]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/core.c
ARM: at91: remove atmel_nand_data
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/cpuset.h>
14 #include <linux/delayacct.h>
15 #include <linux/init_task.h>
16 #include <linux/context_tracking.h>
17 #include <linux/rcupdate_wait.h>
18
19 #include <linux/blkdev.h>
20 #include <linux/kprobes.h>
21 #include <linux/mmu_context.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/prefetch.h>
25 #include <linux/profile.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28
29 #include <asm/switch_to.h>
30 #include <asm/tlb.h>
31 #ifdef CONFIG_PARAVIRT
32 #include <asm/paravirt.h>
33 #endif
34
35 #include "sched.h"
36 #include "../workqueue_internal.h"
37 #include "../smpboot.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/sched.h>
41
42 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43
44 /*
45 * Debugging: various feature bits
46 */
47
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50
51 const_debug unsigned int sysctl_sched_features =
52 #include "features.h"
53 0;
54
55 #undef SCHED_FEAT
56
57 /*
58 * Number of tasks to iterate in a single balance run.
59 * Limited because this is done with IRQs disabled.
60 */
61 const_debug unsigned int sysctl_sched_nr_migrate = 32;
62
63 /*
64 * period over which we average the RT time consumption, measured
65 * in ms.
66 *
67 * default: 1s
68 */
69 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
70
71 /*
72 * period over which we measure -rt task CPU usage in us.
73 * default: 1s
74 */
75 unsigned int sysctl_sched_rt_period = 1000000;
76
77 __read_mostly int scheduler_running;
78
79 /*
80 * part of the period that we allow rt tasks to run in us.
81 * default: 0.95s
82 */
83 int sysctl_sched_rt_runtime = 950000;
84
85 /* CPUs with isolated domains */
86 cpumask_var_t cpu_isolated_map;
87
88 /*
89 * __task_rq_lock - lock the rq @p resides on.
90 */
91 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 __acquires(rq->lock)
93 {
94 struct rq *rq;
95
96 lockdep_assert_held(&p->pi_lock);
97
98 for (;;) {
99 rq = task_rq(p);
100 raw_spin_lock(&rq->lock);
101 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
102 rq_pin_lock(rq, rf);
103 return rq;
104 }
105 raw_spin_unlock(&rq->lock);
106
107 while (unlikely(task_on_rq_migrating(p)))
108 cpu_relax();
109 }
110 }
111
112 /*
113 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
114 */
115 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
116 __acquires(p->pi_lock)
117 __acquires(rq->lock)
118 {
119 struct rq *rq;
120
121 for (;;) {
122 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
123 rq = task_rq(p);
124 raw_spin_lock(&rq->lock);
125 /*
126 * move_queued_task() task_rq_lock()
127 *
128 * ACQUIRE (rq->lock)
129 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
130 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
131 * [S] ->cpu = new_cpu [L] task_rq()
132 * [L] ->on_rq
133 * RELEASE (rq->lock)
134 *
135 * If we observe the old cpu in task_rq_lock, the acquire of
136 * the old rq->lock will fully serialize against the stores.
137 *
138 * If we observe the new CPU in task_rq_lock, the acquire will
139 * pair with the WMB to ensure we must then also see migrating.
140 */
141 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
142 rq_pin_lock(rq, rf);
143 return rq;
144 }
145 raw_spin_unlock(&rq->lock);
146 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
147
148 while (unlikely(task_on_rq_migrating(p)))
149 cpu_relax();
150 }
151 }
152
153 /*
154 * RQ-clock updating methods:
155 */
156
157 static void update_rq_clock_task(struct rq *rq, s64 delta)
158 {
159 /*
160 * In theory, the compile should just see 0 here, and optimize out the call
161 * to sched_rt_avg_update. But I don't trust it...
162 */
163 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
164 s64 steal = 0, irq_delta = 0;
165 #endif
166 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
167 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
168
169 /*
170 * Since irq_time is only updated on {soft,}irq_exit, we might run into
171 * this case when a previous update_rq_clock() happened inside a
172 * {soft,}irq region.
173 *
174 * When this happens, we stop ->clock_task and only update the
175 * prev_irq_time stamp to account for the part that fit, so that a next
176 * update will consume the rest. This ensures ->clock_task is
177 * monotonic.
178 *
179 * It does however cause some slight miss-attribution of {soft,}irq
180 * time, a more accurate solution would be to update the irq_time using
181 * the current rq->clock timestamp, except that would require using
182 * atomic ops.
183 */
184 if (irq_delta > delta)
185 irq_delta = delta;
186
187 rq->prev_irq_time += irq_delta;
188 delta -= irq_delta;
189 #endif
190 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
191 if (static_key_false((&paravirt_steal_rq_enabled))) {
192 steal = paravirt_steal_clock(cpu_of(rq));
193 steal -= rq->prev_steal_time_rq;
194
195 if (unlikely(steal > delta))
196 steal = delta;
197
198 rq->prev_steal_time_rq += steal;
199 delta -= steal;
200 }
201 #endif
202
203 rq->clock_task += delta;
204
205 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
206 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
207 sched_rt_avg_update(rq, irq_delta + steal);
208 #endif
209 }
210
211 void update_rq_clock(struct rq *rq)
212 {
213 s64 delta;
214
215 lockdep_assert_held(&rq->lock);
216
217 if (rq->clock_update_flags & RQCF_ACT_SKIP)
218 return;
219
220 #ifdef CONFIG_SCHED_DEBUG
221 if (sched_feat(WARN_DOUBLE_CLOCK))
222 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
223 rq->clock_update_flags |= RQCF_UPDATED;
224 #endif
225
226 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
227 if (delta < 0)
228 return;
229 rq->clock += delta;
230 update_rq_clock_task(rq, delta);
231 }
232
233
234 #ifdef CONFIG_SCHED_HRTICK
235 /*
236 * Use HR-timers to deliver accurate preemption points.
237 */
238
239 static void hrtick_clear(struct rq *rq)
240 {
241 if (hrtimer_active(&rq->hrtick_timer))
242 hrtimer_cancel(&rq->hrtick_timer);
243 }
244
245 /*
246 * High-resolution timer tick.
247 * Runs from hardirq context with interrupts disabled.
248 */
249 static enum hrtimer_restart hrtick(struct hrtimer *timer)
250 {
251 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
252 struct rq_flags rf;
253
254 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
255
256 rq_lock(rq, &rf);
257 update_rq_clock(rq);
258 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
259 rq_unlock(rq, &rf);
260
261 return HRTIMER_NORESTART;
262 }
263
264 #ifdef CONFIG_SMP
265
266 static void __hrtick_restart(struct rq *rq)
267 {
268 struct hrtimer *timer = &rq->hrtick_timer;
269
270 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
271 }
272
273 /*
274 * called from hardirq (IPI) context
275 */
276 static void __hrtick_start(void *arg)
277 {
278 struct rq *rq = arg;
279 struct rq_flags rf;
280
281 rq_lock(rq, &rf);
282 __hrtick_restart(rq);
283 rq->hrtick_csd_pending = 0;
284 rq_unlock(rq, &rf);
285 }
286
287 /*
288 * Called to set the hrtick timer state.
289 *
290 * called with rq->lock held and irqs disabled
291 */
292 void hrtick_start(struct rq *rq, u64 delay)
293 {
294 struct hrtimer *timer = &rq->hrtick_timer;
295 ktime_t time;
296 s64 delta;
297
298 /*
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense and can cause timer DoS.
301 */
302 delta = max_t(s64, delay, 10000LL);
303 time = ktime_add_ns(timer->base->get_time(), delta);
304
305 hrtimer_set_expires(timer, time);
306
307 if (rq == this_rq()) {
308 __hrtick_restart(rq);
309 } else if (!rq->hrtick_csd_pending) {
310 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
311 rq->hrtick_csd_pending = 1;
312 }
313 }
314
315 #else
316 /*
317 * Called to set the hrtick timer state.
318 *
319 * called with rq->lock held and irqs disabled
320 */
321 void hrtick_start(struct rq *rq, u64 delay)
322 {
323 /*
324 * Don't schedule slices shorter than 10000ns, that just
325 * doesn't make sense. Rely on vruntime for fairness.
326 */
327 delay = max_t(u64, delay, 10000LL);
328 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
329 HRTIMER_MODE_REL_PINNED);
330 }
331 #endif /* CONFIG_SMP */
332
333 static void init_rq_hrtick(struct rq *rq)
334 {
335 #ifdef CONFIG_SMP
336 rq->hrtick_csd_pending = 0;
337
338 rq->hrtick_csd.flags = 0;
339 rq->hrtick_csd.func = __hrtick_start;
340 rq->hrtick_csd.info = rq;
341 #endif
342
343 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
344 rq->hrtick_timer.function = hrtick;
345 }
346 #else /* CONFIG_SCHED_HRTICK */
347 static inline void hrtick_clear(struct rq *rq)
348 {
349 }
350
351 static inline void init_rq_hrtick(struct rq *rq)
352 {
353 }
354 #endif /* CONFIG_SCHED_HRTICK */
355
356 /*
357 * cmpxchg based fetch_or, macro so it works for different integer types
358 */
359 #define fetch_or(ptr, mask) \
360 ({ \
361 typeof(ptr) _ptr = (ptr); \
362 typeof(mask) _mask = (mask); \
363 typeof(*_ptr) _old, _val = *_ptr; \
364 \
365 for (;;) { \
366 _old = cmpxchg(_ptr, _val, _val | _mask); \
367 if (_old == _val) \
368 break; \
369 _val = _old; \
370 } \
371 _old; \
372 })
373
374 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
375 /*
376 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
377 * this avoids any races wrt polling state changes and thereby avoids
378 * spurious IPIs.
379 */
380 static bool set_nr_and_not_polling(struct task_struct *p)
381 {
382 struct thread_info *ti = task_thread_info(p);
383 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
384 }
385
386 /*
387 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
388 *
389 * If this returns true, then the idle task promises to call
390 * sched_ttwu_pending() and reschedule soon.
391 */
392 static bool set_nr_if_polling(struct task_struct *p)
393 {
394 struct thread_info *ti = task_thread_info(p);
395 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
396
397 for (;;) {
398 if (!(val & _TIF_POLLING_NRFLAG))
399 return false;
400 if (val & _TIF_NEED_RESCHED)
401 return true;
402 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
403 if (old == val)
404 break;
405 val = old;
406 }
407 return true;
408 }
409
410 #else
411 static bool set_nr_and_not_polling(struct task_struct *p)
412 {
413 set_tsk_need_resched(p);
414 return true;
415 }
416
417 #ifdef CONFIG_SMP
418 static bool set_nr_if_polling(struct task_struct *p)
419 {
420 return false;
421 }
422 #endif
423 #endif
424
425 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
426 {
427 struct wake_q_node *node = &task->wake_q;
428
429 /*
430 * Atomically grab the task, if ->wake_q is !nil already it means
431 * its already queued (either by us or someone else) and will get the
432 * wakeup due to that.
433 *
434 * This cmpxchg() implies a full barrier, which pairs with the write
435 * barrier implied by the wakeup in wake_up_q().
436 */
437 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
438 return;
439
440 get_task_struct(task);
441
442 /*
443 * The head is context local, there can be no concurrency.
444 */
445 *head->lastp = node;
446 head->lastp = &node->next;
447 }
448
449 void wake_up_q(struct wake_q_head *head)
450 {
451 struct wake_q_node *node = head->first;
452
453 while (node != WAKE_Q_TAIL) {
454 struct task_struct *task;
455
456 task = container_of(node, struct task_struct, wake_q);
457 BUG_ON(!task);
458 /* Task can safely be re-inserted now: */
459 node = node->next;
460 task->wake_q.next = NULL;
461
462 /*
463 * wake_up_process() implies a wmb() to pair with the queueing
464 * in wake_q_add() so as not to miss wakeups.
465 */
466 wake_up_process(task);
467 put_task_struct(task);
468 }
469 }
470
471 /*
472 * resched_curr - mark rq's current task 'to be rescheduled now'.
473 *
474 * On UP this means the setting of the need_resched flag, on SMP it
475 * might also involve a cross-CPU call to trigger the scheduler on
476 * the target CPU.
477 */
478 void resched_curr(struct rq *rq)
479 {
480 struct task_struct *curr = rq->curr;
481 int cpu;
482
483 lockdep_assert_held(&rq->lock);
484
485 if (test_tsk_need_resched(curr))
486 return;
487
488 cpu = cpu_of(rq);
489
490 if (cpu == smp_processor_id()) {
491 set_tsk_need_resched(curr);
492 set_preempt_need_resched();
493 return;
494 }
495
496 if (set_nr_and_not_polling(curr))
497 smp_send_reschedule(cpu);
498 else
499 trace_sched_wake_idle_without_ipi(cpu);
500 }
501
502 void resched_cpu(int cpu)
503 {
504 struct rq *rq = cpu_rq(cpu);
505 unsigned long flags;
506
507 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
508 return;
509 resched_curr(rq);
510 raw_spin_unlock_irqrestore(&rq->lock, flags);
511 }
512
513 #ifdef CONFIG_SMP
514 #ifdef CONFIG_NO_HZ_COMMON
515 /*
516 * In the semi idle case, use the nearest busy CPU for migrating timers
517 * from an idle CPU. This is good for power-savings.
518 *
519 * We don't do similar optimization for completely idle system, as
520 * selecting an idle CPU will add more delays to the timers than intended
521 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
522 */
523 int get_nohz_timer_target(void)
524 {
525 int i, cpu = smp_processor_id();
526 struct sched_domain *sd;
527
528 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
529 return cpu;
530
531 rcu_read_lock();
532 for_each_domain(cpu, sd) {
533 for_each_cpu(i, sched_domain_span(sd)) {
534 if (cpu == i)
535 continue;
536
537 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
538 cpu = i;
539 goto unlock;
540 }
541 }
542 }
543
544 if (!is_housekeeping_cpu(cpu))
545 cpu = housekeeping_any_cpu();
546 unlock:
547 rcu_read_unlock();
548 return cpu;
549 }
550
551 /*
552 * When add_timer_on() enqueues a timer into the timer wheel of an
553 * idle CPU then this timer might expire before the next timer event
554 * which is scheduled to wake up that CPU. In case of a completely
555 * idle system the next event might even be infinite time into the
556 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
557 * leaves the inner idle loop so the newly added timer is taken into
558 * account when the CPU goes back to idle and evaluates the timer
559 * wheel for the next timer event.
560 */
561 static void wake_up_idle_cpu(int cpu)
562 {
563 struct rq *rq = cpu_rq(cpu);
564
565 if (cpu == smp_processor_id())
566 return;
567
568 if (set_nr_and_not_polling(rq->idle))
569 smp_send_reschedule(cpu);
570 else
571 trace_sched_wake_idle_without_ipi(cpu);
572 }
573
574 static bool wake_up_full_nohz_cpu(int cpu)
575 {
576 /*
577 * We just need the target to call irq_exit() and re-evaluate
578 * the next tick. The nohz full kick at least implies that.
579 * If needed we can still optimize that later with an
580 * empty IRQ.
581 */
582 if (cpu_is_offline(cpu))
583 return true; /* Don't try to wake offline CPUs. */
584 if (tick_nohz_full_cpu(cpu)) {
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
587 tick_nohz_full_kick_cpu(cpu);
588 return true;
589 }
590
591 return false;
592 }
593
594 /*
595 * Wake up the specified CPU. If the CPU is going offline, it is the
596 * caller's responsibility to deal with the lost wakeup, for example,
597 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
598 */
599 void wake_up_nohz_cpu(int cpu)
600 {
601 if (!wake_up_full_nohz_cpu(cpu))
602 wake_up_idle_cpu(cpu);
603 }
604
605 static inline bool got_nohz_idle_kick(void)
606 {
607 int cpu = smp_processor_id();
608
609 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
610 return false;
611
612 if (idle_cpu(cpu) && !need_resched())
613 return true;
614
615 /*
616 * We can't run Idle Load Balance on this CPU for this time so we
617 * cancel it and clear NOHZ_BALANCE_KICK
618 */
619 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
620 return false;
621 }
622
623 #else /* CONFIG_NO_HZ_COMMON */
624
625 static inline bool got_nohz_idle_kick(void)
626 {
627 return false;
628 }
629
630 #endif /* CONFIG_NO_HZ_COMMON */
631
632 #ifdef CONFIG_NO_HZ_FULL
633 bool sched_can_stop_tick(struct rq *rq)
634 {
635 int fifo_nr_running;
636
637 /* Deadline tasks, even if single, need the tick */
638 if (rq->dl.dl_nr_running)
639 return false;
640
641 /*
642 * If there are more than one RR tasks, we need the tick to effect the
643 * actual RR behaviour.
644 */
645 if (rq->rt.rr_nr_running) {
646 if (rq->rt.rr_nr_running == 1)
647 return true;
648 else
649 return false;
650 }
651
652 /*
653 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
654 * forced preemption between FIFO tasks.
655 */
656 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
657 if (fifo_nr_running)
658 return true;
659
660 /*
661 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
662 * if there's more than one we need the tick for involuntary
663 * preemption.
664 */
665 if (rq->nr_running > 1)
666 return false;
667
668 return true;
669 }
670 #endif /* CONFIG_NO_HZ_FULL */
671
672 void sched_avg_update(struct rq *rq)
673 {
674 s64 period = sched_avg_period();
675
676 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
677 /*
678 * Inline assembly required to prevent the compiler
679 * optimising this loop into a divmod call.
680 * See __iter_div_u64_rem() for another example of this.
681 */
682 asm("" : "+rm" (rq->age_stamp));
683 rq->age_stamp += period;
684 rq->rt_avg /= 2;
685 }
686 }
687
688 #endif /* CONFIG_SMP */
689
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692 /*
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
697 */
698 int walk_tg_tree_from(struct task_group *from,
699 tg_visitor down, tg_visitor up, void *data)
700 {
701 struct task_group *parent, *child;
702 int ret;
703
704 parent = from;
705
706 down:
707 ret = (*down)(parent, data);
708 if (ret)
709 goto out;
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
711 parent = child;
712 goto down;
713
714 up:
715 continue;
716 }
717 ret = (*up)(parent, data);
718 if (ret || parent == from)
719 goto out;
720
721 child = parent;
722 parent = parent->parent;
723 if (parent)
724 goto up;
725 out:
726 return ret;
727 }
728
729 int tg_nop(struct task_group *tg, void *data)
730 {
731 return 0;
732 }
733 #endif
734
735 static void set_load_weight(struct task_struct *p)
736 {
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
739
740 /*
741 * SCHED_IDLE tasks get minimal weight:
742 */
743 if (idle_policy(p->policy)) {
744 load->weight = scale_load(WEIGHT_IDLEPRIO);
745 load->inv_weight = WMULT_IDLEPRIO;
746 return;
747 }
748
749 load->weight = scale_load(sched_prio_to_weight[prio]);
750 load->inv_weight = sched_prio_to_wmult[prio];
751 }
752
753 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754 {
755 if (!(flags & ENQUEUE_NOCLOCK))
756 update_rq_clock(rq);
757
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760
761 p->sched_class->enqueue_task(rq, p, flags);
762 }
763
764 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 if (!(flags & DEQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
771
772 p->sched_class->dequeue_task(rq, p, flags);
773 }
774
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
780 enqueue_task(rq, p, flags);
781 }
782
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
788 dequeue_task(rq, p, flags);
789 }
790
791 void sched_set_stop_task(int cpu, struct task_struct *stop)
792 {
793 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
794 struct task_struct *old_stop = cpu_rq(cpu)->stop;
795
796 if (stop) {
797 /*
798 * Make it appear like a SCHED_FIFO task, its something
799 * userspace knows about and won't get confused about.
800 *
801 * Also, it will make PI more or less work without too
802 * much confusion -- but then, stop work should not
803 * rely on PI working anyway.
804 */
805 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
806
807 stop->sched_class = &stop_sched_class;
808 }
809
810 cpu_rq(cpu)->stop = stop;
811
812 if (old_stop) {
813 /*
814 * Reset it back to a normal scheduling class so that
815 * it can die in pieces.
816 */
817 old_stop->sched_class = &rt_sched_class;
818 }
819 }
820
821 /*
822 * __normal_prio - return the priority that is based on the static prio
823 */
824 static inline int __normal_prio(struct task_struct *p)
825 {
826 return p->static_prio;
827 }
828
829 /*
830 * Calculate the expected normal priority: i.e. priority
831 * without taking RT-inheritance into account. Might be
832 * boosted by interactivity modifiers. Changes upon fork,
833 * setprio syscalls, and whenever the interactivity
834 * estimator recalculates.
835 */
836 static inline int normal_prio(struct task_struct *p)
837 {
838 int prio;
839
840 if (task_has_dl_policy(p))
841 prio = MAX_DL_PRIO-1;
842 else if (task_has_rt_policy(p))
843 prio = MAX_RT_PRIO-1 - p->rt_priority;
844 else
845 prio = __normal_prio(p);
846 return prio;
847 }
848
849 /*
850 * Calculate the current priority, i.e. the priority
851 * taken into account by the scheduler. This value might
852 * be boosted by RT tasks, or might be boosted by
853 * interactivity modifiers. Will be RT if the task got
854 * RT-boosted. If not then it returns p->normal_prio.
855 */
856 static int effective_prio(struct task_struct *p)
857 {
858 p->normal_prio = normal_prio(p);
859 /*
860 * If we are RT tasks or we were boosted to RT priority,
861 * keep the priority unchanged. Otherwise, update priority
862 * to the normal priority:
863 */
864 if (!rt_prio(p->prio))
865 return p->normal_prio;
866 return p->prio;
867 }
868
869 /**
870 * task_curr - is this task currently executing on a CPU?
871 * @p: the task in question.
872 *
873 * Return: 1 if the task is currently executing. 0 otherwise.
874 */
875 inline int task_curr(const struct task_struct *p)
876 {
877 return cpu_curr(task_cpu(p)) == p;
878 }
879
880 /*
881 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
882 * use the balance_callback list if you want balancing.
883 *
884 * this means any call to check_class_changed() must be followed by a call to
885 * balance_callback().
886 */
887 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
888 const struct sched_class *prev_class,
889 int oldprio)
890 {
891 if (prev_class != p->sched_class) {
892 if (prev_class->switched_from)
893 prev_class->switched_from(rq, p);
894
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio || dl_task(p))
897 p->sched_class->prio_changed(rq, p, oldprio);
898 }
899
900 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 {
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_curr(rq);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
921 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922 rq_clock_skip_update(rq, true);
923 }
924
925 #ifdef CONFIG_SMP
926 /*
927 * This is how migration works:
928 *
929 * 1) we invoke migration_cpu_stop() on the target CPU using
930 * stop_one_cpu().
931 * 2) stopper starts to run (implicitly forcing the migrated thread
932 * off the CPU)
933 * 3) it checks whether the migrated task is still in the wrong runqueue.
934 * 4) if it's in the wrong runqueue then the migration thread removes
935 * it and puts it into the right queue.
936 * 5) stopper completes and stop_one_cpu() returns and the migration
937 * is done.
938 */
939
940 /*
941 * move_queued_task - move a queued task to new rq.
942 *
943 * Returns (locked) new rq. Old rq's lock is released.
944 */
945 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
946 struct task_struct *p, int new_cpu)
947 {
948 lockdep_assert_held(&rq->lock);
949
950 p->on_rq = TASK_ON_RQ_MIGRATING;
951 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
952 set_task_cpu(p, new_cpu);
953 rq_unlock(rq, rf);
954
955 rq = cpu_rq(new_cpu);
956
957 rq_lock(rq, rf);
958 BUG_ON(task_cpu(p) != new_cpu);
959 enqueue_task(rq, p, 0);
960 p->on_rq = TASK_ON_RQ_QUEUED;
961 check_preempt_curr(rq, p, 0);
962
963 return rq;
964 }
965
966 struct migration_arg {
967 struct task_struct *task;
968 int dest_cpu;
969 };
970
971 /*
972 * Move (not current) task off this CPU, onto the destination CPU. We're doing
973 * this because either it can't run here any more (set_cpus_allowed()
974 * away from this CPU, or CPU going down), or because we're
975 * attempting to rebalance this task on exec (sched_exec).
976 *
977 * So we race with normal scheduler movements, but that's OK, as long
978 * as the task is no longer on this CPU.
979 */
980 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
981 struct task_struct *p, int dest_cpu)
982 {
983 if (unlikely(!cpu_active(dest_cpu)))
984 return rq;
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
988 return rq;
989
990 update_rq_clock(rq);
991 rq = move_queued_task(rq, rf, p, dest_cpu);
992
993 return rq;
994 }
995
996 /*
997 * migration_cpu_stop - this will be executed by a highprio stopper thread
998 * and performs thread migration by bumping thread off CPU then
999 * 'pushing' onto another runqueue.
1000 */
1001 static int migration_cpu_stop(void *data)
1002 {
1003 struct migration_arg *arg = data;
1004 struct task_struct *p = arg->task;
1005 struct rq *rq = this_rq();
1006 struct rq_flags rf;
1007
1008 /*
1009 * The original target CPU might have gone down and we might
1010 * be on another CPU but it doesn't matter.
1011 */
1012 local_irq_disable();
1013 /*
1014 * We need to explicitly wake pending tasks before running
1015 * __migrate_task() such that we will not miss enforcing cpus_allowed
1016 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1017 */
1018 sched_ttwu_pending();
1019
1020 raw_spin_lock(&p->pi_lock);
1021 rq_lock(rq, &rf);
1022 /*
1023 * If task_rq(p) != rq, it cannot be migrated here, because we're
1024 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1025 * we're holding p->pi_lock.
1026 */
1027 if (task_rq(p) == rq) {
1028 if (task_on_rq_queued(p))
1029 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1030 else
1031 p->wake_cpu = arg->dest_cpu;
1032 }
1033 rq_unlock(rq, &rf);
1034 raw_spin_unlock(&p->pi_lock);
1035
1036 local_irq_enable();
1037 return 0;
1038 }
1039
1040 /*
1041 * sched_class::set_cpus_allowed must do the below, but is not required to
1042 * actually call this function.
1043 */
1044 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 cpumask_copy(&p->cpus_allowed, new_mask);
1047 p->nr_cpus_allowed = cpumask_weight(new_mask);
1048 }
1049
1050 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1051 {
1052 struct rq *rq = task_rq(p);
1053 bool queued, running;
1054
1055 lockdep_assert_held(&p->pi_lock);
1056
1057 queued = task_on_rq_queued(p);
1058 running = task_current(rq, p);
1059
1060 if (queued) {
1061 /*
1062 * Because __kthread_bind() calls this on blocked tasks without
1063 * holding rq->lock.
