]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
sched/fair: Allow a small load imbalance between low utilisation SD_NUMA domains
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 /*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42 * Debugging: various feature bits
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
47 */
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 0;
53 #undef SCHED_FEAT
54 #endif
55
56 /*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
62 /*
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
65 */
66 unsigned int sysctl_sched_rt_period = 1000000;
67
68 __read_mostly int scheduler_running;
69
70 /*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74 int sysctl_sched_rt_runtime = 950000;
75
76 /*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
81 {
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98 }
99
100 /*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106 {
107 struct rq *rq;
108
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
125 *
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140 }
141
142 /*
143 * RQ-clock updating methods:
144 */
145
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189 #endif
190
191 rq->clock_task += delta;
192
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
198 }
199
200 void update_rq_clock(struct rq *rq)
201 {
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220 }
221
222
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225 * Use HR-timers to deliver accurate preemption points.
226 */
227
228 static void hrtick_clear(struct rq *rq)
229 {
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232 }
233
234 /*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 struct rq_flags rf;
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
245 rq_lock(rq, &rf);
246 update_rq_clock(rq);
247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 rq_unlock(rq, &rf);
249
250 return HRTIMER_NORESTART;
251 }
252
253 #ifdef CONFIG_SMP
254
255 static void __hrtick_restart(struct rq *rq)
256 {
257 struct hrtimer *timer = &rq->hrtick_timer;
258
259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261
262 /*
263 * called from hardirq (IPI) context
264 */
265 static void __hrtick_start(void *arg)
266 {
267 struct rq *rq = arg;
268 struct rq_flags rf;
269
270 rq_lock(rq, &rf);
271 __hrtick_restart(rq);
272 rq->hrtick_csd_pending = 0;
273 rq_unlock(rq, &rf);
274 }
275
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 struct hrtimer *timer = &rq->hrtick_timer;
284 ktime_t time;
285 s64 delta;
286
287 /*
288 * Don't schedule slices shorter than 10000ns, that just
289 * doesn't make sense and can cause timer DoS.
290 */
291 delta = max_t(s64, delay, 10000LL);
292 time = ktime_add_ns(timer->base->get_time(), delta);
293
294 hrtimer_set_expires(timer, time);
295
296 if (rq == this_rq()) {
297 __hrtick_restart(rq);
298 } else if (!rq->hrtick_csd_pending) {
299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 rq->hrtick_csd_pending = 1;
301 }
302 }
303
304 #else
305 /*
306 * Called to set the hrtick timer state.
307 *
308 * called with rq->lock held and irqs disabled
309 */
310 void hrtick_start(struct rq *rq, u64 delay)
311 {
312 /*
313 * Don't schedule slices shorter than 10000ns, that just
314 * doesn't make sense. Rely on vruntime for fairness.
315 */
316 delay = max_t(u64, delay, 10000LL);
317 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
318 HRTIMER_MODE_REL_PINNED_HARD);
319 }
320 #endif /* CONFIG_SMP */
321
322 static void hrtick_rq_init(struct rq *rq)
323 {
324 #ifdef CONFIG_SMP
325 rq->hrtick_csd_pending = 0;
326
327 rq->hrtick_csd.flags = 0;
328 rq->hrtick_csd.func = __hrtick_start;
329 rq->hrtick_csd.info = rq;
330 #endif
331
332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 rq->hrtick_timer.function = hrtick;
334 }
335 #else /* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif /* CONFIG_SCHED_HRTICK */
344
345 /*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348 #define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361 })
362
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374
375 /*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397 }
398
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 set_tsk_need_resched(p);
403 return true;
404 }
405
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 return false;
410 }
411 #endif
412 #endif
413
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
425 */
426 smp_mb__before_atomic();
427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 return false;
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
435 return true;
436 }
437
438 /**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454 }
455
456 /**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
477 }
478
479 void wake_up_q(struct wake_q_head *head)
480 {
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
488 /* Task can safely be re-inserted now: */
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499 }
500
501 /*
502 * resched_curr - mark rq's current task 'to be rescheduled now'.
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
508 void resched_curr(struct rq *rq)
509 {
510 struct task_struct *curr = rq->curr;
511 int cpu;
512
513 lockdep_assert_held(&rq->lock);
514
515 if (test_tsk_need_resched(curr))
516 return;
517
518 cpu = cpu_of(rq);
519
520 if (cpu == smp_processor_id()) {
521 set_tsk_need_resched(curr);
522 set_preempt_need_resched();
523 return;
524 }
525
526 if (set_nr_and_not_polling(curr))
527 smp_send_reschedule(cpu);
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 raw_spin_lock_irqsave(&rq->lock, flags);
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552 */
553 int get_nohz_timer_target(void)
554 {
555 int i, cpu = smp_processor_id();
556 struct sched_domain *sd;
557
558 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
559 return cpu;
560
561 rcu_read_lock();
562 for_each_domain(cpu, sd) {
563 for_each_cpu(i, sched_domain_span(sd)) {
564 if (cpu == i)
565 continue;
566
567 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573
574 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
575 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580
581 /*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 if (set_nr_and_not_polling(rq->idle))
599 smp_send_reschedule(cpu);
600 else
601 trace_sched_wake_idle_without_ipi(cpu);
602 }
603
604 static bool wake_up_full_nohz_cpu(int cpu)
605 {
606 /*
607 * We just need the target to call irq_exit() and re-evaluate
608 * the next tick. The nohz full kick at least implies that.
609 * If needed we can still optimize that later with an
610 * empty IRQ.
611 */
612 if (cpu_is_offline(cpu))
613 return true; /* Don't try to wake offline CPUs. */
614 if (tick_nohz_full_cpu(cpu)) {
615 if (cpu != smp_processor_id() ||
616 tick_nohz_tick_stopped())
617 tick_nohz_full_kick_cpu(cpu);
618 return true;
619 }
620
621 return false;
622 }
623
624 /*
625 * Wake up the specified CPU. If the CPU is going offline, it is the
626 * caller's responsibility to deal with the lost wakeup, for example,
627 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
628 */
629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(struct rq *rq)
664 {
665 int fifo_nr_running;
666
667 /* Deadline tasks, even if single, need the tick */
668 if (rq->dl.dl_nr_running)
669 return false;
670
671 /*
672 * If there are more than one RR tasks, we need the tick to effect the
673 * actual RR behaviour.
674 */
675 if (rq->rt.rr_nr_running) {
676 if (rq->rt.rr_nr_running == 1)
677 return true;
678 else
679 return false;
680 }
681
682 /*
683 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
684 * forced preemption between FIFO tasks.
685 */
686 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
687 if (fifo_nr_running)
688 return true;
689
690 /*
691 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
692 * if there's more than one we need the tick for involuntary
693 * preemption.
694 */
695 if (rq->nr_running > 1)
696 return false;
697
698 return true;
699 }
700 #endif /* CONFIG_NO_HZ_FULL */
701 #endif /* CONFIG_SMP */
702
703 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
704 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
705 /*
706 * Iterate task_group tree rooted at *from, calling @down when first entering a
707 * node and @up when leaving it for the final time.
708 *
709 * Caller must hold rcu_lock or sufficient equivalent.
710 */
711 int walk_tg_tree_from(struct task_group *from,
712 tg_visitor down, tg_visitor up, void *data)
713 {
714 struct task_group *parent, *child;
715 int ret;
716
717 parent = from;
718
719 down:
720 ret = (*down)(parent, data);
721 if (ret)
722 goto out;
723 list_for_each_entry_rcu(child, &parent->children, siblings) {
724 parent = child;
725 goto down;
726
727 up:
728 continue;
729 }
730 ret = (*up)(parent, data);
731 if (ret || parent == from)
732 goto out;
733
734 child = parent;
735 parent = parent->parent;
736 if (parent)
737 goto up;
738 out:
739 return ret;
740 }
741
742 int tg_nop(struct task_group *tg, void *data)
743 {
744 return 0;
745 }
746 #endif
747
748 static void set_load_weight(struct task_struct *p, bool update_load)
749 {
750 int prio = p->static_prio - MAX_RT_PRIO;
751 struct load_weight *load = &p->se.load;
752
753 /*
754 * SCHED_IDLE tasks get minimal weight:
755 */
756 if (task_has_idle_policy(p)) {
757 load->weight = scale_load(WEIGHT_IDLEPRIO);
758 load->inv_weight = WMULT_IDLEPRIO;
759 p->se.runnable_weight = load->weight;
760 return;
761 }
762
763 /*
764 * SCHED_OTHER tasks have to update their load when changing their
765 * weight
766 */
767 if (update_load && p->sched_class == &fair_sched_class) {
768 reweight_task(p, prio);
769 } else {
770 load->weight = scale_load(sched_prio_to_weight[prio]);
771 load->inv_weight = sched_prio_to_wmult[prio];
772 p->se.runnable_weight = load->weight;
773 }
774 }
775
776 #ifdef CONFIG_UCLAMP_TASK
777 /*
778 * Serializes updates of utilization clamp values
779 *
780 * The (slow-path) user-space triggers utilization clamp value updates which
781 * can require updates on (fast-path) scheduler's data structures used to
782 * support enqueue/dequeue operations.
783 * While the per-CPU rq lock protects fast-path update operations, user-space
784 * requests are serialized using a mutex to reduce the risk of conflicting
785 * updates or API abuses.
786 */
787 static DEFINE_MUTEX(uclamp_mutex);
788
789 /* Max allowed minimum utilization */
790 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
791
792 /* Max allowed maximum utilization */
793 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
794
795 /* All clamps are required to be less or equal than these values */
796 static struct uclamp_se uclamp_default[UCLAMP_CNT];
797
798 /* Integer rounded range for each bucket */
799 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
800
801 #define for_each_clamp_id(clamp_id) \
802 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
803
804 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
805 {
806 return clamp_value / UCLAMP_BUCKET_DELTA;
807 }
808
809 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
810 {
811 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
812 }
813
814 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
815 {
816 if (clamp_id == UCLAMP_MIN)
817 return 0;
818 return SCHED_CAPACITY_SCALE;
819 }
820
821 static inline void uclamp_se_set(struct uclamp_se *uc_se,
822 unsigned int value, bool user_defined)
823 {
824 uc_se->value = value;
825 uc_se->bucket_id = uclamp_bucket_id(value);
826 uc_se->user_defined = user_defined;
827 }
828
829 static inline unsigned int
830 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
831 unsigned int clamp_value)
832 {
833 /*
834 * Avoid blocked utilization pushing up the frequency when we go
835 * idle (which drops the max-clamp) by retaining the last known
836 * max-clamp.
837 */
838 if (clamp_id == UCLAMP_MAX) {
839 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
840 return clamp_value;
841 }
842
843 return uclamp_none(UCLAMP_MIN);
844 }
845
846 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
847 unsigned int clamp_value)
848 {
849 /* Reset max-clamp retention only on idle exit */
850 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
851 return;
852
853 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
854 }
855
856 static inline
857 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
858 unsigned int clamp_value)
859 {
860 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
861 int bucket_id = UCLAMP_BUCKETS - 1;
862
863 /*
864 * Since both min and max clamps are max aggregated, find the
865 * top most bucket with tasks in.
866 */
867 for ( ; bucket_id >= 0; bucket_id--) {
868 if (!bucket[bucket_id].tasks)
869 continue;
870 return bucket[bucket_id].value;
871 }
872
873 /* No tasks -- default clamp values */
874 return uclamp_idle_value(rq, clamp_id, clamp_value);
875 }
876
877 static inline struct uclamp_se
878 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
879 {
880 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
881 #ifdef CONFIG_UCLAMP_TASK_GROUP
882 struct uclamp_se uc_max;
883
884 /*
885 * Tasks in autogroups or root task group will be
886 * restricted by system defaults.
887 */
888 if (task_group_is_autogroup(task_group(p)))
889 return uc_req;
890 if (task_group(p) == &root_task_group)
891 return uc_req;
892
893 uc_max = task_group(p)->uclamp[clamp_id];
894 if (uc_req.value > uc_max.value || !uc_req.user_defined)
895 return uc_max;
896 #endif
897
898 return uc_req;
899 }
900
901 /*
902 * The effective clamp bucket index of a task depends on, by increasing
903 * priority:
904 * - the task specific clamp value, when explicitly requested from userspace
905 * - the task group effective clamp value, for tasks not either in the root
906 * group or in an autogroup
907 * - the system default clamp value, defined by the sysadmin
908 */
909 static inline struct uclamp_se
910 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
911 {
912 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
913 struct uclamp_se uc_max = uclamp_default[clamp_id];
914
915 /* System default restrictions always apply */
916 if (unlikely(uc_req.value > uc_max.value))
917 return uc_max;
918
919 return uc_req;
920 }
921
922 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
923 {
924 struct uclamp_se uc_eff;
925
926 /* Task currently refcounted: use back-annotated (effective) value */
927 if (p->uclamp[clamp_id].active)
928 return (unsigned long)p->uclamp[clamp_id].value;
929
930 uc_eff = uclamp_eff_get(p, clamp_id);
931
932 return (unsigned long)uc_eff.value;
933 }
934
935 /*
936 * When a task is enqueued on a rq, the clamp bucket currently defined by the
937 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
938 * updates the rq's clamp value if required.
939 *
940 * Tasks can have a task-specific value requested from user-space, track
941 * within each bucket the maximum value for tasks refcounted in it.
942 * This "local max aggregation" allows to track the exact "requested" value
943 * for each bucket when all its RUNNABLE tasks require the same clamp.
944 */
945 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
946 enum uclamp_id clamp_id)
947 {
948 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
949 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
950 struct uclamp_bucket *bucket;
951
952 lockdep_assert_held(&rq->lock);
953
954 /* Update task effective clamp */
955 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
956
957 bucket = &uc_rq->bucket[uc_se->bucket_id];
958 bucket->tasks++;
959 uc_se->active = true;
960
961 uclamp_idle_reset(rq, clamp_id, uc_se->value);
962
963 /*
964 * Local max aggregation: rq buckets always track the max
965 * "requested" clamp value of its RUNNABLE tasks.
966 */
967 if (bucket->tasks == 1 || uc_se->value > bucket->value)
968 bucket->value = uc_se->value;
969
970 if (uc_se->value > READ_ONCE(uc_rq->value))
971 WRITE_ONCE(uc_rq->value, uc_se->value);
972 }
973
974 /*
975 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
976 * is released. If this is the last task reference counting the rq's max
977 * active clamp value, then the rq's clamp value is updated.
978 *
979 * Both refcounted tasks and rq's cached clamp values are expected to be
980 * always valid. If it's detected they are not, as defensive programming,
981 * enforce the expected state and warn.
982 */
983 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
984 enum uclamp_id clamp_id)
985 {
986 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
987 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
988 struct uclamp_bucket *bucket;
989 unsigned int bkt_clamp;
990 unsigned int rq_clamp;
991
992 lockdep_assert_held(&rq->lock);
993
994 bucket = &uc_rq->bucket[uc_se->bucket_id];
995 SCHED_WARN_ON(!bucket->tasks);
996 if (likely(bucket->tasks))
997 bucket->tasks--;
998 uc_se->active = false;
999
1000 /*
1001 * Keep "local max aggregation" simple and accept to (possibly)
1002 * overboost some RUNNABLE tasks in the same bucket.
1003 * The rq clamp bucket value is reset to its base value whenever
1004 * there are no more RUNNABLE tasks refcounting it.
1005 */
1006 if (likely(bucket->tasks))
1007 return;
1008
1009 rq_clamp = READ_ONCE(uc_rq->value);
1010 /*
1011 * Defensive programming: this should never happen. If it happens,
1012 * e.g. due to future modification, warn and fixup the expected value.
1013 */
1014 SCHED_WARN_ON(bucket->value > rq_clamp);
1015 if (bucket->value >= rq_clamp) {
1016 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1017 WRITE_ONCE(uc_rq->value, bkt_clamp);
1018 }
1019 }
1020
1021 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1022 {
1023 enum uclamp_id clamp_id;
1024
1025 if (unlikely(!p->sched_class->uclamp_enabled))
1026 return;
1027
1028 for_each_clamp_id(clamp_id)
1029 uclamp_rq_inc_id(rq, p, clamp_id);
1030
1031 /* Reset clamp idle holding when there is one RUNNABLE task */
1032 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1033 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1034 }
1035
1036 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1037 {
1038 enum uclamp_id clamp_id;
1039
1040 if (unlikely(!p->sched_class->uclamp_enabled))
1041 return;
1042
1043 for_each_clamp_id(clamp_id)
1044 uclamp_rq_dec_id(rq, p, clamp_id);
1045 }
1046
1047 static inline void
1048 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1049 {
1050 struct rq_flags rf;
1051 struct rq *rq;
1052
1053 /*
1054 * Lock the task and the rq where the task is (or was) queued.
1055 *
1056 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1057 * price to pay to safely serialize util_{min,max} updates with
1058 * enqueues, dequeues and migration operations.
1059 * This is the same locking schema used by __set_cpus_allowed_ptr().
1060 */
1061 rq = task_rq_lock(p, &rf);
1062
1063 /*
1064 * Setting the clamp bucket is serialized by task_rq_lock().
1065 * If the task is not yet RUNNABLE and its task_struct is not
1066 * affecting a valid clamp bucket, the next time it's enqueued,
1067 * it will already see the updated clamp bucket value.
1068 */
1069 if (p->uclamp[clamp_id].active) {
1070 uclamp_rq_dec_id(rq, p, clamp_id);
1071 uclamp_rq_inc_id(rq, p, clamp_id);
1072 }
1073
1074 task_rq_unlock(rq, p, &rf);
1075 }
1076
1077 #ifdef CONFIG_UCLAMP_TASK_GROUP
1078 static inline void
1079 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1080 unsigned int clamps)
1081 {
1082 enum uclamp_id clamp_id;
1083 struct css_task_iter it;
1084 struct task_struct *p;
1085
1086 css_task_iter_start(css, 0, &it);
1087 while ((p = css_task_iter_next(&it))) {
1088 for_each_clamp_id(clamp_id) {
1089 if ((0x1 << clamp_id) & clamps)
1090 uclamp_update_active(p, clamp_id);
1091 }
1092 }
1093 css_task_iter_end(&it);
1094 }
1095
1096 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1097 static void uclamp_update_root_tg(void)
1098 {
1099 struct task_group *tg = &root_task_group;
1100
1101 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1102 sysctl_sched_uclamp_util_min, false);
1103 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1104 sysctl_sched_uclamp_util_max, false);
1105
1106 rcu_read_lock();
1107 cpu_util_update_eff(&root_task_group.css);
1108 rcu_read_unlock();
1109 }
1110 #else
1111 static void uclamp_update_root_tg(void) { }
1112 #endif
1113
1114 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1115 void __user *buffer, size_t *lenp,
1116 loff_t *ppos)
1117 {
1118 bool update_root_tg = false;
1119 int old_min, old_max;
1120 int result;
1121
1122 mutex_lock(&uclamp_mutex);
1123 old_min = sysctl_sched_uclamp_util_min;
1124 old_max = sysctl_sched_uclamp_util_max;
1125
1126 result = proc_dointvec(table, write, buffer, lenp, ppos);
1127 if (result)
1128 goto undo;
1129 if (!write)
1130 goto done;
1131
1132 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1133 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1134 result = -EINVAL;
1135 goto undo;
1136 }
1137
1138 if (old_min != sysctl_sched_uclamp_util_min) {
1139 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1140 sysctl_sched_uclamp_util_min, false);
1141 update_root_tg = true;
1142 }
1143 if (old_max != sysctl_sched_uclamp_util_max) {
1144 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1145 sysctl_sched_uclamp_util_max, false);
1146 update_root_tg = true;
1147 }
1148
1149 if (update_root_tg)
1150 uclamp_update_root_tg();
1151
1152 /*
1153 * We update all RUNNABLE tasks only when task groups are in use.
1154 * Otherwise, keep it simple and do just a lazy update at each next
1155 * task enqueue time.
1156 */
1157
1158 goto done;
1159
1160 undo:
1161 sysctl_sched_uclamp_util_min = old_min;
1162 sysctl_sched_uclamp_util_max = old_max;
1163 done:
1164 mutex_unlock(&uclamp_mutex);
1165
1166 return result;
1167 }
1168
1169 static int uclamp_validate(struct task_struct *p,
1170 const struct sched_attr *attr)
1171 {
1172 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1173 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1174
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1176 lower_bound = attr->sched_util_min;
1177 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1178 upper_bound = attr->sched_util_max;
1179
1180 if (lower_bound > upper_bound)
1181 return -EINVAL;
1182 if (upper_bound > SCHED_CAPACITY_SCALE)
1183 return -EINVAL;
1184
1185 return 0;
1186 }
1187
1188 static void __setscheduler_uclamp(struct task_struct *p,
1189 const struct sched_attr *attr)
1190 {
1191 enum uclamp_id clamp_id;
1192
1193 /*
1194 * On scheduling class change, reset to default clamps for tasks
1195 * without a task-specific value.
1196 */
1197 for_each_clamp_id(clamp_id) {
1198 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1199 unsigned int clamp_value = uclamp_none(clamp_id);
1200
1201 /* Keep using defined clamps across class changes */
1202 if (uc_se->user_defined)
1203 continue;
1204
1205 /* By default, RT tasks always get 100% boost */
1206 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1207 clamp_value = uclamp_none(UCLAMP_MAX);
1208
1209 uclamp_se_set(uc_se, clamp_value, false);
1210 }
1211
1212 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1213 return;
1214
1215 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1216 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1217 attr->sched_util_min, true);
1218 }
1219
1220 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1221 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1222 attr->sched_util_max, true);
1223 }
1224 }
1225
1226 static void uclamp_fork(struct task_struct *p)
1227 {
1228 enum uclamp_id clamp_id;
1229
1230 for_each_clamp_id(clamp_id)
1231 p->uclamp[clamp_id].active = false;
1232
1233 if (likely(!p->sched_reset_on_fork))
1234 return;
1235
1236 for_each_clamp_id(clamp_id) {
1237 unsigned int clamp_value = uclamp_none(clamp_id);
1238
1239 /* By default, RT tasks always get 100% boost */
1240 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1241 clamp_value = uclamp_none(UCLAMP_MAX);
1242
1243 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1244 }
1245 }
1246
1247 static void __init init_uclamp(void)
1248 {
1249 struct uclamp_se uc_max = {};
1250 enum uclamp_id clamp_id;
1251 int cpu;
1252
1253 mutex_init(&uclamp_mutex);
1254
1255 for_each_possible_cpu(cpu) {
1256 memset(&cpu_rq(cpu)->uclamp, 0,
1257 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1258 cpu_rq(cpu)->uclamp_flags = 0;
1259 }
1260
1261 for_each_clamp_id(clamp_id) {
1262 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1263 uclamp_none(clamp_id), false);
1264 }
1265
1266 /* System defaults allow max clamp values for both indexes */
1267 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1268 for_each_clamp_id(clamp_id) {
1269 uclamp_default[clamp_id] = uc_max;
1270 #ifdef CONFIG_UCLAMP_TASK_GROUP
1271 root_task_group.uclamp_req[clamp_id] = uc_max;
1272 root_task_group.uclamp[clamp_id] = uc_max;
1273 #endif
1274 }
1275 }
1276
1277 #else /* CONFIG_UCLAMP_TASK */
1278 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1279 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1280 static inline int uclamp_validate(struct task_struct *p,
1281 const struct sched_attr *attr)
1282 {
1283 return -EOPNOTSUPP;
1284 }
1285 static void __setscheduler_uclamp(struct task_struct *p,
1286 const struct sched_attr *attr) { }
1287 static inline void uclamp_fork(struct task_struct *p) { }
1288 static inline void init_uclamp(void) { }
1289 #endif /* CONFIG_UCLAMP_TASK */
1290
1291 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1292 {
1293 if (!(flags & ENQUEUE_NOCLOCK))
1294 update_rq_clock(rq);
1295
1296 if (!(flags & ENQUEUE_RESTORE)) {
1297 sched_info_queued(rq, p);
1298 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1299 }
1300
1301 uclamp_rq_inc(rq, p);
1302 p->sched_class->enqueue_task(rq, p, flags);
1303 }
1304
1305 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1306 {
1307 if (!(flags & DEQUEUE_NOCLOCK))
1308 update_rq_clock(rq);
1309
1310 if (!(flags & DEQUEUE_SAVE)) {
1311 sched_info_dequeued(rq, p);
1312 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1313 }
1314
1315 uclamp_rq_dec(rq, p);
1316 p->sched_class->dequeue_task(rq, p, flags);
1317 }
1318
1319 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1320 {
1321 if (task_contributes_to_load(p))
1322 rq->nr_uninterruptible--;
1323
1324 enqueue_task(rq, p, flags);
1325
1326 p->on_rq = TASK_ON_RQ_QUEUED;
1327 }
1328
1329 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1330 {
1331 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1332
1333 if (task_contributes_to_load(p))
1334 rq->nr_uninterruptible++;
1335
1336 dequeue_task(rq, p, flags);
1337 }
1338
1339 /*
1340 * __normal_prio - return the priority that is based on the static prio
1341 */
1342 static inline int __normal_prio(struct task_struct *p)
1343 {
1344 return p->static_prio;
1345 }
1346
1347 /*
1348 * Calculate the expected normal priority: i.e. priority
1349 * without taking RT-inheritance into account. Might be
1350 * boosted by interactivity modifiers. Changes upon fork,
1351 * setprio syscalls, and whenever the interactivity
1352 * estimator recalculates.
1353 */
1354 static inline int normal_prio(struct task_struct *p)
1355 {
1356 int prio;
1357
1358 if (task_has_dl_policy(p))
1359 prio = MAX_DL_PRIO-1;
1360 else if (task_has_rt_policy(p))
1361 prio = MAX_RT_PRIO-1 - p->rt_priority;
1362 else
1363 prio = __normal_prio(p);
1364 return prio;
1365 }
1366
1367 /*
1368 * Calculate the current priority, i.e. the priority
1369 * taken into account by the scheduler. This value might
1370 * be boosted by RT tasks, or might be boosted by
1371 * interactivity modifiers. Will be RT if the task got
1372 * RT-boosted. If not then it returns p->normal_prio.
1373 */
1374 static int effective_prio(struct task_struct *p)
1375 {
1376 p->normal_prio = normal_prio(p);
1377 /*
1378 * If we are RT tasks or we were boosted to RT priority,
1379 * keep the priority unchanged. Otherwise, update priority
1380 * to the normal priority:
1381 */
1382 if (!rt_prio(p->prio))
1383 return p->normal_prio;
1384 return p->prio;
1385 }
1386
1387 /**
1388 * task_curr - is this task currently executing on a CPU?
1389 * @p: the task in question.
1390 *
1391 * Return: 1 if the task is currently executing. 0 otherwise.
1392 */
1393 inline int task_curr(const struct task_struct *p)
1394 {
1395 return cpu_curr(task_cpu(p)) == p;
1396 }
1397
1398 /*
1399 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1400 * use the balance_callback list if you want balancing.
1401 *
1402 * this means any call to check_class_changed() must be followed by a call to
1403 * balance_callback().
1404 */
1405 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1406 const struct sched_class *prev_class,
1407 int oldprio)
1408 {
1409 if (prev_class != p->sched_class) {
1410 if (prev_class->switched_from)
1411 prev_class->switched_from(rq, p);
1412
1413 p->sched_class->switched_to(rq, p);
1414 } else if (oldprio != p->prio || dl_task(p))
1415 p->sched_class->prio_changed(rq, p, oldprio);
1416 }
1417
1418 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1419 {
1420 const struct sched_class *class;
1421
1422 if (p->sched_class == rq->curr->sched_class) {
1423 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1424 } else {
1425 for_each_class(class) {
1426 if (class == rq->curr->sched_class)
1427 break;
1428 if (class == p->sched_class) {
1429 resched_curr(rq);
1430 break;
1431 }
1432 }
1433 }
1434
1435 /*
1436 * A queue event has occurred, and we're going to schedule. In
1437 * this case, we can save a useless back to back clock update.
