFIG_SMP */
320
321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
325
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329 #endif
330
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 rq->hrtick_timer.function = hrtick;
333 }
334 #else /* CONFIG_SCHED_HRTICK */
335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338
339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif /* CONFIG_SCHED_HRTICK */
343
344 /*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347 #define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360 })
361
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363 /*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373
374 /*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 struct thread_info *ti = task_thread_info(p);
383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396 }
397
398 #else
399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 set_tsk_need_resched(p);
402 return true;
403 }
404
405 #ifdef CONFIG_SMP
406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 return false;
409 }
410 #endif
411 #endif
412
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
424 */
425 smp_mb__before_atomic();
426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 return false;
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
434 return true;
435 }
436
437 /**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453 }
454
455 /**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
476 }
477
478 void wake_up_q(struct wake_q_head *head)
479 {
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
487 /* Task can safely be re-inserted now: */
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498 }
499
500 /*
501 * resched_curr - mark rq's current task 'to be rescheduled now'.
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
507 void resched_curr(struct rq *rq)
508 {
509 struct task_struct *curr = rq->curr;
510 int cpu;
511
512 lockdep_assert_held(&rq->lock);
513
514 if (test_tsk_need_resched(curr))
515 return;
516
517 cpu = cpu_of(rq);
518
519 if (cpu == smp_processor_id()) {
520 set_tsk_need_resched(curr);
521 set_preempt_need_resched();
522 return;
523 }
524
525 if (set_nr_and_not_polling(curr))
526 smp_send_reschedule(cpu);
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
529 }
530
531 void resched_cpu(int cpu)
532 {
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
536 raw_spin_lock_irqsave(&rq->lock, flags);
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544 /*
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int i, cpu = smp_processor_id();
555 struct sched_domain *sd;
556
557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 return cpu;
559
560 rcu_read_lock();
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
563 if (cpu == i)
564 continue;
565
566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 cpu = i;
568 goto unlock;
569 }
570 }
571 }
572
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 rcu_read_unlock();
577 return cpu;
578 }
579
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
601 }
602
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
613 if (tick_nohz_full_cpu(cpu)) {
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
616 tick_nohz_full_kick_cpu(cpu);
617 return true;
618 }
619
620 return false;
621 }
622
623 /*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
628 void wake_up_nohz_cpu(int cpu)
629 {
630 if (!wake_up_full_nohz_cpu(cpu))
631 wake_up_idle_cpu(cpu);
632 }
633
634 static inline bool got_nohz_idle_kick(void)
635 {
636 int cpu = smp_processor_id();
637
638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 return false;
650 }
651
652 #else /* CONFIG_NO_HZ_COMMON */
653
654 static inline bool got_nohz_idle_kick(void)
655 {
656 return false;
657 }
658
659 #endif /* CONFIG_NO_HZ_COMMON */
660
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
670 /*
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
673 */
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
679 }
680
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
695 return false;
696
697 return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 p->se.runnable_weight = load->weight;
759 return;
760 }
761
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 p->se.runnable_weight = load->weight;
772 }
773 }
774
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777 * Serializes updates of utilization clamp values
778 *
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
785 */
786 static DEFINE_MUTEX(uclamp_mutex);
787
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800 #define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818 }
819
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
822 {
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
826 }
827
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
831 {
832 /*
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
836 */
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843 }
844
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
847 {
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
858 {
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862 /*
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
865 */
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883 /*
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
886 */
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895 #endif
896
897 return uc_req;
898 }
899
900 /*
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
907 */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919 }
920
921 unsigned int uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 struct uclamp_se uc_eff;
924
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return p->uclamp[clamp_id].value;
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
931 return uc_eff.value;
932 }
933
934 /*
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
938 *
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
943 */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
946 {
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
959
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
962 /*
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
965 */
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972
973 /*
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
977 *
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
981 */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
984 {
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
998
999 /*
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1004 */
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009 /*
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1012 */
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
1018 }
1019
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 enum uclamp_id clamp_id;
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 enum uclamp_id clamp_id;
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052 /*
1053 * Lock the task and the rq where the task is (or was) queued.
1054 *
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 */
1060 rq = task_rq_lock(p, &rf);
1061
1062 /*
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1067 */
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074 }
1075
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1080 {
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1084
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1090 }
1091 }
1092 css_task_iter_end(&it);
1093 }
1094
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116 {
1117 bool update_root_tg = false;
1118 int old_min, old_max;
1119 int result;
1120
1121 mutex_lock(&uclamp_mutex);
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 sysctl_sched_uclamp_util_min, false);
1140 update_root_tg = true;
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 sysctl_sched_uclamp_util_max, false);
1145 update_root_tg = true;
1146 }
1147
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
1151 /*
1152 * We update all RUNNABLE tasks only when task groups are in use.
1153 * Otherwise, keep it simple and do just a lazy update at each next
1154 * task enqueue time.
1155 */
1156
1157 goto done;
1158
1159 undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162 done:
1163 mutex_unlock(&uclamp_mutex);
1164
1165 return result;
1166 }
1167
1168 static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170 {
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185 }
1186
1187 static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189 {
1190 enum uclamp_id clamp_id;
1191
1192 /*
1193 * On scheduling class change, reset to default clamps for tasks
1194 * without a task-specific value.
1195 */
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200 /* Keep using defined clamps across class changes */
1201 if (uc_se->user_defined)
1202 continue;
1203
1204 /* By default, RT tasks always get 100% boost */
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223 }
1224
1225 static void uclamp_fork(struct task_struct *p)
1226 {
1227 enum uclamp_id clamp_id;
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
1236 unsigned int clamp_value = uclamp_none(clamp_id);
1237
1238 /* By default, RT tasks always get 100% boost */
1239 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1240 clamp_value = uclamp_none(UCLAMP_MAX);
1241
1242 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1243 }
1244 }
1245
1246 static void __init init_uclamp(void)
1247 {
1248 struct uclamp_se uc_max = {};
1249 enum uclamp_id clamp_id;
1250 int cpu;
1251
1252 mutex_init(&uclamp_mutex);
1253
1254 for_each_possible_cpu(cpu) {
1255 memset(&cpu_rq(cpu)->uclamp, 0,
1256 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1257 cpu_rq(cpu)->uclamp_flags = 0;
1258 }
1259
1260 for_each_clamp_id(clamp_id) {
1261 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1262 uclamp_none(clamp_id), false);
1263 }
1264
1265 /* System defaults allow max clamp values for both indexes */
1266 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1267 for_each_clamp_id(clamp_id) {
1268 uclamp_default[clamp_id] = uc_max;
1269 #ifdef CONFIG_UCLAMP_TASK_GROUP
1270 root_task_group.uclamp_req[clamp_id] = uc_max;
1271 root_task_group.uclamp[clamp_id] = uc_max;
1272 #endif
1273 }
1274 }
1275
1276 #else /* CONFIG_UCLAMP_TASK */
1277 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1278 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1279 static inline int uclamp_validate(struct task_struct *p,
1280 const struct sched_attr *attr)
1281 {
1282 return -EOPNOTSUPP;
1283 }
1284 static void __setscheduler_uclamp(struct task_struct *p,
1285 const struct sched_attr *attr) { }
1286 static inline void uclamp_fork(struct task_struct *p) { }
1287 static inline void init_uclamp(void) { }
1288 #endif /* CONFIG_UCLAMP_TASK */
1289
1290 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1291 {
1292 if (!(flags & ENQUEUE_NOCLOCK))
1293 update_rq_clock(rq);
1294
1295 if (!(flags & ENQUEUE_RESTORE)) {
1296 sched_info_queued(rq, p);
1297 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1298 }
1299
1300 uclamp_rq_inc(rq, p);
1301 p->sched_class->enqueue_task(rq, p, flags);
1302 }
1303
1304 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1305 {
1306 if (!(flags & DEQUEUE_NOCLOCK))
1307 update_rq_clock(rq);
1308
1309 if (!(flags & DEQUEUE_SAVE)) {
1310 sched_info_dequeued(rq, p);
1311 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1312 }
1313
1314 uclamp_rq_dec(rq, p);
1315 p->sched_class->dequeue_task(rq, p, flags);
1316 }
1317
1318 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1319 {
1320 if (task_contributes_to_load(p))
1321 rq->nr_uninterruptible--;
1322
1323 enqueue_task(rq, p, flags);
1324
1325 p->on_rq = TASK_ON_RQ_QUEUED;
1326 }
1327
1328 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1329 {
1330 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1331
1332 if (task_contributes_to_load(p))
1333 rq->nr_uninterruptible++;
1334
1335 dequeue_task(rq, p, flags);
1336 }
1337
1338 /*
1339 * __normal_prio - return the priority that is based on the static prio
1340 */
1341 static inline int __normal_prio(struct task_struct *p)
1342 {
1343 return p->static_prio;
1344 }
1345
1346 /*
1347 * Calculate the expected normal priority: i.e. priority
1348 * without taking RT-inheritance into account. Might be
1349 * boosted by interactivity modifiers. Changes upon fork,
1350 * setprio syscalls, and whenever the interactivity
1351 * estimator recalculates.
1352 */
1353 static inline int normal_prio(struct task_struct *p)
1354 {
1355 int prio;
1356
1357 if (task_has_dl_policy(p))
1358 prio = MAX_DL_PRIO-1;
1359 else if (task_has_rt_policy(p))
1360 prio = MAX_RT_PRIO-1 - p->rt_priority;
1361 else
1362 prio = __normal_prio(p);
1363 return prio;
1364 }
1365
1366 /*
1367 * Calculate the current priority, i.e. the priority
1368 * taken into account by the scheduler. This value might
1369 * be boosted by RT tasks, or might be boosted by
1370 * interactivity modifiers. Will be RT if the task got
1371 * RT-boosted. If not then it returns p->normal_prio.
1372 */
1373 static int effective_prio(struct task_struct *p)
1374 {
1375 p->normal_prio = normal_prio(p);
1376 /*
1377 * If we are RT tasks or we were boosted to RT priority,
1378 * keep the priority unchanged. Otherwise, update priority
1379 * to the normal priority:
1380 */
1381 if (!rt_prio(p->prio))
1382 return p->normal_prio;
1383 return p->prio;
1384 }
1385
1386 /**
1387 * task_curr - is this task currently executing on a CPU?
1388 * @p: the task in question.
1389 *
1390 * Return: 1 if the task is currently executing. 0 otherwise.
1391 */
1392 inline int task_curr(const struct task_struct *p)
1393 {
1394 return cpu_curr(task_cpu(p)) == p;
1395 }
1396
1397 /*
1398 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1399 * use the balance_callback list if you want balancing.
1400 *
1401 * this means any call to check_class_changed() must be followed by a call to
1402 * balance_callback().
1403 */
1404 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1405 const struct sched_class *prev_class,
1406 int oldprio)
1407 {
1408 if (prev_class != p->sched_class) {
1409 if (prev_class->switched_from)
1410 prev_class->switched_from(rq, p);
1411
1412 p->sched_class->switched_to(rq, p);
1413 } else if (oldprio != p->prio || dl_task(p))
1414 p->sched_class->prio_changed(rq, p, oldprio);
1415 }
1416
1417 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1418 {
1419 const struct sched_class *class;
1420
1421 if (p->sched_class == rq->curr->sched_class) {
1422 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1423 } else {
1424 for_each_class(class) {
1425 if (class == rq->curr->sched_class)
1426 break;
1427 if (class == p->sched_class) {
1428 resched_curr(rq);
1429 break;
1430 }
1431 }
1432 }
1433
1434 /*
1435 * A queue event has occurred, and we're going to schedule. In
1436 * this case, we can save a useless back to back clock update.
1437 */
1438 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1439 rq_clock_skip_update(rq);
1440 }
1441
1442 #ifdef CONFIG_SMP
1443
1444 static inline bool is_per_cpu_kthread(struct task_struct *p)
1445 {
1446 if (!(p->flags & PF_KTHREAD))
1447 return false;
1448
1449 if (p->nr_cpus_allowed != 1)
1450 return false;
1451
1452 return true;
1453 }
1454
1455 /*
1456 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1457 * __set_cpus_allowed_ptr() and select_fallback_rq().
1458 */
1459 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1460 {
1461 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1462 return false;
1463
1464 if (is_per_cpu_kthread(p))
1465 return cpu_online(cpu);
1466
1467 return cpu_active(cpu);
1468 }
1469
1470 /*
1471 * This is how migration works:
1472 *
1473 * 1) we invoke migration_cpu_stop() on the target CPU using
1474 * stop_one_cpu().
1475 * 2) stopper starts to run (implicitly forcing the migrated thread
1476 * off the CPU)
1477 * 3) it checks whether the migrated task is still in the wrong runqueue.
1478 * 4) if it's in the wrong runqueue then the migration thread removes
1479 * it and puts it into the right queue.
1480 * 5) stopper completes and stop_one_cpu() returns and the migration
1481 * is done.
1482 */
1483
1484 /*
1485 * move_queued_task - move a queued task to new rq.
1486 *
1487 * Returns (locked) new rq. Old rq's lock is released.
1488 */
1489 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1490 struct task_struct *p, int new_cpu)
1491 {
1492 lockdep_assert_held(&rq->lock);
1493
1494 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1495 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1496 set_task_cpu(p, new_cpu);
1497 rq_unlock(rq, rf);
1498
1499 rq = cpu_rq(new_cpu);
1500
1501 rq_lock(rq, rf);
1502 BUG_ON(task_cpu(p) != new_cpu);
1503 enqueue_task(rq, p, 0);
1504 p->on_rq = TASK_ON_RQ_QUEUED;
1505 check_preempt_curr(rq, p, 0);
1506
1507 return rq;
1508 }
1509
1510 struct migration_arg {
1511 struct task_struct *task;
1512 int dest_cpu;
1513 };
1514
1515 /*
1516 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1517 * this because either it can't run here any more (set_cpus_allowed()
1518 * away from this CPU, or CPU going down), or because we're
1519 * attempting to rebalance this task on exec (sched_exec).
1520 *
1521 * So we race with normal scheduler movements, but that's OK, as long
1522 * as the task is no longer on this CPU.
1523 */
1524 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1525 struct task_struct *p, int dest_cpu)
1526 {
1527 /* Affinity changed (again). */
1528 if (!is_cpu_allowed(p, dest_cpu))
1529 return rq;
1530
1531 update_rq_clock(rq);
1532 rq = move_queued_task(rq, rf, p, dest_cpu);
1533
1534 return rq;
1535 }
1536
1537 /*
1538 * migration_cpu_stop - this will be executed by a highprio stopper thread
1539 * and performs thread migration by bumping thread off CPU then
1540 * 'pushing' onto another runqueue.
1541 */
1542 static int migration_cpu_stop(void *data)
1543 {
1544 struct migration_arg *arg = data;
1545 struct task_struct *p = arg->task;
1546 struct rq *rq = this_rq();
1547 struct rq_flags rf;
1548
1549 /*
1550 * The original target CPU might have gone down and we might
1551 * be on another CPU but it doesn't matter.
1552 */
1553 local_irq_disable();
1554 /*
1555 * We need to explicitly wake pending tasks before running
1556 * __migrate_task() such that we will not miss enforcing cpus_ptr
1557 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1558 */
1559 sched_ttwu_pending();
1560
1561 raw_spin_lock(&p->pi_lock);
1562 rq_lock(rq, &rf);
1563 /*
1564 * If task_rq(p) != rq, it cannot be migrated here, because we're
1565 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1566 * we're holding p->pi_lock.
1567 */
1568 if (task_rq(p) == rq) {
1569 if (task_on_rq_queued(p))
1570 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1571 else
1572 p->wake_cpu = arg->dest_cpu;
1573 }
1574 rq_unlock(rq, &rf);
1575 raw_spin_unlock(&p->pi_lock);
1576
1577 local_irq_enable();
1578 return 0;
1579 }
1580
1581 /*
1582 * sched_class::set_cpus_allowed must do the below, but is not required to
1583 * actually call this function.
1584 */
1585 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1586 {
1587 cpumask_copy(&p->cpus_mask, new_mask);
1588 p->nr_cpus_allowed = cpumask_weight(new_mask);
1589 }
1590
1591 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1592 {
1593 struct rq *rq = task_rq(p);
1594 bool queued, running;
1595
1596 lockdep_assert_held(&p->pi_lock);
1597
1598 queued = task_on_rq_queued(p);
1599 running = task_current(rq, p);
1600
1601 if (queued) {
1602 /*
1603 * Because __kthread_bind() calls this on blocked tasks without
1604 * holding rq->lock.
1605 */
1606 lockdep_assert_held(&rq->lock);
1607 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1608 }
1609 if (running)
1610 put_prev_task(rq, p);
1611
1612 p->sched_class->set_cpus_allowed(p, new_mask);
1613
1614 if (queued)
1615 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1616 if (running)
1617 set_next_task(rq, p);
1618 }
1619
1620 /*
1621 * Change a given task's CPU affinity. Migrate the thread to a
1622 * proper CPU and schedule it away if the CPU it's executing on
1623 * is removed from the allowed bitmask.
1624 *
1625 * NOTE: the caller must have a valid reference to the task, the
1626 * task must not exit() & deallocate itself prematurely. The
1627 * call is not atomic; no spinlocks may be held.
1628 */
1629 static int __set_cpus_allowed_ptr(struct task_struct *p,
1630 const struct cpumask *new_mask, bool check)
1631 {
1632 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1633 unsigned int dest_cpu;
1634 struct rq_flags rf;
1635 struct rq *rq;
1636 int ret = 0;
1637
1638 rq = task_rq_lock(p, &rf);
1639 update_rq_clock(rq);
1640
1641 if (p->flags & PF_KTHREAD) {
1642 /*
1643 * Kernel threads are allowed on online && !active CPUs
1644 */
1645 cpu_valid_mask = cpu_online_mask;
1646 }
1647
1648 /*
1649 * Must re-check here, to close a race against __kthread_bind(),
1650 * sched_setaffinity() is not guaranteed to observe the flag.
1651 */
1652 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1653 ret = -EINVAL;
1654 goto out;
1655 }
1656
1657 if (cpumask_equal(p->cpus_ptr, new_mask))
1658 goto out;
1659
1660 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1661 if (dest_cpu >= nr_cpu_ids) {
1662 ret = -EINVAL;
1663 goto out;
1664 }
1665
1666 do_set_cpus_allowed(p, new_mask);
1667
1668 if (p->flags & PF_KTHREAD) {
1669 /*
1670 * For kernel threads that do indeed end up on online &&
1671 * !active we want to ensure they are strict per-CPU threads.
1672 */
1673 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1674 !cpumask_intersects(new_mask, cpu_active_mask) &&
1675 p->nr_cpus_allowed != 1);
1676 }
1677
1678 /* Can the task run on the task's current CPU? If so, we're done */
1679 if (cpumask_test_cpu(task_cpu(p), new_mask))
1680 goto out;
1681
1682 if (task_running(rq, p) || p->state == TASK_WAKING) {
1683 struct migration_arg arg = { p, dest_cpu };
1684 /* Need help from migration thread: drop lock and wait. */
1685 task_rq_unlock(rq, p, &rf);
1686 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1687 return 0;
1688 } else if (task_on_rq_queued(p)) {
1689 /*
1690 * OK, since we're going to drop the lock immediately
1691 * afterwards anyway.
1692 */
1693 rq = move_queued_task(rq, &rf, p, dest_cpu);
1694 }
1695 out:
1696 task_rq_unlock(rq, p, &rf);
1697
1698 return ret;
1699 }
1700
1701 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1702 {
1703 return __set_cpus_allowed_ptr(p, new_mask, false);
1704 }
1705 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1706
1707 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1708 {
1709 #ifdef CONFIG_SCHED_DEBUG
1710 /*
1711 * We should never call set_task_cpu() on a blocked task,
1712 * ttwu() will sort out the placement.
1713 */
1714 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1715 !p->on_rq);
1716
1717 /*
1718 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1719 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1720 * time relying on p->on_rq.
1721 */
1722 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1723 p->sched_class == &fair_sched_class &&
1724 (p->on_rq && !task_on_rq_migrating(p)));
1725
1726 #ifdef CONFIG_LOCKDEP
1727 /*
1728 * The caller should hold either p->pi_lock or rq->lock, when changing
1729 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1730 *
1731 * sched_move_task() holds both and thus holding either pins the cgroup,
1732 * see task_group().
1733 *
1734 * Furthermore, all task_rq users should acquire both locks, see
1735 * task_rq_lock().
1736 */
1737 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1738 lockdep_is_held(&task_rq(p)->lock)));
1739 #endif
1740 /*
1741 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1742 */
1743 WARN_ON_ONCE(!cpu_online(new_cpu));
1744 #endif
1745
1746 trace_sched_migrate_task(p, new_cpu);
1747
1748 if (task_cpu(p) != new_cpu) {
1749 if (p->sched_class->migrate_task_rq)
1750 p->sched_class->migrate_task_rq(p, new_cpu);
1751 p->se.nr_migrations++;
1752 rseq_migrate(p);
1753 perf_event_task_migrate(p);
1754 }
1755
1756 __set_task_cpu(p, new_cpu);
1757 }
1758
1759 #ifdef CONFIG_NUMA_BALANCING
1760 static void __migrate_swap_task(struct task_struct *p, int cpu)
1761 {
1762 if (task_on_rq_queued(p)) {
1763 struct rq *src_rq, *dst_rq;
1764 struct rq_flags srf, drf;
1765
1766 src_rq = task_rq(p);
1767 dst_rq = cpu_rq(cpu);
1768
1769 rq_pin_lock(src_rq, &srf);
1770 rq_pin_lock(dst_rq, &drf);
1771
1772 deactivate_task(src_rq, p, 0);
1773 set_task_cpu(p, cpu);
1774 activate_task(dst_rq, p, 0);
1775 check_preempt_curr(dst_rq, p, 0);
1776
1777 rq_unpin_lock(dst_rq, &drf);
1778 rq_unpin_lock(src_rq, &srf);
1779
1780 } else {
1781 /*
1782 * Task isn't running anymore; make it appear like we migrated
1783 * it before it went to sleep. This means on wakeup we make the
1784 * previous CPU our target instead of where it really is.
1785 */
1786 p->wake_cpu = cpu;
1787 }
1788 }
1789
1790 struct migration_swap_arg {
1791 struct task_struct *src_task, *dst_task;
1792 int src_cpu, dst_cpu;
1793 };
1794
1795 static int migrate_swap_stop(void *data)
1796 {
1797 struct migration_swap_arg *arg = data;
1798 struct rq *src_rq, *dst_rq;
1799 int ret = -EAGAIN;
1800
1801 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1802 return -EAGAIN;
1803
1804 src_rq = cpu_rq(arg->src_cpu);
1805 dst_rq = cpu_rq(arg->dst_cpu);
1806
1807 double_raw_lock(&arg->src_task->pi_lock,
1808 &arg->dst_task->pi_lock);
1809 double_rq_lock(src_rq, dst_rq);
1810
1811 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1812 goto unlock;
1813
1814 if (task_cpu(arg->src_task) != arg->src_cpu)
1815 goto unlock;
1816
1817 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1818 goto unlock;
1819
1820 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1821 goto unlock;
1822
1823 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1824 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1825
1826 ret = 0;
1827
1828 unlock:
1829 double_rq_unlock(src_rq, dst_rq);
1830 raw_spin_unlock(&arg->dst_task->pi_lock);
1831 raw_spin_unlock(&arg->src_task->pi_lock);
1832
1833 return ret;
1834 }
1835
1836 /*
1837 * Cross migrate two tasks
1838 */
1839 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1840 int target_cpu, int curr_cpu)
1841 {
1842 struct migration_swap_arg arg;
1843 int ret = -EINVAL;
1844
1845 arg = (struct migration_swap_arg){
1846 .src_task = cur,
1847 .src_cpu = curr_cpu,
1848 .dst_task = p,
1849 .dst_cpu = target_cpu,
1850 };
1851
1852 if (arg.src_cpu == arg.dst_cpu)
1853 goto out;
1854
1855 /*
1856 * These three tests are all lockless; this is OK since all of them
1857 * will be re-checked with proper locks held further down the line.
1858 */
1859 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1860 goto out;
1861
1862 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1863 goto out;
1864
1865 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1866 goto out;
1867
1868 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1869 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1870
1871 out:
1872 return ret;
1873 }
1874 #endif /* CONFIG_NUMA_BALANCING */
1875
1876 /*
1877 * wait_task_inactive - wait for a thread to unschedule.
1878 *
1879 * If @match_state is nonzero, it's the @p->state value just checked and
1880 * not expected to change. If it changes, i.e. @p might have woken up,
1881 * then return zero. When we succeed in waiting for @p to be off its CPU,
1882 * we return a positive number (its total switch count). If a second call
1883 * a short while later returns the same number, the caller can be sure that
1884 * @p has remained unscheduled the whole time.
1885 *
1886 * The caller must ensure that the task *will* unschedule sometime soon,
1887 * else this function might spin for a *long* time. This function can't
1888 * be called with interrupts off, or it may introduce deadlock with
1889 * smp_call_function() if an IPI is sent by the same process we are
1890 * waiting to become inactive.
1891 */
1892 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1893 {
1894 int running, queued;
1895 struct rq_flags rf;
1896 unsigned long ncsw;
1897 struct rq *rq;
1898
1899 for (;;) {
1900 /*
1901 * We do the initial early heuristics without holding
1902 * any task-queue locks at all. We'll only try to get
1903 * the runqueue lock when things look like they will
1904 * work out!
1905 */
1906 rq = task_rq(p);
1907
1908 /*
1909 * If the task is actively running on another CPU
1910 * still, just relax and busy-wait without holding
1911 * any locks.
1912 *
1913 * NOTE! Since we don't hold any locks, it's not
1914 * even sure that "rq" stays as the right runqueue!
