]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
sched/deadline: Restrict user params max value to 2^63 ns
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
128 }
129
130 /*
131 * Debugging: various feature bits
132 */
133
134 #define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
137 const_debug unsigned int sysctl_sched_features =
138 #include "features.h"
139 0;
140
141 #undef SCHED_FEAT
142
143 #ifdef CONFIG_SCHED_DEBUG
144 #define SCHED_FEAT(name, enabled) \
145 #name ,
146
147 static const char * const sched_feat_names[] = {
148 #include "features.h"
149 };
150
151 #undef SCHED_FEAT
152
153 static int sched_feat_show(struct seq_file *m, void *v)
154 {
155 int i;
156
157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
161 }
162 seq_puts(m, "\n");
163
164 return 0;
165 }
166
167 #ifdef HAVE_JUMP_LABEL
168
169 #define jump_label_key__true STATIC_KEY_INIT_TRUE
170 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172 #define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
175 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 #include "features.h"
177 };
178
179 #undef SCHED_FEAT
180
181 static void sched_feat_disable(int i)
182 {
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
185 }
186
187 static void sched_feat_enable(int i)
188 {
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
191 }
192 #else
193 static void sched_feat_disable(int i) { };
194 static void sched_feat_enable(int i) { };
195 #endif /* HAVE_JUMP_LABEL */
196
197 static int sched_feat_set(char *cmp)
198 {
199 int i;
200 int neg = 0;
201
202 if (strncmp(cmp, "NO_", 3) == 0) {
203 neg = 1;
204 cmp += 3;
205 }
206
207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 if (neg) {
210 sysctl_sched_features &= ~(1UL << i);
211 sched_feat_disable(i);
212 } else {
213 sysctl_sched_features |= (1UL << i);
214 sched_feat_enable(i);
215 }
216 break;
217 }
218 }
219
220 return i;
221 }
222
223 static ssize_t
224 sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226 {
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
241 if (i == __SCHED_FEAT_NR)
242 return -EINVAL;
243
244 *ppos += cnt;
245
246 return cnt;
247 }
248
249 static int sched_feat_open(struct inode *inode, struct file *filp)
250 {
251 return single_open(filp, sched_feat_show, NULL);
252 }
253
254 static const struct file_operations sched_feat_fops = {
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
260 };
261
262 static __init int sched_init_debug(void)
263 {
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268 }
269 late_initcall(sched_init_debug);
270 #endif /* CONFIG_SCHED_DEBUG */
271
272 /*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276 const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278 /*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286 /*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290 unsigned int sysctl_sched_rt_period = 1000000;
291
292 __read_mostly int scheduler_running;
293
294 /*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298 int sysctl_sched_rt_runtime = 950000;
299
300 /*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303 static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock)
305 {
306 struct rq *rq;
307
308 lockdep_assert_held(&p->pi_lock);
309
310 for (;;) {
311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p)))
314 return rq;
315 raw_spin_unlock(&rq->lock);
316 }
317 }
318
319 /*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock)
324 __acquires(rq->lock)
325 {
326 struct rq *rq;
327
328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p)))
333 return rq;
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 }
337 }
338
339 static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 }
344
345 static inline void
346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock)
348 __releases(p->pi_lock)
349 {
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 }
353
354 /*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357 static struct rq *this_rq_lock(void)
358 __acquires(rq->lock)
359 {
360 struct rq *rq;
361
362 local_irq_disable();
363 rq = this_rq();
364 raw_spin_lock(&rq->lock);
365
366 return rq;
367 }
368
369 #ifdef CONFIG_SCHED_HRTICK
370 /*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374 static void hrtick_clear(struct rq *rq)
375 {
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378 }
379
380 /*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396 }
397
398 #ifdef CONFIG_SMP
399
400 static int __hrtick_restart(struct rq *rq)
401 {
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406 }
407
408 /*
409 * called from hardirq (IPI) context
410 */
411 static void __hrtick_start(void *arg)
412 {
413 struct rq *rq = arg;
414
415 raw_spin_lock(&rq->lock);
416 __hrtick_restart(rq);
417 rq->hrtick_csd_pending = 0;
418 raw_spin_unlock(&rq->lock);
419 }
420
421 /*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426 void hrtick_start(struct rq *rq, u64 delay)
427 {
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431 hrtimer_set_expires(timer, time);
432
433 if (rq == this_rq()) {
434 __hrtick_restart(rq);
435 } else if (!rq->hrtick_csd_pending) {
436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 rq->hrtick_csd_pending = 1;
438 }
439 }
440
441 static int
442 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 {
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
453 hrtick_clear(cpu_rq(cpu));
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458 }
459
460 static __init void init_hrtick(void)
461 {
462 hotcpu_notifier(hotplug_hrtick, 0);
463 }
464 #else
465 /*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470 void hrtick_start(struct rq *rq, u64 delay)
471 {
472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 HRTIMER_MODE_REL_PINNED, 0);
474 }
475
476 static inline void init_hrtick(void)
477 {
478 }
479 #endif /* CONFIG_SMP */
480
481 static void init_rq_hrtick(struct rq *rq)
482 {
483 #ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
485
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489 #endif
490
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
493 }
494 #else /* CONFIG_SCHED_HRTICK */
495 static inline void hrtick_clear(struct rq *rq)
496 {
497 }
498
499 static inline void init_rq_hrtick(struct rq *rq)
500 {
501 }
502
503 static inline void init_hrtick(void)
504 {
505 }
506 #endif /* CONFIG_SCHED_HRTICK */
507
508 /*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515 void resched_task(struct task_struct *p)
516 {
517 int cpu;
518
519 lockdep_assert_held(&task_rq(p)->lock);
520
521 if (test_tsk_need_resched(p))
522 return;
523
524 set_tsk_need_resched(p);
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched();
529 return;
530 }
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536 }
537
538 void resched_cpu(int cpu)
539 {
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 return;
545 resched_task(cpu_curr(cpu));
546 raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548
549 #ifdef CONFIG_SMP
550 #ifdef CONFIG_NO_HZ_COMMON
551 /*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559 int get_nohz_timer_target(int pinned)
560 {
561 int cpu = smp_processor_id();
562 int i;
563 struct sched_domain *sd;
564
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu;
567
568 rcu_read_lock();
569 for_each_domain(cpu, sd) {
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577 unlock:
578 rcu_read_unlock();
579 return cpu;
580 }
581 /*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 /*
599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically.
604 */
605 if (rq->curr != rq->idle)
606 return;
607
608 /*
609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule()
612 */
613 set_tsk_need_resched(rq->idle);
614
615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb();
617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu);
619 }
620
621 static bool wake_up_full_nohz_cpu(int cpu)
622 {
623 if (tick_nohz_full_cpu(cpu)) {
624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu);
627 return true;
628 }
629
630 return false;
631 }
632
633 void wake_up_nohz_cpu(int cpu)
634 {
635 if (!wake_up_full_nohz_cpu(cpu))
636 wake_up_idle_cpu(cpu);
637 }
638
639 static inline bool got_nohz_idle_kick(void)
640 {
641 int cpu = smp_processor_id();
642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false;
645
646 if (idle_cpu(cpu) && !need_resched())
647 return true;
648
649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK
652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false;
655 }
656
657 #else /* CONFIG_NO_HZ_COMMON */
658
659 static inline bool got_nohz_idle_kick(void)
660 {
661 return false;
662 }
663
664 #endif /* CONFIG_NO_HZ_COMMON */
665
666 #ifdef CONFIG_NO_HZ_FULL
667 bool sched_can_stop_tick(void)
668 {
669 struct rq *rq;
670
671 rq = this_rq();
672
673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb();
675
676 /* More than one running task need preemption */
677 if (rq->nr_running > 1)
678 return false;
679
680 return true;
681 }
682 #endif /* CONFIG_NO_HZ_FULL */
683
684 void sched_avg_update(struct rq *rq)
685 {
686 s64 period = sched_avg_period();
687
688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 /*
690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this.
693 */
694 asm("" : "+rm" (rq->age_stamp));
695 rq->age_stamp += period;
696 rq->rt_avg /= 2;
697 }
698 }
699
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
763 }
764
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 update_rq_clock(rq);
768 sched_info_queued(rq, p);
769 p->sched_class->enqueue_task(rq, p, flags);
770 }
771
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 update_rq_clock(rq);
775 sched_info_dequeued(rq, p);
776 p->sched_class->dequeue_task(rq, p, flags);
777 }
778
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
784 enqueue_task(rq, p, flags);
785 }
786
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
792 dequeue_task(rq, p, flags);
793 }
794
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((&paravirt_steal_rq_enabled))) {
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 rq->prev_steal_time_rq += steal;
837 delta -= steal;
838 }
839 #endif
840
841 rq->clock_task += delta;
842
843 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal);
846 #endif
847 }
848
849 void sched_set_stop_task(int cpu, struct task_struct *stop)
850 {
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854 if (stop) {
855 /*
856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about.
858 *
859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway.
862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865 stop->sched_class = &stop_sched_class;
866 }
867
868 cpu_rq(cpu)->stop = stop;
869
870 if (old_stop) {
871 /*
872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces.
874 */
875 old_stop->sched_class = &rt_sched_class;
876 }
877 }
878
879 /*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882 static inline int __normal_prio(struct task_struct *p)
883 {
884 return p->static_prio;
885 }
886
887 /*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894 static inline int normal_prio(struct task_struct *p)
895 {
896 int prio;
897
898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p))
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905 }
906
907 /*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914 static int effective_prio(struct task_struct *p)
915 {
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925 }
926
927 /**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933 inline int task_curr(const struct task_struct *p)
934 {
935 return cpu_curr(task_cpu(p)) == p;
936 }
937
938 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
940 int oldprio)
941 {
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 rq->skip_clock_update = 1;
973 }
974
975 #ifdef CONFIG_SMP
976 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977 {
978 #ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986 #ifdef CONFIG_LOCKDEP
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
992 * see task_group().
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999 #endif
1000 #endif
1001
1002 trace_sched_migrate_task(p, new_cpu);
1003
1004 if (task_cpu(p) != new_cpu) {
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
1007 p->se.nr_migrations++;
1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009 }
1010
1011 __set_task_cpu(p, new_cpu);
1012 }
1013
1014 static void __migrate_swap_task(struct task_struct *p, int cpu)
1015 {
1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq;
1018
1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu);
1021
1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0);
1026 } else {
1027 /*
1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is.
1031 */
1032 p->wake_cpu = cpu;
1033 }
1034 }
1035
1036 struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu;
1039 };
1040
1041 static int migrate_swap_stop(void *data)
1042 {
1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN;
1046
1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu);
1049
1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock);
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070 unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075 return ret;
1076 }
1077
1078 /*
1079 * Cross migrate two tasks
1080 */
1081 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082 {
1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL;
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 /*
1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line.
1099 */
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112 out:
1113 return ret;
1114 }
1115
1116 struct migration_arg {
1117 struct task_struct *task;
1118 int dest_cpu;
1119 };
1120
1121 static int migration_cpu_stop(void *data);
1122
1123 /*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140 {
1141 unsigned long flags;
1142 int running, on_rq;
1143 unsigned long ncsw;
1144 struct rq *rq;
1145
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
1154
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
1169 cpu_relax();
1170 }
1171
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
1178 trace_sched_wait_task(p);
1179 running = task_running(rq, p);
1180 on_rq = p->on_rq;
1181 ncsw = 0;
1182 if (!match_state || p->state == match_state)
1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184 task_rq_unlock(rq, p, &flags);
1185
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
1202
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
1208 * So if it was still runnable (but just not actively
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 continue;
1218 }
1219
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
1227
1228 return ncsw;
1229 }
1230
1231 /***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244 void kick_process(struct task_struct *p)
1245 {
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253 }
1254 EXPORT_SYMBOL_GPL(kick_process);
1255 #endif /* CONFIG_SMP */
1256
1257 #ifdef CONFIG_SMP
1258 /*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261 static int select_fallback_rq(int cpu, struct task_struct *p)
1262 {
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
1267
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
1285 }
1286
1287 for (;;) {
1288 /* Any allowed, online CPU? */
1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
1296
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315 out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
1326 }
1327
1328 return dest_cpu;
1329 }
1330
1331 /*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334 static inline
1335 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336 {
1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 !cpu_online(cpu)))
1351 cpu = select_fallback_rq(task_cpu(p), p);
1352
1353 return cpu;
1354 }
1355
1356 static void update_avg(u64 *avg, u64 sample)
1357 {
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360 }
1361 #endif
1362
1363 static void
1364 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365 {
1366 #ifdef CONFIG_SCHEDSTATS
1367 struct rq *rq = this_rq();
1368
1369 #ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 rcu_read_lock();
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
1386 rcu_read_unlock();
1387 }
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392 #endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
1395 schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397 if (wake_flags & WF_SYNC)
1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400 #endif /* CONFIG_SCHEDSTATS */
1401 }
1402
1403 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404 {
1405 activate_task(rq, p, en_flags);
1406 p->on_rq = 1;
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
1411 }
1412
1413 /*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416 static void
1417 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418 {
1419 check_preempt_curr(rq, p, wake_flags);
1420 trace_sched_wakeup(p, true);
1421
1422 p->state = TASK_RUNNING;
1423 #ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
1427 if (rq->idle_stamp) {
1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
1429 u64 max = 2*rq->max_idle_balance_cost;
1430
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
1434 rq->avg_idle = max;
1435
1436 rq->idle_stamp = 0;
1437 }
1438 #endif
1439 }
1440
1441 static void
1442 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443 {
1444 #ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447 #endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451 }
1452
1453 /*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459 static int ttwu_remote(struct task_struct *p, int wake_flags)
1460 {
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474 }
1475
1476 #ifdef CONFIG_SMP
1477 static void sched_ttwu_pending(void)
1478 {
1479 struct rq *rq = this_rq();
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
1482
1483 raw_spin_lock(&rq->lock);
1484
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492 }
1493
1494 void scheduler_ipi(void)
1495 {
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
1501 preempt_fold_need_resched();
1502
1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick())
1506 return;
1507
1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them.
1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly.
1516 *
1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case.
1520 */
1521 irq_enter();
1522 tick_nohz_full_check();
1523 sched_ttwu_pending();
1524
1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */
1528 if (unlikely(got_nohz_idle_kick())) {
1529 this_rq()->idle_balance = 1;
1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
1531 }
1532 irq_exit();
1533 }
1534
1535 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536 {
1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 smp_send_reschedule(cpu);
1539 }
1540
1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 {
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 }
1545 #endif /* CONFIG_SMP */
1546
1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 {
1549 struct rq *rq = cpu_rq(cpu);
1550
1551 #if defined(CONFIG_SMP)
1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557 #endif
1558
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
1562 }
1563
1564 /**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 {
1582 unsigned long flags;
1583 int cpu, success = 0;
1584
1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does.
1590 */
1591 smp_mb__before_spinlock();
1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
1593 if (!(p->state & state))
1594 goto out;
1595
1596 success = 1; /* we're going to change ->state */
1597 cpu = task_cpu(p);
1598
1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat;
1601
1602 #ifdef CONFIG_SMP
1603 /*
1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task.
1606 */
1607 while (p->on_cpu)
1608 cpu_relax();
1609 /*
1610 * Pairs with the smp_wmb() in finish_lock_switch().
1611 */
1612 smp_rmb();
1613
1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615 p->state = TASK_WAKING;
1616
1617 if (p->sched_class->task_waking)
1618 p->sched_class->task_waking(p);
1619
1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED;
1623 set_task_cpu(p, cpu);
1624 }
1625 #endif /* CONFIG_SMP */
1626
1627 ttwu_queue(p, cpu);
1628 stat:
1629 ttwu_stat(p, cpu, wake_flags);
1630 out:
1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633 return success;
1634 }
1635
1636 /**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644 static void try_to_wake_up_local(struct task_struct *p)
1645 {
1646 struct rq *rq = task_rq(p);
1647
1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current))
1650 return;
1651
1652 lockdep_assert_held(&rq->lock);
1653
1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock);
1658 }
1659
1660 if (!(p->state & TASK_NORMAL))
1661 goto out;
1662
1663 if (!p->on_rq)
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666 ttwu_do_wakeup(rq, p, 0);
1667 ttwu_stat(p, smp_processor_id(), 0);
1668 out:
1669 raw_spin_unlock(&p->pi_lock);
1670 }
1671
1672 /**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684 int wake_up_process(struct task_struct *p)
1685 {
1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1688 }
1689 EXPORT_SYMBOL(wake_up_process);
1690
1691 int wake_up_state(struct task_struct *p, unsigned int state)
1692 {
1693 return try_to_wake_up(p, state, 0);
1694 }
1695
1696 /*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703 {
1704 p->on_rq = 0;
1705
1706 p->se.on_rq = 0;
1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0;
1709 p->se.prev_sum_exec_runtime = 0;
1710 p->se.nr_migrations = 0;
1711 p->se.vruntime = 0;
1712 INIT_LIST_HEAD(&p->se.group_node);
1713
1714 #ifdef CONFIG_SCHEDSTATS
1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716 #endif
1717
1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0;
1722 p->dl.dl_period = 0;
1723 p->dl.flags = 0;
1724
1725 INIT_LIST_HEAD(&p->rt.run_list);
1726
1727 #ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729 #endif
1730
1731 #ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 p->mm->numa_scan_seq = 0;
1735 }
1736
1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else
1740 p->numa_preferred_nid = -1;
1741
1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745 p->numa_work.next = &p->numa_work;
1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL;
1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0;
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
1753 #endif /* CONFIG_NUMA_BALANCING */
1754 }
1755
1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled)
1759 {
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764 }
1765 #else
1766 __read_mostly bool numabalancing_enabled;
1767
1768 void set_numabalancing_state(bool enabled)
1769 {
1770 numabalancing_enabled = enabled;
1771 }
1772 #endif /* CONFIG_SCHED_DEBUG */
1773
1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777 {
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793 }
1794 #endif
1795 #endif
1796
1797 /*
1798 * fork()/clone()-time setup:
1799 */
1800 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 {
1802 unsigned long flags;
1803 int cpu = get_cpu();
1804
1805 __sched_fork(clone_flags, p);
1806 /*
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
1811 p->state = TASK_RUNNING;
1812
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
1831
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
1838
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
1845 p->sched_class = &fair_sched_class;
1846 }
1847
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #endif
1866 #if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
1868 #endif
1869 init_task_preempt_count(p);
1870 #ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873 #endif
1874
1875 put_cpu();
1876 return 0;
1877 }
1878
1879 unsigned long to_ratio(u64 period, u64 runtime)
1880 {
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893 }
1894
1895 #ifdef CONFIG_SMP
1896 inline struct dl_bw *dl_bw_of(int i)
1897 {
1898 return &cpu_rq(i)->rd->dl_bw;
1899 }
1900
1901 static inline int dl_bw_cpus(int i)
1902 {
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
1910 }
1911 #else
1912 inline struct dl_bw *dl_bw_of(int i)
1913 {
1914 return &cpu_rq(i)->dl.dl_bw;
1915 }
1916
1917 static inline int dl_bw_cpus(int i)
1918 {
1919 return 1;
1920 }
1921 #endif
1922
1923 static inline
1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 {
1926 dl_b->total_bw -= tsk_bw;
1927 }
1928
1929 static inline
1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 {
1932 dl_b->total_bw += tsk_bw;
1933 }
1934
1935 static inline
1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 {
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940 }
1941
1942 /*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950 static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952 {
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period ?: attr->sched_deadline;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1;
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986 }
1987
1988 extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990 /*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997 void wake_up_new_task(struct task_struct *p)
1998 {
1999 unsigned long flags;
2000 struct rq *rq;
2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 #ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 #endif
2011
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0);
2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK);
2019 #ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
2022 #endif
2023 task_rq_unlock(rq, p, &flags);
2024 }
2025
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028 /**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 {
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035 }
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038 /**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 {
2046 hlist_del(&notifier->link);
2047 }
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 {
2052 struct preempt_notifier *notifier;
2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056 }
2057
2058 static void
2059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061 {
2062 struct preempt_notifier *notifier;
2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next);
2066 }
2067
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071 {
2072 }
2073
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077 {
2078 }
2079
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082 /**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095 static inline void
2096 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
2098 {
2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105 }
2106
2107 /**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock)
2124 {
2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state;
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
2141 prev_state = prev->state;
2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch();
2147
2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm)
2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev);
2154
2155 /*
2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list.
2158 */
2159 kprobe_flush_task(prev);
2160 put_task_struct(prev);
2161 }
2162
2163 tick_nohz_task_switch(current);
2164 }
2165
2166 #ifdef CONFIG_SMP
2167
2168 /* rq->lock is NOT held, but preemption is disabled */
2169 static inline void post_schedule(struct rq *rq)
2170 {
2171 if (rq->post_schedule) {
2172 unsigned long flags;
2173
2174 raw_spin_lock_irqsave(&rq->lock, flags);
2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq);
2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179 rq->post_schedule = 0;
2180 }
2181 }
2182
2183 #else
2184
2185 static inline void post_schedule(struct rq *rq)
2186 {
2187 }
2188
2189 #endif
2190
2191 /**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195 asmlinkage void schedule_tail(struct task_struct *prev)
2196 __releases(rq->lock)
2197 {
2198 struct rq *rq = this_rq();
2199
2200 finish_task_switch(rq, prev);
2201
2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch?
2205 */
2206 post_schedule(rq);
2207
2208 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable();
2211 #endif
2212 if (current->set_child_tid)
2213 put_user(task_pid_vnr(current), current->set_child_tid);
2214 }
2215
2216 /*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220 static inline void
2221 context_switch(struct rq *rq, struct task_struct *prev,
2222 struct task_struct *next)
2223 {
2224 struct mm_struct *mm, *oldmm;
2225
2226 prepare_task_switch(rq, prev, next);
2227
2228 mm = next->mm;
2229 oldmm = prev->active_mm;
2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into
2233 * one hypercall.
2234 */
2235 arch_start_context_switch(prev);
2236
2237 if (!mm) {
2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next);
2241 } else
2242 switch_mm(oldmm, mm, next);
2243
2244 if (!prev->mm) {
2245 prev->active_mm = NULL;
2246 rq->prev_mm = oldmm;
2247 }
2248 /*
2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here:
2253 */
2254 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256 #endif
2257
2258 context_tracking_task_switch(prev, next);
2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev);
2261
2262 barrier();
2263 /*
2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid.