1438 */
1439 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1440 rq_clock_skip_update(rq);
1441 }
1442
1443 #ifdef CONFIG_SMP
1444
1445 static inline bool is_per_cpu_kthread(struct task_struct *p)
1446 {
1447 if (!(p->flags & PF_KTHREAD))
1448 return false;
1449
1450 if (p->nr_cpus_allowed != 1)
1451 return false;
1452
1453 return true;
1454 }
1455
1456 /*
1457 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1458 * __set_cpus_allowed_ptr() and select_fallback_rq().
1459 */
1460 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1461 {
1462 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1463 return false;
1464
1465 if (is_per_cpu_kthread(p))
1466 return cpu_online(cpu);
1467
1468 return cpu_active(cpu);
1469 }
1470
1471 /*
1472 * This is how migration works:
1473 *
1474 * 1) we invoke migration_cpu_stop() on the target CPU using
1475 * stop_one_cpu().
1476 * 2) stopper starts to run (implicitly forcing the migrated thread
1477 * off the CPU)
1478 * 3) it checks whether the migrated task is still in the wrong runqueue.
1479 * 4) if it's in the wrong runqueue then the migration thread removes
1480 * it and puts it into the right queue.
1481 * 5) stopper completes and stop_one_cpu() returns and the migration
1482 * is done.
1483 */
1484
1485 /*
1486 * move_queued_task - move a queued task to new rq.
1487 *
1488 * Returns (locked) new rq. Old rq's lock is released.
1489 */
1490 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1491 struct task_struct *p, int new_cpu)
1492 {
1493 lockdep_assert_held(&rq->lock);
1494
1495 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1496 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1497 set_task_cpu(p, new_cpu);
1498 rq_unlock(rq, rf);
1499
1500 rq = cpu_rq(new_cpu);
1501
1502 rq_lock(rq, rf);
1503 BUG_ON(task_cpu(p) != new_cpu);
1504 enqueue_task(rq, p, 0);
1505 p->on_rq = TASK_ON_RQ_QUEUED;
1506 check_preempt_curr(rq, p, 0);
1507
1508 return rq;
1509 }
1510
1511 struct migration_arg {
1512 struct task_struct *task;
1513 int dest_cpu;
1514 };
1515
1516 /*
1517 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1518 * this because either it can't run here any more (set_cpus_allowed()
1519 * away from this CPU, or CPU going down), or because we're
1520 * attempting to rebalance this task on exec (sched_exec).
1521 *
1522 * So we race with normal scheduler movements, but that's OK, as long
1523 * as the task is no longer on this CPU.
1524 */
1525 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1526 struct task_struct *p, int dest_cpu)
1527 {
1528 /* Affinity changed (again). */
1529 if (!is_cpu_allowed(p, dest_cpu))
1530 return rq;
1531
1532 update_rq_clock(rq);
1533 rq = move_queued_task(rq, rf, p, dest_cpu);
1534
1535 return rq;
1536 }
1537
1538 /*
1539 * migration_cpu_stop - this will be executed by a highprio stopper thread
1540 * and performs thread migration by bumping thread off CPU then
1541 * 'pushing' onto another runqueue.
1542 */
1543 static int migration_cpu_stop(void *data)
1544 {
1545 struct migration_arg *arg = data;
1546 struct task_struct *p = arg->task;
1547 struct rq *rq = this_rq();
1548 struct rq_flags rf;
1549
1550 /*
1551 * The original target CPU might have gone down and we might
1552 * be on another CPU but it doesn't matter.
1553 */
1554 local_irq_disable();
1555 /*
1556 * We need to explicitly wake pending tasks before running
1557 * __migrate_task() such that we will not miss enforcing cpus_ptr
1558 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1559 */
1560 sched_ttwu_pending();
1561
1562 raw_spin_lock(&p->pi_lock);
1563 rq_lock(rq, &rf);
1564 /*
1565 * If task_rq(p) != rq, it cannot be migrated here, because we're
1566 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1567 * we're holding p->pi_lock.
1568 */
1569 if (task_rq(p) == rq) {
1570 if (task_on_rq_queued(p))
1571 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1572 else
1573 p->wake_cpu = arg->dest_cpu;
1574 }
1575 rq_unlock(rq, &rf);
1576 raw_spin_unlock(&p->pi_lock);
1577
1578 local_irq_enable();
1579 return 0;
1580 }
1581
1582 /*
1583 * sched_class::set_cpus_allowed must do the below, but is not required to
1584 * actually call this function.
1585 */
1586 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1587 {
1588 cpumask_copy(&p->cpus_mask, new_mask);
1589 p->nr_cpus_allowed = cpumask_weight(new_mask);
1590 }
1591
1592 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1593 {
1594 struct rq *rq = task_rq(p);
1595 bool queued, running;
1596
1597 lockdep_assert_held(&p->pi_lock);
1598
1599 queued = task_on_rq_queued(p);
1600 running = task_current(rq, p);
1601
1602 if (queued) {
1603 /*
1604 * Because __kthread_bind() calls this on blocked tasks without
1605 * holding rq->lock.
1606 */
1607 lockdep_assert_held(&rq->lock);
1608 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1609 }
1610 if (running)
1611 put_prev_task(rq, p);
1612
1613 p->sched_class->set_cpus_allowed(p, new_mask);
1614
1615 if (queued)
1616 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1617 if (running)
1618 set_next_task(rq, p);
1619 }
1620
1621 /*
1622 * Change a given task's CPU affinity. Migrate the thread to a
1623 * proper CPU and schedule it away if the CPU it's executing on
1624 * is removed from the allowed bitmask.
1625 *
1626 * NOTE: the caller must have a valid reference to the task, the
1627 * task must not exit() & deallocate itself prematurely. The
1628 * call is not atomic; no spinlocks may be held.
1629 */
1630 static int __set_cpus_allowed_ptr(struct task_struct *p,
1631 const struct cpumask *new_mask, bool check)
1632 {
1633 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1634 unsigned int dest_cpu;
1635 struct rq_flags rf;
1636 struct rq *rq;
1637 int ret = 0;
1638
1639 rq = task_rq_lock(p, &rf);
1640 update_rq_clock(rq);
1641
1642 if (p->flags & PF_KTHREAD) {
1643 /*
1644 * Kernel threads are allowed on online && !active CPUs
1645 */
1646 cpu_valid_mask = cpu_online_mask;
1647 }
1648
1649 /*
1650 * Must re-check here, to close a race against __kthread_bind(),
1651 * sched_setaffinity() is not guaranteed to observe the flag.
1652 */
1653 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1654 ret = -EINVAL;
1655 goto out;
1656 }
1657
1658 if (cpumask_equal(p->cpus_ptr, new_mask))
1659 goto out;
1660
1661 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1662 if (dest_cpu >= nr_cpu_ids) {
1663 ret = -EINVAL;
1664 goto out;
1665 }
1666
1667 do_set_cpus_allowed(p, new_mask);
1668
1669 if (p->flags & PF_KTHREAD) {
1670 /*
1671 * For kernel threads that do indeed end up on online &&
1672 * !active we want to ensure they are strict per-CPU threads.
1673 */
1674 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1675 !cpumask_intersects(new_mask, cpu_active_mask) &&
1676 p->nr_cpus_allowed != 1);
1677 }
1678
1679 /* Can the task run on the task's current CPU? If so, we're done */
1680 if (cpumask_test_cpu(task_cpu(p), new_mask))
1681 goto out;
1682
1683 if (task_running(rq, p) || p->state == TASK_WAKING) {
1684 struct migration_arg arg = { p, dest_cpu };
1685 /* Need help from migration thread: drop lock and wait. */
1686 task_rq_unlock(rq, p, &rf);
1687 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1688 return 0;
1689 } else if (task_on_rq_queued(p)) {
1690 /*
1691 * OK, since we're going to drop the lock immediately
1692 * afterwards anyway.
1693 */
1694 rq = move_queued_task(rq, &rf, p, dest_cpu);
1695 }
1696 out:
1697 task_rq_unlock(rq, p, &rf);
1698
1699 return ret;
1700 }
1701
1702 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1703 {
1704 return __set_cpus_allowed_ptr(p, new_mask, false);
1705 }
1706 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1707
1708 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1709 {
1710 #ifdef CONFIG_SCHED_DEBUG
1711 /*
1712 * We should never call set_task_cpu() on a blocked task,
1713 * ttwu() will sort out the placement.
1714 */
1715 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1716 !p->on_rq);
1717
1718 /*
1719 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1720 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1721 * time relying on p->on_rq.
1722 */
1723 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1724 p->sched_class == &fair_sched_class &&
1725 (p->on_rq && !task_on_rq_migrating(p)));
1726
1727 #ifdef CONFIG_LOCKDEP
1728 /*
1729 * The caller should hold either p->pi_lock or rq->lock, when changing
1730 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1731 *
1732 * sched_move_task() holds both and thus holding either pins the cgroup,
1733 * see task_group().
1734 *
1735 * Furthermore, all task_rq users should acquire both locks, see
1736 * task_rq_lock().
1737 */
1738 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1739 lockdep_is_held(&task_rq(p)->lock)));
1740 #endif
1741 /*
1742 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1743 */
1744 WARN_ON_ONCE(!cpu_online(new_cpu));
1745 #endif
1746
1747 trace_sched_migrate_task(p, new_cpu);
1748
1749 if (task_cpu(p) != new_cpu) {
1750 if (p->sched_class->migrate_task_rq)
1751 p->sched_class->migrate_task_rq(p, new_cpu);
1752 p->se.nr_migrations++;
1753 rseq_migrate(p);
1754 perf_event_task_migrate(p);
1755 }
1756
1757 __set_task_cpu(p, new_cpu);
1758 }
1759
1760 #ifdef CONFIG_NUMA_BALANCING
1761 static void __migrate_swap_task(struct task_struct *p, int cpu)
1762 {
1763 if (task_on_rq_queued(p)) {
1764 struct rq *src_rq, *dst_rq;
1765 struct rq_flags srf, drf;
1766
1767 src_rq = task_rq(p);
1768 dst_rq = cpu_rq(cpu);
1769
1770 rq_pin_lock(src_rq, &srf);
1771 rq_pin_lock(dst_rq, &drf);
1772
1773 deactivate_task(src_rq, p, 0);
1774 set_task_cpu(p, cpu);
1775 activate_task(dst_rq, p, 0);
1776 check_preempt_curr(dst_rq, p, 0);
1777
1778 rq_unpin_lock(dst_rq, &drf);
1779 rq_unpin_lock(src_rq, &srf);
1780
1781 } else {
1782 /*
1783 * Task isn't running anymore; make it appear like we migrated
1784 * it before it went to sleep. This means on wakeup we make the
1785 * previous CPU our target instead of where it really is.
1786 */
1787 p->wake_cpu = cpu;
1788 }
1789 }
1790
1791 struct migration_swap_arg {
1792 struct task_struct *src_task, *dst_task;
1793 int src_cpu, dst_cpu;
1794 };
1795
1796 static int migrate_swap_stop(void *data)
1797 {
1798 struct migration_swap_arg *arg = data;
1799 struct rq *src_rq, *dst_rq;
1800 int ret = -EAGAIN;
1801
1802 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1803 return -EAGAIN;
1804
1805 src_rq = cpu_rq(arg->src_cpu);
1806 dst_rq = cpu_rq(arg->dst_cpu);
1807
1808 double_raw_lock(&arg->src_task->pi_lock,
1809 &arg->dst_task->pi_lock);
1810 double_rq_lock(src_rq, dst_rq);
1811
1812 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1813 goto unlock;
1814
1815 if (task_cpu(arg->src_task) != arg->src_cpu)
1816 goto unlock;
1817
1818 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1819 goto unlock;
1820
1821 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1822 goto unlock;
1823
1824 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1825 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1826
1827 ret = 0;
1828
1829 unlock:
1830 double_rq_unlock(src_rq, dst_rq);
1831 raw_spin_unlock(&arg->dst_task->pi_lock);
1832 raw_spin_unlock(&arg->src_task->pi_lock);
1833
1834 return ret;
1835 }
1836
1837 /*
1838 * Cross migrate two tasks
1839 */
1840 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1841 int target_cpu, int curr_cpu)
1842 {
1843 struct migration_swap_arg arg;
1844 int ret = -EINVAL;
1845
1846 arg = (struct migration_swap_arg){
1847 .src_task = cur,
1848 .src_cpu = curr_cpu,
1849 .dst_task = p,
1850 .dst_cpu = target_cpu,
1851 };
1852
1853 if (arg.src_cpu == arg.dst_cpu)
1854 goto out;
1855
1856 /*
1857 * These three tests are all lockless; this is OK since all of them
1858 * will be re-checked with proper locks held further down the line.
1859 */
1860 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1861 goto out;
1862
1863 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1864 goto out;
1865
1866 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1867 goto out;
1868
1869 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1870 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1871
1872 out:
1873 return ret;
1874 }
1875 #endif /* CONFIG_NUMA_BALANCING */
1876
1877 /*
1878 * wait_task_inactive - wait for a thread to unschedule.
1879 *
1880 * If @match_state is nonzero, it's the @p->state value just checked and
1881 * not expected to change. If it changes, i.e. @p might have woken up,
1882 * then return zero. When we succeed in waiting for @p to be off its CPU,
1883 * we return a positive number (its total switch count). If a second call
1884 * a short while later returns the same number, the caller can be sure that
1885 * @p has remained unscheduled the whole time.
1886 *
1887 * The caller must ensure that the task *will* unschedule sometime soon,
1888 * else this function might spin for a *long* time. This function can't
1889 * be called with interrupts off, or it may introduce deadlock with
1890 * smp_call_function() if an IPI is sent by the same process we are
1891 * waiting to become inactive.
1892 */
1893 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1894 {
1895 int running, queued;
1896 struct rq_flags rf;
1897 unsigned long ncsw;
1898 struct rq *rq;
1899
1900 for (;;) {
1901 /*
1902 * We do the initial early heuristics without holding
1903 * any task-queue locks at all. We'll only try to get
1904 * the runqueue lock when things look like they will
1905 * work out!
1906 */
1907 rq = task_rq(p);
1908
1909 /*
1910 * If the task is actively running on another CPU
1911 * still, just relax and busy-wait without holding
1912 * any locks.
1913 *
1914 * NOTE! Since we don't hold any locks, it's not
1915 * even sure that "rq" stays as the right runqueue!
1916 * But we don't care, since "task_running()" will
1917 * return false if the runqueue has changed and p
1918 * is actually now running somewhere else!
1919 */
1920 while (task_running(rq, p)) {
1921 if (match_state && unlikely(p->state != match_state))
1922 return 0;
1923 cpu_relax();
1924 }
1925
1926 /*
1927 * Ok, time to look more closely! We need the rq
1928 * lock now, to be *sure*. If we're wrong, we'll
1929 * just go back and repeat.
1930 */
1931 rq = task_rq_lock(p, &rf);
1932 trace_sched_wait_task(p);
1933 running = task_running(rq, p);
1934 queued = task_on_rq_queued(p);
1935 ncsw = 0;
1936 if (!match_state || p->state == match_state)
1937 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1938 task_rq_unlock(rq, p, &rf);
1939
1940 /*
1941 * If it changed from the expected state, bail out now.
1942 */
1943 if (unlikely(!ncsw))
1944 break;
1945
1946 /*
1947 * Was it really running after all now that we
1948 * checked with the proper locks actually held?
1949 *
1950 * Oops. Go back and try again..
1951 */
1952 if (unlikely(running)) {
1953 cpu_relax();
1954 continue;
1955 }
1956
1957 /*
1958 * It's not enough that it's not actively running,
1959 * it must be off the runqueue _entirely_, and not
1960 * preempted!
1961 *
1962 * So if it was still runnable (but just not actively
1963 * running right now), it's preempted, and we should
1964 * yield - it could be a while.
1965 */
1966 if (unlikely(queued)) {
1967 ktime_t to = NSEC_PER_SEC / HZ;
1968
1969 set_current_state(TASK_UNINTERRUPTIBLE);
1970 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1971 continue;
1972 }
1973
1974 /*
1975 * Ahh, all good. It wasn't running, and it wasn't
1976 * runnable, which means that it will never become
1977 * running in the future either. We're all done!
1978 */
1979 break;
1980 }
1981
1982 return ncsw;
1983 }
1984
1985 /***
1986 * kick_process - kick a running thread to enter/exit the kernel
1987 * @p: the to-be-kicked thread
1988 *
1989 * Cause a process which is running on another CPU to enter
1990 * kernel-mode, without any delay. (to get signals handled.)
1991 *
1992 * NOTE: this function doesn't have to take the runqueue lock,
1993 * because all it wants to ensure is that the remote task enters
1994 * the kernel. If the IPI races and the task has been migrated
1995 * to another CPU then no harm is done and the purpose has been
1996 * achieved as well.
1997 */
1998 void kick_process(struct task_struct *p)
1999 {
2000 int cpu;
2001
2002 preempt_disable();
2003 cpu = task_cpu(p);
2004 if ((cpu != smp_processor_id()) && task_curr(p))
2005 smp_send_reschedule(cpu);
2006 preempt_enable();
2007 }
2008 EXPORT_SYMBOL_GPL(kick_process);
2009
2010 /*
2011 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2012 *
2013 * A few notes on cpu_active vs cpu_online:
2014 *
2015 * - cpu_active must be a subset of cpu_online
2016 *
2017 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2018 * see __set_cpus_allowed_ptr(). At this point the newly online
2019 * CPU isn't yet part of the sched domains, and balancing will not
2020 * see it.
2021 *
2022 * - on CPU-down we clear cpu_active() to mask the sched domains and
2023 * avoid the load balancer to place new tasks on the to be removed
2024 * CPU. Existing tasks will remain running there and will be taken
2025 * off.
2026 *
2027 * This means that fallback selection must not select !active CPUs.
2028 * And can assume that any active CPU must be online. Conversely
2029 * select_task_rq() below may allow selection of !active CPUs in order
2030 * to satisfy the above rules.
2031 */
2032 static int select_fallback_rq(int cpu, struct task_struct *p)
2033 {
2034 int nid = cpu_to_node(cpu);
2035 const struct cpumask *nodemask = NULL;
2036 enum { cpuset, possible, fail } state = cpuset;
2037 int dest_cpu;
2038
2039 /*
2040 * If the node that the CPU is on has been offlined, cpu_to_node()
2041 * will return -1. There is no CPU on the node, and we should
2042 * select the CPU on the other node.
2043 */
2044 if (nid != -1) {
2045 nodemask = cpumask_of_node(nid);
2046
2047 /* Look for allowed, online CPU in same node. */
2048 for_each_cpu(dest_cpu, nodemask) {
2049 if (!cpu_active(dest_cpu))
2050 continue;
2051 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2052 return dest_cpu;
2053 }
2054 }
2055
2056 for (;;) {
2057 /* Any allowed, online CPU? */
2058 for_each_cpu(dest_cpu, p->cpus_ptr) {
2059 if (!is_cpu_allowed(p, dest_cpu))
2060 continue;
2061
2062 goto out;
2063 }
2064
2065 /* No more Mr. Nice Guy. */
2066 switch (state) {
2067 case cpuset:
2068 if (IS_ENABLED(CONFIG_CPUSETS)) {
2069 cpuset_cpus_allowed_fallback(p);
2070 state = possible;
2071 break;
2072 }
2073 /* Fall-through */
2074 case possible:
2075 do_set_cpus_allowed(p, cpu_possible_mask);
2076 state = fail;
2077 break;
2078
2079 case fail:
2080 BUG();
2081 break;
2082 }
2083 }
2084
2085 out:
2086 if (state != cpuset) {
2087 /*
2088 * Don't tell them about moving exiting tasks or
2089 * kernel threads (both mm NULL), since they never
2090 * leave kernel.
2091 */
2092 if (p->mm && printk_ratelimit()) {
2093 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2094 task_pid_nr(p), p->comm, cpu);
2095 }
2096 }
2097
2098 return dest_cpu;
2099 }
2100
2101 /*
2102 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2103 */
2104 static inline
2105 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2106 {
2107 lockdep_assert_held(&p->pi_lock);
2108
2109 if (p->nr_cpus_allowed > 1)
2110 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2111 else
2112 cpu = cpumask_any(p->cpus_ptr);
2113
2114 /*
2115 * In order not to call set_task_cpu() on a blocking task we need
2116 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2117 * CPU.
2118 *
2119 * Since this is common to all placement strategies, this lives here.
2120 *
2121 * [ this allows ->select_task() to simply return task_cpu(p) and
2122 * not worry about this generic constraint ]
2123 */
2124 if (unlikely(!is_cpu_allowed(p, cpu)))
2125 cpu = select_fallback_rq(task_cpu(p), p);
2126
2127 return cpu;
2128 }
2129
2130 static void update_avg(u64 *avg, u64 sample)
2131 {
2132 s64 diff = sample - *avg;
2133 *avg += diff >> 3;
2134 }
2135
2136 void sched_set_stop_task(int cpu, struct task_struct *stop)
2137 {
2138 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2139 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2140
2141 if (stop) {
2142 /*
2143 * Make it appear like a SCHED_FIFO task, its something
2144 * userspace knows about and won't get confused about.
2145 *
2146 * Also, it will make PI more or less work without too
2147 * much confusion -- but then, stop work should not
2148 * rely on PI working anyway.
2149 */
2150 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2151
2152 stop->sched_class = &stop_sched_class;
2153 }
2154
2155 cpu_rq(cpu)->stop = stop;
2156
2157 if (old_stop) {
2158 /*
2159 * Reset it back to a normal scheduling class so that
2160 * it can die in pieces.
2161 */
2162 old_stop->sched_class = &rt_sched_class;
2163 }
2164 }
2165
2166 #else
2167
2168 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2169 const struct cpumask *new_mask, bool check)
2170 {
2171 return set_cpus_allowed_ptr(p, new_mask);
2172 }
2173
2174 #endif /* CONFIG_SMP */
2175
2176 static void
2177 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2178 {
2179 struct rq *rq;
2180
2181 if (!schedstat_enabled())
2182 return;
2183
2184 rq = this_rq();
2185
2186 #ifdef CONFIG_SMP
2187 if (cpu == rq->cpu) {
2188 __schedstat_inc(rq->ttwu_local);
2189 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2190 } else {
2191 struct sched_domain *sd;
2192
2193 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2194 rcu_read_lock();
2195 for_each_domain(rq->cpu, sd) {
2196 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2197 __schedstat_inc(sd->ttwu_wake_remote);
2198 break;
2199 }
2200 }
2201 rcu_read_unlock();
2202 }
2203
2204 if (wake_flags & WF_MIGRATED)
2205 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2206 #endif /* CONFIG_SMP */
2207
2208 __schedstat_inc(rq->ttwu_count);
2209 __schedstat_inc(p->se.statistics.nr_wakeups);
2210
2211 if (wake_flags & WF_SYNC)
2212 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2213 }
2214
2215 /*
2216 * Mark the task runnable and perform wakeup-preemption.
2217 */
2218 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2219 struct rq_flags *rf)
2220 {
2221 check_preempt_curr(rq, p, wake_flags);
2222 p->state = TASK_RUNNING;
2223 trace_sched_wakeup(p);
2224
2225 #ifdef CONFIG_SMP
2226 if (p->sched_class->task_woken) {
2227 /*
2228 * Our task @p is fully woken up and running; so its safe to
2229 * drop the rq->lock, hereafter rq is only used for statistics.
2230 */
2231 rq_unpin_lock(rq, rf);
2232 p->sched_class->task_woken(rq, p);
2233 rq_repin_lock(rq, rf);
2234 }
2235
2236 if (rq->idle_stamp) {
2237 u64 delta = rq_clock(rq) - rq->idle_stamp;
2238 u64 max = 2*rq->max_idle_balance_cost;
2239
2240 update_avg(&rq->avg_idle, delta);
2241
2242 if (rq->avg_idle > max)
2243 rq->avg_idle = max;
2244
2245 rq->idle_stamp = 0;
2246 }
2247 #endif
2248 }
2249
2250 static void
2251 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2252 struct rq_flags *rf)
2253 {
2254 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2255
2256 lockdep_assert_held(&rq->lock);
2257
2258 #ifdef CONFIG_SMP
2259 if (p->sched_contributes_to_load)
2260 rq->nr_uninterruptible--;
2261
2262 if (wake_flags & WF_MIGRATED)
2263 en_flags |= ENQUEUE_MIGRATED;
2264 #endif
2265
2266 activate_task(rq, p, en_flags);
2267 ttwu_do_wakeup(rq, p, wake_flags, rf);
2268 }
2269
2270 /*
2271 * Called in case the task @p isn't fully descheduled from its runqueue,
2272 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2273 * since all we need to do is flip p->state to TASK_RUNNING, since
2274 * the task is still ->on_rq.
2275 */
2276 static int ttwu_remote(struct task_struct *p, int wake_flags)
2277 {
2278 struct rq_flags rf;
2279 struct rq *rq;
2280 int ret = 0;
2281
2282 rq = __task_rq_lock(p, &rf);
2283 if (task_on_rq_queued(p)) {
2284 /* check_preempt_curr() may use rq clock */
2285 update_rq_clock(rq);
2286 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2287 ret = 1;
2288 }
2289 __task_rq_unlock(rq, &rf);
2290
2291 return ret;
2292 }
2293
2294 #ifdef CONFIG_SMP
2295 void sched_ttwu_pending(void)
2296 {
2297 struct rq *rq = this_rq();
2298 struct llist_node *llist = llist_del_all(&rq->wake_list);
2299 struct task_struct *p, *t;
2300 struct rq_flags rf;
2301
2302 if (!llist)
2303 return;
2304
2305 rq_lock_irqsave(rq, &rf);
2306 update_rq_clock(rq);
2307
2308 llist_for_each_entry_safe(p, t, llist, wake_entry)
2309 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2310
2311 rq_unlock_irqrestore(rq, &rf);
2312 }
2313
2314 void scheduler_ipi(void)
2315 {
2316 /*
2317 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2318 * TIF_NEED_RESCHED remotely (for the first time) will also send
2319 * this IPI.
2320 */
2321 preempt_fold_need_resched();
2322
2323 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2324 return;
2325
2326 /*
2327 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2328 * traditionally all their work was done from the interrupt return
2329 * path. Now that we actually do some work, we need to make sure
2330 * we do call them.
2331 *
2332 * Some archs already do call them, luckily irq_enter/exit nest
2333 * properly.
2334 *
2335 * Arguably we should visit all archs and update all handlers,
2336 * however a fair share of IPIs are still resched only so this would
2337 * somewhat pessimize the simple resched case.
2338 */
2339 irq_enter();
2340 sched_ttwu_pending();
2341
2342 /*
2343 * Check if someone kicked us for doing the nohz idle load balance.