1064 */
1065 lockdep_assert_held(&rq->lock);
1066 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1067 }
1068 if (running)
1069 put_prev_task(rq, p);
1070
1071 p->sched_class->set_cpus_allowed(p, new_mask);
1072
1073 if (queued)
1074 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1075 if (running)
1076 set_curr_task(rq, p);
1077 }
1078
1079 /*
1080 * Change a given task's CPU affinity. Migrate the thread to a
1081 * proper CPU and schedule it away if the CPU it's executing on
1082 * is removed from the allowed bitmask.
1083 *
1084 * NOTE: the caller must have a valid reference to the task, the
1085 * task must not exit() & deallocate itself prematurely. The
1086 * call is not atomic; no spinlocks may be held.
1087 */
1088 static int __set_cpus_allowed_ptr(struct task_struct *p,
1089 const struct cpumask *new_mask, bool check)
1090 {
1091 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1092 unsigned int dest_cpu;
1093 struct rq_flags rf;
1094 struct rq *rq;
1095 int ret = 0;
1096
1097 rq = task_rq_lock(p, &rf);
1098 update_rq_clock(rq);
1099
1100 if (p->flags & PF_KTHREAD) {
1101 /*
1102 * Kernel threads are allowed on online && !active CPUs
1103 */
1104 cpu_valid_mask = cpu_online_mask;
1105 }
1106
1107 /*
1108 * Must re-check here, to close a race against __kthread_bind(),
1109 * sched_setaffinity() is not guaranteed to observe the flag.
1110 */
1111 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1112 ret = -EINVAL;
1113 goto out;
1114 }
1115
1116 if (cpumask_equal(&p->cpus_allowed, new_mask))
1117 goto out;
1118
1119 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 do_set_cpus_allowed(p, new_mask);
1125
1126 if (p->flags & PF_KTHREAD) {
1127 /*
1128 * For kernel threads that do indeed end up on online &&
1129 * !active we want to ensure they are strict per-CPU threads.
1130 */
1131 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1132 !cpumask_intersects(new_mask, cpu_active_mask) &&
1133 p->nr_cpus_allowed != 1);
1134 }
1135
1136 /* Can the task run on the task's current CPU? If so, we're done */
1137 if (cpumask_test_cpu(task_cpu(p), new_mask))
1138 goto out;
1139
1140 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1141 if (task_running(rq, p) || p->state == TASK_WAKING) {
1142 struct migration_arg arg = { p, dest_cpu };
1143 /* Need help from migration thread: drop lock and wait. */
1144 task_rq_unlock(rq, p, &rf);
1145 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1146 tlb_migrate_finish(p->mm);
1147 return 0;
1148 } else if (task_on_rq_queued(p)) {
1149 /*
1150 * OK, since we're going to drop the lock immediately
1151 * afterwards anyway.
1152 */
1153 rq = move_queued_task(rq, &rf, p, dest_cpu);
1154 }
1155 out:
1156 task_rq_unlock(rq, p, &rf);
1157
1158 return ret;
1159 }
1160
1161 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 return __set_cpus_allowed_ptr(p, new_mask, false);
1164 }
1165 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1166
1167 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1168 {
1169 #ifdef CONFIG_SCHED_DEBUG
1170 /*
1171 * We should never call set_task_cpu() on a blocked task,
1172 * ttwu() will sort out the placement.
1173 */
1174 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1175 !p->on_rq);
1176
1177 /*
1178 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1179 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1180 * time relying on p->on_rq.
1181 */
1182 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1183 p->sched_class == &fair_sched_class &&
1184 (p->on_rq && !task_on_rq_migrating(p)));
1185
1186 #ifdef CONFIG_LOCKDEP
1187 /*
1188 * The caller should hold either p->pi_lock or rq->lock, when changing
1189 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1190 *
1191 * sched_move_task() holds both and thus holding either pins the cgroup,
1192 * see task_group().
1193 *
1194 * Furthermore, all task_rq users should acquire both locks, see
1195 * task_rq_lock().
1196 */
1197 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1198 lockdep_is_held(&task_rq(p)->lock)));
1199 #endif
1200 #endif
1201
1202 trace_sched_migrate_task(p, new_cpu);
1203
1204 if (task_cpu(p) != new_cpu) {
1205 if (p->sched_class->migrate_task_rq)
1206 p->sched_class->migrate_task_rq(p);
1207 p->se.nr_migrations++;
1208 perf_event_task_migrate(p);
1209 }
1210
1211 __set_task_cpu(p, new_cpu);
1212 }
1213
1214 static void __migrate_swap_task(struct task_struct *p, int cpu)
1215 {
1216 if (task_on_rq_queued(p)) {
1217 struct rq *src_rq, *dst_rq;
1218 struct rq_flags srf, drf;
1219
1220 src_rq = task_rq(p);
1221 dst_rq = cpu_rq(cpu);
1222
1223 rq_pin_lock(src_rq, &srf);
1224 rq_pin_lock(dst_rq, &drf);
1225
1226 p->on_rq = TASK_ON_RQ_MIGRATING;
1227 deactivate_task(src_rq, p, 0);
1228 set_task_cpu(p, cpu);
1229 activate_task(dst_rq, p, 0);
1230 p->on_rq = TASK_ON_RQ_QUEUED;
1231 check_preempt_curr(dst_rq, p, 0);
1232
1233 rq_unpin_lock(dst_rq, &drf);
1234 rq_unpin_lock(src_rq, &srf);
1235
1236 } else {
1237 /*
1238 * Task isn't running anymore; make it appear like we migrated
1239 * it before it went to sleep. This means on wakeup we make the
1240 * previous CPU our target instead of where it really is.
1241 */
1242 p->wake_cpu = cpu;
1243 }
1244 }
1245
1246 struct migration_swap_arg {
1247 struct task_struct *src_task, *dst_task;
1248 int src_cpu, dst_cpu;
1249 };
1250
1251 static int migrate_swap_stop(void *data)
1252 {
1253 struct migration_swap_arg *arg = data;
1254 struct rq *src_rq, *dst_rq;
1255 int ret = -EAGAIN;
1256
1257 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1258 return -EAGAIN;
1259
1260 src_rq = cpu_rq(arg->src_cpu);
1261 dst_rq = cpu_rq(arg->dst_cpu);
1262
1263 double_raw_lock(&arg->src_task->pi_lock,
1264 &arg->dst_task->pi_lock);
1265 double_rq_lock(src_rq, dst_rq);
1266
1267 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1268 goto unlock;
1269
1270 if (task_cpu(arg->src_task) != arg->src_cpu)
1271 goto unlock;
1272
1273 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1274 goto unlock;
1275
1276 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1277 goto unlock;
1278
1279 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1280 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1281
1282 ret = 0;
1283
1284 unlock:
1285 double_rq_unlock(src_rq, dst_rq);
1286 raw_spin_unlock(&arg->dst_task->pi_lock);
1287 raw_spin_unlock(&arg->src_task->pi_lock);
1288
1289 return ret;
1290 }
1291
1292 /*
1293 * Cross migrate two tasks
1294 */
1295 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1296 {
1297 struct migration_swap_arg arg;
1298 int ret = -EINVAL;
1299
1300 arg = (struct migration_swap_arg){
1301 .src_task = cur,
1302 .src_cpu = task_cpu(cur),
1303 .dst_task = p,
1304 .dst_cpu = task_cpu(p),
1305 };
1306
1307 if (arg.src_cpu == arg.dst_cpu)
1308 goto out;
1309
1310 /*
1311 * These three tests are all lockless; this is OK since all of them
1312 * will be re-checked with proper locks held further down the line.
1313 */
1314 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1315 goto out;
1316
1317 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1318 goto out;
1319
1320 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1321 goto out;
1322
1323 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1324 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1325
1326 out:
1327 return ret;
1328 }
1329
1330 /*
1331 * wait_task_inactive - wait for a thread to unschedule.
1332 *
1333 * If @match_state is nonzero, it's the @p->state value just checked and
1334 * not expected to change. If it changes, i.e. @p might have woken up,
1335 * then return zero. When we succeed in waiting for @p to be off its CPU,
1336 * we return a positive number (its total switch count). If a second call
1337 * a short while later returns the same number, the caller can be sure that
1338 * @p has remained unscheduled the whole time.
1339 *
1340 * The caller must ensure that the task *will* unschedule sometime soon,
1341 * else this function might spin for a *long* time. This function can't
1342 * be called with interrupts off, or it may introduce deadlock with
1343 * smp_call_function() if an IPI is sent by the same process we are
1344 * waiting to become inactive.
1345 */
1346 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1347 {
1348 int running, queued;
1349 struct rq_flags rf;
1350 unsigned long ncsw;
1351 struct rq *rq;
1352
1353 for (;;) {
1354 /*
1355 * We do the initial early heuristics without holding
1356 * any task-queue locks at all. We'll only try to get
1357 * the runqueue lock when things look like they will
1358 * work out!
1359 */
1360 rq = task_rq(p);
1361
1362 /*
1363 * If the task is actively running on another CPU
1364 * still, just relax and busy-wait without holding
1365 * any locks.
1366 *
1367 * NOTE! Since we don't hold any locks, it's not
1368 * even sure that "rq" stays as the right runqueue!
1369 * But we don't care, since "task_running()" will
1370 * return false if the runqueue has changed and p
1371 * is actually now running somewhere else!
1372 */
1373 while (task_running(rq, p)) {
1374 if (match_state && unlikely(p->state != match_state))
1375 return 0;
1376 cpu_relax();
1377 }
1378
1379 /*
1380 * Ok, time to look more closely! We need the rq
1381 * lock now, to be *sure*. If we're wrong, we'll
1382 * just go back and repeat.
1383 */
1384 rq = task_rq_lock(p, &rf);
1385 trace_sched_wait_task(p);
1386 running = task_running(rq, p);
1387 queued = task_on_rq_queued(p);
1388 ncsw = 0;
1389 if (!match_state || p->state == match_state)
1390 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1391 task_rq_unlock(rq, p, &rf);
1392
1393 /*
1394 * If it changed from the expected state, bail out now.
1395 */
1396 if (unlikely(!ncsw))
1397 break;
1398
1399 /*
1400 * Was it really running after all now that we
1401 * checked with the proper locks actually held?
1402 *
1403 * Oops. Go back and try again..
1404 */
1405 if (unlikely(running)) {
1406 cpu_relax();
1407 continue;
1408 }
1409
1410 /*
1411 * It's not enough that it's not actively running,
1412 * it must be off the runqueue _entirely_, and not
1413 * preempted!
1414 *
1415 * So if it was still runnable (but just not actively
1416 * running right now), it's preempted, and we should
1417 * yield - it could be a while.
1418 */
1419 if (unlikely(queued)) {
1420 ktime_t to = NSEC_PER_SEC / HZ;
1421
1422 set_current_state(TASK_UNINTERRUPTIBLE);
1423 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1424 continue;
1425 }
1426
1427 /*
1428 * Ahh, all good. It wasn't running, and it wasn't
1429 * runnable, which means that it will never become
1430 * running in the future either. We're all done!
1431 */
1432 break;
1433 }
1434
1435 return ncsw;
1436 }
1437
1438 /***
1439 * kick_process - kick a running thread to enter/exit the kernel
1440 * @p: the to-be-kicked thread
1441 *
1442 * Cause a process which is running on another CPU to enter
1443 * kernel-mode, without any delay. (to get signals handled.)
1444 *
1445 * NOTE: this function doesn't have to take the runqueue lock,
1446 * because all it wants to ensure is that the remote task enters
1447 * the kernel. If the IPI races and the task has been migrated
1448 * to another CPU then no harm is done and the purpose has been
1449 * achieved as well.
1450 */
1451 void kick_process(struct task_struct *p)
1452 {
1453 int cpu;
1454
1455 preempt_disable();
1456 cpu = task_cpu(p);
1457 if ((cpu != smp_processor_id()) && task_curr(p))
1458 smp_send_reschedule(cpu);
1459 preempt_enable();
1460 }
1461 EXPORT_SYMBOL_GPL(kick_process);
1462
1463 /*
1464 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1465 *
1466 * A few notes on cpu_active vs cpu_online:
1467 *
1468 * - cpu_active must be a subset of cpu_online
1469 *
1470 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1471 * see __set_cpus_allowed_ptr(). At this point the newly online
1472 * CPU isn't yet part of the sched domains, and balancing will not
1473 * see it.
1474 *
1475 * - on CPU-down we clear cpu_active() to mask the sched domains and
1476 * avoid the load balancer to place new tasks on the to be removed
1477 * CPU. Existing tasks will remain running there and will be taken
1478 * off.
1479 *
1480 * This means that fallback selection must not select !active CPUs.
1481 * And can assume that any active CPU must be online. Conversely
1482 * select_task_rq() below may allow selection of !active CPUs in order
1483 * to satisfy the above rules.
1484 */
1485 static int select_fallback_rq(int cpu, struct task_struct *p)
1486 {
1487 int nid = cpu_to_node(cpu);
1488 const struct cpumask *nodemask = NULL;
1489 enum { cpuset, possible, fail } state = cpuset;
1490 int dest_cpu;
1491
1492 /*
1493 * If the node that the CPU is on has been offlined, cpu_to_node()
1494 * will return -1. There is no CPU on the node, and we should
1495 * select the CPU on the other node.
1496 */
1497 if (nid != -1) {
1498 nodemask = cpumask_of_node(nid);
1499
1500 /* Look for allowed, online CPU in same node. */
1501 for_each_cpu(dest_cpu, nodemask) {
1502 if (!cpu_active(dest_cpu))
1503 continue;
1504 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1505 return dest_cpu;
1506 }
1507 }
1508
1509 for (;;) {
1510 /* Any allowed, online CPU? */
1511 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1512 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1513 continue;
1514 if (!cpu_online(dest_cpu))
1515 continue;
1516 goto out;
1517 }
1518
1519 /* No more Mr. Nice Guy. */
1520 switch (state) {
1521 case cpuset:
1522 if (IS_ENABLED(CONFIG_CPUSETS)) {
1523 cpuset_cpus_allowed_fallback(p);
1524 state = possible;
1525 break;
1526 }
1527 /* Fall-through */
1528 case possible:
1529 do_set_cpus_allowed(p, cpu_possible_mask);
1530 state = fail;
1531 break;
1532
1533 case fail:
1534 BUG();
1535 break;
1536 }
1537 }
1538
1539 out:
1540 if (state != cpuset) {
1541 /*
1542 * Don't tell them about moving exiting tasks or
1543 * kernel threads (both mm NULL), since they never
1544 * leave kernel.
1545 */
1546 if (p->mm && printk_ratelimit()) {
1547 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1548 task_pid_nr(p), p->comm, cpu);
1549 }
1550 }
1551
1552 return dest_cpu;
1553 }
1554
1555 /*
1556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1557 */
1558 static inline
1559 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1560 {
1561 lockdep_assert_held(&p->pi_lock);
1562
1563 if (p->nr_cpus_allowed > 1)
1564 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1565 else
1566 cpu = cpumask_any(&p->cpus_allowed);
1567
1568 /*
1569 * In order not to call set_task_cpu() on a blocking task we need
1570 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1571 * CPU.
1572 *
1573 * Since this is common to all placement strategies, this lives here.
1574 *
1575 * [ this allows ->select_task() to simply return task_cpu(p) and
1576 * not worry about this generic constraint ]
1577 */
1578 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1579 !cpu_online(cpu)))
1580 cpu = select_fallback_rq(task_cpu(p), p);
1581
1582 return cpu;
1583 }
1584
1585 static void update_avg(u64 *avg, u64 sample)
1586 {
1587 s64 diff = sample - *avg;
1588 *avg += diff >> 3;
1589 }
1590
1591 #else
1592
1593 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1594 const struct cpumask *new_mask, bool check)
1595 {
1596 return set_cpus_allowed_ptr(p, new_mask);
1597 }
1598
1599 #endif /* CONFIG_SMP */
1600
1601 static void
1602 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1603 {
1604 struct rq *rq;
1605
1606 if (!schedstat_enabled())
1607 return;
1608
1609 rq = this_rq();
1610
1611 #ifdef CONFIG_SMP
1612 if (cpu == rq->cpu) {
1613 schedstat_inc(rq->ttwu_local);
1614 schedstat_inc(p->se.statistics.nr_wakeups_local);
1615 } else {
1616 struct sched_domain *sd;
1617
1618 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1619 rcu_read_lock();
1620 for_each_domain(rq->cpu, sd) {
1621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1622 schedstat_inc(sd->ttwu_wake_remote);
1623 break;
1624 }
1625 }
1626 rcu_read_unlock();
1627 }
1628
1629 if (wake_flags & WF_MIGRATED)
1630 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1631 #endif /* CONFIG_SMP */
1632
1633 schedstat_inc(rq->ttwu_count);
1634 schedstat_inc(p->se.statistics.nr_wakeups);
1635
1636 if (wake_flags & WF_SYNC)
1637 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1638 }
1639
1640 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1641 {
1642 activate_task(rq, p, en_flags);
1643 p->on_rq = TASK_ON_RQ_QUEUED;
1644
1645 /* If a worker is waking up, notify the workqueue: */
1646 if (p->flags & PF_WQ_WORKER)
1647 wq_worker_waking_up(p, cpu_of(rq));
1648 }
1649
1650 /*
1651 * Mark the task runnable and perform wakeup-preemption.
1652 */
1653 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1654 struct rq_flags *rf)
1655 {
1656 check_preempt_curr(rq, p, wake_flags);
1657 p->state = TASK_RUNNING;
1658 trace_sched_wakeup(p);
1659
1660 #ifdef CONFIG_SMP
1661 if (p->sched_class->task_woken) {
1662 /*
1663 * Our task @p is fully woken up and running; so its safe to
1664 * drop the rq->lock, hereafter rq is only used for statistics.
1665 */
1666 rq_unpin_lock(rq, rf);
1667 p->sched_class->task_woken(rq, p);
1668 rq_repin_lock(rq, rf);
1669 }
1670
1671 if (rq->idle_stamp) {
1672 u64 delta = rq_clock(rq) - rq->idle_stamp;
1673 u64 max = 2*rq->max_idle_balance_cost;
1674
1675 update_avg(&rq->avg_idle, delta);
1676
1677 if (rq->avg_idle > max)
1678 rq->avg_idle = max;
1679
1680 rq->idle_stamp = 0;
1681 }
1682 #endif
1683 }
1684
1685 static void
1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1687 struct rq_flags *rf)
1688 {
1689 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1690
1691 lockdep_assert_held(&rq->lock);
1692
1693 #ifdef CONFIG_SMP
1694 if (p->sched_contributes_to_load)
1695 rq->nr_uninterruptible--;
1696
1697 if (wake_flags & WF_MIGRATED)
1698 en_flags |= ENQUEUE_MIGRATED;
1699 #endif
1700
1701 ttwu_activate(rq, p, en_flags);
1702 ttwu_do_wakeup(rq, p, wake_flags, rf);
1703 }
1704
1705 /*
1706 * Called in case the task @p isn't fully descheduled from its runqueue,
1707 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1708 * since all we need to do is flip p->state to TASK_RUNNING, since
1709 * the task is still ->on_rq.
1710 */
1711 static int ttwu_remote(struct task_struct *p, int wake_flags)
1712 {
1713 struct rq_flags rf;
1714 struct rq *rq;
1715 int ret = 0;
1716
1717 rq = __task_rq_lock(p, &rf);
1718 if (task_on_rq_queued(p)) {
1719 /* check_preempt_curr() may use rq clock */
1720 update_rq_clock(rq);
1721 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1722 ret = 1;
1723 }
1724 __task_rq_unlock(rq, &rf);
1725
1726 return ret;
1727 }
1728
1729 #ifdef CONFIG_SMP
1730 void sched_ttwu_pending(void)
1731 {
1732 struct rq *rq = this_rq();
1733 struct llist_node *llist = llist_del_all(&rq->wake_list);
1734 struct task_struct *p;
1735 struct rq_flags rf;
1736
1737 if (!llist)
1738 return;
1739
1740 rq_lock_irqsave(rq, &rf);
1741 update_rq_clock(rq);
1742
1743 while (llist) {
1744 int wake_flags = 0;
1745
1746 p = llist_entry(llist, struct task_struct, wake_entry);
1747 llist = llist_next(llist);
1748
1749 if (p->sched_remote_wakeup)
1750 wake_flags = WF_MIGRATED;
1751
1752 ttwu_do_activate(rq, p, wake_flags, &rf);
1753 }
1754
1755 rq_unlock_irqrestore(rq, &rf);
1756 }
1757
1758 void scheduler_ipi(void)
1759 {
1760 /*
1761 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1762 * TIF_NEED_RESCHED remotely (for the first time) will also send
1763 * this IPI.
1764 */
1765 preempt_fold_need_resched();
1766
1767 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1768 return;
1769
1770 /*
1771 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1772 * traditionally all their work was done from the interrupt return
1773 * path. Now that we actually do some work, we need to make sure
1774 * we do call them.
1775 *
1776 * Some archs already do call them, luckily irq_enter/exit nest
1777 * properly.
1778 *
1779 * Arguably we should visit all archs and update all handlers,
1780 * however a fair share of IPIs are still resched only so this would
1781 * somewhat pessimize the simple resched case.
1782 */
1783 irq_enter();
1784 sched_ttwu_pending();
1785
1786 /*
1787 * Check if someone kicked us for doing the nohz idle load balance.
1788 */
1789 if (unlikely(got_nohz_idle_kick())) {
1790 this_rq()->idle_balance = 1;
1791 raise_softirq_irqoff(SCHED_SOFTIRQ);
1792 }
1793 irq_exit();
1794 }
1795
1796 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1797 {
1798 struct rq *rq = cpu_rq(cpu);
1799
1800 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1801
1802 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1803 if (!set_nr_if_polling(rq->idle))
1804 smp_send_reschedule(cpu);
1805 else
1806 trace_sched_wake_idle_without_ipi(cpu);
1807 }
1808 }
1809
1810 void wake_up_if_idle(int cpu)
1811 {
1812 struct rq *rq = cpu_rq(cpu);
1813 struct rq_flags rf;
1814
1815 rcu_read_lock();
1816
1817 if (!is_idle_task(rcu_dereference(rq->curr)))
1818 goto out;
1819
1820 if (set_nr_if_polling(rq->idle)) {
1821 trace_sched_wake_idle_without_ipi(cpu);
1822 } else {
1823 rq_lock_irqsave(rq, &rf);
1824 if (is_idle_task(rq->curr))
1825 smp_send_reschedule(cpu);
1826 /* Else CPU is not idle, do nothing here: */
1827 rq_unlock_irqrestore(rq, &rf);
1828 }
1829
1830 out:
1831 rcu_read_unlock();
1832 }
1833
1834 bool cpus_share_cache(int this_cpu, int that_cpu)
1835 {
1836 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1837 }
1838 #endif /* CONFIG_SMP */
1839
1840 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1841 {
1842 struct rq *rq = cpu_rq(cpu);
1843 struct rq_flags rf;
1844
1845 #if defined(CONFIG_SMP)
1846 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1847 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1848 ttwu_queue_remote(p, cpu, wake_flags);
1849 return;
1850 }
1851 #endif
1852
1853 rq_lock(rq, &rf);
1854 update_rq_clock(rq);
1855 ttwu_do_activate(rq, p, wake_flags, &rf);
1856 rq_unlock(rq, &rf);
1857 }
1858
1859 /*
1860 * Notes on Program-Order guarantees on SMP systems.
1861 *
1862 * MIGRATION
1863 *
1864 * The basic program-order guarantee on SMP systems is that when a task [t]
1865 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1866 * execution on its new CPU [c1].
1867 *
1868 * For migration (of runnable tasks) this is provided by the following means:
1869 *
1870 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1871 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1872 * rq(c1)->lock (if not at the same time, then in that order).
1873 * C) LOCK of the rq(c1)->lock scheduling in task
1874 *
1875 * Transitivity guarantees that B happens after A and C after B.
1876 * Note: we only require RCpc transitivity.
1877 * Note: the CPU doing B need not be c0 or c1
1878 *
1879 * Example:
1880 *
1881 * CPU0 CPU1 CPU2
1882 *
1883 * LOCK rq(0)->lock
1884 * sched-out X
1885 * sched-in Y
1886 * UNLOCK rq(0)->lock
1887 *
1888 * LOCK rq(0)->lock // orders against CPU0
1889 * dequeue X
1890 * UNLOCK rq(0)->lock
1891 *
1892 * LOCK rq(1)->lock
1893 * enqueue X
1894 * UNLOCK rq(1)->lock
1895 *
1896 * LOCK rq(1)->lock // orders against CPU2
1897 * sched-out Z
1898 * sched-in X
1899 * UNLOCK rq(1)->lock
1900 *
1901 *
1902 * BLOCKING -- aka. SLEEP + WAKEUP
1903 *
1904 * For blocking we (obviously) need to provide the same guarantee as for
1905 * migration. However the means are completely different as there is no lock
1906 * chain to provide order. Instead we do:
1907 *
1908 * 1) smp_store_release(X->on_cpu, 0)
1909 * 2) smp_cond_load_acquire(!X->on_cpu)
1910 *
1911 * Example:
1912 *
1913 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1914 *
1915 * LOCK rq(0)->lock LOCK X->pi_lock
1916 * dequeue X
1917 * sched-out X
1918 * smp_store_release(X->on_cpu, 0);
1919 *
1920 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1921 * X->state = WAKING
1922 * set_task_cpu(X,2)
1923 *
1924 * LOCK rq(2)->lock
1925 * enqueue X
1926 * X->state = RUNNING
1927 * UNLOCK rq(2)->lock
1928 *
1929 * LOCK rq(2)->lock // orders against CPU1
1930 * sched-out Z
1931 * sched-in X
1932 * UNLOCK rq(2)->lock
1933 *
1934 * UNLOCK X->pi_lock
1935 * UNLOCK rq(0)->lock
1936 *
1937 *
1938 * However; for wakeups there is a second guarantee we must provide, namely we
1939 * must observe the state that lead to our wakeup. That is, not only must our
1940 * task observe its own prior state, it must also observe the stores prior to
1941 * its wakeup.
1942 *
1943 * This means that any means of doing remote wakeups must order the CPU doing
1944 * the wakeup against the CPU the task is going to end up running on. This,
1945 * however, is already required for the regular Program-Order guarantee above,
1946 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1947 *
1948 */
1949
1950 /**
1951 * try_to_wake_up - wake up a thread
1952 * @p: the thread to be awakened
1953 * @state: the mask of task states that can be woken
1954 * @wake_flags: wake modifier flags (WF_*)
1955 *
1956 * If (@state & @p->state) @p->state = TASK_RUNNING.
1957 *
1958 * If the task was not queued/runnable, also place it back on a runqueue.
1959 *
1960 * Atomic against schedule() which would dequeue a task, also see
1961 * set_current_state().
1962 *
1963 * Return: %true if @p->state changes (an actual wakeup was done),
1964 * %false otherwise.
