]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
mm: sched: numa: Control enabling and disabling of NUMA balancing
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109 }
110
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116 void update_rq_clock(struct rq *rq)
117 {
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126 }
127
128 /*
129 * Debugging: various feature bits
130 */
131
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 0;
138
139 #undef SCHED_FEAT
140
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
144
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static int sched_feat_set(char *cmp)
196 {
197 int i;
198 int neg = 0;
199
200 if (strncmp(cmp, "NO_", 3) == 0) {
201 neg = 1;
202 cmp += 3;
203 }
204
205 for (i = 0; i < __SCHED_FEAT_NR; i++) {
206 if (strcmp(cmp, sched_feat_names[i]) == 0) {
207 if (neg) {
208 sysctl_sched_features &= ~(1UL << i);
209 sched_feat_disable(i);
210 } else {
211 sysctl_sched_features |= (1UL << i);
212 sched_feat_enable(i);
213 }
214 break;
215 }
216 }
217
218 return i;
219 }
220
221 static ssize_t
222 sched_feat_write(struct file *filp, const char __user *ubuf,
223 size_t cnt, loff_t *ppos)
224 {
225 char buf[64];
226 char *cmp;
227 int i;
228
229 if (cnt > 63)
230 cnt = 63;
231
232 if (copy_from_user(&buf, ubuf, cnt))
233 return -EFAULT;
234
235 buf[cnt] = 0;
236 cmp = strstrip(buf);
237
238 i = sched_feat_set(cmp);
239 if (i == __SCHED_FEAT_NR)
240 return -EINVAL;
241
242 *ppos += cnt;
243
244 return cnt;
245 }
246
247 static int sched_feat_open(struct inode *inode, struct file *filp)
248 {
249 return single_open(filp, sched_feat_show, NULL);
250 }
251
252 static const struct file_operations sched_feat_fops = {
253 .open = sched_feat_open,
254 .write = sched_feat_write,
255 .read = seq_read,
256 .llseek = seq_lseek,
257 .release = single_release,
258 };
259
260 static __init int sched_init_debug(void)
261 {
262 debugfs_create_file("sched_features", 0644, NULL, NULL,
263 &sched_feat_fops);
264
265 return 0;
266 }
267 late_initcall(sched_init_debug);
268 #endif /* CONFIG_SCHED_DEBUG */
269
270 /*
271 * Number of tasks to iterate in a single balance run.
272 * Limited because this is done with IRQs disabled.
273 */
274 const_debug unsigned int sysctl_sched_nr_migrate = 32;
275
276 /*
277 * period over which we average the RT time consumption, measured
278 * in ms.
279 *
280 * default: 1s
281 */
282 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
283
284 /*
285 * period over which we measure -rt task cpu usage in us.
286 * default: 1s
287 */
288 unsigned int sysctl_sched_rt_period = 1000000;
289
290 __read_mostly int scheduler_running;
291
292 /*
293 * part of the period that we allow rt tasks to run in us.
294 * default: 0.95s
295 */
296 int sysctl_sched_rt_runtime = 950000;
297
298
299
300 /*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303 static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock)
305 {
306 struct rq *rq;
307
308 lockdep_assert_held(&p->pi_lock);
309
310 for (;;) {
311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p)))
314 return rq;
315 raw_spin_unlock(&rq->lock);
316 }
317 }
318
319 /*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock)
324 __acquires(rq->lock)
325 {
326 struct rq *rq;
327
328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p)))
333 return rq;
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 }
337 }
338
339 static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 }
344
345 static inline void
346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock)
348 __releases(p->pi_lock)
349 {
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 }
353
354 /*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357 static struct rq *this_rq_lock(void)
358 __acquires(rq->lock)
359 {
360 struct rq *rq;
361
362 local_irq_disable();
363 rq = this_rq();
364 raw_spin_lock(&rq->lock);
365
366 return rq;
367 }
368
369 #ifdef CONFIG_SCHED_HRTICK
370 /*
371 * Use HR-timers to deliver accurate preemption points.
372 *
373 * Its all a bit involved since we cannot program an hrt while holding the
374 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
375 * reschedule event.
376 *
377 * When we get rescheduled we reprogram the hrtick_timer outside of the
378 * rq->lock.
379 */
380
381 static void hrtick_clear(struct rq *rq)
382 {
383 if (hrtimer_active(&rq->hrtick_timer))
384 hrtimer_cancel(&rq->hrtick_timer);
385 }
386
387 /*
388 * High-resolution timer tick.
389 * Runs from hardirq context with interrupts disabled.
390 */
391 static enum hrtimer_restart hrtick(struct hrtimer *timer)
392 {
393 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
394
395 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396
397 raw_spin_lock(&rq->lock);
398 update_rq_clock(rq);
399 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
400 raw_spin_unlock(&rq->lock);
401
402 return HRTIMER_NORESTART;
403 }
404
405 #ifdef CONFIG_SMP
406 /*
407 * called from hardirq (IPI) context
408 */
409 static void __hrtick_start(void *arg)
410 {
411 struct rq *rq = arg;
412
413 raw_spin_lock(&rq->lock);
414 hrtimer_restart(&rq->hrtick_timer);
415 rq->hrtick_csd_pending = 0;
416 raw_spin_unlock(&rq->lock);
417 }
418
419 /*
420 * Called to set the hrtick timer state.