2344 */
2345 if (unlikely(got_nohz_idle_kick())) {
2346 this_rq()->idle_balance = 1;
2347 raise_softirq_irqoff(SCHED_SOFTIRQ);
2348 }
2349 irq_exit();
2350 }
2351
2352 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2353 {
2354 struct rq *rq = cpu_rq(cpu);
2355
2356 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2357
2358 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2359 if (!set_nr_if_polling(rq->idle))
2360 smp_send_reschedule(cpu);
2361 else
2362 trace_sched_wake_idle_without_ipi(cpu);
2363 }
2364 }
2365
2366 void wake_up_if_idle(int cpu)
2367 {
2368 struct rq *rq = cpu_rq(cpu);
2369 struct rq_flags rf;
2370
2371 rcu_read_lock();
2372
2373 if (!is_idle_task(rcu_dereference(rq->curr)))
2374 goto out;
2375
2376 if (set_nr_if_polling(rq->idle)) {
2377 trace_sched_wake_idle_without_ipi(cpu);
2378 } else {
2379 rq_lock_irqsave(rq, &rf);
2380 if (is_idle_task(rq->curr))
2381 smp_send_reschedule(cpu);
2382 /* Else CPU is not idle, do nothing here: */
2383 rq_unlock_irqrestore(rq, &rf);
2384 }
2385
2386 out:
2387 rcu_read_unlock();
2388 }
2389
2390 bool cpus_share_cache(int this_cpu, int that_cpu)
2391 {
2392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2393 }
2394 #endif /* CONFIG_SMP */
2395
2396 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2397 {
2398 struct rq *rq = cpu_rq(cpu);
2399 struct rq_flags rf;
2400
2401 #if defined(CONFIG_SMP)
2402 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2403 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2404 ttwu_queue_remote(p, cpu, wake_flags);
2405 return;
2406 }
2407 #endif
2408
2409 rq_lock(rq, &rf);
2410 update_rq_clock(rq);
2411 ttwu_do_activate(rq, p, wake_flags, &rf);
2412 rq_unlock(rq, &rf);
2413 }
2414
2415 /*
2416 * Notes on Program-Order guarantees on SMP systems.
2417 *
2418 * MIGRATION
2419 *
2420 * The basic program-order guarantee on SMP systems is that when a task [t]
2421 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2422 * execution on its new CPU [c1].
2423 *
2424 * For migration (of runnable tasks) this is provided by the following means:
2425 *
2426 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2427 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2428 * rq(c1)->lock (if not at the same time, then in that order).
2429 * C) LOCK of the rq(c1)->lock scheduling in task
2430 *
2431 * Release/acquire chaining guarantees that B happens after A and C after B.
2432 * Note: the CPU doing B need not be c0 or c1
2433 *
2434 * Example:
2435 *
2436 * CPU0 CPU1 CPU2
2437 *
2438 * LOCK rq(0)->lock
2439 * sched-out X
2440 * sched-in Y
2441 * UNLOCK rq(0)->lock
2442 *
2443 * LOCK rq(0)->lock // orders against CPU0
2444 * dequeue X
2445 * UNLOCK rq(0)->lock
2446 *
2447 * LOCK rq(1)->lock
2448 * enqueue X
2449 * UNLOCK rq(1)->lock
2450 *
2451 * LOCK rq(1)->lock // orders against CPU2
2452 * sched-out Z
2453 * sched-in X
2454 * UNLOCK rq(1)->lock
2455 *
2456 *
2457 * BLOCKING -- aka. SLEEP + WAKEUP
2458 *
2459 * For blocking we (obviously) need to provide the same guarantee as for
2460 * migration. However the means are completely different as there is no lock
2461 * chain to provide order. Instead we do:
2462 *
2463 * 1) smp_store_release(X->on_cpu, 0)
2464 * 2) smp_cond_load_acquire(!X->on_cpu)
2465 *
2466 * Example:
2467 *
2468 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2469 *
2470 * LOCK rq(0)->lock LOCK X->pi_lock
2471 * dequeue X
2472 * sched-out X
2473 * smp_store_release(X->on_cpu, 0);
2474 *
2475 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2476 * X->state = WAKING
2477 * set_task_cpu(X,2)
2478 *
2479 * LOCK rq(2)->lock
2480 * enqueue X
2481 * X->state = RUNNING
2482 * UNLOCK rq(2)->lock
2483 *
2484 * LOCK rq(2)->lock // orders against CPU1
2485 * sched-out Z
2486 * sched-in X
2487 * UNLOCK rq(2)->lock
2488 *
2489 * UNLOCK X->pi_lock
2490 * UNLOCK rq(0)->lock
2491 *
2492 *
2493 * However, for wakeups there is a second guarantee we must provide, namely we
2494 * must ensure that CONDITION=1 done by the caller can not be reordered with
2495 * accesses to the task state; see try_to_wake_up() and set_current_state().
2496 */
2497
2498 /**
2499 * try_to_wake_up - wake up a thread
2500 * @p: the thread to be awakened
2501 * @state: the mask of task states that can be woken
2502 * @wake_flags: wake modifier flags (WF_*)
2503 *
2504 * If (@state & @p->state) @p->state = TASK_RUNNING.
2505 *
2506 * If the task was not queued/runnable, also place it back on a runqueue.
2507 *
2508 * Atomic against schedule() which would dequeue a task, also see
2509 * set_current_state().
2510 *
2511 * This function executes a full memory barrier before accessing the task
2512 * state; see set_current_state().
2513 *
2514 * Return: %true if @p->state changes (an actual wakeup was done),
2515 * %false otherwise.
2516 */
2517 static int
2518 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2519 {
2520 unsigned long flags;
2521 int cpu, success = 0;
2522
2523 preempt_disable();
2524 if (p == current) {
2525 /*
2526 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2527 * == smp_processor_id()'. Together this means we can special
2528 * case the whole 'p->on_rq && ttwu_remote()' case below
2529 * without taking any locks.
2530 *
2531 * In particular:
2532 * - we rely on Program-Order guarantees for all the ordering,
2533 * - we're serialized against set_special_state() by virtue of
2534 * it disabling IRQs (this allows not taking ->pi_lock).
2535 */
2536 if (!(p->state & state))
2537 goto out;
2538
2539 success = 1;
2540 cpu = task_cpu(p);
2541 trace_sched_waking(p);
2542 p->state = TASK_RUNNING;
2543 trace_sched_wakeup(p);
2544 goto out;
2545 }
2546
2547 /*
2548 * If we are going to wake up a thread waiting for CONDITION we
2549 * need to ensure that CONDITION=1 done by the caller can not be
2550 * reordered with p->state check below. This pairs with mb() in
2551 * set_current_state() the waiting thread does.
2552 */
2553 raw_spin_lock_irqsave(&p->pi_lock, flags);
2554 smp_mb__after_spinlock();
2555 if (!(p->state & state))
2556 goto unlock;
2557
2558 trace_sched_waking(p);
2559
2560 /* We're going to change ->state: */
2561 success = 1;
2562 cpu = task_cpu(p);
2563
2564 /*
2565 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2566 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2567 * in smp_cond_load_acquire() below.
2568 *
2569 * sched_ttwu_pending() try_to_wake_up()
2570 * STORE p->on_rq = 1 LOAD p->state
2571 * UNLOCK rq->lock
2572 *
2573 * __schedule() (switch to task 'p')
2574 * LOCK rq->lock smp_rmb();
2575 * smp_mb__after_spinlock();
2576 * UNLOCK rq->lock
2577 *
2578 * [task p]
2579 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2580 *
2581 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2582 * __schedule(). See the comment for smp_mb__after_spinlock().
2583 */
2584 smp_rmb();
2585 if (p->on_rq && ttwu_remote(p, wake_flags))
2586 goto unlock;
2587
2588 #ifdef CONFIG_SMP
2589 /*
2590 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2591 * possible to, falsely, observe p->on_cpu == 0.
2592 *
2593 * One must be running (->on_cpu == 1) in order to remove oneself
2594 * from the runqueue.
2595 *
2596 * __schedule() (switch to task 'p') try_to_wake_up()
2597 * STORE p->on_cpu = 1 LOAD p->on_rq
2598 * UNLOCK rq->lock
2599 *
2600 * __schedule() (put 'p' to sleep)
2601 * LOCK rq->lock smp_rmb();
2602 * smp_mb__after_spinlock();
2603 * STORE p->on_rq = 0 LOAD p->on_cpu
2604 *
2605 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2606 * __schedule(). See the comment for smp_mb__after_spinlock().
2607 */
2608 smp_rmb();
2609
2610 /*
2611 * If the owning (remote) CPU is still in the middle of schedule() with
2612 * this task as prev, wait until its done referencing the task.
2613 *
2614 * Pairs with the smp_store_release() in finish_task().
2615 *
2616 * This ensures that tasks getting woken will be fully ordered against
2617 * their previous state and preserve Program Order.
2618 */
2619 smp_cond_load_acquire(&p->on_cpu, !VAL);
2620
2621 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2622 p->state = TASK_WAKING;
2623
2624 if (p->in_iowait) {
2625 delayacct_blkio_end(p);
2626 atomic_dec(&task_rq(p)->nr_iowait);
2627 }
2628
2629 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2630 if (task_cpu(p) != cpu) {
2631 wake_flags |= WF_MIGRATED;
2632 psi_ttwu_dequeue(p);
2633 set_task_cpu(p, cpu);
2634 }
2635
2636 #else /* CONFIG_SMP */
2637
2638 if (p->in_iowait) {
2639 delayacct_blkio_end(p);
2640 atomic_dec(&task_rq(p)->nr_iowait);
2641 }
2642
2643 #endif /* CONFIG_SMP */
2644
2645 ttwu_queue(p, cpu, wake_flags);
2646 unlock:
2647 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2648 out:
2649 if (success)
2650 ttwu_stat(p, cpu, wake_flags);
2651 preempt_enable();
2652
2653 return success;
2654 }
2655
2656 /**
2657 * wake_up_process - Wake up a specific process
2658 * @p: The process to be woken up.
2659 *
2660 * Attempt to wake up the nominated process and move it to the set of runnable
2661 * processes.
2662 *
2663 * Return: 1 if the process was woken up, 0 if it was already running.
2664 *
2665 * This function executes a full memory barrier before accessing the task state.
2666 */
2667 int wake_up_process(struct task_struct *p)
2668 {
2669 return try_to_wake_up(p, TASK_NORMAL, 0);
2670 }
2671 EXPORT_SYMBOL(wake_up_process);
2672
2673 int wake_up_state(struct task_struct *p, unsigned int state)
2674 {
2675 return try_to_wake_up(p, state, 0);
2676 }
2677
2678 /*
2679 * Perform scheduler related setup for a newly forked process p.
2680 * p is forked by current.
2681 *
2682 * __sched_fork() is basic setup used by init_idle() too:
2683 */
2684 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2685 {
2686 p->on_rq = 0;
2687
2688 p->se.on_rq = 0;
2689 p->se.exec_start = 0;
2690 p->se.sum_exec_runtime = 0;
2691 p->se.prev_sum_exec_runtime = 0;
2692 p->se.nr_migrations = 0;
2693 p->se.vruntime = 0;
2694 INIT_LIST_HEAD(&p->se.group_node);
2695
2696 #ifdef CONFIG_FAIR_GROUP_SCHED
2697 p->se.cfs_rq = NULL;
2698 #endif
2699
2700 #ifdef CONFIG_SCHEDSTATS
2701 /* Even if schedstat is disabled, there should not be garbage */
2702 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2703 #endif
2704
2705 RB_CLEAR_NODE(&p->dl.rb_node);
2706 init_dl_task_timer(&p->dl);
2707 init_dl_inactive_task_timer(&p->dl);
2708 __dl_clear_params(p);
2709
2710 INIT_LIST_HEAD(&p->rt.run_list);
2711 p->rt.timeout = 0;
2712 p->rt.time_slice = sched_rr_timeslice;
2713 p->rt.on_rq = 0;
2714 p->rt.on_list = 0;
2715
2716 #ifdef CONFIG_PREEMPT_NOTIFIERS
2717 INIT_HLIST_HEAD(&p->preempt_notifiers);
2718 #endif
2719
2720 #ifdef CONFIG_COMPACTION
2721 p->capture_control = NULL;
2722 #endif
2723 init_numa_balancing(clone_flags, p);
2724 }
2725
2726 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2727
2728 #ifdef CONFIG_NUMA_BALANCING
2729
2730 void set_numabalancing_state(bool enabled)
2731 {
2732 if (enabled)
2733 static_branch_enable(&sched_numa_balancing);
2734 else
2735 static_branch_disable(&sched_numa_balancing);
2736 }
2737
2738 #ifdef CONFIG_PROC_SYSCTL
2739 int sysctl_numa_balancing(struct ctl_table *table, int write,
2740 void __user *buffer, size_t *lenp, loff_t *ppos)
2741 {
2742 struct ctl_table t;
2743 int err;
2744 int state = static_branch_likely(&sched_numa_balancing);
2745
2746 if (write && !capable(CAP_SYS_ADMIN))
2747 return -EPERM;
2748
2749 t = *table;
2750 t.data = &state;
2751 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2752 if (err < 0)
2753 return err;
2754 if (write)
2755 set_numabalancing_state(state);
2756 return err;
2757 }
2758 #endif
2759 #endif
2760
2761 #ifdef CONFIG_SCHEDSTATS
2762
2763 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2764 static bool __initdata __sched_schedstats = false;
2765
2766 static void set_schedstats(bool enabled)
2767 {
2768 if (enabled)
2769 static_branch_enable(&sched_schedstats);
2770 else
2771 static_branch_disable(&sched_schedstats);
2772 }
2773
2774 void force_schedstat_enabled(void)
2775 {
2776 if (!schedstat_enabled()) {
2777 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2778 static_branch_enable(&sched_schedstats);
2779 }
2780 }
2781
2782 static int __init setup_schedstats(char *str)
2783 {
2784 int ret = 0;
2785 if (!str)
2786 goto out;
2787
2788 /*
2789 * This code is called before jump labels have been set up, so we can't
2790 * change the static branch directly just yet. Instead set a temporary
2791 * variable so init_schedstats() can do it later.
2792 */
2793 if (!strcmp(str, "enable")) {
2794 __sched_schedstats = true;
2795 ret = 1;
2796 } else if (!strcmp(str, "disable")) {
2797 __sched_schedstats = false;
2798 ret = 1;
2799 }
2800 out:
2801 if (!ret)
2802 pr_warn("Unable to parse schedstats=\n");
2803
2804 return ret;
2805 }
2806 __setup("schedstats=", setup_schedstats);
2807
2808 static void __init init_schedstats(void)
2809 {
2810 set_schedstats(__sched_schedstats);
2811 }
2812
2813 #ifdef CONFIG_PROC_SYSCTL
2814 int sysctl_schedstats(struct ctl_table *table, int write,
2815 void __user *buffer, size_t *lenp, loff_t *ppos)
2816 {
2817 struct ctl_table t;
2818 int err;
2819 int state = static_branch_likely(&sched_schedstats);
2820
2821 if (write && !capable(CAP_SYS_ADMIN))
2822 return -EPERM;
2823
2824 t = *table;
2825 t.data = &state;
2826 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2827 if (err < 0)
2828 return err;
2829 if (write)
2830 set_schedstats(state);
2831 return err;
2832 }
2833 #endif /* CONFIG_PROC_SYSCTL */
2834 #else /* !CONFIG_SCHEDSTATS */
2835 static inline void init_schedstats(void) {}
2836 #endif /* CONFIG_SCHEDSTATS */
2837
2838 /*
2839 * fork()/clone()-time setup:
2840 */
2841 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2842 {
2843 unsigned long flags;
2844
2845 __sched_fork(clone_flags, p);
2846 /*
2847 * We mark the process as NEW here. This guarantees that
2848 * nobody will actually run it, and a signal or other external
2849 * event cannot wake it up and insert it on the runqueue either.
2850 */
2851 p->state = TASK_NEW;
2852
2853 /*
2854 * Make sure we do not leak PI boosting priority to the child.
2855 */
2856 p->prio = current->normal_prio;
2857
2858 uclamp_fork(p);
2859
2860 /*
2861 * Revert to default priority/policy on fork if requested.
2862 */
2863 if (unlikely(p->sched_reset_on_fork)) {
2864 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2865 p->policy = SCHED_NORMAL;
2866 p->static_prio = NICE_TO_PRIO(0);
2867 p->rt_priority = 0;
2868 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2869 p->static_prio = NICE_TO_PRIO(0);
2870
2871 p->prio = p->normal_prio = __normal_prio(p);
2872 set_load_weight(p, false);
2873
2874 /*
2875 * We don't need the reset flag anymore after the fork. It has
2876 * fulfilled its duty:
2877 */
2878 p->sched_reset_on_fork = 0;
2879 }
2880
2881 if (dl_prio(p->prio))
2882 return -EAGAIN;
2883 else if (rt_prio(p->prio))
2884 p->sched_class = &rt_sched_class;
2885 else
2886 p->sched_class = &fair_sched_class;
2887
2888 init_entity_runnable_average(&p->se);
2889
2890 /*
2891 * The child is not yet in the pid-hash so no cgroup attach races,
2892 * and the cgroup is pinned to this child due to cgroup_fork()
2893 * is ran before sched_fork().
2894 *
2895 * Silence PROVE_RCU.
2896 */
2897 raw_spin_lock_irqsave(&p->pi_lock, flags);
2898 /*
2899 * We're setting the CPU for the first time, we don't migrate,
2900 * so use __set_task_cpu().
2901 */
2902 __set_task_cpu(p, smp_processor_id());
2903 if (p->sched_class->task_fork)
2904 p->sched_class->task_fork(p);
2905 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2906
2907 #ifdef CONFIG_SCHED_INFO
2908 if (likely(sched_info_on()))
2909 memset(&p->sched_info, 0, sizeof(p->sched_info));
2910 #endif
2911 #if defined(CONFIG_SMP)
2912 p->on_cpu = 0;
2913 #endif
2914 init_task_preempt_count(p);
2915 #ifdef CONFIG_SMP
2916 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2917 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2918 #endif
2919 return 0;
2920 }
2921
2922 unsigned long to_ratio(u64 period, u64 runtime)
2923 {
2924 if (runtime == RUNTIME_INF)
2925 return BW_UNIT;
2926
2927 /*
2928 * Doing this here saves a lot of checks in all
2929 * the calling paths, and returning zero seems
2930 * safe for them anyway.
2931 */
2932 if (period == 0)
2933 return 0;
2934
2935 return div64_u64(runtime << BW_SHIFT, period);
2936 }
2937
2938 /*
2939 * wake_up_new_task - wake up a newly created task for the first time.
2940 *
2941 * This function will do some initial scheduler statistics housekeeping
2942 * that must be done for every newly created context, then puts the task
2943 * on the runqueue and wakes it.
2944 */
2945 void wake_up_new_task(struct task_struct *p)
2946 {
2947 struct rq_flags rf;
2948 struct rq *rq;
2949
2950 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2951 p->state = TASK_RUNNING;
2952 #ifdef CONFIG_SMP
2953 /*
2954 * Fork balancing, do it here and not earlier because:
2955 * - cpus_ptr can change in the fork path
2956 * - any previously selected CPU might disappear through hotplug
2957 *
2958 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2959 * as we're not fully set-up yet.
2960 */
2961 p->recent_used_cpu = task_cpu(p);
2962 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2963 #endif
2964 rq = __task_rq_lock(p, &rf);
2965 update_rq_clock(rq);
2966 post_init_entity_util_avg(p);
2967
2968 activate_task(rq, p, ENQUEUE_NOCLOCK);
2969 trace_sched_wakeup_new(p);
2970 check_preempt_curr(rq, p, WF_FORK);
2971 #ifdef CONFIG_SMP
2972 if (p->sched_class->task_woken) {
2973 /*
2974 * Nothing relies on rq->lock after this, so its fine to
2975 * drop it.
2976 */
2977 rq_unpin_lock(rq, &rf);
2978 p->sched_class->task_woken(rq, p);
2979 rq_repin_lock(rq, &rf);
2980 }
2981 #endif
2982 task_rq_unlock(rq, p, &rf);
2983 }
2984
2985 #ifdef CONFIG_PREEMPT_NOTIFIERS
2986
2987 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2988
2989 void preempt_notifier_inc(void)
2990 {
2991 static_branch_inc(&preempt_notifier_key);
2992 }
2993 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2994
2995 void preempt_notifier_dec(void)
2996 {
2997 static_branch_dec(&preempt_notifier_key);
2998 }
2999 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3000
3001 /**
3002 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3003 * @notifier: notifier struct to register
3004 */
3005 void preempt_notifier_register(struct preempt_notifier *notifier)
3006 {
3007 if (!static_branch_unlikely(&preempt_notifier_key))
3008 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3009
3010 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3011 }
3012 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3013
3014 /**
3015 * preempt_notifier_unregister - no longer interested in preemption notifications
3016 * @notifier: notifier struct to unregister
3017 *
3018 * This is *not* safe to call from within a preemption notifier.
3019 */
3020 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3021 {
3022 hlist_del(&notifier->link);
3023 }
3024 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3025
3026 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3027 {
3028 struct preempt_notifier *notifier;
3029
3030 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3031 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3032 }
3033
3034 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3035 {
3036 if (static_branch_unlikely(&preempt_notifier_key))
3037 __fire_sched_in_preempt_notifiers(curr);
3038 }
3039
3040 static void
3041 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3042 struct task_struct *next)
3043 {
3044 struct preempt_notifier *notifier;
3045
3046 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3047 notifier->ops->sched_out(notifier, next);
3048 }
3049
3050 static __always_inline void
3051 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3052 struct task_struct *next)
3053 {
3054 if (static_branch_unlikely(&preempt_notifier_key))
3055 __fire_sched_out_preempt_notifiers(curr, next);
3056 }
3057
3058 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3059
3060 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3061 {
3062 }
3063
3064 static inline void
3065 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3066 struct task_struct *next)
3067 {
3068 }
3069
3070 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3071
3072 static inline void prepare_task(struct task_struct *next)
3073 {
3074 #ifdef CONFIG_SMP
3075 /*
3076 * Claim the task as running, we do this before switching to it
3077 * such that any running task will have this set.
3078 */
3079 next->on_cpu = 1;
3080 #endif
3081 }
3082
3083 static inline void finish_task(struct task_struct *prev)
3084 {
3085 #ifdef CONFIG_SMP
3086 /*
3087 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3088 * We must ensure this doesn't happen until the switch is completely
3089 * finished.
3090 *
3091 * In particular, the load of prev->state in finish_task_switch() must
3092 * happen before this.
3093 *
3094 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3095 */
3096 smp_store_release(&prev->on_cpu, 0);
3097 #endif
3098 }
3099
3100 static inline void
3101 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3102 {
3103 /*
3104 * Since the runqueue lock will be released by the next
3105 * task (which is an invalid locking op but in the case
3106 * of the scheduler it's an obvious special-case), so we
3107 * do an early lockdep release here:
3108 */
3109 rq_unpin_lock(rq, rf);
3110 spin_release(&rq->lock.dep_map, _THIS_IP_);
3111 #ifdef CONFIG_DEBUG_SPINLOCK
3112 /* this is a valid case when another task releases the spinlock */
3113 rq->lock.owner = next;
3114 #endif
3115 }
3116
3117 static inline void finish_lock_switch(struct rq *rq)
3118 {
3119 /*
3120 * If we are tracking spinlock dependencies then we have to
3121 * fix up the runqueue lock - which gets 'carried over' from
3122 * prev into current:
3123 */
3124 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3125 raw_spin_unlock_irq(&rq->lock);
3126 }
3127
3128 /*
3129 * NOP if the arch has not defined these:
3130 */
3131
3132 #ifndef prepare_arch_switch
3133 # define prepare_arch_switch(next) do { } while (0)
3134 #endif
3135
3136 #ifndef finish_arch_post_lock_switch
3137 # define finish_arch_post_lock_switch() do { } while (0)
3138 #endif
3139
3140 /**
3141 * prepare_task_switch - prepare to switch tasks
3142 * @rq: the runqueue preparing to switch
3143 * @prev: the current task that is being switched out
3144 * @next: the task we are going to switch to.
3145 *
3146 * This is called with the rq lock held and interrupts off. It must
3147 * be paired with a subsequent finish_task_switch after the context
3148 * switch.
3149 *
3150 * prepare_task_switch sets up locking and calls architecture specific
3151 * hooks.
3152 */
3153 static inline void
3154 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3155 struct task_struct *next)
3156 {
3157 kcov_prepare_switch(prev);
3158 sched_info_switch(rq, prev, next);
3159 perf_event_task_sched_out(prev, next);
3160 rseq_preempt(prev);
3161 fire_sched_out_preempt_notifiers(prev, next);
3162 prepare_task(next);
3163 prepare_arch_switch(next);
3164 }
3165
3166 /**
3167 * finish_task_switch - clean up after a task-switch
3168 * @prev: the thread we just switched away from.
3169 *
3170 * finish_task_switch must be called after the context switch, paired
3171 * with a prepare_task_switch call before the context switch.
3172 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3173 * and do any other architecture-specific cleanup actions.
3174 *
3175 * Note that we may have delayed dropping an mm in context_switch(). If
3176 * so, we finish that here outside of the runqueue lock. (Doing it
3177 * with the lock held can cause deadlocks; see schedule() for
3178 * details.)
3179 *
3180 * The context switch have flipped the stack from under us and restored the
3181 * local variables which were saved when this task called schedule() in the
3182 * past. prev == current is still correct but we need to recalculate this_rq
3183 * because prev may have moved to another CPU.
3184 */
3185 static struct rq *finish_task_switch(struct task_struct *prev)
3186 __releases(rq->lock)
3187 {
3188 struct rq *rq = this_rq();
3189 struct mm_struct *mm = rq->prev_mm;
3190 long prev_state;
3191
3192 /*
3193 * The previous task will have left us with a preempt_count of 2
3194 * because it left us after:
3195 *
3196 * schedule()
3197 * preempt_disable(); // 1
3198 * __schedule()
3199 * raw_spin_lock_irq(&rq->lock) // 2
3200 *
3201 * Also, see FORK_PREEMPT_COUNT.
3202 */
3203 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3204 "corrupted preempt_count: %s/%d/0x%x\n",
3205 current->comm, current->pid, preempt_count()))
3206 preempt_count_set(FORK_PREEMPT_COUNT);
3207
3208 rq->prev_mm = NULL;
3209
3210 /*
3211 * A task struct has one reference for the use as "current".
3212 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3213 * schedule one last time. The schedule call will never return, and
3214 * the scheduled task must drop that reference.
3215 *
3216 * We must observe prev->state before clearing prev->on_cpu (in
3217 * finish_task), otherwise a concurrent wakeup can get prev
3218 * running on another CPU and we could rave with its RUNNING -> DEAD
3219 * transition, resulting in a double drop.
3220 */
3221 prev_state = prev->state;
3222 vtime_task_switch(prev);
3223 perf_event_task_sched_in(prev, current);
3224 finish_task(prev);
3225 finish_lock_switch(rq);
3226 finish_arch_post_lock_switch();
3227 kcov_finish_switch(current);
3228
3229 fire_sched_in_preempt_notifiers(current);
3230 /*
3231 * When switching through a kernel thread, the loop in
3232 * membarrier_{private,global}_expedited() may have observed that
3233 * kernel thread and not issued an IPI. It is therefore possible to
3234 * schedule between user->kernel->user threads without passing though
3235 * switch_mm(). Membarrier requires a barrier after storing to
3236 * rq->curr, before returning to userspace, so provide them here:
3237 *
3238 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3239 * provided by mmdrop(),
3240 * - a sync_core for SYNC_CORE.
3241 */
3242 if (mm) {
3243 membarrier_mm_sync_core_before_usermode(mm);
3244 mmdrop(mm);
3245 }
3246 if (unlikely(prev_state == TASK_DEAD)) {
3247 if (prev->sched_class->task_dead)
3248 prev->sched_class->task_dead(prev);
3249
3250 /*
3251 * Remove function-return probe instances associated with this
3252 * task and put them back on the free list.