1915 * But we don't care, since "task_running()" will
1916 * return false if the runqueue has changed and p
1917 * is actually now running somewhere else!
1918 */
1919 while (task_running(rq, p)) {
1920 if (match_state && unlikely(p->state != match_state))
1921 return 0;
1922 cpu_relax();
1923 }
1924
1925 /*
1926 * Ok, time to look more closely! We need the rq
1927 * lock now, to be *sure*. If we're wrong, we'll
1928 * just go back and repeat.
1929 */
1930 rq = task_rq_lock(p, &rf);
1931 trace_sched_wait_task(p);
1932 running = task_running(rq, p);
1933 queued = task_on_rq_queued(p);
1934 ncsw = 0;
1935 if (!match_state || p->state == match_state)
1936 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1937 task_rq_unlock(rq, p, &rf);
1938
1939 /*
1940 * If it changed from the expected state, bail out now.
1941 */
1942 if (unlikely(!ncsw))
1943 break;
1944
1945 /*
1946 * Was it really running after all now that we
1947 * checked with the proper locks actually held?
1948 *
1949 * Oops. Go back and try again..
1950 */
1951 if (unlikely(running)) {
1952 cpu_relax();
1953 continue;
1954 }
1955
1956 /*
1957 * It's not enough that it's not actively running,
1958 * it must be off the runqueue _entirely_, and not
1959 * preempted!
1960 *
1961 * So if it was still runnable (but just not actively
1962 * running right now), it's preempted, and we should
1963 * yield - it could be a while.
1964 */
1965 if (unlikely(queued)) {
1966 ktime_t to = NSEC_PER_SEC / HZ;
1967
1968 set_current_state(TASK_UNINTERRUPTIBLE);
1969 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1970 continue;
1971 }
1972
1973 /*
1974 * Ahh, all good. It wasn't running, and it wasn't
1975 * runnable, which means that it will never become
1976 * running in the future either. We're all done!
1977 */
1978 break;
1979 }
1980
1981 return ncsw;
1982 }
1983
1984 /***
1985 * kick_process - kick a running thread to enter/exit the kernel
1986 * @p: the to-be-kicked thread
1987 *
1988 * Cause a process which is running on another CPU to enter
1989 * kernel-mode, without any delay. (to get signals handled.)
1990 *
1991 * NOTE: this function doesn't have to take the runqueue lock,
1992 * because all it wants to ensure is that the remote task enters
1993 * the kernel. If the IPI races and the task has been migrated
1994 * to another CPU then no harm is done and the purpose has been
1995 * achieved as well.
1996 */
1997 void kick_process(struct task_struct *p)
1998 {
1999 int cpu;
2000
2001 preempt_disable();
2002 cpu = task_cpu(p);
2003 if ((cpu != smp_processor_id()) && task_curr(p))
2004 smp_send_reschedule(cpu);
2005 preempt_enable();
2006 }
2007 EXPORT_SYMBOL_GPL(kick_process);
2008
2009 /*
2010 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2011 *
2012 * A few notes on cpu_active vs cpu_online:
2013 *
2014 * - cpu_active must be a subset of cpu_online
2015 *
2016 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2017 * see __set_cpus_allowed_ptr(). At this point the newly online
2018 * CPU isn't yet part of the sched domains, and balancing will not
2019 * see it.
2020 *
2021 * - on CPU-down we clear cpu_active() to mask the sched domains and
2022 * avoid the load balancer to place new tasks on the to be removed
2023 * CPU. Existing tasks will remain running there and will be taken
2024 * off.
2025 *
2026 * This means that fallback selection must not select !active CPUs.
2027 * And can assume that any active CPU must be online. Conversely
2028 * select_task_rq() below may allow selection of !active CPUs in order
2029 * to satisfy the above rules.
2030 */
2031 static int select_fallback_rq(int cpu, struct task_struct *p)
2032 {
2033 int nid = cpu_to_node(cpu);
2034 const struct cpumask *nodemask = NULL;
2035 enum { cpuset, possible, fail } state = cpuset;
2036 int dest_cpu;
2037
2038 /*
2039 * If the node that the CPU is on has been offlined, cpu_to_node()
2040 * will return -1. There is no CPU on the node, and we should
2041 * select the CPU on the other node.
2042 */
2043 if (nid != -1) {
2044 nodemask = cpumask_of_node(nid);
2045
2046 /* Look for allowed, online CPU in same node. */
2047 for_each_cpu(dest_cpu, nodemask) {
2048 if (!cpu_active(dest_cpu))
2049 continue;
2050 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2051 return dest_cpu;
2052 }
2053 }
2054
2055 for (;;) {
2056 /* Any allowed, online CPU? */
2057 for_each_cpu(dest_cpu, p->cpus_ptr) {
2058 if (!is_cpu_allowed(p, dest_cpu))
2059 continue;
2060
2061 goto out;
2062 }
2063
2064 /* No more Mr. Nice Guy. */
2065 switch (state) {
2066 case cpuset:
2067 if (IS_ENABLED(CONFIG_CPUSETS)) {
2068 cpuset_cpus_allowed_fallback(p);
2069 state = possible;
2070 break;
2071 }
2072 /* Fall-through */
2073 case possible:
2074 do_set_cpus_allowed(p, cpu_possible_mask);
2075 state = fail;
2076 break;
2077
2078 case fail:
2079 BUG();
2080 break;
2081 }
2082 }
2083
2084 out:
2085 if (state != cpuset) {
2086 /*
2087 * Don't tell them about moving exiting tasks or
2088 * kernel threads (both mm NULL), since they never
2089 * leave kernel.
2090 */
2091 if (p->mm && printk_ratelimit()) {
2092 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2093 task_pid_nr(p), p->comm, cpu);
2094 }
2095 }
2096
2097 return dest_cpu;
2098 }
2099
2100 /*
2101 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2102 */
2103 static inline
2104 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2105 {
2106 lockdep_assert_held(&p->pi_lock);
2107
2108 if (p->nr_cpus_allowed > 1)
2109 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2110 else
2111 cpu = cpumask_any(p->cpus_ptr);
2112
2113 /*
2114 * In order not to call set_task_cpu() on a blocking task we need
2115 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2116 * CPU.
2117 *
2118 * Since this is common to all placement strategies, this lives here.
2119 *
2120 * [ this allows ->select_task() to simply return task_cpu(p) and
2121 * not worry about this generic constraint ]
2122 */
2123 if (unlikely(!is_cpu_allowed(p, cpu)))
2124 cpu = select_fallback_rq(task_cpu(p), p);
2125
2126 return cpu;
2127 }
2128
2129 static void update_avg(u64 *avg, u64 sample)
2130 {
2131 s64 diff = sample - *avg;
2132 *avg += diff >> 3;
2133 }
2134
2135 void sched_set_stop_task(int cpu, struct task_struct *stop)
2136 {
2137 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2138 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2139
2140 if (stop) {
2141 /*
2142 * Make it appear like a SCHED_FIFO task, its something
2143 * userspace knows about and won't get confused about.
2144 *
2145 * Also, it will make PI more or less work without too
2146 * much confusion -- but then, stop work should not
2147 * rely on PI working anyway.
2148 */
2149 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2150
2151 stop->sched_class = &stop_sched_class;
2152 }
2153
2154 cpu_rq(cpu)->stop = stop;
2155
2156 if (old_stop) {
2157 /*
2158 * Reset it back to a normal scheduling class so that
2159 * it can die in pieces.
2160 */
2161 old_stop->sched_class = &rt_sched_class;
2162 }
2163 }
2164
2165 #else
2166
2167 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2168 const struct cpumask *new_mask, bool check)
2169 {
2170 return set_cpus_allowed_ptr(p, new_mask);
2171 }
2172
2173 #endif /* CONFIG_SMP */
2174
2175 static void
2176 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2177 {
2178 struct rq *rq;
2179
2180 if (!schedstat_enabled())
2181 return;
2182
2183 rq = this_rq();
2184
2185 #ifdef CONFIG_SMP
2186 if (cpu == rq->cpu) {
2187 __schedstat_inc(rq->ttwu_local);
2188 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2189 } else {
2190 struct sched_domain *sd;
2191
2192 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2193 rcu_read_lock();
2194 for_each_domain(rq->cpu, sd) {
2195 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2196 __schedstat_inc(sd->ttwu_wake_remote);
2197 break;
2198 }
2199 }
2200 rcu_read_unlock();
2201 }
2202
2203 if (wake_flags & WF_MIGRATED)
2204 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2205 #endif /* CONFIG_SMP */
2206
2207 __schedstat_inc(rq->ttwu_count);
2208 __schedstat_inc(p->se.statistics.nr_wakeups);
2209
2210 if (wake_flags & WF_SYNC)
2211 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2212 }
2213
2214 /*
2215 * Mark the task runnable and perform wakeup-preemption.
2216 */
2217 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2218 struct rq_flags *rf)
2219 {
2220 check_preempt_curr(rq, p, wake_flags);
2221 p->state = TASK_RUNNING;
2222 trace_sched_wakeup(p);
2223
2224 #ifdef CONFIG_SMP
2225 if (p->sched_class->task_woken) {
2226 /*
2227 * Our task @p is fully woken up and running; so its safe to
2228 * drop the rq->lock, hereafter rq is only used for statistics.
2229 */
2230 rq_unpin_lock(rq, rf);
2231 p->sched_class->task_woken(rq, p);
2232 rq_repin_lock(rq, rf);
2233 }
2234
2235 if (rq->idle_stamp) {
2236 u64 delta = rq_clock(rq) - rq->idle_stamp;
2237 u64 max = 2*rq->max_idle_balance_cost;
2238
2239 update_avg(&rq->avg_idle, delta);
2240
2241 if (rq->avg_idle > max)
2242 rq->avg_idle = max;
2243
2244 rq->idle_stamp = 0;
2245 }
2246 #endif
2247 }
2248
2249 static void
2250 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2251 struct rq_flags *rf)
2252 {
2253 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2254
2255 lockdep_assert_held(&rq->lock);
2256
2257 #ifdef CONFIG_SMP
2258 if (p->sched_contributes_to_load)
2259 rq->nr_uninterruptible--;
2260
2261 if (wake_flags & WF_MIGRATED)
2262 en_flags |= ENQUEUE_MIGRATED;
2263 #endif
2264
2265 activate_task(rq, p, en_flags);
2266 ttwu_do_wakeup(rq, p, wake_flags, rf);
2267 }
2268
2269 /*
2270 * Called in case the task @p isn't fully descheduled from its runqueue,
2271 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2272 * since all we need to do is flip p->state to TASK_RUNNING, since
2273 * the task is still ->on_rq.
2274 */
2275 static int ttwu_remote(struct task_struct *p, int wake_flags)
2276 {
2277 struct rq_flags rf;
2278 struct rq *rq;
2279 int ret = 0;
2280
2281 rq = __task_rq_lock(p, &rf);
2282 if (task_on_rq_queued(p)) {
2283 /* check_preempt_curr() may use rq clock */
2284 update_rq_clock(rq);
2285 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2286 ret = 1;
2287 }
2288 __task_rq_unlock(rq, &rf);
2289
2290 return ret;
2291 }
2292
2293 #ifdef CONFIG_SMP
2294 void sched_ttwu_pending(void)
2295 {
2296 struct rq *rq = this_rq();
2297 struct llist_node *llist = llist_del_all(&rq->wake_list);
2298 struct task_struct *p, *t;
2299 struct rq_flags rf;
2300
2301 if (!llist)
2302 return;
2303
2304 rq_lock_irqsave(rq, &rf);
2305 update_rq_clock(rq);
2306
2307 llist_for_each_entry_safe(p, t, llist, wake_entry)
2308 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2309
2310 rq_unlock_irqrestore(rq, &rf);
2311 }
2312
2313 void scheduler_ipi(void)
2314 {
2315 /*
2316 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2317 * TIF_NEED_RESCHED remotely (for the first time) will also send
2318 * this IPI.
2319 */
2320 preempt_fold_need_resched();
2321
2322 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2323 return;
2324
2325 /*
2326 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2327 * traditionally all their work was done from the interrupt return
2328 * path. Now that we actually do some work, we need to make sure
2329 * we do call them.
2330 *
2331 * Some archs already do call them, luckily irq_enter/exit nest
2332 * properly.
2333 *
2334 * Arguably we should visit all archs and update all handlers,
2335 * however a fair share of IPIs are still resched only so this would
2336 * somewhat pessimize the simple resched case.
2337 */
2338 irq_enter();
2339 sched_ttwu_pending();
2340
2341 /*
2342 * Check if someone kicked us for doing the nohz idle load balance.
2343 */
2344 if (unlikely(got_nohz_idle_kick())) {
2345 this_rq()->idle_balance = 1;
2346 raise_softirq_irqoff(SCHED_SOFTIRQ);
2347 }
2348 irq_exit();
2349 }
2350
2351 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2352 {
2353 struct rq *rq = cpu_rq(cpu);
2354
2355 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2356
2357 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2358 if (!set_nr_if_polling(rq->idle))
2359 smp_send_reschedule(cpu);
2360 else
2361 trace_sched_wake_idle_without_ipi(cpu);
2362 }
2363 }
2364
2365 void wake_up_if_idle(int cpu)
2366 {
2367 struct rq *rq = cpu_rq(cpu);
2368 struct rq_flags rf;
2369
2370 rcu_read_lock();
2371
2372 if (!is_idle_task(rcu_dereference(rq->curr)))
2373 goto out;
2374
2375 if (set_nr_if_polling(rq->idle)) {
2376 trace_sched_wake_idle_without_ipi(cpu);
2377 } else {
2378 rq_lock_irqsave(rq, &rf);
2379 if (is_idle_task(rq->curr))
2380 smp_send_reschedule(cpu);
2381 /* Else CPU is not idle, do nothing here: */
2382 rq_unlock_irqrestore(rq, &rf);
2383 }
2384
2385 out:
2386 rcu_read_unlock();
2387 }
2388
2389 bool cpus_share_cache(int this_cpu, int that_cpu)
2390 {
2391 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2392 }
2393 #endif /* CONFIG_SMP */
2394
2395 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2396 {
2397 struct rq *rq = cpu_rq(cpu);
2398 struct rq_flags rf;
2399
2400 #if defined(CONFIG_SMP)
2401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2402 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2403 ttwu_queue_remote(p, cpu, wake_flags);
2404 return;
2405 }
2406 #endif
2407
2408 rq_lock(rq, &rf);
2409 update_rq_clock(rq);
2410 ttwu_do_activate(rq, p, wake_flags, &rf);
2411 rq_unlock(rq, &rf);
2412 }
2413
2414 /*
2415 * Notes on Program-Order guarantees on SMP systems.
2416 *
2417 * MIGRATION
2418 *
2419 * The basic program-order guarantee on SMP systems is that when a task [t]
2420 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2421 * execution on its new CPU [c1].
2422 *
2423 * For migration (of runnable tasks) this is provided by the following means:
2424 *
2425 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2426 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2427 * rq(c1)->lock (if not at the same time, then in that order).
2428 * C) LOCK of the rq(c1)->lock scheduling in task
2429 *
2430 * Release/acquire chaining guarantees that B happens after A and C after B.
2431 * Note: the CPU doing B need not be c0 or c1
2432 *
2433 * Example:
2434 *
2435 * CPU0 CPU1 CPU2
2436 *
2437 * LOCK rq(0)->lock
2438 * sched-out X
2439 * sched-in Y
2440 * UNLOCK rq(0)->lock
2441 *
2442 * LOCK rq(0)->lock // orders against CPU0
2443 * dequeue X
2444 * UNLOCK rq(0)->lock
2445 *
2446 * LOCK rq(1)->lock
2447 * enqueue X
2448 * UNLOCK rq(1)->lock
2449 *
2450 * LOCK rq(1)->lock // orders against CPU2
2451 * sched-out Z
2452 * sched-in X
2453 * UNLOCK rq(1)->lock
2454 *
2455 *
2456 * BLOCKING -- aka. SLEEP + WAKEUP
2457 *
2458 * For blocking we (obviously) need to provide the same guarantee as for
2459 * migration. However the means are completely different as there is no lock
2460 * chain to provide order. Instead we do:
2461 *
2462 * 1) smp_store_release(X->on_cpu, 0)
2463 * 2) smp_cond_load_acquire(!X->on_cpu)
2464 *
2465 * Example:
2466 *
2467 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2468 *
2469 * LOCK rq(0)->lock LOCK X->pi_lock
2470 * dequeue X
2471 * sched-out X
2472 * smp_store_release(X->on_cpu, 0);
2473 *
2474 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2475 * X->state = WAKING
2476 * set_task_cpu(X,2)
2477 *
2478 * LOCK rq(2)->lock
2479 * enqueue X
2480 * X->state = RUNNING
2481 * UNLOCK rq(2)->lock
2482 *
2483 * LOCK rq(2)->lock // orders against CPU1
2484 * sched-out Z
2485 * sched-in X
2486 * UNLOCK rq(2)->lock
2487 *
2488 * UNLOCK X->pi_lock
2489 * UNLOCK rq(0)->lock
2490 *
2491 *
2492 * However, for wakeups there is a second guarantee we must provide, namely we
2493 * must ensure that CONDITION=1 done by the caller can not be reordered with
2494 * accesses to the task state; see try_to_wake_up() and set_current_state().
2495 */
2496
2497 /**
2498 * try_to_wake_up - wake up a thread
2499 * @p: the thread to be awakened
2500 * @state: the mask of task states that can be woken
2501 * @wake_flags: wake modifier flags (WF_*)
2502 *
2503 * If (@state & @p->state) @p->state = TASK_RUNNING.
2504 *
2505 * If the task was not queued/runnable, also place it back on a runqueue.
2506 *
2507 * Atomic against schedule() which would dequeue a task, also see
2508 * set_current_state().
2509 *
2510 * This function executes a full memory barrier before accessing the task
2511 * state; see set_current_state().
2512 *
2513 * Return: %true if @p->state changes (an actual wakeup was done),
2514 * %false otherwise.
2515 */
2516 static int
2517 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2518 {
2519 unsigned long flags;
2520 int cpu, success = 0;
2521
2522 preempt_disable();
2523 if (p == current) {
2524 /*
2525 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2526 * == smp_processor_id()'. Together this means we can special
2527 * case the whole 'p->on_rq && ttwu_remote()' case below
2528 * without taking any locks.
2529 *
2530 * In particular:
2531 * - we rely on Program-Order guarantees for all the ordering,
2532 * - we're serialized against set_special_state() by virtue of
2533 * it disabling IRQs (this allows not taking ->pi_lock).
2534 */
2535 if (!(p->state & state))
2536 goto out;
2537
2538 success = 1;
2539 cpu = task_cpu(p);
2540 trace_sched_waking(p);
2541 p->state = TASK_RUNNING;
2542 trace_sched_wakeup(p);
2543 goto out;
2544 }
2545
2546 /*
2547 * If we are going to wake up a thread waiting for CONDITION we
2548 * need to ensure that CONDITION=1 done by the caller can not be
2549 * reordered with p->state check below. This pairs with mb() in
2550 * set_current_state() the waiting thread does.
2551 */
2552 raw_spin_lock_irqsave(&p->pi_lock, flags);
2553 smp_mb__after_spinlock();
2554 if (!(p->state & state))
2555 goto unlock;
2556
2557 trace_sched_waking(p);
2558
2559 /* We're going to change ->state: */
2560 success = 1;
2561 cpu = task_cpu(p);
2562
2563 /*
2564 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2565 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2566 * in smp_cond_load_acquire() below.
2567 *
2568 * sched_ttwu_pending() try_to_wake_up()
2569 * STORE p->on_rq = 1 LOAD p->state
2570 * UNLOCK rq->lock
2571 *
2572 * __schedule() (switch to task 'p')
2573 * LOCK rq->lock smp_rmb();
2574 * smp_mb__after_spinlock();
2575 * UNLOCK rq->lock
2576 *
2577 * [task p]
2578 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2579 *
2580 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2581 * __schedule(). See the comment for smp_mb__after_spinlock().
2582 */
2583 smp_rmb();
2584 if (p->on_rq && ttwu_remote(p, wake_flags))
2585 goto unlock;
2586
2587 #ifdef CONFIG_SMP
2588 /*
2589 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2590 * possible to, falsely, observe p->on_cpu == 0.
2591 *
2592 * One must be running (->on_cpu == 1) in order to remove oneself
2593 * from the runqueue.
2594 *
2595 * __schedule() (switch to task 'p') try_to_wake_up()
2596 * STORE p->on_cpu = 1 LOAD p->on_rq
2597 * UNLOCK rq->lock
2598 *
2599 * __schedule() (put 'p' to sleep)
2600 * LOCK rq->lock smp_rmb();
2601 * smp_mb__after_spinlock();
2602 * STORE p->on_rq = 0 LOAD p->on_cpu
2603 *
2604 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2605 * __schedule(). See the comment for smp_mb__after_spinlock().
2606 */
2607 smp_rmb();
2608
2609 /*
2610 * If the owning (remote) CPU is still in the middle of schedule() with
2611 * this task as prev, wait until its done referencing the task.
2612 *
2613 * Pairs with the smp_store_release() in finish_task().
2614 *
2615 * This ensures that tasks getting woken will be fully ordered against
2616 * their previous state and preserve Program Order.
2617 */
2618 smp_cond_load_acquire(&p->on_cpu, !VAL);
2619
2620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2621 p->state = TASK_WAKING;
2622
2623 if (p->in_iowait) {
2624 delayacct_blkio_end(p);
2625 atomic_dec(&task_rq(p)->nr_iowait);
2626 }
2627
2628 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2629 if (task_cpu(p) != cpu) {
2630 wake_flags |= WF_MIGRATED;
2631 psi_ttwu_dequeue(p);
2632 set_task_cpu(p, cpu);
2633 }
2634
2635 #else /* CONFIG_SMP */
2636
2637 if (p->in_iowait) {
2638 delayacct_blkio_end(p);
2639 atomic_dec(&task_rq(p)->nr_iowait);
2640 }
2641
2642 #endif /* CONFIG_SMP */
2643
2644 ttwu_queue(p, cpu, wake_flags);
2645 unlock:
2646 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2647 out:
2648 if (success)
2649 ttwu_stat(p, cpu, wake_flags);
2650 preempt_enable();
2651
2652 return success;
2653 }
2654
2655 /**
2656 * wake_up_process - Wake up a specific process
2657 * @p: The process to be woken up.
2658 *
2659 * Attempt to wake up the nominated process and move it to the set of runnable
2660 * processes.
2661 *
2662 * Return: 1 if the process was woken up, 0 if it was already running.
2663 *
2664 * This function executes a full memory barrier before accessing the task state.
2665 */
2666 int wake_up_process(struct task_struct *p)
2667 {
2668 return try_to_wake_up(p, TASK_NORMAL, 0);
2669 }
2670 EXPORT_SYMBOL(wake_up_process);
2671
2672 int wake_up_state(struct task_struct *p, unsigned int state)
2673 {
2674 return try_to_wake_up(p, state, 0);
2675 }
2676
2677 /*
2678 * Perform scheduler related setup for a newly forked process p.
2679 * p is forked by current.
2680 *
2681 * __sched_fork() is basic setup used by init_idle() too:
2682 */
2683 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2684 {
2685 p->on_rq = 0;
2686
2687 p->se.on_rq = 0;
2688 p->se.exec_start = 0;
2689 p->se.sum_exec_runtime = 0;
2690 p->se.prev_sum_exec_runtime = 0;
2691 p->se.nr_migrations = 0;
2692 p->se.vruntime = 0;
2693 INIT_LIST_HEAD(&p->se.group_node);
2694
2695 #ifdef CONFIG_FAIR_GROUP_SCHED
2696 p->se.cfs_rq = NULL;
2697 #endif
2698
2699 #ifdef CONFIG_SCHEDSTATS
2700 /* Even if schedstat is disabled, there should not be garbage */
2701 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2702 #endif
2703
2704 RB_CLEAR_NODE(&p->dl.rb_node);
2705 init_dl_task_timer(&p->dl);
2706 init_dl_inactive_task_timer(&p->dl);
2707 __dl_clear_params(p);
2708
2709 INIT_LIST_HEAD(&p->rt.run_list);
2710 p->rt.timeout = 0;
2711 p->rt.time_slice = sched_rr_timeslice;
2712 p->rt.on_rq = 0;
2713 p->rt.on_list = 0;
2714
2715 #ifdef CONFIG_PREEMPT_NOTIFIERS
2716 INIT_HLIST_HEAD(&p->preempt_notifiers);
2717 #endif
2718
2719 #ifdef CONFIG_COMPACTION
2720 p->capture_control = NULL;
2721 #endif
2722 init_numa_balancing(clone_flags, p);
2723 }
2724
2725 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2726
2727 #ifdef CONFIG_NUMA_BALANCING
2728
2729 void set_numabalancing_state(bool enabled)
2730 {
2731 if (enabled)
2732 static_branch_enable(&sched_numa_balancing);
2733 else
2734 static_branch_disable(&sched_numa_balancing);
2735 }
2736
2737 #ifdef CONFIG_PROC_SYSCTL
2738 int sysctl_numa_balancing(struct ctl_table *table, int write,
2739 void __user *buffer, size_t *lenp, loff_t *ppos)
2740 {
2741 struct ctl_table t;
2742 int err;
2743 int state = static_branch_likely(&sched_numa_balancing);
2744
2745 if (write && !capable(CAP_SYS_ADMIN))
2746 return -EPERM;
2747
2748 t = *table;
2749 t.data = &state;
2750 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2751 if (err < 0)
2752 return err;
2753 if (write)
2754 set_numabalancing_state(state);
2755 return err;
2756 }
2757 #endif
2758 #endif
2759
2760 #ifdef CONFIG_SCHEDSTATS
2761
2762 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2763 static bool __initdata __sched_schedstats = false;
2764
2765 static void set_schedstats(bool enabled)
2766 {
2767 if (enabled)
2768 static_branch_enable(&sched_schedstats);
2769 else
2770 static_branch_disable(&sched_schedstats);
2771 }
2772
2773 void force_schedstat_enabled(void)
2774 {
2775 if (!schedstat_enabled()) {
2776 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2777 static_branch_enable(&sched_schedstats);
2778 }
2779 }
2780
2781 static int __init setup_schedstats(char *str)
2782 {
2783 int ret = 0;
2784 if (!str)
2785 goto out;
2786
2787 /*
2788 * This code is called before jump labels have been set up, so we can't
2789 * change the static branch directly just yet. Instead set a temporary
2790 * variable so init_schedstats() can do it later.