2267 */
2268 finish_task_switch(this_rq(), prev);
2269 }
2270
2271 /*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277 unsigned long nr_running(void)
2278 {
2279 unsigned long i, sum = 0;
2280
2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running;
2283
2284 return sum;
2285 }
2286
2287 unsigned long long nr_context_switches(void)
2288 {
2289 int i;
2290 unsigned long long sum = 0;
2291
2292 for_each_possible_cpu(i)
2293 sum += cpu_rq(i)->nr_switches;
2294
2295 return sum;
2296 }
2297
2298 unsigned long nr_iowait(void)
2299 {
2300 unsigned long i, sum = 0;
2301
2302 for_each_possible_cpu(i)
2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305 return sum;
2306 }
2307
2308 unsigned long nr_iowait_cpu(int cpu)
2309 {
2310 struct rq *this = cpu_rq(cpu);
2311 return atomic_read(&this->nr_iowait);
2312 }
2313
2314 #ifdef CONFIG_SMP
2315
2316 /*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320 void sched_exec(void)
2321 {
2322 struct task_struct *p = current;
2323 unsigned long flags;
2324 int dest_cpu;
2325
2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 if (dest_cpu == smp_processor_id())
2329 goto unlock;
2330
2331 if (likely(cpu_active(dest_cpu))) {
2332 struct migration_arg arg = { p, dest_cpu };
2333
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336 return;
2337 }
2338 unlock:
2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340 }
2341
2342 #endif
2343
2344 DEFINE_PER_CPU(struct kernel_stat, kstat);
2345 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347 EXPORT_PER_CPU_SYMBOL(kstat);
2348 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350 /*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357 {
2358 u64 ns = 0;
2359
2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq);
2362 ns = rq_clock_task(rq) - p->se.exec_start;
2363 if ((s64)ns < 0)
2364 ns = 0;
2365 }
2366
2367 return ns;
2368 }
2369
2370 unsigned long long task_delta_exec(struct task_struct *p)
2371 {
2372 unsigned long flags;
2373 struct rq *rq;
2374 u64 ns = 0;
2375
2376 rq = task_rq_lock(p, &flags);
2377 ns = do_task_delta_exec(p, rq);
2378 task_rq_unlock(rq, p, &flags);
2379
2380 return ns;
2381 }
2382
2383 /*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388 unsigned long long task_sched_runtime(struct task_struct *p)
2389 {
2390 unsigned long flags;
2391 struct rq *rq;
2392 u64 ns = 0;
2393
2394 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok.
2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */
2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime;
2406 #endif
2407
2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410 task_rq_unlock(rq, p, &flags);
2411
2412 return ns;
2413 }
2414
2415 /*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419 void scheduler_tick(void)
2420 {
2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu);
2423 struct task_struct *curr = rq->curr;
2424
2425 sched_clock_tick();
2426
2427 raw_spin_lock(&rq->lock);
2428 update_rq_clock(rq);
2429 curr->sched_class->task_tick(rq, curr, 0);
2430 update_cpu_load_active(rq);
2431 raw_spin_unlock(&rq->lock);
2432
2433 perf_event_task_tick();
2434
2435 #ifdef CONFIG_SMP
2436 rq->idle_balance = idle_cpu(cpu);
2437 trigger_load_balance(rq);
2438 #endif
2439 rq_last_tick_reset(rq);
2440 }
2441
2442 #ifdef CONFIG_NO_HZ_FULL
2443 /**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456 u64 scheduler_tick_max_deferment(void)
2457 {
2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461 next = rq->last_sched_tick + HZ;
2462
2463 if (time_before_eq(next, now))
2464 return 0;
2465
2466 return jiffies_to_nsecs(next - now);
2467 }
2468 #endif
2469
2470 notrace unsigned long get_parent_ip(unsigned long addr)
2471 {
2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3;
2476 }
2477 return addr;
2478 }
2479
2480 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER))
2482
2483 void __kprobes preempt_count_add(int val)
2484 {
2485 #ifdef CONFIG_DEBUG_PREEMPT
2486 /*
2487 * Underflow?
2488 */
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return;
2491 #endif
2492 __preempt_count_add(val);
2493 #ifdef CONFIG_DEBUG_PREEMPT
2494 /*
2495 * Spinlock count overflowing soon?
2496 */
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10);
2499 #endif
2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502 #ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip;
2504 #endif
2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 }
2507 }
2508 EXPORT_SYMBOL(preempt_count_add);
2509
2510 void __kprobes preempt_count_sub(int val)
2511 {
2512 #ifdef CONFIG_DEBUG_PREEMPT
2513 /*
2514 * Underflow?
2515 */
2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517 return;
2518 /*
2519 * Is the spinlock portion underflowing?
2520 */
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK)))
2523 return;
2524 #endif
2525
2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528 __preempt_count_sub(val);
2529 }
2530 EXPORT_SYMBOL(preempt_count_sub);
2531
2532 #endif
2533
2534 /*
2535 * Print scheduling while atomic bug:
2536 */
2537 static noinline void __schedule_bug(struct task_struct *prev)
2538 {
2539 if (oops_in_progress)
2540 return;
2541
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count());
2544
2545 debug_show_held_locks(prev);
2546 print_modules();
2547 if (irqs_disabled())
2548 print_irqtrace_events(prev);
2549 #ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n");
2554 }
2555 #endif
2556 dump_stack();
2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558 }
2559
2560 /*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563 static inline void schedule_debug(struct task_struct *prev)
2564 {
2565 /*
2566 * Test if we are atomic. Since do_exit() needs to call into
2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not.
2569 */
2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571 __schedule_bug(prev);
2572 rcu_sleep_check();
2573
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576 schedstat_inc(this_rq(), sched_count);
2577 }
2578
2579 /*
2580 * Pick up the highest-prio task:
2581 */
2582 static inline struct task_struct *
2583 pick_next_task(struct rq *rq, struct task_struct *prev)
2584 {
2585 const struct sched_class *class = &fair_sched_class;
2586 struct task_struct *p;
2587
2588 /*
2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly:
2591 */
2592 if (likely(prev->sched_class == class &&
2593 rq->nr_running == rq->cfs.h_nr_running)) {
2594 p = fair_sched_class.pick_next_task(rq, prev);
2595 if (unlikely(p == RETRY_TASK))
2596 goto again;
2597
2598 /* assumes fair_sched_class->next == idle_sched_class */
2599 if (unlikely(!p))
2600 p = idle_sched_class.pick_next_task(rq, prev);
2601
2602 return p;
2603 }
2604
2605 again:
2606 for_each_class(class) {
2607 p = class->pick_next_task(rq, prev);
2608 if (p) {
2609 if (unlikely(p == RETRY_TASK))
2610 goto again;
2611 return p;
2612 }
2613 }
2614
2615 BUG(); /* the idle class will always have a runnable task */
2616 }
2617
2618 /*
2619 * __schedule() is the main scheduler function.
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 * paths. For example, see arch/x86/entry_64.S.
2627 *
2628 * To drive preemption between tasks, the scheduler sets the flag in timer
2629 * interrupt handler scheduler_tick().
2630 *
2631 * 3. Wakeups don't really cause entry into schedule(). They add a
2632 * task to the run-queue and that's it.
2633 *
2634 * Now, if the new task added to the run-queue preempts the current
2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 * called on the nearest possible occasion:
2637 *
2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 * - in syscall or exception context, at the next outmost
2641 * preempt_enable(). (this might be as soon as the wake_up()'s
2642 * spin_unlock()!)
2643 *
2644 * - in IRQ context, return from interrupt-handler to
2645 * preemptible context
2646 *
2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 * then at the next:
2649 *
2650 * - cond_resched() call
2651 * - explicit schedule() call
2652 * - return from syscall or exception to user-space
2653 * - return from interrupt-handler to user-space
2654 */
2655 static void __sched __schedule(void)
2656 {
2657 struct task_struct *prev, *next;
2658 unsigned long *switch_count;
2659 struct rq *rq;
2660 int cpu;
2661
2662 need_resched:
2663 preempt_disable();
2664 cpu = smp_processor_id();
2665 rq = cpu_rq(cpu);
2666 rcu_note_context_switch(cpu);
2667 prev = rq->curr;
2668
2669 schedule_debug(prev);
2670
2671 if (sched_feat(HRTICK))
2672 hrtick_clear(rq);
2673
2674 /*
2675 * Make sure that signal_pending_state()->signal_pending() below
2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677 * done by the caller to avoid the race with signal_wake_up().
2678 */
2679 smp_mb__before_spinlock();
2680 raw_spin_lock_irq(&rq->lock);
2681
2682 switch_count = &prev->nivcsw;
2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684 if (unlikely(signal_pending_state(prev->state, prev))) {
2685 prev->state = TASK_RUNNING;
2686 } else {
2687 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688 prev->on_rq = 0;
2689
2690 /*
2691 * If a worker went to sleep, notify and ask workqueue
2692 * whether it wants to wake up a task to maintain
2693 * concurrency.
2694 */
2695 if (prev->flags & PF_WQ_WORKER) {
2696 struct task_struct *to_wakeup;
2697
2698 to_wakeup = wq_worker_sleeping(prev, cpu);
2699 if (to_wakeup)
2700 try_to_wake_up_local(to_wakeup);
2701 }
2702 }
2703 switch_count = &prev->nvcsw;
2704 }
2705
2706 if (prev->on_rq || rq->skip_clock_update < 0)
2707 update_rq_clock(rq);
2708
2709 next = pick_next_task(rq, prev);
2710 clear_tsk_need_resched(prev);
2711 clear_preempt_need_resched();
2712 rq->skip_clock_update = 0;
2713
2714 if (likely(prev != next)) {
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
2719 context_switch(rq, prev, next); /* unlocks the rq */
2720 /*
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
2728 } else
2729 raw_spin_unlock_irq(&rq->lock);
2730
2731 post_schedule(rq);
2732
2733 sched_preempt_enable_no_resched();
2734 if (need_resched())
2735 goto need_resched;
2736 }
2737
2738 static inline void sched_submit_work(struct task_struct *tsk)
2739 {
2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748 }
2749
2750 asmlinkage void __sched schedule(void)
2751 {
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
2755 __schedule();
2756 }
2757 EXPORT_SYMBOL(schedule);
2758
2759 #ifdef CONFIG_CONTEXT_TRACKING
2760 asmlinkage void __sched schedule_user(void)
2761 {
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
2768 user_exit();
2769 schedule();
2770 user_enter();
2771 }
2772 #endif
2773
2774 /**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779 void __sched schedule_preempt_disabled(void)
2780 {
2781 sched_preempt_enable_no_resched();
2782 schedule();
2783 preempt_disable();
2784 }
2785
2786 #ifdef CONFIG_PREEMPT
2787 /*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792 asmlinkage void __sched notrace preempt_schedule(void)
2793 {
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return..
2797 */
2798 if (likely(!preemptible()))
2799 return;
2800
2801 do {
2802 __preempt_count_add(PREEMPT_ACTIVE);
2803 __schedule();
2804 __preempt_count_sub(PREEMPT_ACTIVE);
2805
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
2811 } while (need_resched());
2812 }
2813 EXPORT_SYMBOL(preempt_schedule);
2814 #endif /* CONFIG_PREEMPT */
2815
2816 /*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822 asmlinkage void __sched preempt_schedule_irq(void)
2823 {
2824 enum ctx_state prev_state;
2825
2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled());
2828
2829 prev_state = exception_enter();
2830
2831 do {
2832 __preempt_count_add(PREEMPT_ACTIVE);
2833 local_irq_enable();
2834 __schedule();
2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE);
2837
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
2843 } while (need_resched());
2844
2845 exception_exit(prev_state);
2846 }
2847
2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 void *key)
2850 {
2851 return try_to_wake_up(curr->private, mode, wake_flags);
2852 }
2853 EXPORT_SYMBOL(default_wake_function);
2854
2855 #ifdef CONFIG_RT_MUTEXES
2856
2857 /*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
2867 */
2868 void rt_mutex_setprio(struct task_struct *p, int prio)
2869 {
2870 int oldprio, on_rq, running, enqueue_flag = 0;
2871 struct rq *rq;
2872 const struct sched_class *prev_class;
2873
2874 BUG_ON(prio > MAX_PRIO);
2875
2876 rq = __task_rq_lock(p);
2877
2878 /*
2879 * Idle task boosting is a nono in general. There is one
2880 * exception, when PREEMPT_RT and NOHZ is active:
2881 *
2882 * The idle task calls get_next_timer_interrupt() and holds
2883 * the timer wheel base->lock on the CPU and another CPU wants
2884 * to access the timer (probably to cancel it). We can safely
2885 * ignore the boosting request, as the idle CPU runs this code
2886 * with interrupts disabled and will complete the lock
2887 * protected section without being interrupted. So there is no
2888 * real need to boost.
2889 */
2890 if (unlikely(p == rq->idle)) {
2891 WARN_ON(p != rq->curr);
2892 WARN_ON(p->pi_blocked_on);
2893 goto out_unlock;
2894 }
2895
2896 trace_sched_pi_setprio(p, prio);
2897 p->pi_top_task = rt_mutex_get_top_task(p);
2898 oldprio = p->prio;
2899 prev_class = p->sched_class;
2900 on_rq = p->on_rq;
2901 running = task_current(rq, p);
2902 if (on_rq)
2903 dequeue_task(rq, p, 0);
2904 if (running)
2905 p->sched_class->put_prev_task(rq, p);
2906
2907 /*
2908 * Boosting condition are:
2909 * 1. -rt task is running and holds mutex A
2910 * --> -dl task blocks on mutex A
2911 *
2912 * 2. -dl task is running and holds mutex A
2913 * --> -dl task blocks on mutex A and could preempt the
2914 * running task
2915 */
2916 if (dl_prio(prio)) {
2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919 p->dl.dl_boosted = 1;
2920 p->dl.dl_throttled = 0;
2921 enqueue_flag = ENQUEUE_REPLENISH;
2922 } else
2923 p->dl.dl_boosted = 0;
2924 p->sched_class = &dl_sched_class;
2925 } else if (rt_prio(prio)) {
2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0;
2928 if (oldprio < prio)
2929 enqueue_flag = ENQUEUE_HEAD;
2930 p->sched_class = &rt_sched_class;
2931 } else {
2932 if (dl_prio(oldprio))
2933 p->dl.dl_boosted = 0;
2934 p->sched_class = &fair_sched_class;
2935 }
2936
2937 p->prio = prio;
2938
2939 if (running)
2940 p->sched_class->set_curr_task(rq);
2941 if (on_rq)
2942 enqueue_task(rq, p, enqueue_flag);
2943
2944 check_class_changed(rq, p, prev_class, oldprio);
2945 out_unlock:
2946 __task_rq_unlock(rq);
2947 }
2948 #endif
2949
2950 void set_user_nice(struct task_struct *p, long nice)
2951 {
2952 int old_prio, delta, on_rq;
2953 unsigned long flags;
2954 struct rq *rq;
2955
2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957 return;
2958 /*
2959 * We have to be careful, if called from sys_setpriority(),
2960 * the task might be in the middle of scheduling on another CPU.
2961 */
2962 rq = task_rq_lock(p, &flags);
2963 /*
2964 * The RT priorities are set via sched_setscheduler(), but we still
2965 * allow the 'normal' nice value to be set - but as expected
2966 * it wont have any effect on scheduling until the task is
2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968 */
2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970 p->static_prio = NICE_TO_PRIO(nice);
2971 goto out_unlock;
2972 }
2973 on_rq = p->on_rq;
2974 if (on_rq)
2975 dequeue_task(rq, p, 0);
2976
2977 p->static_prio = NICE_TO_PRIO(nice);
2978 set_load_weight(p);
2979 old_prio = p->prio;
2980 p->prio = effective_prio(p);
2981 delta = p->prio - old_prio;
2982
2983 if (on_rq) {
2984 enqueue_task(rq, p, 0);
2985 /*
2986 * If the task increased its priority or is running and
2987 * lowered its priority, then reschedule its CPU:
2988 */
2989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990 resched_task(rq->curr);
2991 }
2992 out_unlock:
2993 task_rq_unlock(rq, p, &flags);
2994 }
2995 EXPORT_SYMBOL(set_user_nice);
2996
2997 /*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
3002 int can_nice(const struct task_struct *p, const int nice)
3003 {
3004 /* convert nice value [19,-20] to rlimit style value [1,40] */
3005 int nice_rlim = 20 - nice;
3006
3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008 capable(CAP_SYS_NICE));
3009 }
3010
3011 #ifdef __ARCH_WANT_SYS_NICE
3012
3013 /*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
3020 SYSCALL_DEFINE1(nice, int, increment)
3021 {
3022 long nice, retval;
3023
3024 /*
3025 * Setpriority might change our priority at the same moment.
3026 * We don't have to worry. Conceptually one call occurs first
3027 * and we have a single winner.
3028 */
3029 if (increment < -40)
3030 increment = -40;
3031 if (increment > 40)
3032 increment = 40;
3033
3034 nice = task_nice(current) + increment;
3035 if (nice < MIN_NICE)
3036 nice = MIN_NICE;
3037 if (nice > MAX_NICE)
3038 nice = MAX_NICE;
3039
3040 if (increment < 0 && !can_nice(current, nice))
3041 return -EPERM;
3042
3043 retval = security_task_setnice(current, nice);
3044 if (retval)
3045 return retval;
3046
3047 set_user_nice(current, nice);
3048 return 0;
3049 }
3050
3051 #endif
3052
3053 /**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
3061 int task_prio(const struct task_struct *p)
3062 {
3063 return p->prio - MAX_RT_PRIO;
3064 }
3065
3066 /**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */
3072 int idle_cpu(int cpu)
3073 {
3074 struct rq *rq = cpu_rq(cpu);
3075
3076 if (rq->curr != rq->idle)
3077 return 0;
3078
3079 if (rq->nr_running)
3080 return 0;
3081
3082 #ifdef CONFIG_SMP
3083 if (!llist_empty(&rq->wake_list))
3084 return 0;
3085 #endif
3086
3087 return 1;
3088 }
3089
3090 /**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
3093 *
3094 * Return: The idle task for the cpu @cpu.
3095 */
3096 struct task_struct *idle_task(int cpu)
3097 {
3098 return cpu_rq(cpu)->idle;
3099 }
3100
3101 /**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
3106 */
3107 static struct task_struct *find_process_by_pid(pid_t pid)
3108 {
3109 return pid ? find_task_by_vpid(pid) : current;
3110 }
3111
3112 /*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120 static void
3121 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122 {
3123 struct sched_dl_entity *dl_se = &p->dl;
3124
3125 init_dl_task_timer(dl_se);
3126 dl_se->dl_runtime = attr->sched_runtime;
3127 dl_se->dl_deadline = attr->sched_deadline;
3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129 dl_se->flags = attr->sched_flags;
3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131 dl_se->dl_throttled = 0;
3132 dl_se->dl_new = 1;
3133 dl_se->dl_yielded = 0;
3134 }
3135
3136 static void __setscheduler_params(struct task_struct *p,
3137 const struct sched_attr *attr)
3138 {
3139 int policy = attr->sched_policy;
3140
3141 if (policy == -1) /* setparam */
3142 policy = p->policy;
3143
3144 p->policy = policy;
3145
3146 if (dl_policy(policy))
3147 __setparam_dl(p, attr);
3148 else if (fair_policy(policy))
3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
3151 /*
3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153 * !rt_policy. Always setting this ensures that things like
3154 * getparam()/getattr() don't report silly values for !rt tasks.
3155 */
3156 p->rt_priority = attr->sched_priority;
3157 p->normal_prio = normal_prio(p);
3158 set_load_weight(p);
3159 }
3160
3161 /* Actually do priority change: must hold pi & rq lock. */
3162 static void __setscheduler(struct rq *rq, struct task_struct *p,
3163 const struct sched_attr *attr)
3164 {
3165 __setscheduler_params(p, attr);
3166
3167 /*
3168 * If we get here, there was no pi waiters boosting the
3169 * task. It is safe to use the normal prio.
3170 */
3171 p->prio = normal_prio(p);
3172
3173 if (dl_prio(p->prio))
3174 p->sched_class = &dl_sched_class;
3175 else if (rt_prio(p->prio))
3176 p->sched_class = &rt_sched_class;
3177 else
3178 p->sched_class = &fair_sched_class;
3179 }
3180
3181 static void
3182 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183 {
3184 struct sched_dl_entity *dl_se = &p->dl;
3185
3186 attr->sched_priority = p->rt_priority;
3187 attr->sched_runtime = dl_se->dl_runtime;
3188 attr->sched_deadline = dl_se->dl_deadline;
3189 attr->sched_period = dl_se->dl_period;
3190 attr->sched_flags = dl_se->flags;
3191 }
3192
3193 /*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution of 1us (we
3199 * check sched_runtime only since it is always the smaller one) and
3200 * below 2^63 ns (we have to check both sched_deadline and
3201 * sched_period, as the latter can be zero).
3202 */
3203 static bool
3204 __checkparam_dl(const struct sched_attr *attr)
3205 {
3206 /* deadline != 0 */
3207 if (attr->sched_deadline == 0)
3208 return false;
3209
3210 /*
3211 * Since we truncate DL_SCALE bits, make sure we're at least
3212 * that big.
3213 */
3214 if (attr->sched_runtime < (1ULL << DL_SCALE))
3215 return false;
3216
3217 /*
3218 * Since we use the MSB for wrap-around and sign issues, make
3219 * sure it's not set (mind that period can be equal to zero).
3220 */
3221 if (attr->sched_deadline & (1ULL << 63) ||
3222 attr->sched_period & (1ULL << 63))
3223 return false;
3224
3225 /* runtime <= deadline <= period (if period != 0) */
3226 if ((attr->sched_period != 0 &&
3227 attr->sched_period < attr->sched_deadline) ||
3228 attr->sched_deadline < attr->sched_runtime)
3229 return false;
3230
3231 return true;
3232 }
3233
3234 /*
3235 * check the target process has a UID that matches the current process's
3236 */
3237 static bool check_same_owner(struct task_struct *p)
3238 {
3239 const struct cred *cred = current_cred(), *pcred;
3240 bool match;
3241
3242 rcu_read_lock();
3243 pcred = __task_cred(p);
3244 match = (uid_eq(cred->euid, pcred->euid) ||
3245 uid_eq(cred->euid, pcred->uid));
3246 rcu_read_unlock();
3247 return match;
3248 }
3249
3250 static int __sched_setscheduler(struct task_struct *p,
3251 const struct sched_attr *attr,
3252 bool user)
3253 {
3254 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3255 MAX_RT_PRIO - 1 - attr->sched_priority;
3256 int retval, oldprio, oldpolicy = -1, on_rq, running;
3257 int policy = attr->sched_policy;
3258 unsigned long flags;
3259 const struct sched_class *prev_class;
3260 struct rq *rq;
3261 int reset_on_fork;
3262
3263 /* may grab non-irq protected spin_locks */
3264 BUG_ON(in_interrupt());
3265 recheck:
3266 /* double check policy once rq lock held */
3267 if (policy < 0) {
3268 reset_on_fork = p->sched_reset_on_fork;
3269 policy = oldpolicy = p->policy;
3270 } else {
3271 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3272
3273 if (policy != SCHED_DEADLINE &&
3274 policy != SCHED_FIFO && policy != SCHED_RR &&
3275 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276 policy != SCHED_IDLE)
3277 return -EINVAL;
3278 }
3279
3280 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3281 return -EINVAL;
3282
3283 /*
3284 * Valid priorities for SCHED_FIFO and SCHED_RR are
3285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3286 * SCHED_BATCH and SCHED_IDLE is 0.