3253 */
3254 kprobe_flush_task(prev);
3255
3256 /* Task is done with its stack. */
3257 put_task_stack(prev);
3258
3259 put_task_struct_rcu_user(prev);
3260 }
3261
3262 tick_nohz_task_switch();
3263 return rq;
3264 }
3265
3266 #ifdef CONFIG_SMP
3267
3268 /* rq->lock is NOT held, but preemption is disabled */
3269 static void __balance_callback(struct rq *rq)
3270 {
3271 struct callback_head *head, *next;
3272 void (*func)(struct rq *rq);
3273 unsigned long flags;
3274
3275 raw_spin_lock_irqsave(&rq->lock, flags);
3276 head = rq->balance_callback;
3277 rq->balance_callback = NULL;
3278 while (head) {
3279 func = (void (*)(struct rq *))head->func;
3280 next = head->next;
3281 head->next = NULL;
3282 head = next;
3283
3284 func(rq);
3285 }
3286 raw_spin_unlock_irqrestore(&rq->lock, flags);
3287 }
3288
3289 static inline void balance_callback(struct rq *rq)
3290 {
3291 if (unlikely(rq->balance_callback))
3292 __balance_callback(rq);
3293 }
3294
3295 #else
3296
3297 static inline void balance_callback(struct rq *rq)
3298 {
3299 }
3300
3301 #endif
3302
3303 /**
3304 * schedule_tail - first thing a freshly forked thread must call.
3305 * @prev: the thread we just switched away from.
3306 */
3307 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3308 __releases(rq->lock)
3309 {
3310 struct rq *rq;
3311
3312 /*
3313 * New tasks start with FORK_PREEMPT_COUNT, see there and
3314 * finish_task_switch() for details.
3315 *
3316 * finish_task_switch() will drop rq->lock() and lower preempt_count
3317 * and the preempt_enable() will end up enabling preemption (on
3318 * PREEMPT_COUNT kernels).
3319 */
3320
3321 rq = finish_task_switch(prev);
3322 balance_callback(rq);
3323 preempt_enable();
3324
3325 if (current->set_child_tid)
3326 put_user(task_pid_vnr(current), current->set_child_tid);
3327
3328 calculate_sigpending();
3329 }
3330
3331 /*
3332 * context_switch - switch to the new MM and the new thread's register state.
3333 */
3334 static __always_inline struct rq *
3335 context_switch(struct rq *rq, struct task_struct *prev,
3336 struct task_struct *next, struct rq_flags *rf)
3337 {
3338 prepare_task_switch(rq, prev, next);
3339
3340 /*
3341 * For paravirt, this is coupled with an exit in switch_to to
3342 * combine the page table reload and the switch backend into
3343 * one hypercall.
3344 */
3345 arch_start_context_switch(prev);
3346
3347 /*
3348 * kernel -> kernel lazy + transfer active
3349 * user -> kernel lazy + mmgrab() active
3350 *
3351 * kernel -> user switch + mmdrop() active
3352 * user -> user switch
3353 */
3354 if (!next->mm) { // to kernel
3355 enter_lazy_tlb(prev->active_mm, next);
3356
3357 next->active_mm = prev->active_mm;
3358 if (prev->mm) // from user
3359 mmgrab(prev->active_mm);
3360 else
3361 prev->active_mm = NULL;
3362 } else { // to user
3363 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3364 /*
3365 * sys_membarrier() requires an smp_mb() between setting
3366 * rq->curr / membarrier_switch_mm() and returning to userspace.
3367 *
3368 * The below provides this either through switch_mm(), or in
3369 * case 'prev->active_mm == next->mm' through
3370 * finish_task_switch()'s mmdrop().
3371 */
3372 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3373
3374 if (!prev->mm) { // from kernel
3375 /* will mmdrop() in finish_task_switch(). */
3376 rq->prev_mm = prev->active_mm;
3377 prev->active_mm = NULL;
3378 }
3379 }
3380
3381 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3382
3383 prepare_lock_switch(rq, next, rf);
3384
3385 /* Here we just switch the register state and the stack. */
3386 switch_to(prev, next, prev);
3387 barrier();
3388
3389 return finish_task_switch(prev);
3390 }
3391
3392 /*
3393 * nr_running and nr_context_switches:
3394 *
3395 * externally visible scheduler statistics: current number of runnable
3396 * threads, total number of context switches performed since bootup.
3397 */
3398 unsigned long nr_running(void)
3399 {
3400 unsigned long i, sum = 0;
3401
3402 for_each_online_cpu(i)
3403 sum += cpu_rq(i)->nr_running;
3404
3405 return sum;
3406 }
3407
3408 /*
3409 * Check if only the current task is running on the CPU.
3410 *
3411 * Caution: this function does not check that the caller has disabled
3412 * preemption, thus the result might have a time-of-check-to-time-of-use
3413 * race. The caller is responsible to use it correctly, for example:
3414 *
3415 * - from a non-preemptible section (of course)
3416 *
3417 * - from a thread that is bound to a single CPU
3418 *
3419 * - in a loop with very short iterations (e.g. a polling loop)
3420 */
3421 bool single_task_running(void)
3422 {
3423 return raw_rq()->nr_running == 1;
3424 }
3425 EXPORT_SYMBOL(single_task_running);
3426
3427 unsigned long long nr_context_switches(void)
3428 {
3429 int i;
3430 unsigned long long sum = 0;
3431
3432 for_each_possible_cpu(i)
3433 sum += cpu_rq(i)->nr_switches;
3434
3435 return sum;
3436 }
3437
3438 /*
3439 * Consumers of these two interfaces, like for example the cpuidle menu
3440 * governor, are using nonsensical data. Preferring shallow idle state selection
3441 * for a CPU that has IO-wait which might not even end up running the task when
3442 * it does become runnable.
3443 */
3444
3445 unsigned long nr_iowait_cpu(int cpu)
3446 {
3447 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3448 }
3449
3450 /*
3451 * IO-wait accounting, and how its mostly bollocks (on SMP).
3452 *
3453 * The idea behind IO-wait account is to account the idle time that we could
3454 * have spend running if it were not for IO. That is, if we were to improve the
3455 * storage performance, we'd have a proportional reduction in IO-wait time.
3456 *
3457 * This all works nicely on UP, where, when a task blocks on IO, we account
3458 * idle time as IO-wait, because if the storage were faster, it could've been
3459 * running and we'd not be idle.
3460 *
3461 * This has been extended to SMP, by doing the same for each CPU. This however
3462 * is broken.
3463 *
3464 * Imagine for instance the case where two tasks block on one CPU, only the one
3465 * CPU will have IO-wait accounted, while the other has regular idle. Even
3466 * though, if the storage were faster, both could've ran at the same time,
3467 * utilising both CPUs.
3468 *
3469 * This means, that when looking globally, the current IO-wait accounting on
3470 * SMP is a lower bound, by reason of under accounting.
3471 *
3472 * Worse, since the numbers are provided per CPU, they are sometimes
3473 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3474 * associated with any one particular CPU, it can wake to another CPU than it
3475 * blocked on. This means the per CPU IO-wait number is meaningless.
3476 *
3477 * Task CPU affinities can make all that even more 'interesting'.
3478 */
3479
3480 unsigned long nr_iowait(void)
3481 {
3482 unsigned long i, sum = 0;
3483
3484 for_each_possible_cpu(i)
3485 sum += nr_iowait_cpu(i);
3486
3487 return sum;
3488 }
3489
3490 #ifdef CONFIG_SMP
3491
3492 /*
3493 * sched_exec - execve() is a valuable balancing opportunity, because at
3494 * this point the task has the smallest effective memory and cache footprint.
3495 */
3496 void sched_exec(void)
3497 {
3498 struct task_struct *p = current;
3499 unsigned long flags;
3500 int dest_cpu;
3501
3502 raw_spin_lock_irqsave(&p->pi_lock, flags);
3503 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3504 if (dest_cpu == smp_processor_id())
3505 goto unlock;
3506
3507 if (likely(cpu_active(dest_cpu))) {
3508 struct migration_arg arg = { p, dest_cpu };
3509
3510 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3511 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3512 return;
3513 }
3514 unlock:
3515 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3516 }
3517
3518 #endif
3519
3520 DEFINE_PER_CPU(struct kernel_stat, kstat);
3521 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3522
3523 EXPORT_PER_CPU_SYMBOL(kstat);
3524 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3525
3526 /*
3527 * The function fair_sched_class.update_curr accesses the struct curr
3528 * and its field curr->exec_start; when called from task_sched_runtime(),
3529 * we observe a high rate of cache misses in practice.
3530 * Prefetching this data results in improved performance.
3531 */
3532 static inline void prefetch_curr_exec_start(struct task_struct *p)
3533 {
3534 #ifdef CONFIG_FAIR_GROUP_SCHED
3535 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3536 #else
3537 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3538 #endif
3539 prefetch(curr);
3540 prefetch(&curr->exec_start);
3541 }
3542
3543 /*
3544 * Return accounted runtime for the task.
3545 * In case the task is currently running, return the runtime plus current's
3546 * pending runtime that have not been accounted yet.
3547 */
3548 unsigned long long task_sched_runtime(struct task_struct *p)
3549 {
3550 struct rq_flags rf;
3551 struct rq *rq;
3552 u64 ns;
3553
3554 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3555 /*
3556 * 64-bit doesn't need locks to atomically read a 64-bit value.
3557 * So we have a optimization chance when the task's delta_exec is 0.
3558 * Reading ->on_cpu is racy, but this is ok.
3559 *
3560 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3561 * If we race with it entering CPU, unaccounted time is 0. This is
3562 * indistinguishable from the read occurring a few cycles earlier.
3563 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3564 * been accounted, so we're correct here as well.
3565 */
3566 if (!p->on_cpu || !task_on_rq_queued(p))
3567 return p->se.sum_exec_runtime;
3568 #endif
3569
3570 rq = task_rq_lock(p, &rf);
3571 /*
3572 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3573 * project cycles that may never be accounted to this
3574 * thread, breaking clock_gettime().
3575 */
3576 if (task_current(rq, p) && task_on_rq_queued(p)) {
3577 prefetch_curr_exec_start(p);
3578 update_rq_clock(rq);
3579 p->sched_class->update_curr(rq);
3580 }
3581 ns = p->se.sum_exec_runtime;
3582 task_rq_unlock(rq, p, &rf);
3583
3584 return ns;
3585 }
3586
3587 /*
3588 * This function gets called by the timer code, with HZ frequency.
3589 * We call it with interrupts disabled.
3590 */
3591 void scheduler_tick(void)
3592 {
3593 int cpu = smp_processor_id();
3594 struct rq *rq = cpu_rq(cpu);
3595 struct task_struct *curr = rq->curr;
3596 struct rq_flags rf;
3597
3598 sched_clock_tick();
3599
3600 rq_lock(rq, &rf);
3601
3602 update_rq_clock(rq);
3603 curr->sched_class->task_tick(rq, curr, 0);
3604 calc_global_load_tick(rq);
3605 psi_task_tick(rq);
3606
3607 rq_unlock(rq, &rf);
3608
3609 perf_event_task_tick();
3610
3611 #ifdef CONFIG_SMP
3612 rq->idle_balance = idle_cpu(cpu);
3613 trigger_load_balance(rq);
3614 #endif
3615 }
3616
3617 #ifdef CONFIG_NO_HZ_FULL
3618
3619 struct tick_work {
3620 int cpu;
3621 atomic_t state;
3622 struct delayed_work work;
3623 };
3624 /* Values for ->state, see diagram below. */
3625 #define TICK_SCHED_REMOTE_OFFLINE 0
3626 #define TICK_SCHED_REMOTE_OFFLINING 1
3627 #define TICK_SCHED_REMOTE_RUNNING 2
3628
3629 /*
3630 * State diagram for ->state:
3631 *
3632 *
3633 * TICK_SCHED_REMOTE_OFFLINE
3634 * | ^
3635 * | |
3636 * | | sched_tick_remote()
3637 * | |
3638 * | |
3639 * +--TICK_SCHED_REMOTE_OFFLINING
3640 * | ^
3641 * | |
3642 * sched_tick_start() | | sched_tick_stop()
3643 * | |
3644 * V |
3645 * TICK_SCHED_REMOTE_RUNNING
3646 *
3647 *
3648 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3649 * and sched_tick_start() are happy to leave the state in RUNNING.
3650 */
3651
3652 static struct tick_work __percpu *tick_work_cpu;
3653
3654 static void sched_tick_remote(struct work_struct *work)
3655 {
3656 struct delayed_work *dwork = to_delayed_work(work);
3657 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3658 int cpu = twork->cpu;
3659 struct rq *rq = cpu_rq(cpu);
3660 struct task_struct *curr;
3661 struct rq_flags rf;
3662 u64 delta;
3663 int os;
3664
3665 /*
3666 * Handle the tick only if it appears the remote CPU is running in full
3667 * dynticks mode. The check is racy by nature, but missing a tick or
3668 * having one too much is no big deal because the scheduler tick updates
3669 * statistics and checks timeslices in a time-independent way, regardless
3670 * of when exactly it is running.
3671 */
3672 if (!tick_nohz_tick_stopped_cpu(cpu))
3673 goto out_requeue;
3674
3675 rq_lock_irq(rq, &rf);
3676 curr = rq->curr;
3677 if (cpu_is_offline(cpu))
3678 goto out_unlock;
3679
3680 curr = rq->curr;
3681 update_rq_clock(rq);
3682
3683 if (!is_idle_task(curr)) {
3684 /*
3685 * Make sure the next tick runs within a reasonable
3686 * amount of time.
3687 */
3688 delta = rq_clock_task(rq) - curr->se.exec_start;
3689 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3690 }
3691 curr->sched_class->task_tick(rq, curr, 0);
3692
3693 calc_load_nohz_remote(rq);
3694 out_unlock:
3695 rq_unlock_irq(rq, &rf);
3696 out_requeue:
3697
3698 /*
3699 * Run the remote tick once per second (1Hz). This arbitrary
3700 * frequency is large enough to avoid overload but short enough
3701 * to keep scheduler internal stats reasonably up to date. But
3702 * first update state to reflect hotplug activity if required.
3703 */
3704 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3705 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3706 if (os == TICK_SCHED_REMOTE_RUNNING)
3707 queue_delayed_work(system_unbound_wq, dwork, HZ);
3708 }
3709
3710 static void sched_tick_start(int cpu)
3711 {
3712 int os;
3713 struct tick_work *twork;
3714
3715 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3716 return;
3717
3718 WARN_ON_ONCE(!tick_work_cpu);
3719
3720 twork = per_cpu_ptr(tick_work_cpu, cpu);
3721 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3722 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3723 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3724 twork->cpu = cpu;
3725 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3726 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3727 }
3728 }
3729
3730 #ifdef CONFIG_HOTPLUG_CPU
3731 static void sched_tick_stop(int cpu)
3732 {
3733 struct tick_work *twork;
3734 int os;
3735
3736 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3737 return;
3738
3739 WARN_ON_ONCE(!tick_work_cpu);
3740
3741 twork = per_cpu_ptr(tick_work_cpu, cpu);
3742 /* There cannot be competing actions, but don't rely on stop-machine. */
3743 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3744 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3745 /* Don't cancel, as this would mess up the state machine. */
3746 }
3747 #endif /* CONFIG_HOTPLUG_CPU */
3748
3749 int __init sched_tick_offload_init(void)
3750 {
3751 tick_work_cpu = alloc_percpu(struct tick_work);
3752 BUG_ON(!tick_work_cpu);
3753 return 0;
3754 }
3755
3756 #else /* !CONFIG_NO_HZ_FULL */
3757 static inline void sched_tick_start(int cpu) { }
3758 static inline void sched_tick_stop(int cpu) { }
3759 #endif
3760
3761 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3762 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3763 /*
3764 * If the value passed in is equal to the current preempt count
3765 * then we just disabled preemption. Start timing the latency.
3766 */
3767 static inline void preempt_latency_start(int val)
3768 {
3769 if (preempt_count() == val) {
3770 unsigned long ip = get_lock_parent_ip();
3771 #ifdef CONFIG_DEBUG_PREEMPT
3772 current->preempt_disable_ip = ip;
3773 #endif
3774 trace_preempt_off(CALLER_ADDR0, ip);
3775 }
3776 }
3777
3778 void preempt_count_add(int val)
3779 {
3780 #ifdef CONFIG_DEBUG_PREEMPT
3781 /*
3782 * Underflow?
3783 */
3784 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3785 return;
3786 #endif
3787 __preempt_count_add(val);
3788 #ifdef CONFIG_DEBUG_PREEMPT
3789 /*
3790 * Spinlock count overflowing soon?
3791 */
3792 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3793 PREEMPT_MASK - 10);
3794 #endif
3795 preempt_latency_start(val);
3796 }
3797 EXPORT_SYMBOL(preempt_count_add);
3798 NOKPROBE_SYMBOL(preempt_count_add);
3799
3800 /*
3801 * If the value passed in equals to the current preempt count
3802 * then we just enabled preemption. Stop timing the latency.
3803 */
3804 static inline void preempt_latency_stop(int val)
3805 {
3806 if (preempt_count() == val)
3807 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3808 }
3809
3810 void preempt_count_sub(int val)
3811 {
3812 #ifdef CONFIG_DEBUG_PREEMPT
3813 /*
3814 * Underflow?
3815 */
3816 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3817 return;
3818 /*
3819 * Is the spinlock portion underflowing?
3820 */
3821 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3822 !(preempt_count() & PREEMPT_MASK)))
3823 return;
3824 #endif
3825
3826 preempt_latency_stop(val);
3827 __preempt_count_sub(val);
3828 }
3829 EXPORT_SYMBOL(preempt_count_sub);
3830 NOKPROBE_SYMBOL(preempt_count_sub);
3831
3832 #else
3833 static inline void preempt_latency_start(int val) { }
3834 static inline void preempt_latency_stop(int val) { }
3835 #endif
3836
3837 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3838 {
3839 #ifdef CONFIG_DEBUG_PREEMPT
3840 return p->preempt_disable_ip;
3841 #else
3842 return 0;
3843 #endif
3844 }
3845
3846 /*
3847 * Print scheduling while atomic bug:
3848 */
3849 static noinline void __schedule_bug(struct task_struct *prev)
3850 {
3851 /* Save this before calling printk(), since that will clobber it */
3852 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3853
3854 if (oops_in_progress)
3855 return;
3856
3857 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3858 prev->comm, prev->pid, preempt_count());
3859
3860 debug_show_held_locks(prev);
3861 print_modules();
3862 if (irqs_disabled())
3863 print_irqtrace_events(prev);
3864 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3865 && in_atomic_preempt_off()) {
3866 pr_err("Preemption disabled at:");
3867 print_ip_sym(preempt_disable_ip);
3868 pr_cont("\n");
3869 }
3870 if (panic_on_warn)
3871 panic("scheduling while atomic\n");
3872
3873 dump_stack();
3874 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3875 }
3876
3877 /*
3878 * Various schedule()-time debugging checks and statistics:
3879 */
3880 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3881 {
3882 #ifdef CONFIG_SCHED_STACK_END_CHECK
3883 if (task_stack_end_corrupted(prev))
3884 panic("corrupted stack end detected inside scheduler\n");
3885 #endif
3886
3887 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3888 if (!preempt && prev->state && prev->non_block_count) {
3889 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3890 prev->comm, prev->pid, prev->non_block_count);
3891 dump_stack();
3892 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3893 }
3894 #endif
3895
3896 if (unlikely(in_atomic_preempt_off())) {
3897 __schedule_bug(prev);
3898 preempt_count_set(PREEMPT_DISABLED);
3899 }
3900 rcu_sleep_check();
3901
3902 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3903
3904 schedstat_inc(this_rq()->sched_count);
3905 }
3906
3907 /*
3908 * Pick up the highest-prio task:
3909 */
3910 static inline struct task_struct *
3911 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3912 {
3913 const struct sched_class *class;
3914 struct task_struct *p;
3915
3916 /*
3917 * Optimization: we know that if all tasks are in the fair class we can
3918 * call that function directly, but only if the @prev task wasn't of a
3919 * higher scheduling class, because otherwise those loose the
3920 * opportunity to pull in more work from other CPUs.
3921 */
3922 if (likely((prev->sched_class == &idle_sched_class ||
3923 prev->sched_class == &fair_sched_class) &&
3924 rq->nr_running == rq->cfs.h_nr_running)) {
3925
3926 p = pick_next_task_fair(rq, prev, rf);
3927 if (unlikely(p == RETRY_TASK))
3928 goto restart;
3929
3930 /* Assumes fair_sched_class->next == idle_sched_class */
3931 if (!p) {
3932 put_prev_task(rq, prev);
3933 p = pick_next_task_idle(rq);
3934 }
3935
3936 return p;
3937 }
3938
3939 restart:
3940 #ifdef CONFIG_SMP
3941 /*
3942 * We must do the balancing pass before put_next_task(), such
3943 * that when we release the rq->lock the task is in the same
3944 * state as before we took rq->lock.
3945 *
3946 * We can terminate the balance pass as soon as we know there is
3947 * a runnable task of @class priority or higher.
3948 */
3949 for_class_range(class, prev->sched_class, &idle_sched_class) {
3950 if (class->balance(rq, prev, rf))
3951 break;
3952 }
3953 #endif
3954
3955 put_prev_task(rq, prev);
3956
3957 for_each_class(class) {
3958 p = class->pick_next_task(rq);
3959 if (p)
3960 return p;
3961 }
3962
3963 /* The idle class should always have a runnable task: */
3964 BUG();
3965 }
3966
3967 /*
3968 * __schedule() is the main scheduler function.
3969 *
3970 * The main means of driving the scheduler and thus entering this function are:
3971 *
3972 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3973 *
3974 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3975 * paths. For example, see arch/x86/entry_64.S.
3976 *
3977 * To drive preemption between tasks, the scheduler sets the flag in timer
3978 * interrupt handler scheduler_tick().
3979 *
3980 * 3. Wakeups don't really cause entry into schedule(). They add a
3981 * task to the run-queue and that's it.
3982 *
3983 * Now, if the new task added to the run-queue preempts the current
3984 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3985 * called on the nearest possible occasion:
3986 *
3987 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3988 *
3989 * - in syscall or exception context, at the next outmost
3990 * preempt_enable(). (this might be as soon as the wake_up()'s
3991 * spin_unlock()!)
3992 *
3993 * - in IRQ context, return from interrupt-handler to
3994 * preemptible context
3995 *
3996 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3997 * then at the next:
3998 *
3999 * - cond_resched() call
4000 * - explicit schedule() call
4001 * - return from syscall or exception to user-space
4002 * - return from interrupt-handler to user-space
4003 *
4004 * WARNING: must be called with preemption disabled!
4005 */
4006 static void __sched notrace __schedule(bool preempt)
4007 {
4008 struct task_struct *prev, *next;
4009 unsigned long *switch_count;
4010 struct rq_flags rf;
4011 struct rq *rq;
4012 int cpu;
4013
4014 cpu = smp_processor_id();
4015 rq = cpu_rq(cpu);
4016 prev = rq->curr;
4017
4018 schedule_debug(prev, preempt);
4019
4020 if (sched_feat(HRTICK))
4021 hrtick_clear(rq);
4022
4023 local_irq_disable();
4024 rcu_note_context_switch(preempt);
4025
4026 /*
4027 * Make sure that signal_pending_state()->signal_pending() below
4028 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4029 * done by the caller to avoid the race with signal_wake_up().
4030 *
4031 * The membarrier system call requires a full memory barrier
4032 * after coming from user-space, before storing to rq->curr.
4033 */
4034 rq_lock(rq, &rf);
4035 smp_mb__after_spinlock();
4036
4037 /* Promote REQ to ACT */
4038 rq->clock_update_flags <<= 1;
4039 update_rq_clock(rq);
4040
4041 switch_count = &prev->nivcsw;
4042 if (!preempt && prev->state) {
4043 if (signal_pending_state(prev->state, prev)) {
4044 prev->state = TASK_RUNNING;
4045 } else {
4046 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4047
4048 if (prev->in_iowait) {
4049 atomic_inc(&rq->nr_iowait);
4050 delayacct_blkio_start();
4051 }
4052 }
4053 switch_count = &prev->nvcsw;
4054 }
4055
4056 next = pick_next_task(rq, prev, &rf);
4057 clear_tsk_need_resched(prev);
4058 clear_preempt_need_resched();
4059
4060 if (likely(prev != next)) {
4061 rq->nr_switches++;
4062 /*
4063 * RCU users of rcu_dereference(rq->curr) may not see
4064 * changes to task_struct made by pick_next_task().
4065 */
4066 RCU_INIT_POINTER(rq->curr, next);
4067 /*
4068 * The membarrier system call requires each architecture
4069 * to have a full memory barrier after updating
4070 * rq->curr, before returning to user-space.
4071 *
4072 * Here are the schemes providing that barrier on the
4073 * various architectures:
4074 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4075 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4076 * - finish_lock_switch() for weakly-ordered
4077 * architectures where spin_unlock is a full barrier,
4078 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4079 * is a RELEASE barrier),
4080 */
4081 ++*switch_count;
4082
4083 trace_sched_switch(preempt, prev, next);
4084
4085 /* Also unlocks the rq: */
4086 rq = context_switch(rq, prev, next, &rf);
4087 } else {
4088 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4089 rq_unlock_irq(rq, &rf);
4090 }
4091
4092 balance_callback(rq);
4093 }
4094
4095 void __noreturn do_task_dead(void)
4096 {
4097 /* Causes final put_task_struct in finish_task_switch(): */
4098 set_special_state(TASK_DEAD);
4099
4100 /* Tell freezer to ignore us: */
4101 current->flags |= PF_NOFREEZE;
4102
4103 __schedule(false);
4104 BUG();
4105
4106 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4107 for (;;)
4108 cpu_relax();
4109 }
4110
4111 static inline void sched_submit_work(struct task_struct *tsk)
4112 {
4113 if (!tsk->state)
4114 return;
4115
4116 /*
4117 * If a worker went to sleep, notify and ask workqueue whether
4118 * it wants to wake up a task to maintain concurrency.
4119 * As this function is called inside the schedule() context,
4120 * we disable preemption to avoid it calling schedule() again
4121 * in the possible wakeup of a kworker.
4122 */
4123 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4124 preempt_disable();
4125 if (tsk->flags & PF_WQ_WORKER)
4126 wq_worker_sleeping(tsk);
4127 else
4128 io_wq_worker_sleeping(tsk);
4129 preempt_enable_no_resched();
4130 }
4131
4132 if (tsk_is_pi_blocked(tsk))
4133 return;
4134
4135 /*
4136 * If we are going to sleep and we have plugged IO queued,
4137 * make sure to submit it to avoid deadlocks.
4138 */
4139 if (blk_needs_flush_plug(tsk))
4140 blk_schedule_flush_plug(tsk);
4141 }
4142
4143 static void sched_update_worker(struct task_struct *tsk)
4144 {
4145 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4146 if (tsk->flags & PF_WQ_WORKER)
4147 wq_worker_running(tsk);
4148 else
4149 io_wq_worker_running(tsk);
4150 }
4151 }
4152
4153 asmlinkage __visible void __sched schedule(void)
4154 {
4155 struct task_struct *tsk = current;
4156
4157 sched_submit_work(tsk);
4158 do {
4159 preempt_disable();
4160 __schedule(false);
4161 sched_preempt_enable_no_resched();
4162 } while (need_resched());
4163 sched_update_worker(tsk);
4164 }
4165 EXPORT_SYMBOL(schedule);
4166
4167 /*
4168 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4169 * state (have scheduled out non-voluntarily) by making sure that all
4170 * tasks have either left the run queue or have gone into user space.
4171 * As idle tasks do not do either, they must not ever be preempted
4172 * (schedule out non-voluntarily).
4173 *
4174 * schedule_idle() is similar to schedule_preempt_disable() except that it
4175 * never enables preemption because it does not call sched_submit_work().
4176 */
4177 void __sched schedule_idle(void)
4178 {
4179 /*
4180 * As this skips calling sched_submit_work(), which the idle task does
4181 * regardless because that function is a nop when the task is in a
4182 * TASK_RUNNING state, make sure this isn't used someplace that the
4183 * current task can be in any other state. Note, idle is always in the
4184 * TASK_RUNNING state.