421 *
422 * called with rq->lock held and irqs disabled
423 */
424 void hrtick_start(struct rq *rq, u64 delay)
425 {
426 struct hrtimer *timer = &rq->hrtick_timer;
427 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
428
429 hrtimer_set_expires(timer, time);
430
431 if (rq == this_rq()) {
432 hrtimer_restart(timer);
433 } else if (!rq->hrtick_csd_pending) {
434 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
435 rq->hrtick_csd_pending = 1;
436 }
437 }
438
439 static int
440 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
441 {
442 int cpu = (int)(long)hcpu;
443
444 switch (action) {
445 case CPU_UP_CANCELED:
446 case CPU_UP_CANCELED_FROZEN:
447 case CPU_DOWN_PREPARE:
448 case CPU_DOWN_PREPARE_FROZEN:
449 case CPU_DEAD:
450 case CPU_DEAD_FROZEN:
451 hrtick_clear(cpu_rq(cpu));
452 return NOTIFY_OK;
453 }
454
455 return NOTIFY_DONE;
456 }
457
458 static __init void init_hrtick(void)
459 {
460 hotcpu_notifier(hotplug_hrtick, 0);
461 }
462 #else
463 /*
464 * Called to set the hrtick timer state.
465 *
466 * called with rq->lock held and irqs disabled
467 */
468 void hrtick_start(struct rq *rq, u64 delay)
469 {
470 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
471 HRTIMER_MODE_REL_PINNED, 0);
472 }
473
474 static inline void init_hrtick(void)
475 {
476 }
477 #endif /* CONFIG_SMP */
478
479 static void init_rq_hrtick(struct rq *rq)
480 {
481 #ifdef CONFIG_SMP
482 rq->hrtick_csd_pending = 0;
483
484 rq->hrtick_csd.flags = 0;
485 rq->hrtick_csd.func = __hrtick_start;
486 rq->hrtick_csd.info = rq;
487 #endif
488
489 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
490 rq->hrtick_timer.function = hrtick;
491 }
492 #else /* CONFIG_SCHED_HRTICK */
493 static inline void hrtick_clear(struct rq *rq)
494 {
495 }
496
497 static inline void init_rq_hrtick(struct rq *rq)
498 {
499 }
500
501 static inline void init_hrtick(void)
502 {
503 }
504 #endif /* CONFIG_SCHED_HRTICK */
505
506 /*
507 * resched_task - mark a task 'to be rescheduled now'.
508 *
509 * On UP this means the setting of the need_resched flag, on SMP it
510 * might also involve a cross-CPU call to trigger the scheduler on
511 * the target CPU.
512 */
513 #ifdef CONFIG_SMP
514
515 #ifndef tsk_is_polling
516 #define tsk_is_polling(t) 0
517 #endif
518
519 void resched_task(struct task_struct *p)
520 {
521 int cpu;
522
523 assert_raw_spin_locked(&task_rq(p)->lock);
524
525 if (test_tsk_need_resched(p))
526 return;
527
528 set_tsk_need_resched(p);
529
530 cpu = task_cpu(p);
531 if (cpu == smp_processor_id())
532 return;
533
534 /* NEED_RESCHED must be visible before we test polling */
535 smp_mb();
536 if (!tsk_is_polling(p))
537 smp_send_reschedule(cpu);
538 }
539
540 void resched_cpu(int cpu)
541 {
542 struct rq *rq = cpu_rq(cpu);
543 unsigned long flags;
544
545 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
546 return;
547 resched_task(cpu_curr(cpu));
548 raw_spin_unlock_irqrestore(&rq->lock, flags);
549 }
550
551 #ifdef CONFIG_NO_HZ
552 /*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560 int get_nohz_timer_target(void)
561 {
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
574 }
575 unlock:
576 rcu_read_unlock();
577 return cpu;
578 }
579 /*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589 void wake_up_idle_cpu(int cpu)
590 {
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
605
606 /*
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
610 */
611 set_tsk_need_resched(rq->idle);
612
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
617 }
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 int cpu = smp_processor_id();
622 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 }
624
625 #else /* CONFIG_NO_HZ */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ */
633
634 void sched_avg_update(struct rq *rq)
635 {
636 s64 period = sched_avg_period();
637
638 while ((s64)(rq->clock - rq->age_stamp) > period) {
639 /*
640 * Inline assembly required to prevent the compiler
641 * optimising this loop into a divmod call.
642 * See __iter_div_u64_rem() for another example of this.
643 */
644 asm("" : "+rm" (rq->age_stamp));
645 rq->age_stamp += period;
646 rq->rt_avg /= 2;
647 }
648 }
649
650 #else /* !CONFIG_SMP */
651 void resched_task(struct task_struct *p)
652 {
653 assert_raw_spin_locked(&task_rq(p)->lock);
654 set_tsk_need_resched(p);
655 }
656 #endif /* CONFIG_SMP */
657
658 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
659 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
660 /*
661 * Iterate task_group tree rooted at *from, calling @down when first entering a
662 * node and @up when leaving it for the final time.
663 *
664 * Caller must hold rcu_lock or sufficient equivalent.