3287 */
3288 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3289 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3290 return -EINVAL;
3291 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3292 (rt_policy(policy) != (attr->sched_priority != 0)))
3293 return -EINVAL;
3294
3295 /*
3296 * Allow unprivileged RT tasks to decrease priority:
3297 */
3298 if (user && !capable(CAP_SYS_NICE)) {
3299 if (fair_policy(policy)) {
3300 if (attr->sched_nice < task_nice(p) &&
3301 !can_nice(p, attr->sched_nice))
3302 return -EPERM;
3303 }
3304
3305 if (rt_policy(policy)) {
3306 unsigned long rlim_rtprio =
3307 task_rlimit(p, RLIMIT_RTPRIO);
3308
3309 /* can't set/change the rt policy */
3310 if (policy != p->policy && !rlim_rtprio)
3311 return -EPERM;
3312
3313 /* can't increase priority */
3314 if (attr->sched_priority > p->rt_priority &&
3315 attr->sched_priority > rlim_rtprio)
3316 return -EPERM;
3317 }
3318
3319 /*
3320 * Can't set/change SCHED_DEADLINE policy at all for now
3321 * (safest behavior); in the future we would like to allow
3322 * unprivileged DL tasks to increase their relative deadline
3323 * or reduce their runtime (both ways reducing utilization)
3324 */
3325 if (dl_policy(policy))
3326 return -EPERM;
3327
3328 /*
3329 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3330 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3331 */
3332 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3333 if (!can_nice(p, task_nice(p)))
3334 return -EPERM;
3335 }
3336
3337 /* can't change other user's priorities */
3338 if (!check_same_owner(p))
3339 return -EPERM;
3340
3341 /* Normal users shall not reset the sched_reset_on_fork flag */
3342 if (p->sched_reset_on_fork && !reset_on_fork)
3343 return -EPERM;
3344 }
3345
3346 if (user) {
3347 retval = security_task_setscheduler(p);
3348 if (retval)
3349 return retval;
3350 }
3351
3352 /*
3353 * make sure no PI-waiters arrive (or leave) while we are
3354 * changing the priority of the task:
3355 *
3356 * To be able to change p->policy safely, the appropriate
3357 * runqueue lock must be held.
3358 */
3359 rq = task_rq_lock(p, &flags);
3360
3361 /*
3362 * Changing the policy of the stop threads its a very bad idea
3363 */
3364 if (p == rq->stop) {
3365 task_rq_unlock(rq, p, &flags);
3366 return -EINVAL;
3367 }
3368
3369 /*
3370 * If not changing anything there's no need to proceed further,
3371 * but store a possible modification of reset_on_fork.
3372 */
3373 if (unlikely(policy == p->policy)) {
3374 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3375 goto change;
3376 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3377 goto change;
3378 if (dl_policy(policy))
3379 goto change;
3380
3381 p->sched_reset_on_fork = reset_on_fork;
3382 task_rq_unlock(rq, p, &flags);
3383 return 0;
3384 }
3385 change:
3386
3387 if (user) {
3388 #ifdef CONFIG_RT_GROUP_SCHED
3389 /*
3390 * Do not allow realtime tasks into groups that have no runtime
3391 * assigned.
3392 */
3393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395 !task_group_is_autogroup(task_group(p))) {
3396 task_rq_unlock(rq, p, &flags);
3397 return -EPERM;
3398 }
3399 #endif
3400 #ifdef CONFIG_SMP
3401 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3402 cpumask_t *span = rq->rd->span;
3403
3404 /*
3405 * Don't allow tasks with an affinity mask smaller than
3406 * the entire root_domain to become SCHED_DEADLINE. We
3407 * will also fail if there's no bandwidth available.
3408 */
3409 if (!cpumask_subset(span, &p->cpus_allowed) ||
3410 rq->rd->dl_bw.bw == 0) {
3411 task_rq_unlock(rq, p, &flags);
3412 return -EPERM;
3413 }
3414 }
3415 #endif
3416 }
3417
3418 /* recheck policy now with rq lock held */
3419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3420 policy = oldpolicy = -1;
3421 task_rq_unlock(rq, p, &flags);
3422 goto recheck;
3423 }
3424
3425 /*
3426 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3428 * is available.
3429 */
3430 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3431 task_rq_unlock(rq, p, &flags);
3432 return -EBUSY;
3433 }
3434
3435 p->sched_reset_on_fork = reset_on_fork;
3436 oldprio = p->prio;
3437
3438 /*
3439 * Special case for priority boosted tasks.
3440 *
3441 * If the new priority is lower or equal (user space view)
3442 * than the current (boosted) priority, we just store the new
3443 * normal parameters and do not touch the scheduler class and
3444 * the runqueue. This will be done when the task deboost
3445 * itself.
3446 */
3447 if (rt_mutex_check_prio(p, newprio)) {
3448 __setscheduler_params(p, attr);
3449 task_rq_unlock(rq, p, &flags);
3450 return 0;
3451 }
3452
3453 on_rq = p->on_rq;
3454 running = task_current(rq, p);
3455 if (on_rq)
3456 dequeue_task(rq, p, 0);
3457 if (running)
3458 p->sched_class->put_prev_task(rq, p);
3459
3460 prev_class = p->sched_class;
3461 __setscheduler(rq, p, attr);
3462
3463 if (running)
3464 p->sched_class->set_curr_task(rq);
3465 if (on_rq) {
3466 /*
3467 * We enqueue to tail when the priority of a task is
3468 * increased (user space view).
3469 */
3470 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3471 }
3472
3473 check_class_changed(rq, p, prev_class, oldprio);
3474 task_rq_unlock(rq, p, &flags);
3475
3476 rt_mutex_adjust_pi(p);
3477
3478 return 0;
3479 }
3480
3481 static int _sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param, bool check)
3483 {
3484 struct sched_attr attr = {
3485 .sched_policy = policy,
3486 .sched_priority = param->sched_priority,
3487 .sched_nice = PRIO_TO_NICE(p->static_prio),
3488 };
3489
3490 /*
3491 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492 */
3493 if (policy & SCHED_RESET_ON_FORK) {
3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495 policy &= ~SCHED_RESET_ON_FORK;
3496 attr.sched_policy = policy;
3497 }
3498
3499 return __sched_setscheduler(p, &attr, check);
3500 }
3501 /**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Return: 0 on success. An error code otherwise.
3508 *
3509 * NOTE that the task may be already dead.
3510 */
3511 int sched_setscheduler(struct task_struct *p, int policy,
3512 const struct sched_param *param)
3513 {
3514 return _sched_setscheduler(p, policy, param, true);
3515 }
3516 EXPORT_SYMBOL_GPL(sched_setscheduler);
3517
3518 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519 {
3520 return __sched_setscheduler(p, attr, true);
3521 }
3522 EXPORT_SYMBOL_GPL(sched_setattr);
3523
3524 /**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question.
3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority.
3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission. For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538 const struct sched_param *param)
3539 {
3540 return _sched_setscheduler(p, policy, param, false);
3541 }
3542
3543 static int
3544 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545 {
3546 struct sched_param lparam;
3547 struct task_struct *p;
3548 int retval;
3549
3550 if (!param || pid < 0)
3551 return -EINVAL;
3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553 return -EFAULT;
3554
3555 rcu_read_lock();
3556 retval = -ESRCH;
3557 p = find_process_by_pid(pid);
3558 if (p != NULL)
3559 retval = sched_setscheduler(p, policy, &lparam);
3560 rcu_read_unlock();
3561
3562 return retval;
3563 }
3564
3565 /*
3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */
3568 static int sched_copy_attr(struct sched_attr __user *uattr,
3569 struct sched_attr *attr)
3570 {
3571 u32 size;
3572 int ret;
3573
3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575 return -EFAULT;
3576
3577 /*
3578 * zero the full structure, so that a short copy will be nice.
3579 */
3580 memset(attr, 0, sizeof(*attr));
3581
3582 ret = get_user(size, &uattr->size);
3583 if (ret)
3584 return ret;
3585
3586 if (size > PAGE_SIZE) /* silly large */
3587 goto err_size;
3588
3589 if (!size) /* abi compat */
3590 size = SCHED_ATTR_SIZE_VER0;
3591
3592 if (size < SCHED_ATTR_SIZE_VER0)
3593 goto err_size;
3594
3595 /*
3596 * If we're handed a bigger struct than we know of,
3597 * ensure all the unknown bits are 0 - i.e. new
3598 * user-space does not rely on any kernel feature
3599 * extensions we dont know about yet.
3600 */
3601 if (size > sizeof(*attr)) {
3602 unsigned char __user *addr;
3603 unsigned char __user *end;
3604 unsigned char val;
3605
3606 addr = (void __user *)uattr + sizeof(*attr);
3607 end = (void __user *)uattr + size;
3608
3609 for (; addr < end; addr++) {
3610 ret = get_user(val, addr);
3611 if (ret)
3612 return ret;
3613 if (val)
3614 goto err_size;
3615 }
3616 size = sizeof(*attr);
3617 }
3618
3619 ret = copy_from_user(attr, uattr, size);
3620 if (ret)
3621 return -EFAULT;
3622
3623 /*
3624 * XXX: do we want to be lenient like existing syscalls; or do we want
3625 * to be strict and return an error on out-of-bounds values?
3626 */
3627 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3628
3629 out:
3630 return ret;
3631
3632 err_size:
3633 put_user(sizeof(*attr), &uattr->size);
3634 ret = -E2BIG;
3635 goto out;
3636 }
3637
3638 /**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question.
3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority.
3643 *
3644 * Return: 0 on success. An error code otherwise.
3645 */
3646 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647 struct sched_param __user *, param)
3648 {
3649 /* negative values for policy are not valid */
3650 if (policy < 0)
3651 return -EINVAL;
3652
3653 return do_sched_setscheduler(pid, policy, param);
3654 }
3655
3656 /**
3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority.
3660 *
3661 * Return: 0 on success. An error code otherwise.
3662 */
3663 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664 {
3665 return do_sched_setscheduler(pid, -1, param);
3666 }
3667
3668 /**
3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters.
3672 * @flags: for future extension.
3673 */
3674 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3675 unsigned int, flags)
3676 {
3677 struct sched_attr attr;
3678 struct task_struct *p;
3679 int retval;
3680
3681 if (!uattr || pid < 0 || flags)
3682 return -EINVAL;
3683
3684 retval = sched_copy_attr(uattr, &attr);
3685 if (retval)
3686 return retval;
3687
3688 if (attr.sched_policy < 0)
3689 return -EINVAL;
3690
3691 rcu_read_lock();
3692 retval = -ESRCH;
3693 p = find_process_by_pid(pid);
3694 if (p != NULL)
3695 retval = sched_setattr(p, &attr);
3696 rcu_read_unlock();
3697
3698 return retval;
3699 }
3700
3701 /**
3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3703 * @pid: the pid in question.
3704 *
3705 * Return: On success, the policy of the thread. Otherwise, a negative error
3706 * code.
3707 */
3708 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3709 {
3710 struct task_struct *p;
3711 int retval;
3712
3713 if (pid < 0)
3714 return -EINVAL;
3715
3716 retval = -ESRCH;
3717 rcu_read_lock();
3718 p = find_process_by_pid(pid);
3719 if (p) {
3720 retval = security_task_getscheduler(p);
3721 if (!retval)
3722 retval = p->policy
3723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3724 }
3725 rcu_read_unlock();
3726 return retval;
3727 }
3728
3729 /**
3730 * sys_sched_getparam - get the RT priority of a thread
3731 * @pid: the pid in question.
3732 * @param: structure containing the RT priority.
3733 *
3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3735 * code.
3736 */
3737 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3738 {
3739 struct sched_param lp = { .sched_priority = 0 };
3740 struct task_struct *p;
3741 int retval;
3742
3743 if (!param || pid < 0)
3744 return -EINVAL;
3745
3746 rcu_read_lock();
3747 p = find_process_by_pid(pid);
3748 retval = -ESRCH;
3749 if (!p)
3750 goto out_unlock;
3751
3752 retval = security_task_getscheduler(p);
3753 if (retval)
3754 goto out_unlock;
3755
3756 if (task_has_rt_policy(p))
3757 lp.sched_priority = p->rt_priority;
3758 rcu_read_unlock();
3759
3760 /*
3761 * This one might sleep, we cannot do it with a spinlock held ...
3762 */
3763 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764
3765 return retval;
3766
3767 out_unlock:
3768 rcu_read_unlock();
3769 return retval;
3770 }
3771
3772 static int sched_read_attr(struct sched_attr __user *uattr,
3773 struct sched_attr *attr,
3774 unsigned int usize)
3775 {
3776 int ret;
3777
3778 if (!access_ok(VERIFY_WRITE, uattr, usize))
3779 return -EFAULT;
3780
3781 /*
3782 * If we're handed a smaller struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. old
3784 * user-space does not get uncomplete information.
3785 */
3786 if (usize < sizeof(*attr)) {
3787 unsigned char *addr;
3788 unsigned char *end;
3789
3790 addr = (void *)attr + usize;
3791 end = (void *)attr + sizeof(*attr);
3792
3793 for (; addr < end; addr++) {
3794 if (*addr)
3795 goto err_size;
3796 }
3797
3798 attr->size = usize;
3799 }
3800
3801 ret = copy_to_user(uattr, attr, attr->size);
3802 if (ret)
3803 return -EFAULT;
3804
3805 out:
3806 return ret;
3807
3808 err_size:
3809 ret = -E2BIG;
3810 goto out;
3811 }
3812
3813 /**
3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3815 * @pid: the pid in question.
3816 * @uattr: structure containing the extended parameters.
3817 * @size: sizeof(attr) for fwd/bwd comp.
3818 * @flags: for future extension.
3819 */
3820 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3821 unsigned int, size, unsigned int, flags)
3822 {
3823 struct sched_attr attr = {
3824 .size = sizeof(struct sched_attr),
3825 };
3826 struct task_struct *p;
3827 int retval;
3828
3829 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3830 size < SCHED_ATTR_SIZE_VER0 || flags)
3831 return -EINVAL;
3832
3833 rcu_read_lock();
3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH;
3836 if (!p)
3837 goto out_unlock;
3838
3839 retval = security_task_getscheduler(p);
3840 if (retval)
3841 goto out_unlock;
3842
3843 attr.sched_policy = p->policy;
3844 if (p->sched_reset_on_fork)
3845 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3846 if (task_has_dl_policy(p))
3847 __getparam_dl(p, &attr);
3848 else if (task_has_rt_policy(p))
3849 attr.sched_priority = p->rt_priority;
3850 else
3851 attr.sched_nice = task_nice(p);
3852
3853 rcu_read_unlock();
3854
3855 retval = sched_read_attr(uattr, &attr, size);
3856 return retval;
3857
3858 out_unlock:
3859 rcu_read_unlock();
3860 return retval;
3861 }
3862
3863 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3864 {
3865 cpumask_var_t cpus_allowed, new_mask;
3866 struct task_struct *p;
3867 int retval;
3868
3869 rcu_read_lock();
3870
3871 p = find_process_by_pid(pid);
3872 if (!p) {
3873 rcu_read_unlock();
3874 return -ESRCH;
3875 }
3876
3877 /* Prevent p going away */
3878 get_task_struct(p);
3879 rcu_read_unlock();
3880
3881 if (p->flags & PF_NO_SETAFFINITY) {
3882 retval = -EINVAL;
3883 goto out_put_task;
3884 }
3885 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3886 retval = -ENOMEM;
3887 goto out_put_task;
3888 }
3889 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3890 retval = -ENOMEM;
3891 goto out_free_cpus_allowed;
3892 }
3893 retval = -EPERM;
3894 if (!check_same_owner(p)) {
3895 rcu_read_lock();
3896 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3897 rcu_read_unlock();
3898 goto out_unlock;
3899 }
3900 rcu_read_unlock();
3901 }
3902
3903 retval = security_task_setscheduler(p);
3904 if (retval)
3905 goto out_unlock;
3906
3907
3908 cpuset_cpus_allowed(p, cpus_allowed);
3909 cpumask_and(new_mask, in_mask, cpus_allowed);
3910
3911 /*
3912 * Since bandwidth control happens on root_domain basis,
3913 * if admission test is enabled, we only admit -deadline
3914 * tasks allowed to run on all the CPUs in the task's
3915 * root_domain.
3916 */
3917 #ifdef CONFIG_SMP
3918 if (task_has_dl_policy(p)) {
3919 const struct cpumask *span = task_rq(p)->rd->span;
3920
3921 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3922 retval = -EBUSY;
3923 goto out_unlock;
3924 }
3925 }
3926 #endif
3927 again:
3928 retval = set_cpus_allowed_ptr(p, new_mask);
3929
3930 if (!retval) {
3931 cpuset_cpus_allowed(p, cpus_allowed);
3932 if (!cpumask_subset(new_mask, cpus_allowed)) {
3933 /*
3934 * We must have raced with a concurrent cpuset
3935 * update. Just reset the cpus_allowed to the
3936 * cpuset's cpus_allowed
3937 */
3938 cpumask_copy(new_mask, cpus_allowed);
3939 goto again;
3940 }
3941 }
3942 out_unlock:
3943 free_cpumask_var(new_mask);
3944 out_free_cpus_allowed:
3945 free_cpumask_var(cpus_allowed);
3946 out_put_task:
3947 put_task_struct(p);
3948 return retval;
3949 }
3950
3951 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3952 struct cpumask *new_mask)
3953 {
3954 if (len < cpumask_size())
3955 cpumask_clear(new_mask);
3956 else if (len > cpumask_size())
3957 len = cpumask_size();
3958
3959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3960 }
3961
3962 /**
3963 * sys_sched_setaffinity - set the cpu affinity of a process
3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to the new cpu mask
3967 *
3968 * Return: 0 on success. An error code otherwise.
3969 */
3970 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3971 unsigned long __user *, user_mask_ptr)
3972 {
3973 cpumask_var_t new_mask;
3974 int retval;
3975
3976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3977 return -ENOMEM;
3978
3979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3980 if (retval == 0)
3981 retval = sched_setaffinity(pid, new_mask);
3982 free_cpumask_var(new_mask);
3983 return retval;
3984 }
3985
3986 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3987 {
3988 struct task_struct *p;
3989 unsigned long flags;
3990 int retval;
3991
3992 rcu_read_lock();
3993
3994 retval = -ESRCH;
3995 p = find_process_by_pid(pid);
3996 if (!p)
3997 goto out_unlock;
3998
3999 retval = security_task_getscheduler(p);
4000 if (retval)
4001 goto out_unlock;
4002
4003 raw_spin_lock_irqsave(&p->pi_lock, flags);
4004 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4006
4007 out_unlock:
4008 rcu_read_unlock();
4009
4010 return retval;
4011 }
4012
4013 /**
4014 * sys_sched_getaffinity - get the cpu affinity of a process
4015 * @pid: pid of the process
4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4018 *
4019 * Return: 0 on success. An error code otherwise.
4020 */
4021 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4022 unsigned long __user *, user_mask_ptr)
4023 {
4024 int ret;
4025 cpumask_var_t mask;
4026
4027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4028 return -EINVAL;
4029 if (len & (sizeof(unsigned long)-1))
4030 return -EINVAL;
4031
4032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4033 return -ENOMEM;
4034
4035 ret = sched_getaffinity(pid, mask);
4036 if (ret == 0) {
4037 size_t retlen = min_t(size_t, len, cpumask_size());
4038
4039 if (copy_to_user(user_mask_ptr, mask, retlen))
4040 ret = -EFAULT;
4041 else
4042 ret = retlen;
4043 }
4044 free_cpumask_var(mask);
4045
4046 return ret;
4047 }
4048
4049 /**
4050 * sys_sched_yield - yield the current processor to other threads.
4051 *
4052 * This function yields the current CPU to other tasks. If there are no
4053 * other threads running on this CPU then this function will return.
4054 *
4055 * Return: 0.
4056 */
4057 SYSCALL_DEFINE0(sched_yield)
4058 {
4059 struct rq *rq = this_rq_lock();
4060
4061 schedstat_inc(rq, yld_count);
4062 current->sched_class->yield_task(rq);
4063
4064 /*
4065 * Since we are going to call schedule() anyway, there's
4066 * no need to preempt or enable interrupts:
4067 */
4068 __release(rq->lock);
4069 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4070 do_raw_spin_unlock(&rq->lock);
4071 sched_preempt_enable_no_resched();
4072
4073 schedule();
4074
4075 return 0;
4076 }
4077
4078 static void __cond_resched(void)
4079 {
4080 __preempt_count_add(PREEMPT_ACTIVE);
4081 __schedule();
4082 __preempt_count_sub(PREEMPT_ACTIVE);
4083 }
4084
4085 int __sched _cond_resched(void)
4086 {
4087 if (should_resched()) {
4088 __cond_resched();
4089 return 1;
4090 }
4091 return 0;
4092 }
4093 EXPORT_SYMBOL(_cond_resched);
4094
4095 /*
4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4097 * call schedule, and on return reacquire the lock.
4098 *
4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4100 * operations here to prevent schedule() from being called twice (once via
4101 * spin_unlock(), once by hand).
4102 */
4103 int __cond_resched_lock(spinlock_t *lock)
4104 {
4105 int resched = should_resched();
4106 int ret = 0;
4107
4108 lockdep_assert_held(lock);
4109
4110 if (spin_needbreak(lock) || resched) {
4111 spin_unlock(lock);
4112 if (resched)
4113 __cond_resched();
4114 else
4115 cpu_relax();
4116 ret = 1;
4117 spin_lock(lock);
4118 }
4119 return ret;
4120 }
4121 EXPORT_SYMBOL(__cond_resched_lock);
4122
4123 int __sched __cond_resched_softirq(void)
4124 {
4125 BUG_ON(!in_softirq());
4126
4127 if (should_resched()) {
4128 local_bh_enable();
4129 __cond_resched();
4130 local_bh_disable();
4131 return 1;
4132 }
4133 return 0;
4134 }
4135 EXPORT_SYMBOL(__cond_resched_softirq);
4136
4137 /**
4138 * yield - yield the current processor to other threads.
4139 *
4140 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4141 *
4142 * The scheduler is at all times free to pick the calling task as the most
4143 * eligible task to run, if removing the yield() call from your code breaks
4144 * it, its already broken.
4145 *
4146 * Typical broken usage is:
4147 *
4148 * while (!event)
4149 * yield();
4150 *
4151 * where one assumes that yield() will let 'the other' process run that will
4152 * make event true. If the current task is a SCHED_FIFO task that will never
4153 * happen. Never use yield() as a progress guarantee!!
4154 *
4155 * If you want to use yield() to wait for something, use wait_event().