2791 */
2792 if (!strcmp(str, "enable")) {
2793 __sched_schedstats = true;
2794 ret = 1;
2795 } else if (!strcmp(str, "disable")) {
2796 __sched_schedstats = false;
2797 ret = 1;
2798 }
2799 out:
2800 if (!ret)
2801 pr_warn("Unable to parse schedstats=\n");
2802
2803 return ret;
2804 }
2805 __setup("schedstats=", setup_schedstats);
2806
2807 static void __init init_schedstats(void)
2808 {
2809 set_schedstats(__sched_schedstats);
2810 }
2811
2812 #ifdef CONFIG_PROC_SYSCTL
2813 int sysctl_schedstats(struct ctl_table *table, int write,
2814 void __user *buffer, size_t *lenp, loff_t *ppos)
2815 {
2816 struct ctl_table t;
2817 int err;
2818 int state = static_branch_likely(&sched_schedstats);
2819
2820 if (write && !capable(CAP_SYS_ADMIN))
2821 return -EPERM;
2822
2823 t = *table;
2824 t.data = &state;
2825 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2826 if (err < 0)
2827 return err;
2828 if (write)
2829 set_schedstats(state);
2830 return err;
2831 }
2832 #endif /* CONFIG_PROC_SYSCTL */
2833 #else /* !CONFIG_SCHEDSTATS */
2834 static inline void init_schedstats(void) {}
2835 #endif /* CONFIG_SCHEDSTATS */
2836
2837 /*
2838 * fork()/clone()-time setup:
2839 */
2840 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2841 {
2842 unsigned long flags;
2843
2844 __sched_fork(clone_flags, p);
2845 /*
2846 * We mark the process as NEW here. This guarantees that
2847 * nobody will actually run it, and a signal or other external
2848 * event cannot wake it up and insert it on the runqueue either.
2849 */
2850 p->state = TASK_NEW;
2851
2852 /*
2853 * Make sure we do not leak PI boosting priority to the child.
2854 */
2855 p->prio = current->normal_prio;
2856
2857 uclamp_fork(p);
2858
2859 /*
2860 * Revert to default priority/policy on fork if requested.
2861 */
2862 if (unlikely(p->sched_reset_on_fork)) {
2863 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2864 p->policy = SCHED_NORMAL;
2865 p->static_prio = NICE_TO_PRIO(0);
2866 p->rt_priority = 0;
2867 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2868 p->static_prio = NICE_TO_PRIO(0);
2869
2870 p->prio = p->normal_prio = __normal_prio(p);
2871 set_load_weight(p, false);
2872
2873 /*
2874 * We don't need the reset flag anymore after the fork. It has
2875 * fulfilled its duty:
2876 */
2877 p->sched_reset_on_fork = 0;
2878 }
2879
2880 if (dl_prio(p->prio))
2881 return -EAGAIN;
2882 else if (rt_prio(p->prio))
2883 p->sched_class = &rt_sched_class;
2884 else
2885 p->sched_class = &fair_sched_class;
2886
2887 init_entity_runnable_average(&p->se);
2888
2889 /*
2890 * The child is not yet in the pid-hash so no cgroup attach races,
2891 * and the cgroup is pinned to this child due to cgroup_fork()
2892 * is ran before sched_fork().
2893 *
2894 * Silence PROVE_RCU.
2895 */
2896 raw_spin_lock_irqsave(&p->pi_lock, flags);
2897 /*
2898 * We're setting the CPU for the first time, we don't migrate,
2899 * so use __set_task_cpu().
2900 */
2901 __set_task_cpu(p, smp_processor_id());
2902 if (p->sched_class->task_fork)
2903 p->sched_class->task_fork(p);
2904 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2905
2906 #ifdef CONFIG_SCHED_INFO
2907 if (likely(sched_info_on()))
2908 memset(&p->sched_info, 0, sizeof(p->sched_info));
2909 #endif
2910 #if defined(CONFIG_SMP)
2911 p->on_cpu = 0;
2912 #endif
2913 init_task_preempt_count(p);
2914 #ifdef CONFIG_SMP
2915 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2916 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2917 #endif
2918 return 0;
2919 }
2920
2921 unsigned long to_ratio(u64 period, u64 runtime)
2922 {
2923 if (runtime == RUNTIME_INF)
2924 return BW_UNIT;
2925
2926 /*
2927 * Doing this here saves a lot of checks in all
2928 * the calling paths, and returning zero seems
2929 * safe for them anyway.
2930 */
2931 if (period == 0)
2932 return 0;
2933
2934 return div64_u64(runtime << BW_SHIFT, period);
2935 }
2936
2937 /*
2938 * wake_up_new_task - wake up a newly created task for the first time.
2939 *
2940 * This function will do some initial scheduler statistics housekeeping
2941 * that must be done for every newly created context, then puts the task
2942 * on the runqueue and wakes it.
2943 */
2944 void wake_up_new_task(struct task_struct *p)
2945 {
2946 struct rq_flags rf;
2947 struct rq *rq;
2948
2949 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2950 p->state = TASK_RUNNING;
2951 #ifdef CONFIG_SMP
2952 /*
2953 * Fork balancing, do it here and not earlier because:
2954 * - cpus_ptr can change in the fork path
2955 * - any previously selected CPU might disappear through hotplug
2956 *
2957 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2958 * as we're not fully set-up yet.
2959 */
2960 p->recent_used_cpu = task_cpu(p);
2961 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2962 #endif
2963 rq = __task_rq_lock(p, &rf);
2964 update_rq_clock(rq);
2965 post_init_entity_util_avg(p);
2966
2967 activate_task(rq, p, ENQUEUE_NOCLOCK);
2968 trace_sched_wakeup_new(p);
2969 check_preempt_curr(rq, p, WF_FORK);
2970 #ifdef CONFIG_SMP
2971 if (p->sched_class->task_woken) {
2972 /*
2973 * Nothing relies on rq->lock after this, so its fine to
2974 * drop it.
2975 */
2976 rq_unpin_lock(rq, &rf);
2977 p->sched_class->task_woken(rq, p);
2978 rq_repin_lock(rq, &rf);
2979 }
2980 #endif
2981 task_rq_unlock(rq, p, &rf);
2982 }
2983
2984 #ifdef CONFIG_PREEMPT_NOTIFIERS
2985
2986 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2987
2988 void preempt_notifier_inc(void)
2989 {
2990 static_branch_inc(&preempt_notifier_key);
2991 }
2992 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2993
2994 void preempt_notifier_dec(void)
2995 {
2996 static_branch_dec(&preempt_notifier_key);
2997 }
2998 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2999
3000 /**
3001 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3002 * @notifier: notifier struct to register
3003 */
3004 void preempt_notifier_register(struct preempt_notifier *notifier)
3005 {
3006 if (!static_branch_unlikely(&preempt_notifier_key))
3007 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3008
3009 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3010 }
3011 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3012
3013 /**
3014 * preempt_notifier_unregister - no longer interested in preemption notifications
3015 * @notifier: notifier struct to unregister
3016 *
3017 * This is *not* safe to call from within a preemption notifier.
3018 */
3019 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3020 {
3021 hlist_del(&notifier->link);
3022 }
3023 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3024
3025 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3026 {
3027 struct preempt_notifier *notifier;
3028
3029 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3030 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3031 }
3032
3033 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3034 {
3035 if (static_branch_unlikely(&preempt_notifier_key))
3036 __fire_sched_in_preempt_notifiers(curr);
3037 }
3038
3039 static void
3040 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3041 struct task_struct *next)
3042 {
3043 struct preempt_notifier *notifier;
3044
3045 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3046 notifier->ops->sched_out(notifier, next);
3047 }
3048
3049 static __always_inline void
3050 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3051 struct task_struct *next)
3052 {
3053 if (static_branch_unlikely(&preempt_notifier_key))
3054 __fire_sched_out_preempt_notifiers(curr, next);
3055 }
3056
3057 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3058
3059 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3060 {
3061 }
3062
3063 static inline void
3064 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3065 struct task_struct *next)
3066 {
3067 }
3068
3069 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3070
3071 static inline void prepare_task(struct task_struct *next)
3072 {
3073 #ifdef CONFIG_SMP
3074 /*
3075 * Claim the task as running, we do this before switching to it
3076 * such that any running task will have this set.
3077 */
3078 next->on_cpu = 1;
3079 #endif
3080 }
3081
3082 static inline void finish_task(struct task_struct *prev)
3083 {
3084 #ifdef CONFIG_SMP
3085 /*
3086 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3087 * We must ensure this doesn't happen until the switch is completely
3088 * finished.
3089 *
3090 * In particular, the load of prev->state in finish_task_switch() must
3091 * happen before this.
3092 *
3093 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3094 */
3095 smp_store_release(&prev->on_cpu, 0);
3096 #endif
3097 }
3098
3099 static inline void
3100 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3101 {
3102 /*
3103 * Since the runqueue lock will be released by the next
3104 * task (which is an invalid locking op but in the case
3105 * of the scheduler it's an obvious special-case), so we
3106 * do an early lockdep release here:
3107 */
3108 rq_unpin_lock(rq, rf);
3109 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3110 #ifdef CONFIG_DEBUG_SPINLOCK
3111 /* this is a valid case when another task releases the spinlock */
3112 rq->lock.owner = next;
3113 #endif
3114 }
3115
3116 static inline void finish_lock_switch(struct rq *rq)
3117 {
3118 /*
3119 * If we are tracking spinlock dependencies then we have to
3120 * fix up the runqueue lock - which gets 'carried over' from
3121 * prev into current:
3122 */
3123 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3124 raw_spin_unlock_irq(&rq->lock);
3125 }
3126
3127 /*
3128 * NOP if the arch has not defined these:
3129 */
3130
3131 #ifndef prepare_arch_switch
3132 # define prepare_arch_switch(next) do { } while (0)
3133 #endif
3134
3135 #ifndef finish_arch_post_lock_switch
3136 # define finish_arch_post_lock_switch() do { } while (0)
3137 #endif
3138
3139 /**
3140 * prepare_task_switch - prepare to switch tasks
3141 * @rq: the runqueue preparing to switch
3142 * @prev: the current task that is being switched out
3143 * @next: the task we are going to switch to.
3144 *
3145 * This is called with the rq lock held and interrupts off. It must
3146 * be paired with a subsequent finish_task_switch after the context
3147 * switch.
3148 *
3149 * prepare_task_switch sets up locking and calls architecture specific
3150 * hooks.
3151 */
3152 static inline void
3153 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3154 struct task_struct *next)
3155 {
3156 kcov_prepare_switch(prev);
3157 sched_info_switch(rq, prev, next);
3158 perf_event_task_sched_out(prev, next);
3159 rseq_preempt(prev);
3160 fire_sched_out_preempt_notifiers(prev, next);
3161 prepare_task(next);
3162 prepare_arch_switch(next);
3163 }
3164
3165 /**
3166 * finish_task_switch - clean up after a task-switch
3167 * @prev: the thread we just switched away from.
3168 *
3169 * finish_task_switch must be called after the context switch, paired
3170 * with a prepare_task_switch call before the context switch.
3171 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3172 * and do any other architecture-specific cleanup actions.
3173 *
3174 * Note that we may have delayed dropping an mm in context_switch(). If
3175 * so, we finish that here outside of the runqueue lock. (Doing it
3176 * with the lock held can cause deadlocks; see schedule() for
3177 * details.)
3178 *
3179 * The context switch have flipped the stack from under us and restored the
3180 * local variables which were saved when this task called schedule() in the
3181 * past. prev == current is still correct but we need to recalculate this_rq
3182 * because prev may have moved to another CPU.
3183 */
3184 static struct rq *finish_task_switch(struct task_struct *prev)
3185 __releases(rq->lock)
3186 {
3187 struct rq *rq = this_rq();
3188 struct mm_struct *mm = rq->prev_mm;
3189 long prev_state;
3190
3191 /*
3192 * The previous task will have left us with a preempt_count of 2
3193 * because it left us after:
3194 *
3195 * schedule()
3196 * preempt_disable(); // 1
3197 * __schedule()
3198 * raw_spin_lock_irq(&rq->lock) // 2
3199 *
3200 * Also, see FORK_PREEMPT_COUNT.
3201 */
3202 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3203 "corrupted preempt_count: %s/%d/0x%x\n",
3204 current->comm, current->pid, preempt_count()))
3205 preempt_count_set(FORK_PREEMPT_COUNT);
3206
3207 rq->prev_mm = NULL;
3208
3209 /*
3210 * A task struct has one reference for the use as "current".
3211 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3212 * schedule one last time. The schedule call will never return, and
3213 * the scheduled task must drop that reference.
3214 *
3215 * We must observe prev->state before clearing prev->on_cpu (in
3216 * finish_task), otherwise a concurrent wakeup can get prev
3217 * running on another CPU and we could rave with its RUNNING -> DEAD
3218 * transition, resulting in a double drop.
3219 */
3220 prev_state = prev->state;
3221 vtime_task_switch(prev);
3222 perf_event_task_sched_in(prev, current);
3223 finish_task(prev);
3224 finish_lock_switch(rq);
3225 finish_arch_post_lock_switch();
3226 kcov_finish_switch(current);
3227
3228 fire_sched_in_preempt_notifiers(current);
3229 /*
3230 * When switching through a kernel thread, the loop in
3231 * membarrier_{private,global}_expedited() may have observed that
3232 * kernel thread and not issued an IPI. It is therefore possible to
3233 * schedule between user->kernel->user threads without passing though
3234 * switch_mm(). Membarrier requires a barrier after storing to
3235 * rq->curr, before returning to userspace, so provide them here:
3236 *
3237 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3238 * provided by mmdrop(),
3239 * - a sync_core for SYNC_CORE.
3240 */
3241 if (mm) {
3242 membarrier_mm_sync_core_before_usermode(mm);
3243 mmdrop(mm);
3244 }
3245 if (unlikely(prev_state == TASK_DEAD)) {
3246 if (prev->sched_class->task_dead)
3247 prev->sched_class->task_dead(prev);
3248
3249 /*
3250 * Remove function-return probe instances associated with this
3251 * task and put them back on the free list.
3252 */
3253 kprobe_flush_task(prev);
3254
3255 /* Task is done with its stack. */
3256 put_task_stack(prev);
3257
3258 put_task_struct_rcu_user(prev);
3259 }
3260
3261 tick_nohz_task_switch();
3262 return rq;
3263 }
3264
3265 #ifdef CONFIG_SMP
3266
3267 /* rq->lock is NOT held, but preemption is disabled */
3268 static void __balance_callback(struct rq *rq)
3269 {
3270 struct callback_head *head, *next;
3271 void (*func)(struct rq *rq);
3272 unsigned long flags;
3273
3274 raw_spin_lock_irqsave(&rq->lock, flags);
3275 head = rq->balance_callback;
3276 rq->balance_callback = NULL;
3277 while (head) {
3278 func = (void (*)(struct rq *))head->func;
3279 next = head->next;
3280 head->next = NULL;
3281 head = next;
3282
3283 func(rq);
3284 }
3285 raw_spin_unlock_irqrestore(&rq->lock, flags);
3286 }
3287
3288 static inline void balance_callback(struct rq *rq)
3289 {
3290 if (unlikely(rq->balance_callback))
3291 __balance_callback(rq);
3292 }
3293
3294 #else
3295
3296 static inline void balance_callback(struct rq *rq)
3297 {
3298 }
3299
3300 #endif
3301
3302 /**
3303 * schedule_tail - first thing a freshly forked thread must call.
3304 * @prev: the thread we just switched away from.
3305 */
3306 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3307 __releases(rq->lock)
3308 {
3309 struct rq *rq;
3310
3311 /*
3312 * New tasks start with FORK_PREEMPT_COUNT, see there and
3313 * finish_task_switch() for details.
3314 *
3315 * finish_task_switch() will drop rq->lock() and lower preempt_count
3316 * and the preempt_enable() will end up enabling preemption (on
3317 * PREEMPT_COUNT kernels).
3318 */
3319
3320 rq = finish_task_switch(prev);
3321 balance_callback(rq);
3322 preempt_enable();
3323
3324 if (current->set_child_tid)
3325 put_user(task_pid_vnr(current), current->set_child_tid);
3326
3327 calculate_sigpending();
3328 }
3329
3330 /*
3331 * context_switch - switch to the new MM and the new thread's register state.
3332 */
3333 static __always_inline struct rq *
3334 context_switch(struct rq *rq, struct task_struct *prev,
3335 struct task_struct *next, struct rq_flags *rf)
3336 {
3337 prepare_task_switch(rq, prev, next);
3338
3339 /*
3340 * For paravirt, this is coupled with an exit in switch_to to
3341 * combine the page table reload and the switch backend into
3342 * one hypercall.
3343 */
3344 arch_start_context_switch(prev);
3345
3346 /*
3347 * kernel -> kernel lazy + transfer active
3348 * user -> kernel lazy + mmgrab() active
3349 *
3350 * kernel -> user switch + mmdrop() active
3351 * user -> user switch
3352 */
3353 if (!next->mm) { // to kernel
3354 enter_lazy_tlb(prev->active_mm, next);
3355
3356 next->active_mm = prev->active_mm;
3357 if (prev->mm) // from user
3358 mmgrab(prev->active_mm);
3359 else
3360 prev->active_mm = NULL;
3361 } else { // to user
3362 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3363 /*
3364 * sys_membarrier() requires an smp_mb() between setting
3365 * rq->curr / membarrier_switch_mm() and returning to userspace.
3366 *
3367 * The below provides this either through switch_mm(), or in
3368 * case 'prev->active_mm == next->mm' through
3369 * finish_task_switch()'s mmdrop().
3370 */
3371 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3372
3373 if (!prev->mm) { // from kernel
3374 /* will mmdrop() in finish_task_switch(). */
3375 rq->prev_mm = prev->active_mm;
3376 prev->active_mm = NULL;
3377 }
3378 }
3379
3380 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3381
3382 prepare_lock_switch(rq, next, rf);
3383
3384 /* Here we just switch the register state and the stack. */
3385 switch_to(prev, next, prev);
3386 barrier();
3387
3388 return finish_task_switch(prev);
3389 }
3390
3391 /*
3392 * nr_running and nr_context_switches:
3393 *
3394 * externally visible scheduler statistics: current number of runnable
3395 * threads, total number of context switches performed since bootup.
3396 */
3397 unsigned long nr_running(void)
3398 {
3399 unsigned long i, sum = 0;
3400
3401 for_each_online_cpu(i)
3402 sum += cpu_rq(i)->nr_running;
3403
3404 return sum;
3405 }
3406
3407 /*
3408 * Check if only the current task is running on the CPU.
3409 *
3410 * Caution: this function does not check that the caller has disabled
3411 * preemption, thus the result might have a time-of-check-to-time-of-use
3412 * race. The caller is responsible to use it correctly, for example:
3413 *
3414 * - from a non-preemptible section (of course)
3415 *
3416 * - from a thread that is bound to a single CPU
3417 *
3418 * - in a loop with very short iterations (e.g. a polling loop)
3419 */
3420 bool single_task_running(void)
3421 {
3422 return raw_rq()->nr_running == 1;
3423 }
3424 EXPORT_SYMBOL(single_task_running);
3425
3426 unsigned long long nr_context_switches(void)
3427 {
3428 int i;
3429 unsigned long long sum = 0;
3430
3431 for_each_possible_cpu(i)
3432 sum += cpu_rq(i)->nr_switches;
3433
3434 return sum;
3435 }
3436
3437 /*
3438 * Consumers of these two interfaces, like for example the cpuidle menu
3439 * governor, are using nonsensical data. Preferring shallow idle state selection
3440 * for a CPU that has IO-wait which might not even end up running the task when
3441 * it does become runnable.
3442 */
3443
3444 unsigned long nr_iowait_cpu(int cpu)
3445 {
3446 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3447 }
3448
3449 /*
3450 * IO-wait accounting, and how its mostly bollocks (on SMP).
3451 *
3452 * The idea behind IO-wait account is to account the idle time that we could
3453 * have spend running if it were not for IO. That is, if we were to improve the
3454 * storage performance, we'd have a proportional reduction in IO-wait time.
3455 *
3456 * This all works nicely on UP, where, when a task blocks on IO, we account
3457 * idle time as IO-wait, because if the storage were faster, it could've been
3458 * running and we'd not be idle.
3459 *
3460 * This has been extended to SMP, by doing the same for each CPU. This however
3461 * is broken.
3462 *
3463 * Imagine for instance the case where two tasks block on one CPU, only the one
3464 * CPU will have IO-wait accounted, while the other has regular idle. Even
3465 * though, if the storage were faster, both could've ran at the same time,
3466 * utilising both CPUs.
3467 *
3468 * This means, that when looking globally, the current IO-wait accounting on
3469 * SMP is a lower bound, by reason of under accounting.
3470 *
3471 * Worse, since the numbers are provided per CPU, they are sometimes
3472 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3473 * associated with any one particular CPU, it can wake to another CPU than it
3474 * blocked on. This means the per CPU IO-wait number is meaningless.
3475 *
3476 * Task CPU affinities can make all that even more 'interesting'.
3477 */
3478
3479 unsigned long nr_iowait(void)
3480 {
3481 unsigned long i, sum = 0;
3482
3483 for_each_possible_cpu(i)
3484 sum += nr_iowait_cpu(i);
3485
3486 return sum;
3487 }
3488
3489 #ifdef CONFIG_SMP
3490
3491 /*
3492 * sched_exec - execve() is a valuable balancing opportunity, because at
3493 * this point the task has the smallest effective memory and cache footprint.
3494 */
3495 void sched_exec(void)
3496 {
3497 struct task_struct *p = current;
3498 unsigned long flags;
3499 int dest_cpu;
3500
3501 raw_spin_lock_irqsave(&p->pi_lock, flags);
3502 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3503 if (dest_cpu == smp_processor_id())
3504 goto unlock;
3505
3506 if (likely(cpu_active(dest_cpu))) {
3507 struct migration_arg arg = { p, dest_cpu };
3508
3509 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3510 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3511 return;
3512 }
3513 unlock:
3514 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3515 }
3516
3517 #endif
3518
3519 DEFINE_PER_CPU(struct kernel_stat, kstat);
3520 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3521
3522 EXPORT_PER_CPU_SYMBOL(kstat);
3523 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3524
3525 /*
3526 * The function fair_sched_class.update_curr accesses the struct curr
3527 * and its field curr->exec_start; when called from task_sched_runtime(),
3528 * we observe a high rate of cache misses in practice.
3529 * Prefetching this data results in improved performance.
3530 */
3531 static inline void prefetch_curr_exec_start(struct task_struct *p)
3532 {
3533 #ifdef CONFIG_FAIR_GROUP_SCHED
3534 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3535 #else
3536 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3537 #endif
3538 prefetch(curr);
3539 prefetch(&curr->exec_start);
3540 }
3541
3542 /*
3543 * Return accounted runtime for the task.
3544 * In case the task is currently running, return the runtime plus current's
3545 * pending runtime that have not been accounted yet.
3546 */
3547 unsigned long long task_sched_runtime(struct task_struct *p)
3548 {
3549 struct rq_flags rf;
3550 struct rq *rq;
3551 u64 ns;
3552
3553 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3554 /*
3555 * 64-bit doesn't need locks to atomically read a 64-bit value.
3556 * So we have a optimization chance when the task's delta_exec is 0.
3557 * Reading ->on_cpu is racy, but this is ok.
3558 *
3559 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3560 * If we race with it entering CPU, unaccounted time is 0. This is
3561 * indistinguishable from the read occurring a few cycles earlier.
3562 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3563 * been accounted, so we're correct here as well.
3564 */
3565 if (!p->on_cpu || !task_on_rq_queued(p))
3566 return p->se.sum_exec_runtime;
3567 #endif
3568
3569 rq = task_rq_lock(p, &rf);
3570 /*
3571 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3572 * project cycles that may never be accounted to this
3573 * thread, breaking clock_gettime().
3574 */
3575 if (task_current(rq, p) && task_on_rq_queued(p)) {
3576 prefetch_curr_exec_start(p);
3577 update_rq_clock(rq);
3578 p->sched_class->update_curr(rq);
3579 }
3580 ns = p->se.sum_exec_runtime;
3581 task_rq_unlock(rq, p, &rf);
3582
3583 return ns;
3584 }
3585
3586 /*
3587 * This function gets called by the timer code, with HZ frequency.
3588 * We call it with interrupts disabled.