665 */
666 int walk_tg_tree_from(struct task_group *from,
667 tg_visitor down, tg_visitor up, void *data)
668 {
669 struct task_group *parent, *child;
670 int ret;
671
672 parent = from;
673
674 down:
675 ret = (*down)(parent, data);
676 if (ret)
677 goto out;
678 list_for_each_entry_rcu(child, &parent->children, siblings) {
679 parent = child;
680 goto down;
681
682 up:
683 continue;
684 }
685 ret = (*up)(parent, data);
686 if (ret || parent == from)
687 goto out;
688
689 child = parent;
690 parent = parent->parent;
691 if (parent)
692 goto up;
693 out:
694 return ret;
695 }
696
697 int tg_nop(struct task_group *tg, void *data)
698 {
699 return 0;
700 }
701 #endif
702
703 static void set_load_weight(struct task_struct *p)
704 {
705 int prio = p->static_prio - MAX_RT_PRIO;
706 struct load_weight *load = &p->se.load;
707
708 /*
709 * SCHED_IDLE tasks get minimal weight:
710 */
711 if (p->policy == SCHED_IDLE) {
712 load->weight = scale_load(WEIGHT_IDLEPRIO);
713 load->inv_weight = WMULT_IDLEPRIO;
714 return;
715 }
716
717 load->weight = scale_load(prio_to_weight[prio]);
718 load->inv_weight = prio_to_wmult[prio];
719 }
720
721 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722 {
723 update_rq_clock(rq);
724 sched_info_queued(p);
725 p->sched_class->enqueue_task(rq, p, flags);
726 }
727
728 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
729 {
730 update_rq_clock(rq);
731 sched_info_dequeued(p);
732 p->sched_class->dequeue_task(rq, p, flags);
733 }
734
735 void activate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible--;
739
740 enqueue_task(rq, p, flags);
741 }
742
743 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
744 {
745 if (task_contributes_to_load(p))
746 rq->nr_uninterruptible++;
747
748 dequeue_task(rq, p, flags);
749 }
750
751 static void update_rq_clock_task(struct rq *rq, s64 delta)
752 {
753 /*
754 * In theory, the compile should just see 0 here, and optimize out the call
755 * to sched_rt_avg_update. But I don't trust it...
756 */
757 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
758 s64 steal = 0, irq_delta = 0;
759 #endif
760 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
761 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
762
763 /*
764 * Since irq_time is only updated on {soft,}irq_exit, we might run into
765 * this case when a previous update_rq_clock() happened inside a
766 * {soft,}irq region.
767 *
768 * When this happens, we stop ->clock_task and only update the
769 * prev_irq_time stamp to account for the part that fit, so that a next
770 * update will consume the rest. This ensures ->clock_task is
771 * monotonic.
772 *
773 * It does however cause some slight miss-attribution of {soft,}irq
774 * time, a more accurate solution would be to update the irq_time using
775 * the current rq->clock timestamp, except that would require using
776 * atomic ops.
777 */
778 if (irq_delta > delta)
779 irq_delta = delta;
780
781 rq->prev_irq_time += irq_delta;
782 delta -= irq_delta;
783 #endif
784 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
785 if (static_key_false((&paravirt_steal_rq_enabled))) {
786 u64 st;
787
788 steal = paravirt_steal_clock(cpu_of(rq));
789 steal -= rq->prev_steal_time_rq;
790
791 if (unlikely(steal > delta))
792 steal = delta;
793
794 st = steal_ticks(steal);
795 steal = st * TICK_NSEC;
796
797 rq->prev_steal_time_rq += steal;
798
799 delta -= steal;
800 }
801 #endif
802
803 rq->clock_task += delta;
804
805 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
806 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
807 sched_rt_avg_update(rq, irq_delta + steal);
808 #endif
809 }
810
811 void sched_set_stop_task(int cpu, struct task_struct *stop)
812 {
813 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
814 struct task_struct *old_stop = cpu_rq(cpu)->stop;
815
816 if (stop) {
817 /*
818 * Make it appear like a SCHED_FIFO task, its something
819 * userspace knows about and won't get confused about.
820 *
821 * Also, it will make PI more or less work without too
822 * much confusion -- but then, stop work should not
823 * rely on PI working anyway.
824 */
825 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
826
827 stop->sched_class = &stop_sched_class;
828 }
829
830 cpu_rq(cpu)->stop = stop;
831
832 if (old_stop) {
833 /*
834 * Reset it back to a normal scheduling class so that
835 * it can die in pieces.
836 */
837 old_stop->sched_class = &rt_sched_class;
838 }
839 }
840
841 /*
842 * __normal_prio - return the priority that is based on the static prio
843 */
844 static inline int __normal_prio(struct task_struct *p)
845 {
846 return p->static_prio;
847 }
848
849 /*
850 * Calculate the expected normal priority: i.e. priority
851 * without taking RT-inheritance into account. Might be
852 * boosted by interactivity modifiers. Changes upon fork,
853 * setprio syscalls, and whenever the interactivity
854 * estimator recalculates.
855 */
856 static inline int normal_prio(struct task_struct *p)
857 {
858 int prio;
859
860 if (task_has_rt_policy(p))
861 prio = MAX_RT_PRIO-1 - p->rt_priority;
862 else
863 prio = __normal_prio(p);
864 return prio;
865 }
866
867 /*
868 * Calculate the current priority, i.e. the priority
869 * taken into account by the scheduler. This value might
870 * be boosted by RT tasks, or might be boosted by
871 * interactivity modifiers. Will be RT if the task got
872 * RT-boosted. If not then it returns p->normal_prio.