4156 * If you want to use yield() to be 'nice' for others, use cond_resched().
4157 * If you still want to use yield(), do not!
4158 */
4159 void __sched yield(void)
4160 {
4161 set_current_state(TASK_RUNNING);
4162 sys_sched_yield();
4163 }
4164 EXPORT_SYMBOL(yield);
4165
4166 /**
4167 * yield_to - yield the current processor to another thread in
4168 * your thread group, or accelerate that thread toward the
4169 * processor it's on.
4170 * @p: target task
4171 * @preempt: whether task preemption is allowed or not
4172 *
4173 * It's the caller's job to ensure that the target task struct
4174 * can't go away on us before we can do any checks.
4175 *
4176 * Return:
4177 * true (>0) if we indeed boosted the target task.
4178 * false (0) if we failed to boost the target.
4179 * -ESRCH if there's no task to yield to.
4180 */
4181 bool __sched yield_to(struct task_struct *p, bool preempt)
4182 {
4183 struct task_struct *curr = current;
4184 struct rq *rq, *p_rq;
4185 unsigned long flags;
4186 int yielded = 0;
4187
4188 local_irq_save(flags);
4189 rq = this_rq();
4190
4191 again:
4192 p_rq = task_rq(p);
4193 /*
4194 * If we're the only runnable task on the rq and target rq also
4195 * has only one task, there's absolutely no point in yielding.
4196 */
4197 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4198 yielded = -ESRCH;
4199 goto out_irq;
4200 }
4201
4202 double_rq_lock(rq, p_rq);
4203 if (task_rq(p) != p_rq) {
4204 double_rq_unlock(rq, p_rq);
4205 goto again;
4206 }
4207
4208 if (!curr->sched_class->yield_to_task)
4209 goto out_unlock;
4210
4211 if (curr->sched_class != p->sched_class)
4212 goto out_unlock;
4213
4214 if (task_running(p_rq, p) || p->state)
4215 goto out_unlock;
4216
4217 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4218 if (yielded) {
4219 schedstat_inc(rq, yld_count);
4220 /*
4221 * Make p's CPU reschedule; pick_next_entity takes care of
4222 * fairness.
4223 */
4224 if (preempt && rq != p_rq)
4225 resched_task(p_rq->curr);
4226 }
4227
4228 out_unlock:
4229 double_rq_unlock(rq, p_rq);
4230 out_irq:
4231 local_irq_restore(flags);
4232
4233 if (yielded > 0)
4234 schedule();
4235
4236 return yielded;
4237 }
4238 EXPORT_SYMBOL_GPL(yield_to);
4239
4240 /*
4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4242 * that process accounting knows that this is a task in IO wait state.
4243 */
4244 void __sched io_schedule(void)
4245 {
4246 struct rq *rq = raw_rq();
4247
4248 delayacct_blkio_start();
4249 atomic_inc(&rq->nr_iowait);
4250 blk_flush_plug(current);
4251 current->in_iowait = 1;
4252 schedule();
4253 current->in_iowait = 0;
4254 atomic_dec(&rq->nr_iowait);
4255 delayacct_blkio_end();
4256 }
4257 EXPORT_SYMBOL(io_schedule);
4258
4259 long __sched io_schedule_timeout(long timeout)
4260 {
4261 struct rq *rq = raw_rq();
4262 long ret;
4263
4264 delayacct_blkio_start();
4265 atomic_inc(&rq->nr_iowait);
4266 blk_flush_plug(current);
4267 current->in_iowait = 1;
4268 ret = schedule_timeout(timeout);
4269 current->in_iowait = 0;
4270 atomic_dec(&rq->nr_iowait);
4271 delayacct_blkio_end();
4272 return ret;
4273 }
4274
4275 /**
4276 * sys_sched_get_priority_max - return maximum RT priority.
4277 * @policy: scheduling class.
4278 *
4279 * Return: On success, this syscall returns the maximum
4280 * rt_priority that can be used by a given scheduling class.
4281 * On failure, a negative error code is returned.
4282 */
4283 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4284 {
4285 int ret = -EINVAL;
4286
4287 switch (policy) {
4288 case SCHED_FIFO:
4289 case SCHED_RR:
4290 ret = MAX_USER_RT_PRIO-1;
4291 break;
4292 case SCHED_DEADLINE:
4293 case SCHED_NORMAL:
4294 case SCHED_BATCH:
4295 case SCHED_IDLE:
4296 ret = 0;
4297 break;
4298 }
4299 return ret;
4300 }
4301
4302 /**
4303 * sys_sched_get_priority_min - return minimum RT priority.
4304 * @policy: scheduling class.
4305 *
4306 * Return: On success, this syscall returns the minimum
4307 * rt_priority that can be used by a given scheduling class.
4308 * On failure, a negative error code is returned.
4309 */
4310 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4311 {
4312 int ret = -EINVAL;
4313
4314 switch (policy) {
4315 case SCHED_FIFO:
4316 case SCHED_RR:
4317 ret = 1;
4318 break;
4319 case SCHED_DEADLINE:
4320 case SCHED_NORMAL:
4321 case SCHED_BATCH:
4322 case SCHED_IDLE:
4323 ret = 0;
4324 }
4325 return ret;
4326 }
4327
4328 /**
4329 * sys_sched_rr_get_interval - return the default timeslice of a process.
4330 * @pid: pid of the process.
4331 * @interval: userspace pointer to the timeslice value.
4332 *
4333 * this syscall writes the default timeslice value of a given process
4334 * into the user-space timespec buffer. A value of '0' means infinity.
4335 *
4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4337 * an error code.
4338 */
4339 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4340 struct timespec __user *, interval)
4341 {
4342 struct task_struct *p;
4343 unsigned int time_slice;
4344 unsigned long flags;
4345 struct rq *rq;
4346 int retval;
4347 struct timespec t;
4348
4349 if (pid < 0)
4350 return -EINVAL;
4351
4352 retval = -ESRCH;
4353 rcu_read_lock();
4354 p = find_process_by_pid(pid);
4355 if (!p)
4356 goto out_unlock;
4357
4358 retval = security_task_getscheduler(p);
4359 if (retval)
4360 goto out_unlock;
4361
4362 rq = task_rq_lock(p, &flags);
4363 time_slice = 0;
4364 if (p->sched_class->get_rr_interval)
4365 time_slice = p->sched_class->get_rr_interval(rq, p);
4366 task_rq_unlock(rq, p, &flags);
4367
4368 rcu_read_unlock();
4369 jiffies_to_timespec(time_slice, &t);
4370 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4371 return retval;
4372
4373 out_unlock:
4374 rcu_read_unlock();
4375 return retval;
4376 }
4377
4378 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4379
4380 void sched_show_task(struct task_struct *p)
4381 {
4382 unsigned long free = 0;
4383 int ppid;
4384 unsigned state;
4385
4386 state = p->state ? __ffs(p->state) + 1 : 0;
4387 printk(KERN_INFO "%-15.15s %c", p->comm,
4388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4389 #if BITS_PER_LONG == 32
4390 if (state == TASK_RUNNING)
4391 printk(KERN_CONT " running ");
4392 else
4393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4394 #else
4395 if (state == TASK_RUNNING)
4396 printk(KERN_CONT " running task ");
4397 else
4398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4399 #endif
4400 #ifdef CONFIG_DEBUG_STACK_USAGE
4401 free = stack_not_used(p);
4402 #endif
4403 rcu_read_lock();
4404 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4405 rcu_read_unlock();
4406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4407 task_pid_nr(p), ppid,
4408 (unsigned long)task_thread_info(p)->flags);
4409
4410 print_worker_info(KERN_INFO, p);
4411 show_stack(p, NULL);
4412 }
4413
4414 void show_state_filter(unsigned long state_filter)
4415 {
4416 struct task_struct *g, *p;
4417
4418 #if BITS_PER_LONG == 32
4419 printk(KERN_INFO
4420 " task PC stack pid father\n");
4421 #else
4422 printk(KERN_INFO
4423 " task PC stack pid father\n");
4424 #endif
4425 rcu_read_lock();
4426 do_each_thread(g, p) {
4427 /*
4428 * reset the NMI-timeout, listing all files on a slow
4429 * console might take a lot of time:
4430 */
4431 touch_nmi_watchdog();
4432 if (!state_filter || (p->state & state_filter))
4433 sched_show_task(p);
4434 } while_each_thread(g, p);
4435
4436 touch_all_softlockup_watchdogs();
4437
4438 #ifdef CONFIG_SCHED_DEBUG
4439 sysrq_sched_debug_show();
4440 #endif
4441 rcu_read_unlock();
4442 /*
4443 * Only show locks if all tasks are dumped:
4444 */
4445 if (!state_filter)
4446 debug_show_all_locks();
4447 }
4448
4449 void init_idle_bootup_task(struct task_struct *idle)
4450 {
4451 idle->sched_class = &idle_sched_class;
4452 }
4453
4454 /**
4455 * init_idle - set up an idle thread for a given CPU
4456 * @idle: task in question
4457 * @cpu: cpu the idle task belongs to
4458 *
4459 * NOTE: this function does not set the idle thread's NEED_RESCHED
4460 * flag, to make booting more robust.
4461 */
4462 void init_idle(struct task_struct *idle, int cpu)
4463 {
4464 struct rq *rq = cpu_rq(cpu);
4465 unsigned long flags;
4466
4467 raw_spin_lock_irqsave(&rq->lock, flags);
4468
4469 __sched_fork(0, idle);
4470 idle->state = TASK_RUNNING;
4471 idle->se.exec_start = sched_clock();
4472
4473 do_set_cpus_allowed(idle, cpumask_of(cpu));
4474 /*
4475 * We're having a chicken and egg problem, even though we are
4476 * holding rq->lock, the cpu isn't yet set to this cpu so the
4477 * lockdep check in task_group() will fail.
4478 *
4479 * Similar case to sched_fork(). / Alternatively we could
4480 * use task_rq_lock() here and obtain the other rq->lock.
4481 *
4482 * Silence PROVE_RCU
4483 */
4484 rcu_read_lock();
4485 __set_task_cpu(idle, cpu);
4486 rcu_read_unlock();
4487
4488 rq->curr = rq->idle = idle;
4489 idle->on_rq = 1;
4490 #if defined(CONFIG_SMP)
4491 idle->on_cpu = 1;
4492 #endif
4493 raw_spin_unlock_irqrestore(&rq->lock, flags);
4494
4495 /* Set the preempt count _outside_ the spinlocks! */
4496 init_idle_preempt_count(idle, cpu);
4497
4498 /*
4499 * The idle tasks have their own, simple scheduling class:
4500 */
4501 idle->sched_class = &idle_sched_class;
4502 ftrace_graph_init_idle_task(idle, cpu);
4503 vtime_init_idle(idle, cpu);
4504 #if defined(CONFIG_SMP)
4505 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4506 #endif
4507 }
4508
4509 #ifdef CONFIG_SMP
4510 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4511 {
4512 if (p->sched_class && p->sched_class->set_cpus_allowed)
4513 p->sched_class->set_cpus_allowed(p, new_mask);
4514
4515 cpumask_copy(&p->cpus_allowed, new_mask);
4516 p->nr_cpus_allowed = cpumask_weight(new_mask);
4517 }
4518
4519 /*
4520 * This is how migration works:
4521 *
4522 * 1) we invoke migration_cpu_stop() on the target CPU using
4523 * stop_one_cpu().
4524 * 2) stopper starts to run (implicitly forcing the migrated thread
4525 * off the CPU)
4526 * 3) it checks whether the migrated task is still in the wrong runqueue.
4527 * 4) if it's in the wrong runqueue then the migration thread removes
4528 * it and puts it into the right queue.
4529 * 5) stopper completes and stop_one_cpu() returns and the migration
4530 * is done.
4531 */
4532
4533 /*
4534 * Change a given task's CPU affinity. Migrate the thread to a
4535 * proper CPU and schedule it away if the CPU it's executing on
4536 * is removed from the allowed bitmask.
4537 *
4538 * NOTE: the caller must have a valid reference to the task, the
4539 * task must not exit() & deallocate itself prematurely. The
4540 * call is not atomic; no spinlocks may be held.
4541 */
4542 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4543 {
4544 unsigned long flags;
4545 struct rq *rq;
4546 unsigned int dest_cpu;
4547 int ret = 0;
4548
4549 rq = task_rq_lock(p, &flags);
4550
4551 if (cpumask_equal(&p->cpus_allowed, new_mask))
4552 goto out;
4553
4554 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4555 ret = -EINVAL;
4556 goto out;
4557 }
4558
4559 do_set_cpus_allowed(p, new_mask);
4560
4561 /* Can the task run on the task's current CPU? If so, we're done */
4562 if (cpumask_test_cpu(task_cpu(p), new_mask))
4563 goto out;
4564
4565 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4566 if (p->on_rq) {
4567 struct migration_arg arg = { p, dest_cpu };
4568 /* Need help from migration thread: drop lock and wait. */
4569 task_rq_unlock(rq, p, &flags);
4570 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4571 tlb_migrate_finish(p->mm);
4572 return 0;
4573 }
4574 out:
4575 task_rq_unlock(rq, p, &flags);
4576
4577 return ret;
4578 }
4579 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4580
4581 /*
4582 * Move (not current) task off this cpu, onto dest cpu. We're doing
4583 * this because either it can't run here any more (set_cpus_allowed()
4584 * away from this CPU, or CPU going down), or because we're
4585 * attempting to rebalance this task on exec (sched_exec).
4586 *
4587 * So we race with normal scheduler movements, but that's OK, as long
4588 * as the task is no longer on this CPU.
4589 *
4590 * Returns non-zero if task was successfully migrated.
4591 */
4592 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4593 {
4594 struct rq *rq_dest, *rq_src;
4595 int ret = 0;
4596
4597 if (unlikely(!cpu_active(dest_cpu)))
4598 return ret;
4599
4600 rq_src = cpu_rq(src_cpu);
4601 rq_dest = cpu_rq(dest_cpu);
4602
4603 raw_spin_lock(&p->pi_lock);
4604 double_rq_lock(rq_src, rq_dest);
4605 /* Already moved. */
4606 if (task_cpu(p) != src_cpu)
4607 goto done;
4608 /* Affinity changed (again). */
4609 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4610 goto fail;
4611
4612 /*
4613 * If we're not on a rq, the next wake-up will ensure we're
4614 * placed properly.
4615 */
4616 if (p->on_rq) {
4617 dequeue_task(rq_src, p, 0);
4618 set_task_cpu(p, dest_cpu);
4619 enqueue_task(rq_dest, p, 0);
4620 check_preempt_curr(rq_dest, p, 0);
4621 }
4622 done:
4623 ret = 1;
4624 fail:
4625 double_rq_unlock(rq_src, rq_dest);
4626 raw_spin_unlock(&p->pi_lock);
4627 return ret;
4628 }
4629
4630 #ifdef CONFIG_NUMA_BALANCING
4631 /* Migrate current task p to target_cpu */
4632 int migrate_task_to(struct task_struct *p, int target_cpu)
4633 {
4634 struct migration_arg arg = { p, target_cpu };
4635 int curr_cpu = task_cpu(p);
4636
4637 if (curr_cpu == target_cpu)
4638 return 0;
4639
4640 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4641 return -EINVAL;
4642
4643 /* TODO: This is not properly updating schedstats */
4644
4645 trace_sched_move_numa(p, curr_cpu, target_cpu);
4646 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4647 }
4648
4649 /*
4650 * Requeue a task on a given node and accurately track the number of NUMA
4651 * tasks on the runqueues
4652 */
4653 void sched_setnuma(struct task_struct *p, int nid)
4654 {
4655 struct rq *rq;
4656 unsigned long flags;
4657 bool on_rq, running;
4658
4659 rq = task_rq_lock(p, &flags);
4660 on_rq = p->on_rq;
4661 running = task_current(rq, p);
4662
4663 if (on_rq)
4664 dequeue_task(rq, p, 0);
4665 if (running)
4666 p->sched_class->put_prev_task(rq, p);
4667
4668 p->numa_preferred_nid = nid;
4669
4670 if (running)
4671 p->sched_class->set_curr_task(rq);
4672 if (on_rq)
4673 enqueue_task(rq, p, 0);
4674 task_rq_unlock(rq, p, &flags);
4675 }
4676 #endif
4677
4678 /*
4679 * migration_cpu_stop - this will be executed by a highprio stopper thread
4680 * and performs thread migration by bumping thread off CPU then
4681 * 'pushing' onto another runqueue.
4682 */
4683 static int migration_cpu_stop(void *data)
4684 {
4685 struct migration_arg *arg = data;
4686
4687 /*
4688 * The original target cpu might have gone down and we might
4689 * be on another cpu but it doesn't matter.
4690 */
4691 local_irq_disable();
4692 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4693 local_irq_enable();
4694 return 0;
4695 }
4696
4697 #ifdef CONFIG_HOTPLUG_CPU
4698
4699 /*
4700 * Ensures that the idle task is using init_mm right before its cpu goes
4701 * offline.
4702 */
4703 void idle_task_exit(void)
4704 {
4705 struct mm_struct *mm = current->active_mm;
4706
4707 BUG_ON(cpu_online(smp_processor_id()));
4708
4709 if (mm != &init_mm) {
4710 switch_mm(mm, &init_mm, current);
4711 finish_arch_post_lock_switch();
4712 }
4713 mmdrop(mm);
4714 }
4715
4716 /*
4717 * Since this CPU is going 'away' for a while, fold any nr_active delta
4718 * we might have. Assumes we're called after migrate_tasks() so that the
4719 * nr_active count is stable.
4720 *
4721 * Also see the comment "Global load-average calculations".
4722 */
4723 static void calc_load_migrate(struct rq *rq)
4724 {
4725 long delta = calc_load_fold_active(rq);
4726 if (delta)
4727 atomic_long_add(delta, &calc_load_tasks);
4728 }
4729
4730 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4731 {
4732 }
4733
4734 static const struct sched_class fake_sched_class = {
4735 .put_prev_task = put_prev_task_fake,
4736 };
4737
4738 static struct task_struct fake_task = {
4739 /*
4740 * Avoid pull_{rt,dl}_task()
4741 */
4742 .prio = MAX_PRIO + 1,
4743 .sched_class = &fake_sched_class,
4744 };
4745
4746 /*
4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4748 * try_to_wake_up()->select_task_rq().
4749 *
4750 * Called with rq->lock held even though we'er in stop_machine() and
4751 * there's no concurrency possible, we hold the required locks anyway
4752 * because of lock validation efforts.
4753 */
4754 static void migrate_tasks(unsigned int dead_cpu)
4755 {
4756 struct rq *rq = cpu_rq(dead_cpu);
4757 struct task_struct *next, *stop = rq->stop;
4758 int dest_cpu;
4759
4760 /*
4761 * Fudge the rq selection such that the below task selection loop
4762 * doesn't get stuck on the currently eligible stop task.
4763 *
4764 * We're currently inside stop_machine() and the rq is either stuck
4765 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4766 * either way we should never end up calling schedule() until we're
4767 * done here.
4768 */
4769 rq->stop = NULL;
4770
4771 /*
4772 * put_prev_task() and pick_next_task() sched
4773 * class method both need to have an up-to-date
4774 * value of rq->clock[_task]
4775 */
4776 update_rq_clock(rq);
4777
4778 for ( ; ; ) {
4779 /*
4780 * There's this thread running, bail when that's the only
4781 * remaining thread.
4782 */
4783 if (rq->nr_running == 1)
4784 break;
4785
4786 next = pick_next_task(rq, &fake_task);
4787 BUG_ON(!next);
4788 next->sched_class->put_prev_task(rq, next);
4789
4790 /* Find suitable destination for @next, with force if needed. */
4791 dest_cpu = select_fallback_rq(dead_cpu, next);
4792 raw_spin_unlock(&rq->lock);
4793
4794 __migrate_task(next, dead_cpu, dest_cpu);
4795
4796 raw_spin_lock(&rq->lock);
4797 }
4798
4799 rq->stop = stop;
4800 }
4801
4802 #endif /* CONFIG_HOTPLUG_CPU */
4803
4804 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4805
4806 static struct ctl_table sd_ctl_dir[] = {
4807 {
4808 .procname = "sched_domain",
4809 .mode = 0555,
4810 },
4811 {}
4812 };
4813
4814 static struct ctl_table sd_ctl_root[] = {
4815 {
4816 .procname = "kernel",
4817 .mode = 0555,
4818 .child = sd_ctl_dir,
4819 },
4820 {}
4821 };
4822
4823 static struct ctl_table *sd_alloc_ctl_entry(int n)
4824 {
4825 struct ctl_table *entry =
4826 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4827
4828 return entry;
4829 }
4830
4831 static void sd_free_ctl_entry(struct ctl_table **tablep)
4832 {
4833 struct ctl_table *entry;
4834
4835 /*
4836 * In the intermediate directories, both the child directory and
4837 * procname are dynamically allocated and could fail but the mode
4838 * will always be set. In the lowest directory the names are
4839 * static strings and all have proc handlers.