1965 */
1966 static int
1967 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1968 {
1969 unsigned long flags;
1970 int cpu, success = 0;
1971
1972 /*
1973 * If we are going to wake up a thread waiting for CONDITION we
1974 * need to ensure that CONDITION=1 done by the caller can not be
1975 * reordered with p->state check below. This pairs with mb() in
1976 * set_current_state() the waiting thread does.
1977 */
1978 smp_mb__before_spinlock();
1979 raw_spin_lock_irqsave(&p->pi_lock, flags);
1980 if (!(p->state & state))
1981 goto out;
1982
1983 trace_sched_waking(p);
1984
1985 /* We're going to change ->state: */
1986 success = 1;
1987 cpu = task_cpu(p);
1988
1989 /*
1990 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1991 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1992 * in smp_cond_load_acquire() below.
1993 *
1994 * sched_ttwu_pending() try_to_wake_up()
1995 * [S] p->on_rq = 1; [L] P->state
1996 * UNLOCK rq->lock -----.
1997 * \
1998 * +--- RMB
1999 * schedule() /
2000 * LOCK rq->lock -----'
2001 * UNLOCK rq->lock
2002 *
2003 * [task p]
2004 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2005 *
2006 * Pairs with the UNLOCK+LOCK on rq->lock from the
2007 * last wakeup of our task and the schedule that got our task
2008 * current.
2009 */
2010 smp_rmb();
2011 if (p->on_rq && ttwu_remote(p, wake_flags))
2012 goto stat;
2013
2014 #ifdef CONFIG_SMP
2015 /*
2016 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2017 * possible to, falsely, observe p->on_cpu == 0.
2018 *
2019 * One must be running (->on_cpu == 1) in order to remove oneself
2020 * from the runqueue.
2021 *
2022 * [S] ->on_cpu = 1; [L] ->on_rq
2023 * UNLOCK rq->lock
2024 * RMB
2025 * LOCK rq->lock
2026 * [S] ->on_rq = 0; [L] ->on_cpu
2027 *
2028 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2029 * from the consecutive calls to schedule(); the first switching to our
2030 * task, the second putting it to sleep.
2031 */
2032 smp_rmb();
2033
2034 /*
2035 * If the owning (remote) CPU is still in the middle of schedule() with
2036 * this task as prev, wait until its done referencing the task.
2037 *
2038 * Pairs with the smp_store_release() in finish_lock_switch().
2039 *
2040 * This ensures that tasks getting woken will be fully ordered against
2041 * their previous state and preserve Program Order.
2042 */
2043 smp_cond_load_acquire(&p->on_cpu, !VAL);
2044
2045 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2046 p->state = TASK_WAKING;
2047
2048 if (p->in_iowait) {
2049 delayacct_blkio_end();
2050 atomic_dec(&task_rq(p)->nr_iowait);
2051 }
2052
2053 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 if (task_cpu(p) != cpu) {
2055 wake_flags |= WF_MIGRATED;
2056 set_task_cpu(p, cpu);
2057 }
2058
2059 #else /* CONFIG_SMP */
2060
2061 if (p->in_iowait) {
2062 delayacct_blkio_end();
2063 atomic_dec(&task_rq(p)->nr_iowait);
2064 }
2065
2066 #endif /* CONFIG_SMP */
2067
2068 ttwu_queue(p, cpu, wake_flags);
2069 stat:
2070 ttwu_stat(p, cpu, wake_flags);
2071 out:
2072 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2073
2074 return success;
2075 }
2076
2077 /**
2078 * try_to_wake_up_local - try to wake up a local task with rq lock held
2079 * @p: the thread to be awakened
2080 * @cookie: context's cookie for pinning
2081 *
2082 * Put @p on the run-queue if it's not already there. The caller must
2083 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2084 * the current task.
2085 */
2086 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2087 {
2088 struct rq *rq = task_rq(p);
2089
2090 if (WARN_ON_ONCE(rq != this_rq()) ||
2091 WARN_ON_ONCE(p == current))
2092 return;
2093
2094 lockdep_assert_held(&rq->lock);
2095
2096 if (!raw_spin_trylock(&p->pi_lock)) {
2097 /*
2098 * This is OK, because current is on_cpu, which avoids it being
2099 * picked for load-balance and preemption/IRQs are still
2100 * disabled avoiding further scheduler activity on it and we've
2101 * not yet picked a replacement task.
2102 */
2103 rq_unlock(rq, rf);
2104 raw_spin_lock(&p->pi_lock);
2105 rq_relock(rq, rf);
2106 }
2107
2108 if (!(p->state & TASK_NORMAL))
2109 goto out;
2110
2111 trace_sched_waking(p);
2112
2113 if (!task_on_rq_queued(p)) {
2114 if (p->in_iowait) {
2115 delayacct_blkio_end();
2116 atomic_dec(&rq->nr_iowait);
2117 }
2118 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2119 }
2120
2121 ttwu_do_wakeup(rq, p, 0, rf);
2122 ttwu_stat(p, smp_processor_id(), 0);
2123 out:
2124 raw_spin_unlock(&p->pi_lock);
2125 }
2126
2127 /**
2128 * wake_up_process - Wake up a specific process
2129 * @p: The process to be woken up.
2130 *
2131 * Attempt to wake up the nominated process and move it to the set of runnable
2132 * processes.
2133 *
2134 * Return: 1 if the process was woken up, 0 if it was already running.
2135 *
2136 * It may be assumed that this function implies a write memory barrier before
2137 * changing the task state if and only if any tasks are woken up.
2138 */
2139 int wake_up_process(struct task_struct *p)
2140 {
2141 return try_to_wake_up(p, TASK_NORMAL, 0);
2142 }
2143 EXPORT_SYMBOL(wake_up_process);
2144
2145 int wake_up_state(struct task_struct *p, unsigned int state)
2146 {
2147 return try_to_wake_up(p, state, 0);
2148 }
2149
2150 /*
2151 * This function clears the sched_dl_entity static params.
2152 */
2153 void __dl_clear_params(struct task_struct *p)
2154 {
2155 struct sched_dl_entity *dl_se = &p->dl;
2156
2157 dl_se->dl_runtime = 0;
2158 dl_se->dl_deadline = 0;
2159 dl_se->dl_period = 0;
2160 dl_se->flags = 0;
2161 dl_se->dl_bw = 0;
2162
2163 dl_se->dl_throttled = 0;
2164 dl_se->dl_yielded = 0;
2165 }
2166
2167 /*
2168 * Perform scheduler related setup for a newly forked process p.
2169 * p is forked by current.
2170 *
2171 * __sched_fork() is basic setup used by init_idle() too:
2172 */
2173 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2174 {
2175 p->on_rq = 0;
2176
2177 p->se.on_rq = 0;
2178 p->se.exec_start = 0;
2179 p->se.sum_exec_runtime = 0;
2180 p->se.prev_sum_exec_runtime = 0;
2181 p->se.nr_migrations = 0;
2182 p->se.vruntime = 0;
2183 INIT_LIST_HEAD(&p->se.group_node);
2184
2185 #ifdef CONFIG_FAIR_GROUP_SCHED
2186 p->se.cfs_rq = NULL;
2187 #endif
2188
2189 #ifdef CONFIG_SCHEDSTATS
2190 /* Even if schedstat is disabled, there should not be garbage */
2191 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2192 #endif
2193
2194 RB_CLEAR_NODE(&p->dl.rb_node);
2195 init_dl_task_timer(&p->dl);
2196 __dl_clear_params(p);
2197
2198 INIT_LIST_HEAD(&p->rt.run_list);
2199 p->rt.timeout = 0;
2200 p->rt.time_slice = sched_rr_timeslice;
2201 p->rt.on_rq = 0;
2202 p->rt.on_list = 0;
2203
2204 #ifdef CONFIG_PREEMPT_NOTIFIERS
2205 INIT_HLIST_HEAD(&p->preempt_notifiers);
2206 #endif
2207
2208 #ifdef CONFIG_NUMA_BALANCING
2209 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2210 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2211 p->mm->numa_scan_seq = 0;
2212 }
2213
2214 if (clone_flags & CLONE_VM)
2215 p->numa_preferred_nid = current->numa_preferred_nid;
2216 else
2217 p->numa_preferred_nid = -1;
2218
2219 p->node_stamp = 0ULL;
2220 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2221 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2222 p->numa_work.next = &p->numa_work;
2223 p->numa_faults = NULL;
2224 p->last_task_numa_placement = 0;
2225 p->last_sum_exec_runtime = 0;
2226
2227 p->numa_group = NULL;
2228 #endif /* CONFIG_NUMA_BALANCING */
2229 }
2230
2231 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2232
2233 #ifdef CONFIG_NUMA_BALANCING
2234
2235 void set_numabalancing_state(bool enabled)
2236 {
2237 if (enabled)
2238 static_branch_enable(&sched_numa_balancing);
2239 else
2240 static_branch_disable(&sched_numa_balancing);
2241 }
2242
2243 #ifdef CONFIG_PROC_SYSCTL
2244 int sysctl_numa_balancing(struct ctl_table *table, int write,
2245 void __user *buffer, size_t *lenp, loff_t *ppos)
2246 {
2247 struct ctl_table t;
2248 int err;
2249 int state = static_branch_likely(&sched_numa_balancing);
2250
2251 if (write && !capable(CAP_SYS_ADMIN))
2252 return -EPERM;
2253
2254 t = *table;
2255 t.data = &state;
2256 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2257 if (err < 0)
2258 return err;
2259 if (write)
2260 set_numabalancing_state(state);
2261 return err;
2262 }
2263 #endif
2264 #endif
2265
2266 #ifdef CONFIG_SCHEDSTATS
2267
2268 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2269 static bool __initdata __sched_schedstats = false;
2270
2271 static void set_schedstats(bool enabled)
2272 {
2273 if (enabled)
2274 static_branch_enable(&sched_schedstats);
2275 else
2276 static_branch_disable(&sched_schedstats);
2277 }
2278
2279 void force_schedstat_enabled(void)
2280 {
2281 if (!schedstat_enabled()) {
2282 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2283 static_branch_enable(&sched_schedstats);
2284 }
2285 }
2286
2287 static int __init setup_schedstats(char *str)
2288 {
2289 int ret = 0;
2290 if (!str)
2291 goto out;
2292
2293 /*
2294 * This code is called before jump labels have been set up, so we can't
2295 * change the static branch directly just yet. Instead set a temporary
2296 * variable so init_schedstats() can do it later.
2297 */
2298 if (!strcmp(str, "enable")) {
2299 __sched_schedstats = true;
2300 ret = 1;
2301 } else if (!strcmp(str, "disable")) {
2302 __sched_schedstats = false;
2303 ret = 1;
2304 }
2305 out:
2306 if (!ret)
2307 pr_warn("Unable to parse schedstats=\n");
2308
2309 return ret;
2310 }
2311 __setup("schedstats=", setup_schedstats);
2312
2313 static void __init init_schedstats(void)
2314 {
2315 set_schedstats(__sched_schedstats);
2316 }
2317
2318 #ifdef CONFIG_PROC_SYSCTL
2319 int sysctl_schedstats(struct ctl_table *table, int write,
2320 void __user *buffer, size_t *lenp, loff_t *ppos)
2321 {
2322 struct ctl_table t;
2323 int err;
2324 int state = static_branch_likely(&sched_schedstats);
2325
2326 if (write && !capable(CAP_SYS_ADMIN))
2327 return -EPERM;
2328
2329 t = *table;
2330 t.data = &state;
2331 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2332 if (err < 0)
2333 return err;
2334 if (write)
2335 set_schedstats(state);
2336 return err;
2337 }
2338 #endif /* CONFIG_PROC_SYSCTL */
2339 #else /* !CONFIG_SCHEDSTATS */
2340 static inline void init_schedstats(void) {}
2341 #endif /* CONFIG_SCHEDSTATS */
2342
2343 /*
2344 * fork()/clone()-time setup:
2345 */
2346 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2347 {
2348 unsigned long flags;
2349 int cpu = get_cpu();
2350
2351 __sched_fork(clone_flags, p);
2352 /*
2353 * We mark the process as NEW here. This guarantees that
2354 * nobody will actually run it, and a signal or other external
2355 * event cannot wake it up and insert it on the runqueue either.
2356 */
2357 p->state = TASK_NEW;
2358
2359 /*
2360 * Make sure we do not leak PI boosting priority to the child.
2361 */
2362 p->prio = current->normal_prio;
2363
2364 /*
2365 * Revert to default priority/policy on fork if requested.
2366 */
2367 if (unlikely(p->sched_reset_on_fork)) {
2368 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2369 p->policy = SCHED_NORMAL;
2370 p->static_prio = NICE_TO_PRIO(0);
2371 p->rt_priority = 0;
2372 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2373 p->static_prio = NICE_TO_PRIO(0);
2374
2375 p->prio = p->normal_prio = __normal_prio(p);
2376 set_load_weight(p);
2377
2378 /*
2379 * We don't need the reset flag anymore after the fork. It has
2380 * fulfilled its duty:
2381 */
2382 p->sched_reset_on_fork = 0;
2383 }
2384
2385 if (dl_prio(p->prio)) {
2386 put_cpu();
2387 return -EAGAIN;
2388 } else if (rt_prio(p->prio)) {
2389 p->sched_class = &rt_sched_class;
2390 } else {
2391 p->sched_class = &fair_sched_class;
2392 }
2393
2394 init_entity_runnable_average(&p->se);
2395
2396 /*
2397 * The child is not yet in the pid-hash so no cgroup attach races,
2398 * and the cgroup is pinned to this child due to cgroup_fork()
2399 * is ran before sched_fork().
2400 *
2401 * Silence PROVE_RCU.
2402 */
2403 raw_spin_lock_irqsave(&p->pi_lock, flags);
2404 /*
2405 * We're setting the CPU for the first time, we don't migrate,
2406 * so use __set_task_cpu().
2407 */
2408 __set_task_cpu(p, cpu);
2409 if (p->sched_class->task_fork)
2410 p->sched_class->task_fork(p);
2411 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412
2413 #ifdef CONFIG_SCHED_INFO
2414 if (likely(sched_info_on()))
2415 memset(&p->sched_info, 0, sizeof(p->sched_info));
2416 #endif
2417 #if defined(CONFIG_SMP)
2418 p->on_cpu = 0;
2419 #endif
2420 init_task_preempt_count(p);
2421 #ifdef CONFIG_SMP
2422 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2423 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2424 #endif
2425
2426 put_cpu();
2427 return 0;
2428 }
2429
2430 unsigned long to_ratio(u64 period, u64 runtime)
2431 {
2432 if (runtime == RUNTIME_INF)
2433 return 1ULL << 20;
2434
2435 /*
2436 * Doing this here saves a lot of checks in all
2437 * the calling paths, and returning zero seems
2438 * safe for them anyway.
2439 */
2440 if (period == 0)
2441 return 0;
2442
2443 return div64_u64(runtime << 20, period);
2444 }
2445
2446 #ifdef CONFIG_SMP
2447 inline struct dl_bw *dl_bw_of(int i)
2448 {
2449 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2450 "sched RCU must be held");
2451 return &cpu_rq(i)->rd->dl_bw;
2452 }
2453
2454 static inline int dl_bw_cpus(int i)
2455 {
2456 struct root_domain *rd = cpu_rq(i)->rd;
2457 int cpus = 0;
2458
2459 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2460 "sched RCU must be held");
2461 for_each_cpu_and(i, rd->span, cpu_active_mask)
2462 cpus++;
2463
2464 return cpus;
2465 }
2466 #else
2467 inline struct dl_bw *dl_bw_of(int i)
2468 {
2469 return &cpu_rq(i)->dl.dl_bw;
2470 }
2471
2472 static inline int dl_bw_cpus(int i)
2473 {
2474 return 1;
2475 }
2476 #endif
2477
2478 /*
2479 * We must be sure that accepting a new task (or allowing changing the
2480 * parameters of an existing one) is consistent with the bandwidth
2481 * constraints. If yes, this function also accordingly updates the currently
2482 * allocated bandwidth to reflect the new situation.
2483 *
2484 * This function is called while holding p's rq->lock.
2485 *
2486 * XXX we should delay bw change until the task's 0-lag point, see
2487 * __setparam_dl().
2488 */
2489 static int dl_overflow(struct task_struct *p, int policy,
2490 const struct sched_attr *attr)
2491 {
2492
2493 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2494 u64 period = attr->sched_period ?: attr->sched_deadline;
2495 u64 runtime = attr->sched_runtime;
2496 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2497 int cpus, err = -1;
2498
2499 /* !deadline task may carry old deadline bandwidth */
2500 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2501 return 0;
2502
2503 /*
2504 * Either if a task, enters, leave, or stays -deadline but changes
2505 * its parameters, we may need to update accordingly the total
2506 * allocated bandwidth of the container.
2507 */
2508 raw_spin_lock(&dl_b->lock);
2509 cpus = dl_bw_cpus(task_cpu(p));
2510 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2511 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2512 __dl_add(dl_b, new_bw);
2513 err = 0;
2514 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2515 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2516 __dl_clear(dl_b, p->dl.dl_bw);
2517 __dl_add(dl_b, new_bw);
2518 err = 0;
2519 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2520 __dl_clear(dl_b, p->dl.dl_bw);
2521 err = 0;
2522 }
2523 raw_spin_unlock(&dl_b->lock);
2524
2525 return err;
2526 }
2527
2528 extern void init_dl_bw(struct dl_bw *dl_b);
2529
2530 /*
2531 * wake_up_new_task - wake up a newly created task for the first time.
2532 *
2533 * This function will do some initial scheduler statistics housekeeping
2534 * that must be done for every newly created context, then puts the task
2535 * on the runqueue and wakes it.
2536 */
2537 void wake_up_new_task(struct task_struct *p)
2538 {
2539 struct rq_flags rf;
2540 struct rq *rq;
2541
2542 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2543 p->state = TASK_RUNNING;
2544 #ifdef CONFIG_SMP
2545 /*
2546 * Fork balancing, do it here and not earlier because:
2547 * - cpus_allowed can change in the fork path
2548 * - any previously selected CPU might disappear through hotplug
2549 *
2550 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2551 * as we're not fully set-up yet.
2552 */
2553 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2554 #endif
2555 rq = __task_rq_lock(p, &rf);
2556 update_rq_clock(rq);
2557 post_init_entity_util_avg(&p->se);
2558
2559 activate_task(rq, p, ENQUEUE_NOCLOCK);
2560 p->on_rq = TASK_ON_RQ_QUEUED;
2561 trace_sched_wakeup_new(p);
2562 check_preempt_curr(rq, p, WF_FORK);
2563 #ifdef CONFIG_SMP
2564 if (p->sched_class->task_woken) {
2565 /*
2566 * Nothing relies on rq->lock after this, so its fine to
2567 * drop it.
2568 */
2569 rq_unpin_lock(rq, &rf);
2570 p->sched_class->task_woken(rq, p);
2571 rq_repin_lock(rq, &rf);
2572 }
2573 #endif
2574 task_rq_unlock(rq, p, &rf);
2575 }
2576
2577 #ifdef CONFIG_PREEMPT_NOTIFIERS
2578
2579 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2580
2581 void preempt_notifier_inc(void)
2582 {
2583 static_key_slow_inc(&preempt_notifier_key);
2584 }
2585 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2586
2587 void preempt_notifier_dec(void)
2588 {
2589 static_key_slow_dec(&preempt_notifier_key);
2590 }
2591 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2592
2593 /**
2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595 * @notifier: notifier struct to register
2596 */
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2598 {
2599 if (!static_key_false(&preempt_notifier_key))
2600 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2601
2602 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2603 }
2604 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2605
2606 /**
2607 * preempt_notifier_unregister - no longer interested in preemption notifications
2608 * @notifier: notifier struct to unregister
2609 *
2610 * This is *not* safe to call from within a preemption notifier.
2611 */
2612 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2613 {
2614 hlist_del(&notifier->link);
2615 }
2616 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2617
2618 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2619 {
2620 struct preempt_notifier *notifier;
2621
2622 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2624 }
2625
2626 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2627 {
2628 if (static_key_false(&preempt_notifier_key))
2629 __fire_sched_in_preempt_notifiers(curr);
2630 }
2631
2632 static void
2633 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2634 struct task_struct *next)
2635 {
2636 struct preempt_notifier *notifier;
2637
2638 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2639 notifier->ops->sched_out(notifier, next);
2640 }
2641
2642 static __always_inline void
2643 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2644 struct task_struct *next)
2645 {
2646 if (static_key_false(&preempt_notifier_key))
2647 __fire_sched_out_preempt_notifiers(curr, next);
2648 }
2649
2650 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2651
2652 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 {
2654 }
2655
2656 static inline void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659 {
2660 }
2661
2662 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2663
2664 /**
2665 * prepare_task_switch - prepare to switch tasks
2666 * @rq: the runqueue preparing to switch
2667 * @prev: the current task that is being switched out
2668 * @next: the task we are going to switch to.
2669 *
2670 * This is called with the rq lock held and interrupts off. It must
2671 * be paired with a subsequent finish_task_switch after the context
2672 * switch.
2673 *
2674 * prepare_task_switch sets up locking and calls architecture specific
2675 * hooks.
2676 */
2677 static inline void
2678 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2679 struct task_struct *next)
2680 {
2681 sched_info_switch(rq, prev, next);
2682 perf_event_task_sched_out(prev, next);
2683 fire_sched_out_preempt_notifiers(prev, next);
2684 prepare_lock_switch(rq, next);
2685 prepare_arch_switch(next);
2686 }
2687
2688 /**
2689 * finish_task_switch - clean up after a task-switch
2690 * @prev: the thread we just switched away from.
2691 *
2692 * finish_task_switch must be called after the context switch, paired
2693 * with a prepare_task_switch call before the context switch.
2694 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2695 * and do any other architecture-specific cleanup actions.
2696 *
2697 * Note that we may have delayed dropping an mm in context_switch(). If
2698 * so, we finish that here outside of the runqueue lock. (Doing it
2699 * with the lock held can cause deadlocks; see schedule() for
2700 * details.)
2701 *
2702 * The context switch have flipped the stack from under us and restored the
2703 * local variables which were saved when this task called schedule() in the
2704 * past. prev == current is still correct but we need to recalculate this_rq
2705 * because prev may have moved to another CPU.
2706 */
2707 static struct rq *finish_task_switch(struct task_struct *prev)
2708 __releases(rq->lock)
2709 {
2710 struct rq *rq = this_rq();
2711 struct mm_struct *mm = rq->prev_mm;
2712 long prev_state;
2713
2714 /*
2715 * The previous task will have left us with a preempt_count of 2
2716 * because it left us after:
2717 *
2718 * schedule()
2719 * preempt_disable(); // 1
2720 * __schedule()
2721 * raw_spin_lock_irq(&rq->lock) // 2
2722 *
2723 * Also, see FORK_PREEMPT_COUNT.
2724 */
2725 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2726 "corrupted preempt_count: %s/%d/0x%x\n",
2727 current->comm, current->pid, preempt_count()))
2728 preempt_count_set(FORK_PREEMPT_COUNT);
2729
2730 rq->prev_mm = NULL;
2731
2732 /*
2733 * A task struct has one reference for the use as "current".
2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2735 * schedule one last time. The schedule call will never return, and
2736 * the scheduled task must drop that reference.
2737 *
2738 * We must observe prev->state before clearing prev->on_cpu (in
2739 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2740 * running on another CPU and we could rave with its RUNNING -> DEAD
2741 * transition, resulting in a double drop.
2742 */
2743 prev_state = prev->state;
2744 vtime_task_switch(prev);
2745 perf_event_task_sched_in(prev, current);
2746 finish_lock_switch(rq, prev);
2747 finish_arch_post_lock_switch();
2748
2749 fire_sched_in_preempt_notifiers(current);
2750 if (mm)
2751 mmdrop(mm);
2752 if (unlikely(prev_state == TASK_DEAD)) {
2753 if (prev->sched_class->task_dead)
2754 prev->sched_class->task_dead(prev);
2755
2756 /*
2757 * Remove function-return probe instances associated with this
2758 * task and put them back on the free list.
2759 */
2760 kprobe_flush_task(prev);
2761
2762 /* Task is done with its stack. */
2763 put_task_stack(prev);
2764
2765 put_task_struct(prev);
2766 }
2767
2768 tick_nohz_task_switch();
2769 return rq;
2770 }
2771
2772 #ifdef CONFIG_SMP
2773
2774 /* rq->lock is NOT held, but preemption is disabled */
2775 static void __balance_callback(struct rq *rq)
2776 {
2777 struct callback_head *head, *next;
2778 void (*func)(struct rq *rq);
2779 unsigned long flags;
2780
2781 raw_spin_lock_irqsave(&rq->lock, flags);
2782 head = rq->balance_callback;
2783 rq->balance_callback = NULL;
2784 while (head) {
2785 func = (void (*)(struct rq *))head->func;
2786 next = head->next;
2787 head->next = NULL;
2788 head = next;
2789
2790 func(rq);
2791 }
2792 raw_spin_unlock_irqrestore(&rq->lock, flags);
2793 }
2794
2795 static inline void balance_callback(struct rq *rq)
2796 {
2797 if (unlikely(rq->balance_callback))
2798 __balance_callback(rq);
2799 }
2800
2801 #else
2802
2803 static inline void balance_callback(struct rq *rq)
2804 {
2805 }
2806
2807 #endif
2808
2809 /**
2810 * schedule_tail - first thing a freshly forked thread must call.
2811 * @prev: the thread we just switched away from.
2812 */
2813 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2814 __releases(rq->lock)
2815 {
2816 struct rq *rq;
2817
2818 /*
2819 * New tasks start with FORK_PREEMPT_COUNT, see there and
2820 * finish_task_switch() for details.
2821 *
2822 * finish_task_switch() will drop rq->lock() and lower preempt_count
2823 * and the preempt_enable() will end up enabling preemption (on
2824 * PREEMPT_COUNT kernels).
2825 */
2826
2827 rq = finish_task_switch(prev);
2828 balance_callback(rq);
2829 preempt_enable();
2830
2831 if (current->set_child_tid)
2832 put_user(task_pid_vnr(current), current->set_child_tid);
2833 }
2834
2835 /*
2836 * context_switch - switch to the new MM and the new thread's register state.
2837 */
2838 static __always_inline struct rq *
2839 context_switch(struct rq *rq, struct task_struct *prev,
2840 struct task_struct *next, struct rq_flags *rf)
2841 {
2842 struct mm_struct *mm, *oldmm;
2843
2844 prepare_task_switch(rq, prev, next);
2845
2846 mm = next->mm;
2847 oldmm = prev->active_mm;
2848 /*
2849 * For paravirt, this is coupled with an exit in switch_to to
2850 * combine the page table reload and the switch backend into
2851 * one hypercall.