873 */
874 static int effective_prio(struct task_struct *p)
875 {
876 p->normal_prio = normal_prio(p);
877 /*
878 * If we are RT tasks or we were boosted to RT priority,
879 * keep the priority unchanged. Otherwise, update priority
880 * to the normal priority:
881 */
882 if (!rt_prio(p->prio))
883 return p->normal_prio;
884 return p->prio;
885 }
886
887 /**
888 * task_curr - is this task currently executing on a CPU?
889 * @p: the task in question.
890 */
891 inline int task_curr(const struct task_struct *p)
892 {
893 return cpu_curr(task_cpu(p)) == p;
894 }
895
896 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
897 const struct sched_class *prev_class,
898 int oldprio)
899 {
900 if (prev_class != p->sched_class) {
901 if (prev_class->switched_from)
902 prev_class->switched_from(rq, p);
903 p->sched_class->switched_to(rq, p);
904 } else if (oldprio != p->prio)
905 p->sched_class->prio_changed(rq, p, oldprio);
906 }
907
908 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
909 {
910 const struct sched_class *class;
911
912 if (p->sched_class == rq->curr->sched_class) {
913 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
914 } else {
915 for_each_class(class) {
916 if (class == rq->curr->sched_class)
917 break;
918 if (class == p->sched_class) {
919 resched_task(rq->curr);
920 break;
921 }
922 }
923 }
924
925 /*
926 * A queue event has occurred, and we're going to schedule. In
927 * this case, we can save a useless back to back clock update.
928 */
929 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
930 rq->skip_clock_update = 1;
931 }
932
933 #ifdef CONFIG_SMP
934 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
935 {
936 #ifdef CONFIG_SCHED_DEBUG
937 /*
938 * We should never call set_task_cpu() on a blocked task,
939 * ttwu() will sort out the placement.
940 */
941 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
942 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
943
944 #ifdef CONFIG_LOCKDEP
945 /*
946 * The caller should hold either p->pi_lock or rq->lock, when changing
947 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
948 *
949 * sched_move_task() holds both and thus holding either pins the cgroup,
950 * see task_group().
951 *
952 * Furthermore, all task_rq users should acquire both locks, see
953 * task_rq_lock().
954 */
955 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
956 lockdep_is_held(&task_rq(p)->lock)));
957 #endif
958 #endif
959
960 trace_sched_migrate_task(p, new_cpu);
961
962 if (task_cpu(p) != new_cpu) {
963 p->se.nr_migrations++;
964 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
965 }
966
967 __set_task_cpu(p, new_cpu);
968 }
969
970 struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973 };
974
975 static int migration_cpu_stop(void *data);
976
977 /*
978 * wait_task_inactive - wait for a thread to unschedule.
979 *
980 * If @match_state is nonzero, it's the @p->state value just checked and
981 * not expected to change. If it changes, i.e. @p might have woken up,
982 * then return zero. When we succeed in waiting for @p to be off its CPU,
983 * we return a positive number (its total switch count). If a second call
984 * a short while later returns the same number, the caller can be sure that
985 * @p has remained unscheduled the whole time.
986 *
987 * The caller must ensure that the task *will* unschedule sometime soon,
988 * else this function might spin for a *long* time. This function can't
989 * be called with interrupts off, or it may introduce deadlock with
990 * smp_call_function() if an IPI is sent by the same process we are
991 * waiting to become inactive.
992 */
993 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
994 {
995 unsigned long flags;
996 int running, on_rq;
997 unsigned long ncsw;
998 struct rq *rq;
999
1000 for (;;) {
1001 /*
1002 * We do the initial early heuristics without holding
1003 * any task-queue locks at all. We'll only try to get
1004 * the runqueue lock when things look like they will
1005 * work out!
1006 */
1007 rq = task_rq(p);
1008
1009 /*
1010 * If the task is actively running on another CPU
1011 * still, just relax and busy-wait without holding
1012 * any locks.
1013 *
1014 * NOTE! Since we don't hold any locks, it's not
1015 * even sure that "rq" stays as the right runqueue!
1016 * But we don't care, since "task_running()" will
1017 * return false if the runqueue has changed and p
1018 * is actually now running somewhere else!
1019 */
1020 while (task_running(rq, p)) {
1021 if (match_state && unlikely(p->state != match_state))
1022 return 0;
1023 cpu_relax();
1024 }
1025
1026 /*
1027 * Ok, time to look more closely! We need the rq
1028 * lock now, to be *sure*. If we're wrong, we'll
1029 * just go back and repeat.
1030 */
1031 rq = task_rq_lock(p, &flags);
1032 trace_sched_wait_task(p);
1033 running = task_running(rq, p);
1034 on_rq = p->on_rq;
1035 ncsw = 0;
1036 if (!match_state || p->state == match_state)
1037 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1038 task_rq_unlock(rq, p, &flags);
1039
1040 /*
1041 * If it changed from the expected state, bail out now.
1042 */
1043 if (unlikely(!ncsw))
1044 break;
1045
1046 /*
1047 * Was it really running after all now that we
1048 * checked with the proper locks actually held?