4840 */
4841 for (entry = *tablep; entry->mode; entry++) {
4842 if (entry->child)
4843 sd_free_ctl_entry(&entry->child);
4844 if (entry->proc_handler == NULL)
4845 kfree(entry->procname);
4846 }
4847
4848 kfree(*tablep);
4849 *tablep = NULL;
4850 }
4851
4852 static int min_load_idx = 0;
4853 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4854
4855 static void
4856 set_table_entry(struct ctl_table *entry,
4857 const char *procname, void *data, int maxlen,
4858 umode_t mode, proc_handler *proc_handler,
4859 bool load_idx)
4860 {
4861 entry->procname = procname;
4862 entry->data = data;
4863 entry->maxlen = maxlen;
4864 entry->mode = mode;
4865 entry->proc_handler = proc_handler;
4866
4867 if (load_idx) {
4868 entry->extra1 = &min_load_idx;
4869 entry->extra2 = &max_load_idx;
4870 }
4871 }
4872
4873 static struct ctl_table *
4874 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4875 {
4876 struct ctl_table *table = sd_alloc_ctl_entry(14);
4877
4878 if (table == NULL)
4879 return NULL;
4880
4881 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4882 sizeof(long), 0644, proc_doulongvec_minmax, false);
4883 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4884 sizeof(long), 0644, proc_doulongvec_minmax, false);
4885 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4886 sizeof(int), 0644, proc_dointvec_minmax, true);
4887 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4888 sizeof(int), 0644, proc_dointvec_minmax, true);
4889 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4890 sizeof(int), 0644, proc_dointvec_minmax, true);
4891 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4892 sizeof(int), 0644, proc_dointvec_minmax, true);
4893 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4894 sizeof(int), 0644, proc_dointvec_minmax, true);
4895 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4896 sizeof(int), 0644, proc_dointvec_minmax, false);
4897 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4898 sizeof(int), 0644, proc_dointvec_minmax, false);
4899 set_table_entry(&table[9], "cache_nice_tries",
4900 &sd->cache_nice_tries,
4901 sizeof(int), 0644, proc_dointvec_minmax, false);
4902 set_table_entry(&table[10], "flags", &sd->flags,
4903 sizeof(int), 0644, proc_dointvec_minmax, false);
4904 set_table_entry(&table[11], "max_newidle_lb_cost",
4905 &sd->max_newidle_lb_cost,
4906 sizeof(long), 0644, proc_doulongvec_minmax, false);
4907 set_table_entry(&table[12], "name", sd->name,
4908 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4909 /* &table[13] is terminator */
4910
4911 return table;
4912 }
4913
4914 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4915 {
4916 struct ctl_table *entry, *table;
4917 struct sched_domain *sd;
4918 int domain_num = 0, i;
4919 char buf[32];
4920
4921 for_each_domain(cpu, sd)
4922 domain_num++;
4923 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4924 if (table == NULL)
4925 return NULL;
4926
4927 i = 0;
4928 for_each_domain(cpu, sd) {
4929 snprintf(buf, 32, "domain%d", i);
4930 entry->procname = kstrdup(buf, GFP_KERNEL);
4931 entry->mode = 0555;
4932 entry->child = sd_alloc_ctl_domain_table(sd);
4933 entry++;
4934 i++;
4935 }
4936 return table;
4937 }
4938
4939 static struct ctl_table_header *sd_sysctl_header;
4940 static void register_sched_domain_sysctl(void)
4941 {
4942 int i, cpu_num = num_possible_cpus();
4943 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4944 char buf[32];
4945
4946 WARN_ON(sd_ctl_dir[0].child);
4947 sd_ctl_dir[0].child = entry;
4948
4949 if (entry == NULL)
4950 return;
4951
4952 for_each_possible_cpu(i) {
4953 snprintf(buf, 32, "cpu%d", i);
4954 entry->procname = kstrdup(buf, GFP_KERNEL);
4955 entry->mode = 0555;
4956 entry->child = sd_alloc_ctl_cpu_table(i);
4957 entry++;
4958 }
4959
4960 WARN_ON(sd_sysctl_header);
4961 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4962 }
4963
4964 /* may be called multiple times per register */
4965 static void unregister_sched_domain_sysctl(void)
4966 {
4967 if (sd_sysctl_header)
4968 unregister_sysctl_table(sd_sysctl_header);
4969 sd_sysctl_header = NULL;
4970 if (sd_ctl_dir[0].child)
4971 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4972 }
4973 #else
4974 static void register_sched_domain_sysctl(void)
4975 {
4976 }
4977 static void unregister_sched_domain_sysctl(void)
4978 {
4979 }
4980 #endif
4981
4982 static void set_rq_online(struct rq *rq)
4983 {
4984 if (!rq->online) {
4985 const struct sched_class *class;
4986
4987 cpumask_set_cpu(rq->cpu, rq->rd->online);
4988 rq->online = 1;
4989
4990 for_each_class(class) {
4991 if (class->rq_online)
4992 class->rq_online(rq);
4993 }
4994 }
4995 }
4996
4997 static void set_rq_offline(struct rq *rq)
4998 {
4999 if (rq->online) {
5000 const struct sched_class *class;
5001
5002 for_each_class(class) {
5003 if (class->rq_offline)
5004 class->rq_offline(rq);
5005 }
5006
5007 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5008 rq->online = 0;
5009 }
5010 }
5011
5012 /*
5013 * migration_call - callback that gets triggered when a CPU is added.
5014 * Here we can start up the necessary migration thread for the new CPU.
5015 */
5016 static int
5017 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5018 {
5019 int cpu = (long)hcpu;
5020 unsigned long flags;
5021 struct rq *rq = cpu_rq(cpu);
5022
5023 switch (action & ~CPU_TASKS_FROZEN) {
5024
5025 case CPU_UP_PREPARE:
5026 rq->calc_load_update = calc_load_update;
5027 break;
5028
5029 case CPU_ONLINE:
5030 /* Update our root-domain */
5031 raw_spin_lock_irqsave(&rq->lock, flags);
5032 if (rq->rd) {
5033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5034
5035 set_rq_online(rq);
5036 }
5037 raw_spin_unlock_irqrestore(&rq->lock, flags);
5038 break;
5039
5040 #ifdef CONFIG_HOTPLUG_CPU
5041 case CPU_DYING:
5042 sched_ttwu_pending();
5043 /* Update our root-domain */
5044 raw_spin_lock_irqsave(&rq->lock, flags);
5045 if (rq->rd) {
5046 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5047 set_rq_offline(rq);
5048 }
5049 migrate_tasks(cpu);
5050 BUG_ON(rq->nr_running != 1); /* the migration thread */
5051 raw_spin_unlock_irqrestore(&rq->lock, flags);
5052 break;
5053
5054 case CPU_DEAD:
5055 calc_load_migrate(rq);
5056 break;
5057 #endif
5058 }
5059
5060 update_max_interval();
5061
5062 return NOTIFY_OK;
5063 }
5064
5065 /*
5066 * Register at high priority so that task migration (migrate_all_tasks)
5067 * happens before everything else. This has to be lower priority than
5068 * the notifier in the perf_event subsystem, though.
5069 */
5070 static struct notifier_block migration_notifier = {
5071 .notifier_call = migration_call,
5072 .priority = CPU_PRI_MIGRATION,
5073 };
5074
5075 static int sched_cpu_active(struct notifier_block *nfb,
5076 unsigned long action, void *hcpu)
5077 {
5078 switch (action & ~CPU_TASKS_FROZEN) {
5079 case CPU_STARTING:
5080 case CPU_DOWN_FAILED:
5081 set_cpu_active((long)hcpu, true);
5082 return NOTIFY_OK;
5083 default:
5084 return NOTIFY_DONE;
5085 }
5086 }
5087
5088 static int sched_cpu_inactive(struct notifier_block *nfb,
5089 unsigned long action, void *hcpu)
5090 {
5091 unsigned long flags;
5092 long cpu = (long)hcpu;
5093
5094 switch (action & ~CPU_TASKS_FROZEN) {
5095 case CPU_DOWN_PREPARE:
5096 set_cpu_active(cpu, false);
5097
5098 /* explicitly allow suspend */
5099 if (!(action & CPU_TASKS_FROZEN)) {
5100 struct dl_bw *dl_b = dl_bw_of(cpu);
5101 bool overflow;
5102 int cpus;
5103
5104 raw_spin_lock_irqsave(&dl_b->lock, flags);
5105 cpus = dl_bw_cpus(cpu);
5106 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5107 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5108
5109 if (overflow)
5110 return notifier_from_errno(-EBUSY);
5111 }
5112 return NOTIFY_OK;
5113 }
5114
5115 return NOTIFY_DONE;
5116 }
5117
5118 static int __init migration_init(void)
5119 {
5120 void *cpu = (void *)(long)smp_processor_id();
5121 int err;
5122
5123 /* Initialize migration for the boot CPU */
5124 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5125 BUG_ON(err == NOTIFY_BAD);
5126 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5127 register_cpu_notifier(&migration_notifier);
5128
5129 /* Register cpu active notifiers */
5130 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5131 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5132
5133 return 0;
5134 }
5135 early_initcall(migration_init);
5136 #endif
5137
5138 #ifdef CONFIG_SMP
5139
5140 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5141
5142 #ifdef CONFIG_SCHED_DEBUG
5143
5144 static __read_mostly int sched_debug_enabled;
5145
5146 static int __init sched_debug_setup(char *str)
5147 {
5148 sched_debug_enabled = 1;
5149
5150 return 0;
5151 }
5152 early_param("sched_debug", sched_debug_setup);
5153
5154 static inline bool sched_debug(void)
5155 {
5156 return sched_debug_enabled;
5157 }
5158
5159 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5160 struct cpumask *groupmask)
5161 {
5162 struct sched_group *group = sd->groups;
5163 char str[256];
5164
5165 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5166 cpumask_clear(groupmask);
5167
5168 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5169
5170 if (!(sd->flags & SD_LOAD_BALANCE)) {
5171 printk("does not load-balance\n");
5172 if (sd->parent)
5173 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5174 " has parent");
5175 return -1;
5176 }
5177
5178 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5179
5180 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5181 printk(KERN_ERR "ERROR: domain->span does not contain "
5182 "CPU%d\n", cpu);
5183 }
5184 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5185 printk(KERN_ERR "ERROR: domain->groups does not contain"
5186 " CPU%d\n", cpu);
5187 }
5188
5189 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5190 do {
5191 if (!group) {
5192 printk("\n");
5193 printk(KERN_ERR "ERROR: group is NULL\n");
5194 break;
5195 }
5196
5197 /*
5198 * Even though we initialize ->power to something semi-sane,
5199 * we leave power_orig unset. This allows us to detect if
5200 * domain iteration is still funny without causing /0 traps.
5201 */
5202 if (!group->sgp->power_orig) {
5203 printk(KERN_CONT "\n");
5204 printk(KERN_ERR "ERROR: domain->cpu_power not "
5205 "set\n");
5206 break;
5207 }
5208
5209 if (!cpumask_weight(sched_group_cpus(group))) {
5210 printk(KERN_CONT "\n");
5211 printk(KERN_ERR "ERROR: empty group\n");
5212 break;
5213 }
5214
5215 if (!(sd->flags & SD_OVERLAP) &&
5216 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5217 printk(KERN_CONT "\n");
5218 printk(KERN_ERR "ERROR: repeated CPUs\n");
5219 break;
5220 }
5221
5222 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5223
5224 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5225
5226 printk(KERN_CONT " %s", str);
5227 if (group->sgp->power != SCHED_POWER_SCALE) {
5228 printk(KERN_CONT " (cpu_power = %d)",
5229 group->sgp->power);
5230 }
5231
5232 group = group->next;
5233 } while (group != sd->groups);
5234 printk(KERN_CONT "\n");
5235
5236 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5237 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5238
5239 if (sd->parent &&
5240 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5241 printk(KERN_ERR "ERROR: parent span is not a superset "
5242 "of domain->span\n");
5243 return 0;
5244 }
5245
5246 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5247 {
5248 int level = 0;
5249
5250 if (!sched_debug_enabled)
5251 return;
5252
5253 if (!sd) {
5254 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5255 return;
5256 }
5257
5258 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5259
5260 for (;;) {
5261 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5262 break;
5263 level++;
5264 sd = sd->parent;
5265 if (!sd)
5266 break;
5267 }
5268 }
5269 #else /* !CONFIG_SCHED_DEBUG */
5270 # define sched_domain_debug(sd, cpu) do { } while (0)
5271 static inline bool sched_debug(void)
5272 {
5273 return false;
5274 }
5275 #endif /* CONFIG_SCHED_DEBUG */
5276
5277 static int sd_degenerate(struct sched_domain *sd)
5278 {
5279 if (cpumask_weight(sched_domain_span(sd)) == 1)
5280 return 1;
5281
5282 /* Following flags need at least 2 groups */
5283 if (sd->flags & (SD_LOAD_BALANCE |
5284 SD_BALANCE_NEWIDLE |
5285 SD_BALANCE_FORK |
5286 SD_BALANCE_EXEC |
5287 SD_SHARE_CPUPOWER |
5288 SD_SHARE_PKG_RESOURCES)) {
5289 if (sd->groups != sd->groups->next)
5290 return 0;
5291 }
5292
5293 /* Following flags don't use groups */
5294 if (sd->flags & (SD_WAKE_AFFINE))
5295 return 0;
5296
5297 return 1;
5298 }
5299
5300 static int
5301 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5302 {
5303 unsigned long cflags = sd->flags, pflags = parent->flags;
5304
5305 if (sd_degenerate(parent))
5306 return 1;
5307
5308 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5309 return 0;
5310
5311 /* Flags needing groups don't count if only 1 group in parent */
5312 if (parent->groups == parent->groups->next) {
5313 pflags &= ~(SD_LOAD_BALANCE |
5314 SD_BALANCE_NEWIDLE |
5315 SD_BALANCE_FORK |
5316 SD_BALANCE_EXEC |
5317 SD_SHARE_CPUPOWER |
5318 SD_SHARE_PKG_RESOURCES |
5319 SD_PREFER_SIBLING);
5320 if (nr_node_ids == 1)
5321 pflags &= ~SD_SERIALIZE;
5322 }
5323 if (~cflags & pflags)
5324 return 0;
5325
5326 return 1;
5327 }
5328
5329 static void free_rootdomain(struct rcu_head *rcu)
5330 {
5331 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5332
5333 cpupri_cleanup(&rd->cpupri);
5334 cpudl_cleanup(&rd->cpudl);
5335 free_cpumask_var(rd->dlo_mask);
5336 free_cpumask_var(rd->rto_mask);
5337 free_cpumask_var(rd->online);
5338 free_cpumask_var(rd->span);
5339 kfree(rd);
5340 }
5341
5342 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5343 {
5344 struct root_domain *old_rd = NULL;
5345 unsigned long flags;
5346
5347 raw_spin_lock_irqsave(&rq->lock, flags);
5348
5349 if (rq->rd) {
5350 old_rd = rq->rd;
5351
5352 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5353 set_rq_offline(rq);
5354
5355 cpumask_clear_cpu(rq->cpu, old_rd->span);
5356
5357 /*
5358 * If we dont want to free the old_rd yet then
5359 * set old_rd to NULL to skip the freeing later
5360 * in this function:
5361 */
5362 if (!atomic_dec_and_test(&old_rd->refcount))
5363 old_rd = NULL;
5364 }
5365
5366 atomic_inc(&rd->refcount);
5367 rq->rd = rd;
5368
5369 cpumask_set_cpu(rq->cpu, rd->span);
5370 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5371 set_rq_online(rq);
5372
5373 raw_spin_unlock_irqrestore(&rq->lock, flags);
5374
5375 if (old_rd)
5376 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5377 }
5378
5379 static int init_rootdomain(struct root_domain *rd)
5380 {
5381 memset(rd, 0, sizeof(*rd));
5382
5383 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5384 goto out;
5385 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5386 goto free_span;
5387 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5388 goto free_online;
5389 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5390 goto free_dlo_mask;
5391
5392 init_dl_bw(&rd->dl_bw);
5393 if (cpudl_init(&rd->cpudl) != 0)
5394 goto free_dlo_mask;
5395
5396 if (cpupri_init(&rd->cpupri) != 0)
5397 goto free_rto_mask;
5398 return 0;
5399
5400 free_rto_mask:
5401 free_cpumask_var(rd->rto_mask);
5402 free_dlo_mask:
5403 free_cpumask_var(rd->dlo_mask);
5404 free_online:
5405 free_cpumask_var(rd->online);
5406 free_span:
5407 free_cpumask_var(rd->span);
5408 out:
5409 return -ENOMEM;
5410 }
5411
5412 /*
5413 * By default the system creates a single root-domain with all cpus as
5414 * members (mimicking the global state we have today).
5415 */
5416 struct root_domain def_root_domain;
5417
5418 static void init_defrootdomain(void)
5419 {
5420 init_rootdomain(&def_root_domain);
5421
5422 atomic_set(&def_root_domain.refcount, 1);
5423 }
5424
5425 static struct root_domain *alloc_rootdomain(void)
5426 {
5427 struct root_domain *rd;
5428
5429 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5430 if (!rd)
5431 return NULL;
5432
5433 if (init_rootdomain(rd) != 0) {
5434 kfree(rd);
5435 return NULL;
5436 }
5437
5438 return rd;
5439 }
5440
5441 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5442 {
5443 struct sched_group *tmp, *first;
5444
5445 if (!sg)
5446 return;
5447
5448 first = sg;
5449 do {
5450 tmp = sg->next;
5451
5452 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5453 kfree(sg->sgp);
5454
5455 kfree(sg);
5456 sg = tmp;
5457 } while (sg != first);
5458 }
5459
5460 static void free_sched_domain(struct rcu_head *rcu)
5461 {
5462 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5463
5464 /*
5465 * If its an overlapping domain it has private groups, iterate and
5466 * nuke them all.
5467 */
5468 if (sd->flags & SD_OVERLAP) {
5469 free_sched_groups(sd->groups, 1);
5470 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5471 kfree(sd->groups->sgp);
5472 kfree(sd->groups);
5473 }
5474 kfree(sd);
5475 }
5476
5477 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5478 {
5479 call_rcu(&sd->rcu, free_sched_domain);
5480 }
5481
5482 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5483 {
5484 for (; sd; sd = sd->parent)
5485 destroy_sched_domain(sd, cpu);
5486 }
5487
5488 /*
5489 * Keep a special pointer to the highest sched_domain that has
5490 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5491 * allows us to avoid some pointer chasing select_idle_sibling().
5492 *
5493 * Also keep a unique ID per domain (we use the first cpu number in
5494 * the cpumask of the domain), this allows us to quickly tell if
5495 * two cpus are in the same cache domain, see cpus_share_cache().
5496 */
5497 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5498 DEFINE_PER_CPU(int, sd_llc_size);
5499 DEFINE_PER_CPU(int, sd_llc_id);
5500 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5501 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5502 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5503
5504 static void update_top_cache_domain(int cpu)
5505 {
5506 struct sched_domain *sd;
5507 struct sched_domain *busy_sd = NULL;
5508 int id = cpu;
5509 int size = 1;
5510
5511 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5512 if (sd) {
5513 id = cpumask_first(sched_domain_span(sd));
5514 size = cpumask_weight(sched_domain_span(sd));
5515 busy_sd = sd->parent; /* sd_busy */
5516 }
5517 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5518
5519 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5520 per_cpu(sd_llc_size, cpu) = size;
5521 per_cpu(sd_llc_id, cpu) = id;
5522
5523 sd = lowest_flag_domain(cpu, SD_NUMA);
5524 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5525
5526 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5527 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5528 }
5529
5530 /*
5531 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5532 * hold the hotplug lock.
5533 */
5534 static void
5535 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5536 {
5537 struct rq *rq = cpu_rq(cpu);
5538 struct sched_domain *tmp;
5539
5540 /* Remove the sched domains which do not contribute to scheduling. */
5541 for (tmp = sd; tmp; ) {
5542 struct sched_domain *parent = tmp->parent;
5543 if (!parent)
5544 break;
5545
5546 if (sd_parent_degenerate(tmp, parent)) {
5547 tmp->parent = parent->parent;
5548 if (parent->parent)
5549 parent->parent->child = tmp;
5550 /*
5551 * Transfer SD_PREFER_SIBLING down in case of a
5552 * degenerate parent; the spans match for this
5553 * so the property transfers.
5554 */
5555 if (parent->flags & SD_PREFER_SIBLING)
5556 tmp->flags |= SD_PREFER_SIBLING;
5557 destroy_sched_domain(parent, cpu);
5558 } else
5559 tmp = tmp->parent;
5560 }
5561
5562 if (sd && sd_degenerate(sd)) {
5563 tmp = sd;
5564 sd = sd->parent;
5565 destroy_sched_domain(tmp, cpu);
5566 if (sd)
5567 sd->child = NULL;
5568 }
5569
5570 sched_domain_debug(sd, cpu);
5571
5572 rq_attach_root(rq, rd);
5573 tmp = rq->sd;
5574 rcu_assign_pointer(rq->sd, sd);
5575 destroy_sched_domains(tmp, cpu);
5576
5577 update_top_cache_domain(cpu);
5578 }
5579
5580 /* cpus with isolated domains */
5581 static cpumask_var_t cpu_isolated_map;
5582
5583 /* Setup the mask of cpus configured for isolated domains */
5584 static int __init isolated_cpu_setup(char *str)
5585 {
5586 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5587 cpulist_parse(str, cpu_isolated_map);
5588 return 1;
5589 }
5590
5591 __setup("isolcpus=", isolated_cpu_setup);
5592
5593 static const struct cpumask *cpu_cpu_mask(int cpu)
5594 {
5595 return cpumask_of_node(cpu_to_node(cpu));
5596 }
5597
5598 struct sd_data {
5599 struct sched_domain **__percpu sd;
5600 struct sched_group **__percpu sg;
5601 struct sched_group_power **__percpu sgp;
5602 };
5603
5604 struct s_data {
5605 struct sched_domain ** __percpu sd;
5606 struct root_domain *rd;
5607 };
5608
5609 enum s_alloc {
5610 sa_rootdomain,
5611 sa_sd,
5612 sa_sd_storage,
5613 sa_none,
5614 };
5615
5616 struct sched_domain_topology_level;
5617
5618 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5619 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5620
5621 #define SDTL_OVERLAP 0x01
5622
5623 struct sched_domain_topology_level {
5624 sched_domain_init_f init;
5625 sched_domain_mask_f mask;
5626 int flags;
5627 int numa_level;
5628 struct sd_data data;
5629 };
5630
5631 /*
5632 * Build an iteration mask that can exclude certain CPUs from the upwards
5633 * domain traversal.
5634 *
5635 * Asymmetric node setups can result in situations where the domain tree is of
5636 * unequal depth, make sure to skip domains that already cover the entire
5637 * range.
5638 *
5639 * In that case build_sched_domains() will have terminated the iteration early
5640 * and our sibling sd spans will be empty. Domains should always include the
5641 * cpu they're built on, so check that.
5642 *
5643 */
5644 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5645 {
5646 const struct cpumask *span = sched_domain_span(sd);
5647 struct sd_data *sdd = sd->private;
5648 struct sched_domain *sibling;
5649 int i;
5650
5651 for_each_cpu(i, span) {
5652 sibling = *per_cpu_ptr(sdd->sd, i);
5653 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5654 continue;
5655
5656 cpumask_set_cpu(i, sched_group_mask(sg));
5657 }
5658 }
5659
5660 /*
5661 * Return the canonical balance cpu for this group, this is the first cpu
5662 * of this group that's also in the iteration mask.
5663 */
5664 int group_balance_cpu(struct sched_group *sg)
5665 {
5666 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5667 }
5668
5669 static int
5670 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5671 {
5672 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5673 const struct cpumask *span = sched_domain_span(sd);
5674 struct cpumask *covered = sched_domains_tmpmask;
5675 struct sd_data *sdd = sd->private;
5676 struct sched_domain *child;
5677 int i;
5678
5679 cpumask_clear(covered);
5680
5681 for_each_cpu(i, span) {
5682 struct cpumask *sg_span;
5683
5684 if (cpumask_test_cpu(i, covered))
5685 continue;
5686
5687 child = *per_cpu_ptr(sdd->sd, i);
5688
5689 /* See the comment near build_group_mask(). */
5690 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5691 continue;
5692
5693 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5694 GFP_KERNEL, cpu_to_node(cpu));
5695
5696 if (!sg)
5697 goto fail;
5698
5699 sg_span = sched_group_cpus(sg);
5700 if (child->child) {
5701 child = child->child;
5702 cpumask_copy(sg_span, sched_domain_span(child));
5703 } else
5704 cpumask_set_cpu(i, sg_span);
5705
5706 cpumask_or(covered, covered, sg_span);
5707
5708 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5709 if (atomic_inc_return(&sg->sgp->ref) == 1)
5710 build_group_mask(sd, sg);
5711
5712 /*
5713 * Initialize sgp->power such that even if we mess up the
5714 * domains and no possible iteration will get us here, we won't
5715 * die on a /0 trap.