3589 */
3590 void scheduler_tick(void)
3591 {
3592 int cpu = smp_processor_id();
3593 struct rq *rq = cpu_rq(cpu);
3594 struct task_struct *curr = rq->curr;
3595 struct rq_flags rf;
3596
3597 sched_clock_tick();
3598
3599 rq_lock(rq, &rf);
3600
3601 update_rq_clock(rq);
3602 curr->sched_class->task_tick(rq, curr, 0);
3603 calc_global_load_tick(rq);
3604 psi_task_tick(rq);
3605
3606 rq_unlock(rq, &rf);
3607
3608 perf_event_task_tick();
3609
3610 #ifdef CONFIG_SMP
3611 rq->idle_balance = idle_cpu(cpu);
3612 trigger_load_balance(rq);
3613 #endif
3614 }
3615
3616 #ifdef CONFIG_NO_HZ_FULL
3617
3618 struct tick_work {
3619 int cpu;
3620 atomic_t state;
3621 struct delayed_work work;
3622 };
3623 /* Values for ->state, see diagram below. */
3624 #define TICK_SCHED_REMOTE_OFFLINE 0
3625 #define TICK_SCHED_REMOTE_OFFLINING 1
3626 #define TICK_SCHED_REMOTE_RUNNING 2
3627
3628 /*
3629 * State diagram for ->state:
3630 *
3631 *
3632 * TICK_SCHED_REMOTE_OFFLINE
3633 * | ^
3634 * | |
3635 * | | sched_tick_remote()
3636 * | |
3637 * | |
3638 * +--TICK_SCHED_REMOTE_OFFLINING
3639 * | ^
3640 * | |
3641 * sched_tick_start() | | sched_tick_stop()
3642 * | |
3643 * V |
3644 * TICK_SCHED_REMOTE_RUNNING
3645 *
3646 *
3647 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3648 * and sched_tick_start() are happy to leave the state in RUNNING.
3649 */
3650
3651 static struct tick_work __percpu *tick_work_cpu;
3652
3653 static void sched_tick_remote(struct work_struct *work)
3654 {
3655 struct delayed_work *dwork = to_delayed_work(work);
3656 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3657 int cpu = twork->cpu;
3658 struct rq *rq = cpu_rq(cpu);
3659 struct task_struct *curr;
3660 struct rq_flags rf;
3661 u64 delta;
3662 int os;
3663
3664 /*
3665 * Handle the tick only if it appears the remote CPU is running in full
3666 * dynticks mode. The check is racy by nature, but missing a tick or
3667 * having one too much is no big deal because the scheduler tick updates
3668 * statistics and checks timeslices in a time-independent way, regardless
3669 * of when exactly it is running.
3670 */
3671 if (!tick_nohz_tick_stopped_cpu(cpu))
3672 goto out_requeue;
3673
3674 rq_lock_irq(rq, &rf);
3675 curr = rq->curr;
3676 if (cpu_is_offline(cpu))
3677 goto out_unlock;
3678
3679 curr = rq->curr;
3680 update_rq_clock(rq);
3681
3682 if (!is_idle_task(curr)) {
3683 /*
3684 * Make sure the next tick runs within a reasonable
3685 * amount of time.
3686 */
3687 delta = rq_clock_task(rq) - curr->se.exec_start;
3688 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3689 }
3690 curr->sched_class->task_tick(rq, curr, 0);
3691
3692 calc_load_nohz_remote(rq);
3693 out_unlock:
3694 rq_unlock_irq(rq, &rf);
3695 out_requeue:
3696
3697 /*
3698 * Run the remote tick once per second (1Hz). This arbitrary
3699 * frequency is large enough to avoid overload but short enough
3700 * to keep scheduler internal stats reasonably up to date. But
3701 * first update state to reflect hotplug activity if required.
3702 */
3703 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3704 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3705 if (os == TICK_SCHED_REMOTE_RUNNING)
3706 queue_delayed_work(system_unbound_wq, dwork, HZ);
3707 }
3708
3709 static void sched_tick_start(int cpu)
3710 {
3711 int os;
3712 struct tick_work *twork;
3713
3714 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3715 return;
3716
3717 WARN_ON_ONCE(!tick_work_cpu);
3718
3719 twork = per_cpu_ptr(tick_work_cpu, cpu);
3720 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3721 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3722 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3723 twork->cpu = cpu;
3724 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3725 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3726 }
3727 }
3728
3729 #ifdef CONFIG_HOTPLUG_CPU
3730 static void sched_tick_stop(int cpu)
3731 {
3732 struct tick_work *twork;
3733 int os;
3734
3735 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3736 return;
3737
3738 WARN_ON_ONCE(!tick_work_cpu);
3739
3740 twork = per_cpu_ptr(tick_work_cpu, cpu);
3741 /* There cannot be competing actions, but don't rely on stop-machine. */
3742 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3743 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3744 /* Don't cancel, as this would mess up the state machine. */
3745 }
3746 #endif /* CONFIG_HOTPLUG_CPU */
3747
3748 int __init sched_tick_offload_init(void)
3749 {
3750 tick_work_cpu = alloc_percpu(struct tick_work);
3751 BUG_ON(!tick_work_cpu);
3752 return 0;
3753 }
3754
3755 #else /* !CONFIG_NO_HZ_FULL */
3756 static inline void sched_tick_start(int cpu) { }
3757 static inline void sched_tick_stop(int cpu) { }
3758 #endif
3759
3760 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3761 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3762 /*
3763 * If the value passed in is equal to the current preempt count
3764 * then we just disabled preemption. Start timing the latency.
3765 */
3766 static inline void preempt_latency_start(int val)
3767 {
3768 if (preempt_count() == val) {
3769 unsigned long ip = get_lock_parent_ip();
3770 #ifdef CONFIG_DEBUG_PREEMPT
3771 current->preempt_disable_ip = ip;
3772 #endif
3773 trace_preempt_off(CALLER_ADDR0, ip);
3774 }
3775 }
3776
3777 void preempt_count_add(int val)
3778 {
3779 #ifdef CONFIG_DEBUG_PREEMPT
3780 /*
3781 * Underflow?
3782 */
3783 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3784 return;
3785 #endif
3786 __preempt_count_add(val);
3787 #ifdef CONFIG_DEBUG_PREEMPT
3788 /*
3789 * Spinlock count overflowing soon?
3790 */
3791 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3792 PREEMPT_MASK - 10);
3793 #endif
3794 preempt_latency_start(val);
3795 }
3796 EXPORT_SYMBOL(preempt_count_add);
3797 NOKPROBE_SYMBOL(preempt_count_add);
3798
3799 /*
3800 * If the value passed in equals to the current preempt count
3801 * then we just enabled preemption. Stop timing the latency.
3802 */
3803 static inline void preempt_latency_stop(int val)
3804 {
3805 if (preempt_count() == val)
3806 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3807 }
3808
3809 void preempt_count_sub(int val)
3810 {
3811 #ifdef CONFIG_DEBUG_PREEMPT
3812 /*
3813 * Underflow?
3814 */
3815 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3816 return;
3817 /*
3818 * Is the spinlock portion underflowing?
3819 */
3820 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3821 !(preempt_count() & PREEMPT_MASK)))
3822 return;
3823 #endif
3824
3825 preempt_latency_stop(val);
3826 __preempt_count_sub(val);
3827 }
3828 EXPORT_SYMBOL(preempt_count_sub);
3829 NOKPROBE_SYMBOL(preempt_count_sub);
3830
3831 #else
3832 static inline void preempt_latency_start(int val) { }
3833 static inline void preempt_latency_stop(int val) { }
3834 #endif
3835
3836 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3837 {
3838 #ifdef CONFIG_DEBUG_PREEMPT
3839 return p->preempt_disable_ip;
3840 #else
3841 return 0;
3842 #endif
3843 }
3844
3845 /*
3846 * Print scheduling while atomic bug:
3847 */
3848 static noinline void __schedule_bug(struct task_struct *prev)
3849 {
3850 /* Save this before calling printk(), since that will clobber it */
3851 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3852
3853 if (oops_in_progress)
3854 return;
3855
3856 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3857 prev->comm, prev->pid, preempt_count());
3858
3859 debug_show_held_locks(prev);
3860 print_modules();
3861 if (irqs_disabled())
3862 print_irqtrace_events(prev);
3863 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3864 && in_atomic_preempt_off()) {
3865 pr_err("Preemption disabled at:");
3866 print_ip_sym(preempt_disable_ip);
3867 pr_cont("\n");
3868 }
3869 if (panic_on_warn)
3870 panic("scheduling while atomic\n");
3871
3872 dump_stack();
3873 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3874 }
3875
3876 /*
3877 * Various schedule()-time debugging checks and statistics:
3878 */
3879 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3880 {
3881 #ifdef CONFIG_SCHED_STACK_END_CHECK
3882 if (task_stack_end_corrupted(prev))
3883 panic("corrupted stack end detected inside scheduler\n");
3884 #endif
3885
3886 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3887 if (!preempt && prev->state && prev->non_block_count) {
3888 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3889 prev->comm, prev->pid, prev->non_block_count);
3890 dump_stack();
3891 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3892 }
3893 #endif
3894
3895 if (unlikely(in_atomic_preempt_off())) {
3896 __schedule_bug(prev);
3897 preempt_count_set(PREEMPT_DISABLED);
3898 }
3899 rcu_sleep_check();
3900
3901 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3902
3903 schedstat_inc(this_rq()->sched_count);
3904 }
3905
3906 /*
3907 * Pick up the highest-prio task:
3908 */
3909 static inline struct task_struct *
3910 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3911 {
3912 const struct sched_class *class;
3913 struct task_struct *p;
3914
3915 /*
3916 * Optimization: we know that if all tasks are in the fair class we can
3917 * call that function directly, but only if the @prev task wasn't of a
3918 * higher scheduling class, because otherwise those loose the
3919 * opportunity to pull in more work from other CPUs.
3920 */
3921 if (likely((prev->sched_class == &idle_sched_class ||
3922 prev->sched_class == &fair_sched_class) &&
3923 rq->nr_running == rq->cfs.h_nr_running)) {
3924
3925 p = fair_sched_class.pick_next_task(rq, prev, rf);
3926 if (unlikely(p == RETRY_TASK))
3927 goto restart;
3928
3929 /* Assumes fair_sched_class->next == idle_sched_class */
3930 if (unlikely(!p))
3931 p = idle_sched_class.pick_next_task(rq, prev, rf);
3932
3933 return p;
3934 }
3935
3936 restart:
3937 #ifdef CONFIG_SMP
3938 /*
3939 * We must do the balancing pass before put_next_task(), such
3940 * that when we release the rq->lock the task is in the same
3941 * state as before we took rq->lock.
3942 *
3943 * We can terminate the balance pass as soon as we know there is
3944 * a runnable task of @class priority or higher.
3945 */
3946 for_class_range(class, prev->sched_class, &idle_sched_class) {
3947 if (class->balance(rq, prev, rf))
3948 break;
3949 }
3950 #endif
3951
3952 put_prev_task(rq, prev);
3953
3954 for_each_class(class) {
3955 p = class->pick_next_task(rq, NULL, NULL);
3956 if (p)
3957 return p;
3958 }
3959
3960 /* The idle class should always have a runnable task: */
3961 BUG();
3962 }
3963
3964 /*
3965 * __schedule() is the main scheduler function.
3966 *
3967 * The main means of driving the scheduler and thus entering this function are:
3968 *
3969 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3970 *
3971 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3972 * paths. For example, see arch/x86/entry_64.S.
3973 *
3974 * To drive preemption between tasks, the scheduler sets the flag in timer
3975 * interrupt handler scheduler_tick().
3976 *
3977 * 3. Wakeups don't really cause entry into schedule(). They add a
3978 * task to the run-queue and that's it.
3979 *
3980 * Now, if the new task added to the run-queue preempts the current
3981 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3982 * called on the nearest possible occasion:
3983 *
3984 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3985 *
3986 * - in syscall or exception context, at the next outmost
3987 * preempt_enable(). (this might be as soon as the wake_up()'s
3988 * spin_unlock()!)
3989 *
3990 * - in IRQ context, return from interrupt-handler to
3991 * preemptible context
3992 *
3993 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3994 * then at the next:
3995 *
3996 * - cond_resched() call
3997 * - explicit schedule() call
3998 * - return from syscall or exception to user-space
3999 * - return from interrupt-handler to user-space
4000 *
4001 * WARNING: must be called with preemption disabled!
4002 */
4003 static void __sched notrace __schedule(bool preempt)
4004 {
4005 struct task_struct *prev, *next;
4006 unsigned long *switch_count;
4007 struct rq_flags rf;
4008 struct rq *rq;
4009 int cpu;
4010
4011 cpu = smp_processor_id();
4012 rq = cpu_rq(cpu);
4013 prev = rq->curr;
4014
4015 schedule_debug(prev, preempt);
4016
4017 if (sched_feat(HRTICK))
4018 hrtick_clear(rq);
4019
4020 local_irq_disable();
4021 rcu_note_context_switch(preempt);
4022
4023 /*
4024 * Make sure that signal_pending_state()->signal_pending() below
4025 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4026 * done by the caller to avoid the race with signal_wake_up().
4027 *
4028 * The membarrier system call requires a full memory barrier
4029 * after coming from user-space, before storing to rq->curr.
4030 */
4031 rq_lock(rq, &rf);
4032 smp_mb__after_spinlock();
4033
4034 /* Promote REQ to ACT */
4035 rq->clock_update_flags <<= 1;
4036 update_rq_clock(rq);
4037
4038 switch_count = &prev->nivcsw;
4039 if (!preempt && prev->state) {
4040 if (signal_pending_state(prev->state, prev)) {
4041 prev->state = TASK_RUNNING;
4042 } else {
4043 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4044
4045 if (prev->in_iowait) {
4046 atomic_inc(&rq->nr_iowait);
4047 delayacct_blkio_start();
4048 }
4049 }
4050 switch_count = &prev->nvcsw;
4051 }
4052
4053 next = pick_next_task(rq, prev, &rf);
4054 clear_tsk_need_resched(prev);
4055 clear_preempt_need_resched();
4056
4057 if (likely(prev != next)) {
4058 rq->nr_switches++;
4059 /*
4060 * RCU users of rcu_dereference(rq->curr) may not see
4061 * changes to task_struct made by pick_next_task().
4062 */
4063 RCU_INIT_POINTER(rq->curr, next);
4064 /*
4065 * The membarrier system call requires each architecture
4066 * to have a full memory barrier after updating
4067 * rq->curr, before returning to user-space.
4068 *
4069 * Here are the schemes providing that barrier on the
4070 * various architectures:
4071 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4072 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4073 * - finish_lock_switch() for weakly-ordered
4074 * architectures where spin_unlock is a full barrier,
4075 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4076 * is a RELEASE barrier),
4077 */
4078 ++*switch_count;
4079
4080 trace_sched_switch(preempt, prev, next);
4081
4082 /* Also unlocks the rq: */
4083 rq = context_switch(rq, prev, next, &rf);
4084 } else {
4085 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4086 rq_unlock_irq(rq, &rf);
4087 }
4088
4089 balance_callback(rq);
4090 }
4091
4092 void __noreturn do_task_dead(void)
4093 {
4094 /* Causes final put_task_struct in finish_task_switch(): */
4095 set_special_state(TASK_DEAD);
4096
4097 /* Tell freezer to ignore us: */
4098 current->flags |= PF_NOFREEZE;
4099
4100 __schedule(false);
4101 BUG();
4102
4103 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4104 for (;;)
4105 cpu_relax();
4106 }
4107
4108 static inline void sched_submit_work(struct task_struct *tsk)
4109 {
4110 if (!tsk->state)
4111 return;
4112
4113 /*
4114 * If a worker went to sleep, notify and ask workqueue whether
4115 * it wants to wake up a task to maintain concurrency.
4116 * As this function is called inside the schedule() context,
4117 * we disable preemption to avoid it calling schedule() again
4118 * in the possible wakeup of a kworker.
4119 */
4120 if (tsk->flags & PF_WQ_WORKER) {
4121 preempt_disable();
4122 wq_worker_sleeping(tsk);
4123 preempt_enable_no_resched();
4124 }
4125
4126 if (tsk_is_pi_blocked(tsk))
4127 return;
4128
4129 /*
4130 * If we are going to sleep and we have plugged IO queued,
4131 * make sure to submit it to avoid deadlocks.
4132 */
4133 if (blk_needs_flush_plug(tsk))
4134 blk_schedule_flush_plug(tsk);
4135 }
4136
4137 static void sched_update_worker(struct task_struct *tsk)
4138 {
4139 if (tsk->flags & PF_WQ_WORKER)
4140 wq_worker_running(tsk);
4141 }
4142
4143 asmlinkage __visible void __sched schedule(void)
4144 {
4145 struct task_struct *tsk = current;
4146
4147 sched_submit_work(tsk);
4148 do {
4149 preempt_disable();
4150 __schedule(false);
4151 sched_preempt_enable_no_resched();
4152 } while (need_resched());
4153 sched_update_worker(tsk);
4154 }
4155 EXPORT_SYMBOL(schedule);
4156
4157 /*
4158 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4159 * state (have scheduled out non-voluntarily) by making sure that all
4160 * tasks have either left the run queue or have gone into user space.
4161 * As idle tasks do not do either, they must not ever be preempted
4162 * (schedule out non-voluntarily).
4163 *
4164 * schedule_idle() is similar to schedule_preempt_disable() except that it
4165 * never enables preemption because it does not call sched_submit_work().
4166 */
4167 void __sched schedule_idle(void)
4168 {
4169 /*
4170 * As this skips calling sched_submit_work(), which the idle task does
4171 * regardless because that function is a nop when the task is in a
4172 * TASK_RUNNING state, make sure this isn't used someplace that the
4173 * current task can be in any other state. Note, idle is always in the
4174 * TASK_RUNNING state.
4175 */
4176 WARN_ON_ONCE(current->state);
4177 do {
4178 __schedule(false);
4179 } while (need_resched());
4180 }
4181
4182 #ifdef CONFIG_CONTEXT_TRACKING
4183 asmlinkage __visible void __sched schedule_user(void)
4184 {
4185 /*
4186 * If we come here after a random call to set_need_resched(),
4187 * or we have been woken up remotely but the IPI has not yet arrived,
4188 * we haven't yet exited the RCU idle mode. Do it here manually until
4189 * we find a better solution.
4190 *
4191 * NB: There are buggy callers of this function. Ideally we
4192 * should warn if prev_state != CONTEXT_USER, but that will trigger
4193 * too frequently to make sense yet.
4194 */
4195 enum ctx_state prev_state = exception_enter();
4196 schedule();
4197 exception_exit(prev_state);
4198 }
4199 #endif
4200
4201 /**
4202 * schedule_preempt_disabled - called with preemption disabled
4203 *
4204 * Returns with preemption disabled. Note: preempt_count must be 1
4205 */
4206 void __sched schedule_preempt_disabled(void)
4207 {
4208 sched_preempt_enable_no_resched();
4209 schedule();
4210 preempt_disable();
4211 }
4212
4213 static void __sched notrace preempt_schedule_common(void)
4214 {
4215 do {
4216 /*
4217 * Because the function tracer can trace preempt_count_sub()
4218 * and it also uses preempt_enable/disable_notrace(), if
4219 * NEED_RESCHED is set, the preempt_enable_notrace() called
4220 * by the function tracer will call this function again and
4221 * cause infinite recursion.
4222 *
4223 * Preemption must be disabled here before the function
4224 * tracer can trace. Break up preempt_disable() into two
4225 * calls. One to disable preemption without fear of being
4226 * traced. The other to still record the preemption latency,
4227 * which can also be traced by the function tracer.
4228 */
4229 preempt_disable_notrace();
4230 preempt_latency_start(1);
4231 __schedule(true);
4232 preempt_latency_stop(1);
4233 preempt_enable_no_resched_notrace();
4234
4235 /*
4236 * Check again in case we missed a preemption opportunity
4237 * between schedule and now.
4238 */
4239 } while (need_resched());
4240 }
4241
4242 #ifdef CONFIG_PREEMPTION
4243 /*
4244 * This is the entry point to schedule() from in-kernel preemption
4245 * off of preempt_enable.
4246 */
4247 asmlinkage __visible void __sched notrace preempt_schedule(void)
4248 {
4249 /*
4250 * If there is a non-zero preempt_count or interrupts are disabled,
4251 * we do not want to preempt the current task. Just return..
4252 */
4253 if (likely(!preemptible()))
4254 return;
4255
4256 preempt_schedule_common();
4257 }
4258 NOKPROBE_SYMBOL(preempt_schedule);
4259 EXPORT_SYMBOL(preempt_schedule);
4260
4261 /**
4262 * preempt_schedule_notrace - preempt_schedule called by tracing
4263 *
4264 * The tracing infrastructure uses preempt_enable_notrace to prevent
4265 * recursion and tracing preempt enabling caused by the tracing
4266 * infrastructure itself. But as tracing can happen in areas coming
4267 * from userspace or just about to enter userspace, a preempt enable
4268 * can occur before user_exit() is called. This will cause the scheduler
4269 * to be called when the system is still in usermode.
4270 *
4271 * To prevent this, the preempt_enable_notrace will use this function
4272 * instead of preempt_schedule() to exit user context if needed before
4273 * calling the scheduler.
4274 */
4275 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4276 {
4277 enum ctx_state prev_ctx;
4278
4279 if (likely(!preemptible()))
4280 return;
4281
4282 do {
4283 /*
4284 * Because the function tracer can trace preempt_count_sub()
4285 * and it also uses preempt_enable/disable_notrace(), if
4286 * NEED_RESCHED is set, the preempt_enable_notrace() called
4287 * by the function tracer will call this function again and
4288 * cause infinite recursion.
4289 *
4290 * Preemption must be disabled here before the function
4291 * tracer can trace. Break up preempt_disable() into two
4292 * calls. One to disable preemption without fear of being
4293 * traced. The other to still record the preemption latency,
4294 * which can also be traced by the function tracer.
4295 */
4296 preempt_disable_notrace();
4297 preempt_latency_start(1);
4298 /*
4299 * Needs preempt disabled in case user_exit() is traced
4300 * and the tracer calls preempt_enable_notrace() causing
4301 * an infinite recursion.
4302 */
4303 prev_ctx = exception_enter();
4304 __schedule(true);
4305 exception_exit(prev_ctx);
4306
4307 preempt_latency_stop(1);
4308 preempt_enable_no_resched_notrace();
4309 } while (need_resched());
4310 }
4311 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4312
4313 #endif /* CONFIG_PREEMPTION */
4314
4315 /*
4316 * This is the entry point to schedule() from kernel preemption
4317 * off of irq context.
4318 * Note, that this is called and return with irqs disabled. This will
4319 * protect us against recursive calling from irq.
4320 */
4321 asmlinkage __visible void __sched preempt_schedule_irq(void)
4322 {
4323 enum ctx_state prev_state;
4324
4325 /* Catch callers which need to be fixed */
4326 BUG_ON(preempt_count() || !irqs_disabled());
4327
4328 prev_state = exception_enter();
4329
4330 do {
4331 preempt_disable();
4332 local_irq_enable();
4333 __schedule(true);
4334 local_irq_disable();
4335 sched_preempt_enable_no_resched();
4336 } while (need_resched());
4337
4338 exception_exit(prev_state);
4339 }
4340
4341 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4342 void *key)
4343 {
4344 return try_to_wake_up(curr->private, mode, wake_flags);
4345 }
4346 EXPORT_SYMBOL(default_wake_function);
4347
4348 #ifdef CONFIG_RT_MUTEXES
4349
4350 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4351 {
4352 if (pi_task)
4353 prio = min(prio, pi_task->prio);
4354
4355 return prio;
4356 }
4357
4358 static inline int rt_effective_prio(struct task_struct *p, int prio)
4359 {
4360 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4361
4362 return __rt_effective_prio(pi_task, prio);
4363 }
4364
4365 /*
4366 * rt_mutex_setprio - set the current priority of a task
4367 * @p: task to boost
4368 * @pi_task: donor task
4369 *
4370 * This function changes the 'effective' priority of a task. It does
4371 * not touch ->normal_prio like __setscheduler().
4372 *
4373 * Used by the rt_mutex code to implement priority inheritance
4374 * logic. Call site only calls if the priority of the task changed.
4375 */
4376 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4377 {
4378 int prio, oldprio, queued, running, queue_flag =
4379 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4380 const struct sched_class *prev_class;
4381 struct rq_flags rf;
4382 struct rq *rq;
4383
4384 /* XXX used to be waiter->prio, not waiter->task->prio */
4385 prio = __rt_effective_prio(pi_task, p->normal_prio);
4386
4387 /*
4388 * If nothing changed; bail early.
4389 */
4390 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4391 return;
4392
4393 rq = __task_rq_lock(p, &rf);
4394 update_rq_clock(rq);
4395 /*
4396 * Set under pi_lock && rq->lock, such that the value can be used under
4397 * either lock.
4398 *
4399 * Note that there is loads of tricky to make this pointer cache work
4400 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4401 * ensure a task is de-boosted (pi_task is set to NULL) before the
4402 * task is allowed to run again (and can exit). This ensures the pointer
4403 * points to a blocked task -- which guaratees the task is present.
4404 */
4405 p->pi_top_task = pi_task;
4406
4407 /*
4408 * For FIFO/RR we only need to set prio, if that matches we're done.
4409 */
4410 if (prio == p->prio && !dl_prio(prio))
4411 goto out_unlock;
4412
4413 /*
4414 * Idle task boosting is a nono in general. There is one
4415 * exception, when PREEMPT_RT and NOHZ is active:
4416 *
4417 * The idle task calls get_next_timer_interrupt() and holds
4418 * the timer wheel base->lock on the CPU and another CPU wants
4419 * to access the timer (probably to cancel it). We can safely
4420 * ignore the boosting request, as the idle CPU runs this code
4421 * with interrupts disabled and will complete the lock
4422 * protected section without being interrupted. So there is no
4423 * real need to boost.