4185 */
4186 WARN_ON_ONCE(current->state);
4187 do {
4188 __schedule(false);
4189 } while (need_resched());
4190 }
4191
4192 #ifdef CONFIG_CONTEXT_TRACKING
4193 asmlinkage __visible void __sched schedule_user(void)
4194 {
4195 /*
4196 * If we come here after a random call to set_need_resched(),
4197 * or we have been woken up remotely but the IPI has not yet arrived,
4198 * we haven't yet exited the RCU idle mode. Do it here manually until
4199 * we find a better solution.
4200 *
4201 * NB: There are buggy callers of this function. Ideally we
4202 * should warn if prev_state != CONTEXT_USER, but that will trigger
4203 * too frequently to make sense yet.
4204 */
4205 enum ctx_state prev_state = exception_enter();
4206 schedule();
4207 exception_exit(prev_state);
4208 }
4209 #endif
4210
4211 /**
4212 * schedule_preempt_disabled - called with preemption disabled
4213 *
4214 * Returns with preemption disabled. Note: preempt_count must be 1
4215 */
4216 void __sched schedule_preempt_disabled(void)
4217 {
4218 sched_preempt_enable_no_resched();
4219 schedule();
4220 preempt_disable();
4221 }
4222
4223 static void __sched notrace preempt_schedule_common(void)
4224 {
4225 do {
4226 /*
4227 * Because the function tracer can trace preempt_count_sub()
4228 * and it also uses preempt_enable/disable_notrace(), if
4229 * NEED_RESCHED is set, the preempt_enable_notrace() called
4230 * by the function tracer will call this function again and
4231 * cause infinite recursion.
4232 *
4233 * Preemption must be disabled here before the function
4234 * tracer can trace. Break up preempt_disable() into two
4235 * calls. One to disable preemption without fear of being
4236 * traced. The other to still record the preemption latency,
4237 * which can also be traced by the function tracer.
4238 */
4239 preempt_disable_notrace();
4240 preempt_latency_start(1);
4241 __schedule(true);
4242 preempt_latency_stop(1);
4243 preempt_enable_no_resched_notrace();
4244
4245 /*
4246 * Check again in case we missed a preemption opportunity
4247 * between schedule and now.
4248 */
4249 } while (need_resched());
4250 }
4251
4252 #ifdef CONFIG_PREEMPTION
4253 /*
4254 * This is the entry point to schedule() from in-kernel preemption
4255 * off of preempt_enable.
4256 */
4257 asmlinkage __visible void __sched notrace preempt_schedule(void)
4258 {
4259 /*
4260 * If there is a non-zero preempt_count or interrupts are disabled,
4261 * we do not want to preempt the current task. Just return..
4262 */
4263 if (likely(!preemptible()))
4264 return;
4265
4266 preempt_schedule_common();
4267 }
4268 NOKPROBE_SYMBOL(preempt_schedule);
4269 EXPORT_SYMBOL(preempt_schedule);
4270
4271 /**
4272 * preempt_schedule_notrace - preempt_schedule called by tracing
4273 *
4274 * The tracing infrastructure uses preempt_enable_notrace to prevent
4275 * recursion and tracing preempt enabling caused by the tracing
4276 * infrastructure itself. But as tracing can happen in areas coming
4277 * from userspace or just about to enter userspace, a preempt enable
4278 * can occur before user_exit() is called. This will cause the scheduler
4279 * to be called when the system is still in usermode.
4280 *
4281 * To prevent this, the preempt_enable_notrace will use this function
4282 * instead of preempt_schedule() to exit user context if needed before
4283 * calling the scheduler.
4284 */
4285 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4286 {
4287 enum ctx_state prev_ctx;
4288
4289 if (likely(!preemptible()))
4290 return;
4291
4292 do {
4293 /*
4294 * Because the function tracer can trace preempt_count_sub()
4295 * and it also uses preempt_enable/disable_notrace(), if
4296 * NEED_RESCHED is set, the preempt_enable_notrace() called
4297 * by the function tracer will call this function again and
4298 * cause infinite recursion.
4299 *
4300 * Preemption must be disabled here before the function
4301 * tracer can trace. Break up preempt_disable() into two
4302 * calls. One to disable preemption without fear of being
4303 * traced. The other to still record the preemption latency,
4304 * which can also be traced by the function tracer.
4305 */
4306 preempt_disable_notrace();
4307 preempt_latency_start(1);
4308 /*
4309 * Needs preempt disabled in case user_exit() is traced
4310 * and the tracer calls preempt_enable_notrace() causing
4311 * an infinite recursion.
4312 */
4313 prev_ctx = exception_enter();
4314 __schedule(true);
4315 exception_exit(prev_ctx);
4316
4317 preempt_latency_stop(1);
4318 preempt_enable_no_resched_notrace();
4319 } while (need_resched());
4320 }
4321 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4322
4323 #endif /* CONFIG_PREEMPTION */
4324
4325 /*
4326 * This is the entry point to schedule() from kernel preemption
4327 * off of irq context.
4328 * Note, that this is called and return with irqs disabled. This will
4329 * protect us against recursive calling from irq.
4330 */
4331 asmlinkage __visible void __sched preempt_schedule_irq(void)
4332 {
4333 enum ctx_state prev_state;
4334
4335 /* Catch callers which need to be fixed */
4336 BUG_ON(preempt_count() || !irqs_disabled());
4337
4338 prev_state = exception_enter();
4339
4340 do {
4341 preempt_disable();
4342 local_irq_enable();
4343 __schedule(true);
4344 local_irq_disable();
4345 sched_preempt_enable_no_resched();
4346 } while (need_resched());
4347
4348 exception_exit(prev_state);
4349 }
4350
4351 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4352 void *key)
4353 {
4354 return try_to_wake_up(curr->private, mode, wake_flags);
4355 }
4356 EXPORT_SYMBOL(default_wake_function);
4357
4358 #ifdef CONFIG_RT_MUTEXES
4359
4360 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4361 {
4362 if (pi_task)
4363 prio = min(prio, pi_task->prio);
4364
4365 return prio;
4366 }
4367
4368 static inline int rt_effective_prio(struct task_struct *p, int prio)
4369 {
4370 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4371
4372 return __rt_effective_prio(pi_task, prio);
4373 }
4374
4375 /*
4376 * rt_mutex_setprio - set the current priority of a task
4377 * @p: task to boost
4378 * @pi_task: donor task
4379 *
4380 * This function changes the 'effective' priority of a task. It does
4381 * not touch ->normal_prio like __setscheduler().
4382 *
4383 * Used by the rt_mutex code to implement priority inheritance
4384 * logic. Call site only calls if the priority of the task changed.
4385 */
4386 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4387 {
4388 int prio, oldprio, queued, running, queue_flag =
4389 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4390 const struct sched_class *prev_class;
4391 struct rq_flags rf;
4392 struct rq *rq;
4393
4394 /* XXX used to be waiter->prio, not waiter->task->prio */
4395 prio = __rt_effective_prio(pi_task, p->normal_prio);
4396
4397 /*
4398 * If nothing changed; bail early.
4399 */
4400 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4401 return;
4402
4403 rq = __task_rq_lock(p, &rf);
4404 update_rq_clock(rq);
4405 /*
4406 * Set under pi_lock && rq->lock, such that the value can be used under
4407 * either lock.
4408 *
4409 * Note that there is loads of tricky to make this pointer cache work
4410 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4411 * ensure a task is de-boosted (pi_task is set to NULL) before the
4412 * task is allowed to run again (and can exit). This ensures the pointer
4413 * points to a blocked task -- which guaratees the task is present.
4414 */
4415 p->pi_top_task = pi_task;
4416
4417 /*
4418 * For FIFO/RR we only need to set prio, if that matches we're done.
4419 */
4420 if (prio == p->prio && !dl_prio(prio))
4421 goto out_unlock;
4422
4423 /*
4424 * Idle task boosting is a nono in general. There is one
4425 * exception, when PREEMPT_RT and NOHZ is active:
4426 *
4427 * The idle task calls get_next_timer_interrupt() and holds
4428 * the timer wheel base->lock on the CPU and another CPU wants
4429 * to access the timer (probably to cancel it). We can safely
4430 * ignore the boosting request, as the idle CPU runs this code
4431 * with interrupts disabled and will complete the lock
4432 * protected section without being interrupted. So there is no
4433 * real need to boost.
4434 */
4435 if (unlikely(p == rq->idle)) {
4436 WARN_ON(p != rq->curr);
4437 WARN_ON(p->pi_blocked_on);
4438 goto out_unlock;
4439 }
4440
4441 trace_sched_pi_setprio(p, pi_task);
4442 oldprio = p->prio;
4443
4444 if (oldprio == prio)
4445 queue_flag &= ~DEQUEUE_MOVE;
4446
4447 prev_class = p->sched_class;
4448 queued = task_on_rq_queued(p);
4449 running = task_current(rq, p);
4450 if (queued)
4451 dequeue_task(rq, p, queue_flag);
4452 if (running)
4453 put_prev_task(rq, p);
4454
4455 /*
4456 * Boosting condition are:
4457 * 1. -rt task is running and holds mutex A
4458 * --> -dl task blocks on mutex A
4459 *
4460 * 2. -dl task is running and holds mutex A
4461 * --> -dl task blocks on mutex A and could preempt the
4462 * running task
4463 */
4464 if (dl_prio(prio)) {
4465 if (!dl_prio(p->normal_prio) ||
4466 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4467 p->dl.dl_boosted = 1;
4468 queue_flag |= ENQUEUE_REPLENISH;
4469 } else
4470 p->dl.dl_boosted = 0;
4471 p->sched_class = &dl_sched_class;
4472 } else if (rt_prio(prio)) {
4473 if (dl_prio(oldprio))
4474 p->dl.dl_boosted = 0;
4475 if (oldprio < prio)
4476 queue_flag |= ENQUEUE_HEAD;
4477 p->sched_class = &rt_sched_class;
4478 } else {
4479 if (dl_prio(oldprio))
4480 p->dl.dl_boosted = 0;
4481 if (rt_prio(oldprio))
4482 p->rt.timeout = 0;
4483 p->sched_class = &fair_sched_class;
4484 }
4485
4486 p->prio = prio;
4487
4488 if (queued)
4489 enqueue_task(rq, p, queue_flag);
4490 if (running)
4491 set_next_task(rq, p);
4492
4493 check_class_changed(rq, p, prev_class, oldprio);
4494 out_unlock:
4495 /* Avoid rq from going away on us: */
4496 preempt_disable();
4497 __task_rq_unlock(rq, &rf);
4498
4499 balance_callback(rq);
4500 preempt_enable();
4501 }
4502 #else
4503 static inline int rt_effective_prio(struct task_struct *p, int prio)
4504 {
4505 return prio;
4506 }
4507 #endif
4508
4509 void set_user_nice(struct task_struct *p, long nice)
4510 {
4511 bool queued, running;
4512 int old_prio;
4513 struct rq_flags rf;
4514 struct rq *rq;
4515
4516 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4517 return;
4518 /*
4519 * We have to be careful, if called from sys_setpriority(),
4520 * the task might be in the middle of scheduling on another CPU.
4521 */
4522 rq = task_rq_lock(p, &rf);
4523 update_rq_clock(rq);
4524
4525 /*
4526 * The RT priorities are set via sched_setscheduler(), but we still
4527 * allow the 'normal' nice value to be set - but as expected
4528 * it wont have any effect on scheduling until the task is
4529 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4530 */
4531 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4532 p->static_prio = NICE_TO_PRIO(nice);
4533 goto out_unlock;
4534 }
4535 queued = task_on_rq_queued(p);
4536 running = task_current(rq, p);
4537 if (queued)
4538 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4539 if (running)
4540 put_prev_task(rq, p);
4541
4542 p->static_prio = NICE_TO_PRIO(nice);
4543 set_load_weight(p, true);
4544 old_prio = p->prio;
4545 p->prio = effective_prio(p);
4546
4547 if (queued)
4548 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4549 if (running)
4550 set_next_task(rq, p);
4551
4552 /*
4553 * If the task increased its priority or is running and
4554 * lowered its priority, then reschedule its CPU:
4555 */
4556 p->sched_class->prio_changed(rq, p, old_prio);
4557
4558 out_unlock:
4559 task_rq_unlock(rq, p, &rf);
4560 }
4561 EXPORT_SYMBOL(set_user_nice);
4562
4563 /*
4564 * can_nice - check if a task can reduce its nice value
4565 * @p: task
4566 * @nice: nice value
4567 */
4568 int can_nice(const struct task_struct *p, const int nice)
4569 {
4570 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4571 int nice_rlim = nice_to_rlimit(nice);
4572
4573 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4574 capable(CAP_SYS_NICE));
4575 }
4576
4577 #ifdef __ARCH_WANT_SYS_NICE
4578
4579 /*
4580 * sys_nice - change the priority of the current process.
4581 * @increment: priority increment
4582 *
4583 * sys_setpriority is a more generic, but much slower function that
4584 * does similar things.
4585 */
4586 SYSCALL_DEFINE1(nice, int, increment)
4587 {
4588 long nice, retval;
4589
4590 /*
4591 * Setpriority might change our priority at the same moment.
4592 * We don't have to worry. Conceptually one call occurs first
4593 * and we have a single winner.
4594 */
4595 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4596 nice = task_nice(current) + increment;
4597
4598 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4599 if (increment < 0 && !can_nice(current, nice))
4600 return -EPERM;
4601
4602 retval = security_task_setnice(current, nice);
4603 if (retval)
4604 return retval;
4605
4606 set_user_nice(current, nice);
4607 return 0;
4608 }
4609
4610 #endif
4611
4612 /**
4613 * task_prio - return the priority value of a given task.
4614 * @p: the task in question.
4615 *
4616 * Return: The priority value as seen by users in /proc.
4617 * RT tasks are offset by -200. Normal tasks are centered
4618 * around 0, value goes from -16 to +15.
4619 */
4620 int task_prio(const struct task_struct *p)
4621 {
4622 return p->prio - MAX_RT_PRIO;
4623 }
4624
4625 /**
4626 * idle_cpu - is a given CPU idle currently?
4627 * @cpu: the processor in question.
4628 *
4629 * Return: 1 if the CPU is currently idle. 0 otherwise.
4630 */
4631 int idle_cpu(int cpu)
4632 {
4633 struct rq *rq = cpu_rq(cpu);
4634
4635 if (rq->curr != rq->idle)
4636 return 0;
4637
4638 if (rq->nr_running)
4639 return 0;
4640
4641 #ifdef CONFIG_SMP
4642 if (!llist_empty(&rq->wake_list))
4643 return 0;
4644 #endif
4645
4646 return 1;
4647 }
4648
4649 /**
4650 * available_idle_cpu - is a given CPU idle for enqueuing work.
4651 * @cpu: the CPU in question.
4652 *
4653 * Return: 1 if the CPU is currently idle. 0 otherwise.
4654 */
4655 int available_idle_cpu(int cpu)
4656 {
4657 if (!idle_cpu(cpu))
4658 return 0;
4659
4660 if (vcpu_is_preempted(cpu))
4661 return 0;
4662
4663 return 1;
4664 }
4665
4666 /**
4667 * idle_task - return the idle task for a given CPU.
4668 * @cpu: the processor in question.
4669 *
4670 * Return: The idle task for the CPU @cpu.
4671 */
4672 struct task_struct *idle_task(int cpu)
4673 {
4674 return cpu_rq(cpu)->idle;
4675 }
4676
4677 /**
4678 * find_process_by_pid - find a process with a matching PID value.
4679 * @pid: the pid in question.
4680 *
4681 * The task of @pid, if found. %NULL otherwise.
4682 */
4683 static struct task_struct *find_process_by_pid(pid_t pid)
4684 {
4685 return pid ? find_task_by_vpid(pid) : current;
4686 }
4687
4688 /*
4689 * sched_setparam() passes in -1 for its policy, to let the functions
4690 * it calls know not to change it.
4691 */
4692 #define SETPARAM_POLICY -1
4693
4694 static void __setscheduler_params(struct task_struct *p,
4695 const struct sched_attr *attr)
4696 {
4697 int policy = attr->sched_policy;
4698
4699 if (policy == SETPARAM_POLICY)
4700 policy = p->policy;
4701
4702 p->policy = policy;
4703
4704 if (dl_policy(policy))
4705 __setparam_dl(p, attr);
4706 else if (fair_policy(policy))
4707 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4708
4709 /*
4710 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4711 * !rt_policy. Always setting this ensures that things like
4712 * getparam()/getattr() don't report silly values for !rt tasks.
4713 */
4714 p->rt_priority = attr->sched_priority;
4715 p->normal_prio = normal_prio(p);
4716 set_load_weight(p, true);
4717 }
4718
4719 /* Actually do priority change: must hold pi & rq lock. */
4720 static void __setscheduler(struct rq *rq, struct task_struct *p,
4721 const struct sched_attr *attr, bool keep_boost)
4722 {
4723 /*
4724 * If params can't change scheduling class changes aren't allowed
4725 * either.
4726 */
4727 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4728 return;
4729
4730 __setscheduler_params(p, attr);
4731
4732 /*
4733 * Keep a potential priority boosting if called from
4734 * sched_setscheduler().
4735 */
4736 p->prio = normal_prio(p);
4737 if (keep_boost)
4738 p->prio = rt_effective_prio(p, p->prio);
4739
4740 if (dl_prio(p->prio))
4741 p->sched_class = &dl_sched_class;
4742 else if (rt_prio(p->prio))
4743 p->sched_class = &rt_sched_class;
4744 else
4745 p->sched_class = &fair_sched_class;
4746 }
4747
4748 /*
4749 * Check the target process has a UID that matches the current process's:
4750 */
4751 static bool check_same_owner(struct task_struct *p)
4752 {
4753 const struct cred *cred = current_cred(), *pcred;
4754 bool match;
4755
4756 rcu_read_lock();
4757 pcred = __task_cred(p);
4758 match = (uid_eq(cred->euid, pcred->euid) ||
4759 uid_eq(cred->euid, pcred->uid));
4760 rcu_read_unlock();
4761 return match;
4762 }
4763
4764 static int __sched_setscheduler(struct task_struct *p,
4765 const struct sched_attr *attr,
4766 bool user, bool pi)
4767 {
4768 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4769 MAX_RT_PRIO - 1 - attr->sched_priority;
4770 int retval, oldprio, oldpolicy = -1, queued, running;
4771 int new_effective_prio, policy = attr->sched_policy;
4772 const struct sched_class *prev_class;
4773 struct rq_flags rf;
4774 int reset_on_fork;
4775 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4776 struct rq *rq;
4777
4778 /* The pi code expects interrupts enabled */
4779 BUG_ON(pi && in_interrupt());
4780 recheck:
4781 /* Double check policy once rq lock held: */
4782 if (policy < 0) {
4783 reset_on_fork = p->sched_reset_on_fork;
4784 policy = oldpolicy = p->policy;
4785 } else {
4786 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4787
4788 if (!valid_policy(policy))
4789 return -EINVAL;
4790 }
4791
4792 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4793 return -EINVAL;
4794
4795 /*
4796 * Valid priorities for SCHED_FIFO and SCHED_RR are
4797 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4798 * SCHED_BATCH and SCHED_IDLE is 0.
4799 */
4800 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4801 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4802 return -EINVAL;
4803 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4804 (rt_policy(policy) != (attr->sched_priority != 0)))
4805 return -EINVAL;
4806
4807 /*
4808 * Allow unprivileged RT tasks to decrease priority:
4809 */
4810 if (user && !capable(CAP_SYS_NICE)) {
4811 if (fair_policy(policy)) {
4812 if (attr->sched_nice < task_nice(p) &&
4813 !can_nice(p, attr->sched_nice))
4814 return -EPERM;
4815 }
4816
4817 if (rt_policy(policy)) {
4818 unsigned long rlim_rtprio =
4819 task_rlimit(p, RLIMIT_RTPRIO);
4820
4821 /* Can't set/change the rt policy: */
4822 if (policy != p->policy && !rlim_rtprio)
4823 return -EPERM;
4824
4825 /* Can't increase priority: */
4826 if (attr->sched_priority > p->rt_priority &&
4827 attr->sched_priority > rlim_rtprio)
4828 return -EPERM;
4829 }
4830
4831 /*
4832 * Can't set/change SCHED_DEADLINE policy at all for now
4833 * (safest behavior); in the future we would like to allow
4834 * unprivileged DL tasks to increase their relative deadline
4835 * or reduce their runtime (both ways reducing utilization)
4836 */
4837 if (dl_policy(policy))
4838 return -EPERM;
4839
4840 /*
4841 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4842 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4843 */
4844 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4845 if (!can_nice(p, task_nice(p)))
4846 return -EPERM;
4847 }
4848
4849 /* Can't change other user's priorities: */
4850 if (!check_same_owner(p))
4851 return -EPERM;
4852
4853 /* Normal users shall not reset the sched_reset_on_fork flag: */
4854 if (p->sched_reset_on_fork && !reset_on_fork)
4855 return -EPERM;
4856 }
4857
4858 if (user) {
4859 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4860 return -EINVAL;
4861
4862 retval = security_task_setscheduler(p);
4863 if (retval)
4864 return retval;
4865 }
4866
4867 /* Update task specific "requested" clamps */
4868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4869 retval = uclamp_validate(p, attr);
4870 if (retval)
4871 return retval;
4872 }
4873
4874 if (pi)
4875 cpuset_read_lock();
4876
4877 /*
4878 * Make sure no PI-waiters arrive (or leave) while we are
4879 * changing the priority of the task:
4880 *
4881 * To be able to change p->policy safely, the appropriate
4882 * runqueue lock must be held.
4883 */
4884 rq = task_rq_lock(p, &rf);
4885 update_rq_clock(rq);
4886
4887 /*
4888 * Changing the policy of the stop threads its a very bad idea:
4889 */
4890 if (p == rq->stop) {
4891 retval = -EINVAL;
4892 goto unlock;
4893 }
4894
4895 /*
4896 * If not changing anything there's no need to proceed further,
4897 * but store a possible modification of reset_on_fork.
4898 */
4899 if (unlikely(policy == p->policy)) {
4900 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4901 goto change;
4902 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4903 goto change;
4904 if (dl_policy(policy) && dl_param_changed(p, attr))
4905 goto change;
4906 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4907 goto change;
4908
4909 p->sched_reset_on_fork = reset_on_fork;
4910 retval = 0;
4911 goto unlock;
4912 }
4913 change:
4914
4915 if (user) {
4916 #ifdef CONFIG_RT_GROUP_SCHED
4917 /*
4918 * Do not allow realtime tasks into groups that have no runtime
4919 * assigned.
4920 */
4921 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4922 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4923 !task_group_is_autogroup(task_group(p))) {
4924 retval = -EPERM;
4925 goto unlock;
4926 }
4927 #endif
4928 #ifdef CONFIG_SMP
4929 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4930 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4931 cpumask_t *span = rq->rd->span;
4932
4933 /*
4934 * Don't allow tasks with an affinity mask smaller than
4935 * the entire root_domain to become SCHED_DEADLINE. We
4936 * will also fail if there's no bandwidth available.
4937 */
4938 if (!cpumask_subset(span, p->cpus_ptr) ||
4939 rq->rd->dl_bw.bw == 0) {
4940 retval = -EPERM;
4941 goto unlock;
4942 }
4943 }
4944 #endif
4945 }
4946
4947 /* Re-check policy now with rq lock held: */
4948 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4949 policy = oldpolicy = -1;
4950 task_rq_unlock(rq, p, &rf);
4951 if (pi)
4952 cpuset_read_unlock();
4953 goto recheck;
4954 }
4955
4956 /*
4957 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4958 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4959 * is available.
4960 */
4961 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4962 retval = -EBUSY;
4963 goto unlock;
4964 }
4965
4966 p->sched_reset_on_fork = reset_on_fork;
4967 oldprio = p->prio;
4968
4969 if (pi) {
4970 /*
4971 * Take priority boosted tasks into account. If the new
4972 * effective priority is unchanged, we just store the new
4973 * normal parameters and do not touch the scheduler class and
4974 * the runqueue. This will be done when the task deboost
4975 * itself.
4976 */
4977 new_effective_prio = rt_effective_prio(p, newprio);
4978 if (new_effective_prio == oldprio)
4979 queue_flags &= ~DEQUEUE_MOVE;
4980 }
4981
4982 queued = task_on_rq_queued(p);
4983 running = task_current(rq, p);
4984 if (queued)
4985 dequeue_task(rq, p, queue_flags);
4986 if (running)
4987 put_prev_task(rq, p);
4988
4989 prev_class = p->sched_class;
4990
4991 __setscheduler(rq, p, attr, pi);
4992 __setscheduler_uclamp(p, attr);
4993
4994 if (queued) {
4995 /*
4996 * We enqueue to tail when the priority of a task is
4997 * increased (user space view).
4998 */
4999 if (oldprio < p->prio)
5000 queue_flags |= ENQUEUE_HEAD;
5001
5002 enqueue_task(rq, p, queue_flags);
5003 }
5004 if (running)
5005 set_next_task(rq, p);
5006
5007 check_class_changed(rq, p, prev_class, oldprio);
5008
5009 /* Avoid rq from going away on us: */
5010 preempt_disable();
5011 task_rq_unlock(rq, p, &rf);
5012
5013 if (pi) {
5014 cpuset_read_unlock();
5015 rt_mutex_adjust_pi(p);
5016 }
5017
5018 /* Run balance callbacks after we've adjusted the PI chain: */
5019 balance_callback(rq);
5020 preempt_enable();
5021
5022 return 0;
5023
5024 unlock:
5025 task_rq_unlock(rq, p, &rf);
5026 if (pi)
5027 cpuset_read_unlock();
5028 return retval;
5029 }
5030
5031 static int _sched_setscheduler(struct task_struct *p, int policy,
5032 const struct sched_param *param, bool check)
5033 {
5034 struct sched_attr attr = {
5035 .sched_policy = policy,
5036 .sched_priority = param->sched_priority,
5037 .sched_nice = PRIO_TO_NICE(p->static_prio),
5038 };
5039
5040 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5041 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5042 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5043 policy &= ~SCHED_RESET_ON_FORK;
5044 attr.sched_policy = policy;
5045 }
5046
5047 return __sched_setscheduler(p, &attr, check, true);
5048 }
5049 /**
5050 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5051 * @p: the task in question.
5052 * @policy: new policy.
5053 * @param: structure containing the new RT priority.
5054 *
5055 * Return: 0 on success. An error code otherwise.
5056 *
5057 * NOTE that the task may be already dead.
5058 */
5059 int sched_setscheduler(struct task_struct *p, int policy,
5060 const struct sched_param *param)
5061 {
5062 return _sched_setscheduler(p, policy, param, true);
5063 }
5064 EXPORT_SYMBOL_GPL(sched_setscheduler);
5065
5066 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5067 {
5068 return __sched_setscheduler(p, attr, true, true);
5069 }
5070 EXPORT_SYMBOL_GPL(sched_setattr);
5071
5072 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5073 {
5074 return __sched_setscheduler(p, attr, false, true);
5075 }
5076
5077 /**
5078 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5079 * @p: the task in question.
5080 * @policy: new policy.
5081 * @param: structure containing the new RT priority.
5082 *
5083 * Just like sched_setscheduler, only don't bother checking if the
5084 * current context has permission. For example, this is needed in
5085 * stop_machine(): we create temporary high priority worker threads,
5086 * but our caller might not have that capability.
5087 *
5088 * Return: 0 on success. An error code otherwise.
5089 */
5090 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5091 const struct sched_param *param)
5092 {
5093 return _sched_setscheduler(p, policy, param, false);
5094 }
5095 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5096
5097 static int
5098 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5099 {
5100 struct sched_param lparam;
5101 struct task_struct *p;
5102 int retval;
5103
5104 if (!param || pid < 0)
5105 return -EINVAL;
5106 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5107 return -EFAULT;
5108
5109 rcu_read_lock();
5110 retval = -ESRCH;
5111 p = find_process_by_pid(pid);
5112 if (likely(p))
5113 get_task_struct(p);
5114 rcu_read_unlock();
5115
5116 if (likely(p)) {
5117 retval = sched_setscheduler(p, policy, &lparam);
5118 put_task_struct(p);
5119 }
5120
5121 return retval;
5122 }
5123
5124 /*
5125 * Mimics kernel/events/core.c perf_copy_attr().