5716 */
5717 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5718 sg->sgp->power_orig = sg->sgp->power;
5719
5720 /*
5721 * Make sure the first group of this domain contains the
5722 * canonical balance cpu. Otherwise the sched_domain iteration
5723 * breaks. See update_sg_lb_stats().
5724 */
5725 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5726 group_balance_cpu(sg) == cpu)
5727 groups = sg;
5728
5729 if (!first)
5730 first = sg;
5731 if (last)
5732 last->next = sg;
5733 last = sg;
5734 last->next = first;
5735 }
5736 sd->groups = groups;
5737
5738 return 0;
5739
5740 fail:
5741 free_sched_groups(first, 0);
5742
5743 return -ENOMEM;
5744 }
5745
5746 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5747 {
5748 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5749 struct sched_domain *child = sd->child;
5750
5751 if (child)
5752 cpu = cpumask_first(sched_domain_span(child));
5753
5754 if (sg) {
5755 *sg = *per_cpu_ptr(sdd->sg, cpu);
5756 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5757 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5758 }
5759
5760 return cpu;
5761 }
5762
5763 /*
5764 * build_sched_groups will build a circular linked list of the groups
5765 * covered by the given span, and will set each group's ->cpumask correctly,
5766 * and ->cpu_power to 0.
5767 *
5768 * Assumes the sched_domain tree is fully constructed
5769 */
5770 static int
5771 build_sched_groups(struct sched_domain *sd, int cpu)
5772 {
5773 struct sched_group *first = NULL, *last = NULL;
5774 struct sd_data *sdd = sd->private;
5775 const struct cpumask *span = sched_domain_span(sd);
5776 struct cpumask *covered;
5777 int i;
5778
5779 get_group(cpu, sdd, &sd->groups);
5780 atomic_inc(&sd->groups->ref);
5781
5782 if (cpu != cpumask_first(span))
5783 return 0;
5784
5785 lockdep_assert_held(&sched_domains_mutex);
5786 covered = sched_domains_tmpmask;
5787
5788 cpumask_clear(covered);
5789
5790 for_each_cpu(i, span) {
5791 struct sched_group *sg;
5792 int group, j;
5793
5794 if (cpumask_test_cpu(i, covered))
5795 continue;
5796
5797 group = get_group(i, sdd, &sg);
5798 cpumask_clear(sched_group_cpus(sg));
5799 sg->sgp->power = 0;
5800 cpumask_setall(sched_group_mask(sg));
5801
5802 for_each_cpu(j, span) {
5803 if (get_group(j, sdd, NULL) != group)
5804 continue;
5805
5806 cpumask_set_cpu(j, covered);
5807 cpumask_set_cpu(j, sched_group_cpus(sg));
5808 }
5809
5810 if (!first)
5811 first = sg;
5812 if (last)
5813 last->next = sg;
5814 last = sg;
5815 }
5816 last->next = first;
5817
5818 return 0;
5819 }
5820
5821 /*
5822 * Initialize sched groups cpu_power.
5823 *
5824 * cpu_power indicates the capacity of sched group, which is used while
5825 * distributing the load between different sched groups in a sched domain.
5826 * Typically cpu_power for all the groups in a sched domain will be same unless
5827 * there are asymmetries in the topology. If there are asymmetries, group
5828 * having more cpu_power will pickup more load compared to the group having
5829 * less cpu_power.
5830 */
5831 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5832 {
5833 struct sched_group *sg = sd->groups;
5834
5835 WARN_ON(!sg);
5836
5837 do {
5838 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5839 sg = sg->next;
5840 } while (sg != sd->groups);
5841
5842 if (cpu != group_balance_cpu(sg))
5843 return;
5844
5845 update_group_power(sd, cpu);
5846 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5847 }
5848
5849 int __weak arch_sd_sibling_asym_packing(void)
5850 {
5851 return 0*SD_ASYM_PACKING;
5852 }
5853
5854 /*
5855 * Initializers for schedule domains
5856 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5857 */
5858
5859 #ifdef CONFIG_SCHED_DEBUG
5860 # define SD_INIT_NAME(sd, type) sd->name = #type
5861 #else
5862 # define SD_INIT_NAME(sd, type) do { } while (0)
5863 #endif
5864
5865 #define SD_INIT_FUNC(type) \
5866 static noinline struct sched_domain * \
5867 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5868 { \
5869 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5870 *sd = SD_##type##_INIT; \
5871 SD_INIT_NAME(sd, type); \
5872 sd->private = &tl->data; \
5873 return sd; \
5874 }
5875
5876 SD_INIT_FUNC(CPU)
5877 #ifdef CONFIG_SCHED_SMT
5878 SD_INIT_FUNC(SIBLING)
5879 #endif
5880 #ifdef CONFIG_SCHED_MC
5881 SD_INIT_FUNC(MC)
5882 #endif
5883 #ifdef CONFIG_SCHED_BOOK
5884 SD_INIT_FUNC(BOOK)
5885 #endif
5886
5887 static int default_relax_domain_level = -1;
5888 int sched_domain_level_max;
5889
5890 static int __init setup_relax_domain_level(char *str)
5891 {
5892 if (kstrtoint(str, 0, &default_relax_domain_level))
5893 pr_warn("Unable to set relax_domain_level\n");
5894
5895 return 1;
5896 }
5897 __setup("relax_domain_level=", setup_relax_domain_level);
5898
5899 static void set_domain_attribute(struct sched_domain *sd,
5900 struct sched_domain_attr *attr)
5901 {
5902 int request;
5903
5904 if (!attr || attr->relax_domain_level < 0) {
5905 if (default_relax_domain_level < 0)
5906 return;
5907 else
5908 request = default_relax_domain_level;
5909 } else
5910 request = attr->relax_domain_level;
5911 if (request < sd->level) {
5912 /* turn off idle balance on this domain */
5913 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5914 } else {
5915 /* turn on idle balance on this domain */
5916 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5917 }
5918 }
5919
5920 static void __sdt_free(const struct cpumask *cpu_map);
5921 static int __sdt_alloc(const struct cpumask *cpu_map);
5922
5923 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5924 const struct cpumask *cpu_map)
5925 {
5926 switch (what) {
5927 case sa_rootdomain:
5928 if (!atomic_read(&d->rd->refcount))
5929 free_rootdomain(&d->rd->rcu); /* fall through */
5930 case sa_sd:
5931 free_percpu(d->sd); /* fall through */
5932 case sa_sd_storage:
5933 __sdt_free(cpu_map); /* fall through */
5934 case sa_none:
5935 break;
5936 }
5937 }
5938
5939 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5940 const struct cpumask *cpu_map)
5941 {
5942 memset(d, 0, sizeof(*d));
5943
5944 if (__sdt_alloc(cpu_map))
5945 return sa_sd_storage;
5946 d->sd = alloc_percpu(struct sched_domain *);
5947 if (!d->sd)
5948 return sa_sd_storage;
5949 d->rd = alloc_rootdomain();
5950 if (!d->rd)
5951 return sa_sd;
5952 return sa_rootdomain;
5953 }
5954
5955 /*
5956 * NULL the sd_data elements we've used to build the sched_domain and
5957 * sched_group structure so that the subsequent __free_domain_allocs()
5958 * will not free the data we're using.
5959 */
5960 static void claim_allocations(int cpu, struct sched_domain *sd)
5961 {
5962 struct sd_data *sdd = sd->private;
5963
5964 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5965 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5966
5967 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5968 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5969
5970 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5971 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5972 }
5973
5974 #ifdef CONFIG_SCHED_SMT
5975 static const struct cpumask *cpu_smt_mask(int cpu)
5976 {
5977 return topology_thread_cpumask(cpu);
5978 }
5979 #endif
5980
5981 /*
5982 * Topology list, bottom-up.
5983 */
5984 static struct sched_domain_topology_level default_topology[] = {
5985 #ifdef CONFIG_SCHED_SMT
5986 { sd_init_SIBLING, cpu_smt_mask, },
5987 #endif
5988 #ifdef CONFIG_SCHED_MC
5989 { sd_init_MC, cpu_coregroup_mask, },
5990 #endif
5991 #ifdef CONFIG_SCHED_BOOK
5992 { sd_init_BOOK, cpu_book_mask, },
5993 #endif
5994 { sd_init_CPU, cpu_cpu_mask, },
5995 { NULL, },
5996 };
5997
5998 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5999
6000 #define for_each_sd_topology(tl) \
6001 for (tl = sched_domain_topology; tl->init; tl++)
6002
6003 #ifdef CONFIG_NUMA
6004
6005 static int sched_domains_numa_levels;
6006 static int *sched_domains_numa_distance;
6007 static struct cpumask ***sched_domains_numa_masks;
6008 static int sched_domains_curr_level;
6009
6010 static inline int sd_local_flags(int level)
6011 {
6012 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6013 return 0;
6014
6015 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6016 }
6017
6018 static struct sched_domain *
6019 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6020 {
6021 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6022 int level = tl->numa_level;
6023 int sd_weight = cpumask_weight(
6024 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6025
6026 *sd = (struct sched_domain){
6027 .min_interval = sd_weight,
6028 .max_interval = 2*sd_weight,
6029 .busy_factor = 32,
6030 .imbalance_pct = 125,
6031 .cache_nice_tries = 2,
6032 .busy_idx = 3,
6033 .idle_idx = 2,
6034 .newidle_idx = 0,
6035 .wake_idx = 0,
6036 .forkexec_idx = 0,
6037
6038 .flags = 1*SD_LOAD_BALANCE
6039 | 1*SD_BALANCE_NEWIDLE
6040 | 0*SD_BALANCE_EXEC
6041 | 0*SD_BALANCE_FORK
6042 | 0*SD_BALANCE_WAKE
6043 | 0*SD_WAKE_AFFINE
6044 | 0*SD_SHARE_CPUPOWER
6045 | 0*SD_SHARE_PKG_RESOURCES
6046 | 1*SD_SERIALIZE
6047 | 0*SD_PREFER_SIBLING
6048 | 1*SD_NUMA
6049 | sd_local_flags(level)
6050 ,
6051 .last_balance = jiffies,
6052 .balance_interval = sd_weight,
6053 .max_newidle_lb_cost = 0,
6054 .next_decay_max_lb_cost = jiffies,
6055 };
6056 SD_INIT_NAME(sd, NUMA);
6057 sd->private = &tl->data;
6058
6059 /*
6060 * Ugly hack to pass state to sd_numa_mask()...
6061 */
6062 sched_domains_curr_level = tl->numa_level;
6063
6064 return sd;
6065 }
6066
6067 static const struct cpumask *sd_numa_mask(int cpu)
6068 {
6069 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6070 }
6071
6072 static void sched_numa_warn(const char *str)
6073 {
6074 static int done = false;
6075 int i,j;
6076
6077 if (done)
6078 return;
6079
6080 done = true;
6081
6082 printk(KERN_WARNING "ERROR: %s\n\n", str);
6083
6084 for (i = 0; i < nr_node_ids; i++) {
6085 printk(KERN_WARNING " ");
6086 for (j = 0; j < nr_node_ids; j++)
6087 printk(KERN_CONT "%02d ", node_distance(i,j));
6088 printk(KERN_CONT "\n");
6089 }
6090 printk(KERN_WARNING "\n");
6091 }
6092
6093 static bool find_numa_distance(int distance)
6094 {
6095 int i;
6096
6097 if (distance == node_distance(0, 0))
6098 return true;
6099
6100 for (i = 0; i < sched_domains_numa_levels; i++) {
6101 if (sched_domains_numa_distance[i] == distance)
6102 return true;
6103 }
6104
6105 return false;
6106 }
6107
6108 static void sched_init_numa(void)
6109 {
6110 int next_distance, curr_distance = node_distance(0, 0);
6111 struct sched_domain_topology_level *tl;
6112 int level = 0;
6113 int i, j, k;
6114
6115 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6116 if (!sched_domains_numa_distance)
6117 return;
6118
6119 /*
6120 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6121 * unique distances in the node_distance() table.
6122 *
6123 * Assumes node_distance(0,j) includes all distances in
6124 * node_distance(i,j) in order to avoid cubic time.
6125 */
6126 next_distance = curr_distance;
6127 for (i = 0; i < nr_node_ids; i++) {
6128 for (j = 0; j < nr_node_ids; j++) {
6129 for (k = 0; k < nr_node_ids; k++) {
6130 int distance = node_distance(i, k);
6131
6132 if (distance > curr_distance &&
6133 (distance < next_distance ||
6134 next_distance == curr_distance))
6135 next_distance = distance;
6136
6137 /*
6138 * While not a strong assumption it would be nice to know
6139 * about cases where if node A is connected to B, B is not
6140 * equally connected to A.
6141 */
6142 if (sched_debug() && node_distance(k, i) != distance)
6143 sched_numa_warn("Node-distance not symmetric");
6144
6145 if (sched_debug() && i && !find_numa_distance(distance))
6146 sched_numa_warn("Node-0 not representative");
6147 }
6148 if (next_distance != curr_distance) {
6149 sched_domains_numa_distance[level++] = next_distance;
6150 sched_domains_numa_levels = level;
6151 curr_distance = next_distance;
6152 } else break;
6153 }
6154
6155 /*
6156 * In case of sched_debug() we verify the above assumption.
6157 */
6158 if (!sched_debug())
6159 break;
6160 }
6161 /*
6162 * 'level' contains the number of unique distances, excluding the
6163 * identity distance node_distance(i,i).
6164 *
6165 * The sched_domains_numa_distance[] array includes the actual distance
6166 * numbers.
6167 */
6168
6169 /*
6170 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6171 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6172 * the array will contain less then 'level' members. This could be
6173 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6174 * in other functions.
6175 *
6176 * We reset it to 'level' at the end of this function.
6177 */
6178 sched_domains_numa_levels = 0;
6179
6180 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6181 if (!sched_domains_numa_masks)
6182 return;
6183
6184 /*
6185 * Now for each level, construct a mask per node which contains all
6186 * cpus of nodes that are that many hops away from us.
6187 */
6188 for (i = 0; i < level; i++) {
6189 sched_domains_numa_masks[i] =
6190 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6191 if (!sched_domains_numa_masks[i])
6192 return;
6193
6194 for (j = 0; j < nr_node_ids; j++) {
6195 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6196 if (!mask)
6197 return;
6198
6199 sched_domains_numa_masks[i][j] = mask;
6200
6201 for (k = 0; k < nr_node_ids; k++) {
6202 if (node_distance(j, k) > sched_domains_numa_distance[i])
6203 continue;
6204
6205 cpumask_or(mask, mask, cpumask_of_node(k));
6206 }
6207 }
6208 }
6209
6210 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6211 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6212 if (!tl)
6213 return;
6214
6215 /*
6216 * Copy the default topology bits..
6217 */
6218 for (i = 0; default_topology[i].init; i++)
6219 tl[i] = default_topology[i];
6220
6221 /*
6222 * .. and append 'j' levels of NUMA goodness.
6223 */
6224 for (j = 0; j < level; i++, j++) {
6225 tl[i] = (struct sched_domain_topology_level){
6226 .init = sd_numa_init,
6227 .mask = sd_numa_mask,
6228 .flags = SDTL_OVERLAP,
6229 .numa_level = j,
6230 };
6231 }
6232
6233 sched_domain_topology = tl;
6234
6235 sched_domains_numa_levels = level;
6236 }
6237
6238 static void sched_domains_numa_masks_set(int cpu)
6239 {
6240 int i, j;
6241 int node = cpu_to_node(cpu);
6242
6243 for (i = 0; i < sched_domains_numa_levels; i++) {
6244 for (j = 0; j < nr_node_ids; j++) {
6245 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6246 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6247 }
6248 }
6249 }
6250
6251 static void sched_domains_numa_masks_clear(int cpu)
6252 {
6253 int i, j;
6254 for (i = 0; i < sched_domains_numa_levels; i++) {
6255 for (j = 0; j < nr_node_ids; j++)
6256 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6257 }
6258 }
6259
6260 /*
6261 * Update sched_domains_numa_masks[level][node] array when new cpus
6262 * are onlined.
6263 */
6264 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6265 unsigned long action,
6266 void *hcpu)
6267 {
6268 int cpu = (long)hcpu;
6269
6270 switch (action & ~CPU_TASKS_FROZEN) {
6271 case CPU_ONLINE:
6272 sched_domains_numa_masks_set(cpu);
6273 break;
6274
6275 case CPU_DEAD:
6276 sched_domains_numa_masks_clear(cpu);
6277 break;
6278
6279 default:
6280 return NOTIFY_DONE;
6281 }
6282
6283 return NOTIFY_OK;
6284 }
6285 #else
6286 static inline void sched_init_numa(void)
6287 {
6288 }
6289
6290 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6291 unsigned long action,
6292 void *hcpu)
6293 {
6294 return 0;
6295 }
6296 #endif /* CONFIG_NUMA */
6297
6298 static int __sdt_alloc(const struct cpumask *cpu_map)
6299 {
6300 struct sched_domain_topology_level *tl;
6301 int j;
6302
6303 for_each_sd_topology(tl) {
6304 struct sd_data *sdd = &tl->data;
6305
6306 sdd->sd = alloc_percpu(struct sched_domain *);
6307 if (!sdd->sd)
6308 return -ENOMEM;
6309
6310 sdd->sg = alloc_percpu(struct sched_group *);
6311 if (!sdd->sg)
6312 return -ENOMEM;
6313
6314 sdd->sgp = alloc_percpu(struct sched_group_power *);
6315 if (!sdd->sgp)
6316 return -ENOMEM;
6317
6318 for_each_cpu(j, cpu_map) {
6319 struct sched_domain *sd;
6320 struct sched_group *sg;
6321 struct sched_group_power *sgp;
6322
6323 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6324 GFP_KERNEL, cpu_to_node(j));
6325 if (!sd)
6326 return -ENOMEM;
6327
6328 *per_cpu_ptr(sdd->sd, j) = sd;
6329
6330 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6331 GFP_KERNEL, cpu_to_node(j));
6332 if (!sg)
6333 return -ENOMEM;
6334
6335 sg->next = sg;
6336
6337 *per_cpu_ptr(sdd->sg, j) = sg;
6338
6339 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6340 GFP_KERNEL, cpu_to_node(j));
6341 if (!sgp)
6342 return -ENOMEM;
6343
6344 *per_cpu_ptr(sdd->sgp, j) = sgp;
6345 }
6346 }
6347
6348 return 0;
6349 }
6350
6351 static void __sdt_free(const struct cpumask *cpu_map)
6352 {
6353 struct sched_domain_topology_level *tl;
6354 int j;
6355
6356 for_each_sd_topology(tl) {
6357 struct sd_data *sdd = &tl->data;
6358
6359 for_each_cpu(j, cpu_map) {
6360 struct sched_domain *sd;
6361
6362 if (sdd->sd) {
6363 sd = *per_cpu_ptr(sdd->sd, j);
6364 if (sd && (sd->flags & SD_OVERLAP))
6365 free_sched_groups(sd->groups, 0);
6366 kfree(*per_cpu_ptr(sdd->sd, j));
6367 }
6368
6369 if (sdd->sg)
6370 kfree(*per_cpu_ptr(sdd->sg, j));
6371 if (sdd->sgp)
6372 kfree(*per_cpu_ptr(sdd->sgp, j));
6373 }
6374 free_percpu(sdd->sd);
6375 sdd->sd = NULL;
6376 free_percpu(sdd->sg);
6377 sdd->sg = NULL;
6378 free_percpu(sdd->sgp);
6379 sdd->sgp = NULL;
6380 }
6381 }
6382
6383 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6384 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6385 struct sched_domain *child, int cpu)
6386 {
6387 struct sched_domain *sd = tl->init(tl, cpu);
6388 if (!sd)
6389 return child;
6390
6391 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6392 if (child) {
6393 sd->level = child->level + 1;
6394 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6395 child->parent = sd;
6396 sd->child = child;
6397 }
6398 set_domain_attribute(sd, attr);
6399
6400 return sd;
6401 }
6402
6403 /*
6404 * Build sched domains for a given set of cpus and attach the sched domains
6405 * to the individual cpus
6406 */
6407 static int build_sched_domains(const struct cpumask *cpu_map,
6408 struct sched_domain_attr *attr)
6409 {
6410 enum s_alloc alloc_state;
6411 struct sched_domain *sd;
6412 struct s_data d;
6413 int i, ret = -ENOMEM;
6414
6415 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6416 if (alloc_state != sa_rootdomain)
6417 goto error;
6418
6419 /* Set up domains for cpus specified by the cpu_map. */
6420 for_each_cpu(i, cpu_map) {
6421 struct sched_domain_topology_level *tl;
6422
6423 sd = NULL;
6424 for_each_sd_topology(tl) {
6425 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6426 if (tl == sched_domain_topology)
6427 *per_cpu_ptr(d.sd, i) = sd;
6428 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6429 sd->flags |= SD_OVERLAP;
6430 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6431 break;
6432 }
6433 }
6434
6435 /* Build the groups for the domains */
6436 for_each_cpu(i, cpu_map) {
6437 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6438 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6439 if (sd->flags & SD_OVERLAP) {
6440 if (build_overlap_sched_groups(sd, i))
6441 goto error;
6442 } else {
6443 if (build_sched_groups(sd, i))
6444 goto error;
6445 }
6446 }
6447 }
6448
6449 /* Calculate CPU power for physical packages and nodes */
6450 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6451 if (!cpumask_test_cpu(i, cpu_map))
6452 continue;
6453
6454 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6455 claim_allocations(i, sd);
6456 init_sched_groups_power(i, sd);
6457 }
6458 }
6459
6460 /* Attach the domains */
6461 rcu_read_lock();
6462 for_each_cpu(i, cpu_map) {
6463 sd = *per_cpu_ptr(d.sd, i);
6464 cpu_attach_domain(sd, d.rd, i);
6465 }
6466 rcu_read_unlock();
6467
6468 ret = 0;
6469 error:
6470 __free_domain_allocs(&d, alloc_state, cpu_map);
6471 return ret;
6472 }
6473
6474 static cpumask_var_t *doms_cur; /* current sched domains */
6475 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6476 static struct sched_domain_attr *dattr_cur;
6477 /* attribues of custom domains in 'doms_cur' */
6478
6479 /*
6480 * Special case: If a kmalloc of a doms_cur partition (array of
6481 * cpumask) fails, then fallback to a single sched domain,
6482 * as determined by the single cpumask fallback_doms.
6483 */
6484 static cpumask_var_t fallback_doms;
6485
6486 /*
6487 * arch_update_cpu_topology lets virtualized architectures update the
6488 * cpu core maps. It is supposed to return 1 if the topology changed
6489 * or 0 if it stayed the same.