4424 */
4425 if (unlikely(p == rq->idle)) {
4426 WARN_ON(p != rq->curr);
4427 WARN_ON(p->pi_blocked_on);
4428 goto out_unlock;
4429 }
4430
4431 trace_sched_pi_setprio(p, pi_task);
4432 oldprio = p->prio;
4433
4434 if (oldprio == prio)
4435 queue_flag &= ~DEQUEUE_MOVE;
4436
4437 prev_class = p->sched_class;
4438 queued = task_on_rq_queued(p);
4439 running = task_current(rq, p);
4440 if (queued)
4441 dequeue_task(rq, p, queue_flag);
4442 if (running)
4443 put_prev_task(rq, p);
4444
4445 /*
4446 * Boosting condition are:
4447 * 1. -rt task is running and holds mutex A
4448 * --> -dl task blocks on mutex A
4449 *
4450 * 2. -dl task is running and holds mutex A
4451 * --> -dl task blocks on mutex A and could preempt the
4452 * running task
4453 */
4454 if (dl_prio(prio)) {
4455 if (!dl_prio(p->normal_prio) ||
4456 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4457 p->dl.dl_boosted = 1;
4458 queue_flag |= ENQUEUE_REPLENISH;
4459 } else
4460 p->dl.dl_boosted = 0;
4461 p->sched_class = &dl_sched_class;
4462 } else if (rt_prio(prio)) {
4463 if (dl_prio(oldprio))
4464 p->dl.dl_boosted = 0;
4465 if (oldprio < prio)
4466 queue_flag |= ENQUEUE_HEAD;
4467 p->sched_class = &rt_sched_class;
4468 } else {
4469 if (dl_prio(oldprio))
4470 p->dl.dl_boosted = 0;
4471 if (rt_prio(oldprio))
4472 p->rt.timeout = 0;
4473 p->sched_class = &fair_sched_class;
4474 }
4475
4476 p->prio = prio;
4477
4478 if (queued)
4479 enqueue_task(rq, p, queue_flag);
4480 if (running)
4481 set_next_task(rq, p);
4482
4483 check_class_changed(rq, p, prev_class, oldprio);
4484 out_unlock:
4485 /* Avoid rq from going away on us: */
4486 preempt_disable();
4487 __task_rq_unlock(rq, &rf);
4488
4489 balance_callback(rq);
4490 preempt_enable();
4491 }
4492 #else
4493 static inline int rt_effective_prio(struct task_struct *p, int prio)
4494 {
4495 return prio;
4496 }
4497 #endif
4498
4499 void set_user_nice(struct task_struct *p, long nice)
4500 {
4501 bool queued, running;
4502 int old_prio, delta;
4503 struct rq_flags rf;
4504 struct rq *rq;
4505
4506 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4507 return;
4508 /*
4509 * We have to be careful, if called from sys_setpriority(),
4510 * the task might be in the middle of scheduling on another CPU.
4511 */
4512 rq = task_rq_lock(p, &rf);
4513 update_rq_clock(rq);
4514
4515 /*
4516 * The RT priorities are set via sched_setscheduler(), but we still
4517 * allow the 'normal' nice value to be set - but as expected
4518 * it wont have any effect on scheduling until the task is
4519 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4520 */
4521 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4522 p->static_prio = NICE_TO_PRIO(nice);
4523 goto out_unlock;
4524 }
4525 queued = task_on_rq_queued(p);
4526 running = task_current(rq, p);
4527 if (queued)
4528 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4529 if (running)
4530 put_prev_task(rq, p);
4531
4532 p->static_prio = NICE_TO_PRIO(nice);
4533 set_load_weight(p, true);
4534 old_prio = p->prio;
4535 p->prio = effective_prio(p);
4536 delta = p->prio - old_prio;
4537
4538 if (queued) {
4539 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4540 /*
4541 * If the task increased its priority or is running and
4542 * lowered its priority, then reschedule its CPU:
4543 */
4544 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4545 resched_curr(rq);
4546 }
4547 if (running)
4548 set_next_task(rq, p);
4549 out_unlock:
4550 task_rq_unlock(rq, p, &rf);
4551 }
4552 EXPORT_SYMBOL(set_user_nice);
4553
4554 /*
4555 * can_nice - check if a task can reduce its nice value
4556 * @p: task
4557 * @nice: nice value
4558 */
4559 int can_nice(const struct task_struct *p, const int nice)
4560 {
4561 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4562 int nice_rlim = nice_to_rlimit(nice);
4563
4564 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4565 capable(CAP_SYS_NICE));
4566 }
4567 EXPORT_SYMBOL(can_nice);
4568
4569 #ifdef __ARCH_WANT_SYS_NICE
4570
4571 /*
4572 * sys_nice - change the priority of the current process.
4573 * @increment: priority increment
4574 *
4575 * sys_setpriority is a more generic, but much slower function that
4576 * does similar things.
4577 */
4578 SYSCALL_DEFINE1(nice, int, increment)
4579 {
4580 long nice, retval;
4581
4582 /*
4583 * Setpriority might change our priority at the same moment.
4584 * We don't have to worry. Conceptually one call occurs first
4585 * and we have a single winner.
4586 */
4587 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4588 nice = task_nice(current) + increment;
4589
4590 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4591 if (increment < 0 && !can_nice(current, nice))
4592 return -EPERM;
4593
4594 retval = security_task_setnice(current, nice);
4595 if (retval)
4596 return retval;
4597
4598 set_user_nice(current, nice);
4599 return 0;
4600 }
4601
4602 #endif
4603
4604 /**
4605 * task_prio - return the priority value of a given task.
4606 * @p: the task in question.
4607 *
4608 * Return: The priority value as seen by users in /proc.
4609 * RT tasks are offset by -200. Normal tasks are centered
4610 * around 0, value goes from -16 to +15.
4611 */
4612 int task_prio(const struct task_struct *p)
4613 {
4614 return p->prio - MAX_RT_PRIO;
4615 }
4616
4617 /**
4618 * idle_cpu - is a given CPU idle currently?
4619 * @cpu: the processor in question.
4620 *
4621 * Return: 1 if the CPU is currently idle. 0 otherwise.
4622 */
4623 int idle_cpu(int cpu)
4624 {
4625 struct rq *rq = cpu_rq(cpu);
4626
4627 if (rq->curr != rq->idle)
4628 return 0;
4629
4630 if (rq->nr_running)
4631 return 0;
4632
4633 #ifdef CONFIG_SMP
4634 if (!llist_empty(&rq->wake_list))
4635 return 0;
4636 #endif
4637
4638 return 1;
4639 }
4640
4641 /**
4642 * available_idle_cpu - is a given CPU idle for enqueuing work.
4643 * @cpu: the CPU in question.
4644 *
4645 * Return: 1 if the CPU is currently idle. 0 otherwise.
4646 */
4647 int available_idle_cpu(int cpu)
4648 {
4649 if (!idle_cpu(cpu))
4650 return 0;
4651
4652 if (vcpu_is_preempted(cpu))
4653 return 0;
4654
4655 return 1;
4656 }
4657
4658 /**
4659 * idle_task - return the idle task for a given CPU.
4660 * @cpu: the processor in question.
4661 *
4662 * Return: The idle task for the CPU @cpu.
4663 */
4664 struct task_struct *idle_task(int cpu)
4665 {
4666 return cpu_rq(cpu)->idle;
4667 }
4668
4669 /**
4670 * find_process_by_pid - find a process with a matching PID value.
4671 * @pid: the pid in question.
4672 *
4673 * The task of @pid, if found. %NULL otherwise.
4674 */
4675 static struct task_struct *find_process_by_pid(pid_t pid)
4676 {
4677 return pid ? find_task_by_vpid(pid) : current;
4678 }
4679
4680 /*
4681 * sched_setparam() passes in -1 for its policy, to let the functions
4682 * it calls know not to change it.
4683 */
4684 #define SETPARAM_POLICY -1
4685
4686 static void __setscheduler_params(struct task_struct *p,
4687 const struct sched_attr *attr)
4688 {
4689 int policy = attr->sched_policy;
4690
4691 if (policy == SETPARAM_POLICY)
4692 policy = p->policy;
4693
4694 p->policy = policy;
4695
4696 if (dl_policy(policy))
4697 __setparam_dl(p, attr);
4698 else if (fair_policy(policy))
4699 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4700
4701 /*
4702 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4703 * !rt_policy. Always setting this ensures that things like
4704 * getparam()/getattr() don't report silly values for !rt tasks.
4705 */
4706 p->rt_priority = attr->sched_priority;
4707 p->normal_prio = normal_prio(p);
4708 set_load_weight(p, true);
4709 }
4710
4711 /* Actually do priority change: must hold pi & rq lock. */
4712 static void __setscheduler(struct rq *rq, struct task_struct *p,
4713 const struct sched_attr *attr, bool keep_boost)
4714 {
4715 /*
4716 * If params can't change scheduling class changes aren't allowed
4717 * either.
4718 */
4719 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4720 return;
4721
4722 __setscheduler_params(p, attr);
4723
4724 /*
4725 * Keep a potential priority boosting if called from
4726 * sched_setscheduler().
4727 */
4728 p->prio = normal_prio(p);
4729 if (keep_boost)
4730 p->prio = rt_effective_prio(p, p->prio);
4731
4732 if (dl_prio(p->prio))
4733 p->sched_class = &dl_sched_class;
4734 else if (rt_prio(p->prio))
4735 p->sched_class = &rt_sched_class;
4736 else
4737 p->sched_class = &fair_sched_class;
4738 }
4739
4740 /*
4741 * Check the target process has a UID that matches the current process's:
4742 */
4743 static bool check_same_owner(struct task_struct *p)
4744 {
4745 const struct cred *cred = current_cred(), *pcred;
4746 bool match;
4747
4748 rcu_read_lock();
4749 pcred = __task_cred(p);
4750 match = (uid_eq(cred->euid, pcred->euid) ||
4751 uid_eq(cred->euid, pcred->uid));
4752 rcu_read_unlock();
4753 return match;
4754 }
4755
4756 static int __sched_setscheduler(struct task_struct *p,
4757 const struct sched_attr *attr,
4758 bool user, bool pi)
4759 {
4760 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4761 MAX_RT_PRIO - 1 - attr->sched_priority;
4762 int retval, oldprio, oldpolicy = -1, queued, running;
4763 int new_effective_prio, policy = attr->sched_policy;
4764 const struct sched_class *prev_class;
4765 struct rq_flags rf;
4766 int reset_on_fork;
4767 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4768 struct rq *rq;
4769
4770 /* The pi code expects interrupts enabled */
4771 BUG_ON(pi && in_interrupt());
4772 recheck:
4773 /* Double check policy once rq lock held: */
4774 if (policy < 0) {
4775 reset_on_fork = p->sched_reset_on_fork;
4776 policy = oldpolicy = p->policy;
4777 } else {
4778 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4779
4780 if (!valid_policy(policy))
4781 return -EINVAL;
4782 }
4783
4784 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4785 return -EINVAL;
4786
4787 /*
4788 * Valid priorities for SCHED_FIFO and SCHED_RR are
4789 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4790 * SCHED_BATCH and SCHED_IDLE is 0.
4791 */
4792 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4793 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4794 return -EINVAL;
4795 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4796 (rt_policy(policy) != (attr->sched_priority != 0)))
4797 return -EINVAL;
4798
4799 /*
4800 * Allow unprivileged RT tasks to decrease priority:
4801 */
4802 if (user && !capable(CAP_SYS_NICE)) {
4803 if (fair_policy(policy)) {
4804 if (attr->sched_nice < task_nice(p) &&
4805 !can_nice(p, attr->sched_nice))
4806 return -EPERM;
4807 }
4808
4809 if (rt_policy(policy)) {
4810 unsigned long rlim_rtprio =
4811 task_rlimit(p, RLIMIT_RTPRIO);
4812
4813 /* Can't set/change the rt policy: */
4814 if (policy != p->policy && !rlim_rtprio)
4815 return -EPERM;
4816
4817 /* Can't increase priority: */
4818 if (attr->sched_priority > p->rt_priority &&
4819 attr->sched_priority > rlim_rtprio)
4820 return -EPERM;
4821 }
4822
4823 /*
4824 * Can't set/change SCHED_DEADLINE policy at all for now
4825 * (safest behavior); in the future we would like to allow
4826 * unprivileged DL tasks to increase their relative deadline
4827 * or reduce their runtime (both ways reducing utilization)
4828 */
4829 if (dl_policy(policy))
4830 return -EPERM;
4831
4832 /*
4833 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4834 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4835 */
4836 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4837 if (!can_nice(p, task_nice(p)))
4838 return -EPERM;
4839 }
4840
4841 /* Can't change other user's priorities: */
4842 if (!check_same_owner(p))
4843 return -EPERM;
4844
4845 /* Normal users shall not reset the sched_reset_on_fork flag: */
4846 if (p->sched_reset_on_fork && !reset_on_fork)
4847 return -EPERM;
4848 }
4849
4850 if (user) {
4851 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4852 return -EINVAL;
4853
4854 retval = security_task_setscheduler(p);
4855 if (retval)
4856 return retval;
4857 }
4858
4859 /* Update task specific "requested" clamps */
4860 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4861 retval = uclamp_validate(p, attr);
4862 if (retval)
4863 return retval;
4864 }
4865
4866 if (pi)
4867 cpuset_read_lock();
4868
4869 /*
4870 * Make sure no PI-waiters arrive (or leave) while we are
4871 * changing the priority of the task:
4872 *
4873 * To be able to change p->policy safely, the appropriate
4874 * runqueue lock must be held.
4875 */
4876 rq = task_rq_lock(p, &rf);
4877 update_rq_clock(rq);
4878
4879 /*
4880 * Changing the policy of the stop threads its a very bad idea:
4881 */
4882 if (p == rq->stop) {
4883 retval = -EINVAL;
4884 goto unlock;
4885 }
4886
4887 /*
4888 * If not changing anything there's no need to proceed further,
4889 * but store a possible modification of reset_on_fork.
4890 */
4891 if (unlikely(policy == p->policy)) {
4892 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4893 goto change;
4894 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4895 goto change;
4896 if (dl_policy(policy) && dl_param_changed(p, attr))
4897 goto change;
4898 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4899 goto change;
4900
4901 p->sched_reset_on_fork = reset_on_fork;
4902 retval = 0;
4903 goto unlock;
4904 }
4905 change:
4906
4907 if (user) {
4908 #ifdef CONFIG_RT_GROUP_SCHED
4909 /*
4910 * Do not allow realtime tasks into groups that have no runtime
4911 * assigned.
4912 */
4913 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4914 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4915 !task_group_is_autogroup(task_group(p))) {
4916 retval = -EPERM;
4917 goto unlock;
4918 }
4919 #endif
4920 #ifdef CONFIG_SMP
4921 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4922 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4923 cpumask_t *span = rq->rd->span;
4924
4925 /*
4926 * Don't allow tasks with an affinity mask smaller than
4927 * the entire root_domain to become SCHED_DEADLINE. We
4928 * will also fail if there's no bandwidth available.
4929 */
4930 if (!cpumask_subset(span, p->cpus_ptr) ||
4931 rq->rd->dl_bw.bw == 0) {
4932 retval = -EPERM;
4933 goto unlock;
4934 }
4935 }
4936 #endif
4937 }
4938
4939 /* Re-check policy now with rq lock held: */
4940 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4941 policy = oldpolicy = -1;
4942 task_rq_unlock(rq, p, &rf);
4943 if (pi)
4944 cpuset_read_unlock();
4945 goto recheck;
4946 }
4947
4948 /*
4949 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4950 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4951 * is available.
4952 */
4953 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4954 retval = -EBUSY;
4955 goto unlock;
4956 }
4957
4958 p->sched_reset_on_fork = reset_on_fork;
4959 oldprio = p->prio;
4960
4961 if (pi) {
4962 /*
4963 * Take priority boosted tasks into account. If the new
4964 * effective priority is unchanged, we just store the new
4965 * normal parameters and do not touch the scheduler class and
4966 * the runqueue. This will be done when the task deboost
4967 * itself.
4968 */
4969 new_effective_prio = rt_effective_prio(p, newprio);
4970 if (new_effective_prio == oldprio)
4971 queue_flags &= ~DEQUEUE_MOVE;
4972 }
4973
4974 queued = task_on_rq_queued(p);
4975 running = task_current(rq, p);
4976 if (queued)
4977 dequeue_task(rq, p, queue_flags);
4978 if (running)
4979 put_prev_task(rq, p);
4980
4981 prev_class = p->sched_class;
4982
4983 __setscheduler(rq, p, attr, pi);
4984 __setscheduler_uclamp(p, attr);
4985
4986 if (queued) {
4987 /*
4988 * We enqueue to tail when the priority of a task is
4989 * increased (user space view).
4990 */
4991 if (oldprio < p->prio)
4992 queue_flags |= ENQUEUE_HEAD;
4993
4994 enqueue_task(rq, p, queue_flags);
4995 }
4996 if (running)
4997 set_next_task(rq, p);
4998
4999 check_class_changed(rq, p, prev_class, oldprio);
5000
5001 /* Avoid rq from going away on us: */
5002 preempt_disable();
5003 task_rq_unlock(rq, p, &rf);
5004
5005 if (pi) {
5006 cpuset_read_unlock();
5007 rt_mutex_adjust_pi(p);
5008 }
5009
5010 /* Run balance callbacks after we've adjusted the PI chain: */
5011 balance_callback(rq);
5012 preempt_enable();
5013
5014 return 0;
5015
5016 unlock:
5017 task_rq_unlock(rq, p, &rf);
5018 if (pi)
5019 cpuset_read_unlock();
5020 return retval;
5021 }
5022
5023 static int _sched_setscheduler(struct task_struct *p, int policy,
5024 const struct sched_param *param, bool check)
5025 {
5026 struct sched_attr attr = {
5027 .sched_policy = policy,
5028 .sched_priority = param->sched_priority,
5029 .sched_nice = PRIO_TO_NICE(p->static_prio),
5030 };
5031
5032 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5033 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5034 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5035 policy &= ~SCHED_RESET_ON_FORK;
5036 attr.sched_policy = policy;
5037 }
5038
5039 return __sched_setscheduler(p, &attr, check, true);
5040 }
5041 /**
5042 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5043 * @p: the task in question.
5044 * @policy: new policy.
5045 * @param: structure containing the new RT priority.
5046 *
5047 * Return: 0 on success. An error code otherwise.
5048 *
5049 * NOTE that the task may be already dead.
5050 */
5051 int sched_setscheduler(struct task_struct *p, int policy,
5052 const struct sched_param *param)
5053 {
5054 return _sched_setscheduler(p, policy, param, true);
5055 }
5056 EXPORT_SYMBOL_GPL(sched_setscheduler);
5057
5058 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5059 {
5060 return __sched_setscheduler(p, attr, true, true);
5061 }
5062 EXPORT_SYMBOL_GPL(sched_setattr);
5063
5064 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5065 {
5066 return __sched_setscheduler(p, attr, false, true);
5067 }
5068
5069 /**
5070 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5071 * @p: the task in question.
5072 * @policy: new policy.
5073 * @param: structure containing the new RT priority.
5074 *
5075 * Just like sched_setscheduler, only don't bother checking if the
5076 * current context has permission. For example, this is needed in
5077 * stop_machine(): we create temporary high priority worker threads,
5078 * but our caller might not have that capability.
5079 *
5080 * Return: 0 on success. An error code otherwise.
5081 */
5082 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5083 const struct sched_param *param)
5084 {
5085 return _sched_setscheduler(p, policy, param, false);
5086 }
5087 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5088
5089 static int
5090 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5091 {
5092 struct sched_param lparam;
5093 struct task_struct *p;
5094 int retval;
5095
5096 if (!param || pid < 0)
5097 return -EINVAL;
5098 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5099 return -EFAULT;
5100
5101 rcu_read_lock();
5102 retval = -ESRCH;
5103 p = find_process_by_pid(pid);
5104 if (likely(p))
5105 get_task_struct(p);
5106 rcu_read_unlock();
5107
5108 if (likely(p)) {
5109 retval = sched_setscheduler(p, policy, &lparam);
5110 put_task_struct(p);
5111 }
5112
5113 return retval;
5114 }
5115
5116 /*
5117 * Mimics kernel/events/core.c perf_copy_attr().
5118 */
5119 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5120 {
5121 u32 size;
5122 int ret;
5123
5124 /* Zero the full structure, so that a short copy will be nice: */
5125 memset(attr, 0, sizeof(*attr));
5126
5127 ret = get_user(size, &uattr->size);
5128 if (ret)
5129 return ret;
5130
5131 /* ABI compatibility quirk: */
5132 if (!size)
5133 size = SCHED_ATTR_SIZE_VER0;
5134 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5135 goto err_size;
5136
5137 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5138 if (ret) {
5139 if (ret == -E2BIG)
5140 goto err_size;
5141 return ret;
5142 }
5143
5144 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5145 size < SCHED_ATTR_SIZE_VER1)
5146 return -EINVAL;
5147
5148 /*
5149 * XXX: Do we want to be lenient like existing syscalls; or do we want
5150 * to be strict and return an error on out-of-bounds values?
5151 */
5152 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5153
5154 return 0;
5155
5156 err_size:
5157 put_user(sizeof(*attr), &uattr->size);
5158 return -E2BIG;
5159 }
5160
5161 /**
5162 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5163 * @pid: the pid in question.
5164 * @policy: new policy.
5165 * @param: structure containing the new RT priority.
5166 *
5167 * Return: 0 on success. An error code otherwise.
5168 */
5169 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5170 {
5171 if (policy < 0)
5172 return -EINVAL;
5173
5174 return do_sched_setscheduler(pid, policy, param);
5175 }
5176
5177 /**
5178 * sys_sched_setparam - set/change the RT priority of a thread
5179 * @pid: the pid in question.
5180 * @param: structure containing the new RT priority.
5181 *
5182 * Return: 0 on success. An error code otherwise.
5183 */
5184 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5185 {
5186 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5187 }
5188
5189 /**
5190 * sys_sched_setattr - same as above, but with extended sched_attr
5191 * @pid: the pid in question.
5192 * @uattr: structure containing the extended parameters.
5193 * @flags: for future extension.
5194 */
5195 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5196 unsigned int, flags)
5197 {
5198 struct sched_attr attr;
5199 struct task_struct *p;
5200 int retval;
5201
5202 if (!uattr || pid < 0 || flags)
5203 return -EINVAL;
5204
5205 retval = sched_copy_attr(uattr, &attr);
5206 if (retval)
5207 return retval;
5208
5209 if ((int)attr.sched_policy < 0)
5210 return -EINVAL;
5211 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5212 attr.sched_policy = SETPARAM_POLICY;
5213
5214 rcu_read_lock();
5215 retval = -ESRCH;
5216 p = find_process_by_pid(pid);
5217 if (likely(p))
5218 get_task_struct(p);
5219 rcu_read_unlock();
5220
5221 if (likely(p)) {
5222 retval = sched_setattr(p, &attr);
5223 put_task_struct(p);
5224 }
5225
5226 return retval;
5227 }
5228
5229 /**
5230 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5231 * @pid: the pid in question.
5232 *
5233 * Return: On success, the policy of the thread. Otherwise, a negative error
5234 * code.
5235 */
5236 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5237 {
5238 struct task_struct *p;
5239 int retval;
5240
5241 if (pid < 0)
5242 return -EINVAL;
5243
5244 retval = -ESRCH;
5245 rcu_read_lock();
5246 p = find_process_by_pid(pid);
5247 if (p) {
5248 retval = security_task_getscheduler(p);
5249 if (!retval)
5250 retval = p->policy
5251 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5252 }
5253 rcu_read_unlock();
5254 return retval;
5255 }
5256
5257 /**
5258 * sys_sched_getparam - get the RT priority of a thread
5259 * @pid: the pid in question.
5260 * @param: structure containing the RT priority.
5261 *
5262 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5263 * code.
5264 */
5265 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5266 {
5267 struct sched_param lp = { .sched_priority = 0 };
5268 struct task_struct *p;
5269 int retval;
5270
5271 if (!param || pid < 0)
5272 return -EINVAL;
5273
5274 rcu_read_lock();
5275 p = find_process_by_pid(pid);
5276 retval = -ESRCH;
5277 if (!p)
5278 goto out_unlock;
5279
5280 retval = security_task_getscheduler(p);
5281 if (retval)
5282 goto out_unlock;
5283
5284 if (task_has_rt_policy(p))
5285 lp.sched_priority = p->rt_priority;
5286 rcu_read_unlock();
5287
5288 /*
5289 * This one might sleep, we cannot do it with a spinlock held ...
5290 */
5291 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5292
5293 return retval;
5294
5295 out_unlock:
5296 rcu_read_unlock();
5297 return retval;
5298 }
5299
5300 /*
5301 * Copy the kernel size attribute structure (which might be larger
5302 * than what user-space knows about) to user-space.
5303 *
5304 * Note that all cases are valid: user-space buffer can be larger or
5305 * smaller than the kernel-space buffer. The usual case is that both
5306 * have the same size.
5307 */
5308 static int
5309 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5310 struct sched_attr *kattr,
5311 unsigned int usize)
5312 {
5313 unsigned int ksize = sizeof(*kattr);
5314
5315 if (!access_ok(uattr, usize))
5316 return -EFAULT;
5317
5318 /*
5319 * sched_getattr() ABI forwards and backwards compatibility:
5320 *
5321 * If usize == ksize then we just copy everything to user-space and all is good.
5322 *
5323 * If usize < ksize then we only copy as much as user-space has space for,
5324 * this keeps ABI compatibility as well. We skip the rest.
5325 *
5326 * If usize > ksize then user-space is using a newer version of the ABI,
5327 * which part the kernel doesn't know about. Just ignore it - tooling can
5328 * detect the kernel's knowledge of attributes from the attr->size value
5329 * which is set to ksize in this case.
5330 */
5331 kattr->size = min(usize, ksize);
5332
5333 if (copy_to_user(uattr, kattr, kattr->size))
5334 return -EFAULT;
5335
5336 return 0;
5337 }
5338
5339 /**
5340 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5341 * @pid: the pid in question.
5342 * @uattr: structure containing the extended parameters.
5343 * @usize: sizeof(attr) for fwd/bwd comp.
5344 * @flags: for future extension.