1049 *
1050 * Oops. Go back and try again..
1051 */
1052 if (unlikely(running)) {
1053 cpu_relax();
1054 continue;
1055 }
1056
1057 /*
1058 * It's not enough that it's not actively running,
1059 * it must be off the runqueue _entirely_, and not
1060 * preempted!
1061 *
1062 * So if it was still runnable (but just not actively
1063 * running right now), it's preempted, and we should
1064 * yield - it could be a while.
1065 */
1066 if (unlikely(on_rq)) {
1067 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1068
1069 set_current_state(TASK_UNINTERRUPTIBLE);
1070 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1071 continue;
1072 }
1073
1074 /*
1075 * Ahh, all good. It wasn't running, and it wasn't
1076 * runnable, which means that it will never become
1077 * running in the future either. We're all done!
1078 */
1079 break;
1080 }
1081
1082 return ncsw;
1083 }
1084
1085 /***
1086 * kick_process - kick a running thread to enter/exit the kernel
1087 * @p: the to-be-kicked thread
1088 *
1089 * Cause a process which is running on another CPU to enter
1090 * kernel-mode, without any delay. (to get signals handled.)
1091 *
1092 * NOTE: this function doesn't have to take the runqueue lock,
1093 * because all it wants to ensure is that the remote task enters
1094 * the kernel. If the IPI races and the task has been migrated
1095 * to another CPU then no harm is done and the purpose has been
1096 * achieved as well.
1097 */
1098 void kick_process(struct task_struct *p)
1099 {
1100 int cpu;
1101
1102 preempt_disable();
1103 cpu = task_cpu(p);
1104 if ((cpu != smp_processor_id()) && task_curr(p))
1105 smp_send_reschedule(cpu);
1106 preempt_enable();
1107 }
1108 EXPORT_SYMBOL_GPL(kick_process);
1109 #endif /* CONFIG_SMP */
1110
1111 #ifdef CONFIG_SMP
1112 /*
1113 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1114 */
1115 static int select_fallback_rq(int cpu, struct task_struct *p)
1116 {
1117 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1118 enum { cpuset, possible, fail } state = cpuset;
1119 int dest_cpu;
1120
1121 /* Look for allowed, online CPU in same node. */
1122 for_each_cpu(dest_cpu, nodemask) {
1123 if (!cpu_online(dest_cpu))
1124 continue;
1125 if (!cpu_active(dest_cpu))
1126 continue;
1127 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1128 return dest_cpu;
1129 }
1130
1131 for (;;) {
1132 /* Any allowed, online CPU? */
1133 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1134 if (!cpu_online(dest_cpu))
1135 continue;
1136 if (!cpu_active(dest_cpu))
1137 continue;
1138 goto out;
1139 }
1140
1141 switch (state) {
1142 case cpuset:
1143 /* No more Mr. Nice Guy. */
1144 cpuset_cpus_allowed_fallback(p);
1145 state = possible;
1146 break;
1147
1148 case possible:
1149 do_set_cpus_allowed(p, cpu_possible_mask);
1150 state = fail;
1151 break;
1152
1153 case fail:
1154 BUG();
1155 break;
1156 }
1157 }
1158
1159 out:
1160 if (state != cpuset) {
1161 /*
1162 * Don't tell them about moving exiting tasks or
1163 * kernel threads (both mm NULL), since they never
1164 * leave kernel.
1165 */
1166 if (p->mm && printk_ratelimit()) {
1167 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1168 task_pid_nr(p), p->comm, cpu);
1169 }
1170 }
1171
1172 return dest_cpu;
1173 }
1174
1175 /*
1176 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1177 */
1178 static inline
1179 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1180 {
1181 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1182
1183 /*
1184 * In order not to call set_task_cpu() on a blocking task we need
1185 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1186 * cpu.
1187 *
1188 * Since this is common to all placement strategies, this lives here.
1189 *
1190 * [ this allows ->select_task() to simply return task_cpu(p) and
1191 * not worry about this generic constraint ]
1192 */
1193 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1194 !cpu_online(cpu)))
1195 cpu = select_fallback_rq(task_cpu(p), p);
1196
1197 return cpu;
1198 }
1199
1200 static void update_avg(u64 *avg, u64 sample)
1201 {
1202 s64 diff = sample - *avg;
1203 *avg += diff >> 3;
1204 }
1205 #endif
1206
1207 static void
1208 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1209 {
1210 #ifdef CONFIG_SCHEDSTATS
1211 struct rq *rq = this_rq();
1212
1213 #ifdef CONFIG_SMP
1214 int this_cpu = smp_processor_id();
1215
1216 if (cpu == this_cpu) {
1217 schedstat_inc(rq, ttwu_local);
1218 schedstat_inc(p, se.statistics.nr_wakeups_local);
1219 } else {
1220 struct sched_domain *sd;
1221
1222 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1223 rcu_read_lock();
1224 for_each_domain(this_cpu, sd) {
1225 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1226 schedstat_inc(sd, ttwu_wake_remote);
1227 break;
1228 }
1229 }
1230 rcu_read_unlock();
1231 }
1232
1233 if (wake_flags & WF_MIGRATED)
1234 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1235
1236 #endif /* CONFIG_SMP */
1237
1238 schedstat_inc(rq, ttwu_count);
1239 schedstat_inc(p, se.statistics.nr_wakeups);
1240
1241 if (wake_flags & WF_SYNC)
1242 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1243
1244 #endif /* CONFIG_SCHEDSTATS */
1245 }
1246
1247 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1248 {
1249 activate_task(rq, p, en_flags);
1250 p->on_rq = 1;
1251
1252 /* if a worker is waking up, notify workqueue */
1253 if (p->flags & PF_WQ_WORKER)
1254 wq_worker_waking_up(p, cpu_of(rq));
1255 }
1256
1257 /*
1258 * Mark the task runnable and perform wakeup-preemption.