2852 */
2853 arch_start_context_switch(prev);
2854
2855 if (!mm) {
2856 next->active_mm = oldmm;
2857 mmgrab(oldmm);
2858 enter_lazy_tlb(oldmm, next);
2859 } else
2860 switch_mm_irqs_off(oldmm, mm, next);
2861
2862 if (!prev->mm) {
2863 prev->active_mm = NULL;
2864 rq->prev_mm = oldmm;
2865 }
2866
2867 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2868
2869 /*
2870 * Since the runqueue lock will be released by the next
2871 * task (which is an invalid locking op but in the case
2872 * of the scheduler it's an obvious special-case), so we
2873 * do an early lockdep release here:
2874 */
2875 rq_unpin_lock(rq, rf);
2876 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2877
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev, next, prev);
2880 barrier();
2881
2882 return finish_task_switch(prev);
2883 }
2884
2885 /*
2886 * nr_running and nr_context_switches:
2887 *
2888 * externally visible scheduler statistics: current number of runnable
2889 * threads, total number of context switches performed since bootup.
2890 */
2891 unsigned long nr_running(void)
2892 {
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899 }
2900
2901 /*
2902 * Check if only the current task is running on the CPU.
2903 *
2904 * Caution: this function does not check that the caller has disabled
2905 * preemption, thus the result might have a time-of-check-to-time-of-use
2906 * race. The caller is responsible to use it correctly, for example:
2907 *
2908 * - from a non-preemptable section (of course)
2909 *
2910 * - from a thread that is bound to a single CPU
2911 *
2912 * - in a loop with very short iterations (e.g. a polling loop)
2913 */
2914 bool single_task_running(void)
2915 {
2916 return raw_rq()->nr_running == 1;
2917 }
2918 EXPORT_SYMBOL(single_task_running);
2919
2920 unsigned long long nr_context_switches(void)
2921 {
2922 int i;
2923 unsigned long long sum = 0;
2924
2925 for_each_possible_cpu(i)
2926 sum += cpu_rq(i)->nr_switches;
2927
2928 return sum;
2929 }
2930
2931 /*
2932 * IO-wait accounting, and how its mostly bollocks (on SMP).
2933 *
2934 * The idea behind IO-wait account is to account the idle time that we could
2935 * have spend running if it were not for IO. That is, if we were to improve the
2936 * storage performance, we'd have a proportional reduction in IO-wait time.
2937 *
2938 * This all works nicely on UP, where, when a task blocks on IO, we account
2939 * idle time as IO-wait, because if the storage were faster, it could've been
2940 * running and we'd not be idle.
2941 *
2942 * This has been extended to SMP, by doing the same for each CPU. This however
2943 * is broken.
2944 *
2945 * Imagine for instance the case where two tasks block on one CPU, only the one
2946 * CPU will have IO-wait accounted, while the other has regular idle. Even
2947 * though, if the storage were faster, both could've ran at the same time,
2948 * utilising both CPUs.
2949 *
2950 * This means, that when looking globally, the current IO-wait accounting on
2951 * SMP is a lower bound, by reason of under accounting.
2952 *
2953 * Worse, since the numbers are provided per CPU, they are sometimes
2954 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2955 * associated with any one particular CPU, it can wake to another CPU than it
2956 * blocked on. This means the per CPU IO-wait number is meaningless.
2957 *
2958 * Task CPU affinities can make all that even more 'interesting'.
2959 */
2960
2961 unsigned long nr_iowait(void)
2962 {
2963 unsigned long i, sum = 0;
2964
2965 for_each_possible_cpu(i)
2966 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2967
2968 return sum;
2969 }
2970
2971 /*
2972 * Consumers of these two interfaces, like for example the cpufreq menu
2973 * governor are using nonsensical data. Boosting frequency for a CPU that has
2974 * IO-wait which might not even end up running the task when it does become
2975 * runnable.
2976 */
2977
2978 unsigned long nr_iowait_cpu(int cpu)
2979 {
2980 struct rq *this = cpu_rq(cpu);
2981 return atomic_read(&this->nr_iowait);
2982 }
2983
2984 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2985 {
2986 struct rq *rq = this_rq();
2987 *nr_waiters = atomic_read(&rq->nr_iowait);
2988 *load = rq->load.weight;
2989 }
2990
2991 #ifdef CONFIG_SMP
2992
2993 /*
2994 * sched_exec - execve() is a valuable balancing opportunity, because at
2995 * this point the task has the smallest effective memory and cache footprint.
2996 */
2997 void sched_exec(void)
2998 {
2999 struct task_struct *p = current;
3000 unsigned long flags;
3001 int dest_cpu;
3002
3003 raw_spin_lock_irqsave(&p->pi_lock, flags);
3004 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3005 if (dest_cpu == smp_processor_id())
3006 goto unlock;
3007
3008 if (likely(cpu_active(dest_cpu))) {
3009 struct migration_arg arg = { p, dest_cpu };
3010
3011 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3012 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3013 return;
3014 }
3015 unlock:
3016 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3017 }
3018
3019 #endif
3020
3021 DEFINE_PER_CPU(struct kernel_stat, kstat);
3022 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3023
3024 EXPORT_PER_CPU_SYMBOL(kstat);
3025 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3026
3027 /*
3028 * The function fair_sched_class.update_curr accesses the struct curr
3029 * and its field curr->exec_start; when called from task_sched_runtime(),
3030 * we observe a high rate of cache misses in practice.
3031 * Prefetching this data results in improved performance.
3032 */
3033 static inline void prefetch_curr_exec_start(struct task_struct *p)
3034 {
3035 #ifdef CONFIG_FAIR_GROUP_SCHED
3036 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3037 #else
3038 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3039 #endif
3040 prefetch(curr);
3041 prefetch(&curr->exec_start);
3042 }
3043
3044 /*
3045 * Return accounted runtime for the task.
3046 * In case the task is currently running, return the runtime plus current's
3047 * pending runtime that have not been accounted yet.
3048 */
3049 unsigned long long task_sched_runtime(struct task_struct *p)
3050 {
3051 struct rq_flags rf;
3052 struct rq *rq;
3053 u64 ns;
3054
3055 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3056 /*
3057 * 64-bit doesn't need locks to atomically read a 64bit value.
3058 * So we have a optimization chance when the task's delta_exec is 0.
3059 * Reading ->on_cpu is racy, but this is ok.
3060 *
3061 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3062 * If we race with it entering CPU, unaccounted time is 0. This is
3063 * indistinguishable from the read occurring a few cycles earlier.
3064 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3065 * been accounted, so we're correct here as well.
3066 */
3067 if (!p->on_cpu || !task_on_rq_queued(p))
3068 return p->se.sum_exec_runtime;
3069 #endif
3070
3071 rq = task_rq_lock(p, &rf);
3072 /*
3073 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3074 * project cycles that may never be accounted to this
3075 * thread, breaking clock_gettime().
3076 */
3077 if (task_current(rq, p) && task_on_rq_queued(p)) {
3078 prefetch_curr_exec_start(p);
3079 update_rq_clock(rq);
3080 p->sched_class->update_curr(rq);
3081 }
3082 ns = p->se.sum_exec_runtime;
3083 task_rq_unlock(rq, p, &rf);
3084
3085 return ns;
3086 }
3087
3088 /*
3089 * This function gets called by the timer code, with HZ frequency.
3090 * We call it with interrupts disabled.
3091 */
3092 void scheduler_tick(void)
3093 {
3094 int cpu = smp_processor_id();
3095 struct rq *rq = cpu_rq(cpu);
3096 struct task_struct *curr = rq->curr;
3097 struct rq_flags rf;
3098
3099 sched_clock_tick();
3100
3101 rq_lock(rq, &rf);
3102
3103 update_rq_clock(rq);
3104 curr->sched_class->task_tick(rq, curr, 0);
3105 cpu_load_update_active(rq);
3106 calc_global_load_tick(rq);
3107
3108 rq_unlock(rq, &rf);
3109
3110 perf_event_task_tick();
3111
3112 #ifdef CONFIG_SMP
3113 rq->idle_balance = idle_cpu(cpu);
3114 trigger_load_balance(rq);
3115 #endif
3116 rq_last_tick_reset(rq);
3117 }
3118
3119 #ifdef CONFIG_NO_HZ_FULL
3120 /**
3121 * scheduler_tick_max_deferment
3122 *
3123 * Keep at least one tick per second when a single
3124 * active task is running because the scheduler doesn't
3125 * yet completely support full dynticks environment.
3126 *
3127 * This makes sure that uptime, CFS vruntime, load
3128 * balancing, etc... continue to move forward, even
3129 * with a very low granularity.
3130 *
3131 * Return: Maximum deferment in nanoseconds.
3132 */
3133 u64 scheduler_tick_max_deferment(void)
3134 {
3135 struct rq *rq = this_rq();
3136 unsigned long next, now = READ_ONCE(jiffies);
3137
3138 next = rq->last_sched_tick + HZ;
3139
3140 if (time_before_eq(next, now))
3141 return 0;
3142
3143 return jiffies_to_nsecs(next - now);
3144 }
3145 #endif
3146
3147 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3148 defined(CONFIG_PREEMPT_TRACER))
3149 /*
3150 * If the value passed in is equal to the current preempt count
3151 * then we just disabled preemption. Start timing the latency.
3152 */
3153 static inline void preempt_latency_start(int val)
3154 {
3155 if (preempt_count() == val) {
3156 unsigned long ip = get_lock_parent_ip();
3157 #ifdef CONFIG_DEBUG_PREEMPT
3158 current->preempt_disable_ip = ip;
3159 #endif
3160 trace_preempt_off(CALLER_ADDR0, ip);
3161 }
3162 }
3163
3164 void preempt_count_add(int val)
3165 {
3166 #ifdef CONFIG_DEBUG_PREEMPT
3167 /*
3168 * Underflow?
3169 */
3170 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3171 return;
3172 #endif
3173 __preempt_count_add(val);
3174 #ifdef CONFIG_DEBUG_PREEMPT
3175 /*
3176 * Spinlock count overflowing soon?
3177 */
3178 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3179 PREEMPT_MASK - 10);
3180 #endif
3181 preempt_latency_start(val);
3182 }
3183 EXPORT_SYMBOL(preempt_count_add);
3184 NOKPROBE_SYMBOL(preempt_count_add);
3185
3186 /*
3187 * If the value passed in equals to the current preempt count
3188 * then we just enabled preemption. Stop timing the latency.
3189 */
3190 static inline void preempt_latency_stop(int val)
3191 {
3192 if (preempt_count() == val)
3193 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3194 }
3195
3196 void preempt_count_sub(int val)
3197 {
3198 #ifdef CONFIG_DEBUG_PREEMPT
3199 /*
3200 * Underflow?
3201 */
3202 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3203 return;
3204 /*
3205 * Is the spinlock portion underflowing?
3206 */
3207 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3208 !(preempt_count() & PREEMPT_MASK)))
3209 return;
3210 #endif
3211
3212 preempt_latency_stop(val);
3213 __preempt_count_sub(val);
3214 }
3215 EXPORT_SYMBOL(preempt_count_sub);
3216 NOKPROBE_SYMBOL(preempt_count_sub);
3217
3218 #else
3219 static inline void preempt_latency_start(int val) { }
3220 static inline void preempt_latency_stop(int val) { }
3221 #endif
3222
3223 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3224 {
3225 #ifdef CONFIG_DEBUG_PREEMPT
3226 return p->preempt_disable_ip;
3227 #else
3228 return 0;
3229 #endif
3230 }
3231
3232 /*
3233 * Print scheduling while atomic bug:
3234 */
3235 static noinline void __schedule_bug(struct task_struct *prev)
3236 {
3237 /* Save this before calling printk(), since that will clobber it */
3238 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3239
3240 if (oops_in_progress)
3241 return;
3242
3243 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3244 prev->comm, prev->pid, preempt_count());
3245
3246 debug_show_held_locks(prev);
3247 print_modules();
3248 if (irqs_disabled())
3249 print_irqtrace_events(prev);
3250 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3251 && in_atomic_preempt_off()) {
3252 pr_err("Preemption disabled at:");
3253 print_ip_sym(preempt_disable_ip);
3254 pr_cont("\n");
3255 }
3256 if (panic_on_warn)
3257 panic("scheduling while atomic\n");
3258
3259 dump_stack();
3260 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3261 }
3262
3263 /*
3264 * Various schedule()-time debugging checks and statistics:
3265 */
3266 static inline void schedule_debug(struct task_struct *prev)
3267 {
3268 #ifdef CONFIG_SCHED_STACK_END_CHECK
3269 if (task_stack_end_corrupted(prev))
3270 panic("corrupted stack end detected inside scheduler\n");
3271 #endif
3272
3273 if (unlikely(in_atomic_preempt_off())) {
3274 __schedule_bug(prev);
3275 preempt_count_set(PREEMPT_DISABLED);
3276 }
3277 rcu_sleep_check();
3278
3279 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3280
3281 schedstat_inc(this_rq()->sched_count);
3282 }
3283
3284 /*
3285 * Pick up the highest-prio task:
3286 */
3287 static inline struct task_struct *
3288 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3289 {
3290 const struct sched_class *class;
3291 struct task_struct *p;
3292
3293 /*
3294 * Optimization: we know that if all tasks are in the fair class we can
3295 * call that function directly, but only if the @prev task wasn't of a
3296 * higher scheduling class, because otherwise those loose the
3297 * opportunity to pull in more work from other CPUs.
3298 */
3299 if (likely((prev->sched_class == &idle_sched_class ||
3300 prev->sched_class == &fair_sched_class) &&
3301 rq->nr_running == rq->cfs.h_nr_running)) {
3302
3303 p = fair_sched_class.pick_next_task(rq, prev, rf);
3304 if (unlikely(p == RETRY_TASK))
3305 goto again;
3306
3307 /* Assumes fair_sched_class->next == idle_sched_class */
3308 if (unlikely(!p))
3309 p = idle_sched_class.pick_next_task(rq, prev, rf);
3310
3311 return p;
3312 }
3313
3314 again:
3315 for_each_class(class) {
3316 p = class->pick_next_task(rq, prev, rf);
3317 if (p) {
3318 if (unlikely(p == RETRY_TASK))
3319 goto again;
3320 return p;
3321 }
3322 }
3323
3324 /* The idle class should always have a runnable task: */
3325 BUG();
3326 }
3327
3328 /*
3329 * __schedule() is the main scheduler function.
3330 *
3331 * The main means of driving the scheduler and thus entering this function are:
3332 *
3333 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3334 *
3335 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3336 * paths. For example, see arch/x86/entry_64.S.
3337 *
3338 * To drive preemption between tasks, the scheduler sets the flag in timer
3339 * interrupt handler scheduler_tick().
3340 *
3341 * 3. Wakeups don't really cause entry into schedule(). They add a
3342 * task to the run-queue and that's it.
3343 *
3344 * Now, if the new task added to the run-queue preempts the current
3345 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3346 * called on the nearest possible occasion:
3347 *
3348 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3349 *
3350 * - in syscall or exception context, at the next outmost
3351 * preempt_enable(). (this might be as soon as the wake_up()'s
3352 * spin_unlock()!)
3353 *
3354 * - in IRQ context, return from interrupt-handler to
3355 * preemptible context
3356 *
3357 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3358 * then at the next:
3359 *
3360 * - cond_resched() call
3361 * - explicit schedule() call
3362 * - return from syscall or exception to user-space
3363 * - return from interrupt-handler to user-space
3364 *
3365 * WARNING: must be called with preemption disabled!
3366 */
3367 static void __sched notrace __schedule(bool preempt)
3368 {
3369 struct task_struct *prev, *next;
3370 unsigned long *switch_count;
3371 struct rq_flags rf;
3372 struct rq *rq;
3373 int cpu;
3374
3375 cpu = smp_processor_id();
3376 rq = cpu_rq(cpu);
3377 prev = rq->curr;
3378
3379 schedule_debug(prev);
3380
3381 if (sched_feat(HRTICK))
3382 hrtick_clear(rq);
3383
3384 local_irq_disable();
3385 rcu_note_context_switch(preempt);
3386
3387 /*
3388 * Make sure that signal_pending_state()->signal_pending() below
3389 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3390 * done by the caller to avoid the race with signal_wake_up().
3391 */
3392 smp_mb__before_spinlock();
3393 rq_lock(rq, &rf);
3394
3395 /* Promote REQ to ACT */
3396 rq->clock_update_flags <<= 1;
3397 update_rq_clock(rq);
3398
3399 switch_count = &prev->nivcsw;
3400 if (!preempt && prev->state) {
3401 if (unlikely(signal_pending_state(prev->state, prev))) {
3402 prev->state = TASK_RUNNING;
3403 } else {
3404 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3405 prev->on_rq = 0;
3406
3407 if (prev->in_iowait) {
3408 atomic_inc(&rq->nr_iowait);
3409 delayacct_blkio_start();
3410 }
3411
3412 /*
3413 * If a worker went to sleep, notify and ask workqueue
3414 * whether it wants to wake up a task to maintain
3415 * concurrency.
3416 */
3417 if (prev->flags & PF_WQ_WORKER) {
3418 struct task_struct *to_wakeup;
3419
3420 to_wakeup = wq_worker_sleeping(prev);
3421 if (to_wakeup)
3422 try_to_wake_up_local(to_wakeup, &rf);
3423 }
3424 }
3425 switch_count = &prev->nvcsw;
3426 }
3427
3428 next = pick_next_task(rq, prev, &rf);
3429 clear_tsk_need_resched(prev);
3430 clear_preempt_need_resched();
3431
3432 if (likely(prev != next)) {
3433 rq->nr_switches++;
3434 rq->curr = next;
3435 ++*switch_count;
3436
3437 trace_sched_switch(preempt, prev, next);
3438
3439 /* Also unlocks the rq: */
3440 rq = context_switch(rq, prev, next, &rf);
3441 } else {
3442 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3443 rq_unlock_irq(rq, &rf);
3444 }
3445
3446 balance_callback(rq);
3447 }
3448
3449 void __noreturn do_task_dead(void)
3450 {
3451 /*
3452 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3453 * when the following two conditions become true.
3454 * - There is race condition of mmap_sem (It is acquired by
3455 * exit_mm()), and
3456 * - SMI occurs before setting TASK_RUNINNG.
3457 * (or hypervisor of virtual machine switches to other guest)
3458 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3459 *
3460 * To avoid it, we have to wait for releasing tsk->pi_lock which
3461 * is held by try_to_wake_up()
3462 */
3463 smp_mb();
3464 raw_spin_unlock_wait(&current->pi_lock);
3465
3466 /* Causes final put_task_struct in finish_task_switch(): */
3467 __set_current_state(TASK_DEAD);
3468
3469 /* Tell freezer to ignore us: */
3470 current->flags |= PF_NOFREEZE;
3471
3472 __schedule(false);
3473 BUG();
3474
3475 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476 for (;;)
3477 cpu_relax();
3478 }
3479
3480 static inline void sched_submit_work(struct task_struct *tsk)
3481 {
3482 if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 return;
3484 /*
3485 * If we are going to sleep and we have plugged IO queued,
3486 * make sure to submit it to avoid deadlocks.
3487 */
3488 if (blk_needs_flush_plug(tsk))
3489 blk_schedule_flush_plug(tsk);
3490 }
3491
3492 asmlinkage __visible void __sched schedule(void)
3493 {
3494 struct task_struct *tsk = current;
3495
3496 sched_submit_work(tsk);
3497 do {
3498 preempt_disable();
3499 __schedule(false);
3500 sched_preempt_enable_no_resched();
3501 } while (need_resched());
3502 }
3503 EXPORT_SYMBOL(schedule);
3504
3505 #ifdef CONFIG_CONTEXT_TRACKING
3506 asmlinkage __visible void __sched schedule_user(void)
3507 {
3508 /*
3509 * If we come here after a random call to set_need_resched(),
3510 * or we have been woken up remotely but the IPI has not yet arrived,
3511 * we haven't yet exited the RCU idle mode. Do it here manually until
3512 * we find a better solution.
3513 *
3514 * NB: There are buggy callers of this function. Ideally we
3515 * should warn if prev_state != CONTEXT_USER, but that will trigger
3516 * too frequently to make sense yet.
3517 */
3518 enum ctx_state prev_state = exception_enter();
3519 schedule();
3520 exception_exit(prev_state);
3521 }
3522 #endif
3523
3524 /**
3525 * schedule_preempt_disabled - called with preemption disabled
3526 *
3527 * Returns with preemption disabled. Note: preempt_count must be 1
3528 */
3529 void __sched schedule_preempt_disabled(void)
3530 {
3531 sched_preempt_enable_no_resched();
3532 schedule();
3533 preempt_disable();
3534 }
3535
3536 static void __sched notrace preempt_schedule_common(void)
3537 {
3538 do {
3539 /*
3540 * Because the function tracer can trace preempt_count_sub()
3541 * and it also uses preempt_enable/disable_notrace(), if
3542 * NEED_RESCHED is set, the preempt_enable_notrace() called
3543 * by the function tracer will call this function again and
3544 * cause infinite recursion.
3545 *
3546 * Preemption must be disabled here before the function
3547 * tracer can trace. Break up preempt_disable() into two
3548 * calls. One to disable preemption without fear of being
3549 * traced. The other to still record the preemption latency,
3550 * which can also be traced by the function tracer.
3551 */
3552 preempt_disable_notrace();
3553 preempt_latency_start(1);
3554 __schedule(true);
3555 preempt_latency_stop(1);
3556 preempt_enable_no_resched_notrace();
3557
3558 /*
3559 * Check again in case we missed a preemption opportunity
3560 * between schedule and now.
3561 */
3562 } while (need_resched());
3563 }
3564
3565 #ifdef CONFIG_PREEMPT
3566 /*
3567 * this is the entry point to schedule() from in-kernel preemption
3568 * off of preempt_enable. Kernel preemptions off return from interrupt
3569 * occur there and call schedule directly.
3570 */
3571 asmlinkage __visible void __sched notrace preempt_schedule(void)
3572 {
3573 /*
3574 * If there is a non-zero preempt_count or interrupts are disabled,
3575 * we do not want to preempt the current task. Just return..
3576 */
3577 if (likely(!preemptible()))
3578 return;
3579
3580 preempt_schedule_common();
3581 }
3582 NOKPROBE_SYMBOL(preempt_schedule);
3583 EXPORT_SYMBOL(preempt_schedule);
3584
3585 /**
3586 * preempt_schedule_notrace - preempt_schedule called by tracing
3587 *
3588 * The tracing infrastructure uses preempt_enable_notrace to prevent
3589 * recursion and tracing preempt enabling caused by the tracing
3590 * infrastructure itself. But as tracing can happen in areas coming
3591 * from userspace or just about to enter userspace, a preempt enable
3592 * can occur before user_exit() is called. This will cause the scheduler
3593 * to be called when the system is still in usermode.
3594 *
3595 * To prevent this, the preempt_enable_notrace will use this function
3596 * instead of preempt_schedule() to exit user context if needed before
3597 * calling the scheduler.
3598 */
3599 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3600 {
3601 enum ctx_state prev_ctx;
3602
3603 if (likely(!preemptible()))
3604 return;
3605
3606 do {
3607 /*
3608 * Because the function tracer can trace preempt_count_sub()
3609 * and it also uses preempt_enable/disable_notrace(), if
3610 * NEED_RESCHED is set, the preempt_enable_notrace() called
3611 * by the function tracer will call this function again and
3612 * cause infinite recursion.
3613 *
3614 * Preemption must be disabled here before the function
3615 * tracer can trace. Break up preempt_disable() into two
3616 * calls. One to disable preemption without fear of being
3617 * traced. The other to still record the preemption latency,
3618 * which can also be traced by the function tracer.
3619 */
3620 preempt_disable_notrace();
3621 preempt_latency_start(1);
3622 /*
3623 * Needs preempt disabled in case user_exit() is traced
3624 * and the tracer calls preempt_enable_notrace() causing
3625 * an infinite recursion.
3626 */
3627 prev_ctx = exception_enter();
3628 __schedule(true);
3629 exception_exit(prev_ctx);
3630
3631 preempt_latency_stop(1);
3632 preempt_enable_no_resched_notrace();
3633 } while (need_resched());
3634 }
3635 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3636
3637 #endif /* CONFIG_PREEMPT */
3638
3639 /*
3640 * this is the entry point to schedule() from kernel preemption
3641 * off of irq context.
3642 * Note, that this is called and return with irqs disabled. This will
3643 * protect us against recursive calling from irq.
3644 */
3645 asmlinkage __visible void __sched preempt_schedule_irq(void)
3646 {
3647 enum ctx_state prev_state;
3648
3649 /* Catch callers which need to be fixed */
3650 BUG_ON(preempt_count() || !irqs_disabled());
3651
3652 prev_state = exception_enter();
3653
3654 do {
3655 preempt_disable();
3656 local_irq_enable();
3657 __schedule(true);
3658 local_irq_disable();
3659 sched_preempt_enable_no_resched();
3660 } while (need_resched());
3661
3662 exception_exit(prev_state);
3663 }
3664
3665 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3666 void *key)
3667 {
3668 return try_to_wake_up(curr->private, mode, wake_flags);
3669 }
3670 EXPORT_SYMBOL(default_wake_function);
3671
3672 #ifdef CONFIG_RT_MUTEXES
3673
3674 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3675 {
3676 if (pi_task)
3677 prio = min(prio, pi_task->prio);
3678
3679 return prio;
3680 }
3681
3682 static inline int rt_effective_prio(struct task_struct *p, int prio)
3683 {
3684 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3685
3686 return __rt_effective_prio(pi_task, prio);
3687 }
3688
3689 /*
3690 * rt_mutex_setprio - set the current priority of a task
3691 * @p: task to boost
3692 * @pi_task: donor task
3693 *
3694 * This function changes the 'effective' priority of a task. It does
3695 * not touch ->normal_prio like __setscheduler().
3696 *
3697 * Used by the rt_mutex code to implement priority inheritance
3698 * logic. Call site only calls if the priority of the task changed.
3699 */
3700 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3701 {
3702 int prio, oldprio, queued, running, queue_flag =
3703 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3704 const struct sched_class *prev_class;
3705 struct rq_flags rf;
3706 struct rq *rq;
3707
3708 /* XXX used to be waiter->prio, not waiter->task->prio */
3709 prio = __rt_effective_prio(pi_task, p->normal_prio);
3710
3711 /*
3712 * If nothing changed; bail early.
3713 */
3714 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3715 return;
3716
3717 rq = __task_rq_lock(p, &rf);
3718 update_rq_clock(rq);
3719 /*
3720 * Set under pi_lock && rq->lock, such that the value can be used under
3721 * either lock.
3722 *
3723 * Note that there is loads of tricky to make this pointer cache work
3724 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3725 * ensure a task is de-boosted (pi_task is set to NULL) before the
3726 * task is allowed to run again (and can exit). This ensures the pointer
3727 * points to a blocked task -- which guaratees the task is present.