5345 */
5346 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5347 unsigned int, usize, unsigned int, flags)
5348 {
5349 struct sched_attr kattr = { };
5350 struct task_struct *p;
5351 int retval;
5352
5353 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5354 usize < SCHED_ATTR_SIZE_VER0 || flags)
5355 return -EINVAL;
5356
5357 rcu_read_lock();
5358 p = find_process_by_pid(pid);
5359 retval = -ESRCH;
5360 if (!p)
5361 goto out_unlock;
5362
5363 retval = security_task_getscheduler(p);
5364 if (retval)
5365 goto out_unlock;
5366
5367 kattr.sched_policy = p->policy;
5368 if (p->sched_reset_on_fork)
5369 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5370 if (task_has_dl_policy(p))
5371 __getparam_dl(p, &kattr);
5372 else if (task_has_rt_policy(p))
5373 kattr.sched_priority = p->rt_priority;
5374 else
5375 kattr.sched_nice = task_nice(p);
5376
5377 #ifdef CONFIG_UCLAMP_TASK
5378 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5379 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5380 #endif
5381
5382 rcu_read_unlock();
5383
5384 return sched_attr_copy_to_user(uattr, &kattr, usize);
5385
5386 out_unlock:
5387 rcu_read_unlock();
5388 return retval;
5389 }
5390
5391 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5392 {
5393 cpumask_var_t cpus_allowed, new_mask;
5394 struct task_struct *p;
5395 int retval;
5396
5397 rcu_read_lock();
5398
5399 p = find_process_by_pid(pid);
5400 if (!p) {
5401 rcu_read_unlock();
5402 return -ESRCH;
5403 }
5404
5405 /* Prevent p going away */
5406 get_task_struct(p);
5407 rcu_read_unlock();
5408
5409 if (p->flags & PF_NO_SETAFFINITY) {
5410 retval = -EINVAL;
5411 goto out_put_task;
5412 }
5413 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5414 retval = -ENOMEM;
5415 goto out_put_task;
5416 }
5417 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5418 retval = -ENOMEM;
5419 goto out_free_cpus_allowed;
5420 }
5421 retval = -EPERM;
5422 if (!check_same_owner(p)) {
5423 rcu_read_lock();
5424 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5425 rcu_read_unlock();
5426 goto out_free_new_mask;
5427 }
5428 rcu_read_unlock();
5429 }
5430
5431 retval = security_task_setscheduler(p);
5432 if (retval)
5433 goto out_free_new_mask;
5434
5435
5436 cpuset_cpus_allowed(p, cpus_allowed);
5437 cpumask_and(new_mask, in_mask, cpus_allowed);
5438
5439 /*
5440 * Since bandwidth control happens on root_domain basis,
5441 * if admission test is enabled, we only admit -deadline
5442 * tasks allowed to run on all the CPUs in the task's
5443 * root_domain.
5444 */
5445 #ifdef CONFIG_SMP
5446 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5447 rcu_read_lock();
5448 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5449 retval = -EBUSY;
5450 rcu_read_unlock();
5451 goto out_free_new_mask;
5452 }
5453 rcu_read_unlock();
5454 }
5455 #endif
5456 again:
5457 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5458
5459 if (!retval) {
5460 cpuset_cpus_allowed(p, cpus_allowed);
5461 if (!cpumask_subset(new_mask, cpus_allowed)) {
5462 /*
5463 * We must have raced with a concurrent cpuset
5464 * update. Just reset the cpus_allowed to the
5465 * cpuset's cpus_allowed
5466 */
5467 cpumask_copy(new_mask, cpus_allowed);
5468 goto again;
5469 }
5470 }
5471 out_free_new_mask:
5472 free_cpumask_var(new_mask);
5473 out_free_cpus_allowed:
5474 free_cpumask_var(cpus_allowed);
5475 out_put_task:
5476 put_task_struct(p);
5477 return retval;
5478 }
5479
5480 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5481 struct cpumask *new_mask)
5482 {
5483 if (len < cpumask_size())
5484 cpumask_clear(new_mask);
5485 else if (len > cpumask_size())
5486 len = cpumask_size();
5487
5488 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5489 }
5490
5491 /**
5492 * sys_sched_setaffinity - set the CPU affinity of a process
5493 * @pid: pid of the process
5494 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5495 * @user_mask_ptr: user-space pointer to the new CPU mask
5496 *
5497 * Return: 0 on success. An error code otherwise.
5498 */
5499 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5500 unsigned long __user *, user_mask_ptr)
5501 {
5502 cpumask_var_t new_mask;
5503 int retval;
5504
5505 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5506 return -ENOMEM;
5507
5508 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5509 if (retval == 0)
5510 retval = sched_setaffinity(pid, new_mask);
5511 free_cpumask_var(new_mask);
5512 return retval;
5513 }
5514
5515 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5516 {
5517 struct task_struct *p;
5518 unsigned long flags;
5519 int retval;
5520
5521 rcu_read_lock();
5522
5523 retval = -ESRCH;
5524 p = find_process_by_pid(pid);
5525 if (!p)
5526 goto out_unlock;
5527
5528 retval = security_task_getscheduler(p);
5529 if (retval)
5530 goto out_unlock;
5531
5532 raw_spin_lock_irqsave(&p->pi_lock, flags);
5533 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5534 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5535
5536 out_unlock:
5537 rcu_read_unlock();
5538
5539 return retval;
5540 }
5541
5542 /**
5543 * sys_sched_getaffinity - get the CPU affinity of a process
5544 * @pid: pid of the process
5545 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5546 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5547 *
5548 * Return: size of CPU mask copied to user_mask_ptr on success. An
5549 * error code otherwise.
5550 */
5551 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5552 unsigned long __user *, user_mask_ptr)
5553 {
5554 int ret;
5555 cpumask_var_t mask;
5556
5557 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5558 return -EINVAL;
5559 if (len & (sizeof(unsigned long)-1))
5560 return -EINVAL;
5561
5562 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5563 return -ENOMEM;
5564
5565 ret = sched_getaffinity(pid, mask);
5566 if (ret == 0) {
5567 unsigned int retlen = min(len, cpumask_size());
5568
5569 if (copy_to_user(user_mask_ptr, mask, retlen))
5570 ret = -EFAULT;
5571 else
5572 ret = retlen;
5573 }
5574 free_cpumask_var(mask);
5575
5576 return ret;
5577 }
5578
5579 /**
5580 * sys_sched_yield - yield the current processor to other threads.
5581 *
5582 * This function yields the current CPU to other tasks. If there are no
5583 * other threads running on this CPU then this function will return.
5584 *
5585 * Return: 0.
5586 */
5587 static void do_sched_yield(void)
5588 {
5589 struct rq_flags rf;
5590 struct rq *rq;
5591
5592 rq = this_rq_lock_irq(&rf);
5593
5594 schedstat_inc(rq->yld_count);
5595 current->sched_class->yield_task(rq);
5596
5597 /*
5598 * Since we are going to call schedule() anyway, there's
5599 * no need to preempt or enable interrupts:
5600 */
5601 preempt_disable();
5602 rq_unlock(rq, &rf);
5603 sched_preempt_enable_no_resched();
5604
5605 schedule();
5606 }
5607
5608 SYSCALL_DEFINE0(sched_yield)
5609 {
5610 do_sched_yield();
5611 return 0;
5612 }
5613
5614 #ifndef CONFIG_PREEMPTION
5615 int __sched _cond_resched(void)
5616 {
5617 if (should_resched(0)) {
5618 preempt_schedule_common();
5619 return 1;
5620 }
5621 rcu_all_qs();
5622 return 0;
5623 }
5624 EXPORT_SYMBOL(_cond_resched);
5625 #endif
5626
5627 /*
5628 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5629 * call schedule, and on return reacquire the lock.
5630 *
5631 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5632 * operations here to prevent schedule() from being called twice (once via
5633 * spin_unlock(), once by hand).
5634 */
5635 int __cond_resched_lock(spinlock_t *lock)
5636 {
5637 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5638 int ret = 0;
5639
5640 lockdep_assert_held(lock);
5641
5642 if (spin_needbreak(lock) || resched) {
5643 spin_unlock(lock);
5644 if (resched)
5645 preempt_schedule_common();
5646 else
5647 cpu_relax();
5648 ret = 1;
5649 spin_lock(lock);
5650 }
5651 return ret;
5652 }
5653 EXPORT_SYMBOL(__cond_resched_lock);
5654
5655 /**
5656 * yield - yield the current processor to other threads.
5657 *
5658 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5659 *
5660 * The scheduler is at all times free to pick the calling task as the most
5661 * eligible task to run, if removing the yield() call from your code breaks
5662 * it, its already broken.
5663 *
5664 * Typical broken usage is:
5665 *
5666 * while (!event)
5667 * yield();
5668 *
5669 * where one assumes that yield() will let 'the other' process run that will
5670 * make event true. If the current task is a SCHED_FIFO task that will never
5671 * happen. Never use yield() as a progress guarantee!!
5672 *
5673 * If you want to use yield() to wait for something, use wait_event().
5674 * If you want to use yield() to be 'nice' for others, use cond_resched().
5675 * If you still want to use yield(), do not!
5676 */
5677 void __sched yield(void)
5678 {
5679 set_current_state(TASK_RUNNING);
5680 do_sched_yield();
5681 }
5682 EXPORT_SYMBOL(yield);
5683
5684 /**
5685 * yield_to - yield the current processor to another thread in
5686 * your thread group, or accelerate that thread toward the
5687 * processor it's on.
5688 * @p: target task
5689 * @preempt: whether task preemption is allowed or not
5690 *
5691 * It's the caller's job to ensure that the target task struct
5692 * can't go away on us before we can do any checks.
5693 *
5694 * Return:
5695 * true (>0) if we indeed boosted the target task.
5696 * false (0) if we failed to boost the target.
5697 * -ESRCH if there's no task to yield to.
5698 */
5699 int __sched yield_to(struct task_struct *p, bool preempt)
5700 {
5701 struct task_struct *curr = current;
5702 struct rq *rq, *p_rq;
5703 unsigned long flags;
5704 int yielded = 0;
5705
5706 local_irq_save(flags);
5707 rq = this_rq();
5708
5709 again:
5710 p_rq = task_rq(p);
5711 /*
5712 * If we're the only runnable task on the rq and target rq also
5713 * has only one task, there's absolutely no point in yielding.
5714 */
5715 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5716 yielded = -ESRCH;
5717 goto out_irq;
5718 }
5719
5720 double_rq_lock(rq, p_rq);
5721 if (task_rq(p) != p_rq) {
5722 double_rq_unlock(rq, p_rq);
5723 goto again;
5724 }
5725
5726 if (!curr->sched_class->yield_to_task)
5727 goto out_unlock;
5728
5729 if (curr->sched_class != p->sched_class)
5730 goto out_unlock;
5731
5732 if (task_running(p_rq, p) || p->state)
5733 goto out_unlock;
5734
5735 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5736 if (yielded) {
5737 schedstat_inc(rq->yld_count);
5738 /*
5739 * Make p's CPU reschedule; pick_next_entity takes care of
5740 * fairness.
5741 */
5742 if (preempt && rq != p_rq)
5743 resched_curr(p_rq);
5744 }
5745
5746 out_unlock:
5747 double_rq_unlock(rq, p_rq);
5748 out_irq:
5749 local_irq_restore(flags);
5750
5751 if (yielded > 0)
5752 schedule();
5753
5754 return yielded;
5755 }
5756 EXPORT_SYMBOL_GPL(yield_to);
5757
5758 int io_schedule_prepare(void)
5759 {
5760 int old_iowait = current->in_iowait;
5761
5762 current->in_iowait = 1;
5763 blk_schedule_flush_plug(current);
5764
5765 return old_iowait;
5766 }
5767
5768 void io_schedule_finish(int token)
5769 {
5770 current->in_iowait = token;
5771 }
5772
5773 /*
5774 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5775 * that process accounting knows that this is a task in IO wait state.
5776 */
5777 long __sched io_schedule_timeout(long timeout)
5778 {
5779 int token;
5780 long ret;
5781
5782 token = io_schedule_prepare();
5783 ret = schedule_timeout(timeout);
5784 io_schedule_finish(token);
5785
5786 return ret;
5787 }
5788 EXPORT_SYMBOL(io_schedule_timeout);
5789
5790 void __sched io_schedule(void)
5791 {
5792 int token;
5793
5794 token = io_schedule_prepare();
5795 schedule();
5796 io_schedule_finish(token);
5797 }
5798 EXPORT_SYMBOL(io_schedule);
5799
5800 /**
5801 * sys_sched_get_priority_max - return maximum RT priority.
5802 * @policy: scheduling class.
5803 *
5804 * Return: On success, this syscall returns the maximum
5805 * rt_priority that can be used by a given scheduling class.
5806 * On failure, a negative error code is returned.
5807 */
5808 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5809 {
5810 int ret = -EINVAL;
5811
5812 switch (policy) {
5813 case SCHED_FIFO:
5814 case SCHED_RR:
5815 ret = MAX_USER_RT_PRIO-1;
5816 break;
5817 case SCHED_DEADLINE:
5818 case SCHED_NORMAL:
5819 case SCHED_BATCH:
5820 case SCHED_IDLE:
5821 ret = 0;
5822 break;
5823 }
5824 return ret;
5825 }
5826
5827 /**
5828 * sys_sched_get_priority_min - return minimum RT priority.
5829 * @policy: scheduling class.
5830 *
5831 * Return: On success, this syscall returns the minimum
5832 * rt_priority that can be used by a given scheduling class.
5833 * On failure, a negative error code is returned.
5834 */
5835 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5836 {
5837 int ret = -EINVAL;
5838
5839 switch (policy) {
5840 case SCHED_FIFO:
5841 case SCHED_RR:
5842 ret = 1;
5843 break;
5844 case SCHED_DEADLINE:
5845 case SCHED_NORMAL:
5846 case SCHED_BATCH:
5847 case SCHED_IDLE:
5848 ret = 0;
5849 }
5850 return ret;
5851 }
5852
5853 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5854 {
5855 struct task_struct *p;
5856 unsigned int time_slice;
5857 struct rq_flags rf;
5858 struct rq *rq;
5859 int retval;
5860
5861 if (pid < 0)
5862 return -EINVAL;
5863
5864 retval = -ESRCH;
5865 rcu_read_lock();
5866 p = find_process_by_pid(pid);
5867 if (!p)
5868 goto out_unlock;
5869
5870 retval = security_task_getscheduler(p);
5871 if (retval)
5872 goto out_unlock;
5873
5874 rq = task_rq_lock(p, &rf);
5875 time_slice = 0;
5876 if (p->sched_class->get_rr_interval)
5877 time_slice = p->sched_class->get_rr_interval(rq, p);
5878 task_rq_unlock(rq, p, &rf);
5879
5880 rcu_read_unlock();
5881 jiffies_to_timespec64(time_slice, t);
5882 return 0;
5883
5884 out_unlock:
5885 rcu_read_unlock();
5886 return retval;
5887 }
5888
5889 /**
5890 * sys_sched_rr_get_interval - return the default timeslice of a process.
5891 * @pid: pid of the process.
5892 * @interval: userspace pointer to the timeslice value.
5893 *
5894 * this syscall writes the default timeslice value of a given process
5895 * into the user-space timespec buffer. A value of '0' means infinity.
5896 *
5897 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5898 * an error code.
5899 */
5900 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5901 struct __kernel_timespec __user *, interval)
5902 {
5903 struct timespec64 t;
5904 int retval = sched_rr_get_interval(pid, &t);
5905
5906 if (retval == 0)
5907 retval = put_timespec64(&t, interval);
5908
5909 return retval;
5910 }
5911
5912 #ifdef CONFIG_COMPAT_32BIT_TIME
5913 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5914 struct old_timespec32 __user *, interval)
5915 {
5916 struct timespec64 t;
5917 int retval = sched_rr_get_interval(pid, &t);
5918
5919 if (retval == 0)
5920 retval = put_old_timespec32(&t, interval);
5921 return retval;
5922 }
5923 #endif
5924
5925 void sched_show_task(struct task_struct *p)
5926 {
5927 unsigned long free = 0;
5928 int ppid;
5929
5930 if (!try_get_task_stack(p))
5931 return;
5932
5933 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5934
5935 if (p->state == TASK_RUNNING)
5936 printk(KERN_CONT " running task ");
5937 #ifdef CONFIG_DEBUG_STACK_USAGE
5938 free = stack_not_used(p);
5939 #endif
5940 ppid = 0;
5941 rcu_read_lock();
5942 if (pid_alive(p))
5943 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5944 rcu_read_unlock();
5945 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5946 task_pid_nr(p), ppid,
5947 (unsigned long)task_thread_info(p)->flags);
5948
5949 print_worker_info(KERN_INFO, p);
5950 show_stack(p, NULL);
5951 put_task_stack(p);
5952 }
5953 EXPORT_SYMBOL_GPL(sched_show_task);
5954
5955 static inline bool
5956 state_filter_match(unsigned long state_filter, struct task_struct *p)
5957 {
5958 /* no filter, everything matches */
5959 if (!state_filter)
5960 return true;
5961
5962 /* filter, but doesn't match */
5963 if (!(p->state & state_filter))
5964 return false;
5965
5966 /*
5967 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5968 * TASK_KILLABLE).
5969 */
5970 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5971 return false;
5972
5973 return true;
5974 }
5975
5976
5977 void show_state_filter(unsigned long state_filter)
5978 {
5979 struct task_struct *g, *p;
5980
5981 #if BITS_PER_LONG == 32
5982 printk(KERN_INFO
5983 " task PC stack pid father\n");
5984 #else
5985 printk(KERN_INFO
5986 " task PC stack pid father\n");
5987 #endif
5988 rcu_read_lock();
5989 for_each_process_thread(g, p) {
5990 /*
5991 * reset the NMI-timeout, listing all files on a slow
5992 * console might take a lot of time:
5993 * Also, reset softlockup watchdogs on all CPUs, because
5994 * another CPU might be blocked waiting for us to process
5995 * an IPI.
5996 */
5997 touch_nmi_watchdog();
5998 touch_all_softlockup_watchdogs();
5999 if (state_filter_match(state_filter, p))
6000 sched_show_task(p);
6001 }
6002
6003 #ifdef CONFIG_SCHED_DEBUG
6004 if (!state_filter)
6005 sysrq_sched_debug_show();
6006 #endif
6007 rcu_read_unlock();
6008 /*
6009 * Only show locks if all tasks are dumped:
6010 */
6011 if (!state_filter)
6012 debug_show_all_locks();
6013 }
6014
6015 /**
6016 * init_idle - set up an idle thread for a given CPU
6017 * @idle: task in question
6018 * @cpu: CPU the idle task belongs to
6019 *
6020 * NOTE: this function does not set the idle thread's NEED_RESCHED
6021 * flag, to make booting more robust.
6022 */
6023 void init_idle(struct task_struct *idle, int cpu)
6024 {
6025 struct rq *rq = cpu_rq(cpu);
6026 unsigned long flags;
6027
6028 __sched_fork(0, idle);
6029
6030 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6031 raw_spin_lock(&rq->lock);
6032
6033 idle->state = TASK_RUNNING;
6034 idle->se.exec_start = sched_clock();
6035 idle->flags |= PF_IDLE;
6036
6037 kasan_unpoison_task_stack(idle);
6038
6039 #ifdef CONFIG_SMP
6040 /*
6041 * Its possible that init_idle() gets called multiple times on a task,
6042 * in that case do_set_cpus_allowed() will not do the right thing.
6043 *
6044 * And since this is boot we can forgo the serialization.
6045 */
6046 set_cpus_allowed_common(idle, cpumask_of(cpu));
6047 #endif
6048 /*
6049 * We're having a chicken and egg problem, even though we are
6050 * holding rq->lock, the CPU isn't yet set to this CPU so the
6051 * lockdep check in task_group() will fail.
6052 *
6053 * Similar case to sched_fork(). / Alternatively we could
6054 * use task_rq_lock() here and obtain the other rq->lock.
6055 *
6056 * Silence PROVE_RCU
6057 */
6058 rcu_read_lock();
6059 __set_task_cpu(idle, cpu);
6060 rcu_read_unlock();
6061
6062 rq->idle = idle;
6063 rcu_assign_pointer(rq->curr, idle);
6064 idle->on_rq = TASK_ON_RQ_QUEUED;
6065 #ifdef CONFIG_SMP
6066 idle->on_cpu = 1;
6067 #endif
6068 raw_spin_unlock(&rq->lock);
6069 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6070
6071 /* Set the preempt count _outside_ the spinlocks! */
6072 init_idle_preempt_count(idle, cpu);
6073
6074 /*
6075 * The idle tasks have their own, simple scheduling class:
6076 */
6077 idle->sched_class = &idle_sched_class;
6078 ftrace_graph_init_idle_task(idle, cpu);
6079 vtime_init_idle(idle, cpu);
6080 #ifdef CONFIG_SMP
6081 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6082 #endif
6083 }
6084
6085 #ifdef CONFIG_SMP
6086
6087 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6088 const struct cpumask *trial)
6089 {
6090 int ret = 1;
6091
6092 if (!cpumask_weight(cur))
6093 return ret;
6094
6095 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6096
6097 return ret;
6098 }
6099
6100 int task_can_attach(struct task_struct *p,
6101 const struct cpumask *cs_cpus_allowed)
6102 {
6103 int ret = 0;
6104
6105 /*
6106 * Kthreads which disallow setaffinity shouldn't be moved
6107 * to a new cpuset; we don't want to change their CPU
6108 * affinity and isolating such threads by their set of
6109 * allowed nodes is unnecessary. Thus, cpusets are not
6110 * applicable for such threads. This prevents checking for
6111 * success of set_cpus_allowed_ptr() on all attached tasks
6112 * before cpus_mask may be changed.
6113 */
6114 if (p->flags & PF_NO_SETAFFINITY) {
6115 ret = -EINVAL;
6116 goto out;
6117 }
6118
6119 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6120 cs_cpus_allowed))
6121 ret = dl_task_can_attach(p, cs_cpus_allowed);
6122
6123 out:
6124 return ret;
6125 }
6126
6127 bool sched_smp_initialized __read_mostly;
6128
6129 #ifdef CONFIG_NUMA_BALANCING
6130 /* Migrate current task p to target_cpu */
6131 int migrate_task_to(struct task_struct *p, int target_cpu)
6132 {
6133 struct migration_arg arg = { p, target_cpu };
6134 int curr_cpu = task_cpu(p);
6135
6136 if (curr_cpu == target_cpu)
6137 return 0;
6138
6139 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6140 return -EINVAL;
6141
6142 /* TODO: This is not properly updating schedstats */
6143
6144 trace_sched_move_numa(p, curr_cpu, target_cpu);
6145 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6146 }
6147
6148 /*
6149 * Requeue a task on a given node and accurately track the number of NUMA
6150 * tasks on the runqueues
6151 */
6152 void sched_setnuma(struct task_struct *p, int nid)
6153 {
6154 bool queued, running;
6155 struct rq_flags rf;
6156 struct rq *rq;
6157
6158 rq = task_rq_lock(p, &rf);
6159 queued = task_on_rq_queued(p);
6160 running = task_current(rq, p);
6161
6162 if (queued)
6163 dequeue_task(rq, p, DEQUEUE_SAVE);
6164 if (running)
6165 put_prev_task(rq, p);
6166
6167 p->numa_preferred_nid = nid;
6168
6169 if (queued)
6170 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6171 if (running)
6172 set_next_task(rq, p);
6173 task_rq_unlock(rq, p, &rf);
6174 }
6175 #endif /* CONFIG_NUMA_BALANCING */
6176
6177 #ifdef CONFIG_HOTPLUG_CPU
6178 /*
6179 * Ensure that the idle task is using init_mm right before its CPU goes
6180 * offline.
6181 */
6182 void idle_task_exit(void)
6183 {
6184 struct mm_struct *mm = current->active_mm;
6185
6186 BUG_ON(cpu_online(smp_processor_id()));
6187
6188 if (mm != &init_mm) {
6189 switch_mm(mm, &init_mm, current);
6190 current->active_mm = &init_mm;
6191 finish_arch_post_lock_switch();
6192 }
6193 mmdrop(mm);
6194 }
6195
6196 /*
6197 * Since this CPU is going 'away' for a while, fold any nr_active delta
6198 * we might have. Assumes we're called after migrate_tasks() so that the
6199 * nr_active count is stable. We need to take the teardown thread which
6200 * is calling this into account, so we hand in adjust = 1 to the load
6201 * calculation.
6202 *
6203 * Also see the comment "Global load-average calculations".
6204 */
6205 static void calc_load_migrate(struct rq *rq)
6206 {
6207 long delta = calc_load_fold_active(rq, 1);
6208 if (delta)
6209 atomic_long_add(delta, &calc_load_tasks);
6210 }
6211
6212 static struct task_struct *__pick_migrate_task(struct rq *rq)
6213 {
6214 const struct sched_class *class;
6215 struct task_struct *next;
6216
6217 for_each_class(class) {
6218 next = class->pick_next_task(rq, NULL, NULL);
6219 if (next) {
6220 next->sched_class->put_prev_task(rq, next);
6221 return next;
6222 }
6223 }
6224
6225 /* The idle class should always have a runnable task */
6226 BUG();
6227 }
6228
6229 /*
6230 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6231 * try_to_wake_up()->select_task_rq().
6232 *
6233 * Called with rq->lock held even though we'er in stop_machine() and
6234 * there's no concurrency possible, we hold the required locks anyway
6235 * because of lock validation efforts.
6236 */
6237 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6238 {
6239 struct rq *rq = dead_rq;
6240 struct task_struct *next, *stop = rq->stop;
6241 struct rq_flags orf = *rf;
6242 int dest_cpu;
6243
6244 /*
6245 * Fudge the rq selection such that the below task selection loop
6246 * doesn't get stuck on the currently eligible stop task.