1259 */
1260 static void
1261 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1262 {
1263 trace_sched_wakeup(p, true);
1264 check_preempt_curr(rq, p, wake_flags);
1265
1266 p->state = TASK_RUNNING;
1267 #ifdef CONFIG_SMP
1268 if (p->sched_class->task_woken)
1269 p->sched_class->task_woken(rq, p);
1270
1271 if (rq->idle_stamp) {
1272 u64 delta = rq->clock - rq->idle_stamp;
1273 u64 max = 2*sysctl_sched_migration_cost;
1274
1275 if (delta > max)
1276 rq->avg_idle = max;
1277 else
1278 update_avg(&rq->avg_idle, delta);
1279 rq->idle_stamp = 0;
1280 }
1281 #endif
1282 }
1283
1284 static void
1285 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1286 {
1287 #ifdef CONFIG_SMP
1288 if (p->sched_contributes_to_load)
1289 rq->nr_uninterruptible--;
1290 #endif
1291
1292 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1293 ttwu_do_wakeup(rq, p, wake_flags);
1294 }
1295
1296 /*
1297 * Called in case the task @p isn't fully descheduled from its runqueue,
1298 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1299 * since all we need to do is flip p->state to TASK_RUNNING, since
1300 * the task is still ->on_rq.
1301 */
1302 static int ttwu_remote(struct task_struct *p, int wake_flags)
1303 {
1304 struct rq *rq;
1305 int ret = 0;
1306
1307 rq = __task_rq_lock(p);
1308 if (p->on_rq) {
1309 ttwu_do_wakeup(rq, p, wake_flags);
1310 ret = 1;
1311 }
1312 __task_rq_unlock(rq);
1313
1314 return ret;
1315 }
1316
1317 #ifdef CONFIG_SMP
1318 static void sched_ttwu_pending(void)
1319 {
1320 struct rq *rq = this_rq();
1321 struct llist_node *llist = llist_del_all(&rq->wake_list);
1322 struct task_struct *p;
1323
1324 raw_spin_lock(&rq->lock);
1325
1326 while (llist) {
1327 p = llist_entry(llist, struct task_struct, wake_entry);
1328 llist = llist_next(llist);
1329 ttwu_do_activate(rq, p, 0);
1330 }
1331
1332 raw_spin_unlock(&rq->lock);
1333 }
1334
1335 void scheduler_ipi(void)
1336 {
1337 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1338 return;
1339
1340 /*
1341 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1342 * traditionally all their work was done from the interrupt return
1343 * path. Now that we actually do some work, we need to make sure
1344 * we do call them.
1345 *
1346 * Some archs already do call them, luckily irq_enter/exit nest
1347 * properly.
1348 *
1349 * Arguably we should visit all archs and update all handlers,
1350 * however a fair share of IPIs are still resched only so this would
1351 * somewhat pessimize the simple resched case.
1352 */
1353 irq_enter();
1354 sched_ttwu_pending();
1355
1356 /*
1357 * Check if someone kicked us for doing the nohz idle load balance.
1358 */
1359 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1360 this_rq()->idle_balance = 1;
1361 raise_softirq_irqoff(SCHED_SOFTIRQ);
1362 }
1363 irq_exit();
1364 }
1365
1366 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1367 {
1368 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1369 smp_send_reschedule(cpu);
1370 }
1371
1372 bool cpus_share_cache(int this_cpu, int that_cpu)
1373 {
1374 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1375 }
1376 #endif /* CONFIG_SMP */
1377
1378 static void ttwu_queue(struct task_struct *p, int cpu)
1379 {
1380 struct rq *rq = cpu_rq(cpu);
1381
1382 #if defined(CONFIG_SMP)
1383 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1384 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1385 ttwu_queue_remote(p, cpu);
1386 return;
1387 }
1388 #endif
1389
1390 raw_spin_lock(&rq->lock);
1391 ttwu_do_activate(rq, p, 0);
1392 raw_spin_unlock(&rq->lock);
1393 }
1394
1395 /**
1396 * try_to_wake_up - wake up a thread
1397 * @p: the thread to be awakened
1398 * @state: the mask of task states that can be woken
1399 * @wake_flags: wake modifier flags (WF_*)
1400 *
1401 * Put it on the run-queue if it's not already there. The "current"
1402 * thread is always on the run-queue (except when the actual
1403 * re-schedule is in progress), and as such you're allowed to do
1404 * the simpler "current->state = TASK_RUNNING" to mark yourself
1405 * runnable without the overhead of this.
1406 *
1407 * Returns %true if @p was woken up, %false if it was already running
1408 * or @state didn't match @p's state.