5126 */
5127 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5128 {
5129 u32 size;
5130 int ret;
5131
5132 /* Zero the full structure, so that a short copy will be nice: */
5133 memset(attr, 0, sizeof(*attr));
5134
5135 ret = get_user(size, &uattr->size);
5136 if (ret)
5137 return ret;
5138
5139 /* ABI compatibility quirk: */
5140 if (!size)
5141 size = SCHED_ATTR_SIZE_VER0;
5142 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5143 goto err_size;
5144
5145 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5146 if (ret) {
5147 if (ret == -E2BIG)
5148 goto err_size;
5149 return ret;
5150 }
5151
5152 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5153 size < SCHED_ATTR_SIZE_VER1)
5154 return -EINVAL;
5155
5156 /*
5157 * XXX: Do we want to be lenient like existing syscalls; or do we want
5158 * to be strict and return an error on out-of-bounds values?
5159 */
5160 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5161
5162 return 0;
5163
5164 err_size:
5165 put_user(sizeof(*attr), &uattr->size);
5166 return -E2BIG;
5167 }
5168
5169 /**
5170 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5171 * @pid: the pid in question.
5172 * @policy: new policy.
5173 * @param: structure containing the new RT priority.
5174 *
5175 * Return: 0 on success. An error code otherwise.
5176 */
5177 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5178 {
5179 if (policy < 0)
5180 return -EINVAL;
5181
5182 return do_sched_setscheduler(pid, policy, param);
5183 }
5184
5185 /**
5186 * sys_sched_setparam - set/change the RT priority of a thread
5187 * @pid: the pid in question.
5188 * @param: structure containing the new RT priority.
5189 *
5190 * Return: 0 on success. An error code otherwise.
5191 */
5192 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5193 {
5194 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5195 }
5196
5197 /**
5198 * sys_sched_setattr - same as above, but with extended sched_attr
5199 * @pid: the pid in question.
5200 * @uattr: structure containing the extended parameters.
5201 * @flags: for future extension.
5202 */
5203 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5204 unsigned int, flags)
5205 {
5206 struct sched_attr attr;
5207 struct task_struct *p;
5208 int retval;
5209
5210 if (!uattr || pid < 0 || flags)
5211 return -EINVAL;
5212
5213 retval = sched_copy_attr(uattr, &attr);
5214 if (retval)
5215 return retval;
5216
5217 if ((int)attr.sched_policy < 0)
5218 return -EINVAL;
5219 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5220 attr.sched_policy = SETPARAM_POLICY;
5221
5222 rcu_read_lock();
5223 retval = -ESRCH;
5224 p = find_process_by_pid(pid);
5225 if (likely(p))
5226 get_task_struct(p);
5227 rcu_read_unlock();
5228
5229 if (likely(p)) {
5230 retval = sched_setattr(p, &attr);
5231 put_task_struct(p);
5232 }
5233
5234 return retval;
5235 }
5236
5237 /**
5238 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5239 * @pid: the pid in question.
5240 *
5241 * Return: On success, the policy of the thread. Otherwise, a negative error
5242 * code.
5243 */
5244 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5245 {
5246 struct task_struct *p;
5247 int retval;
5248
5249 if (pid < 0)
5250 return -EINVAL;
5251
5252 retval = -ESRCH;
5253 rcu_read_lock();
5254 p = find_process_by_pid(pid);
5255 if (p) {
5256 retval = security_task_getscheduler(p);
5257 if (!retval)
5258 retval = p->policy
5259 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5260 }
5261 rcu_read_unlock();
5262 return retval;
5263 }
5264
5265 /**
5266 * sys_sched_getparam - get the RT priority of a thread
5267 * @pid: the pid in question.
5268 * @param: structure containing the RT priority.
5269 *
5270 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5271 * code.
5272 */
5273 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5274 {
5275 struct sched_param lp = { .sched_priority = 0 };
5276 struct task_struct *p;
5277 int retval;
5278
5279 if (!param || pid < 0)
5280 return -EINVAL;
5281
5282 rcu_read_lock();
5283 p = find_process_by_pid(pid);
5284 retval = -ESRCH;
5285 if (!p)
5286 goto out_unlock;
5287
5288 retval = security_task_getscheduler(p);
5289 if (retval)
5290 goto out_unlock;
5291
5292 if (task_has_rt_policy(p))
5293 lp.sched_priority = p->rt_priority;
5294 rcu_read_unlock();
5295
5296 /*
5297 * This one might sleep, we cannot do it with a spinlock held ...
5298 */
5299 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5300
5301 return retval;
5302
5303 out_unlock:
5304 rcu_read_unlock();
5305 return retval;
5306 }
5307
5308 /*
5309 * Copy the kernel size attribute structure (which might be larger
5310 * than what user-space knows about) to user-space.
5311 *
5312 * Note that all cases are valid: user-space buffer can be larger or
5313 * smaller than the kernel-space buffer. The usual case is that both
5314 * have the same size.
5315 */
5316 static int
5317 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5318 struct sched_attr *kattr,
5319 unsigned int usize)
5320 {
5321 unsigned int ksize = sizeof(*kattr);
5322
5323 if (!access_ok(uattr, usize))
5324 return -EFAULT;
5325
5326 /*
5327 * sched_getattr() ABI forwards and backwards compatibility:
5328 *
5329 * If usize == ksize then we just copy everything to user-space and all is good.
5330 *
5331 * If usize < ksize then we only copy as much as user-space has space for,
5332 * this keeps ABI compatibility as well. We skip the rest.
5333 *
5334 * If usize > ksize then user-space is using a newer version of the ABI,
5335 * which part the kernel doesn't know about. Just ignore it - tooling can
5336 * detect the kernel's knowledge of attributes from the attr->size value
5337 * which is set to ksize in this case.
5338 */
5339 kattr->size = min(usize, ksize);
5340
5341 if (copy_to_user(uattr, kattr, kattr->size))
5342 return -EFAULT;
5343
5344 return 0;
5345 }
5346
5347 /**
5348 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5349 * @pid: the pid in question.
5350 * @uattr: structure containing the extended parameters.
5351 * @usize: sizeof(attr) for fwd/bwd comp.
5352 * @flags: for future extension.
5353 */
5354 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5355 unsigned int, usize, unsigned int, flags)
5356 {
5357 struct sched_attr kattr = { };
5358 struct task_struct *p;
5359 int retval;
5360
5361 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5362 usize < SCHED_ATTR_SIZE_VER0 || flags)
5363 return -EINVAL;
5364
5365 rcu_read_lock();
5366 p = find_process_by_pid(pid);
5367 retval = -ESRCH;
5368 if (!p)
5369 goto out_unlock;
5370
5371 retval = security_task_getscheduler(p);
5372 if (retval)
5373 goto out_unlock;
5374
5375 kattr.sched_policy = p->policy;
5376 if (p->sched_reset_on_fork)
5377 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5378 if (task_has_dl_policy(p))
5379 __getparam_dl(p, &kattr);
5380 else if (task_has_rt_policy(p))
5381 kattr.sched_priority = p->rt_priority;
5382 else
5383 kattr.sched_nice = task_nice(p);
5384
5385 #ifdef CONFIG_UCLAMP_TASK
5386 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5387 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5388 #endif
5389
5390 rcu_read_unlock();
5391
5392 return sched_attr_copy_to_user(uattr, &kattr, usize);
5393
5394 out_unlock:
5395 rcu_read_unlock();
5396 return retval;
5397 }
5398
5399 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5400 {
5401 cpumask_var_t cpus_allowed, new_mask;
5402 struct task_struct *p;
5403 int retval;
5404
5405 rcu_read_lock();
5406
5407 p = find_process_by_pid(pid);
5408 if (!p) {
5409 rcu_read_unlock();
5410 return -ESRCH;
5411 }
5412
5413 /* Prevent p going away */
5414 get_task_struct(p);
5415 rcu_read_unlock();
5416
5417 if (p->flags & PF_NO_SETAFFINITY) {
5418 retval = -EINVAL;
5419 goto out_put_task;
5420 }
5421 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5422 retval = -ENOMEM;
5423 goto out_put_task;
5424 }
5425 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5426 retval = -ENOMEM;
5427 goto out_free_cpus_allowed;
5428 }
5429 retval = -EPERM;
5430 if (!check_same_owner(p)) {
5431 rcu_read_lock();
5432 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5433 rcu_read_unlock();
5434 goto out_free_new_mask;
5435 }
5436 rcu_read_unlock();
5437 }
5438
5439 retval = security_task_setscheduler(p);
5440 if (retval)
5441 goto out_free_new_mask;
5442
5443
5444 cpuset_cpus_allowed(p, cpus_allowed);
5445 cpumask_and(new_mask, in_mask, cpus_allowed);
5446
5447 /*
5448 * Since bandwidth control happens on root_domain basis,
5449 * if admission test is enabled, we only admit -deadline
5450 * tasks allowed to run on all the CPUs in the task's
5451 * root_domain.
5452 */
5453 #ifdef CONFIG_SMP
5454 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5455 rcu_read_lock();
5456 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5457 retval = -EBUSY;
5458 rcu_read_unlock();
5459 goto out_free_new_mask;
5460 }
5461 rcu_read_unlock();
5462 }
5463 #endif
5464 again:
5465 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5466
5467 if (!retval) {
5468 cpuset_cpus_allowed(p, cpus_allowed);
5469 if (!cpumask_subset(new_mask, cpus_allowed)) {
5470 /*
5471 * We must have raced with a concurrent cpuset
5472 * update. Just reset the cpus_allowed to the
5473 * cpuset's cpus_allowed
5474 */
5475 cpumask_copy(new_mask, cpus_allowed);
5476 goto again;
5477 }
5478 }
5479 out_free_new_mask:
5480 free_cpumask_var(new_mask);
5481 out_free_cpus_allowed:
5482 free_cpumask_var(cpus_allowed);
5483 out_put_task:
5484 put_task_struct(p);
5485 return retval;
5486 }
5487
5488 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5489 struct cpumask *new_mask)
5490 {
5491 if (len < cpumask_size())
5492 cpumask_clear(new_mask);
5493 else if (len > cpumask_size())
5494 len = cpumask_size();
5495
5496 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5497 }
5498
5499 /**
5500 * sys_sched_setaffinity - set the CPU affinity of a process
5501 * @pid: pid of the process
5502 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5503 * @user_mask_ptr: user-space pointer to the new CPU mask
5504 *
5505 * Return: 0 on success. An error code otherwise.
5506 */
5507 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5508 unsigned long __user *, user_mask_ptr)
5509 {
5510 cpumask_var_t new_mask;
5511 int retval;
5512
5513 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5514 return -ENOMEM;
5515
5516 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5517 if (retval == 0)
5518 retval = sched_setaffinity(pid, new_mask);
5519 free_cpumask_var(new_mask);
5520 return retval;
5521 }
5522
5523 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5524 {
5525 struct task_struct *p;
5526 unsigned long flags;
5527 int retval;
5528
5529 rcu_read_lock();
5530
5531 retval = -ESRCH;
5532 p = find_process_by_pid(pid);
5533 if (!p)
5534 goto out_unlock;
5535
5536 retval = security_task_getscheduler(p);
5537 if (retval)
5538 goto out_unlock;
5539
5540 raw_spin_lock_irqsave(&p->pi_lock, flags);
5541 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5542 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5543
5544 out_unlock:
5545 rcu_read_unlock();
5546
5547 return retval;
5548 }
5549
5550 /**
5551 * sys_sched_getaffinity - get the CPU affinity of a process
5552 * @pid: pid of the process
5553 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5554 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5555 *
5556 * Return: size of CPU mask copied to user_mask_ptr on success. An
5557 * error code otherwise.
5558 */
5559 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5560 unsigned long __user *, user_mask_ptr)
5561 {
5562 int ret;
5563 cpumask_var_t mask;
5564
5565 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5566 return -EINVAL;
5567 if (len & (sizeof(unsigned long)-1))
5568 return -EINVAL;
5569
5570 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5571 return -ENOMEM;
5572
5573 ret = sched_getaffinity(pid, mask);
5574 if (ret == 0) {
5575 unsigned int retlen = min(len, cpumask_size());
5576
5577 if (copy_to_user(user_mask_ptr, mask, retlen))
5578 ret = -EFAULT;
5579 else
5580 ret = retlen;
5581 }
5582 free_cpumask_var(mask);
5583
5584 return ret;
5585 }
5586
5587 /**
5588 * sys_sched_yield - yield the current processor to other threads.
5589 *
5590 * This function yields the current CPU to other tasks. If there are no
5591 * other threads running on this CPU then this function will return.
5592 *
5593 * Return: 0.
5594 */
5595 static void do_sched_yield(void)
5596 {
5597 struct rq_flags rf;
5598 struct rq *rq;
5599
5600 rq = this_rq_lock_irq(&rf);
5601
5602 schedstat_inc(rq->yld_count);
5603 current->sched_class->yield_task(rq);
5604
5605 /*
5606 * Since we are going to call schedule() anyway, there's
5607 * no need to preempt or enable interrupts:
5608 */
5609 preempt_disable();
5610 rq_unlock(rq, &rf);
5611 sched_preempt_enable_no_resched();
5612
5613 schedule();
5614 }
5615
5616 SYSCALL_DEFINE0(sched_yield)
5617 {
5618 do_sched_yield();
5619 return 0;
5620 }
5621
5622 #ifndef CONFIG_PREEMPTION
5623 int __sched _cond_resched(void)
5624 {
5625 if (should_resched(0)) {
5626 preempt_schedule_common();
5627 return 1;
5628 }
5629 rcu_all_qs();
5630 return 0;
5631 }
5632 EXPORT_SYMBOL(_cond_resched);
5633 #endif
5634
5635 /*
5636 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5637 * call schedule, and on return reacquire the lock.
5638 *
5639 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5640 * operations here to prevent schedule() from being called twice (once via
5641 * spin_unlock(), once by hand).
5642 */
5643 int __cond_resched_lock(spinlock_t *lock)
5644 {
5645 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5646 int ret = 0;
5647
5648 lockdep_assert_held(lock);
5649
5650 if (spin_needbreak(lock) || resched) {
5651 spin_unlock(lock);
5652 if (resched)
5653 preempt_schedule_common();
5654 else
5655 cpu_relax();
5656 ret = 1;
5657 spin_lock(lock);
5658 }
5659 return ret;
5660 }
5661 EXPORT_SYMBOL(__cond_resched_lock);
5662
5663 /**
5664 * yield - yield the current processor to other threads.
5665 *
5666 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5667 *
5668 * The scheduler is at all times free to pick the calling task as the most
5669 * eligible task to run, if removing the yield() call from your code breaks
5670 * it, its already broken.
5671 *
5672 * Typical broken usage is:
5673 *
5674 * while (!event)
5675 * yield();
5676 *
5677 * where one assumes that yield() will let 'the other' process run that will
5678 * make event true. If the current task is a SCHED_FIFO task that will never
5679 * happen. Never use yield() as a progress guarantee!!
5680 *
5681 * If you want to use yield() to wait for something, use wait_event().
5682 * If you want to use yield() to be 'nice' for others, use cond_resched().
5683 * If you still want to use yield(), do not!
5684 */
5685 void __sched yield(void)
5686 {
5687 set_current_state(TASK_RUNNING);
5688 do_sched_yield();
5689 }
5690 EXPORT_SYMBOL(yield);
5691
5692 /**
5693 * yield_to - yield the current processor to another thread in
5694 * your thread group, or accelerate that thread toward the
5695 * processor it's on.
5696 * @p: target task
5697 * @preempt: whether task preemption is allowed or not
5698 *
5699 * It's the caller's job to ensure that the target task struct
5700 * can't go away on us before we can do any checks.
5701 *
5702 * Return:
5703 * true (>0) if we indeed boosted the target task.
5704 * false (0) if we failed to boost the target.
5705 * -ESRCH if there's no task to yield to.
5706 */
5707 int __sched yield_to(struct task_struct *p, bool preempt)
5708 {
5709 struct task_struct *curr = current;
5710 struct rq *rq, *p_rq;
5711 unsigned long flags;
5712 int yielded = 0;
5713
5714 local_irq_save(flags);
5715 rq = this_rq();
5716
5717 again:
5718 p_rq = task_rq(p);
5719 /*
5720 * If we're the only runnable task on the rq and target rq also
5721 * has only one task, there's absolutely no point in yielding.
5722 */
5723 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5724 yielded = -ESRCH;
5725 goto out_irq;
5726 }
5727
5728 double_rq_lock(rq, p_rq);
5729 if (task_rq(p) != p_rq) {
5730 double_rq_unlock(rq, p_rq);
5731 goto again;
5732 }
5733
5734 if (!curr->sched_class->yield_to_task)
5735 goto out_unlock;
5736
5737 if (curr->sched_class != p->sched_class)
5738 goto out_unlock;
5739
5740 if (task_running(p_rq, p) || p->state)
5741 goto out_unlock;
5742
5743 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5744 if (yielded) {
5745 schedstat_inc(rq->yld_count);
5746 /*
5747 * Make p's CPU reschedule; pick_next_entity takes care of
5748 * fairness.
5749 */
5750 if (preempt && rq != p_rq)
5751 resched_curr(p_rq);
5752 }
5753
5754 out_unlock:
5755 double_rq_unlock(rq, p_rq);
5756 out_irq:
5757 local_irq_restore(flags);
5758
5759 if (yielded > 0)
5760 schedule();
5761
5762 return yielded;
5763 }
5764 EXPORT_SYMBOL_GPL(yield_to);
5765
5766 int io_schedule_prepare(void)
5767 {
5768 int old_iowait = current->in_iowait;
5769
5770 current->in_iowait = 1;
5771 blk_schedule_flush_plug(current);
5772
5773 return old_iowait;
5774 }
5775
5776 void io_schedule_finish(int token)
5777 {
5778 current->in_iowait = token;
5779 }
5780
5781 /*
5782 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5783 * that process accounting knows that this is a task in IO wait state.
5784 */
5785 long __sched io_schedule_timeout(long timeout)
5786 {
5787 int token;
5788 long ret;
5789
5790 token = io_schedule_prepare();
5791 ret = schedule_timeout(timeout);
5792 io_schedule_finish(token);
5793
5794 return ret;
5795 }
5796 EXPORT_SYMBOL(io_schedule_timeout);
5797
5798 void __sched io_schedule(void)
5799 {
5800 int token;
5801
5802 token = io_schedule_prepare();
5803 schedule();
5804 io_schedule_finish(token);
5805 }
5806 EXPORT_SYMBOL(io_schedule);
5807
5808 /**
5809 * sys_sched_get_priority_max - return maximum RT priority.
5810 * @policy: scheduling class.
5811 *
5812 * Return: On success, this syscall returns the maximum
5813 * rt_priority that can be used by a given scheduling class.
5814 * On failure, a negative error code is returned.
5815 */
5816 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5817 {
5818 int ret = -EINVAL;
5819
5820 switch (policy) {
5821 case SCHED_FIFO:
5822 case SCHED_RR:
5823 ret = MAX_USER_RT_PRIO-1;
5824 break;
5825 case SCHED_DEADLINE:
5826 case SCHED_NORMAL:
5827 case SCHED_BATCH:
5828 case SCHED_IDLE:
5829 ret = 0;
5830 break;
5831 }
5832 return ret;
5833 }
5834
5835 /**
5836 * sys_sched_get_priority_min - return minimum RT priority.
5837 * @policy: scheduling class.
5838 *
5839 * Return: On success, this syscall returns the minimum
5840 * rt_priority that can be used by a given scheduling class.
5841 * On failure, a negative error code is returned.
5842 */
5843 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5844 {
5845 int ret = -EINVAL;
5846
5847 switch (policy) {
5848 case SCHED_FIFO:
5849 case SCHED_RR:
5850 ret = 1;
5851 break;
5852 case SCHED_DEADLINE:
5853 case SCHED_NORMAL:
5854 case SCHED_BATCH:
5855 case SCHED_IDLE:
5856 ret = 0;
5857 }
5858 return ret;
5859 }
5860
5861 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5862 {
5863 struct task_struct *p;
5864 unsigned int time_slice;
5865 struct rq_flags rf;
5866 struct rq *rq;
5867 int retval;
5868
5869 if (pid < 0)
5870 return -EINVAL;
5871
5872 retval = -ESRCH;
5873 rcu_read_lock();
5874 p = find_process_by_pid(pid);
5875 if (!p)
5876 goto out_unlock;
5877
5878 retval = security_task_getscheduler(p);
5879 if (retval)
5880 goto out_unlock;
5881
5882 rq = task_rq_lock(p, &rf);
5883 time_slice = 0;
5884 if (p->sched_class->get_rr_interval)
5885 time_slice = p->sched_class->get_rr_interval(rq, p);
5886 task_rq_unlock(rq, p, &rf);
5887
5888 rcu_read_unlock();
5889 jiffies_to_timespec64(time_slice, t);
5890 return 0;
5891
5892 out_unlock:
5893 rcu_read_unlock();
5894 return retval;
5895 }
5896
5897 /**
5898 * sys_sched_rr_get_interval - return the default timeslice of a process.
5899 * @pid: pid of the process.
5900 * @interval: userspace pointer to the timeslice value.
5901 *
5902 * this syscall writes the default timeslice value of a given process
5903 * into the user-space timespec buffer. A value of '0' means infinity.
5904 *
5905 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5906 * an error code.
5907 */
5908 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5909 struct __kernel_timespec __user *, interval)
5910 {
5911 struct timespec64 t;
5912 int retval = sched_rr_get_interval(pid, &t);
5913
5914 if (retval == 0)
5915 retval = put_timespec64(&t, interval);
5916
5917 return retval;
5918 }
5919
5920 #ifdef CONFIG_COMPAT_32BIT_TIME
5921 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5922 struct old_timespec32 __user *, interval)
5923 {
5924 struct timespec64 t;
5925 int retval = sched_rr_get_interval(pid, &t);
5926
5927 if (retval == 0)
5928 retval = put_old_timespec32(&t, interval);
5929 return retval;
5930 }
5931 #endif
5932
5933 void sched_show_task(struct task_struct *p)
5934 {
5935 unsigned long free = 0;
5936 int ppid;
5937
5938 if (!try_get_task_stack(p))
5939 return;
5940
5941 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5942
5943 if (p->state == TASK_RUNNING)
5944 printk(KERN_CONT " running task ");
5945 #ifdef CONFIG_DEBUG_STACK_USAGE
5946 free = stack_not_used(p);
5947 #endif
5948 ppid = 0;
5949 rcu_read_lock();
5950 if (pid_alive(p))
5951 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5952 rcu_read_unlock();
5953 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5954 task_pid_nr(p), ppid,
5955 (unsigned long)task_thread_info(p)->flags);
5956
5957 print_worker_info(KERN_INFO, p);
5958 show_stack(p, NULL);
5959 put_task_stack(p);
5960 }
5961 EXPORT_SYMBOL_GPL(sched_show_task);
5962
5963 static inline bool
5964 state_filter_match(unsigned long state_filter, struct task_struct *p)
5965 {
5966 /* no filter, everything matches */
5967 if (!state_filter)
5968 return true;
5969
5970 /* filter, but doesn't match */
5971 if (!(p->state & state_filter))
5972 return false;
5973
5974 /*
5975 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5976 * TASK_KILLABLE).
5977 */
5978 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5979 return false;
5980
5981 return true;
5982 }
5983
5984
5985 void show_state_filter(unsigned long state_filter)
5986 {
5987 struct task_struct *g, *p;
5988
5989 #if BITS_PER_LONG == 32
5990 printk(KERN_INFO
5991 " task PC stack pid father\n");
5992 #else
5993 printk(KERN_INFO
5994 " task PC stack pid father\n");
5995 #endif
5996 rcu_read_lock();
5997 for_each_process_thread(g, p) {
5998 /*
5999 * reset the NMI-timeout, listing all files on a slow
6000 * console might take a lot of time:
6001 * Also, reset softlockup watchdogs on all CPUs, because
6002 * another CPU might be blocked waiting for us to process
6003 * an IPI.
6004 */
6005 touch_nmi_watchdog();
6006 touch_all_softlockup_watchdogs();
6007 if (state_filter_match(state_filter, p))
6008 sched_show_task(p);
6009 }
6010
6011 #ifdef CONFIG_SCHED_DEBUG
6012 if (!state_filter)
6013 sysrq_sched_debug_show();
6014 #endif
6015 rcu_read_unlock();
6016 /*
6017 * Only show locks if all tasks are dumped:
6018 */
6019 if (!state_filter)
6020 debug_show_all_locks();
6021 }
6022
6023 /**
6024 * init_idle - set up an idle thread for a given CPU
6025 * @idle: task in question
6026 * @cpu: CPU the idle task belongs to
6027 *
6028 * NOTE: this function does not set the idle thread's NEED_RESCHED
6029 * flag, to make booting more robust.
6030 */
6031 void init_idle(struct task_struct *idle, int cpu)
6032 {
6033 struct rq *rq = cpu_rq(cpu);
6034 unsigned long flags;
6035
6036 __sched_fork(0, idle);
6037
6038 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6039 raw_spin_lock(&rq->lock);
6040
6041 idle->state = TASK_RUNNING;
6042 idle->se.exec_start = sched_clock();
6043 idle->flags |= PF_IDLE;
6044
6045 kasan_unpoison_task_stack(idle);
6046
6047 #ifdef CONFIG_SMP
6048 /*
6049 * Its possible that init_idle() gets called multiple times on a task,
6050 * in that case do_set_cpus_allowed() will not do the right thing.
6051 *
6052 * And since this is boot we can forgo the serialization.
6053 */
6054 set_cpus_allowed_common(idle, cpumask_of(cpu));
6055 #endif
6056 /*
6057 * We're having a chicken and egg problem, even though we are
6058 * holding rq->lock, the CPU isn't yet set to this CPU so the
6059 * lockdep check in task_group() will fail.
6060 *
6061 * Similar case to sched_fork(). / Alternatively we could
6062 * use task_rq_lock() here and obtain the other rq->lock.
6063 *
6064 * Silence PROVE_RCU
6065 */
6066 rcu_read_lock();
6067 __set_task_cpu(idle, cpu);
6068 rcu_read_unlock();
6069
6070 rq->idle = idle;
6071 rcu_assign_pointer(rq->curr, idle);
6072 idle->on_rq = TASK_ON_RQ_QUEUED;
6073 #ifdef CONFIG_SMP
6074 idle->on_cpu = 1;
6075 #endif
6076 raw_spin_unlock(&rq->lock);
6077 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6078
6079 /* Set the preempt count _outside_ the spinlocks! */
6080 init_idle_preempt_count(idle, cpu);
6081
6082 /*
6083 * The idle tasks have their own, simple scheduling class:
6084 */
6085 idle->sched_class = &idle_sched_class;
6086 ftrace_graph_init_idle_task(idle, cpu);
6087 vtime_init_idle(idle, cpu);
6088 #ifdef CONFIG_SMP
6089 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6090 #endif
6091 }
6092
6093 #ifdef CONFIG_SMP
6094
6095 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6096 const struct cpumask *trial)
6097 {
6098 int ret = 1;
6099
6100 if (!cpumask_weight(cur))
6101 return ret;
6102
6103 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6104
6105 return ret;
6106 }
6107
6108 int task_can_attach(struct task_struct *p,
6109 const struct cpumask *cs_cpus_allowed)
6110 {
6111 int ret = 0;
6112
6113 /*
6114 * Kthreads which disallow setaffinity shouldn't be moved
6115 * to a new cpuset; we don't want to change their CPU
6116 * affinity and isolating such threads by their set of
6117 * allowed nodes is unnecessary. Thus, cpusets are not
6118 * applicable for such threads. This prevents checking for
6119 * success of set_cpus_allowed_ptr() on all attached tasks
6120 * before cpus_mask may be changed.