3728 */
3729 p->pi_top_task = pi_task;
3730
3731 /*
3732 * For FIFO/RR we only need to set prio, if that matches we're done.
3733 */
3734 if (prio == p->prio && !dl_prio(prio))
3735 goto out_unlock;
3736
3737 /*
3738 * Idle task boosting is a nono in general. There is one
3739 * exception, when PREEMPT_RT and NOHZ is active:
3740 *
3741 * The idle task calls get_next_timer_interrupt() and holds
3742 * the timer wheel base->lock on the CPU and another CPU wants
3743 * to access the timer (probably to cancel it). We can safely
3744 * ignore the boosting request, as the idle CPU runs this code
3745 * with interrupts disabled and will complete the lock
3746 * protected section without being interrupted. So there is no
3747 * real need to boost.
3748 */
3749 if (unlikely(p == rq->idle)) {
3750 WARN_ON(p != rq->curr);
3751 WARN_ON(p->pi_blocked_on);
3752 goto out_unlock;
3753 }
3754
3755 trace_sched_pi_setprio(p, pi_task);
3756 oldprio = p->prio;
3757
3758 if (oldprio == prio)
3759 queue_flag &= ~DEQUEUE_MOVE;
3760
3761 prev_class = p->sched_class;
3762 queued = task_on_rq_queued(p);
3763 running = task_current(rq, p);
3764 if (queued)
3765 dequeue_task(rq, p, queue_flag);
3766 if (running)
3767 put_prev_task(rq, p);
3768
3769 /*
3770 * Boosting condition are:
3771 * 1. -rt task is running and holds mutex A
3772 * --> -dl task blocks on mutex A
3773 *
3774 * 2. -dl task is running and holds mutex A
3775 * --> -dl task blocks on mutex A and could preempt the
3776 * running task
3777 */
3778 if (dl_prio(prio)) {
3779 if (!dl_prio(p->normal_prio) ||
3780 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3781 p->dl.dl_boosted = 1;
3782 queue_flag |= ENQUEUE_REPLENISH;
3783 } else
3784 p->dl.dl_boosted = 0;
3785 p->sched_class = &dl_sched_class;
3786 } else if (rt_prio(prio)) {
3787 if (dl_prio(oldprio))
3788 p->dl.dl_boosted = 0;
3789 if (oldprio < prio)
3790 queue_flag |= ENQUEUE_HEAD;
3791 p->sched_class = &rt_sched_class;
3792 } else {
3793 if (dl_prio(oldprio))
3794 p->dl.dl_boosted = 0;
3795 if (rt_prio(oldprio))
3796 p->rt.timeout = 0;
3797 p->sched_class = &fair_sched_class;
3798 }
3799
3800 p->prio = prio;
3801
3802 if (queued)
3803 enqueue_task(rq, p, queue_flag);
3804 if (running)
3805 set_curr_task(rq, p);
3806
3807 check_class_changed(rq, p, prev_class, oldprio);
3808 out_unlock:
3809 /* Avoid rq from going away on us: */
3810 preempt_disable();
3811 __task_rq_unlock(rq, &rf);
3812
3813 balance_callback(rq);
3814 preempt_enable();
3815 }
3816 #else
3817 static inline int rt_effective_prio(struct task_struct *p, int prio)
3818 {
3819 return prio;
3820 }
3821 #endif
3822
3823 void set_user_nice(struct task_struct *p, long nice)
3824 {
3825 bool queued, running;
3826 int old_prio, delta;
3827 struct rq_flags rf;
3828 struct rq *rq;
3829
3830 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3831 return;
3832 /*
3833 * We have to be careful, if called from sys_setpriority(),
3834 * the task might be in the middle of scheduling on another CPU.
3835 */
3836 rq = task_rq_lock(p, &rf);
3837 update_rq_clock(rq);
3838
3839 /*
3840 * The RT priorities are set via sched_setscheduler(), but we still
3841 * allow the 'normal' nice value to be set - but as expected
3842 * it wont have any effect on scheduling until the task is
3843 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3844 */
3845 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3846 p->static_prio = NICE_TO_PRIO(nice);
3847 goto out_unlock;
3848 }
3849 queued = task_on_rq_queued(p);
3850 running = task_current(rq, p);
3851 if (queued)
3852 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3853 if (running)
3854 put_prev_task(rq, p);
3855
3856 p->static_prio = NICE_TO_PRIO(nice);
3857 set_load_weight(p);
3858 old_prio = p->prio;
3859 p->prio = effective_prio(p);
3860 delta = p->prio - old_prio;
3861
3862 if (queued) {
3863 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3864 /*
3865 * If the task increased its priority or is running and
3866 * lowered its priority, then reschedule its CPU:
3867 */
3868 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3869 resched_curr(rq);
3870 }
3871 if (running)
3872 set_curr_task(rq, p);
3873 out_unlock:
3874 task_rq_unlock(rq, p, &rf);
3875 }
3876 EXPORT_SYMBOL(set_user_nice);
3877
3878 /*
3879 * can_nice - check if a task can reduce its nice value
3880 * @p: task
3881 * @nice: nice value
3882 */
3883 int can_nice(const struct task_struct *p, const int nice)
3884 {
3885 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3886 int nice_rlim = nice_to_rlimit(nice);
3887
3888 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3889 capable(CAP_SYS_NICE));
3890 }
3891
3892 #ifdef __ARCH_WANT_SYS_NICE
3893
3894 /*
3895 * sys_nice - change the priority of the current process.
3896 * @increment: priority increment
3897 *
3898 * sys_setpriority is a more generic, but much slower function that
3899 * does similar things.
3900 */
3901 SYSCALL_DEFINE1(nice, int, increment)
3902 {
3903 long nice, retval;
3904
3905 /*
3906 * Setpriority might change our priority at the same moment.
3907 * We don't have to worry. Conceptually one call occurs first
3908 * and we have a single winner.
3909 */
3910 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3911 nice = task_nice(current) + increment;
3912
3913 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3914 if (increment < 0 && !can_nice(current, nice))
3915 return -EPERM;
3916
3917 retval = security_task_setnice(current, nice);
3918 if (retval)
3919 return retval;
3920
3921 set_user_nice(current, nice);
3922 return 0;
3923 }
3924
3925 #endif
3926
3927 /**
3928 * task_prio - return the priority value of a given task.
3929 * @p: the task in question.
3930 *
3931 * Return: The priority value as seen by users in /proc.
3932 * RT tasks are offset by -200. Normal tasks are centered
3933 * around 0, value goes from -16 to +15.
3934 */
3935 int task_prio(const struct task_struct *p)
3936 {
3937 return p->prio - MAX_RT_PRIO;
3938 }
3939
3940 /**
3941 * idle_cpu - is a given CPU idle currently?
3942 * @cpu: the processor in question.
3943 *
3944 * Return: 1 if the CPU is currently idle. 0 otherwise.
3945 */
3946 int idle_cpu(int cpu)
3947 {
3948 struct rq *rq = cpu_rq(cpu);
3949
3950 if (rq->curr != rq->idle)
3951 return 0;
3952
3953 if (rq->nr_running)
3954 return 0;
3955
3956 #ifdef CONFIG_SMP
3957 if (!llist_empty(&rq->wake_list))
3958 return 0;
3959 #endif
3960
3961 return 1;
3962 }
3963
3964 /**
3965 * idle_task - return the idle task for a given CPU.
3966 * @cpu: the processor in question.
3967 *
3968 * Return: The idle task for the CPU @cpu.
3969 */
3970 struct task_struct *idle_task(int cpu)
3971 {
3972 return cpu_rq(cpu)->idle;
3973 }
3974
3975 /**
3976 * find_process_by_pid - find a process with a matching PID value.
3977 * @pid: the pid in question.
3978 *
3979 * The task of @pid, if found. %NULL otherwise.
3980 */
3981 static struct task_struct *find_process_by_pid(pid_t pid)
3982 {
3983 return pid ? find_task_by_vpid(pid) : current;
3984 }
3985
3986 /*
3987 * This function initializes the sched_dl_entity of a newly becoming
3988 * SCHED_DEADLINE task.
3989 *
3990 * Only the static values are considered here, the actual runtime and the
3991 * absolute deadline will be properly calculated when the task is enqueued
3992 * for the first time with its new policy.
3993 */
3994 static void
3995 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3996 {
3997 struct sched_dl_entity *dl_se = &p->dl;
3998
3999 dl_se->dl_runtime = attr->sched_runtime;
4000 dl_se->dl_deadline = attr->sched_deadline;
4001 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4002 dl_se->flags = attr->sched_flags;
4003 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4004
4005 /*
4006 * Changing the parameters of a task is 'tricky' and we're not doing
4007 * the correct thing -- also see task_dead_dl() and switched_from_dl().
4008 *
4009 * What we SHOULD do is delay the bandwidth release until the 0-lag
4010 * point. This would include retaining the task_struct until that time
4011 * and change dl_overflow() to not immediately decrement the current
4012 * amount.
4013 *
4014 * Instead we retain the current runtime/deadline and let the new
4015 * parameters take effect after the current reservation period lapses.
4016 * This is safe (albeit pessimistic) because the 0-lag point is always
4017 * before the current scheduling deadline.
4018 *
4019 * We can still have temporary overloads because we do not delay the
4020 * change in bandwidth until that time; so admission control is
4021 * not on the safe side. It does however guarantee tasks will never
4022 * consume more than promised.
4023 */
4024 }
4025
4026 /*
4027 * sched_setparam() passes in -1 for its policy, to let the functions
4028 * it calls know not to change it.
4029 */
4030 #define SETPARAM_POLICY -1
4031
4032 static void __setscheduler_params(struct task_struct *p,
4033 const struct sched_attr *attr)
4034 {
4035 int policy = attr->sched_policy;
4036
4037 if (policy == SETPARAM_POLICY)
4038 policy = p->policy;
4039
4040 p->policy = policy;
4041
4042 if (dl_policy(policy))
4043 __setparam_dl(p, attr);
4044 else if (fair_policy(policy))
4045 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4046
4047 /*
4048 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4049 * !rt_policy. Always setting this ensures that things like
4050 * getparam()/getattr() don't report silly values for !rt tasks.
4051 */
4052 p->rt_priority = attr->sched_priority;
4053 p->normal_prio = normal_prio(p);
4054 set_load_weight(p);
4055 }
4056
4057 /* Actually do priority change: must hold pi & rq lock. */
4058 static void __setscheduler(struct rq *rq, struct task_struct *p,
4059 const struct sched_attr *attr, bool keep_boost)
4060 {
4061 __setscheduler_params(p, attr);
4062
4063 /*
4064 * Keep a potential priority boosting if called from
4065 * sched_setscheduler().
4066 */
4067 p->prio = normal_prio(p);
4068 if (keep_boost)
4069 p->prio = rt_effective_prio(p, p->prio);
4070
4071 if (dl_prio(p->prio))
4072 p->sched_class = &dl_sched_class;
4073 else if (rt_prio(p->prio))
4074 p->sched_class = &rt_sched_class;
4075 else
4076 p->sched_class = &fair_sched_class;
4077 }
4078
4079 static void
4080 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4081 {
4082 struct sched_dl_entity *dl_se = &p->dl;
4083
4084 attr->sched_priority = p->rt_priority;
4085 attr->sched_runtime = dl_se->dl_runtime;
4086 attr->sched_deadline = dl_se->dl_deadline;
4087 attr->sched_period = dl_se->dl_period;
4088 attr->sched_flags = dl_se->flags;
4089 }
4090
4091 /*
4092 * This function validates the new parameters of a -deadline task.
4093 * We ask for the deadline not being zero, and greater or equal
4094 * than the runtime, as well as the period of being zero or
4095 * greater than deadline. Furthermore, we have to be sure that
4096 * user parameters are above the internal resolution of 1us (we
4097 * check sched_runtime only since it is always the smaller one) and
4098 * below 2^63 ns (we have to check both sched_deadline and
4099 * sched_period, as the latter can be zero).
4100 */
4101 static bool
4102 __checkparam_dl(const struct sched_attr *attr)
4103 {
4104 /* deadline != 0 */
4105 if (attr->sched_deadline == 0)
4106 return false;
4107
4108 /*
4109 * Since we truncate DL_SCALE bits, make sure we're at least
4110 * that big.
4111 */
4112 if (attr->sched_runtime < (1ULL << DL_SCALE))
4113 return false;
4114
4115 /*
4116 * Since we use the MSB for wrap-around and sign issues, make
4117 * sure it's not set (mind that period can be equal to zero).
4118 */
4119 if (attr->sched_deadline & (1ULL << 63) ||
4120 attr->sched_period & (1ULL << 63))
4121 return false;
4122
4123 /* runtime <= deadline <= period (if period != 0) */
4124 if ((attr->sched_period != 0 &&
4125 attr->sched_period < attr->sched_deadline) ||
4126 attr->sched_deadline < attr->sched_runtime)
4127 return false;
4128
4129 return true;
4130 }
4131
4132 /*
4133 * Check the target process has a UID that matches the current process's:
4134 */
4135 static bool check_same_owner(struct task_struct *p)
4136 {
4137 const struct cred *cred = current_cred(), *pcred;
4138 bool match;
4139
4140 rcu_read_lock();
4141 pcred = __task_cred(p);
4142 match = (uid_eq(cred->euid, pcred->euid) ||
4143 uid_eq(cred->euid, pcred->uid));
4144 rcu_read_unlock();
4145 return match;
4146 }
4147
4148 static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4149 {
4150 struct sched_dl_entity *dl_se = &p->dl;
4151
4152 if (dl_se->dl_runtime != attr->sched_runtime ||
4153 dl_se->dl_deadline != attr->sched_deadline ||
4154 dl_se->dl_period != attr->sched_period ||
4155 dl_se->flags != attr->sched_flags)
4156 return true;
4157
4158 return false;
4159 }
4160
4161 static int __sched_setscheduler(struct task_struct *p,
4162 const struct sched_attr *attr,
4163 bool user, bool pi)
4164 {
4165 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4166 MAX_RT_PRIO - 1 - attr->sched_priority;
4167 int retval, oldprio, oldpolicy = -1, queued, running;
4168 int new_effective_prio, policy = attr->sched_policy;
4169 const struct sched_class *prev_class;
4170 struct rq_flags rf;
4171 int reset_on_fork;
4172 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4173 struct rq *rq;
4174
4175 /* May grab non-irq protected spin_locks: */
4176 BUG_ON(in_interrupt());
4177 recheck:
4178 /* Double check policy once rq lock held: */
4179 if (policy < 0) {
4180 reset_on_fork = p->sched_reset_on_fork;
4181 policy = oldpolicy = p->policy;
4182 } else {
4183 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4184
4185 if (!valid_policy(policy))
4186 return -EINVAL;
4187 }
4188
4189 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4190 return -EINVAL;
4191
4192 /*
4193 * Valid priorities for SCHED_FIFO and SCHED_RR are
4194 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4195 * SCHED_BATCH and SCHED_IDLE is 0.
4196 */
4197 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4198 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4199 return -EINVAL;
4200 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4201 (rt_policy(policy) != (attr->sched_priority != 0)))
4202 return -EINVAL;
4203
4204 /*
4205 * Allow unprivileged RT tasks to decrease priority:
4206 */
4207 if (user && !capable(CAP_SYS_NICE)) {
4208 if (fair_policy(policy)) {
4209 if (attr->sched_nice < task_nice(p) &&
4210 !can_nice(p, attr->sched_nice))
4211 return -EPERM;
4212 }
4213
4214 if (rt_policy(policy)) {
4215 unsigned long rlim_rtprio =
4216 task_rlimit(p, RLIMIT_RTPRIO);
4217
4218 /* Can't set/change the rt policy: */
4219 if (policy != p->policy && !rlim_rtprio)
4220 return -EPERM;
4221
4222 /* Can't increase priority: */
4223 if (attr->sched_priority > p->rt_priority &&
4224 attr->sched_priority > rlim_rtprio)
4225 return -EPERM;
4226 }
4227
4228 /*
4229 * Can't set/change SCHED_DEADLINE policy at all for now
4230 * (safest behavior); in the future we would like to allow
4231 * unprivileged DL tasks to increase their relative deadline
4232 * or reduce their runtime (both ways reducing utilization)
4233 */
4234 if (dl_policy(policy))
4235 return -EPERM;
4236
4237 /*
4238 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4239 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4240 */
4241 if (idle_policy(p->policy) && !idle_policy(policy)) {
4242 if (!can_nice(p, task_nice(p)))
4243 return -EPERM;
4244 }
4245
4246 /* Can't change other user's priorities: */
4247 if (!check_same_owner(p))
4248 return -EPERM;
4249
4250 /* Normal users shall not reset the sched_reset_on_fork flag: */
4251 if (p->sched_reset_on_fork && !reset_on_fork)
4252 return -EPERM;
4253 }
4254
4255 if (user) {
4256 retval = security_task_setscheduler(p);
4257 if (retval)
4258 return retval;
4259 }
4260
4261 /*
4262 * Make sure no PI-waiters arrive (or leave) while we are
4263 * changing the priority of the task:
4264 *
4265 * To be able to change p->policy safely, the appropriate
4266 * runqueue lock must be held.
4267 */
4268 rq = task_rq_lock(p, &rf);
4269 update_rq_clock(rq);
4270
4271 /*
4272 * Changing the policy of the stop threads its a very bad idea:
4273 */
4274 if (p == rq->stop) {
4275 task_rq_unlock(rq, p, &rf);
4276 return -EINVAL;
4277 }
4278
4279 /*
4280 * If not changing anything there's no need to proceed further,
4281 * but store a possible modification of reset_on_fork.
4282 */
4283 if (unlikely(policy == p->policy)) {
4284 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4285 goto change;
4286 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4287 goto change;
4288 if (dl_policy(policy) && dl_param_changed(p, attr))
4289 goto change;
4290
4291 p->sched_reset_on_fork = reset_on_fork;
4292 task_rq_unlock(rq, p, &rf);
4293 return 0;
4294 }
4295 change:
4296
4297 if (user) {
4298 #ifdef CONFIG_RT_GROUP_SCHED
4299 /*
4300 * Do not allow realtime tasks into groups that have no runtime
4301 * assigned.
4302 */
4303 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4304 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4305 !task_group_is_autogroup(task_group(p))) {
4306 task_rq_unlock(rq, p, &rf);
4307 return -EPERM;
4308 }
4309 #endif
4310 #ifdef CONFIG_SMP
4311 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4312 cpumask_t *span = rq->rd->span;
4313
4314 /*
4315 * Don't allow tasks with an affinity mask smaller than
4316 * the entire root_domain to become SCHED_DEADLINE. We
4317 * will also fail if there's no bandwidth available.
4318 */
4319 if (!cpumask_subset(span, &p->cpus_allowed) ||
4320 rq->rd->dl_bw.bw == 0) {
4321 task_rq_unlock(rq, p, &rf);
4322 return -EPERM;
4323 }
4324 }
4325 #endif
4326 }
4327
4328 /* Re-check policy now with rq lock held: */
4329 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4330 policy = oldpolicy = -1;
4331 task_rq_unlock(rq, p, &rf);
4332 goto recheck;
4333 }
4334
4335 /*
4336 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4337 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4338 * is available.
4339 */
4340 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4341 task_rq_unlock(rq, p, &rf);
4342 return -EBUSY;
4343 }
4344
4345 p->sched_reset_on_fork = reset_on_fork;
4346 oldprio = p->prio;
4347
4348 if (pi) {
4349 /*
4350 * Take priority boosted tasks into account. If the new
4351 * effective priority is unchanged, we just store the new
4352 * normal parameters and do not touch the scheduler class and
4353 * the runqueue. This will be done when the task deboost
4354 * itself.
4355 */
4356 new_effective_prio = rt_effective_prio(p, newprio);
4357 if (new_effective_prio == oldprio)
4358 queue_flags &= ~DEQUEUE_MOVE;
4359 }
4360
4361 queued = task_on_rq_queued(p);
4362 running = task_current(rq, p);
4363 if (queued)
4364 dequeue_task(rq, p, queue_flags);
4365 if (running)
4366 put_prev_task(rq, p);
4367
4368 prev_class = p->sched_class;
4369 __setscheduler(rq, p, attr, pi);
4370
4371 if (queued) {
4372 /*
4373 * We enqueue to tail when the priority of a task is
4374 * increased (user space view).
4375 */
4376 if (oldprio < p->prio)
4377 queue_flags |= ENQUEUE_HEAD;
4378
4379 enqueue_task(rq, p, queue_flags);
4380 }
4381 if (running)
4382 set_curr_task(rq, p);
4383
4384 check_class_changed(rq, p, prev_class, oldprio);
4385
4386 /* Avoid rq from going away on us: */
4387 preempt_disable();
4388 task_rq_unlock(rq, p, &rf);
4389
4390 if (pi)
4391 rt_mutex_adjust_pi(p);
4392
4393 /* Run balance callbacks after we've adjusted the PI chain: */
4394 balance_callback(rq);
4395 preempt_enable();
4396
4397 return 0;
4398 }
4399
4400 static int _sched_setscheduler(struct task_struct *p, int policy,
4401 const struct sched_param *param, bool check)
4402 {
4403 struct sched_attr attr = {
4404 .sched_policy = policy,
4405 .sched_priority = param->sched_priority,
4406 .sched_nice = PRIO_TO_NICE(p->static_prio),
4407 };
4408
4409 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4410 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4411 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4412 policy &= ~SCHED_RESET_ON_FORK;
4413 attr.sched_policy = policy;
4414 }
4415
4416 return __sched_setscheduler(p, &attr, check, true);
4417 }
4418 /**
4419 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4420 * @p: the task in question.
4421 * @policy: new policy.
4422 * @param: structure containing the new RT priority.
4423 *
4424 * Return: 0 on success. An error code otherwise.
4425 *
4426 * NOTE that the task may be already dead.
4427 */
4428 int sched_setscheduler(struct task_struct *p, int policy,
4429 const struct sched_param *param)
4430 {
4431 return _sched_setscheduler(p, policy, param, true);
4432 }
4433 EXPORT_SYMBOL_GPL(sched_setscheduler);
4434
4435 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4436 {
4437 return __sched_setscheduler(p, attr, true, true);
4438 }
4439 EXPORT_SYMBOL_GPL(sched_setattr);
4440
4441 /**
4442 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4443 * @p: the task in question.
4444 * @policy: new policy.
4445 * @param: structure containing the new RT priority.
4446 *
4447 * Just like sched_setscheduler, only don't bother checking if the
4448 * current context has permission. For example, this is needed in
4449 * stop_machine(): we create temporary high priority worker threads,
4450 * but our caller might not have that capability.
4451 *
4452 * Return: 0 on success. An error code otherwise.
4453 */
4454 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4455 const struct sched_param *param)
4456 {
4457 return _sched_setscheduler(p, policy, param, false);
4458 }
4459 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4460
4461 static int
4462 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4463 {
4464 struct sched_param lparam;
4465 struct task_struct *p;
4466 int retval;
4467
4468 if (!param || pid < 0)
4469 return -EINVAL;
4470 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4471 return -EFAULT;
4472
4473 rcu_read_lock();
4474 retval = -ESRCH;
4475 p = find_process_by_pid(pid);
4476 if (p != NULL)
4477 retval = sched_setscheduler(p, policy, &lparam);
4478 rcu_read_unlock();
4479
4480 return retval;
4481 }
4482
4483 /*
4484 * Mimics kernel/events/core.c perf_copy_attr().
4485 */
4486 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4487 {
4488 u32 size;
4489 int ret;
4490
4491 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4492 return -EFAULT;
4493
4494 /* Zero the full structure, so that a short copy will be nice: */
4495 memset(attr, 0, sizeof(*attr));
4496
4497 ret = get_user(size, &uattr->size);
4498 if (ret)
4499 return ret;
4500
4501 /* Bail out on silly large: */
4502 if (size > PAGE_SIZE)
4503 goto err_size;
4504
4505 /* ABI compatibility quirk: */
4506 if (!size)
4507 size = SCHED_ATTR_SIZE_VER0;
4508
4509 if (size < SCHED_ATTR_SIZE_VER0)
4510 goto err_size;
4511
4512 /*
4513 * If we're handed a bigger struct than we know of,
4514 * ensure all the unknown bits are 0 - i.e. new
4515 * user-space does not rely on any kernel feature
4516 * extensions we dont know about yet.
4517 */
4518 if (size > sizeof(*attr)) {
4519 unsigned char __user *addr;
4520 unsigned char __user *end;
4521 unsigned char val;
4522
4523 addr = (void __user *)uattr + sizeof(*attr);
4524 end = (void __user *)uattr + size;
4525
4526 for (; addr < end; addr++) {
4527 ret = get_user(val, addr);
4528 if (ret)
4529 return ret;
4530 if (val)
4531 goto err_size;
4532 }
4533 size = sizeof(*attr);
4534 }
4535
4536 ret = copy_from_user(attr, uattr, size);
4537 if (ret)
4538 return -EFAULT;
4539
4540 /*
4541 * XXX: Do we want to be lenient like existing syscalls; or do we want
4542 * to be strict and return an error on out-of-bounds values?
4543 */
4544 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4545
4546 return 0;
4547
4548 err_size:
4549 put_user(sizeof(*attr), &uattr->size);
4550 return -E2BIG;
4551 }
4552
4553 /**
4554 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4555 * @pid: the pid in question.
4556 * @policy: new policy.
4557 * @param: structure containing the new RT priority.
4558 *
4559 * Return: 0 on success. An error code otherwise.
4560 */
4561 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4562 {
4563 if (policy < 0)
4564 return -EINVAL;
4565
4566 return do_sched_setscheduler(pid, policy, param);
4567 }
4568
4569 /**
4570 * sys_sched_setparam - set/change the RT priority of a thread
4571 * @pid: the pid in question.
4572 * @param: structure containing the new RT priority.
4573 *
4574 * Return: 0 on success. An error code otherwise.
4575 */
4576 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4577 {
4578 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4579 }
4580
4581 /**
4582 * sys_sched_setattr - same as above, but with extended sched_attr
4583 * @pid: the pid in question.
4584 * @uattr: structure containing the extended parameters.
4585 * @flags: for future extension.
4586 */
4587 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4588 unsigned int, flags)
4589 {
4590 struct sched_attr attr;
4591 struct task_struct *p;
4592 int retval;
4593
4594 if (!uattr || pid < 0 || flags)
4595 return -EINVAL;
4596
4597 retval = sched_copy_attr(uattr, &attr);
4598 if (retval)
4599 return retval;
4600
4601 if ((int)attr.sched_policy < 0)
4602 return -EINVAL;
4603
4604 rcu_read_lock();
4605 retval = -ESRCH;
4606 p = find_process_by_pid(pid);
4607 if (p != NULL)
4608 retval = sched_setattr(p, &attr);
4609 rcu_read_unlock();
4610
4611 return retval;
4612 }
4613
4614 /**
4615 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4616 * @pid: the pid in question.