1409 */
1410 static int
1411 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1412 {
1413 unsigned long flags;
1414 int cpu, success = 0;
1415
1416 smp_wmb();
1417 raw_spin_lock_irqsave(&p->pi_lock, flags);
1418 if (!(p->state & state))
1419 goto out;
1420
1421 success = 1; /* we're going to change ->state */
1422 cpu = task_cpu(p);
1423
1424 if (p->on_rq && ttwu_remote(p, wake_flags))
1425 goto stat;
1426
1427 #ifdef CONFIG_SMP
1428 /*
1429 * If the owning (remote) cpu is still in the middle of schedule() with
1430 * this task as prev, wait until its done referencing the task.
1431 */
1432 while (p->on_cpu)
1433 cpu_relax();
1434 /*
1435 * Pairs with the smp_wmb() in finish_lock_switch().
1436 */
1437 smp_rmb();
1438
1439 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1440 p->state = TASK_WAKING;
1441
1442 if (p->sched_class->task_waking)
1443 p->sched_class->task_waking(p);
1444
1445 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1446 if (task_cpu(p) != cpu) {
1447 wake_flags |= WF_MIGRATED;
1448 set_task_cpu(p, cpu);
1449 }
1450 #endif /* CONFIG_SMP */
1451
1452 ttwu_queue(p, cpu);
1453 stat:
1454 ttwu_stat(p, cpu, wake_flags);
1455 out:
1456 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1457
1458 return success;
1459 }
1460
1461 /**
1462 * try_to_wake_up_local - try to wake up a local task with rq lock held
1463 * @p: the thread to be awakened
1464 *
1465 * Put @p on the run-queue if it's not already there. The caller must
1466 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1467 * the current task.
1468 */
1469 static void try_to_wake_up_local(struct task_struct *p)
1470 {
1471 struct rq *rq = task_rq(p);
1472
1473 BUG_ON(rq != this_rq());
1474 BUG_ON(p == current);
1475 lockdep_assert_held(&rq->lock);
1476
1477 if (!raw_spin_trylock(&p->pi_lock)) {
1478 raw_spin_unlock(&rq->lock);
1479 raw_spin_lock(&p->pi_lock);
1480 raw_spin_lock(&rq->lock);
1481 }
1482
1483 if (!(p->state & TASK_NORMAL))
1484 goto out;
1485
1486 if (!p->on_rq)
1487 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1488
1489 ttwu_do_wakeup(rq, p, 0);
1490 ttwu_stat(p, smp_processor_id(), 0);
1491 out:
1492 raw_spin_unlock(&p->pi_lock);
1493 }
1494
1495 /**
1496 * wake_up_process - Wake up a specific process
1497 * @p: The process to be woken up.
1498 *
1499 * Attempt to wake up the nominated process and move it to the set of runnable
1500 * processes. Returns 1 if the process was woken up, 0 if it was already
1501 * running.
1502 *
1503 * It may be assumed that this function implies a write memory barrier before
1504 * changing the task state if and only if any tasks are woken up.
1505 */
1506 int wake_up_process(struct task_struct *p)
1507 {
1508 return try_to_wake_up(p, TASK_ALL, 0);
1509 }
1510 EXPORT_SYMBOL(wake_up_process);
1511
1512 int wake_up_state(struct task_struct *p, unsigned int state)
1513 {
1514 return try_to_wake_up(p, state, 0);
1515 }
1516
1517 /*
1518 * Perform scheduler related setup for a newly forked process p.
1519 * p is forked by current.
1520 *
1521 * __sched_fork() is basic setup used by init_idle() too:
1522 */
1523 static void __sched_fork(struct task_struct *p)
1524 {
1525 p->on_rq = 0;
1526
1527 p->se.on_rq = 0;
1528 p->se.exec_start = 0;
1529 p->se.sum_exec_runtime = 0;
1530 p->se.prev_sum_exec_runtime = 0;
1531 p->se.nr_migrations = 0;
1532 p->se.vruntime = 0;
1533 INIT_LIST_HEAD(&p->se.group_node);
1534
1535 #ifdef CONFIG_SCHEDSTATS
1536 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1537 #endif
1538
1539 INIT_LIST_HEAD(&p->rt.run_list);
1540
1541 #ifdef CONFIG_PREEMPT_NOTIFIERS
1542 INIT_HLIST_HEAD(&p->preempt_notifiers);
1543 #endif
1544
1545 #ifdef CONFIG_NUMA_BALANCING
1546 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1547 p->mm->numa_next_scan = jiffies;
1548 p->mm->numa_next_reset = jiffies;
1549 p->mm->numa_scan_seq = 0;
1550 }
1551
1552 p->node_stamp = 0ULL;
1553 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1554 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1555 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1556 p->numa_work.next = &p->numa_work;
1557 #endif /* CONFIG_NUMA_BALANCING */
1558 }
1559
1560 #ifdef CONFIG_NUMA_BALANCING
1561 void set_numabalancing_state(bool enabled)
1562 {
1563 if (enabled)
1564 sched_feat_set("NUMA");
1565 else
1566 sched_feat_set("NO_NUMA");
1567 }
1568 #endif /* CONFIG_NUMA_BALANCING */
1569
1570 /*
1571 * fork()/clone()-time setup:
1572 */
1573 void sched_fork(struct task_struct *p)
1574 {
1575 unsigned long flags;
1576 int cpu = get_cpu();
1577
1578 __sched_fork(p);
1579 /*
1580 * We mark the process as running here. This guarantees that
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1583 */
1584 p->state = TASK_RUNNING;
1585
1586 /*
1587 * Make sure we do not leak PI boosting priority to the child.