6490 */
6491 int __weak arch_update_cpu_topology(void)
6492 {
6493 return 0;
6494 }
6495
6496 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6497 {
6498 int i;
6499 cpumask_var_t *doms;
6500
6501 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6502 if (!doms)
6503 return NULL;
6504 for (i = 0; i < ndoms; i++) {
6505 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6506 free_sched_domains(doms, i);
6507 return NULL;
6508 }
6509 }
6510 return doms;
6511 }
6512
6513 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6514 {
6515 unsigned int i;
6516 for (i = 0; i < ndoms; i++)
6517 free_cpumask_var(doms[i]);
6518 kfree(doms);
6519 }
6520
6521 /*
6522 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6523 * For now this just excludes isolated cpus, but could be used to
6524 * exclude other special cases in the future.
6525 */
6526 static int init_sched_domains(const struct cpumask *cpu_map)
6527 {
6528 int err;
6529
6530 arch_update_cpu_topology();
6531 ndoms_cur = 1;
6532 doms_cur = alloc_sched_domains(ndoms_cur);
6533 if (!doms_cur)
6534 doms_cur = &fallback_doms;
6535 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6536 err = build_sched_domains(doms_cur[0], NULL);
6537 register_sched_domain_sysctl();
6538
6539 return err;
6540 }
6541
6542 /*
6543 * Detach sched domains from a group of cpus specified in cpu_map
6544 * These cpus will now be attached to the NULL domain
6545 */
6546 static void detach_destroy_domains(const struct cpumask *cpu_map)
6547 {
6548 int i;
6549
6550 rcu_read_lock();
6551 for_each_cpu(i, cpu_map)
6552 cpu_attach_domain(NULL, &def_root_domain, i);
6553 rcu_read_unlock();
6554 }
6555
6556 /* handle null as "default" */
6557 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6558 struct sched_domain_attr *new, int idx_new)
6559 {
6560 struct sched_domain_attr tmp;
6561
6562 /* fast path */
6563 if (!new && !cur)
6564 return 1;
6565
6566 tmp = SD_ATTR_INIT;
6567 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6568 new ? (new + idx_new) : &tmp,
6569 sizeof(struct sched_domain_attr));
6570 }
6571
6572 /*
6573 * Partition sched domains as specified by the 'ndoms_new'
6574 * cpumasks in the array doms_new[] of cpumasks. This compares
6575 * doms_new[] to the current sched domain partitioning, doms_cur[].
6576 * It destroys each deleted domain and builds each new domain.
6577 *
6578 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6579 * The masks don't intersect (don't overlap.) We should setup one
6580 * sched domain for each mask. CPUs not in any of the cpumasks will
6581 * not be load balanced. If the same cpumask appears both in the
6582 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6583 * it as it is.
6584 *
6585 * The passed in 'doms_new' should be allocated using
6586 * alloc_sched_domains. This routine takes ownership of it and will
6587 * free_sched_domains it when done with it. If the caller failed the
6588 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6589 * and partition_sched_domains() will fallback to the single partition
6590 * 'fallback_doms', it also forces the domains to be rebuilt.
6591 *
6592 * If doms_new == NULL it will be replaced with cpu_online_mask.
6593 * ndoms_new == 0 is a special case for destroying existing domains,
6594 * and it will not create the default domain.
6595 *
6596 * Call with hotplug lock held
6597 */
6598 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6599 struct sched_domain_attr *dattr_new)
6600 {
6601 int i, j, n;
6602 int new_topology;
6603
6604 mutex_lock(&sched_domains_mutex);
6605
6606 /* always unregister in case we don't destroy any domains */
6607 unregister_sched_domain_sysctl();
6608
6609 /* Let architecture update cpu core mappings. */
6610 new_topology = arch_update_cpu_topology();
6611
6612 n = doms_new ? ndoms_new : 0;
6613
6614 /* Destroy deleted domains */
6615 for (i = 0; i < ndoms_cur; i++) {
6616 for (j = 0; j < n && !new_topology; j++) {
6617 if (cpumask_equal(doms_cur[i], doms_new[j])
6618 && dattrs_equal(dattr_cur, i, dattr_new, j))
6619 goto match1;
6620 }
6621 /* no match - a current sched domain not in new doms_new[] */
6622 detach_destroy_domains(doms_cur[i]);
6623 match1:
6624 ;
6625 }
6626
6627 n = ndoms_cur;
6628 if (doms_new == NULL) {
6629 n = 0;
6630 doms_new = &fallback_doms;
6631 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6632 WARN_ON_ONCE(dattr_new);
6633 }
6634
6635 /* Build new domains */
6636 for (i = 0; i < ndoms_new; i++) {
6637 for (j = 0; j < n && !new_topology; j++) {
6638 if (cpumask_equal(doms_new[i], doms_cur[j])
6639 && dattrs_equal(dattr_new, i, dattr_cur, j))
6640 goto match2;
6641 }
6642 /* no match - add a new doms_new */
6643 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6644 match2:
6645 ;
6646 }
6647
6648 /* Remember the new sched domains */
6649 if (doms_cur != &fallback_doms)
6650 free_sched_domains(doms_cur, ndoms_cur);
6651 kfree(dattr_cur); /* kfree(NULL) is safe */
6652 doms_cur = doms_new;
6653 dattr_cur = dattr_new;
6654 ndoms_cur = ndoms_new;
6655
6656 register_sched_domain_sysctl();
6657
6658 mutex_unlock(&sched_domains_mutex);
6659 }
6660
6661 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6662
6663 /*
6664 * Update cpusets according to cpu_active mask. If cpusets are
6665 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6666 * around partition_sched_domains().
6667 *
6668 * If we come here as part of a suspend/resume, don't touch cpusets because we
6669 * want to restore it back to its original state upon resume anyway.
6670 */
6671 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6672 void *hcpu)
6673 {
6674 switch (action) {
6675 case CPU_ONLINE_FROZEN:
6676 case CPU_DOWN_FAILED_FROZEN:
6677
6678 /*
6679 * num_cpus_frozen tracks how many CPUs are involved in suspend
6680 * resume sequence. As long as this is not the last online
6681 * operation in the resume sequence, just build a single sched
6682 * domain, ignoring cpusets.
6683 */
6684 num_cpus_frozen--;
6685 if (likely(num_cpus_frozen)) {
6686 partition_sched_domains(1, NULL, NULL);
6687 break;
6688 }
6689
6690 /*
6691 * This is the last CPU online operation. So fall through and
6692 * restore the original sched domains by considering the
6693 * cpuset configurations.
6694 */
6695
6696 case CPU_ONLINE:
6697 case CPU_DOWN_FAILED:
6698 cpuset_update_active_cpus(true);
6699 break;
6700 default:
6701 return NOTIFY_DONE;
6702 }
6703 return NOTIFY_OK;
6704 }
6705
6706 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6707 void *hcpu)
6708 {
6709 switch (action) {
6710 case CPU_DOWN_PREPARE:
6711 cpuset_update_active_cpus(false);
6712 break;
6713 case CPU_DOWN_PREPARE_FROZEN:
6714 num_cpus_frozen++;
6715 partition_sched_domains(1, NULL, NULL);
6716 break;
6717 default:
6718 return NOTIFY_DONE;
6719 }
6720 return NOTIFY_OK;
6721 }
6722
6723 void __init sched_init_smp(void)
6724 {
6725 cpumask_var_t non_isolated_cpus;
6726
6727 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6728 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6729
6730 sched_init_numa();
6731
6732 /*
6733 * There's no userspace yet to cause hotplug operations; hence all the
6734 * cpu masks are stable and all blatant races in the below code cannot
6735 * happen.
6736 */
6737 mutex_lock(&sched_domains_mutex);
6738 init_sched_domains(cpu_active_mask);
6739 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6740 if (cpumask_empty(non_isolated_cpus))
6741 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6742 mutex_unlock(&sched_domains_mutex);
6743
6744 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6745 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6746 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6747
6748 init_hrtick();
6749
6750 /* Move init over to a non-isolated CPU */
6751 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6752 BUG();
6753 sched_init_granularity();
6754 free_cpumask_var(non_isolated_cpus);
6755
6756 init_sched_rt_class();
6757 init_sched_dl_class();
6758 }
6759 #else
6760 void __init sched_init_smp(void)
6761 {
6762 sched_init_granularity();
6763 }
6764 #endif /* CONFIG_SMP */
6765
6766 const_debug unsigned int sysctl_timer_migration = 1;
6767
6768 int in_sched_functions(unsigned long addr)
6769 {
6770 return in_lock_functions(addr) ||
6771 (addr >= (unsigned long)__sched_text_start
6772 && addr < (unsigned long)__sched_text_end);
6773 }
6774
6775 #ifdef CONFIG_CGROUP_SCHED
6776 /*
6777 * Default task group.
6778 * Every task in system belongs to this group at bootup.
6779 */
6780 struct task_group root_task_group;
6781 LIST_HEAD(task_groups);
6782 #endif
6783
6784 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6785
6786 void __init sched_init(void)
6787 {
6788 int i, j;
6789 unsigned long alloc_size = 0, ptr;
6790
6791 #ifdef CONFIG_FAIR_GROUP_SCHED
6792 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6793 #endif
6794 #ifdef CONFIG_RT_GROUP_SCHED
6795 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6796 #endif
6797 #ifdef CONFIG_CPUMASK_OFFSTACK
6798 alloc_size += num_possible_cpus() * cpumask_size();
6799 #endif
6800 if (alloc_size) {
6801 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6802
6803 #ifdef CONFIG_FAIR_GROUP_SCHED
6804 root_task_group.se = (struct sched_entity **)ptr;
6805 ptr += nr_cpu_ids * sizeof(void **);
6806
6807 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6808 ptr += nr_cpu_ids * sizeof(void **);
6809
6810 #endif /* CONFIG_FAIR_GROUP_SCHED */
6811 #ifdef CONFIG_RT_GROUP_SCHED
6812 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6813 ptr += nr_cpu_ids * sizeof(void **);
6814
6815 root_task_group.rt_rq = (struct rt_rq **)ptr;
6816 ptr += nr_cpu_ids * sizeof(void **);
6817
6818 #endif /* CONFIG_RT_GROUP_SCHED */
6819 #ifdef CONFIG_CPUMASK_OFFSTACK
6820 for_each_possible_cpu(i) {
6821 per_cpu(load_balance_mask, i) = (void *)ptr;
6822 ptr += cpumask_size();
6823 }
6824 #endif /* CONFIG_CPUMASK_OFFSTACK */
6825 }
6826
6827 init_rt_bandwidth(&def_rt_bandwidth,
6828 global_rt_period(), global_rt_runtime());
6829 init_dl_bandwidth(&def_dl_bandwidth,
6830 global_rt_period(), global_rt_runtime());
6831
6832 #ifdef CONFIG_SMP
6833 init_defrootdomain();
6834 #endif
6835
6836 #ifdef CONFIG_RT_GROUP_SCHED
6837 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6838 global_rt_period(), global_rt_runtime());
6839 #endif /* CONFIG_RT_GROUP_SCHED */
6840
6841 #ifdef CONFIG_CGROUP_SCHED
6842 list_add(&root_task_group.list, &task_groups);
6843 INIT_LIST_HEAD(&root_task_group.children);
6844 INIT_LIST_HEAD(&root_task_group.siblings);
6845 autogroup_init(&init_task);
6846
6847 #endif /* CONFIG_CGROUP_SCHED */
6848
6849 for_each_possible_cpu(i) {
6850 struct rq *rq;
6851
6852 rq = cpu_rq(i);
6853 raw_spin_lock_init(&rq->lock);
6854 rq->nr_running = 0;
6855 rq->calc_load_active = 0;
6856 rq->calc_load_update = jiffies + LOAD_FREQ;
6857 init_cfs_rq(&rq->cfs);
6858 init_rt_rq(&rq->rt, rq);
6859 init_dl_rq(&rq->dl, rq);
6860 #ifdef CONFIG_FAIR_GROUP_SCHED
6861 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6862 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6863 /*
6864 * How much cpu bandwidth does root_task_group get?
6865 *
6866 * In case of task-groups formed thr' the cgroup filesystem, it
6867 * gets 100% of the cpu resources in the system. This overall
6868 * system cpu resource is divided among the tasks of
6869 * root_task_group and its child task-groups in a fair manner,
6870 * based on each entity's (task or task-group's) weight
6871 * (se->load.weight).
6872 *
6873 * In other words, if root_task_group has 10 tasks of weight
6874 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6875 * then A0's share of the cpu resource is:
6876 *
6877 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6878 *
6879 * We achieve this by letting root_task_group's tasks sit
6880 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6881 */
6882 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6883 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6884 #endif /* CONFIG_FAIR_GROUP_SCHED */
6885
6886 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6887 #ifdef CONFIG_RT_GROUP_SCHED
6888 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6889 #endif
6890
6891 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6892 rq->cpu_load[j] = 0;
6893
6894 rq->last_load_update_tick = jiffies;
6895
6896 #ifdef CONFIG_SMP
6897 rq->sd = NULL;
6898 rq->rd = NULL;
6899 rq->cpu_power = SCHED_POWER_SCALE;
6900 rq->post_schedule = 0;
6901 rq->active_balance = 0;
6902 rq->next_balance = jiffies;
6903 rq->push_cpu = 0;
6904 rq->cpu = i;
6905 rq->online = 0;
6906 rq->idle_stamp = 0;
6907 rq->avg_idle = 2*sysctl_sched_migration_cost;
6908 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6909
6910 INIT_LIST_HEAD(&rq->cfs_tasks);
6911
6912 rq_attach_root(rq, &def_root_domain);
6913 #ifdef CONFIG_NO_HZ_COMMON
6914 rq->nohz_flags = 0;
6915 #endif
6916 #ifdef CONFIG_NO_HZ_FULL
6917 rq->last_sched_tick = 0;
6918 #endif
6919 #endif
6920 init_rq_hrtick(rq);
6921 atomic_set(&rq->nr_iowait, 0);
6922 }
6923
6924 set_load_weight(&init_task);
6925
6926 #ifdef CONFIG_PREEMPT_NOTIFIERS
6927 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6928 #endif
6929
6930 /*
6931 * The boot idle thread does lazy MMU switching as well:
6932 */
6933 atomic_inc(&init_mm.mm_count);
6934 enter_lazy_tlb(&init_mm, current);
6935
6936 /*
6937 * Make us the idle thread. Technically, schedule() should not be
6938 * called from this thread, however somewhere below it might be,
6939 * but because we are the idle thread, we just pick up running again
6940 * when this runqueue becomes "idle".
6941 */
6942 init_idle(current, smp_processor_id());
6943
6944 calc_load_update = jiffies + LOAD_FREQ;
6945
6946 /*
6947 * During early bootup we pretend to be a normal task:
6948 */
6949 current->sched_class = &fair_sched_class;
6950
6951 #ifdef CONFIG_SMP
6952 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6953 /* May be allocated at isolcpus cmdline parse time */
6954 if (cpu_isolated_map == NULL)
6955 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6956 idle_thread_set_boot_cpu();
6957 #endif
6958 init_sched_fair_class();
6959
6960 scheduler_running = 1;
6961 }
6962
6963 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6964 static inline int preempt_count_equals(int preempt_offset)
6965 {
6966 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6967
6968 return (nested == preempt_offset);
6969 }
6970
6971 void __might_sleep(const char *file, int line, int preempt_offset)
6972 {
6973 static unsigned long prev_jiffy; /* ratelimiting */
6974
6975 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6976 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6977 !is_idle_task(current)) ||
6978 system_state != SYSTEM_RUNNING || oops_in_progress)
6979 return;
6980 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6981 return;
6982 prev_jiffy = jiffies;
6983
6984 printk(KERN_ERR
6985 "BUG: sleeping function called from invalid context at %s:%d\n",
6986 file, line);
6987 printk(KERN_ERR
6988 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6989 in_atomic(), irqs_disabled(),
6990 current->pid, current->comm);
6991
6992 debug_show_held_locks(current);
6993 if (irqs_disabled())
6994 print_irqtrace_events(current);
6995 #ifdef CONFIG_DEBUG_PREEMPT
6996 if (!preempt_count_equals(preempt_offset)) {
6997 pr_err("Preemption disabled at:");
6998 print_ip_sym(current->preempt_disable_ip);
6999 pr_cont("\n");
7000 }
7001 #endif
7002 dump_stack();
7003 }
7004 EXPORT_SYMBOL(__might_sleep);
7005 #endif
7006
7007 #ifdef CONFIG_MAGIC_SYSRQ
7008 static void normalize_task(struct rq *rq, struct task_struct *p)
7009 {
7010 const struct sched_class *prev_class = p->sched_class;
7011 struct sched_attr attr = {
7012 .sched_policy = SCHED_NORMAL,
7013 };
7014 int old_prio = p->prio;
7015 int on_rq;
7016
7017 on_rq = p->on_rq;
7018 if (on_rq)
7019 dequeue_task(rq, p, 0);
7020 __setscheduler(rq, p, &attr);
7021 if (on_rq) {
7022 enqueue_task(rq, p, 0);
7023 resched_task(rq->curr);
7024 }
7025
7026 check_class_changed(rq, p, prev_class, old_prio);
7027 }
7028
7029 void normalize_rt_tasks(void)
7030 {
7031 struct task_struct *g, *p;
7032 unsigned long flags;
7033 struct rq *rq;
7034
7035 read_lock_irqsave(&tasklist_lock, flags);
7036 do_each_thread(g, p) {
7037 /*
7038 * Only normalize user tasks:
7039 */
7040 if (!p->mm)
7041 continue;
7042
7043 p->se.exec_start = 0;
7044 #ifdef CONFIG_SCHEDSTATS
7045 p->se.statistics.wait_start = 0;
7046 p->se.statistics.sleep_start = 0;
7047 p->se.statistics.block_start = 0;
7048 #endif
7049
7050 if (!dl_task(p) && !rt_task(p)) {
7051 /*
7052 * Renice negative nice level userspace
7053 * tasks back to 0:
7054 */
7055 if (task_nice(p) < 0 && p->mm)
7056 set_user_nice(p, 0);
7057 continue;
7058 }
7059
7060 raw_spin_lock(&p->pi_lock);
7061 rq = __task_rq_lock(p);
7062
7063 normalize_task(rq, p);
7064
7065 __task_rq_unlock(rq);
7066 raw_spin_unlock(&p->pi_lock);
7067 } while_each_thread(g, p);
7068
7069 read_unlock_irqrestore(&tasklist_lock, flags);
7070 }
7071
7072 #endif /* CONFIG_MAGIC_SYSRQ */
7073
7074 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7075 /*
7076 * These functions are only useful for the IA64 MCA handling, or kdb.
7077 *
7078 * They can only be called when the whole system has been
7079 * stopped - every CPU needs to be quiescent, and no scheduling
7080 * activity can take place. Using them for anything else would
7081 * be a serious bug, and as a result, they aren't even visible
7082 * under any other configuration.
7083 */
7084
7085 /**
7086 * curr_task - return the current task for a given cpu.
7087 * @cpu: the processor in question.
7088 *
7089 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7090 *
7091 * Return: The current task for @cpu.
7092 */
7093 struct task_struct *curr_task(int cpu)
7094 {
7095 return cpu_curr(cpu);
7096 }
7097
7098 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7099
7100 #ifdef CONFIG_IA64
7101 /**
7102 * set_curr_task - set the current task for a given cpu.
7103 * @cpu: the processor in question.
7104 * @p: the task pointer to set.
7105 *
7106 * Description: This function must only be used when non-maskable interrupts
7107 * are serviced on a separate stack. It allows the architecture to switch the
7108 * notion of the current task on a cpu in a non-blocking manner. This function
7109 * must be called with all CPU's synchronized, and interrupts disabled, the
7110 * and caller must save the original value of the current task (see
7111 * curr_task() above) and restore that value before reenabling interrupts and
7112 * re-starting the system.
7113 *
7114 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7115 */
7116 void set_curr_task(int cpu, struct task_struct *p)
7117 {
7118 cpu_curr(cpu) = p;
7119 }
7120
7121 #endif
7122
7123 #ifdef CONFIG_CGROUP_SCHED
7124 /* task_group_lock serializes the addition/removal of task groups */
7125 static DEFINE_SPINLOCK(task_group_lock);
7126
7127 static void free_sched_group(struct task_group *tg)
7128 {
7129 free_fair_sched_group(tg);
7130 free_rt_sched_group(tg);
7131 autogroup_free(tg);
7132 kfree(tg);
7133 }
7134
7135 /* allocate runqueue etc for a new task group */
7136 struct task_group *sched_create_group(struct task_group *parent)
7137 {
7138 struct task_group *tg;
7139
7140 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7141 if (!tg)
7142 return ERR_PTR(-ENOMEM);
7143
7144 if (!alloc_fair_sched_group(tg, parent))
7145 goto err;
7146
7147 if (!alloc_rt_sched_group(tg, parent))
7148 goto err;
7149
7150 return tg;
7151
7152 err:
7153 free_sched_group(tg);
7154 return ERR_PTR(-ENOMEM);
7155 }
7156
7157 void sched_online_group(struct task_group *tg, struct task_group *parent)
7158 {
7159 unsigned long flags;
7160
7161 spin_lock_irqsave(&task_group_lock, flags);
7162 list_add_rcu(&tg->list, &task_groups);
7163
7164 WARN_ON(!parent); /* root should already exist */
7165
7166 tg->parent = parent;
7167 INIT_LIST_HEAD(&tg->children);
7168 list_add_rcu(&tg->siblings, &parent->children);
7169 spin_unlock_irqrestore(&task_group_lock, flags);
7170 }
7171
7172 /* rcu callback to free various structures associated with a task group */
7173 static void free_sched_group_rcu(struct rcu_head *rhp)
7174 {
7175 /* now it should be safe to free those cfs_rqs */
7176 free_sched_group(container_of(rhp, struct task_group, rcu));
7177 }
7178
7179 /* Destroy runqueue etc associated with a task group */
7180 void sched_destroy_group(struct task_group *tg)
7181 {
7182 /* wait for possible concurrent references to cfs_rqs complete */
7183 call_rcu(&tg->rcu, free_sched_group_rcu);
7184 }
7185
7186 void sched_offline_group(struct task_group *tg)
7187 {
7188 unsigned long flags;
7189 int i;
7190
7191 /* end participation in shares distribution */
7192 for_each_possible_cpu(i)
7193 unregister_fair_sched_group(tg, i);
7194
7195 spin_lock_irqsave(&task_group_lock, flags);
7196 list_del_rcu(&tg->list);
7197 list_del_rcu(&tg->siblings);
7198 spin_unlock_irqrestore(&task_group_lock, flags);
7199 }
7200
7201 /* change task's runqueue when it moves between groups.
7202 * The caller of this function should have put the task in its new group
7203 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7204 * reflect its new group.