4617 *
4618 * Return: On success, the policy of the thread. Otherwise, a negative error
4619 * code.
4620 */
4621 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4622 {
4623 struct task_struct *p;
4624 int retval;
4625
4626 if (pid < 0)
4627 return -EINVAL;
4628
4629 retval = -ESRCH;
4630 rcu_read_lock();
4631 p = find_process_by_pid(pid);
4632 if (p) {
4633 retval = security_task_getscheduler(p);
4634 if (!retval)
4635 retval = p->policy
4636 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4637 }
4638 rcu_read_unlock();
4639 return retval;
4640 }
4641
4642 /**
4643 * sys_sched_getparam - get the RT priority of a thread
4644 * @pid: the pid in question.
4645 * @param: structure containing the RT priority.
4646 *
4647 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4648 * code.
4649 */
4650 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4651 {
4652 struct sched_param lp = { .sched_priority = 0 };
4653 struct task_struct *p;
4654 int retval;
4655
4656 if (!param || pid < 0)
4657 return -EINVAL;
4658
4659 rcu_read_lock();
4660 p = find_process_by_pid(pid);
4661 retval = -ESRCH;
4662 if (!p)
4663 goto out_unlock;
4664
4665 retval = security_task_getscheduler(p);
4666 if (retval)
4667 goto out_unlock;
4668
4669 if (task_has_rt_policy(p))
4670 lp.sched_priority = p->rt_priority;
4671 rcu_read_unlock();
4672
4673 /*
4674 * This one might sleep, we cannot do it with a spinlock held ...
4675 */
4676 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4677
4678 return retval;
4679
4680 out_unlock:
4681 rcu_read_unlock();
4682 return retval;
4683 }
4684
4685 static int sched_read_attr(struct sched_attr __user *uattr,
4686 struct sched_attr *attr,
4687 unsigned int usize)
4688 {
4689 int ret;
4690
4691 if (!access_ok(VERIFY_WRITE, uattr, usize))
4692 return -EFAULT;
4693
4694 /*
4695 * If we're handed a smaller struct than we know of,
4696 * ensure all the unknown bits are 0 - i.e. old
4697 * user-space does not get uncomplete information.
4698 */
4699 if (usize < sizeof(*attr)) {
4700 unsigned char *addr;
4701 unsigned char *end;
4702
4703 addr = (void *)attr + usize;
4704 end = (void *)attr + sizeof(*attr);
4705
4706 for (; addr < end; addr++) {
4707 if (*addr)
4708 return -EFBIG;
4709 }
4710
4711 attr->size = usize;
4712 }
4713
4714 ret = copy_to_user(uattr, attr, attr->size);
4715 if (ret)
4716 return -EFAULT;
4717
4718 return 0;
4719 }
4720
4721 /**
4722 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4723 * @pid: the pid in question.
4724 * @uattr: structure containing the extended parameters.
4725 * @size: sizeof(attr) for fwd/bwd comp.
4726 * @flags: for future extension.
4727 */
4728 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4729 unsigned int, size, unsigned int, flags)
4730 {
4731 struct sched_attr attr = {
4732 .size = sizeof(struct sched_attr),
4733 };
4734 struct task_struct *p;
4735 int retval;
4736
4737 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4738 size < SCHED_ATTR_SIZE_VER0 || flags)
4739 return -EINVAL;
4740
4741 rcu_read_lock();
4742 p = find_process_by_pid(pid);
4743 retval = -ESRCH;
4744 if (!p)
4745 goto out_unlock;
4746
4747 retval = security_task_getscheduler(p);
4748 if (retval)
4749 goto out_unlock;
4750
4751 attr.sched_policy = p->policy;
4752 if (p->sched_reset_on_fork)
4753 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4754 if (task_has_dl_policy(p))
4755 __getparam_dl(p, &attr);
4756 else if (task_has_rt_policy(p))
4757 attr.sched_priority = p->rt_priority;
4758 else
4759 attr.sched_nice = task_nice(p);
4760
4761 rcu_read_unlock();
4762
4763 retval = sched_read_attr(uattr, &attr, size);
4764 return retval;
4765
4766 out_unlock:
4767 rcu_read_unlock();
4768 return retval;
4769 }
4770
4771 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4772 {
4773 cpumask_var_t cpus_allowed, new_mask;
4774 struct task_struct *p;
4775 int retval;
4776
4777 rcu_read_lock();
4778
4779 p = find_process_by_pid(pid);
4780 if (!p) {
4781 rcu_read_unlock();
4782 return -ESRCH;
4783 }
4784
4785 /* Prevent p going away */
4786 get_task_struct(p);
4787 rcu_read_unlock();
4788
4789 if (p->flags & PF_NO_SETAFFINITY) {
4790 retval = -EINVAL;
4791 goto out_put_task;
4792 }
4793 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4794 retval = -ENOMEM;
4795 goto out_put_task;
4796 }
4797 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4798 retval = -ENOMEM;
4799 goto out_free_cpus_allowed;
4800 }
4801 retval = -EPERM;
4802 if (!check_same_owner(p)) {
4803 rcu_read_lock();
4804 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4805 rcu_read_unlock();
4806 goto out_free_new_mask;
4807 }
4808 rcu_read_unlock();
4809 }
4810
4811 retval = security_task_setscheduler(p);
4812 if (retval)
4813 goto out_free_new_mask;
4814
4815
4816 cpuset_cpus_allowed(p, cpus_allowed);
4817 cpumask_and(new_mask, in_mask, cpus_allowed);
4818
4819 /*
4820 * Since bandwidth control happens on root_domain basis,
4821 * if admission test is enabled, we only admit -deadline
4822 * tasks allowed to run on all the CPUs in the task's
4823 * root_domain.
4824 */
4825 #ifdef CONFIG_SMP
4826 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4827 rcu_read_lock();
4828 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4829 retval = -EBUSY;
4830 rcu_read_unlock();
4831 goto out_free_new_mask;
4832 }
4833 rcu_read_unlock();
4834 }
4835 #endif
4836 again:
4837 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4838
4839 if (!retval) {
4840 cpuset_cpus_allowed(p, cpus_allowed);
4841 if (!cpumask_subset(new_mask, cpus_allowed)) {
4842 /*
4843 * We must have raced with a concurrent cpuset
4844 * update. Just reset the cpus_allowed to the
4845 * cpuset's cpus_allowed
4846 */
4847 cpumask_copy(new_mask, cpus_allowed);
4848 goto again;
4849 }
4850 }
4851 out_free_new_mask:
4852 free_cpumask_var(new_mask);
4853 out_free_cpus_allowed:
4854 free_cpumask_var(cpus_allowed);
4855 out_put_task:
4856 put_task_struct(p);
4857 return retval;
4858 }
4859
4860 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4861 struct cpumask *new_mask)
4862 {
4863 if (len < cpumask_size())
4864 cpumask_clear(new_mask);
4865 else if (len > cpumask_size())
4866 len = cpumask_size();
4867
4868 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4869 }
4870
4871 /**
4872 * sys_sched_setaffinity - set the CPU affinity of a process
4873 * @pid: pid of the process
4874 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4875 * @user_mask_ptr: user-space pointer to the new CPU mask
4876 *
4877 * Return: 0 on success. An error code otherwise.
4878 */
4879 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4880 unsigned long __user *, user_mask_ptr)
4881 {
4882 cpumask_var_t new_mask;
4883 int retval;
4884
4885 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4886 return -ENOMEM;
4887
4888 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4889 if (retval == 0)
4890 retval = sched_setaffinity(pid, new_mask);
4891 free_cpumask_var(new_mask);
4892 return retval;
4893 }
4894
4895 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4896 {
4897 struct task_struct *p;
4898 unsigned long flags;
4899 int retval;
4900
4901 rcu_read_lock();
4902
4903 retval = -ESRCH;
4904 p = find_process_by_pid(pid);
4905 if (!p)
4906 goto out_unlock;
4907
4908 retval = security_task_getscheduler(p);
4909 if (retval)
4910 goto out_unlock;
4911
4912 raw_spin_lock_irqsave(&p->pi_lock, flags);
4913 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4914 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4915
4916 out_unlock:
4917 rcu_read_unlock();
4918
4919 return retval;
4920 }
4921
4922 /**
4923 * sys_sched_getaffinity - get the CPU affinity of a process
4924 * @pid: pid of the process
4925 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4926 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4927 *
4928 * Return: size of CPU mask copied to user_mask_ptr on success. An
4929 * error code otherwise.
4930 */
4931 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4932 unsigned long __user *, user_mask_ptr)
4933 {
4934 int ret;
4935 cpumask_var_t mask;
4936
4937 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4938 return -EINVAL;
4939 if (len & (sizeof(unsigned long)-1))
4940 return -EINVAL;
4941
4942 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4943 return -ENOMEM;
4944
4945 ret = sched_getaffinity(pid, mask);
4946 if (ret == 0) {
4947 size_t retlen = min_t(size_t, len, cpumask_size());
4948
4949 if (copy_to_user(user_mask_ptr, mask, retlen))
4950 ret = -EFAULT;
4951 else
4952 ret = retlen;
4953 }
4954 free_cpumask_var(mask);
4955
4956 return ret;
4957 }
4958
4959 /**
4960 * sys_sched_yield - yield the current processor to other threads.
4961 *
4962 * This function yields the current CPU to other tasks. If there are no
4963 * other threads running on this CPU then this function will return.
4964 *
4965 * Return: 0.
4966 */
4967 SYSCALL_DEFINE0(sched_yield)
4968 {
4969 struct rq_flags rf;
4970 struct rq *rq;
4971
4972 local_irq_disable();
4973 rq = this_rq();
4974 rq_lock(rq, &rf);
4975
4976 schedstat_inc(rq->yld_count);
4977 current->sched_class->yield_task(rq);
4978
4979 /*
4980 * Since we are going to call schedule() anyway, there's
4981 * no need to preempt or enable interrupts:
4982 */
4983 preempt_disable();
4984 rq_unlock(rq, &rf);
4985 sched_preempt_enable_no_resched();
4986
4987 schedule();
4988
4989 return 0;
4990 }
4991
4992 #ifndef CONFIG_PREEMPT
4993 int __sched _cond_resched(void)
4994 {
4995 if (should_resched(0)) {
4996 preempt_schedule_common();
4997 return 1;
4998 }
4999 return 0;
5000 }
5001 EXPORT_SYMBOL(_cond_resched);
5002 #endif
5003
5004 /*
5005 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5006 * call schedule, and on return reacquire the lock.
5007 *
5008 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5009 * operations here to prevent schedule() from being called twice (once via
5010 * spin_unlock(), once by hand).
5011 */
5012 int __cond_resched_lock(spinlock_t *lock)
5013 {
5014 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5015 int ret = 0;
5016
5017 lockdep_assert_held(lock);
5018
5019 if (spin_needbreak(lock) || resched) {
5020 spin_unlock(lock);
5021 if (resched)
5022 preempt_schedule_common();
5023 else
5024 cpu_relax();
5025 ret = 1;
5026 spin_lock(lock);
5027 }
5028 return ret;
5029 }
5030 EXPORT_SYMBOL(__cond_resched_lock);
5031
5032 int __sched __cond_resched_softirq(void)
5033 {
5034 BUG_ON(!in_softirq());
5035
5036 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5037 local_bh_enable();
5038 preempt_schedule_common();
5039 local_bh_disable();
5040 return 1;
5041 }
5042 return 0;
5043 }
5044 EXPORT_SYMBOL(__cond_resched_softirq);
5045
5046 /**
5047 * yield - yield the current processor to other threads.
5048 *
5049 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5050 *
5051 * The scheduler is at all times free to pick the calling task as the most
5052 * eligible task to run, if removing the yield() call from your code breaks
5053 * it, its already broken.
5054 *
5055 * Typical broken usage is:
5056 *
5057 * while (!event)
5058 * yield();
5059 *
5060 * where one assumes that yield() will let 'the other' process run that will
5061 * make event true. If the current task is a SCHED_FIFO task that will never
5062 * happen. Never use yield() as a progress guarantee!!
5063 *
5064 * If you want to use yield() to wait for something, use wait_event().
5065 * If you want to use yield() to be 'nice' for others, use cond_resched().
5066 * If you still want to use yield(), do not!
5067 */
5068 void __sched yield(void)
5069 {
5070 set_current_state(TASK_RUNNING);
5071 sys_sched_yield();
5072 }
5073 EXPORT_SYMBOL(yield);
5074
5075 /**
5076 * yield_to - yield the current processor to another thread in
5077 * your thread group, or accelerate that thread toward the
5078 * processor it's on.
5079 * @p: target task
5080 * @preempt: whether task preemption is allowed or not
5081 *
5082 * It's the caller's job to ensure that the target task struct
5083 * can't go away on us before we can do any checks.
5084 *
5085 * Return:
5086 * true (>0) if we indeed boosted the target task.
5087 * false (0) if we failed to boost the target.
5088 * -ESRCH if there's no task to yield to.
5089 */
5090 int __sched yield_to(struct task_struct *p, bool preempt)
5091 {
5092 struct task_struct *curr = current;
5093 struct rq *rq, *p_rq;
5094 unsigned long flags;
5095 int yielded = 0;
5096
5097 local_irq_save(flags);
5098 rq = this_rq();
5099
5100 again:
5101 p_rq = task_rq(p);
5102 /*
5103 * If we're the only runnable task on the rq and target rq also
5104 * has only one task, there's absolutely no point in yielding.
5105 */
5106 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5107 yielded = -ESRCH;
5108 goto out_irq;
5109 }
5110
5111 double_rq_lock(rq, p_rq);
5112 if (task_rq(p) != p_rq) {
5113 double_rq_unlock(rq, p_rq);
5114 goto again;
5115 }
5116
5117 if (!curr->sched_class->yield_to_task)
5118 goto out_unlock;
5119
5120 if (curr->sched_class != p->sched_class)
5121 goto out_unlock;
5122
5123 if (task_running(p_rq, p) || p->state)
5124 goto out_unlock;
5125
5126 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5127 if (yielded) {
5128 schedstat_inc(rq->yld_count);
5129 /*
5130 * Make p's CPU reschedule; pick_next_entity takes care of
5131 * fairness.
5132 */
5133 if (preempt && rq != p_rq)
5134 resched_curr(p_rq);
5135 }
5136
5137 out_unlock:
5138 double_rq_unlock(rq, p_rq);
5139 out_irq:
5140 local_irq_restore(flags);
5141
5142 if (yielded > 0)
5143 schedule();
5144
5145 return yielded;
5146 }
5147 EXPORT_SYMBOL_GPL(yield_to);
5148
5149 int io_schedule_prepare(void)
5150 {
5151 int old_iowait = current->in_iowait;
5152
5153 current->in_iowait = 1;
5154 blk_schedule_flush_plug(current);
5155
5156 return old_iowait;
5157 }
5158
5159 void io_schedule_finish(int token)
5160 {
5161 current->in_iowait = token;
5162 }
5163
5164 /*
5165 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5166 * that process accounting knows that this is a task in IO wait state.
5167 */
5168 long __sched io_schedule_timeout(long timeout)
5169 {
5170 int token;
5171 long ret;
5172
5173 token = io_schedule_prepare();
5174 ret = schedule_timeout(timeout);
5175 io_schedule_finish(token);
5176
5177 return ret;
5178 }
5179 EXPORT_SYMBOL(io_schedule_timeout);
5180
5181 void io_schedule(void)
5182 {
5183 int token;
5184
5185 token = io_schedule_prepare();
5186 schedule();
5187 io_schedule_finish(token);
5188 }
5189 EXPORT_SYMBOL(io_schedule);
5190
5191 /**
5192 * sys_sched_get_priority_max - return maximum RT priority.
5193 * @policy: scheduling class.
5194 *
5195 * Return: On success, this syscall returns the maximum
5196 * rt_priority that can be used by a given scheduling class.
5197 * On failure, a negative error code is returned.
5198 */
5199 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5200 {
5201 int ret = -EINVAL;
5202
5203 switch (policy) {
5204 case SCHED_FIFO:
5205 case SCHED_RR:
5206 ret = MAX_USER_RT_PRIO-1;
5207 break;
5208 case SCHED_DEADLINE:
5209 case SCHED_NORMAL:
5210 case SCHED_BATCH:
5211 case SCHED_IDLE:
5212 ret = 0;
5213 break;
5214 }
5215 return ret;
5216 }
5217
5218 /**
5219 * sys_sched_get_priority_min - return minimum RT priority.
5220 * @policy: scheduling class.
5221 *
5222 * Return: On success, this syscall returns the minimum
5223 * rt_priority that can be used by a given scheduling class.
5224 * On failure, a negative error code is returned.
5225 */
5226 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5227 {
5228 int ret = -EINVAL;
5229
5230 switch (policy) {
5231 case SCHED_FIFO:
5232 case SCHED_RR:
5233 ret = 1;
5234 break;
5235 case SCHED_DEADLINE:
5236 case SCHED_NORMAL:
5237 case SCHED_BATCH:
5238 case SCHED_IDLE:
5239 ret = 0;
5240 }
5241 return ret;
5242 }
5243
5244 /**
5245 * sys_sched_rr_get_interval - return the default timeslice of a process.
5246 * @pid: pid of the process.
5247 * @interval: userspace pointer to the timeslice value.
5248 *
5249 * this syscall writes the default timeslice value of a given process
5250 * into the user-space timespec buffer. A value of '0' means infinity.
5251 *
5252 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5253 * an error code.
5254 */
5255 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5256 struct timespec __user *, interval)
5257 {
5258 struct task_struct *p;
5259 unsigned int time_slice;
5260 struct rq_flags rf;
5261 struct timespec t;
5262 struct rq *rq;
5263 int retval;
5264
5265 if (pid < 0)
5266 return -EINVAL;
5267
5268 retval = -ESRCH;
5269 rcu_read_lock();
5270 p = find_process_by_pid(pid);
5271 if (!p)
5272 goto out_unlock;
5273
5274 retval = security_task_getscheduler(p);
5275 if (retval)
5276 goto out_unlock;
5277
5278 rq = task_rq_lock(p, &rf);
5279 time_slice = 0;
5280 if (p->sched_class->get_rr_interval)
5281 time_slice = p->sched_class->get_rr_interval(rq, p);
5282 task_rq_unlock(rq, p, &rf);
5283
5284 rcu_read_unlock();
5285 jiffies_to_timespec(time_slice, &t);
5286 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5287 return retval;
5288
5289 out_unlock:
5290 rcu_read_unlock();
5291 return retval;
5292 }
5293
5294 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5295
5296 void sched_show_task(struct task_struct *p)
5297 {
5298 unsigned long free = 0;
5299 int ppid;
5300 unsigned long state = p->state;
5301
5302 /* Make sure the string lines up properly with the number of task states: */
5303 BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);
5304
5305 if (!try_get_task_stack(p))
5306 return;
5307 if (state)
5308 state = __ffs(state) + 1;
5309 printk(KERN_INFO "%-15.15s %c", p->comm,
5310 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5311 if (state == TASK_RUNNING)
5312 printk(KERN_CONT " running task ");
5313 #ifdef CONFIG_DEBUG_STACK_USAGE
5314 free = stack_not_used(p);
5315 #endif
5316 ppid = 0;
5317 rcu_read_lock();
5318 if (pid_alive(p))
5319 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5320 rcu_read_unlock();
5321 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5322 task_pid_nr(p), ppid,
5323 (unsigned long)task_thread_info(p)->flags);
5324
5325 print_worker_info(KERN_INFO, p);
5326 show_stack(p, NULL);
5327 put_task_stack(p);
5328 }
5329
5330 void show_state_filter(unsigned long state_filter)
5331 {
5332 struct task_struct *g, *p;
5333
5334 #if BITS_PER_LONG == 32
5335 printk(KERN_INFO
5336 " task PC stack pid father\n");
5337 #else
5338 printk(KERN_INFO
5339 " task PC stack pid father\n");
5340 #endif
5341 rcu_read_lock();
5342 for_each_process_thread(g, p) {
5343 /*
5344 * reset the NMI-timeout, listing all files on a slow
5345 * console might take a lot of time:
5346 * Also, reset softlockup watchdogs on all CPUs, because
5347 * another CPU might be blocked waiting for us to process
5348 * an IPI.
5349 */
5350 touch_nmi_watchdog();
5351 touch_all_softlockup_watchdogs();
5352 if (!state_filter || (p->state & state_filter))
5353 sched_show_task(p);
5354 }
5355
5356 #ifdef CONFIG_SCHED_DEBUG
5357 if (!state_filter)
5358 sysrq_sched_debug_show();
5359 #endif
5360 rcu_read_unlock();
5361 /*
5362 * Only show locks if all tasks are dumped:
5363 */
5364 if (!state_filter)
5365 debug_show_all_locks();
5366 }
5367
5368 void init_idle_bootup_task(struct task_struct *idle)
5369 {
5370 idle->sched_class = &idle_sched_class;
5371 }
5372
5373 /**
5374 * init_idle - set up an idle thread for a given CPU
5375 * @idle: task in question
5376 * @cpu: CPU the idle task belongs to
5377 *
5378 * NOTE: this function does not set the idle thread's NEED_RESCHED
5379 * flag, to make booting more robust.
5380 */
5381 void init_idle(struct task_struct *idle, int cpu)
5382 {
5383 struct rq *rq = cpu_rq(cpu);
5384 unsigned long flags;
5385
5386 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5387 raw_spin_lock(&rq->lock);
5388
5389 __sched_fork(0, idle);
5390 idle->state = TASK_RUNNING;
5391 idle->se.exec_start = sched_clock();
5392 idle->flags |= PF_IDLE;
5393
5394 kasan_unpoison_task_stack(idle);
5395
5396 #ifdef CONFIG_SMP
5397 /*
5398 * Its possible that init_idle() gets called multiple times on a task,
5399 * in that case do_set_cpus_allowed() will not do the right thing.
5400 *
5401 * And since this is boot we can forgo the serialization.
5402 */
5403 set_cpus_allowed_common(idle, cpumask_of(cpu));
5404 #endif
5405 /*
5406 * We're having a chicken and egg problem, even though we are
5407 * holding rq->lock, the CPU isn't yet set to this CPU so the
5408 * lockdep check in task_group() will fail.
5409 *
5410 * Similar case to sched_fork(). / Alternatively we could
5411 * use task_rq_lock() here and obtain the other rq->lock.
5412 *
5413 * Silence PROVE_RCU
5414 */
5415 rcu_read_lock();
5416 __set_task_cpu(idle, cpu);
5417 rcu_read_unlock();
5418
5419 rq->curr = rq->idle = idle;
5420 idle->on_rq = TASK_ON_RQ_QUEUED;
5421 #ifdef CONFIG_SMP
5422 idle->on_cpu = 1;
5423 #endif
5424 raw_spin_unlock(&rq->lock);
5425 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5426
5427 /* Set the preempt count _outside_ the spinlocks! */
5428 init_idle_preempt_count(idle, cpu);
5429
5430 /*
5431 * The idle tasks have their own, simple scheduling class:
5432 */
5433 idle->sched_class = &idle_sched_class;
5434 ftrace_graph_init_idle_task(idle, cpu);
5435 vtime_init_idle(idle, cpu);
5436 #ifdef CONFIG_SMP
5437 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5438 #endif
5439 }
5440
5441 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5442 const struct cpumask *trial)
5443 {
5444 int ret = 1, trial_cpus;
5445 struct dl_bw *cur_dl_b;
5446 unsigned long flags;
5447
5448 if (!cpumask_weight(cur))
5449 return ret;
5450
5451 rcu_read_lock_sched();
5452 cur_dl_b = dl_bw_of(cpumask_any(cur));
5453 trial_cpus = cpumask_weight(trial);
5454
5455 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5456 if (cur_dl_b->bw != -1 &&
5457 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5458 ret = 0;
5459 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5460 rcu_read_unlock_sched();
5461
5462 return ret;
5463 }
5464
5465 int task_can_attach(struct task_struct *p,
5466 const struct cpumask *cs_cpus_allowed)
5467 {
5468 int ret = 0;
5469
5470 /*
5471 * Kthreads which disallow setaffinity shouldn't be moved
5472 * to a new cpuset; we don't want to change their CPU
5473 * affinity and isolating such threads by their set of
5474 * allowed nodes is unnecessary. Thus, cpusets are not
5475 * applicable for such threads. This prevents checking for
5476 * success of set_cpus_allowed_ptr() on all attached tasks
5477 * before cpus_allowed may be changed.
5478 */
5479 if (p->flags & PF_NO_SETAFFINITY) {
5480 ret = -EINVAL;
5481 goto out;
5482 }
5483
5484 #ifdef CONFIG_SMP
5485 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5486 cs_cpus_allowed)) {
5487 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5488 cs_cpus_allowed);
5489 struct dl_bw *dl_b;
5490 bool overflow;
5491 int cpus;
5492 unsigned long flags;
5493
5494 rcu_read_lock_sched();
5495 dl_b = dl_bw_of(dest_cpu);
5496 raw_spin_lock_irqsave(&dl_b->lock, flags);
5497 cpus = dl_bw_cpus(dest_cpu);
5498 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5499 if (overflow)
5500 ret = -EBUSY;
5501 else {
5502 /*
5503 * We reserve space for this task in the destination
5504 * root_domain, as we can't fail after this point.
5505 * We will free resources in the source root_domain
5506 * later on (see set_cpus_allowed_dl()).
5507 */
5508 __dl_add(dl_b, p->dl.dl_bw);
5509 }
5510 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5511 rcu_read_unlock_sched();
5512
5513 }
5514 #endif
5515 out:
5516 return ret;
5517 }
5518
5519 #ifdef CONFIG_SMP
5520
5521 bool sched_smp_initialized __read_mostly;
5522
5523 #ifdef CONFIG_NUMA_BALANCING
5524 /* Migrate current task p to target_cpu */
5525 int migrate_task_to(struct task_struct *p, int target_cpu)
5526 {
5527 struct migration_arg arg = { p, target_cpu };
5528 int curr_cpu = task_cpu(p);
5529
5530 if (curr_cpu == target_cpu)
5531 return 0;
5532
5533 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5534 return -EINVAL;
5535
5536 /* TODO: This is not properly updating schedstats */
5537
5538 trace_sched_move_numa(p, curr_cpu, target_cpu);
5539 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5540 }
5541
5542 /*
5543 * Requeue a task on a given node and accurately track the number of NUMA
5544 * tasks on the runqueues
5545 */
5546 void sched_setnuma(struct task_struct *p, int nid)
5547 {
5548 bool queued, running;
5549 struct rq_flags rf;
5550 struct rq *rq;
5551
5552 rq = task_rq_lock(p, &rf);
5553 queued = task_on_rq_queued(p);
5554 running = task_current(rq, p);
5555
5556 if (queued)
5557 dequeue_task(rq, p, DEQUEUE_SAVE);
5558 if (running)
5559 put_prev_task(rq, p);
5560
5561 p->numa_preferred_nid = nid;
5562
5563 if (queued)
5564 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5565 if (running)
5566 set_curr_task(rq, p);
5567 task_rq_unlock(rq, p, &rf);
5568 }
5569 #endif /* CONFIG_NUMA_BALANCING */
5570
5571 #ifdef CONFIG_HOTPLUG_CPU
5572 /*
5573 * Ensure that the idle task is using init_mm right before its CPU goes
5574 * offline.