6247 *
6248 * We're currently inside stop_machine() and the rq is either stuck
6249 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6250 * either way we should never end up calling schedule() until we're
6251 * done here.
6252 */
6253 rq->stop = NULL;
6254
6255 /*
6256 * put_prev_task() and pick_next_task() sched
6257 * class method both need to have an up-to-date
6258 * value of rq->clock[_task]
6259 */
6260 update_rq_clock(rq);
6261
6262 for (;;) {
6263 /*
6264 * There's this thread running, bail when that's the only
6265 * remaining thread:
6266 */
6267 if (rq->nr_running == 1)
6268 break;
6269
6270 next = __pick_migrate_task(rq);
6271
6272 /*
6273 * Rules for changing task_struct::cpus_mask are holding
6274 * both pi_lock and rq->lock, such that holding either
6275 * stabilizes the mask.
6276 *
6277 * Drop rq->lock is not quite as disastrous as it usually is
6278 * because !cpu_active at this point, which means load-balance
6279 * will not interfere. Also, stop-machine.
6280 */
6281 rq_unlock(rq, rf);
6282 raw_spin_lock(&next->pi_lock);
6283 rq_relock(rq, rf);
6284
6285 /*
6286 * Since we're inside stop-machine, _nothing_ should have
6287 * changed the task, WARN if weird stuff happened, because in
6288 * that case the above rq->lock drop is a fail too.
6289 */
6290 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6291 raw_spin_unlock(&next->pi_lock);
6292 continue;
6293 }
6294
6295 /* Find suitable destination for @next, with force if needed. */
6296 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6297 rq = __migrate_task(rq, rf, next, dest_cpu);
6298 if (rq != dead_rq) {
6299 rq_unlock(rq, rf);
6300 rq = dead_rq;
6301 *rf = orf;
6302 rq_relock(rq, rf);
6303 }
6304 raw_spin_unlock(&next->pi_lock);
6305 }
6306
6307 rq->stop = stop;
6308 }
6309 #endif /* CONFIG_HOTPLUG_CPU */
6310
6311 void set_rq_online(struct rq *rq)
6312 {
6313 if (!rq->online) {
6314 const struct sched_class *class;
6315
6316 cpumask_set_cpu(rq->cpu, rq->rd->online);
6317 rq->online = 1;
6318
6319 for_each_class(class) {
6320 if (class->rq_online)
6321 class->rq_online(rq);
6322 }
6323 }
6324 }
6325
6326 void set_rq_offline(struct rq *rq)
6327 {
6328 if (rq->online) {
6329 const struct sched_class *class;
6330
6331 for_each_class(class) {
6332 if (class->rq_offline)
6333 class->rq_offline(rq);
6334 }
6335
6336 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6337 rq->online = 0;
6338 }
6339 }
6340
6341 /*
6342 * used to mark begin/end of suspend/resume:
6343 */
6344 static int num_cpus_frozen;
6345
6346 /*
6347 * Update cpusets according to cpu_active mask. If cpusets are
6348 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6349 * around partition_sched_domains().
6350 *
6351 * If we come here as part of a suspend/resume, don't touch cpusets because we
6352 * want to restore it back to its original state upon resume anyway.
6353 */
6354 static void cpuset_cpu_active(void)
6355 {
6356 if (cpuhp_tasks_frozen) {
6357 /*
6358 * num_cpus_frozen tracks how many CPUs are involved in suspend
6359 * resume sequence. As long as this is not the last online
6360 * operation in the resume sequence, just build a single sched
6361 * domain, ignoring cpusets.
6362 */
6363 partition_sched_domains(1, NULL, NULL);
6364 if (--num_cpus_frozen)
6365 return;
6366 /*
6367 * This is the last CPU online operation. So fall through and
6368 * restore the original sched domains by considering the
6369 * cpuset configurations.
6370 */
6371 cpuset_force_rebuild();
6372 }
6373 cpuset_update_active_cpus();
6374 }
6375
6376 static int cpuset_cpu_inactive(unsigned int cpu)
6377 {
6378 if (!cpuhp_tasks_frozen) {
6379 if (dl_cpu_busy(cpu))
6380 return -EBUSY;
6381 cpuset_update_active_cpus();
6382 } else {
6383 num_cpus_frozen++;
6384 partition_sched_domains(1, NULL, NULL);
6385 }
6386 return 0;
6387 }
6388
6389 int sched_cpu_activate(unsigned int cpu)
6390 {
6391 struct rq *rq = cpu_rq(cpu);
6392 struct rq_flags rf;
6393
6394 #ifdef CONFIG_SCHED_SMT
6395 /*
6396 * When going up, increment the number of cores with SMT present.
6397 */
6398 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6399 static_branch_inc_cpuslocked(&sched_smt_present);
6400 #endif
6401 set_cpu_active(cpu, true);
6402
6403 if (sched_smp_initialized) {
6404 sched_domains_numa_masks_set(cpu);
6405 cpuset_cpu_active();
6406 }
6407
6408 /*
6409 * Put the rq online, if not already. This happens:
6410 *
6411 * 1) In the early boot process, because we build the real domains
6412 * after all CPUs have been brought up.
6413 *
6414 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6415 * domains.
6416 */
6417 rq_lock_irqsave(rq, &rf);
6418 if (rq->rd) {
6419 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6420 set_rq_online(rq);
6421 }
6422 rq_unlock_irqrestore(rq, &rf);
6423
6424 return 0;
6425 }
6426
6427 int sched_cpu_deactivate(unsigned int cpu)
6428 {
6429 int ret;
6430
6431 set_cpu_active(cpu, false);
6432 /*
6433 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6434 * users of this state to go away such that all new such users will
6435 * observe it.
6436 *
6437 * Do sync before park smpboot threads to take care the rcu boost case.
6438 */
6439 synchronize_rcu();
6440
6441 #ifdef CONFIG_SCHED_SMT
6442 /*
6443 * When going down, decrement the number of cores with SMT present.
6444 */
6445 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6446 static_branch_dec_cpuslocked(&sched_smt_present);
6447 #endif
6448
6449 if (!sched_smp_initialized)
6450 return 0;
6451
6452 ret = cpuset_cpu_inactive(cpu);
6453 if (ret) {
6454 set_cpu_active(cpu, true);
6455 return ret;
6456 }
6457 sched_domains_numa_masks_clear(cpu);
6458 return 0;
6459 }
6460
6461 static void sched_rq_cpu_starting(unsigned int cpu)
6462 {
6463 struct rq *rq = cpu_rq(cpu);
6464
6465 rq->calc_load_update = calc_load_update;
6466 update_max_interval();
6467 }
6468
6469 int sched_cpu_starting(unsigned int cpu)
6470 {
6471 sched_rq_cpu_starting(cpu);
6472 sched_tick_start(cpu);
6473 return 0;
6474 }
6475
6476 #ifdef CONFIG_HOTPLUG_CPU
6477 int sched_cpu_dying(unsigned int cpu)
6478 {
6479 struct rq *rq = cpu_rq(cpu);
6480 struct rq_flags rf;
6481
6482 /* Handle pending wakeups and then migrate everything off */
6483 sched_ttwu_pending();
6484 sched_tick_stop(cpu);
6485
6486 rq_lock_irqsave(rq, &rf);
6487 if (rq->rd) {
6488 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6489 set_rq_offline(rq);
6490 }
6491 migrate_tasks(rq, &rf);
6492 BUG_ON(rq->nr_running != 1);
6493 rq_unlock_irqrestore(rq, &rf);
6494
6495 calc_load_migrate(rq);
6496 update_max_interval();
6497 nohz_balance_exit_idle(rq);
6498 hrtick_clear(rq);
6499 return 0;
6500 }
6501 #endif
6502
6503 void __init sched_init_smp(void)
6504 {
6505 sched_init_numa();
6506
6507 /*
6508 * There's no userspace yet to cause hotplug operations; hence all the
6509 * CPU masks are stable and all blatant races in the below code cannot
6510 * happen.
6511 */
6512 mutex_lock(&sched_domains_mutex);
6513 sched_init_domains(cpu_active_mask);
6514 mutex_unlock(&sched_domains_mutex);
6515
6516 /* Move init over to a non-isolated CPU */
6517 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6518 BUG();
6519 sched_init_granularity();
6520
6521 init_sched_rt_class();
6522 init_sched_dl_class();
6523
6524 sched_smp_initialized = true;
6525 }
6526
6527 static int __init migration_init(void)
6528 {
6529 sched_cpu_starting(smp_processor_id());
6530 return 0;
6531 }
6532 early_initcall(migration_init);
6533
6534 #else
6535 void __init sched_init_smp(void)
6536 {
6537 sched_init_granularity();
6538 }
6539 #endif /* CONFIG_SMP */
6540
6541 int in_sched_functions(unsigned long addr)
6542 {
6543 return in_lock_functions(addr) ||
6544 (addr >= (unsigned long)__sched_text_start
6545 && addr < (unsigned long)__sched_text_end);
6546 }
6547
6548 #ifdef CONFIG_CGROUP_SCHED
6549 /*
6550 * Default task group.
6551 * Every task in system belongs to this group at bootup.
6552 */
6553 struct task_group root_task_group;
6554 LIST_HEAD(task_groups);
6555
6556 /* Cacheline aligned slab cache for task_group */
6557 static struct kmem_cache *task_group_cache __read_mostly;
6558 #endif
6559
6560 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6561 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6562
6563 void __init sched_init(void)
6564 {
6565 unsigned long ptr = 0;
6566 int i;
6567
6568 wait_bit_init();
6569
6570 #ifdef CONFIG_FAIR_GROUP_SCHED
6571 ptr += 2 * nr_cpu_ids * sizeof(void **);
6572 #endif
6573 #ifdef CONFIG_RT_GROUP_SCHED
6574 ptr += 2 * nr_cpu_ids * sizeof(void **);
6575 #endif
6576 if (ptr) {
6577 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6578
6579 #ifdef CONFIG_FAIR_GROUP_SCHED
6580 root_task_group.se = (struct sched_entity **)ptr;
6581 ptr += nr_cpu_ids * sizeof(void **);
6582
6583 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6584 ptr += nr_cpu_ids * sizeof(void **);
6585
6586 #endif /* CONFIG_FAIR_GROUP_SCHED */
6587 #ifdef CONFIG_RT_GROUP_SCHED
6588 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6589 ptr += nr_cpu_ids * sizeof(void **);
6590
6591 root_task_group.rt_rq = (struct rt_rq **)ptr;
6592 ptr += nr_cpu_ids * sizeof(void **);
6593
6594 #endif /* CONFIG_RT_GROUP_SCHED */
6595 }
6596 #ifdef CONFIG_CPUMASK_OFFSTACK
6597 for_each_possible_cpu(i) {
6598 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6599 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6600 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6601 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6602 }
6603 #endif /* CONFIG_CPUMASK_OFFSTACK */
6604
6605 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6606 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6607
6608 #ifdef CONFIG_SMP
6609 init_defrootdomain();
6610 #endif
6611
6612 #ifdef CONFIG_RT_GROUP_SCHED
6613 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6614 global_rt_period(), global_rt_runtime());
6615 #endif /* CONFIG_RT_GROUP_SCHED */
6616
6617 #ifdef CONFIG_CGROUP_SCHED
6618 task_group_cache = KMEM_CACHE(task_group, 0);
6619
6620 list_add(&root_task_group.list, &task_groups);
6621 INIT_LIST_HEAD(&root_task_group.children);
6622 INIT_LIST_HEAD(&root_task_group.siblings);
6623 autogroup_init(&init_task);
6624 #endif /* CONFIG_CGROUP_SCHED */
6625
6626 for_each_possible_cpu(i) {
6627 struct rq *rq;
6628
6629 rq = cpu_rq(i);
6630 raw_spin_lock_init(&rq->lock);
6631 rq->nr_running = 0;
6632 rq->calc_load_active = 0;
6633 rq->calc_load_update = jiffies + LOAD_FREQ;
6634 init_cfs_rq(&rq->cfs);
6635 init_rt_rq(&rq->rt);
6636 init_dl_rq(&rq->dl);
6637 #ifdef CONFIG_FAIR_GROUP_SCHED
6638 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6639 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6640 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6641 /*
6642 * How much CPU bandwidth does root_task_group get?
6643 *
6644 * In case of task-groups formed thr' the cgroup filesystem, it
6645 * gets 100% of the CPU resources in the system. This overall
6646 * system CPU resource is divided among the tasks of
6647 * root_task_group and its child task-groups in a fair manner,
6648 * based on each entity's (task or task-group's) weight
6649 * (se->load.weight).
6650 *
6651 * In other words, if root_task_group has 10 tasks of weight
6652 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6653 * then A0's share of the CPU resource is:
6654 *
6655 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6656 *
6657 * We achieve this by letting root_task_group's tasks sit
6658 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6659 */
6660 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6661 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6662 #endif /* CONFIG_FAIR_GROUP_SCHED */
6663
6664 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6665 #ifdef CONFIG_RT_GROUP_SCHED
6666 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6667 #endif
6668 #ifdef CONFIG_SMP
6669 rq->sd = NULL;
6670 rq->rd = NULL;
6671 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6672 rq->balance_callback = NULL;
6673 rq->active_balance = 0;
6674 rq->next_balance = jiffies;
6675 rq->push_cpu = 0;
6676 rq->cpu = i;
6677 rq->online = 0;
6678 rq->idle_stamp = 0;
6679 rq->avg_idle = 2*sysctl_sched_migration_cost;
6680 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6681
6682 INIT_LIST_HEAD(&rq->cfs_tasks);
6683
6684 rq_attach_root(rq, &def_root_domain);
6685 #ifdef CONFIG_NO_HZ_COMMON
6686 rq->last_load_update_tick = jiffies;
6687 rq->last_blocked_load_update_tick = jiffies;
6688 atomic_set(&rq->nohz_flags, 0);
6689 #endif
6690 #endif /* CONFIG_SMP */
6691 hrtick_rq_init(rq);
6692 atomic_set(&rq->nr_iowait, 0);
6693 }
6694
6695 set_load_weight(&init_task, false);
6696
6697 /*
6698 * The boot idle thread does lazy MMU switching as well:
6699 */
6700 mmgrab(&init_mm);
6701 enter_lazy_tlb(&init_mm, current);
6702
6703 /*
6704 * Make us the idle thread. Technically, schedule() should not be
6705 * called from this thread, however somewhere below it might be,
6706 * but because we are the idle thread, we just pick up running again
6707 * when this runqueue becomes "idle".
6708 */
6709 init_idle(current, smp_processor_id());
6710
6711 calc_load_update = jiffies + LOAD_FREQ;
6712
6713 #ifdef CONFIG_SMP
6714 idle_thread_set_boot_cpu();
6715 #endif
6716 init_sched_fair_class();
6717
6718 init_schedstats();
6719
6720 psi_init();
6721
6722 init_uclamp();
6723
6724 scheduler_running = 1;
6725 }
6726
6727 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6728 static inline int preempt_count_equals(int preempt_offset)
6729 {
6730 int nested = preempt_count() + rcu_preempt_depth();
6731
6732 return (nested == preempt_offset);
6733 }
6734
6735 void __might_sleep(const char *file, int line, int preempt_offset)
6736 {
6737 /*
6738 * Blocking primitives will set (and therefore destroy) current->state,
6739 * since we will exit with TASK_RUNNING make sure we enter with it,
6740 * otherwise we will destroy state.
6741 */
6742 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6743 "do not call blocking ops when !TASK_RUNNING; "
6744 "state=%lx set at [<%p>] %pS\n",
6745 current->state,
6746 (void *)current->task_state_change,
6747 (void *)current->task_state_change);
6748
6749 ___might_sleep(file, line, preempt_offset);
6750 }
6751 EXPORT_SYMBOL(__might_sleep);
6752
6753 void ___might_sleep(const char *file, int line, int preempt_offset)
6754 {
6755 /* Ratelimiting timestamp: */
6756 static unsigned long prev_jiffy;
6757
6758 unsigned long preempt_disable_ip;
6759
6760 /* WARN_ON_ONCE() by default, no rate limit required: */
6761 rcu_sleep_check();
6762
6763 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6764 !is_idle_task(current) && !current->non_block_count) ||
6765 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6766 oops_in_progress)
6767 return;
6768
6769 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6770 return;
6771 prev_jiffy = jiffies;
6772
6773 /* Save this before calling printk(), since that will clobber it: */
6774 preempt_disable_ip = get_preempt_disable_ip(current);
6775
6776 printk(KERN_ERR
6777 "BUG: sleeping function called from invalid context at %s:%d\n",
6778 file, line);
6779 printk(KERN_ERR
6780 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6781 in_atomic(), irqs_disabled(), current->non_block_count,
6782 current->pid, current->comm);
6783
6784 if (task_stack_end_corrupted(current))
6785 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6786
6787 debug_show_held_locks(current);
6788 if (irqs_disabled())
6789 print_irqtrace_events(current);
6790 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6791 && !preempt_count_equals(preempt_offset)) {
6792 pr_err("Preemption disabled at:");
6793 print_ip_sym(preempt_disable_ip);
6794 pr_cont("\n");
6795 }
6796 dump_stack();
6797 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6798 }
6799 EXPORT_SYMBOL(___might_sleep);
6800
6801 void __cant_sleep(const char *file, int line, int preempt_offset)
6802 {
6803 static unsigned long prev_jiffy;
6804
6805 if (irqs_disabled())
6806 return;
6807
6808 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6809 return;
6810
6811 if (preempt_count() > preempt_offset)
6812 return;
6813
6814 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6815 return;
6816 prev_jiffy = jiffies;
6817
6818 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6819 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6820 in_atomic(), irqs_disabled(),
6821 current->pid, current->comm);
6822
6823 debug_show_held_locks(current);
6824 dump_stack();
6825 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6826 }
6827 EXPORT_SYMBOL_GPL(__cant_sleep);
6828 #endif
6829
6830 #ifdef CONFIG_MAGIC_SYSRQ
6831 void normalize_rt_tasks(void)
6832 {
6833 struct task_struct *g, *p;
6834 struct sched_attr attr = {
6835 .sched_policy = SCHED_NORMAL,
6836 };
6837
6838 read_lock(&tasklist_lock);
6839 for_each_process_thread(g, p) {
6840 /*
6841 * Only normalize user tasks:
6842 */
6843 if (p->flags & PF_KTHREAD)
6844 continue;
6845
6846 p->se.exec_start = 0;
6847 schedstat_set(p->se.statistics.wait_start, 0);
6848 schedstat_set(p->se.statistics.sleep_start, 0);
6849 schedstat_set(p->se.statistics.block_start, 0);
6850
6851 if (!dl_task(p) && !rt_task(p)) {
6852 /*
6853 * Renice negative nice level userspace
6854 * tasks back to 0:
6855 */
6856 if (task_nice(p) < 0)
6857 set_user_nice(p, 0);
6858 continue;
6859 }
6860
6861 __sched_setscheduler(p, &attr, false, false);
6862 }
6863 read_unlock(&tasklist_lock);
6864 }
6865
6866 #endif /* CONFIG_MAGIC_SYSRQ */
6867
6868 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6869 /*
6870 * These functions are only useful for the IA64 MCA handling, or kdb.
6871 *
6872 * They can only be called when the whole system has been
6873 * stopped - every CPU needs to be quiescent, and no scheduling
6874 * activity can take place. Using them for anything else would
6875 * be a serious bug, and as a result, they aren't even visible
6876 * under any other configuration.
6877 */
6878
6879 /**
6880 * curr_task - return the current task for a given CPU.
6881 * @cpu: the processor in question.
6882 *
6883 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6884 *
6885 * Return: The current task for @cpu.
6886 */
6887 struct task_struct *curr_task(int cpu)
6888 {
6889 return cpu_curr(cpu);
6890 }
6891
6892 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6893
6894 #ifdef CONFIG_IA64
6895 /**
6896 * ia64_set_curr_task - set the current task for a given CPU.
6897 * @cpu: the processor in question.
6898 * @p: the task pointer to set.
6899 *
6900 * Description: This function must only be used when non-maskable interrupts
6901 * are serviced on a separate stack. It allows the architecture to switch the
6902 * notion of the current task on a CPU in a non-blocking manner. This function
6903 * must be called with all CPU's synchronized, and interrupts disabled, the
6904 * and caller must save the original value of the current task (see
6905 * curr_task() above) and restore that value before reenabling interrupts and
6906 * re-starting the system.
6907 *
6908 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6909 */
6910 void ia64_set_curr_task(int cpu, struct task_struct *p)
6911 {
6912 cpu_curr(cpu) = p;
6913 }
6914
6915 #endif
6916
6917 #ifdef CONFIG_CGROUP_SCHED
6918 /* task_group_lock serializes the addition/removal of task groups */
6919 static DEFINE_SPINLOCK(task_group_lock);
6920
6921 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6922 struct task_group *parent)
6923 {
6924 #ifdef CONFIG_UCLAMP_TASK_GROUP
6925 enum uclamp_id clamp_id;
6926
6927 for_each_clamp_id(clamp_id) {
6928 uclamp_se_set(&tg->uclamp_req[clamp_id],
6929 uclamp_none(clamp_id), false);
6930 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6931 }
6932 #endif
6933 }
6934
6935 static void sched_free_group(struct task_group *tg)
6936 {
6937 free_fair_sched_group(tg);
6938 free_rt_sched_group(tg);
6939 autogroup_free(tg);
6940 kmem_cache_free(task_group_cache, tg);
6941 }
6942
6943 /* allocate runqueue etc for a new task group */
6944 struct task_group *sched_create_group(struct task_group *parent)
6945 {
6946 struct task_group *tg;
6947
6948 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6949 if (!tg)
6950 return ERR_PTR(-ENOMEM);
6951
6952 if (!alloc_fair_sched_group(tg, parent))
6953 goto err;
6954
6955 if (!alloc_rt_sched_group(tg, parent))
6956 goto err;
6957
6958 alloc_uclamp_sched_group(tg, parent);
6959
6960 return tg;
6961
6962 err:
6963 sched_free_group(tg);
6964 return ERR_PTR(-ENOMEM);
6965 }
6966
6967 void sched_online_group(struct task_group *tg, struct task_group *parent)
6968 {
6969 unsigned long flags;
6970
6971 spin_lock_irqsave(&task_group_lock, flags);
6972 list_add_rcu(&tg->list, &task_groups);
6973
6974 /* Root should already exist: */
6975 WARN_ON(!parent);
6976
6977 tg->parent = parent;
6978 INIT_LIST_HEAD(&tg->children);
6979 list_add_rcu(&tg->siblings, &parent->children);
6980 spin_unlock_irqrestore(&task_group_lock, flags);
6981
6982 online_fair_sched_group(tg);
6983 }
6984
6985 /* rcu callback to free various structures associated with a task group */
6986 static void sched_free_group_rcu(struct rcu_head *rhp)
6987 {
6988 /* Now it should be safe to free those cfs_rqs: */
6989 sched_free_group(container_of(rhp, struct task_group, rcu));
6990 }
6991
6992 void sched_destroy_group(struct task_group *tg)
6993 {
6994 /* Wait for possible concurrent references to cfs_rqs complete: */
6995 call_rcu(&tg->rcu, sched_free_group_rcu);
6996 }
6997
6998 void sched_offline_group(struct task_group *tg)
6999 {
7000 unsigned long flags;
7001
7002 /* End participation in shares distribution: */
7003 unregister_fair_sched_group(tg);
7004
7005 spin_lock_irqsave(&task_group_lock, flags);
7006 list_del_rcu(&tg->list);
7007 list_del_rcu(&tg->siblings);
7008 spin_unlock_irqrestore(&task_group_lock, flags);
7009 }
7010
7011 static void sched_change_group(struct task_struct *tsk, int type)
7012 {
7013 struct task_group *tg;
7014
7015 /*
7016 * All callers are synchronized by task_rq_lock(); we do not use RCU
7017 * which is pointless here. Thus, we pass "true" to task_css_check()
7018 * to prevent lockdep warnings.
7019 */
7020 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7021 struct task_group, css);
7022 tg = autogroup_task_group(tsk, tg);
7023 tsk->sched_task_group = tg;
7024
7025 #ifdef CONFIG_FAIR_GROUP_SCHED
7026 if (tsk->sched_class->task_change_group)
7027 tsk->sched_class->task_change_group(tsk, type);
7028 else
7029 #endif
7030 set_task_rq(tsk, task_cpu(tsk));
7031 }
7032
7033 /*
7034 * Change task's runqueue when it moves between groups.
7035 *
7036 * The caller of this function should have put the task in its new group by
7037 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7038 * its new group.
7039 */
7040 void sched_move_task(struct task_struct *tsk)
7041 {
7042 int queued, running, queue_flags =
7043 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7044 struct rq_flags rf;
7045 struct rq *rq;
7046
7047 rq = task_rq_lock(tsk, &rf);
7048 update_rq_clock(rq);
7049
7050 running = task_current(rq, tsk);
7051 queued = task_on_rq_queued(tsk);
7052
7053 if (queued)
7054 dequeue_task(rq, tsk, queue_flags);
7055 if (running)
7056 put_prev_task(rq, tsk);
7057
7058 sched_change_group(tsk, TASK_MOVE_GROUP);
7059
7060 if (queued)
7061 enqueue_task(rq, tsk, queue_flags);
7062 if (running) {
7063 set_next_task(rq, tsk);
7064 /*
7065 * After changing group, the running task may have joined a
7066 * throttled one but it's still the running task. Trigger a
7067 * resched to make sure that task can still run.