6121 */
6122 if (p->flags & PF_NO_SETAFFINITY) {
6123 ret = -EINVAL;
6124 goto out;
6125 }
6126
6127 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6128 cs_cpus_allowed))
6129 ret = dl_task_can_attach(p, cs_cpus_allowed);
6130
6131 out:
6132 return ret;
6133 }
6134
6135 bool sched_smp_initialized __read_mostly;
6136
6137 #ifdef CONFIG_NUMA_BALANCING
6138 /* Migrate current task p to target_cpu */
6139 int migrate_task_to(struct task_struct *p, int target_cpu)
6140 {
6141 struct migration_arg arg = { p, target_cpu };
6142 int curr_cpu = task_cpu(p);
6143
6144 if (curr_cpu == target_cpu)
6145 return 0;
6146
6147 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6148 return -EINVAL;
6149
6150 /* TODO: This is not properly updating schedstats */
6151
6152 trace_sched_move_numa(p, curr_cpu, target_cpu);
6153 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6154 }
6155
6156 /*
6157 * Requeue a task on a given node and accurately track the number of NUMA
6158 * tasks on the runqueues
6159 */
6160 void sched_setnuma(struct task_struct *p, int nid)
6161 {
6162 bool queued, running;
6163 struct rq_flags rf;
6164 struct rq *rq;
6165
6166 rq = task_rq_lock(p, &rf);
6167 queued = task_on_rq_queued(p);
6168 running = task_current(rq, p);
6169
6170 if (queued)
6171 dequeue_task(rq, p, DEQUEUE_SAVE);
6172 if (running)
6173 put_prev_task(rq, p);
6174
6175 p->numa_preferred_nid = nid;
6176
6177 if (queued)
6178 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6179 if (running)
6180 set_next_task(rq, p);
6181 task_rq_unlock(rq, p, &rf);
6182 }
6183 #endif /* CONFIG_NUMA_BALANCING */
6184
6185 #ifdef CONFIG_HOTPLUG_CPU
6186 /*
6187 * Ensure that the idle task is using init_mm right before its CPU goes
6188 * offline.
6189 */
6190 void idle_task_exit(void)
6191 {
6192 struct mm_struct *mm = current->active_mm;
6193
6194 BUG_ON(cpu_online(smp_processor_id()));
6195
6196 if (mm != &init_mm) {
6197 switch_mm(mm, &init_mm, current);
6198 current->active_mm = &init_mm;
6199 finish_arch_post_lock_switch();
6200 }
6201 mmdrop(mm);
6202 }
6203
6204 /*
6205 * Since this CPU is going 'away' for a while, fold any nr_active delta
6206 * we might have. Assumes we're called after migrate_tasks() so that the
6207 * nr_active count is stable. We need to take the teardown thread which
6208 * is calling this into account, so we hand in adjust = 1 to the load
6209 * calculation.
6210 *
6211 * Also see the comment "Global load-average calculations".
6212 */
6213 static void calc_load_migrate(struct rq *rq)
6214 {
6215 long delta = calc_load_fold_active(rq, 1);
6216 if (delta)
6217 atomic_long_add(delta, &calc_load_tasks);
6218 }
6219
6220 static struct task_struct *__pick_migrate_task(struct rq *rq)
6221 {
6222 const struct sched_class *class;
6223 struct task_struct *next;
6224
6225 for_each_class(class) {
6226 next = class->pick_next_task(rq);
6227 if (next) {
6228 next->sched_class->put_prev_task(rq, next);
6229 return next;
6230 }
6231 }
6232
6233 /* The idle class should always have a runnable task */
6234 BUG();
6235 }
6236
6237 /*
6238 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6239 * try_to_wake_up()->select_task_rq().
6240 *
6241 * Called with rq->lock held even though we'er in stop_machine() and
6242 * there's no concurrency possible, we hold the required locks anyway
6243 * because of lock validation efforts.
6244 */
6245 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6246 {
6247 struct rq *rq = dead_rq;
6248 struct task_struct *next, *stop = rq->stop;
6249 struct rq_flags orf = *rf;
6250 int dest_cpu;
6251
6252 /*
6253 * Fudge the rq selection such that the below task selection loop
6254 * doesn't get stuck on the currently eligible stop task.
6255 *
6256 * We're currently inside stop_machine() and the rq is either stuck
6257 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6258 * either way we should never end up calling schedule() until we're
6259 * done here.
6260 */
6261 rq->stop = NULL;
6262
6263 /*
6264 * put_prev_task() and pick_next_task() sched
6265 * class method both need to have an up-to-date
6266 * value of rq->clock[_task]
6267 */
6268 update_rq_clock(rq);
6269
6270 for (;;) {
6271 /*
6272 * There's this thread running, bail when that's the only
6273 * remaining thread:
6274 */
6275 if (rq->nr_running == 1)
6276 break;
6277
6278 next = __pick_migrate_task(rq);
6279
6280 /*
6281 * Rules for changing task_struct::cpus_mask are holding
6282 * both pi_lock and rq->lock, such that holding either
6283 * stabilizes the mask.
6284 *
6285 * Drop rq->lock is not quite as disastrous as it usually is
6286 * because !cpu_active at this point, which means load-balance
6287 * will not interfere. Also, stop-machine.
6288 */
6289 rq_unlock(rq, rf);
6290 raw_spin_lock(&next->pi_lock);
6291 rq_relock(rq, rf);
6292
6293 /*
6294 * Since we're inside stop-machine, _nothing_ should have
6295 * changed the task, WARN if weird stuff happened, because in
6296 * that case the above rq->lock drop is a fail too.
6297 */
6298 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6299 raw_spin_unlock(&next->pi_lock);
6300 continue;
6301 }
6302
6303 /* Find suitable destination for @next, with force if needed. */
6304 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6305 rq = __migrate_task(rq, rf, next, dest_cpu);
6306 if (rq != dead_rq) {
6307 rq_unlock(rq, rf);
6308 rq = dead_rq;
6309 *rf = orf;
6310 rq_relock(rq, rf);
6311 }
6312 raw_spin_unlock(&next->pi_lock);
6313 }
6314
6315 rq->stop = stop;
6316 }
6317 #endif /* CONFIG_HOTPLUG_CPU */
6318
6319 void set_rq_online(struct rq *rq)
6320 {
6321 if (!rq->online) {
6322 const struct sched_class *class;
6323
6324 cpumask_set_cpu(rq->cpu, rq->rd->online);
6325 rq->online = 1;
6326
6327 for_each_class(class) {
6328 if (class->rq_online)
6329 class->rq_online(rq);
6330 }
6331 }
6332 }
6333
6334 void set_rq_offline(struct rq *rq)
6335 {
6336 if (rq->online) {
6337 const struct sched_class *class;
6338
6339 for_each_class(class) {
6340 if (class->rq_offline)
6341 class->rq_offline(rq);
6342 }
6343
6344 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6345 rq->online = 0;
6346 }
6347 }
6348
6349 /*
6350 * used to mark begin/end of suspend/resume:
6351 */
6352 static int num_cpus_frozen;
6353
6354 /*
6355 * Update cpusets according to cpu_active mask. If cpusets are
6356 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6357 * around partition_sched_domains().
6358 *
6359 * If we come here as part of a suspend/resume, don't touch cpusets because we
6360 * want to restore it back to its original state upon resume anyway.
6361 */
6362 static void cpuset_cpu_active(void)
6363 {
6364 if (cpuhp_tasks_frozen) {
6365 /*
6366 * num_cpus_frozen tracks how many CPUs are involved in suspend
6367 * resume sequence. As long as this is not the last online
6368 * operation in the resume sequence, just build a single sched
6369 * domain, ignoring cpusets.
6370 */
6371 partition_sched_domains(1, NULL, NULL);
6372 if (--num_cpus_frozen)
6373 return;
6374 /*
6375 * This is the last CPU online operation. So fall through and
6376 * restore the original sched domains by considering the
6377 * cpuset configurations.
6378 */
6379 cpuset_force_rebuild();
6380 }
6381 cpuset_update_active_cpus();
6382 }
6383
6384 static int cpuset_cpu_inactive(unsigned int cpu)
6385 {
6386 if (!cpuhp_tasks_frozen) {
6387 if (dl_cpu_busy(cpu))
6388 return -EBUSY;
6389 cpuset_update_active_cpus();
6390 } else {
6391 num_cpus_frozen++;
6392 partition_sched_domains(1, NULL, NULL);
6393 }
6394 return 0;
6395 }
6396
6397 int sched_cpu_activate(unsigned int cpu)
6398 {
6399 struct rq *rq = cpu_rq(cpu);
6400 struct rq_flags rf;
6401
6402 #ifdef CONFIG_SCHED_SMT
6403 /*
6404 * When going up, increment the number of cores with SMT present.
6405 */
6406 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6407 static_branch_inc_cpuslocked(&sched_smt_present);
6408 #endif
6409 set_cpu_active(cpu, true);
6410
6411 if (sched_smp_initialized) {
6412 sched_domains_numa_masks_set(cpu);
6413 cpuset_cpu_active();
6414 }
6415
6416 /*
6417 * Put the rq online, if not already. This happens:
6418 *
6419 * 1) In the early boot process, because we build the real domains
6420 * after all CPUs have been brought up.
6421 *
6422 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6423 * domains.
6424 */
6425 rq_lock_irqsave(rq, &rf);
6426 if (rq->rd) {
6427 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6428 set_rq_online(rq);
6429 }
6430 rq_unlock_irqrestore(rq, &rf);
6431
6432 return 0;
6433 }
6434
6435 int sched_cpu_deactivate(unsigned int cpu)
6436 {
6437 int ret;
6438
6439 set_cpu_active(cpu, false);
6440 /*
6441 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6442 * users of this state to go away such that all new such users will
6443 * observe it.
6444 *
6445 * Do sync before park smpboot threads to take care the rcu boost case.
6446 */
6447 synchronize_rcu();
6448
6449 #ifdef CONFIG_SCHED_SMT
6450 /*
6451 * When going down, decrement the number of cores with SMT present.
6452 */
6453 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6454 static_branch_dec_cpuslocked(&sched_smt_present);
6455 #endif
6456
6457 if (!sched_smp_initialized)
6458 return 0;
6459
6460 ret = cpuset_cpu_inactive(cpu);
6461 if (ret) {
6462 set_cpu_active(cpu, true);
6463 return ret;
6464 }
6465 sched_domains_numa_masks_clear(cpu);
6466 return 0;
6467 }
6468
6469 static void sched_rq_cpu_starting(unsigned int cpu)
6470 {
6471 struct rq *rq = cpu_rq(cpu);
6472
6473 rq->calc_load_update = calc_load_update;
6474 update_max_interval();
6475 }
6476
6477 int sched_cpu_starting(unsigned int cpu)
6478 {
6479 sched_rq_cpu_starting(cpu);
6480 sched_tick_start(cpu);
6481 return 0;
6482 }
6483
6484 #ifdef CONFIG_HOTPLUG_CPU
6485 int sched_cpu_dying(unsigned int cpu)
6486 {
6487 struct rq *rq = cpu_rq(cpu);
6488 struct rq_flags rf;
6489
6490 /* Handle pending wakeups and then migrate everything off */
6491 sched_ttwu_pending();
6492 sched_tick_stop(cpu);
6493
6494 rq_lock_irqsave(rq, &rf);
6495 if (rq->rd) {
6496 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6497 set_rq_offline(rq);
6498 }
6499 migrate_tasks(rq, &rf);
6500 BUG_ON(rq->nr_running != 1);
6501 rq_unlock_irqrestore(rq, &rf);
6502
6503 calc_load_migrate(rq);
6504 update_max_interval();
6505 nohz_balance_exit_idle(rq);
6506 hrtick_clear(rq);
6507 return 0;
6508 }
6509 #endif
6510
6511 void __init sched_init_smp(void)
6512 {
6513 sched_init_numa();
6514
6515 /*
6516 * There's no userspace yet to cause hotplug operations; hence all the
6517 * CPU masks are stable and all blatant races in the below code cannot
6518 * happen.
6519 */
6520 mutex_lock(&sched_domains_mutex);
6521 sched_init_domains(cpu_active_mask);
6522 mutex_unlock(&sched_domains_mutex);
6523
6524 /* Move init over to a non-isolated CPU */
6525 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6526 BUG();
6527 sched_init_granularity();
6528
6529 init_sched_rt_class();
6530 init_sched_dl_class();
6531
6532 sched_smp_initialized = true;
6533 }
6534
6535 static int __init migration_init(void)
6536 {
6537 sched_cpu_starting(smp_processor_id());
6538 return 0;
6539 }
6540 early_initcall(migration_init);
6541
6542 #else
6543 void __init sched_init_smp(void)
6544 {
6545 sched_init_granularity();
6546 }
6547 #endif /* CONFIG_SMP */
6548
6549 int in_sched_functions(unsigned long addr)
6550 {
6551 return in_lock_functions(addr) ||
6552 (addr >= (unsigned long)__sched_text_start
6553 && addr < (unsigned long)__sched_text_end);
6554 }
6555
6556 #ifdef CONFIG_CGROUP_SCHED
6557 /*
6558 * Default task group.
6559 * Every task in system belongs to this group at bootup.
6560 */
6561 struct task_group root_task_group;
6562 LIST_HEAD(task_groups);
6563
6564 /* Cacheline aligned slab cache for task_group */
6565 static struct kmem_cache *task_group_cache __read_mostly;
6566 #endif
6567
6568 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6569 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6570
6571 void __init sched_init(void)
6572 {
6573 unsigned long ptr = 0;
6574 int i;
6575
6576 wait_bit_init();
6577
6578 #ifdef CONFIG_FAIR_GROUP_SCHED
6579 ptr += 2 * nr_cpu_ids * sizeof(void **);
6580 #endif
6581 #ifdef CONFIG_RT_GROUP_SCHED
6582 ptr += 2 * nr_cpu_ids * sizeof(void **);
6583 #endif
6584 if (ptr) {
6585 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6586
6587 #ifdef CONFIG_FAIR_GROUP_SCHED
6588 root_task_group.se = (struct sched_entity **)ptr;
6589 ptr += nr_cpu_ids * sizeof(void **);
6590
6591 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6592 ptr += nr_cpu_ids * sizeof(void **);
6593
6594 #endif /* CONFIG_FAIR_GROUP_SCHED */
6595 #ifdef CONFIG_RT_GROUP_SCHED
6596 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6597 ptr += nr_cpu_ids * sizeof(void **);
6598
6599 root_task_group.rt_rq = (struct rt_rq **)ptr;
6600 ptr += nr_cpu_ids * sizeof(void **);
6601
6602 #endif /* CONFIG_RT_GROUP_SCHED */
6603 }
6604 #ifdef CONFIG_CPUMASK_OFFSTACK
6605 for_each_possible_cpu(i) {
6606 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6607 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6608 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6609 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6610 }
6611 #endif /* CONFIG_CPUMASK_OFFSTACK */
6612
6613 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6614 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6615
6616 #ifdef CONFIG_SMP
6617 init_defrootdomain();
6618 #endif
6619
6620 #ifdef CONFIG_RT_GROUP_SCHED
6621 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6622 global_rt_period(), global_rt_runtime());
6623 #endif /* CONFIG_RT_GROUP_SCHED */
6624
6625 #ifdef CONFIG_CGROUP_SCHED
6626 task_group_cache = KMEM_CACHE(task_group, 0);
6627
6628 list_add(&root_task_group.list, &task_groups);
6629 INIT_LIST_HEAD(&root_task_group.children);
6630 INIT_LIST_HEAD(&root_task_group.siblings);
6631 autogroup_init(&init_task);
6632 #endif /* CONFIG_CGROUP_SCHED */
6633
6634 for_each_possible_cpu(i) {
6635 struct rq *rq;
6636
6637 rq = cpu_rq(i);
6638 raw_spin_lock_init(&rq->lock);
6639 rq->nr_running = 0;
6640 rq->calc_load_active = 0;
6641 rq->calc_load_update = jiffies + LOAD_FREQ;
6642 init_cfs_rq(&rq->cfs);
6643 init_rt_rq(&rq->rt);
6644 init_dl_rq(&rq->dl);
6645 #ifdef CONFIG_FAIR_GROUP_SCHED
6646 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6647 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6648 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6649 /*
6650 * How much CPU bandwidth does root_task_group get?
6651 *
6652 * In case of task-groups formed thr' the cgroup filesystem, it
6653 * gets 100% of the CPU resources in the system. This overall
6654 * system CPU resource is divided among the tasks of
6655 * root_task_group and its child task-groups in a fair manner,
6656 * based on each entity's (task or task-group's) weight
6657 * (se->load.weight).
6658 *
6659 * In other words, if root_task_group has 10 tasks of weight
6660 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6661 * then A0's share of the CPU resource is:
6662 *
6663 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6664 *
6665 * We achieve this by letting root_task_group's tasks sit
6666 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6667 */
6668 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6669 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6670 #endif /* CONFIG_FAIR_GROUP_SCHED */
6671
6672 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6673 #ifdef CONFIG_RT_GROUP_SCHED
6674 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6675 #endif
6676 #ifdef CONFIG_SMP
6677 rq->sd = NULL;
6678 rq->rd = NULL;
6679 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6680 rq->balance_callback = NULL;
6681 rq->active_balance = 0;
6682 rq->next_balance = jiffies;
6683 rq->push_cpu = 0;
6684 rq->cpu = i;
6685 rq->online = 0;
6686 rq->idle_stamp = 0;
6687 rq->avg_idle = 2*sysctl_sched_migration_cost;
6688 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6689
6690 INIT_LIST_HEAD(&rq->cfs_tasks);
6691
6692 rq_attach_root(rq, &def_root_domain);
6693 #ifdef CONFIG_NO_HZ_COMMON
6694 rq->last_load_update_tick = jiffies;
6695 rq->last_blocked_load_update_tick = jiffies;
6696 atomic_set(&rq->nohz_flags, 0);
6697 #endif
6698 #endif /* CONFIG_SMP */
6699 hrtick_rq_init(rq);
6700 atomic_set(&rq->nr_iowait, 0);
6701 }
6702
6703 set_load_weight(&init_task, false);
6704
6705 /*
6706 * The boot idle thread does lazy MMU switching as well:
6707 */
6708 mmgrab(&init_mm);
6709 enter_lazy_tlb(&init_mm, current);
6710
6711 /*
6712 * Make us the idle thread. Technically, schedule() should not be
6713 * called from this thread, however somewhere below it might be,
6714 * but because we are the idle thread, we just pick up running again
6715 * when this runqueue becomes "idle".
6716 */
6717 init_idle(current, smp_processor_id());
6718
6719 calc_load_update = jiffies + LOAD_FREQ;
6720
6721 #ifdef CONFIG_SMP
6722 idle_thread_set_boot_cpu();
6723 #endif
6724 init_sched_fair_class();
6725
6726 init_schedstats();
6727
6728 psi_init();
6729
6730 init_uclamp();
6731
6732 scheduler_running = 1;
6733 }
6734
6735 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6736 static inline int preempt_count_equals(int preempt_offset)
6737 {
6738 int nested = preempt_count() + rcu_preempt_depth();
6739
6740 return (nested == preempt_offset);
6741 }
6742
6743 void __might_sleep(const char *file, int line, int preempt_offset)
6744 {
6745 /*
6746 * Blocking primitives will set (and therefore destroy) current->state,
6747 * since we will exit with TASK_RUNNING make sure we enter with it,
6748 * otherwise we will destroy state.
6749 */
6750 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6751 "do not call blocking ops when !TASK_RUNNING; "
6752 "state=%lx set at [<%p>] %pS\n",
6753 current->state,
6754 (void *)current->task_state_change,
6755 (void *)current->task_state_change);
6756
6757 ___might_sleep(file, line, preempt_offset);
6758 }
6759 EXPORT_SYMBOL(__might_sleep);
6760
6761 void ___might_sleep(const char *file, int line, int preempt_offset)
6762 {
6763 /* Ratelimiting timestamp: */
6764 static unsigned long prev_jiffy;
6765
6766 unsigned long preempt_disable_ip;
6767
6768 /* WARN_ON_ONCE() by default, no rate limit required: */
6769 rcu_sleep_check();
6770
6771 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6772 !is_idle_task(current) && !current->non_block_count) ||
6773 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6774 oops_in_progress)
6775 return;
6776
6777 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6778 return;
6779 prev_jiffy = jiffies;
6780
6781 /* Save this before calling printk(), since that will clobber it: */
6782 preempt_disable_ip = get_preempt_disable_ip(current);
6783
6784 printk(KERN_ERR
6785 "BUG: sleeping function called from invalid context at %s:%d\n",
6786 file, line);
6787 printk(KERN_ERR
6788 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6789 in_atomic(), irqs_disabled(), current->non_block_count,
6790 current->pid, current->comm);
6791
6792 if (task_stack_end_corrupted(current))
6793 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6794
6795 debug_show_held_locks(current);
6796 if (irqs_disabled())
6797 print_irqtrace_events(current);
6798 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6799 && !preempt_count_equals(preempt_offset)) {
6800 pr_err("Preemption disabled at:");
6801 print_ip_sym(preempt_disable_ip);
6802 pr_cont("\n");
6803 }
6804 dump_stack();
6805 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6806 }
6807 EXPORT_SYMBOL(___might_sleep);
6808
6809 void __cant_sleep(const char *file, int line, int preempt_offset)
6810 {
6811 static unsigned long prev_jiffy;
6812
6813 if (irqs_disabled())
6814 return;
6815
6816 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6817 return;
6818
6819 if (preempt_count() > preempt_offset)
6820 return;
6821
6822 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6823 return;
6824 prev_jiffy = jiffies;
6825
6826 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6827 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6828 in_atomic(), irqs_disabled(),
6829 current->pid, current->comm);
6830
6831 debug_show_held_locks(current);
6832 dump_stack();
6833 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6834 }
6835 EXPORT_SYMBOL_GPL(__cant_sleep);
6836 #endif
6837
6838 #ifdef CONFIG_MAGIC_SYSRQ
6839 void normalize_rt_tasks(void)
6840 {
6841 struct task_struct *g, *p;
6842 struct sched_attr attr = {
6843 .sched_policy = SCHED_NORMAL,
6844 };
6845
6846 read_lock(&tasklist_lock);
6847 for_each_process_thread(g, p) {
6848 /*
6849 * Only normalize user tasks:
6850 */
6851 if (p->flags & PF_KTHREAD)
6852 continue;
6853
6854 p->se.exec_start = 0;
6855 schedstat_set(p->se.statistics.wait_start, 0);
6856 schedstat_set(p->se.statistics.sleep_start, 0);
6857 schedstat_set(p->se.statistics.block_start, 0);
6858
6859 if (!dl_task(p) && !rt_task(p)) {
6860 /*
6861 * Renice negative nice level userspace
6862 * tasks back to 0:
6863 */
6864 if (task_nice(p) < 0)
6865 set_user_nice(p, 0);
6866 continue;
6867 }
6868
6869 __sched_setscheduler(p, &attr, false, false);
6870 }
6871 read_unlock(&tasklist_lock);
6872 }
6873
6874 #endif /* CONFIG_MAGIC_SYSRQ */
6875
6876 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6877 /*
6878 * These functions are only useful for the IA64 MCA handling, or kdb.
6879 *
6880 * They can only be called when the whole system has been
6881 * stopped - every CPU needs to be quiescent, and no scheduling
6882 * activity can take place. Using them for anything else would
6883 * be a serious bug, and as a result, they aren't even visible
6884 * under any other configuration.
6885 */
6886
6887 /**
6888 * curr_task - return the current task for a given CPU.
6889 * @cpu: the processor in question.
6890 *
6891 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6892 *
6893 * Return: The current task for @cpu.
6894 */
6895 struct task_struct *curr_task(int cpu)
6896 {
6897 return cpu_curr(cpu);
6898 }
6899
6900 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6901
6902 #ifdef CONFIG_IA64
6903 /**
6904 * ia64_set_curr_task - set the current task for a given CPU.
6905 * @cpu: the processor in question.
6906 * @p: the task pointer to set.
6907 *
6908 * Description: This function must only be used when non-maskable interrupts
6909 * are serviced on a separate stack. It allows the architecture to switch the
6910 * notion of the current task on a CPU in a non-blocking manner. This function
6911 * must be called with all CPU's synchronized, and interrupts disabled, the
6912 * and caller must save the original value of the current task (see
6913 * curr_task() above) and restore that value before reenabling interrupts and
6914 * re-starting the system.
6915 *
6916 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6917 */
6918 void ia64_set_curr_task(int cpu, struct task_struct *p)
6919 {
6920 cpu_curr(cpu) = p;
6921 }
6922
6923 #endif
6924
6925 #ifdef CONFIG_CGROUP_SCHED
6926 /* task_group_lock serializes the addition/removal of task groups */
6927 static DEFINE_SPINLOCK(task_group_lock);
6928
6929 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6930 struct task_group *parent)
6931 {
6932 #ifdef CONFIG_UCLAMP_TASK_GROUP
6933 enum uclamp_id clamp_id;
6934
6935 for_each_clamp_id(clamp_id) {
6936 uclamp_se_set(&tg->uclamp_req[clamp_id],
6937 uclamp_none(clamp_id), false);
6938 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6939 }
6940 #endif
6941 }
6942
6943 static void sched_free_group(struct task_group *tg)
6944 {
6945 free_fair_sched_group(tg);
6946 free_rt_sched_group(tg);
6947 autogroup_free(tg);
6948 kmem_cache_free(task_group_cache, tg);
6949 }
6950
6951 /* allocate runqueue etc for a new task group */
6952 struct task_group *sched_create_group(struct task_group *parent)
6953 {
6954 struct task_group *tg;
6955
6956 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6957 if (!tg)
6958 return ERR_PTR(-ENOMEM);
6959
6960 if (!alloc_fair_sched_group(tg, parent))
6961 goto err;
6962
6963 if (!alloc_rt_sched_group(tg, parent))
6964 goto err;
6965
6966 alloc_uclamp_sched_group(tg, parent);
6967
6968 return tg;
6969
6970 err:
6971 sched_free_group(tg);
6972 return ERR_PTR(-ENOMEM);
6973 }
6974
6975 void sched_online_group(struct task_group *tg, struct task_group *parent)
6976 {
6977 unsigned long flags;
6978
6979 spin_lock_irqsave(&task_group_lock, flags);
6980 list_add_rcu(&tg->list, &task_groups);
6981
6982 /* Root should already exist: */
6983 WARN_ON(!parent);
6984
6985 tg->parent = parent;
6986 INIT_LIST_HEAD(&tg->children);
6987 list_add_rcu(&tg->siblings, &parent->children);
6988 spin_unlock_irqrestore(&task_group_lock, flags);
6989
6990 online_fair_sched_group(tg);
6991 }
6992
6993 /* rcu callback to free various structures associated with a task group */
6994 static void sched_free_group_rcu(struct rcu_head *rhp)
6995 {
6996 /* Now it should be safe to free those cfs_rqs: */
6997 sched_free_group(container_of(rhp, struct task_group, rcu));
6998 }
6999
7000 void sched_destroy_group(struct task_group *tg)
7001 {
7002 /* Wait for possible concurrent references to cfs_rqs complete: */
7003 call_rcu(&tg->rcu, sched_free_group_rcu);
7004 }
7005
7006 void sched_offline_group(struct task_group *tg)
7007 {
7008 unsigned long flags;
7009
7010 /* End participation in shares distribution: */
7011 unregister_fair_sched_group(tg);
7012
7013 spin_lock_irqsave(&task_group_lock, flags);
7014 list_del_rcu(&tg->list);
7015 list_del_rcu(&tg->siblings);
7016 spin_unlock_irqrestore(&task_group_lock, flags);
7017 }
7018
7019 static void sched_change_group(struct task_struct *tsk, int type)
7020 {
7021 struct task_group *tg;
7022
7023 /*
7024 * All callers are synchronized by task_rq_lock(); we do not use RCU
7025 * which is pointless here. Thus, we pass "true" to task_css_check()
7026 * to prevent lockdep warnings.