5575 */
5576 void idle_task_exit(void)
5577 {
5578 struct mm_struct *mm = current->active_mm;
5579
5580 BUG_ON(cpu_online(smp_processor_id()));
5581
5582 if (mm != &init_mm) {
5583 switch_mm_irqs_off(mm, &init_mm, current);
5584 finish_arch_post_lock_switch();
5585 }
5586 mmdrop(mm);
5587 }
5588
5589 /*
5590 * Since this CPU is going 'away' for a while, fold any nr_active delta
5591 * we might have. Assumes we're called after migrate_tasks() so that the
5592 * nr_active count is stable. We need to take the teardown thread which
5593 * is calling this into account, so we hand in adjust = 1 to the load
5594 * calculation.
5595 *
5596 * Also see the comment "Global load-average calculations".
5597 */
5598 static void calc_load_migrate(struct rq *rq)
5599 {
5600 long delta = calc_load_fold_active(rq, 1);
5601 if (delta)
5602 atomic_long_add(delta, &calc_load_tasks);
5603 }
5604
5605 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5606 {
5607 }
5608
5609 static const struct sched_class fake_sched_class = {
5610 .put_prev_task = put_prev_task_fake,
5611 };
5612
5613 static struct task_struct fake_task = {
5614 /*
5615 * Avoid pull_{rt,dl}_task()
5616 */
5617 .prio = MAX_PRIO + 1,
5618 .sched_class = &fake_sched_class,
5619 };
5620
5621 /*
5622 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5623 * try_to_wake_up()->select_task_rq().
5624 *
5625 * Called with rq->lock held even though we'er in stop_machine() and
5626 * there's no concurrency possible, we hold the required locks anyway
5627 * because of lock validation efforts.
5628 */
5629 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5630 {
5631 struct rq *rq = dead_rq;
5632 struct task_struct *next, *stop = rq->stop;
5633 struct rq_flags orf = *rf;
5634 int dest_cpu;
5635
5636 /*
5637 * Fudge the rq selection such that the below task selection loop
5638 * doesn't get stuck on the currently eligible stop task.
5639 *
5640 * We're currently inside stop_machine() and the rq is either stuck
5641 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5642 * either way we should never end up calling schedule() until we're
5643 * done here.
5644 */
5645 rq->stop = NULL;
5646
5647 /*
5648 * put_prev_task() and pick_next_task() sched
5649 * class method both need to have an up-to-date
5650 * value of rq->clock[_task]
5651 */
5652 update_rq_clock(rq);
5653
5654 for (;;) {
5655 /*
5656 * There's this thread running, bail when that's the only
5657 * remaining thread:
5658 */
5659 if (rq->nr_running == 1)
5660 break;
5661
5662 /*
5663 * pick_next_task() assumes pinned rq->lock:
5664 */
5665 next = pick_next_task(rq, &fake_task, rf);
5666 BUG_ON(!next);
5667 next->sched_class->put_prev_task(rq, next);
5668
5669 /*
5670 * Rules for changing task_struct::cpus_allowed are holding
5671 * both pi_lock and rq->lock, such that holding either
5672 * stabilizes the mask.
5673 *
5674 * Drop rq->lock is not quite as disastrous as it usually is
5675 * because !cpu_active at this point, which means load-balance
5676 * will not interfere. Also, stop-machine.
5677 */
5678 rq_unlock(rq, rf);
5679 raw_spin_lock(&next->pi_lock);
5680 rq_relock(rq, rf);
5681
5682 /*
5683 * Since we're inside stop-machine, _nothing_ should have
5684 * changed the task, WARN if weird stuff happened, because in
5685 * that case the above rq->lock drop is a fail too.
5686 */
5687 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5688 raw_spin_unlock(&next->pi_lock);
5689 continue;
5690 }
5691
5692 /* Find suitable destination for @next, with force if needed. */
5693 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5694 rq = __migrate_task(rq, rf, next, dest_cpu);
5695 if (rq != dead_rq) {
5696 rq_unlock(rq, rf);
5697 rq = dead_rq;
5698 *rf = orf;
5699 rq_relock(rq, rf);
5700 }
5701 raw_spin_unlock(&next->pi_lock);
5702 }
5703
5704 rq->stop = stop;
5705 }
5706 #endif /* CONFIG_HOTPLUG_CPU */
5707
5708 void set_rq_online(struct rq *rq)
5709 {
5710 if (!rq->online) {
5711 const struct sched_class *class;
5712
5713 cpumask_set_cpu(rq->cpu, rq->rd->online);
5714 rq->online = 1;
5715
5716 for_each_class(class) {
5717 if (class->rq_online)
5718 class->rq_online(rq);
5719 }
5720 }
5721 }
5722
5723 void set_rq_offline(struct rq *rq)
5724 {
5725 if (rq->online) {
5726 const struct sched_class *class;
5727
5728 for_each_class(class) {
5729 if (class->rq_offline)
5730 class->rq_offline(rq);
5731 }
5732
5733 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5734 rq->online = 0;
5735 }
5736 }
5737
5738 static void set_cpu_rq_start_time(unsigned int cpu)
5739 {
5740 struct rq *rq = cpu_rq(cpu);
5741
5742 rq->age_stamp = sched_clock_cpu(cpu);
5743 }
5744
5745 /*
5746 * used to mark begin/end of suspend/resume:
5747 */
5748 static int num_cpus_frozen;
5749
5750 /*
5751 * Update cpusets according to cpu_active mask. If cpusets are
5752 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5753 * around partition_sched_domains().
5754 *
5755 * If we come here as part of a suspend/resume, don't touch cpusets because we
5756 * want to restore it back to its original state upon resume anyway.
5757 */
5758 static void cpuset_cpu_active(void)
5759 {
5760 if (cpuhp_tasks_frozen) {
5761 /*
5762 * num_cpus_frozen tracks how many CPUs are involved in suspend
5763 * resume sequence. As long as this is not the last online
5764 * operation in the resume sequence, just build a single sched
5765 * domain, ignoring cpusets.
5766 */
5767 num_cpus_frozen--;
5768 if (likely(num_cpus_frozen)) {
5769 partition_sched_domains(1, NULL, NULL);
5770 return;
5771 }
5772 /*
5773 * This is the last CPU online operation. So fall through and
5774 * restore the original sched domains by considering the
5775 * cpuset configurations.
5776 */
5777 }
5778 cpuset_update_active_cpus();
5779 }
5780
5781 static int cpuset_cpu_inactive(unsigned int cpu)
5782 {
5783 unsigned long flags;
5784 struct dl_bw *dl_b;
5785 bool overflow;
5786 int cpus;
5787
5788 if (!cpuhp_tasks_frozen) {
5789 rcu_read_lock_sched();
5790 dl_b = dl_bw_of(cpu);
5791
5792 raw_spin_lock_irqsave(&dl_b->lock, flags);
5793 cpus = dl_bw_cpus(cpu);
5794 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5795 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5796
5797 rcu_read_unlock_sched();
5798
5799 if (overflow)
5800 return -EBUSY;
5801 cpuset_update_active_cpus();
5802 } else {
5803 num_cpus_frozen++;
5804 partition_sched_domains(1, NULL, NULL);
5805 }
5806 return 0;
5807 }
5808
5809 int sched_cpu_activate(unsigned int cpu)
5810 {
5811 struct rq *rq = cpu_rq(cpu);
5812 struct rq_flags rf;
5813
5814 set_cpu_active(cpu, true);
5815
5816 if (sched_smp_initialized) {
5817 sched_domains_numa_masks_set(cpu);
5818 cpuset_cpu_active();
5819 }
5820
5821 /*
5822 * Put the rq online, if not already. This happens:
5823 *
5824 * 1) In the early boot process, because we build the real domains
5825 * after all CPUs have been brought up.
5826 *
5827 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5828 * domains.
5829 */
5830 rq_lock_irqsave(rq, &rf);
5831 if (rq->rd) {
5832 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5833 set_rq_online(rq);
5834 }
5835 rq_unlock_irqrestore(rq, &rf);
5836
5837 update_max_interval();
5838
5839 return 0;
5840 }
5841
5842 int sched_cpu_deactivate(unsigned int cpu)
5843 {
5844 int ret;
5845
5846 set_cpu_active(cpu, false);
5847 /*
5848 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5849 * users of this state to go away such that all new such users will
5850 * observe it.
5851 *
5852 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
5853 * not imply sync_sched(), so wait for both.
5854 *
5855 * Do sync before park smpboot threads to take care the rcu boost case.
5856 */
5857 if (IS_ENABLED(CONFIG_PREEMPT))
5858 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5859 else
5860 synchronize_rcu();
5861
5862 if (!sched_smp_initialized)
5863 return 0;
5864
5865 ret = cpuset_cpu_inactive(cpu);
5866 if (ret) {
5867 set_cpu_active(cpu, true);
5868 return ret;
5869 }
5870 sched_domains_numa_masks_clear(cpu);
5871 return 0;
5872 }
5873
5874 static void sched_rq_cpu_starting(unsigned int cpu)
5875 {
5876 struct rq *rq = cpu_rq(cpu);
5877
5878 rq->calc_load_update = calc_load_update;
5879 update_max_interval();
5880 }
5881
5882 int sched_cpu_starting(unsigned int cpu)
5883 {
5884 set_cpu_rq_start_time(cpu);
5885 sched_rq_cpu_starting(cpu);
5886 return 0;
5887 }
5888
5889 #ifdef CONFIG_HOTPLUG_CPU
5890 int sched_cpu_dying(unsigned int cpu)
5891 {
5892 struct rq *rq = cpu_rq(cpu);
5893 struct rq_flags rf;
5894
5895 /* Handle pending wakeups and then migrate everything off */
5896 sched_ttwu_pending();
5897
5898 rq_lock_irqsave(rq, &rf);
5899 if (rq->rd) {
5900 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5901 set_rq_offline(rq);
5902 }
5903 migrate_tasks(rq, &rf);
5904 BUG_ON(rq->nr_running != 1);
5905 rq_unlock_irqrestore(rq, &rf);
5906
5907 calc_load_migrate(rq);
5908 update_max_interval();
5909 nohz_balance_exit_idle(cpu);
5910 hrtick_clear(rq);
5911 return 0;
5912 }
5913 #endif
5914
5915 #ifdef CONFIG_SCHED_SMT
5916 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5917
5918 static void sched_init_smt(void)
5919 {
5920 /*
5921 * We've enumerated all CPUs and will assume that if any CPU
5922 * has SMT siblings, CPU0 will too.
5923 */
5924 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5925 static_branch_enable(&sched_smt_present);
5926 }
5927 #else
5928 static inline void sched_init_smt(void) { }
5929 #endif
5930
5931 void __init sched_init_smp(void)
5932 {
5933 cpumask_var_t non_isolated_cpus;
5934
5935 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5936 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5937
5938 sched_init_numa();
5939
5940 /*
5941 * There's no userspace yet to cause hotplug operations; hence all the
5942 * CPU masks are stable and all blatant races in the below code cannot
5943 * happen.
5944 */
5945 mutex_lock(&sched_domains_mutex);
5946 init_sched_domains(cpu_active_mask);
5947 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5948 if (cpumask_empty(non_isolated_cpus))
5949 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5950 mutex_unlock(&sched_domains_mutex);
5951
5952 /* Move init over to a non-isolated CPU */
5953 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5954 BUG();
5955 sched_init_granularity();
5956 free_cpumask_var(non_isolated_cpus);
5957
5958 init_sched_rt_class();
5959 init_sched_dl_class();
5960
5961 sched_init_smt();
5962 sched_clock_init_late();
5963
5964 sched_smp_initialized = true;
5965 }
5966
5967 static int __init migration_init(void)
5968 {
5969 sched_rq_cpu_starting(smp_processor_id());
5970 return 0;
5971 }
5972 early_initcall(migration_init);
5973
5974 #else
5975 void __init sched_init_smp(void)
5976 {
5977 sched_init_granularity();
5978 sched_clock_init_late();
5979 }
5980 #endif /* CONFIG_SMP */
5981
5982 int in_sched_functions(unsigned long addr)
5983 {
5984 return in_lock_functions(addr) ||
5985 (addr >= (unsigned long)__sched_text_start
5986 && addr < (unsigned long)__sched_text_end);
5987 }
5988
5989 #ifdef CONFIG_CGROUP_SCHED
5990 /*
5991 * Default task group.
5992 * Every task in system belongs to this group at bootup.
5993 */
5994 struct task_group root_task_group;
5995 LIST_HEAD(task_groups);
5996
5997 /* Cacheline aligned slab cache for task_group */
5998 static struct kmem_cache *task_group_cache __read_mostly;
5999 #endif
6000
6001 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6002 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6003
6004 #define WAIT_TABLE_BITS 8
6005 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
6006 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
6007
6008 wait_queue_head_t *bit_waitqueue(void *word, int bit)
6009 {
6010 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
6011 unsigned long val = (unsigned long)word << shift | bit;
6012
6013 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
6014 }
6015 EXPORT_SYMBOL(bit_waitqueue);
6016
6017 void __init sched_init(void)
6018 {
6019 int i, j;
6020 unsigned long alloc_size = 0, ptr;
6021
6022 sched_clock_init();
6023
6024 for (i = 0; i < WAIT_TABLE_SIZE; i++)
6025 init_waitqueue_head(bit_wait_table + i);
6026
6027 #ifdef CONFIG_FAIR_GROUP_SCHED
6028 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6029 #endif
6030 #ifdef CONFIG_RT_GROUP_SCHED
6031 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6032 #endif
6033 if (alloc_size) {
6034 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6035
6036 #ifdef CONFIG_FAIR_GROUP_SCHED
6037 root_task_group.se = (struct sched_entity **)ptr;
6038 ptr += nr_cpu_ids * sizeof(void **);
6039
6040 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6041 ptr += nr_cpu_ids * sizeof(void **);
6042
6043 #endif /* CONFIG_FAIR_GROUP_SCHED */
6044 #ifdef CONFIG_RT_GROUP_SCHED
6045 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6046 ptr += nr_cpu_ids * sizeof(void **);
6047
6048 root_task_group.rt_rq = (struct rt_rq **)ptr;
6049 ptr += nr_cpu_ids * sizeof(void **);
6050
6051 #endif /* CONFIG_RT_GROUP_SCHED */
6052 }
6053 #ifdef CONFIG_CPUMASK_OFFSTACK
6054 for_each_possible_cpu(i) {
6055 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6056 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6057 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6058 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6059 }
6060 #endif /* CONFIG_CPUMASK_OFFSTACK */
6061
6062 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6063 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6064
6065 #ifdef CONFIG_SMP
6066 init_defrootdomain();
6067 #endif
6068
6069 #ifdef CONFIG_RT_GROUP_SCHED
6070 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6071 global_rt_period(), global_rt_runtime());
6072 #endif /* CONFIG_RT_GROUP_SCHED */
6073
6074 #ifdef CONFIG_CGROUP_SCHED
6075 task_group_cache = KMEM_CACHE(task_group, 0);
6076
6077 list_add(&root_task_group.list, &task_groups);
6078 INIT_LIST_HEAD(&root_task_group.children);
6079 INIT_LIST_HEAD(&root_task_group.siblings);
6080 autogroup_init(&init_task);
6081 #endif /* CONFIG_CGROUP_SCHED */
6082
6083 for_each_possible_cpu(i) {
6084 struct rq *rq;
6085
6086 rq = cpu_rq(i);
6087 raw_spin_lock_init(&rq->lock);
6088 rq->nr_running = 0;
6089 rq->calc_load_active = 0;
6090 rq->calc_load_update = jiffies + LOAD_FREQ;
6091 init_cfs_rq(&rq->cfs);
6092 init_rt_rq(&rq->rt);
6093 init_dl_rq(&rq->dl);
6094 #ifdef CONFIG_FAIR_GROUP_SCHED
6095 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6096 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6097 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6098 /*
6099 * How much CPU bandwidth does root_task_group get?
6100 *
6101 * In case of task-groups formed thr' the cgroup filesystem, it
6102 * gets 100% of the CPU resources in the system. This overall
6103 * system CPU resource is divided among the tasks of
6104 * root_task_group and its child task-groups in a fair manner,
6105 * based on each entity's (task or task-group's) weight
6106 * (se->load.weight).
6107 *
6108 * In other words, if root_task_group has 10 tasks of weight
6109 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6110 * then A0's share of the CPU resource is:
6111 *
6112 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6113 *
6114 * We achieve this by letting root_task_group's tasks sit
6115 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6116 */
6117 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6118 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6119 #endif /* CONFIG_FAIR_GROUP_SCHED */
6120
6121 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6122 #ifdef CONFIG_RT_GROUP_SCHED
6123 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6124 #endif
6125
6126 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6127 rq->cpu_load[j] = 0;
6128
6129 #ifdef CONFIG_SMP
6130 rq->sd = NULL;
6131 rq->rd = NULL;
6132 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6133 rq->balance_callback = NULL;
6134 rq->active_balance = 0;
6135 rq->next_balance = jiffies;
6136 rq->push_cpu = 0;
6137 rq->cpu = i;
6138 rq->online = 0;
6139 rq->idle_stamp = 0;
6140 rq->avg_idle = 2*sysctl_sched_migration_cost;
6141 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6142
6143 INIT_LIST_HEAD(&rq->cfs_tasks);
6144
6145 rq_attach_root(rq, &def_root_domain);
6146 #ifdef CONFIG_NO_HZ_COMMON
6147 rq->last_load_update_tick = jiffies;
6148 rq->nohz_flags = 0;
6149 #endif
6150 #ifdef CONFIG_NO_HZ_FULL
6151 rq->last_sched_tick = 0;
6152 #endif
6153 #endif /* CONFIG_SMP */
6154 init_rq_hrtick(rq);
6155 atomic_set(&rq->nr_iowait, 0);
6156 }
6157
6158 set_load_weight(&init_task);
6159
6160 /*
6161 * The boot idle thread does lazy MMU switching as well:
6162 */
6163 mmgrab(&init_mm);
6164 enter_lazy_tlb(&init_mm, current);
6165
6166 /*
6167 * Make us the idle thread. Technically, schedule() should not be
6168 * called from this thread, however somewhere below it might be,
6169 * but because we are the idle thread, we just pick up running again
6170 * when this runqueue becomes "idle".
6171 */
6172 init_idle(current, smp_processor_id());
6173
6174 calc_load_update = jiffies + LOAD_FREQ;
6175
6176 #ifdef CONFIG_SMP
6177 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6178 /* May be allocated at isolcpus cmdline parse time */
6179 if (cpu_isolated_map == NULL)
6180 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6181 idle_thread_set_boot_cpu();
6182 set_cpu_rq_start_time(smp_processor_id());
6183 #endif
6184 init_sched_fair_class();
6185
6186 init_schedstats();
6187
6188 scheduler_running = 1;
6189 }
6190
6191 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6192 static inline int preempt_count_equals(int preempt_offset)
6193 {
6194 int nested = preempt_count() + rcu_preempt_depth();
6195
6196 return (nested == preempt_offset);
6197 }
6198
6199 void __might_sleep(const char *file, int line, int preempt_offset)
6200 {
6201 /*
6202 * Blocking primitives will set (and therefore destroy) current->state,
6203 * since we will exit with TASK_RUNNING make sure we enter with it,
6204 * otherwise we will destroy state.
6205 */
6206 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6207 "do not call blocking ops when !TASK_RUNNING; "
6208 "state=%lx set at [<%p>] %pS\n",
6209 current->state,
6210 (void *)current->task_state_change,
6211 (void *)current->task_state_change);
6212
6213 ___might_sleep(file, line, preempt_offset);
6214 }
6215 EXPORT_SYMBOL(__might_sleep);
6216
6217 void ___might_sleep(const char *file, int line, int preempt_offset)
6218 {
6219 /* Ratelimiting timestamp: */
6220 static unsigned long prev_jiffy;
6221
6222 unsigned long preempt_disable_ip;
6223
6224 /* WARN_ON_ONCE() by default, no rate limit required: */
6225 rcu_sleep_check();
6226
6227 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6228 !is_idle_task(current)) ||
6229 system_state != SYSTEM_RUNNING || oops_in_progress)
6230 return;
6231 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6232 return;
6233 prev_jiffy = jiffies;
6234
6235 /* Save this before calling printk(), since that will clobber it: */
6236 preempt_disable_ip = get_preempt_disable_ip(current);
6237
6238 printk(KERN_ERR
6239 "BUG: sleeping function called from invalid context at %s:%d\n",
6240 file, line);
6241 printk(KERN_ERR
6242 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6243 in_atomic(), irqs_disabled(),
6244 current->pid, current->comm);
6245
6246 if (task_stack_end_corrupted(current))
6247 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6248
6249 debug_show_held_locks(current);
6250 if (irqs_disabled())
6251 print_irqtrace_events(current);
6252 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6253 && !preempt_count_equals(preempt_offset)) {
6254 pr_err("Preemption disabled at:");
6255 print_ip_sym(preempt_disable_ip);
6256 pr_cont("\n");
6257 }
6258 dump_stack();
6259 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6260 }
6261 EXPORT_SYMBOL(___might_sleep);
6262 #endif
6263
6264 #ifdef CONFIG_MAGIC_SYSRQ
6265 void normalize_rt_tasks(void)
6266 {
6267 struct task_struct *g, *p;
6268 struct sched_attr attr = {
6269 .sched_policy = SCHED_NORMAL,
6270 };
6271
6272 read_lock(&tasklist_lock);
6273 for_each_process_thread(g, p) {
6274 /*
6275 * Only normalize user tasks:
6276 */
6277 if (p->flags & PF_KTHREAD)
6278 continue;
6279
6280 p->se.exec_start = 0;
6281 schedstat_set(p->se.statistics.wait_start, 0);
6282 schedstat_set(p->se.statistics.sleep_start, 0);
6283 schedstat_set(p->se.statistics.block_start, 0);
6284
6285 if (!dl_task(p) && !rt_task(p)) {
6286 /*
6287 * Renice negative nice level userspace
6288 * tasks back to 0:
6289 */
6290 if (task_nice(p) < 0)
6291 set_user_nice(p, 0);
6292 continue;
6293 }
6294
6295 __sched_setscheduler(p, &attr, false, false);
6296 }
6297 read_unlock(&tasklist_lock);
6298 }
6299
6300 #endif /* CONFIG_MAGIC_SYSRQ */
6301
6302 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6303 /*
6304 * These functions are only useful for the IA64 MCA handling, or kdb.
6305 *
6306 * They can only be called when the whole system has been
6307 * stopped - every CPU needs to be quiescent, and no scheduling
6308 * activity can take place. Using them for anything else would
6309 * be a serious bug, and as a result, they aren't even visible
6310 * under any other configuration.
6311 */
6312
6313 /**
6314 * curr_task - return the current task for a given CPU.
6315 * @cpu: the processor in question.
6316 *
6317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6318 *
6319 * Return: The current task for @cpu.
6320 */
6321 struct task_struct *curr_task(int cpu)
6322 {
6323 return cpu_curr(cpu);
6324 }
6325
6326 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6327
6328 #ifdef CONFIG_IA64
6329 /**
6330 * set_curr_task - set the current task for a given CPU.
6331 * @cpu: the processor in question.
6332 * @p: the task pointer to set.
6333 *
6334 * Description: This function must only be used when non-maskable interrupts
6335 * are serviced on a separate stack. It allows the architecture to switch the
6336 * notion of the current task on a CPU in a non-blocking manner. This function
6337 * must be called with all CPU's synchronized, and interrupts disabled, the
6338 * and caller must save the original value of the current task (see
6339 * curr_task() above) and restore that value before reenabling interrupts and
6340 * re-starting the system.
6341 *
6342 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6343 */
6344 void ia64_set_curr_task(int cpu, struct task_struct *p)
6345 {
6346 cpu_curr(cpu) = p;
6347 }
6348
6349 #endif
6350
6351 #ifdef CONFIG_CGROUP_SCHED
6352 /* task_group_lock serializes the addition/removal of task groups */
6353 static DEFINE_SPINLOCK(task_group_lock);
6354
6355 static void sched_free_group(struct task_group *tg)
6356 {
6357 free_fair_sched_group(tg);
6358 free_rt_sched_group(tg);
6359 autogroup_free(tg);
6360 kmem_cache_free(task_group_cache, tg);
6361 }
6362
6363 /* allocate runqueue etc for a new task group */
6364 struct task_group *sched_create_group(struct task_group *parent)
6365 {
6366 struct task_group *tg;
6367
6368 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6369 if (!tg)
6370 return ERR_PTR(-ENOMEM);
6371
6372 if (!alloc_fair_sched_group(tg, parent))
6373 goto err;
6374
6375 if (!alloc_rt_sched_group(tg, parent))
6376 goto err;
6377
6378 return tg;
6379
6380 err:
6381 sched_free_group(tg);
6382 return ERR_PTR(-ENOMEM);
6383 }
6384
6385 void sched_online_group(struct task_group *tg, struct task_group *parent)
6386 {
6387 unsigned long flags;
6388
6389 spin_lock_irqsave(&task_group_lock, flags);
6390 list_add_rcu(&tg->list, &task_groups);
6391
6392 /* Root should already exist: */
6393 WARN_ON(!parent);
6394
6395 tg->parent = parent;
6396 INIT_LIST_HEAD(&tg->children);
6397 list_add_rcu(&tg->siblings, &parent->children);
6398 spin_unlock_irqrestore(&task_group_lock, flags);
6399
6400 online_fair_sched_group(tg);
6401 }
6402
6403 /* rcu callback to free various structures associated with a task group */
6404 static void sched_free_group_rcu(struct rcu_head *rhp)
6405 {
6406 /* Now it should be safe to free those cfs_rqs: */
6407 sched_free_group(container_of(rhp, struct task_group, rcu));
6408 }
6409
6410 void sched_destroy_group(struct task_group *tg)
6411 {
6412 /* Wait for possible concurrent references to cfs_rqs complete: */
6413 call_rcu(&tg->rcu, sched_free_group_rcu);
6414 }
6415
6416 void sched_offline_group(struct task_group *tg)
6417 {
6418 unsigned long flags;
6419
6420 /* End participation in shares distribution: */
6421 unregister_fair_sched_group(tg);
6422
6423 spin_lock_irqsave(&task_group_lock, flags);
6424 list_del_rcu(&tg->list);
6425 list_del_rcu(&tg->siblings);
6426 spin_unlock_irqrestore(&task_group_lock, flags);
6427 }
6428
6429 static void sched_change_group(struct task_struct *tsk, int type)
6430 {
6431 struct task_group *tg;
6432
6433 /*
6434 * All callers are synchronized by task_rq_lock(); we do not use RCU
6435 * which is pointless here. Thus, we pass "true" to task_css_check()
6436 * to prevent lockdep warnings.