7068 */
7069 resched_curr(rq);
7070 }
7071
7072 task_rq_unlock(rq, tsk, &rf);
7073 }
7074
7075 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7076 {
7077 return css ? container_of(css, struct task_group, css) : NULL;
7078 }
7079
7080 static struct cgroup_subsys_state *
7081 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7082 {
7083 struct task_group *parent = css_tg(parent_css);
7084 struct task_group *tg;
7085
7086 if (!parent) {
7087 /* This is early initialization for the top cgroup */
7088 return &root_task_group.css;
7089 }
7090
7091 tg = sched_create_group(parent);
7092 if (IS_ERR(tg))
7093 return ERR_PTR(-ENOMEM);
7094
7095 return &tg->css;
7096 }
7097
7098 /* Expose task group only after completing cgroup initialization */
7099 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7100 {
7101 struct task_group *tg = css_tg(css);
7102 struct task_group *parent = css_tg(css->parent);
7103
7104 if (parent)
7105 sched_online_group(tg, parent);
7106
7107 #ifdef CONFIG_UCLAMP_TASK_GROUP
7108 /* Propagate the effective uclamp value for the new group */
7109 cpu_util_update_eff(css);
7110 #endif
7111
7112 return 0;
7113 }
7114
7115 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7116 {
7117 struct task_group *tg = css_tg(css);
7118
7119 sched_offline_group(tg);
7120 }
7121
7122 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7123 {
7124 struct task_group *tg = css_tg(css);
7125
7126 /*
7127 * Relies on the RCU grace period between css_released() and this.
7128 */
7129 sched_free_group(tg);
7130 }
7131
7132 /*
7133 * This is called before wake_up_new_task(), therefore we really only
7134 * have to set its group bits, all the other stuff does not apply.
7135 */
7136 static void cpu_cgroup_fork(struct task_struct *task)
7137 {
7138 struct rq_flags rf;
7139 struct rq *rq;
7140
7141 rq = task_rq_lock(task, &rf);
7142
7143 update_rq_clock(rq);
7144 sched_change_group(task, TASK_SET_GROUP);
7145
7146 task_rq_unlock(rq, task, &rf);
7147 }
7148
7149 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7150 {
7151 struct task_struct *task;
7152 struct cgroup_subsys_state *css;
7153 int ret = 0;
7154
7155 cgroup_taskset_for_each(task, css, tset) {
7156 #ifdef CONFIG_RT_GROUP_SCHED
7157 if (!sched_rt_can_attach(css_tg(css), task))
7158 return -EINVAL;
7159 #endif
7160 /*
7161 * Serialize against wake_up_new_task() such that if its
7162 * running, we're sure to observe its full state.
7163 */
7164 raw_spin_lock_irq(&task->pi_lock);
7165 /*
7166 * Avoid calling sched_move_task() before wake_up_new_task()
7167 * has happened. This would lead to problems with PELT, due to
7168 * move wanting to detach+attach while we're not attached yet.
7169 */
7170 if (task->state == TASK_NEW)
7171 ret = -EINVAL;
7172 raw_spin_unlock_irq(&task->pi_lock);
7173
7174 if (ret)
7175 break;
7176 }
7177 return ret;
7178 }
7179
7180 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7181 {
7182 struct task_struct *task;
7183 struct cgroup_subsys_state *css;
7184
7185 cgroup_taskset_for_each(task, css, tset)
7186 sched_move_task(task);
7187 }
7188
7189 #ifdef CONFIG_UCLAMP_TASK_GROUP
7190 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7191 {
7192 struct cgroup_subsys_state *top_css = css;
7193 struct uclamp_se *uc_parent = NULL;
7194 struct uclamp_se *uc_se = NULL;
7195 unsigned int eff[UCLAMP_CNT];
7196 enum uclamp_id clamp_id;
7197 unsigned int clamps;
7198
7199 css_for_each_descendant_pre(css, top_css) {
7200 uc_parent = css_tg(css)->parent
7201 ? css_tg(css)->parent->uclamp : NULL;
7202
7203 for_each_clamp_id(clamp_id) {
7204 /* Assume effective clamps matches requested clamps */
7205 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7206 /* Cap effective clamps with parent's effective clamps */
7207 if (uc_parent &&
7208 eff[clamp_id] > uc_parent[clamp_id].value) {
7209 eff[clamp_id] = uc_parent[clamp_id].value;
7210 }
7211 }
7212 /* Ensure protection is always capped by limit */
7213 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7214
7215 /* Propagate most restrictive effective clamps */
7216 clamps = 0x0;
7217 uc_se = css_tg(css)->uclamp;
7218 for_each_clamp_id(clamp_id) {
7219 if (eff[clamp_id] == uc_se[clamp_id].value)
7220 continue;
7221 uc_se[clamp_id].value = eff[clamp_id];
7222 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7223 clamps |= (0x1 << clamp_id);
7224 }
7225 if (!clamps) {
7226 css = css_rightmost_descendant(css);
7227 continue;
7228 }
7229
7230 /* Immediately update descendants RUNNABLE tasks */
7231 uclamp_update_active_tasks(css, clamps);
7232 }
7233 }
7234
7235 /*
7236 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7237 * C expression. Since there is no way to convert a macro argument (N) into a
7238 * character constant, use two levels of macros.
7239 */
7240 #define _POW10(exp) ((unsigned int)1e##exp)
7241 #define POW10(exp) _POW10(exp)
7242
7243 struct uclamp_request {
7244 #define UCLAMP_PERCENT_SHIFT 2
7245 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7246 s64 percent;
7247 u64 util;
7248 int ret;
7249 };
7250
7251 static inline struct uclamp_request
7252 capacity_from_percent(char *buf)
7253 {
7254 struct uclamp_request req = {
7255 .percent = UCLAMP_PERCENT_SCALE,
7256 .util = SCHED_CAPACITY_SCALE,
7257 .ret = 0,
7258 };
7259
7260 buf = strim(buf);
7261 if (strcmp(buf, "max")) {
7262 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7263 &req.percent);
7264 if (req.ret)
7265 return req;
7266 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7267 req.ret = -ERANGE;
7268 return req;
7269 }
7270
7271 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7272 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7273 }
7274
7275 return req;
7276 }
7277
7278 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7279 size_t nbytes, loff_t off,
7280 enum uclamp_id clamp_id)
7281 {
7282 struct uclamp_request req;
7283 struct task_group *tg;
7284
7285 req = capacity_from_percent(buf);
7286 if (req.ret)
7287 return req.ret;
7288
7289 mutex_lock(&uclamp_mutex);
7290 rcu_read_lock();
7291
7292 tg = css_tg(of_css(of));
7293 if (tg->uclamp_req[clamp_id].value != req.util)
7294 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7295
7296 /*
7297 * Because of not recoverable conversion rounding we keep track of the
7298 * exact requested value
7299 */
7300 tg->uclamp_pct[clamp_id] = req.percent;
7301
7302 /* Update effective clamps to track the most restrictive value */
7303 cpu_util_update_eff(of_css(of));
7304
7305 rcu_read_unlock();
7306 mutex_unlock(&uclamp_mutex);
7307
7308 return nbytes;
7309 }
7310
7311 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7312 char *buf, size_t nbytes,
7313 loff_t off)
7314 {
7315 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7316 }
7317
7318 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7319 char *buf, size_t nbytes,
7320 loff_t off)
7321 {
7322 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7323 }
7324
7325 static inline void cpu_uclamp_print(struct seq_file *sf,
7326 enum uclamp_id clamp_id)
7327 {
7328 struct task_group *tg;
7329 u64 util_clamp;
7330 u64 percent;
7331 u32 rem;
7332
7333 rcu_read_lock();
7334 tg = css_tg(seq_css(sf));
7335 util_clamp = tg->uclamp_req[clamp_id].value;
7336 rcu_read_unlock();
7337
7338 if (util_clamp == SCHED_CAPACITY_SCALE) {
7339 seq_puts(sf, "max\n");
7340 return;
7341 }
7342
7343 percent = tg->uclamp_pct[clamp_id];
7344 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7345 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7346 }
7347
7348 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7349 {
7350 cpu_uclamp_print(sf, UCLAMP_MIN);
7351 return 0;
7352 }
7353
7354 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7355 {
7356 cpu_uclamp_print(sf, UCLAMP_MAX);
7357 return 0;
7358 }
7359 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7360
7361 #ifdef CONFIG_FAIR_GROUP_SCHED
7362 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7363 struct cftype *cftype, u64 shareval)
7364 {
7365 if (shareval > scale_load_down(ULONG_MAX))
7366 shareval = MAX_SHARES;
7367 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7368 }
7369
7370 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7371 struct cftype *cft)
7372 {
7373 struct task_group *tg = css_tg(css);
7374
7375 return (u64) scale_load_down(tg->shares);
7376 }
7377
7378 #ifdef CONFIG_CFS_BANDWIDTH
7379 static DEFINE_MUTEX(cfs_constraints_mutex);
7380
7381 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7382 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7383
7384 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7385
7386 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7387 {
7388 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7389 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7390
7391 if (tg == &root_task_group)
7392 return -EINVAL;
7393
7394 /*
7395 * Ensure we have at some amount of bandwidth every period. This is
7396 * to prevent reaching a state of large arrears when throttled via
7397 * entity_tick() resulting in prolonged exit starvation.
7398 */
7399 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7400 return -EINVAL;
7401
7402 /*
7403 * Likewise, bound things on the otherside by preventing insane quota
7404 * periods. This also allows us to normalize in computing quota
7405 * feasibility.
7406 */
7407 if (period > max_cfs_quota_period)
7408 return -EINVAL;
7409
7410 /*
7411 * Prevent race between setting of cfs_rq->runtime_enabled and
7412 * unthrottle_offline_cfs_rqs().
7413 */
7414 get_online_cpus();
7415 mutex_lock(&cfs_constraints_mutex);
7416 ret = __cfs_schedulable(tg, period, quota);
7417 if (ret)
7418 goto out_unlock;
7419
7420 runtime_enabled = quota != RUNTIME_INF;
7421 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7422 /*
7423 * If we need to toggle cfs_bandwidth_used, off->on must occur
7424 * before making related changes, and on->off must occur afterwards
7425 */
7426 if (runtime_enabled && !runtime_was_enabled)
7427 cfs_bandwidth_usage_inc();
7428 raw_spin_lock_irq(&cfs_b->lock);
7429 cfs_b->period = ns_to_ktime(period);
7430 cfs_b->quota = quota;
7431
7432 __refill_cfs_bandwidth_runtime(cfs_b);
7433
7434 /* Restart the period timer (if active) to handle new period expiry: */
7435 if (runtime_enabled)
7436 start_cfs_bandwidth(cfs_b);
7437
7438 raw_spin_unlock_irq(&cfs_b->lock);
7439
7440 for_each_online_cpu(i) {
7441 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7442 struct rq *rq = cfs_rq->rq;
7443 struct rq_flags rf;
7444
7445 rq_lock_irq(rq, &rf);
7446 cfs_rq->runtime_enabled = runtime_enabled;
7447 cfs_rq->runtime_remaining = 0;
7448
7449 if (cfs_rq->throttled)
7450 unthrottle_cfs_rq(cfs_rq);
7451 rq_unlock_irq(rq, &rf);
7452 }
7453 if (runtime_was_enabled && !runtime_enabled)
7454 cfs_bandwidth_usage_dec();
7455 out_unlock:
7456 mutex_unlock(&cfs_constraints_mutex);
7457 put_online_cpus();
7458
7459 return ret;
7460 }
7461
7462 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7463 {
7464 u64 quota, period;
7465
7466 period = ktime_to_ns(tg->cfs_bandwidth.period);
7467 if (cfs_quota_us < 0)
7468 quota = RUNTIME_INF;
7469 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7470 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7471 else
7472 return -EINVAL;
7473
7474 return tg_set_cfs_bandwidth(tg, period, quota);
7475 }
7476
7477 static long tg_get_cfs_quota(struct task_group *tg)
7478 {
7479 u64 quota_us;
7480
7481 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7482 return -1;
7483
7484 quota_us = tg->cfs_bandwidth.quota;
7485 do_div(quota_us, NSEC_PER_USEC);
7486
7487 return quota_us;
7488 }
7489
7490 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7491 {
7492 u64 quota, period;
7493
7494 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7495 return -EINVAL;
7496
7497 period = (u64)cfs_period_us * NSEC_PER_USEC;
7498 quota = tg->cfs_bandwidth.quota;
7499
7500 return tg_set_cfs_bandwidth(tg, period, quota);
7501 }
7502
7503 static long tg_get_cfs_period(struct task_group *tg)
7504 {
7505 u64 cfs_period_us;
7506
7507 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7508 do_div(cfs_period_us, NSEC_PER_USEC);
7509
7510 return cfs_period_us;
7511 }
7512
7513 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7514 struct cftype *cft)
7515 {
7516 return tg_get_cfs_quota(css_tg(css));
7517 }
7518
7519 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7520 struct cftype *cftype, s64 cfs_quota_us)
7521 {
7522 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7523 }
7524
7525 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7526 struct cftype *cft)
7527 {
7528 return tg_get_cfs_period(css_tg(css));
7529 }
7530
7531 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7532 struct cftype *cftype, u64 cfs_period_us)
7533 {
7534 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7535 }
7536
7537 struct cfs_schedulable_data {
7538 struct task_group *tg;
7539 u64 period, quota;
7540 };
7541
7542 /*
7543 * normalize group quota/period to be quota/max_period
7544 * note: units are usecs
7545 */
7546 static u64 normalize_cfs_quota(struct task_group *tg,
7547 struct cfs_schedulable_data *d)
7548 {
7549 u64 quota, period;
7550
7551 if (tg == d->tg) {
7552 period = d->period;
7553 quota = d->quota;
7554 } else {
7555 period = tg_get_cfs_period(tg);
7556 quota = tg_get_cfs_quota(tg);
7557 }
7558
7559 /* note: these should typically be equivalent */
7560 if (quota == RUNTIME_INF || quota == -1)
7561 return RUNTIME_INF;
7562
7563 return to_ratio(period, quota);
7564 }
7565
7566 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7567 {
7568 struct cfs_schedulable_data *d = data;
7569 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7570 s64 quota = 0, parent_quota = -1;
7571
7572 if (!tg->parent) {
7573 quota = RUNTIME_INF;
7574 } else {
7575 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7576
7577 quota = normalize_cfs_quota(tg, d);
7578 parent_quota = parent_b->hierarchical_quota;
7579
7580 /*
7581 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7582 * always take the min. On cgroup1, only inherit when no
7583 * limit is set:
7584 */
7585 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7586 quota = min(quota, parent_quota);
7587 } else {
7588 if (quota == RUNTIME_INF)
7589 quota = parent_quota;
7590 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7591 return -EINVAL;
7592 }
7593 }
7594 cfs_b->hierarchical_quota = quota;
7595
7596 return 0;
7597 }
7598
7599 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7600 {
7601 int ret;
7602 struct cfs_schedulable_data data = {
7603 .tg = tg,
7604 .period = period,
7605 .quota = quota,
7606 };
7607
7608 if (quota != RUNTIME_INF) {
7609 do_div(data.period, NSEC_PER_USEC);
7610 do_div(data.quota, NSEC_PER_USEC);
7611 }
7612
7613 rcu_read_lock();
7614 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7615 rcu_read_unlock();
7616
7617 return ret;
7618 }
7619
7620 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7621 {
7622 struct task_group *tg = css_tg(seq_css(sf));
7623 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7624
7625 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7626 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7627 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7628
7629 if (schedstat_enabled() && tg != &root_task_group) {
7630 u64 ws = 0;
7631 int i;
7632
7633 for_each_possible_cpu(i)
7634 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7635
7636 seq_printf(sf, "wait_sum %llu\n", ws);
7637 }
7638
7639 return 0;
7640 }
7641 #endif /* CONFIG_CFS_BANDWIDTH */
7642 #endif /* CONFIG_FAIR_GROUP_SCHED */
7643
7644 #ifdef CONFIG_RT_GROUP_SCHED
7645 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7646 struct cftype *cft, s64 val)
7647 {
7648 return sched_group_set_rt_runtime(css_tg(css), val);
7649 }
7650
7651 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7652 struct cftype *cft)
7653 {
7654 return sched_group_rt_runtime(css_tg(css));
7655 }
7656
7657 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7658 struct cftype *cftype, u64 rt_period_us)
7659 {
7660 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7661 }
7662
7663 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7664 struct cftype *cft)
7665 {
7666 return sched_group_rt_period(css_tg(css));
7667 }
7668 #endif /* CONFIG_RT_GROUP_SCHED */
7669
7670 static struct cftype cpu_legacy_files[] = {
7671 #ifdef CONFIG_FAIR_GROUP_SCHED
7672 {
7673 .name = "shares",
7674 .read_u64 = cpu_shares_read_u64,
7675 .write_u64 = cpu_shares_write_u64,
7676 },
7677 #endif
7678 #ifdef CONFIG_CFS_BANDWIDTH
7679 {
7680 .name = "cfs_quota_us",
7681 .read_s64 = cpu_cfs_quota_read_s64,
7682 .write_s64 = cpu_cfs_quota_write_s64,
7683 },
7684 {
7685 .name = "cfs_period_us",
7686 .read_u64 = cpu_cfs_period_read_u64,
7687 .write_u64 = cpu_cfs_period_write_u64,
7688 },
7689 {
7690 .name = "stat",
7691 .seq_show = cpu_cfs_stat_show,
7692 },
7693 #endif
7694 #ifdef CONFIG_RT_GROUP_SCHED
7695 {
7696 .name = "rt_runtime_us",
7697 .read_s64 = cpu_rt_runtime_read,
7698 .write_s64 = cpu_rt_runtime_write,
7699 },
7700 {
7701 .name = "rt_period_us",
7702 .read_u64 = cpu_rt_period_read_uint,
7703 .write_u64 = cpu_rt_period_write_uint,
7704 },
7705 #endif
7706 #ifdef CONFIG_UCLAMP_TASK_GROUP
7707 {
7708 .name = "uclamp.min",
7709 .flags = CFTYPE_NOT_ON_ROOT,
7710 .seq_show = cpu_uclamp_min_show,
7711 .write = cpu_uclamp_min_write,
7712 },
7713 {
7714 .name = "uclamp.max",
7715 .flags = CFTYPE_NOT_ON_ROOT,
7716 .seq_show = cpu_uclamp_max_show,
7717 .write = cpu_uclamp_max_write,
7718 },
7719 #endif
7720 { } /* Terminate */
7721 };
7722
7723 static int cpu_extra_stat_show(struct seq_file *sf,
7724 struct cgroup_subsys_state *css)
7725 {
7726 #ifdef CONFIG_CFS_BANDWIDTH
7727 {
7728 struct task_group *tg = css_tg(css);
7729 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7730 u64 throttled_usec;
7731
7732 throttled_usec = cfs_b->throttled_time;
7733 do_div(throttled_usec, NSEC_PER_USEC);
7734
7735 seq_printf(sf, "nr_periods %d\n"
7736 "nr_throttled %d\n"
7737 "throttled_usec %llu\n",
7738 cfs_b->nr_periods, cfs_b->nr_throttled,
7739 throttled_usec);
7740 }
7741 #endif
7742 return 0;
7743 }
7744
7745 #ifdef CONFIG_FAIR_GROUP_SCHED
7746 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7747 struct cftype *cft)
7748 {
7749 struct task_group *tg = css_tg(css);
7750 u64 weight = scale_load_down(tg->shares);
7751
7752 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7753 }
7754
7755 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7756 struct cftype *cft, u64 weight)
7757 {
7758 /*
7759 * cgroup weight knobs should use the common MIN, DFL and MAX
7760 * values which are 1, 100 and 10000 respectively. While it loses
7761 * a bit of range on both ends, it maps pretty well onto the shares
7762 * value used by scheduler and the round-trip conversions preserve
7763 * the original value over the entire range.
7764 */
7765 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7766 return -ERANGE;
7767
7768 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7769
7770 return sched_group_set_shares(css_tg(css), scale_load(weight));
7771 }
7772
7773 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7774 struct cftype *cft)
7775 {
7776 unsigned long weight = scale_load_down(css_tg(css)->shares);
7777 int last_delta = INT_MAX;
7778 int prio, delta;
7779
7780 /* find the closest nice value to the current weight */
7781 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7782 delta = abs(sched_prio_to_weight[prio] - weight);
7783 if (delta >= last_delta)
7784 break;
7785 last_delta = delta;
7786 }
7787
7788 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7789 }
7790
7791 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7792 struct cftype *cft, s64 nice)
7793 {
7794 unsigned long weight;
7795 int idx;
7796
7797 if (nice < MIN_NICE || nice > MAX_NICE)
7798 return -ERANGE;
7799
7800 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7801 idx = array_index_nospec(idx, 40);
7802 weight = sched_prio_to_weight[idx];
7803
7804 return sched_group_set_shares(css_tg(css), scale_load(weight));
7805 }
7806 #endif
7807
7808 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7809 long period, long quota)
7810 {
7811 if (quota < 0)
7812 seq_puts(sf, "max");
7813 else
7814 seq_printf(sf, "%ld", quota);
7815
7816 seq_printf(sf, " %ld\n", period);
7817 }
7818
7819 /* caller should put the current value in *@periodp before calling */
7820 static int __maybe_unused cpu_period_quota_parse(char *buf,
7821 u64 *periodp, u64 *quotap)
7822 {
7823 char tok[21]; /* U64_MAX */
7824
7825 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7826 return -EINVAL;
7827
7828 *periodp *= NSEC_PER_USEC;
7829
7830 if (sscanf(tok, "%llu", quotap))
7831 *quotap *= NSEC_PER_USEC;
7832 else if (!strcmp(tok, "max"))
7833 *quotap = RUNTIME_INF;
7834 else
7835 return -EINVAL;
7836
7837 return 0;
7838 }
7839
7840 #ifdef CONFIG_CFS_BANDWIDTH
7841 static int cpu_max_show(struct seq_file *sf, void *v)
7842 {
7843 struct task_group *tg = css_tg(seq_css(sf));
7844
7845 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7846 return 0;
7847 }
7848
7849 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7850 char *buf, size_t nbytes, loff_t off)
7851 {
7852 struct task_group *tg = css_tg(of_css(of));
7853 u64 period = tg_get_cfs_period(tg);
7854 u64 quota;
7855 int ret;
7856
7857 ret = cpu_period_quota_parse(buf, &period, &quota);
7858 if (!ret)
7859 ret = tg_set_cfs_bandwidth(tg, period, quota);
7860 return ret ?: nbytes;
7861 }
7862 #endif
7863
7864 static struct cftype cpu_files[] = {
7865 #ifdef CONFIG_FAIR_GROUP_SCHED
7866 {
7867 .name = "weight",
7868 .flags = CFTYPE_NOT_ON_ROOT,
7869 .read_u64 = cpu_weight_read_u64,
7870 .write_u64 = cpu_weight_write_u64,
7871 },
7872 {
7873 .name = "weight.nice",
7874 .flags = CFTYPE_NOT_ON_ROOT,
7875 .read_s64 = cpu_weight_nice_read_s64,
7876 .write_s64 = cpu_weight_nice_write_s64,
7877 },
7878 #endif
7879 #ifdef CONFIG_CFS_BANDWIDTH
7880 {
7881 .name = "max",
7882 .flags = CFTYPE_NOT_ON_ROOT,
7883 .seq_show = cpu_max_show,
7884 .write = cpu_max_write,
7885 },
7886 #endif
7887 #ifdef CONFIG_UCLAMP_TASK_GROUP
7888 {
7889 .name = "uclamp.min",
7890 .flags = CFTYPE_NOT_ON_ROOT,
7891 .seq_show = cpu_uclamp_min_show,
7892 .write = cpu_uclamp_min_write,
7893 },
7894 {
7895 .name = "uclamp.max",
7896 .flags = CFTYPE_NOT_ON_ROOT,
7897 .seq_show = cpu_uclamp_max_show,
7898 .write = cpu_uclamp_max_write,
7899 },
7900 #endif
7901 { } /* terminate */
7902 };
7903
7904 struct cgroup_subsys cpu_cgrp_subsys = {
7905 .css_alloc = cpu_cgroup_css_alloc,
7906 .css_online = cpu_cgroup_css_online,
7907 .css_released = cpu_cgroup_css_released,
7908 .css_free = cpu_cgroup_css_free,
7909 .css_extra_stat_show = cpu_extra_stat_show,
7910 .fork = cpu_cgroup_fork,
7911 .can_attach = cpu_cgroup_can_attach,
7912 .attach = cpu_cgroup_attach,
7913 .legacy_cftypes = cpu_legacy_files,
7914 .dfl_cftypes = cpu_files,
7915 .early_init = true,
7916 .threaded = true,
7917 };
7918
7919 #endif /* CONFIG_CGROUP_SCHED */
7920
7921 void dump_cpu_task(int cpu)
7922 {
7923 pr_info("Task dump for CPU %d:\n", cpu);
7924 sched_show_task(cpu_curr(cpu));
7925 }
7926
7927 /*
7928 * Nice levels are multiplicative, with a gentle 10% change for every
7929 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7930 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7931 * that remained on nice 0.
7932 *
7933 * The "10% effect" is relative and cumulative: from _any_ nice level,
7934 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7935 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7936 * If a task goes up by ~10% and another task goes down by ~10% then
7937 * the relative distance between them is ~25%.)
7938 */
7939 const int sched_prio_to_weight[40] = {
7940 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7941 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7942 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7943 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7944 /* 0 */ 1024, 820, 655, 526, 423,
7945 /* 5 */ 335, 272, 215, 172, 137,
7946 /* 10 */ 110, 87, 70, 56, 45,
7947 /* 15 */ 36, 29, 23, 18, 15,
7948 };
7949
7950 /*
7951 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7952 *
7953 * In cases where the weight does not change often, we can use the
7954 * precalculated inverse to speed up arithmetics by turning divisions
7955 * into multiplications:
7956 */
7957 const u32 sched_prio_to_wmult[40] = {
7958 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7959 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7960 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7961 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7962 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7963 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7964 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7965 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7966 };
7967
7968 #undef CREATE_TRACE_POINTS