7027 */
7028 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7029 struct task_group, css);
7030 tg = autogroup_task_group(tsk, tg);
7031 tsk->sched_task_group = tg;
7032
7033 #ifdef CONFIG_FAIR_GROUP_SCHED
7034 if (tsk->sched_class->task_change_group)
7035 tsk->sched_class->task_change_group(tsk, type);
7036 else
7037 #endif
7038 set_task_rq(tsk, task_cpu(tsk));
7039 }
7040
7041 /*
7042 * Change task's runqueue when it moves between groups.
7043 *
7044 * The caller of this function should have put the task in its new group by
7045 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7046 * its new group.
7047 */
7048 void sched_move_task(struct task_struct *tsk)
7049 {
7050 int queued, running, queue_flags =
7051 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7052 struct rq_flags rf;
7053 struct rq *rq;
7054
7055 rq = task_rq_lock(tsk, &rf);
7056 update_rq_clock(rq);
7057
7058 running = task_current(rq, tsk);
7059 queued = task_on_rq_queued(tsk);
7060
7061 if (queued)
7062 dequeue_task(rq, tsk, queue_flags);
7063 if (running)
7064 put_prev_task(rq, tsk);
7065
7066 sched_change_group(tsk, TASK_MOVE_GROUP);
7067
7068 if (queued)
7069 enqueue_task(rq, tsk, queue_flags);
7070 if (running)
7071 set_next_task(rq, tsk);
7072
7073 task_rq_unlock(rq, tsk, &rf);
7074 }
7075
7076 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7077 {
7078 return css ? container_of(css, struct task_group, css) : NULL;
7079 }
7080
7081 static struct cgroup_subsys_state *
7082 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7083 {
7084 struct task_group *parent = css_tg(parent_css);
7085 struct task_group *tg;
7086
7087 if (!parent) {
7088 /* This is early initialization for the top cgroup */
7089 return &root_task_group.css;
7090 }
7091
7092 tg = sched_create_group(parent);
7093 if (IS_ERR(tg))
7094 return ERR_PTR(-ENOMEM);
7095
7096 return &tg->css;
7097 }
7098
7099 /* Expose task group only after completing cgroup initialization */
7100 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7101 {
7102 struct task_group *tg = css_tg(css);
7103 struct task_group *parent = css_tg(css->parent);
7104
7105 if (parent)
7106 sched_online_group(tg, parent);
7107
7108 #ifdef CONFIG_UCLAMP_TASK_GROUP
7109 /* Propagate the effective uclamp value for the new group */
7110 cpu_util_update_eff(css);
7111 #endif
7112
7113 return 0;
7114 }
7115
7116 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7117 {
7118 struct task_group *tg = css_tg(css);
7119
7120 sched_offline_group(tg);
7121 }
7122
7123 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7124 {
7125 struct task_group *tg = css_tg(css);
7126
7127 /*
7128 * Relies on the RCU grace period between css_released() and this.
7129 */
7130 sched_free_group(tg);
7131 }
7132
7133 /*
7134 * This is called before wake_up_new_task(), therefore we really only
7135 * have to set its group bits, all the other stuff does not apply.
7136 */
7137 static void cpu_cgroup_fork(struct task_struct *task)
7138 {
7139 struct rq_flags rf;
7140 struct rq *rq;
7141
7142 rq = task_rq_lock(task, &rf);
7143
7144 update_rq_clock(rq);
7145 sched_change_group(task, TASK_SET_GROUP);
7146
7147 task_rq_unlock(rq, task, &rf);
7148 }
7149
7150 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7151 {
7152 struct task_struct *task;
7153 struct cgroup_subsys_state *css;
7154 int ret = 0;
7155
7156 cgroup_taskset_for_each(task, css, tset) {
7157 #ifdef CONFIG_RT_GROUP_SCHED
7158 if (!sched_rt_can_attach(css_tg(css), task))
7159 return -EINVAL;
7160 #endif
7161 /*
7162 * Serialize against wake_up_new_task() such that if its
7163 * running, we're sure to observe its full state.
7164 */
7165 raw_spin_lock_irq(&task->pi_lock);
7166 /*
7167 * Avoid calling sched_move_task() before wake_up_new_task()
7168 * has happened. This would lead to problems with PELT, due to
7169 * move wanting to detach+attach while we're not attached yet.
7170 */
7171 if (task->state == TASK_NEW)
7172 ret = -EINVAL;
7173 raw_spin_unlock_irq(&task->pi_lock);
7174
7175 if (ret)
7176 break;
7177 }
7178 return ret;
7179 }
7180
7181 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7182 {
7183 struct task_struct *task;
7184 struct cgroup_subsys_state *css;
7185
7186 cgroup_taskset_for_each(task, css, tset)
7187 sched_move_task(task);
7188 }
7189
7190 #ifdef CONFIG_UCLAMP_TASK_GROUP
7191 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7192 {
7193 struct cgroup_subsys_state *top_css = css;
7194 struct uclamp_se *uc_parent = NULL;
7195 struct uclamp_se *uc_se = NULL;
7196 unsigned int eff[UCLAMP_CNT];
7197 enum uclamp_id clamp_id;
7198 unsigned int clamps;
7199
7200 css_for_each_descendant_pre(css, top_css) {
7201 uc_parent = css_tg(css)->parent
7202 ? css_tg(css)->parent->uclamp : NULL;
7203
7204 for_each_clamp_id(clamp_id) {
7205 /* Assume effective clamps matches requested clamps */
7206 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7207 /* Cap effective clamps with parent's effective clamps */
7208 if (uc_parent &&
7209 eff[clamp_id] > uc_parent[clamp_id].value) {
7210 eff[clamp_id] = uc_parent[clamp_id].value;
7211 }
7212 }
7213 /* Ensure protection is always capped by limit */
7214 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7215
7216 /* Propagate most restrictive effective clamps */
7217 clamps = 0x0;
7218 uc_se = css_tg(css)->uclamp;
7219 for_each_clamp_id(clamp_id) {
7220 if (eff[clamp_id] == uc_se[clamp_id].value)
7221 continue;
7222 uc_se[clamp_id].value = eff[clamp_id];
7223 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7224 clamps |= (0x1 << clamp_id);
7225 }
7226 if (!clamps) {
7227 css = css_rightmost_descendant(css);
7228 continue;
7229 }
7230
7231 /* Immediately update descendants RUNNABLE tasks */
7232 uclamp_update_active_tasks(css, clamps);
7233 }
7234 }
7235
7236 /*
7237 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7238 * C expression. Since there is no way to convert a macro argument (N) into a
7239 * character constant, use two levels of macros.
7240 */
7241 #define _POW10(exp) ((unsigned int)1e##exp)
7242 #define POW10(exp) _POW10(exp)
7243
7244 struct uclamp_request {
7245 #define UCLAMP_PERCENT_SHIFT 2
7246 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7247 s64 percent;
7248 u64 util;
7249 int ret;
7250 };
7251
7252 static inline struct uclamp_request
7253 capacity_from_percent(char *buf)
7254 {
7255 struct uclamp_request req = {
7256 .percent = UCLAMP_PERCENT_SCALE,
7257 .util = SCHED_CAPACITY_SCALE,
7258 .ret = 0,
7259 };
7260
7261 buf = strim(buf);
7262 if (strcmp(buf, "max")) {
7263 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7264 &req.percent);
7265 if (req.ret)
7266 return req;
7267 if (req.percent > UCLAMP_PERCENT_SCALE) {
7268 req.ret = -ERANGE;
7269 return req;
7270 }
7271
7272 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7273 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7274 }
7275
7276 return req;
7277 }
7278
7279 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7280 size_t nbytes, loff_t off,
7281 enum uclamp_id clamp_id)
7282 {
7283 struct uclamp_request req;
7284 struct task_group *tg;
7285
7286 req = capacity_from_percent(buf);
7287 if (req.ret)
7288 return req.ret;
7289
7290 mutex_lock(&uclamp_mutex);
7291 rcu_read_lock();
7292
7293 tg = css_tg(of_css(of));
7294 if (tg->uclamp_req[clamp_id].value != req.util)
7295 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7296
7297 /*
7298 * Because of not recoverable conversion rounding we keep track of the
7299 * exact requested value
7300 */
7301 tg->uclamp_pct[clamp_id] = req.percent;
7302
7303 /* Update effective clamps to track the most restrictive value */
7304 cpu_util_update_eff(of_css(of));
7305
7306 rcu_read_unlock();
7307 mutex_unlock(&uclamp_mutex);
7308
7309 return nbytes;
7310 }
7311
7312 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7313 char *buf, size_t nbytes,
7314 loff_t off)
7315 {
7316 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7317 }
7318
7319 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7320 char *buf, size_t nbytes,
7321 loff_t off)
7322 {
7323 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7324 }
7325
7326 static inline void cpu_uclamp_print(struct seq_file *sf,
7327 enum uclamp_id clamp_id)
7328 {
7329 struct task_group *tg;
7330 u64 util_clamp;
7331 u64 percent;
7332 u32 rem;
7333
7334 rcu_read_lock();
7335 tg = css_tg(seq_css(sf));
7336 util_clamp = tg->uclamp_req[clamp_id].value;
7337 rcu_read_unlock();
7338
7339 if (util_clamp == SCHED_CAPACITY_SCALE) {
7340 seq_puts(sf, "max\n");
7341 return;
7342 }
7343
7344 percent = tg->uclamp_pct[clamp_id];
7345 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7346 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7347 }
7348
7349 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7350 {
7351 cpu_uclamp_print(sf, UCLAMP_MIN);
7352 return 0;
7353 }
7354
7355 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7356 {
7357 cpu_uclamp_print(sf, UCLAMP_MAX);
7358 return 0;
7359 }
7360 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7361
7362 #ifdef CONFIG_FAIR_GROUP_SCHED
7363 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7364 struct cftype *cftype, u64 shareval)
7365 {
7366 if (shareval > scale_load_down(ULONG_MAX))
7367 shareval = MAX_SHARES;
7368 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7369 }
7370
7371 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7372 struct cftype *cft)
7373 {
7374 struct task_group *tg = css_tg(css);
7375
7376 return (u64) scale_load_down(tg->shares);
7377 }
7378
7379 #ifdef CONFIG_CFS_BANDWIDTH
7380 static DEFINE_MUTEX(cfs_constraints_mutex);
7381
7382 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7383 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7384
7385 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7386
7387 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7388 {
7389 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7390 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7391
7392 if (tg == &root_task_group)
7393 return -EINVAL;
7394
7395 /*
7396 * Ensure we have at some amount of bandwidth every period. This is
7397 * to prevent reaching a state of large arrears when throttled via
7398 * entity_tick() resulting in prolonged exit starvation.
7399 */
7400 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7401 return -EINVAL;
7402
7403 /*
7404 * Likewise, bound things on the otherside by preventing insane quota
7405 * periods. This also allows us to normalize in computing quota
7406 * feasibility.
7407 */
7408 if (period > max_cfs_quota_period)
7409 return -EINVAL;
7410
7411 /*
7412 * Prevent race between setting of cfs_rq->runtime_enabled and
7413 * unthrottle_offline_cfs_rqs().
7414 */
7415 get_online_cpus();
7416 mutex_lock(&cfs_constraints_mutex);
7417 ret = __cfs_schedulable(tg, period, quota);
7418 if (ret)
7419 goto out_unlock;
7420
7421 runtime_enabled = quota != RUNTIME_INF;
7422 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7423 /*
7424 * If we need to toggle cfs_bandwidth_used, off->on must occur
7425 * before making related changes, and on->off must occur afterwards
7426 */
7427 if (runtime_enabled && !runtime_was_enabled)
7428 cfs_bandwidth_usage_inc();
7429 raw_spin_lock_irq(&cfs_b->lock);
7430 cfs_b->period = ns_to_ktime(period);
7431 cfs_b->quota = quota;
7432
7433 __refill_cfs_bandwidth_runtime(cfs_b);
7434
7435 /* Restart the period timer (if active) to handle new period expiry: */
7436 if (runtime_enabled)
7437 start_cfs_bandwidth(cfs_b);
7438
7439 raw_spin_unlock_irq(&cfs_b->lock);
7440
7441 for_each_online_cpu(i) {
7442 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7443 struct rq *rq = cfs_rq->rq;
7444 struct rq_flags rf;
7445
7446 rq_lock_irq(rq, &rf);
7447 cfs_rq->runtime_enabled = runtime_enabled;
7448 cfs_rq->runtime_remaining = 0;
7449
7450 if (cfs_rq->throttled)
7451 unthrottle_cfs_rq(cfs_rq);
7452 rq_unlock_irq(rq, &rf);
7453 }
7454 if (runtime_was_enabled && !runtime_enabled)
7455 cfs_bandwidth_usage_dec();
7456 out_unlock:
7457 mutex_unlock(&cfs_constraints_mutex);
7458 put_online_cpus();
7459
7460 return ret;
7461 }
7462
7463 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7464 {
7465 u64 quota, period;
7466
7467 period = ktime_to_ns(tg->cfs_bandwidth.period);
7468 if (cfs_quota_us < 0)
7469 quota = RUNTIME_INF;
7470 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7471 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7472 else
7473 return -EINVAL;
7474
7475 return tg_set_cfs_bandwidth(tg, period, quota);
7476 }
7477
7478 static long tg_get_cfs_quota(struct task_group *tg)
7479 {
7480 u64 quota_us;
7481
7482 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7483 return -1;
7484
7485 quota_us = tg->cfs_bandwidth.quota;
7486 do_div(quota_us, NSEC_PER_USEC);
7487
7488 return quota_us;
7489 }
7490
7491 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7492 {
7493 u64 quota, period;
7494
7495 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7496 return -EINVAL;
7497
7498 period = (u64)cfs_period_us * NSEC_PER_USEC;
7499 quota = tg->cfs_bandwidth.quota;
7500
7501 return tg_set_cfs_bandwidth(tg, period, quota);
7502 }
7503
7504 static long tg_get_cfs_period(struct task_group *tg)
7505 {
7506 u64 cfs_period_us;
7507
7508 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7509 do_div(cfs_period_us, NSEC_PER_USEC);
7510
7511 return cfs_period_us;
7512 }
7513
7514 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7515 struct cftype *cft)
7516 {
7517 return tg_get_cfs_quota(css_tg(css));
7518 }
7519
7520 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7521 struct cftype *cftype, s64 cfs_quota_us)
7522 {
7523 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7524 }
7525
7526 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7527 struct cftype *cft)
7528 {
7529 return tg_get_cfs_period(css_tg(css));
7530 }
7531
7532 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7533 struct cftype *cftype, u64 cfs_period_us)
7534 {
7535 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7536 }
7537
7538 struct cfs_schedulable_data {
7539 struct task_group *tg;
7540 u64 period, quota;
7541 };
7542
7543 /*
7544 * normalize group quota/period to be quota/max_period
7545 * note: units are usecs
7546 */
7547 static u64 normalize_cfs_quota(struct task_group *tg,
7548 struct cfs_schedulable_data *d)
7549 {
7550 u64 quota, period;
7551
7552 if (tg == d->tg) {
7553 period = d->period;
7554 quota = d->quota;
7555 } else {
7556 period = tg_get_cfs_period(tg);
7557 quota = tg_get_cfs_quota(tg);
7558 }
7559
7560 /* note: these should typically be equivalent */
7561 if (quota == RUNTIME_INF || quota == -1)
7562 return RUNTIME_INF;
7563
7564 return to_ratio(period, quota);
7565 }
7566
7567 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7568 {
7569 struct cfs_schedulable_data *d = data;
7570 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7571 s64 quota = 0, parent_quota = -1;
7572
7573 if (!tg->parent) {
7574 quota = RUNTIME_INF;
7575 } else {
7576 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7577
7578 quota = normalize_cfs_quota(tg, d);
7579 parent_quota = parent_b->hierarchical_quota;
7580
7581 /*
7582 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7583 * always take the min. On cgroup1, only inherit when no
7584 * limit is set:
7585 */
7586 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7587 quota = min(quota, parent_quota);
7588 } else {
7589 if (quota == RUNTIME_INF)
7590 quota = parent_quota;
7591 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7592 return -EINVAL;
7593 }
7594 }
7595 cfs_b->hierarchical_quota = quota;
7596
7597 return 0;
7598 }
7599
7600 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7601 {
7602 int ret;
7603 struct cfs_schedulable_data data = {
7604 .tg = tg,
7605 .period = period,
7606 .quota = quota,
7607 };
7608
7609 if (quota != RUNTIME_INF) {
7610 do_div(data.period, NSEC_PER_USEC);
7611 do_div(data.quota, NSEC_PER_USEC);
7612 }
7613
7614 rcu_read_lock();
7615 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7616 rcu_read_unlock();
7617
7618 return ret;
7619 }
7620
7621 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7622 {
7623 struct task_group *tg = css_tg(seq_css(sf));
7624 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7625
7626 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7627 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7628 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7629
7630 if (schedstat_enabled() && tg != &root_task_group) {
7631 u64 ws = 0;
7632 int i;
7633
7634 for_each_possible_cpu(i)
7635 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7636
7637 seq_printf(sf, "wait_sum %llu\n", ws);
7638 }
7639
7640 return 0;
7641 }
7642 #endif /* CONFIG_CFS_BANDWIDTH */
7643 #endif /* CONFIG_FAIR_GROUP_SCHED */
7644
7645 #ifdef CONFIG_RT_GROUP_SCHED
7646 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7647 struct cftype *cft, s64 val)
7648 {
7649 return sched_group_set_rt_runtime(css_tg(css), val);
7650 }
7651
7652 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7653 struct cftype *cft)
7654 {
7655 return sched_group_rt_runtime(css_tg(css));
7656 }
7657
7658 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7659 struct cftype *cftype, u64 rt_period_us)
7660 {
7661 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7662 }
7663
7664 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7665 struct cftype *cft)
7666 {
7667 return sched_group_rt_period(css_tg(css));
7668 }
7669 #endif /* CONFIG_RT_GROUP_SCHED */
7670
7671 static struct cftype cpu_legacy_files[] = {
7672 #ifdef CONFIG_FAIR_GROUP_SCHED
7673 {
7674 .name = "shares",
7675 .read_u64 = cpu_shares_read_u64,
7676 .write_u64 = cpu_shares_write_u64,
7677 },
7678 #endif
7679 #ifdef CONFIG_CFS_BANDWIDTH
7680 {
7681 .name = "cfs_quota_us",
7682 .read_s64 = cpu_cfs_quota_read_s64,
7683 .write_s64 = cpu_cfs_quota_write_s64,
7684 },
7685 {
7686 .name = "cfs_period_us",
7687 .read_u64 = cpu_cfs_period_read_u64,
7688 .write_u64 = cpu_cfs_period_write_u64,
7689 },
7690 {
7691 .name = "stat",
7692 .seq_show = cpu_cfs_stat_show,
7693 },
7694 #endif
7695 #ifdef CONFIG_RT_GROUP_SCHED
7696 {
7697 .name = "rt_runtime_us",
7698 .read_s64 = cpu_rt_runtime_read,
7699 .write_s64 = cpu_rt_runtime_write,
7700 },
7701 {
7702 .name = "rt_period_us",
7703 .read_u64 = cpu_rt_period_read_uint,
7704 .write_u64 = cpu_rt_period_write_uint,
7705 },
7706 #endif
7707 #ifdef CONFIG_UCLAMP_TASK_GROUP
7708 {
7709 .name = "uclamp.min",
7710 .flags = CFTYPE_NOT_ON_ROOT,
7711 .seq_show = cpu_uclamp_min_show,
7712 .write = cpu_uclamp_min_write,
7713 },
7714 {
7715 .name = "uclamp.max",
7716 .flags = CFTYPE_NOT_ON_ROOT,
7717 .seq_show = cpu_uclamp_max_show,
7718 .write = cpu_uclamp_max_write,
7719 },
7720 #endif
7721 { } /* Terminate */
7722 };
7723
7724 static int cpu_extra_stat_show(struct seq_file *sf,
7725 struct cgroup_subsys_state *css)
7726 {
7727 #ifdef CONFIG_CFS_BANDWIDTH
7728 {
7729 struct task_group *tg = css_tg(css);
7730 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7731 u64 throttled_usec;
7732
7733 throttled_usec = cfs_b->throttled_time;
7734 do_div(throttled_usec, NSEC_PER_USEC);
7735
7736 seq_printf(sf, "nr_periods %d\n"
7737 "nr_throttled %d\n"
7738 "throttled_usec %llu\n",
7739 cfs_b->nr_periods, cfs_b->nr_throttled,
7740 throttled_usec);
7741 }
7742 #endif
7743 return 0;
7744 }
7745
7746 #ifdef CONFIG_FAIR_GROUP_SCHED
7747 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7748 struct cftype *cft)
7749 {
7750 struct task_group *tg = css_tg(css);
7751 u64 weight = scale_load_down(tg->shares);
7752
7753 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7754 }
7755
7756 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7757 struct cftype *cft, u64 weight)
7758 {
7759 /*
7760 * cgroup weight knobs should use the common MIN, DFL and MAX
7761 * values which are 1, 100 and 10000 respectively. While it loses
7762 * a bit of range on both ends, it maps pretty well onto the shares
7763 * value used by scheduler and the round-trip conversions preserve
7764 * the original value over the entire range.
7765 */
7766 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7767 return -ERANGE;
7768
7769 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7770
7771 return sched_group_set_shares(css_tg(css), scale_load(weight));
7772 }
7773
7774 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7775 struct cftype *cft)
7776 {
7777 unsigned long weight = scale_load_down(css_tg(css)->shares);
7778 int last_delta = INT_MAX;
7779 int prio, delta;
7780
7781 /* find the closest nice value to the current weight */
7782 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7783 delta = abs(sched_prio_to_weight[prio] - weight);
7784 if (delta >= last_delta)
7785 break;
7786 last_delta = delta;
7787 }
7788
7789 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7790 }
7791
7792 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7793 struct cftype *cft, s64 nice)
7794 {
7795 unsigned long weight;
7796 int idx;
7797
7798 if (nice < MIN_NICE || nice > MAX_NICE)
7799 return -ERANGE;
7800
7801 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7802 idx = array_index_nospec(idx, 40);
7803 weight = sched_prio_to_weight[idx];
7804
7805 return sched_group_set_shares(css_tg(css), scale_load(weight));
7806 }
7807 #endif
7808
7809 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7810 long period, long quota)
7811 {
7812 if (quota < 0)
7813 seq_puts(sf, "max");
7814 else
7815 seq_printf(sf, "%ld", quota);
7816
7817 seq_printf(sf, " %ld\n", period);
7818 }
7819
7820 /* caller should put the current value in *@periodp before calling */
7821 static int __maybe_unused cpu_period_quota_parse(char *buf,
7822 u64 *periodp, u64 *quotap)
7823 {
7824 char tok[21]; /* U64_MAX */
7825
7826 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7827 return -EINVAL;
7828
7829 *periodp *= NSEC_PER_USEC;
7830
7831 if (sscanf(tok, "%llu", quotap))
7832 *quotap *= NSEC_PER_USEC;
7833 else if (!strcmp(tok, "max"))
7834 *quotap = RUNTIME_INF;
7835 else
7836 return -EINVAL;
7837
7838 return 0;
7839 }
7840
7841 #ifdef CONFIG_CFS_BANDWIDTH
7842 static int cpu_max_show(struct seq_file *sf, void *v)
7843 {
7844 struct task_group *tg = css_tg(seq_css(sf));
7845
7846 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7847 return 0;
7848 }
7849
7850 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7851 char *buf, size_t nbytes, loff_t off)
7852 {
7853 struct task_group *tg = css_tg(of_css(of));
7854 u64 period = tg_get_cfs_period(tg);
7855 u64 quota;
7856 int ret;
7857
7858 ret = cpu_period_quota_parse(buf, &period, &quota);
7859 if (!ret)
7860 ret = tg_set_cfs_bandwidth(tg, period, quota);
7861 return ret ?: nbytes;
7862 }
7863 #endif
7864
7865 static struct cftype cpu_files[] = {
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 {
7868 .name = "weight",
7869 .flags = CFTYPE_NOT_ON_ROOT,
7870 .read_u64 = cpu_weight_read_u64,
7871 .write_u64 = cpu_weight_write_u64,
7872 },
7873 {
7874 .name = "weight.nice",
7875 .flags = CFTYPE_NOT_ON_ROOT,
7876 .read_s64 = cpu_weight_nice_read_s64,
7877 .write_s64 = cpu_weight_nice_write_s64,
7878 },
7879 #endif
7880 #ifdef CONFIG_CFS_BANDWIDTH
7881 {
7882 .name = "max",
7883 .flags = CFTYPE_NOT_ON_ROOT,
7884 .seq_show = cpu_max_show,
7885 .write = cpu_max_write,
7886 },
7887 #endif
7888 #ifdef CONFIG_UCLAMP_TASK_GROUP
7889 {
7890 .name = "uclamp.min",
7891 .flags = CFTYPE_NOT_ON_ROOT,
7892 .seq_show = cpu_uclamp_min_show,
7893 .write = cpu_uclamp_min_write,
7894 },
7895 {
7896 .name = "uclamp.max",
7897 .flags = CFTYPE_NOT_ON_ROOT,
7898 .seq_show = cpu_uclamp_max_show,
7899 .write = cpu_uclamp_max_write,
7900 },
7901 #endif
7902 { } /* terminate */
7903 };
7904
7905 struct cgroup_subsys cpu_cgrp_subsys = {
7906 .css_alloc = cpu_cgroup_css_alloc,
7907 .css_online = cpu_cgroup_css_online,
7908 .css_released = cpu_cgroup_css_released,
7909 .css_free = cpu_cgroup_css_free,
7910 .css_extra_stat_show = cpu_extra_stat_show,
7911 .fork = cpu_cgroup_fork,
7912 .can_attach = cpu_cgroup_can_attach,
7913 .attach = cpu_cgroup_attach,
7914 .legacy_cftypes = cpu_legacy_files,
7915 .dfl_cftypes = cpu_files,
7916 .early_init = true,
7917 .threaded = true,
7918 };
7919
7920 #endif /* CONFIG_CGROUP_SCHED */
7921
7922 void dump_cpu_task(int cpu)
7923 {
7924 pr_info("Task dump for CPU %d:\n", cpu);
7925 sched_show_task(cpu_curr(cpu));
7926 }
7927
7928 /*
7929 * Nice levels are multiplicative, with a gentle 10% change for every
7930 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7931 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7932 * that remained on nice 0.
7933 *
7934 * The "10% effect" is relative and cumulative: from _any_ nice level,
7935 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7936 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7937 * If a task goes up by ~10% and another task goes down by ~10% then
7938 * the relative distance between them is ~25%.)
7939 */
7940 const int sched_prio_to_weight[40] = {
7941 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7942 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7943 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7944 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7945 /* 0 */ 1024, 820, 655, 526, 423,
7946 /* 5 */ 335, 272, 215, 172, 137,
7947 /* 10 */ 110, 87, 70, 56, 45,
7948 /* 15 */ 36, 29, 23, 18, 15,
7949 };
7950
7951 /*
7952 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7953 *
7954 * In cases where the weight does not change often, we can use the
7955 * precalculated inverse to speed up arithmetics by turning divisions
7956 * into multiplications:
7957 */
7958 const u32 sched_prio_to_wmult[40] = {
7959 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7960 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7961 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7962 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7963 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7964 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7965 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7966 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7967 };
7968
7969 #undef CREATE_TRACE_POINTS