7205 */
7206 void sched_move_task(struct task_struct *tsk)
7207 {
7208 struct task_group *tg;
7209 int on_rq, running;
7210 unsigned long flags;
7211 struct rq *rq;
7212
7213 rq = task_rq_lock(tsk, &flags);
7214
7215 running = task_current(rq, tsk);
7216 on_rq = tsk->on_rq;
7217
7218 if (on_rq)
7219 dequeue_task(rq, tsk, 0);
7220 if (unlikely(running))
7221 tsk->sched_class->put_prev_task(rq, tsk);
7222
7223 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7224 lockdep_is_held(&tsk->sighand->siglock)),
7225 struct task_group, css);
7226 tg = autogroup_task_group(tsk, tg);
7227 tsk->sched_task_group = tg;
7228
7229 #ifdef CONFIG_FAIR_GROUP_SCHED
7230 if (tsk->sched_class->task_move_group)
7231 tsk->sched_class->task_move_group(tsk, on_rq);
7232 else
7233 #endif
7234 set_task_rq(tsk, task_cpu(tsk));
7235
7236 if (unlikely(running))
7237 tsk->sched_class->set_curr_task(rq);
7238 if (on_rq)
7239 enqueue_task(rq, tsk, 0);
7240
7241 task_rq_unlock(rq, tsk, &flags);
7242 }
7243 #endif /* CONFIG_CGROUP_SCHED */
7244
7245 #ifdef CONFIG_RT_GROUP_SCHED
7246 /*
7247 * Ensure that the real time constraints are schedulable.
7248 */
7249 static DEFINE_MUTEX(rt_constraints_mutex);
7250
7251 /* Must be called with tasklist_lock held */
7252 static inline int tg_has_rt_tasks(struct task_group *tg)
7253 {
7254 struct task_struct *g, *p;
7255
7256 do_each_thread(g, p) {
7257 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7258 return 1;
7259 } while_each_thread(g, p);
7260
7261 return 0;
7262 }
7263
7264 struct rt_schedulable_data {
7265 struct task_group *tg;
7266 u64 rt_period;
7267 u64 rt_runtime;
7268 };
7269
7270 static int tg_rt_schedulable(struct task_group *tg, void *data)
7271 {
7272 struct rt_schedulable_data *d = data;
7273 struct task_group *child;
7274 unsigned long total, sum = 0;
7275 u64 period, runtime;
7276
7277 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7278 runtime = tg->rt_bandwidth.rt_runtime;
7279
7280 if (tg == d->tg) {
7281 period = d->rt_period;
7282 runtime = d->rt_runtime;
7283 }
7284
7285 /*
7286 * Cannot have more runtime than the period.
7287 */
7288 if (runtime > period && runtime != RUNTIME_INF)
7289 return -EINVAL;
7290
7291 /*
7292 * Ensure we don't starve existing RT tasks.
7293 */
7294 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7295 return -EBUSY;
7296
7297 total = to_ratio(period, runtime);
7298
7299 /*
7300 * Nobody can have more than the global setting allows.
7301 */
7302 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7303 return -EINVAL;
7304
7305 /*
7306 * The sum of our children's runtime should not exceed our own.
7307 */
7308 list_for_each_entry_rcu(child, &tg->children, siblings) {
7309 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7310 runtime = child->rt_bandwidth.rt_runtime;
7311
7312 if (child == d->tg) {
7313 period = d->rt_period;
7314 runtime = d->rt_runtime;
7315 }
7316
7317 sum += to_ratio(period, runtime);
7318 }
7319
7320 if (sum > total)
7321 return -EINVAL;
7322
7323 return 0;
7324 }
7325
7326 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7327 {
7328 int ret;
7329
7330 struct rt_schedulable_data data = {
7331 .tg = tg,
7332 .rt_period = period,
7333 .rt_runtime = runtime,
7334 };
7335
7336 rcu_read_lock();
7337 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7338 rcu_read_unlock();
7339
7340 return ret;
7341 }
7342
7343 static int tg_set_rt_bandwidth(struct task_group *tg,
7344 u64 rt_period, u64 rt_runtime)
7345 {
7346 int i, err = 0;
7347
7348 mutex_lock(&rt_constraints_mutex);
7349 read_lock(&tasklist_lock);
7350 err = __rt_schedulable(tg, rt_period, rt_runtime);
7351 if (err)
7352 goto unlock;
7353
7354 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7355 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7356 tg->rt_bandwidth.rt_runtime = rt_runtime;
7357
7358 for_each_possible_cpu(i) {
7359 struct rt_rq *rt_rq = tg->rt_rq[i];
7360
7361 raw_spin_lock(&rt_rq->rt_runtime_lock);
7362 rt_rq->rt_runtime = rt_runtime;
7363 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7364 }
7365 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7366 unlock:
7367 read_unlock(&tasklist_lock);
7368 mutex_unlock(&rt_constraints_mutex);
7369
7370 return err;
7371 }
7372
7373 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7374 {
7375 u64 rt_runtime, rt_period;
7376
7377 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7378 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7379 if (rt_runtime_us < 0)
7380 rt_runtime = RUNTIME_INF;
7381
7382 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7383 }
7384
7385 static long sched_group_rt_runtime(struct task_group *tg)
7386 {
7387 u64 rt_runtime_us;
7388
7389 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7390 return -1;
7391
7392 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7393 do_div(rt_runtime_us, NSEC_PER_USEC);
7394 return rt_runtime_us;
7395 }
7396
7397 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7398 {
7399 u64 rt_runtime, rt_period;
7400
7401 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7402 rt_runtime = tg->rt_bandwidth.rt_runtime;
7403
7404 if (rt_period == 0)
7405 return -EINVAL;
7406
7407 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7408 }
7409
7410 static long sched_group_rt_period(struct task_group *tg)
7411 {
7412 u64 rt_period_us;
7413
7414 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7415 do_div(rt_period_us, NSEC_PER_USEC);
7416 return rt_period_us;
7417 }
7418 #endif /* CONFIG_RT_GROUP_SCHED */
7419
7420 #ifdef CONFIG_RT_GROUP_SCHED
7421 static int sched_rt_global_constraints(void)
7422 {
7423 int ret = 0;
7424
7425 mutex_lock(&rt_constraints_mutex);
7426 read_lock(&tasklist_lock);
7427 ret = __rt_schedulable(NULL, 0, 0);
7428 read_unlock(&tasklist_lock);
7429 mutex_unlock(&rt_constraints_mutex);
7430
7431 return ret;
7432 }
7433
7434 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7435 {
7436 /* Don't accept realtime tasks when there is no way for them to run */
7437 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7438 return 0;
7439
7440 return 1;
7441 }
7442
7443 #else /* !CONFIG_RT_GROUP_SCHED */
7444 static int sched_rt_global_constraints(void)
7445 {
7446 unsigned long flags;
7447 int i, ret = 0;
7448
7449 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7450 for_each_possible_cpu(i) {
7451 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7452
7453 raw_spin_lock(&rt_rq->rt_runtime_lock);
7454 rt_rq->rt_runtime = global_rt_runtime();
7455 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7456 }
7457 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7458
7459 return ret;
7460 }
7461 #endif /* CONFIG_RT_GROUP_SCHED */
7462
7463 static int sched_dl_global_constraints(void)
7464 {
7465 u64 runtime = global_rt_runtime();
7466 u64 period = global_rt_period();
7467 u64 new_bw = to_ratio(period, runtime);
7468 int cpu, ret = 0;
7469 unsigned long flags;
7470
7471 /*
7472 * Here we want to check the bandwidth not being set to some
7473 * value smaller than the currently allocated bandwidth in
7474 * any of the root_domains.
7475 *
7476 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7477 * cycling on root_domains... Discussion on different/better
7478 * solutions is welcome!
7479 */
7480 for_each_possible_cpu(cpu) {
7481 struct dl_bw *dl_b = dl_bw_of(cpu);
7482
7483 raw_spin_lock_irqsave(&dl_b->lock, flags);
7484 if (new_bw < dl_b->total_bw)
7485 ret = -EBUSY;
7486 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7487
7488 if (ret)
7489 break;
7490 }
7491
7492 return ret;
7493 }
7494
7495 static void sched_dl_do_global(void)
7496 {
7497 u64 new_bw = -1;
7498 int cpu;
7499 unsigned long flags;
7500
7501 def_dl_bandwidth.dl_period = global_rt_period();
7502 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7503
7504 if (global_rt_runtime() != RUNTIME_INF)
7505 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7506
7507 /*
7508 * FIXME: As above...
7509 */
7510 for_each_possible_cpu(cpu) {
7511 struct dl_bw *dl_b = dl_bw_of(cpu);
7512
7513 raw_spin_lock_irqsave(&dl_b->lock, flags);
7514 dl_b->bw = new_bw;
7515 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7516 }
7517 }
7518
7519 static int sched_rt_global_validate(void)
7520 {
7521 if (sysctl_sched_rt_period <= 0)
7522 return -EINVAL;
7523
7524 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7525 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7526 return -EINVAL;
7527
7528 return 0;
7529 }
7530
7531 static void sched_rt_do_global(void)
7532 {
7533 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7534 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7535 }
7536
7537 int sched_rt_handler(struct ctl_table *table, int write,
7538 void __user *buffer, size_t *lenp,
7539 loff_t *ppos)
7540 {
7541 int old_period, old_runtime;
7542 static DEFINE_MUTEX(mutex);
7543 int ret;
7544
7545 mutex_lock(&mutex);
7546 old_period = sysctl_sched_rt_period;
7547 old_runtime = sysctl_sched_rt_runtime;
7548
7549 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7550
7551 if (!ret && write) {
7552 ret = sched_rt_global_validate();
7553 if (ret)
7554 goto undo;
7555
7556 ret = sched_rt_global_constraints();
7557 if (ret)
7558 goto undo;
7559
7560 ret = sched_dl_global_constraints();
7561 if (ret)
7562 goto undo;
7563
7564 sched_rt_do_global();
7565 sched_dl_do_global();
7566 }
7567 if (0) {
7568 undo:
7569 sysctl_sched_rt_period = old_period;
7570 sysctl_sched_rt_runtime = old_runtime;
7571 }
7572 mutex_unlock(&mutex);
7573
7574 return ret;
7575 }
7576
7577 int sched_rr_handler(struct ctl_table *table, int write,
7578 void __user *buffer, size_t *lenp,
7579 loff_t *ppos)
7580 {
7581 int ret;
7582 static DEFINE_MUTEX(mutex);
7583
7584 mutex_lock(&mutex);
7585 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7586 /* make sure that internally we keep jiffies */
7587 /* also, writing zero resets timeslice to default */
7588 if (!ret && write) {
7589 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7590 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7591 }
7592 mutex_unlock(&mutex);
7593 return ret;
7594 }
7595
7596 #ifdef CONFIG_CGROUP_SCHED
7597
7598 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7599 {
7600 return css ? container_of(css, struct task_group, css) : NULL;
7601 }
7602
7603 static struct cgroup_subsys_state *
7604 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7605 {
7606 struct task_group *parent = css_tg(parent_css);
7607 struct task_group *tg;
7608
7609 if (!parent) {
7610 /* This is early initialization for the top cgroup */
7611 return &root_task_group.css;
7612 }
7613
7614 tg = sched_create_group(parent);
7615 if (IS_ERR(tg))
7616 return ERR_PTR(-ENOMEM);
7617
7618 return &tg->css;
7619 }
7620
7621 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7622 {
7623 struct task_group *tg = css_tg(css);
7624 struct task_group *parent = css_tg(css_parent(css));
7625
7626 if (parent)
7627 sched_online_group(tg, parent);
7628 return 0;
7629 }
7630
7631 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7632 {
7633 struct task_group *tg = css_tg(css);
7634
7635 sched_destroy_group(tg);
7636 }
7637
7638 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7639 {
7640 struct task_group *tg = css_tg(css);
7641
7642 sched_offline_group(tg);
7643 }
7644
7645 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7646 struct cgroup_taskset *tset)
7647 {
7648 struct task_struct *task;
7649
7650 cgroup_taskset_for_each(task, tset) {
7651 #ifdef CONFIG_RT_GROUP_SCHED
7652 if (!sched_rt_can_attach(css_tg(css), task))
7653 return -EINVAL;
7654 #else
7655 /* We don't support RT-tasks being in separate groups */
7656 if (task->sched_class != &fair_sched_class)
7657 return -EINVAL;
7658 #endif
7659 }
7660 return 0;
7661 }
7662
7663 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7664 struct cgroup_taskset *tset)
7665 {
7666 struct task_struct *task;
7667
7668 cgroup_taskset_for_each(task, tset)
7669 sched_move_task(task);
7670 }
7671
7672 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7673 struct cgroup_subsys_state *old_css,
7674 struct task_struct *task)
7675 {
7676 /*
7677 * cgroup_exit() is called in the copy_process() failure path.
7678 * Ignore this case since the task hasn't ran yet, this avoids
7679 * trying to poke a half freed task state from generic code.
7680 */
7681 if (!(task->flags & PF_EXITING))
7682 return;
7683
7684 sched_move_task(task);
7685 }
7686
7687 #ifdef CONFIG_FAIR_GROUP_SCHED
7688 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7689 struct cftype *cftype, u64 shareval)
7690 {
7691 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7692 }
7693
7694 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7695 struct cftype *cft)
7696 {
7697 struct task_group *tg = css_tg(css);
7698
7699 return (u64) scale_load_down(tg->shares);
7700 }
7701
7702 #ifdef CONFIG_CFS_BANDWIDTH
7703 static DEFINE_MUTEX(cfs_constraints_mutex);
7704
7705 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7706 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7707
7708 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7709
7710 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7711 {
7712 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7713 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7714
7715 if (tg == &root_task_group)
7716 return -EINVAL;
7717
7718 /*
7719 * Ensure we have at some amount of bandwidth every period. This is
7720 * to prevent reaching a state of large arrears when throttled via
7721 * entity_tick() resulting in prolonged exit starvation.
7722 */
7723 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7724 return -EINVAL;
7725
7726 /*
7727 * Likewise, bound things on the otherside by preventing insane quota
7728 * periods. This also allows us to normalize in computing quota
7729 * feasibility.
7730 */
7731 if (period > max_cfs_quota_period)
7732 return -EINVAL;
7733
7734 mutex_lock(&cfs_constraints_mutex);
7735 ret = __cfs_schedulable(tg, period, quota);
7736 if (ret)
7737 goto out_unlock;
7738
7739 runtime_enabled = quota != RUNTIME_INF;
7740 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7741 /*
7742 * If we need to toggle cfs_bandwidth_used, off->on must occur
7743 * before making related changes, and on->off must occur afterwards
7744 */
7745 if (runtime_enabled && !runtime_was_enabled)
7746 cfs_bandwidth_usage_inc();
7747 raw_spin_lock_irq(&cfs_b->lock);
7748 cfs_b->period = ns_to_ktime(period);
7749 cfs_b->quota = quota;
7750
7751 __refill_cfs_bandwidth_runtime(cfs_b);
7752 /* restart the period timer (if active) to handle new period expiry */
7753 if (runtime_enabled && cfs_b->timer_active) {
7754 /* force a reprogram */
7755 cfs_b->timer_active = 0;
7756 __start_cfs_bandwidth(cfs_b);
7757 }
7758 raw_spin_unlock_irq(&cfs_b->lock);
7759
7760 for_each_possible_cpu(i) {
7761 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7762 struct rq *rq = cfs_rq->rq;
7763
7764 raw_spin_lock_irq(&rq->lock);
7765 cfs_rq->runtime_enabled = runtime_enabled;
7766 cfs_rq->runtime_remaining = 0;
7767
7768 if (cfs_rq->throttled)
7769 unthrottle_cfs_rq(cfs_rq);
7770 raw_spin_unlock_irq(&rq->lock);
7771 }
7772 if (runtime_was_enabled && !runtime_enabled)
7773 cfs_bandwidth_usage_dec();
7774 out_unlock:
7775 mutex_unlock(&cfs_constraints_mutex);
7776
7777 return ret;
7778 }
7779
7780 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7781 {
7782 u64 quota, period;
7783
7784 period = ktime_to_ns(tg->cfs_bandwidth.period);
7785 if (cfs_quota_us < 0)
7786 quota = RUNTIME_INF;
7787 else
7788 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7789
7790 return tg_set_cfs_bandwidth(tg, period, quota);
7791 }
7792
7793 long tg_get_cfs_quota(struct task_group *tg)
7794 {
7795 u64 quota_us;
7796
7797 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7798 return -1;
7799
7800 quota_us = tg->cfs_bandwidth.quota;
7801 do_div(quota_us, NSEC_PER_USEC);
7802
7803 return quota_us;
7804 }
7805
7806 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7807 {
7808 u64 quota, period;
7809
7810 period = (u64)cfs_period_us * NSEC_PER_USEC;
7811 quota = tg->cfs_bandwidth.quota;
7812
7813 return tg_set_cfs_bandwidth(tg, period, quota);
7814 }
7815
7816 long tg_get_cfs_period(struct task_group *tg)
7817 {
7818 u64 cfs_period_us;
7819
7820 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7821 do_div(cfs_period_us, NSEC_PER_USEC);
7822
7823 return cfs_period_us;
7824 }
7825
7826 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7827 struct cftype *cft)
7828 {
7829 return tg_get_cfs_quota(css_tg(css));
7830 }
7831
7832 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7833 struct cftype *cftype, s64 cfs_quota_us)
7834 {
7835 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7836 }
7837
7838 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7839 struct cftype *cft)
7840 {
7841 return tg_get_cfs_period(css_tg(css));
7842 }
7843
7844 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7845 struct cftype *cftype, u64 cfs_period_us)
7846 {
7847 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7848 }
7849
7850 struct cfs_schedulable_data {
7851 struct task_group *tg;
7852 u64 period, quota;
7853 };
7854
7855 /*
7856 * normalize group quota/period to be quota/max_period
7857 * note: units are usecs
7858 */
7859 static u64 normalize_cfs_quota(struct task_group *tg,
7860 struct cfs_schedulable_data *d)
7861 {
7862 u64 quota, period;
7863
7864 if (tg == d->tg) {
7865 period = d->period;
7866 quota = d->quota;
7867 } else {
7868 period = tg_get_cfs_period(tg);
7869 quota = tg_get_cfs_quota(tg);
7870 }
7871
7872 /* note: these should typically be equivalent */
7873 if (quota == RUNTIME_INF || quota == -1)
7874 return RUNTIME_INF;
7875
7876 return to_ratio(period, quota);
7877 }
7878
7879 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7880 {
7881 struct cfs_schedulable_data *d = data;
7882 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7883 s64 quota = 0, parent_quota = -1;
7884
7885 if (!tg->parent) {
7886 quota = RUNTIME_INF;
7887 } else {
7888 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7889
7890 quota = normalize_cfs_quota(tg, d);
7891 parent_quota = parent_b->hierarchal_quota;
7892
7893 /*
7894 * ensure max(child_quota) <= parent_quota, inherit when no
7895 * limit is set
7896 */
7897 if (quota == RUNTIME_INF)
7898 quota = parent_quota;
7899 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7900 return -EINVAL;
7901 }
7902 cfs_b->hierarchal_quota = quota;
7903
7904 return 0;
7905 }
7906
7907 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7908 {
7909 int ret;
7910 struct cfs_schedulable_data data = {
7911 .tg = tg,
7912 .period = period,
7913 .quota = quota,
7914 };
7915
7916 if (quota != RUNTIME_INF) {
7917 do_div(data.period, NSEC_PER_USEC);
7918 do_div(data.quota, NSEC_PER_USEC);
7919 }
7920
7921 rcu_read_lock();
7922 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7923 rcu_read_unlock();
7924
7925 return ret;
7926 }
7927
7928 static int cpu_stats_show(struct seq_file *sf, void *v)
7929 {
7930 struct task_group *tg = css_tg(seq_css(sf));
7931 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7932
7933 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7934 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7935 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7936
7937 return 0;
7938 }
7939 #endif /* CONFIG_CFS_BANDWIDTH */
7940 #endif /* CONFIG_FAIR_GROUP_SCHED */
7941
7942 #ifdef CONFIG_RT_GROUP_SCHED
7943 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7944 struct cftype *cft, s64 val)
7945 {
7946 return sched_group_set_rt_runtime(css_tg(css), val);
7947 }
7948
7949 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7950 struct cftype *cft)
7951 {
7952 return sched_group_rt_runtime(css_tg(css));
7953 }
7954
7955 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7956 struct cftype *cftype, u64 rt_period_us)
7957 {
7958 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7959 }
7960
7961 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7962 struct cftype *cft)
7963 {
7964 return sched_group_rt_period(css_tg(css));
7965 }
7966 #endif /* CONFIG_RT_GROUP_SCHED */
7967
7968 static struct cftype cpu_files[] = {
7969 #ifdef CONFIG_FAIR_GROUP_SCHED
7970 {
7971 .name = "shares",
7972 .read_u64 = cpu_shares_read_u64,
7973 .write_u64 = cpu_shares_write_u64,
7974 },
7975 #endif
7976 #ifdef CONFIG_CFS_BANDWIDTH
7977 {
7978 .name = "cfs_quota_us",
7979 .read_s64 = cpu_cfs_quota_read_s64,
7980 .write_s64 = cpu_cfs_quota_write_s64,
7981 },
7982 {
7983 .name = "cfs_period_us",
7984 .read_u64 = cpu_cfs_period_read_u64,
7985 .write_u64 = cpu_cfs_period_write_u64,
7986 },
7987 {
7988 .name = "stat",
7989 .seq_show = cpu_stats_show,
7990 },
7991 #endif
7992 #ifdef CONFIG_RT_GROUP_SCHED
7993 {
7994 .name = "rt_runtime_us",
7995 .read_s64 = cpu_rt_runtime_read,
7996 .write_s64 = cpu_rt_runtime_write,
7997 },
7998 {
7999 .name = "rt_period_us",
8000 .read_u64 = cpu_rt_period_read_uint,
8001 .write_u64 = cpu_rt_period_write_uint,
8002 },
8003 #endif
8004 { } /* terminate */
8005 };
8006
8007 struct cgroup_subsys cpu_cgrp_subsys = {
8008 .css_alloc = cpu_cgroup_css_alloc,
8009 .css_free = cpu_cgroup_css_free,
8010 .css_online = cpu_cgroup_css_online,
8011 .css_offline = cpu_cgroup_css_offline,
8012 .can_attach = cpu_cgroup_can_attach,
8013 .attach = cpu_cgroup_attach,
8014 .exit = cpu_cgroup_exit,
8015 .base_cftypes = cpu_files,
8016 .early_init = 1,
8017 };
8018
8019 #endif /* CONFIG_CGROUP_SCHED */
8020
8021 void dump_cpu_task(int cpu)
8022 {
8023 pr_info("Task dump for CPU %d:\n", cpu);
8024 sched_show_task(cpu_curr(cpu));
8025 }