6437 */
6438 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6439 struct task_group, css);
6440 tg = autogroup_task_group(tsk, tg);
6441 tsk->sched_task_group = tg;
6442
6443 #ifdef CONFIG_FAIR_GROUP_SCHED
6444 if (tsk->sched_class->task_change_group)
6445 tsk->sched_class->task_change_group(tsk, type);
6446 else
6447 #endif
6448 set_task_rq(tsk, task_cpu(tsk));
6449 }
6450
6451 /*
6452 * Change task's runqueue when it moves between groups.
6453 *
6454 * The caller of this function should have put the task in its new group by
6455 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6456 * its new group.
6457 */
6458 void sched_move_task(struct task_struct *tsk)
6459 {
6460 int queued, running, queue_flags =
6461 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6462 struct rq_flags rf;
6463 struct rq *rq;
6464
6465 rq = task_rq_lock(tsk, &rf);
6466 update_rq_clock(rq);
6467
6468 running = task_current(rq, tsk);
6469 queued = task_on_rq_queued(tsk);
6470
6471 if (queued)
6472 dequeue_task(rq, tsk, queue_flags);
6473 if (running)
6474 put_prev_task(rq, tsk);
6475
6476 sched_change_group(tsk, TASK_MOVE_GROUP);
6477
6478 if (queued)
6479 enqueue_task(rq, tsk, queue_flags);
6480 if (running)
6481 set_curr_task(rq, tsk);
6482
6483 task_rq_unlock(rq, tsk, &rf);
6484 }
6485 #endif /* CONFIG_CGROUP_SCHED */
6486
6487 #ifdef CONFIG_RT_GROUP_SCHED
6488 /*
6489 * Ensure that the real time constraints are schedulable.
6490 */
6491 static DEFINE_MUTEX(rt_constraints_mutex);
6492
6493 /* Must be called with tasklist_lock held */
6494 static inline int tg_has_rt_tasks(struct task_group *tg)
6495 {
6496 struct task_struct *g, *p;
6497
6498 /*
6499 * Autogroups do not have RT tasks; see autogroup_create().
6500 */
6501 if (task_group_is_autogroup(tg))
6502 return 0;
6503
6504 for_each_process_thread(g, p) {
6505 if (rt_task(p) && task_group(p) == tg)
6506 return 1;
6507 }
6508
6509 return 0;
6510 }
6511
6512 struct rt_schedulable_data {
6513 struct task_group *tg;
6514 u64 rt_period;
6515 u64 rt_runtime;
6516 };
6517
6518 static int tg_rt_schedulable(struct task_group *tg, void *data)
6519 {
6520 struct rt_schedulable_data *d = data;
6521 struct task_group *child;
6522 unsigned long total, sum = 0;
6523 u64 period, runtime;
6524
6525 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6526 runtime = tg->rt_bandwidth.rt_runtime;
6527
6528 if (tg == d->tg) {
6529 period = d->rt_period;
6530 runtime = d->rt_runtime;
6531 }
6532
6533 /*
6534 * Cannot have more runtime than the period.
6535 */
6536 if (runtime > period && runtime != RUNTIME_INF)
6537 return -EINVAL;
6538
6539 /*
6540 * Ensure we don't starve existing RT tasks.
6541 */
6542 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6543 return -EBUSY;
6544
6545 total = to_ratio(period, runtime);
6546
6547 /*
6548 * Nobody can have more than the global setting allows.
6549 */
6550 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6551 return -EINVAL;
6552
6553 /*
6554 * The sum of our children's runtime should not exceed our own.
6555 */
6556 list_for_each_entry_rcu(child, &tg->children, siblings) {
6557 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6558 runtime = child->rt_bandwidth.rt_runtime;
6559
6560 if (child == d->tg) {
6561 period = d->rt_period;
6562 runtime = d->rt_runtime;
6563 }
6564
6565 sum += to_ratio(period, runtime);
6566 }
6567
6568 if (sum > total)
6569 return -EINVAL;
6570
6571 return 0;
6572 }
6573
6574 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6575 {
6576 int ret;
6577
6578 struct rt_schedulable_data data = {
6579 .tg = tg,
6580 .rt_period = period,
6581 .rt_runtime = runtime,
6582 };
6583
6584 rcu_read_lock();
6585 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6586 rcu_read_unlock();
6587
6588 return ret;
6589 }
6590
6591 static int tg_set_rt_bandwidth(struct task_group *tg,
6592 u64 rt_period, u64 rt_runtime)
6593 {
6594 int i, err = 0;
6595
6596 /*
6597 * Disallowing the root group RT runtime is BAD, it would disallow the
6598 * kernel creating (and or operating) RT threads.
6599 */
6600 if (tg == &root_task_group && rt_runtime == 0)
6601 return -EINVAL;
6602
6603 /* No period doesn't make any sense. */
6604 if (rt_period == 0)
6605 return -EINVAL;
6606
6607 mutex_lock(&rt_constraints_mutex);
6608 read_lock(&tasklist_lock);
6609 err = __rt_schedulable(tg, rt_period, rt_runtime);
6610 if (err)
6611 goto unlock;
6612
6613 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6614 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6615 tg->rt_bandwidth.rt_runtime = rt_runtime;
6616
6617 for_each_possible_cpu(i) {
6618 struct rt_rq *rt_rq = tg->rt_rq[i];
6619
6620 raw_spin_lock(&rt_rq->rt_runtime_lock);
6621 rt_rq->rt_runtime = rt_runtime;
6622 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6623 }
6624 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6625 unlock:
6626 read_unlock(&tasklist_lock);
6627 mutex_unlock(&rt_constraints_mutex);
6628
6629 return err;
6630 }
6631
6632 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6633 {
6634 u64 rt_runtime, rt_period;
6635
6636 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6637 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6638 if (rt_runtime_us < 0)
6639 rt_runtime = RUNTIME_INF;
6640
6641 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6642 }
6643
6644 static long sched_group_rt_runtime(struct task_group *tg)
6645 {
6646 u64 rt_runtime_us;
6647
6648 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6649 return -1;
6650
6651 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6652 do_div(rt_runtime_us, NSEC_PER_USEC);
6653 return rt_runtime_us;
6654 }
6655
6656 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6657 {
6658 u64 rt_runtime, rt_period;
6659
6660 rt_period = rt_period_us * NSEC_PER_USEC;
6661 rt_runtime = tg->rt_bandwidth.rt_runtime;
6662
6663 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6664 }
6665
6666 static long sched_group_rt_period(struct task_group *tg)
6667 {
6668 u64 rt_period_us;
6669
6670 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6671 do_div(rt_period_us, NSEC_PER_USEC);
6672 return rt_period_us;
6673 }
6674 #endif /* CONFIG_RT_GROUP_SCHED */
6675
6676 #ifdef CONFIG_RT_GROUP_SCHED
6677 static int sched_rt_global_constraints(void)
6678 {
6679 int ret = 0;
6680
6681 mutex_lock(&rt_constraints_mutex);
6682 read_lock(&tasklist_lock);
6683 ret = __rt_schedulable(NULL, 0, 0);
6684 read_unlock(&tasklist_lock);
6685 mutex_unlock(&rt_constraints_mutex);
6686
6687 return ret;
6688 }
6689
6690 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6691 {
6692 /* Don't accept realtime tasks when there is no way for them to run */
6693 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6694 return 0;
6695
6696 return 1;
6697 }
6698
6699 #else /* !CONFIG_RT_GROUP_SCHED */
6700 static int sched_rt_global_constraints(void)
6701 {
6702 unsigned long flags;
6703 int i;
6704
6705 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6706 for_each_possible_cpu(i) {
6707 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6708
6709 raw_spin_lock(&rt_rq->rt_runtime_lock);
6710 rt_rq->rt_runtime = global_rt_runtime();
6711 raw_spin_unlock(&rt_rq->rt_runtime_lock);
6712 }
6713 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6714
6715 return 0;
6716 }
6717 #endif /* CONFIG_RT_GROUP_SCHED */
6718
6719 static int sched_dl_global_validate(void)
6720 {
6721 u64 runtime = global_rt_runtime();
6722 u64 period = global_rt_period();
6723 u64 new_bw = to_ratio(period, runtime);
6724 struct dl_bw *dl_b;
6725 int cpu, ret = 0;
6726 unsigned long flags;
6727
6728 /*
6729 * Here we want to check the bandwidth not being set to some
6730 * value smaller than the currently allocated bandwidth in
6731 * any of the root_domains.
6732 *
6733 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
6734 * cycling on root_domains... Discussion on different/better
6735 * solutions is welcome!
6736 */
6737 for_each_possible_cpu(cpu) {
6738 rcu_read_lock_sched();
6739 dl_b = dl_bw_of(cpu);
6740
6741 raw_spin_lock_irqsave(&dl_b->lock, flags);
6742 if (new_bw < dl_b->total_bw)
6743 ret = -EBUSY;
6744 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6745
6746 rcu_read_unlock_sched();
6747
6748 if (ret)
6749 break;
6750 }
6751
6752 return ret;
6753 }
6754
6755 static void sched_dl_do_global(void)
6756 {
6757 u64 new_bw = -1;
6758 struct dl_bw *dl_b;
6759 int cpu;
6760 unsigned long flags;
6761
6762 def_dl_bandwidth.dl_period = global_rt_period();
6763 def_dl_bandwidth.dl_runtime = global_rt_runtime();
6764
6765 if (global_rt_runtime() != RUNTIME_INF)
6766 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
6767
6768 /*
6769 * FIXME: As above...
6770 */
6771 for_each_possible_cpu(cpu) {
6772 rcu_read_lock_sched();
6773 dl_b = dl_bw_of(cpu);
6774
6775 raw_spin_lock_irqsave(&dl_b->lock, flags);
6776 dl_b->bw = new_bw;
6777 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6778
6779 rcu_read_unlock_sched();
6780 }
6781 }
6782
6783 static int sched_rt_global_validate(void)
6784 {
6785 if (sysctl_sched_rt_period <= 0)
6786 return -EINVAL;
6787
6788 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
6789 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6790 return -EINVAL;
6791
6792 return 0;
6793 }
6794
6795 static void sched_rt_do_global(void)
6796 {
6797 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6798 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6799 }
6800
6801 int sched_rt_handler(struct ctl_table *table, int write,
6802 void __user *buffer, size_t *lenp,
6803 loff_t *ppos)
6804 {
6805 int old_period, old_runtime;
6806 static DEFINE_MUTEX(mutex);
6807 int ret;
6808
6809 mutex_lock(&mutex);
6810 old_period = sysctl_sched_rt_period;
6811 old_runtime = sysctl_sched_rt_runtime;
6812
6813 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6814
6815 if (!ret && write) {
6816 ret = sched_rt_global_validate();
6817 if (ret)
6818 goto undo;
6819
6820 ret = sched_dl_global_validate();
6821 if (ret)
6822 goto undo;
6823
6824 ret = sched_rt_global_constraints();
6825 if (ret)
6826 goto undo;
6827
6828 sched_rt_do_global();
6829 sched_dl_do_global();
6830 }
6831 if (0) {
6832 undo:
6833 sysctl_sched_rt_period = old_period;
6834 sysctl_sched_rt_runtime = old_runtime;
6835 }
6836 mutex_unlock(&mutex);
6837
6838 return ret;
6839 }
6840
6841 int sched_rr_handler(struct ctl_table *table, int write,
6842 void __user *buffer, size_t *lenp,
6843 loff_t *ppos)
6844 {
6845 int ret;
6846 static DEFINE_MUTEX(mutex);
6847
6848 mutex_lock(&mutex);
6849 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6850 /*
6851 * Make sure that internally we keep jiffies.
6852 * Also, writing zero resets the timeslice to default:
6853 */
6854 if (!ret && write) {
6855 sched_rr_timeslice =
6856 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
6857 msecs_to_jiffies(sysctl_sched_rr_timeslice);
6858 }
6859 mutex_unlock(&mutex);
6860 return ret;
6861 }
6862
6863 #ifdef CONFIG_CGROUP_SCHED
6864
6865 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6866 {
6867 return css ? container_of(css, struct task_group, css) : NULL;
6868 }
6869
6870 static struct cgroup_subsys_state *
6871 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6872 {
6873 struct task_group *parent = css_tg(parent_css);
6874 struct task_group *tg;
6875
6876 if (!parent) {
6877 /* This is early initialization for the top cgroup */
6878 return &root_task_group.css;
6879 }
6880
6881 tg = sched_create_group(parent);
6882 if (IS_ERR(tg))
6883 return ERR_PTR(-ENOMEM);
6884
6885 return &tg->css;
6886 }
6887
6888 /* Expose task group only after completing cgroup initialization */
6889 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6890 {
6891 struct task_group *tg = css_tg(css);
6892 struct task_group *parent = css_tg(css->parent);
6893
6894 if (parent)
6895 sched_online_group(tg, parent);
6896 return 0;
6897 }
6898
6899 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6900 {
6901 struct task_group *tg = css_tg(css);
6902
6903 sched_offline_group(tg);
6904 }
6905
6906 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6907 {
6908 struct task_group *tg = css_tg(css);
6909
6910 /*
6911 * Relies on the RCU grace period between css_released() and this.
6912 */
6913 sched_free_group(tg);
6914 }
6915
6916 /*
6917 * This is called before wake_up_new_task(), therefore we really only
6918 * have to set its group bits, all the other stuff does not apply.
6919 */
6920 static void cpu_cgroup_fork(struct task_struct *task)
6921 {
6922 struct rq_flags rf;
6923 struct rq *rq;
6924
6925 rq = task_rq_lock(task, &rf);
6926
6927 update_rq_clock(rq);
6928 sched_change_group(task, TASK_SET_GROUP);
6929
6930 task_rq_unlock(rq, task, &rf);
6931 }
6932
6933 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6934 {
6935 struct task_struct *task;
6936 struct cgroup_subsys_state *css;
6937 int ret = 0;
6938
6939 cgroup_taskset_for_each(task, css, tset) {
6940 #ifdef CONFIG_RT_GROUP_SCHED
6941 if (!sched_rt_can_attach(css_tg(css), task))
6942 return -EINVAL;
6943 #else
6944 /* We don't support RT-tasks being in separate groups */
6945 if (task->sched_class != &fair_sched_class)
6946 return -EINVAL;
6947 #endif
6948 /*
6949 * Serialize against wake_up_new_task() such that if its
6950 * running, we're sure to observe its full state.
6951 */
6952 raw_spin_lock_irq(&task->pi_lock);
6953 /*
6954 * Avoid calling sched_move_task() before wake_up_new_task()
6955 * has happened. This would lead to problems with PELT, due to
6956 * move wanting to detach+attach while we're not attached yet.
6957 */
6958 if (task->state == TASK_NEW)
6959 ret = -EINVAL;
6960 raw_spin_unlock_irq(&task->pi_lock);
6961
6962 if (ret)
6963 break;
6964 }
6965 return ret;
6966 }
6967
6968 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6969 {
6970 struct task_struct *task;
6971 struct cgroup_subsys_state *css;
6972
6973 cgroup_taskset_for_each(task, css, tset)
6974 sched_move_task(task);
6975 }
6976
6977 #ifdef CONFIG_FAIR_GROUP_SCHED
6978 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6979 struct cftype *cftype, u64 shareval)
6980 {
6981 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6982 }
6983
6984 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6985 struct cftype *cft)
6986 {
6987 struct task_group *tg = css_tg(css);
6988
6989 return (u64) scale_load_down(tg->shares);
6990 }
6991
6992 #ifdef CONFIG_CFS_BANDWIDTH
6993 static DEFINE_MUTEX(cfs_constraints_mutex);
6994
6995 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6996 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6997
6998 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6999
7000 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7001 {
7002 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7003 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7004
7005 if (tg == &root_task_group)
7006 return -EINVAL;
7007
7008 /*
7009 * Ensure we have at some amount of bandwidth every period. This is
7010 * to prevent reaching a state of large arrears when throttled via
7011 * entity_tick() resulting in prolonged exit starvation.
7012 */
7013 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7014 return -EINVAL;
7015
7016 /*
7017 * Likewise, bound things on the otherside by preventing insane quota
7018 * periods. This also allows us to normalize in computing quota
7019 * feasibility.
7020 */
7021 if (period > max_cfs_quota_period)
7022 return -EINVAL;
7023
7024 /*
7025 * Prevent race between setting of cfs_rq->runtime_enabled and
7026 * unthrottle_offline_cfs_rqs().
7027 */
7028 get_online_cpus();
7029 mutex_lock(&cfs_constraints_mutex);
7030 ret = __cfs_schedulable(tg, period, quota);
7031 if (ret)
7032 goto out_unlock;
7033
7034 runtime_enabled = quota != RUNTIME_INF;
7035 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7036 /*
7037 * If we need to toggle cfs_bandwidth_used, off->on must occur
7038 * before making related changes, and on->off must occur afterwards
7039 */
7040 if (runtime_enabled && !runtime_was_enabled)
7041 cfs_bandwidth_usage_inc();
7042 raw_spin_lock_irq(&cfs_b->lock);
7043 cfs_b->period = ns_to_ktime(period);
7044 cfs_b->quota = quota;
7045
7046 __refill_cfs_bandwidth_runtime(cfs_b);
7047
7048 /* Restart the period timer (if active) to handle new period expiry: */
7049 if (runtime_enabled)
7050 start_cfs_bandwidth(cfs_b);
7051
7052 raw_spin_unlock_irq(&cfs_b->lock);
7053
7054 for_each_online_cpu(i) {
7055 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7056 struct rq *rq = cfs_rq->rq;
7057 struct rq_flags rf;
7058
7059 rq_lock_irq(rq, &rf);
7060 cfs_rq->runtime_enabled = runtime_enabled;
7061 cfs_rq->runtime_remaining = 0;
7062
7063 if (cfs_rq->throttled)
7064 unthrottle_cfs_rq(cfs_rq);
7065 rq_unlock_irq(rq, &rf);
7066 }
7067 if (runtime_was_enabled && !runtime_enabled)
7068 cfs_bandwidth_usage_dec();
7069 out_unlock:
7070 mutex_unlock(&cfs_constraints_mutex);
7071 put_online_cpus();
7072
7073 return ret;
7074 }
7075
7076 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7077 {
7078 u64 quota, period;
7079
7080 period = ktime_to_ns(tg->cfs_bandwidth.period);
7081 if (cfs_quota_us < 0)
7082 quota = RUNTIME_INF;
7083 else
7084 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7085
7086 return tg_set_cfs_bandwidth(tg, period, quota);
7087 }
7088
7089 long tg_get_cfs_quota(struct task_group *tg)
7090 {
7091 u64 quota_us;
7092
7093 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7094 return -1;
7095
7096 quota_us = tg->cfs_bandwidth.quota;
7097 do_div(quota_us, NSEC_PER_USEC);
7098
7099 return quota_us;
7100 }
7101
7102 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7103 {
7104 u64 quota, period;
7105
7106 period = (u64)cfs_period_us * NSEC_PER_USEC;
7107 quota = tg->cfs_bandwidth.quota;
7108
7109 return tg_set_cfs_bandwidth(tg, period, quota);
7110 }
7111
7112 long tg_get_cfs_period(struct task_group *tg)
7113 {
7114 u64 cfs_period_us;
7115
7116 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7117 do_div(cfs_period_us, NSEC_PER_USEC);
7118
7119 return cfs_period_us;
7120 }
7121
7122 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7123 struct cftype *cft)
7124 {
7125 return tg_get_cfs_quota(css_tg(css));
7126 }
7127
7128 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7129 struct cftype *cftype, s64 cfs_quota_us)
7130 {
7131 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7132 }
7133
7134 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7135 struct cftype *cft)
7136 {
7137 return tg_get_cfs_period(css_tg(css));
7138 }
7139
7140 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7141 struct cftype *cftype, u64 cfs_period_us)
7142 {
7143 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7144 }
7145
7146 struct cfs_schedulable_data {
7147 struct task_group *tg;
7148 u64 period, quota;
7149 };
7150
7151 /*
7152 * normalize group quota/period to be quota/max_period
7153 * note: units are usecs
7154 */
7155 static u64 normalize_cfs_quota(struct task_group *tg,
7156 struct cfs_schedulable_data *d)
7157 {
7158 u64 quota, period;
7159
7160 if (tg == d->tg) {
7161 period = d->period;
7162 quota = d->quota;
7163 } else {
7164 period = tg_get_cfs_period(tg);
7165 quota = tg_get_cfs_quota(tg);
7166 }
7167
7168 /* note: these should typically be equivalent */
7169 if (quota == RUNTIME_INF || quota == -1)
7170 return RUNTIME_INF;
7171
7172 return to_ratio(period, quota);
7173 }
7174
7175 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7176 {
7177 struct cfs_schedulable_data *d = data;
7178 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7179 s64 quota = 0, parent_quota = -1;
7180
7181 if (!tg->parent) {
7182 quota = RUNTIME_INF;
7183 } else {
7184 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7185
7186 quota = normalize_cfs_quota(tg, d);
7187 parent_quota = parent_b->hierarchical_quota;
7188
7189 /*
7190 * Ensure max(child_quota) <= parent_quota, inherit when no
7191 * limit is set:
7192 */
7193 if (quota == RUNTIME_INF)
7194 quota = parent_quota;
7195 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7196 return -EINVAL;
7197 }
7198 cfs_b->hierarchical_quota = quota;
7199
7200 return 0;
7201 }
7202
7203 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7204 {
7205 int ret;
7206 struct cfs_schedulable_data data = {
7207 .tg = tg,
7208 .period = period,
7209 .quota = quota,
7210 };
7211
7212 if (quota != RUNTIME_INF) {
7213 do_div(data.period, NSEC_PER_USEC);
7214 do_div(data.quota, NSEC_PER_USEC);
7215 }
7216
7217 rcu_read_lock();
7218 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7219 rcu_read_unlock();
7220
7221 return ret;
7222 }
7223
7224 static int cpu_stats_show(struct seq_file *sf, void *v)
7225 {
7226 struct task_group *tg = css_tg(seq_css(sf));
7227 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7228
7229 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7230 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7231 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7232
7233 return 0;
7234 }
7235 #endif /* CONFIG_CFS_BANDWIDTH */
7236 #endif /* CONFIG_FAIR_GROUP_SCHED */
7237
7238 #ifdef CONFIG_RT_GROUP_SCHED
7239 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7240 struct cftype *cft, s64 val)
7241 {
7242 return sched_group_set_rt_runtime(css_tg(css), val);
7243 }
7244
7245 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7246 struct cftype *cft)
7247 {
7248 return sched_group_rt_runtime(css_tg(css));
7249 }
7250
7251 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7252 struct cftype *cftype, u64 rt_period_us)
7253 {
7254 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7255 }
7256
7257 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7258 struct cftype *cft)
7259 {
7260 return sched_group_rt_period(css_tg(css));
7261 }
7262 #endif /* CONFIG_RT_GROUP_SCHED */
7263
7264 static struct cftype cpu_files[] = {
7265 #ifdef CONFIG_FAIR_GROUP_SCHED
7266 {
7267 .name = "shares",
7268 .read_u64 = cpu_shares_read_u64,
7269 .write_u64 = cpu_shares_write_u64,
7270 },
7271 #endif
7272 #ifdef CONFIG_CFS_BANDWIDTH
7273 {
7274 .name = "cfs_quota_us",
7275 .read_s64 = cpu_cfs_quota_read_s64,
7276 .write_s64 = cpu_cfs_quota_write_s64,
7277 },
7278 {
7279 .name = "cfs_period_us",
7280 .read_u64 = cpu_cfs_period_read_u64,
7281 .write_u64 = cpu_cfs_period_write_u64,
7282 },
7283 {
7284 .name = "stat",
7285 .seq_show = cpu_stats_show,
7286 },
7287 #endif
7288 #ifdef CONFIG_RT_GROUP_SCHED
7289 {
7290 .name = "rt_runtime_us",
7291 .read_s64 = cpu_rt_runtime_read,
7292 .write_s64 = cpu_rt_runtime_write,
7293 },
7294 {
7295 .name = "rt_period_us",
7296 .read_u64 = cpu_rt_period_read_uint,
7297 .write_u64 = cpu_rt_period_write_uint,
7298 },
7299 #endif
7300 { } /* Terminate */
7301 };
7302
7303 struct cgroup_subsys cpu_cgrp_subsys = {
7304 .css_alloc = cpu_cgroup_css_alloc,
7305 .css_online = cpu_cgroup_css_online,
7306 .css_released = cpu_cgroup_css_released,
7307 .css_free = cpu_cgroup_css_free,
7308 .fork = cpu_cgroup_fork,
7309 .can_attach = cpu_cgroup_can_attach,
7310 .attach = cpu_cgroup_attach,
7311 .legacy_cftypes = cpu_files,
7312 .early_init = true,
7313 };
7314
7315 #endif /* CONFIG_CGROUP_SCHED */
7316
7317 void dump_cpu_task(int cpu)
7318 {
7319 pr_info("Task dump for CPU %d:\n", cpu);
7320 sched_show_task(cpu_curr(cpu));
7321 }
7322
7323 /*
7324 * Nice levels are multiplicative, with a gentle 10% change for every
7325 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7326 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7327 * that remained on nice 0.
7328 *
7329 * The "10% effect" is relative and cumulative: from _any_ nice level,
7330 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7331 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7332 * If a task goes up by ~10% and another task goes down by ~10% then
7333 * the relative distance between them is ~25%.)
7334 */
7335 const int sched_prio_to_weight[40] = {
7336 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7337 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7338 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7339 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7340 /* 0 */ 1024, 820, 655, 526, 423,
7341 /* 5 */ 335, 272, 215, 172, 137,
7342 /* 10 */ 110, 87, 70, 56, 45,
7343 /* 15 */ 36, 29, 23, 18, 15,
7344 };
7345
7346 /*
7347 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7348 *
7349 * In cases where the weight does not change often, we can use the
7350 * precalculated inverse to speed up arithmetics by turning divisions
7351 * into multiplications:
7352 */
7353 const u32 sched_prio_to_wmult[40] = {
7354 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7355 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7356 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7357 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7358 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7359 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7360 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7361 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7362 };