1588 */
1589 p->prio = current->normal_prio;
1590
1591 /*
1592 * Revert to default priority/policy on fork if requested.
1593 */
1594 if (unlikely(p->sched_reset_on_fork)) {
1595 if (task_has_rt_policy(p)) {
1596 p->policy = SCHED_NORMAL;
1597 p->static_prio = NICE_TO_PRIO(0);
1598 p->rt_priority = 0;
1599 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1600 p->static_prio = NICE_TO_PRIO(0);
1601
1602 p->prio = p->normal_prio = __normal_prio(p);
1603 set_load_weight(p);
1604
1605 /*
1606 * We don't need the reset flag anymore after the fork. It has
1607 * fulfilled its duty:
1608 */
1609 p->sched_reset_on_fork = 0;
1610 }
1611
1612 if (!rt_prio(p->prio))
1613 p->sched_class = &fair_sched_class;
1614
1615 if (p->sched_class->task_fork)
1616 p->sched_class->task_fork(p);
1617
1618 /*
1619 * The child is not yet in the pid-hash so no cgroup attach races,
1620 * and the cgroup is pinned to this child due to cgroup_fork()
1621 * is ran before sched_fork().
1622 *
1623 * Silence PROVE_RCU.
1624 */
1625 raw_spin_lock_irqsave(&p->pi_lock, flags);
1626 set_task_cpu(p, cpu);
1627 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1628
1629 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1630 if (likely(sched_info_on()))
1631 memset(&p->sched_info, 0, sizeof(p->sched_info));
1632 #endif
1633 #if defined(CONFIG_SMP)
1634 p->on_cpu = 0;
1635 #endif
1636 #ifdef CONFIG_PREEMPT_COUNT
1637 /* Want to start with kernel preemption disabled. */
1638 task_thread_info(p)->preempt_count = 1;
1639 #endif
1640 #ifdef CONFIG_SMP
1641 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1642 #endif
1643
1644 put_cpu();
1645 }
1646
1647 /*
1648 * wake_up_new_task - wake up a newly created task for the first time.
1649 *
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1653 */
1654 void wake_up_new_task(struct task_struct *p)
1655 {
1656 unsigned long flags;
1657 struct rq *rq;
1658
1659 raw_spin_lock_irqsave(&p->pi_lock, flags);
1660 #ifdef CONFIG_SMP
1661 /*
1662 * Fork balancing, do it here and not earlier because:
1663 * - cpus_allowed can change in the fork path
1664 * - any previously selected cpu might disappear through hotplug
1665 */
1666 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1667 #endif
1668
1669 rq = __task_rq_lock(p);
1670 activate_task(rq, p, 0);
1671 p->on_rq = 1;
1672 trace_sched_wakeup_new(p, true);
1673 check_preempt_curr(rq, p, WF_FORK);
1674 #ifdef CONFIG_SMP
1675 if (p->sched_class->task_woken)
1676 p->sched_class->task_woken(rq, p);
1677 #endif
1678 task_rq_unlock(rq, p, &flags);
1679 }
1680
1681 #ifdef CONFIG_PREEMPT_NOTIFIERS
1682
1683 /**
1684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1685 * @notifier: notifier struct to register
1686 */
1687 void preempt_notifier_register(struct preempt_notifier *notifier)
1688 {
1689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1690 }
1691 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692
1693 /**
1694 * preempt_notifier_unregister - no longer interested in preemption notifications
1695 * @notifier: notifier struct to unregister
1696 *
1697 * This is safe to call from within a preemption notifier.
1698 */
1699 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1700 {
1701 hlist_del(&notifier->link);
1702 }
1703 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1704
1705 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1706 {
1707 struct preempt_notifier *notifier;
1708 struct hlist_node *node;
1709
1710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712 }
1713
1714 static void
1715 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716 struct task_struct *next)
1717 {
1718 struct preempt_notifier *notifier;
1719 struct hlist_node *node;
1720
1721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1722 notifier->ops->sched_out(notifier, next);
1723 }
1724
1725 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1726
1727 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1728 {
1729 }
1730
1731 static void
1732 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733 struct task_struct *next)
1734 {
1735 }
1736
1737 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1738
1739 /**
1740 * prepare_task_switch - prepare to switch tasks
1741 * @rq: the runqueue preparing to switch
1742 * @prev: the current task that is being switched out
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
1752 static inline void
1753 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1754 struct task_struct *next)
1755 {
1756 trace_sched_switch(prev, next);
1757 sched_info_switch(prev, next);
1758 perf_event_task_sched_out(prev, next);
1759 fire_sched_out_preempt_notifiers(prev, next);
1760 prepare_lock_switch(rq, next);
1761 prepare_arch_switch(next);
1762 }
1763
1764 /**
1765 * finish_task_switch - clean up after a task-switch
1766 * @rq: runqueue associated with task-switch
1767 * @prev: the thread we just switched away from.
1768 *
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1773 *
1774 * Note that we may have delayed dropping an mm in context_switch(). If
1775 * so, we finish that here outside of the runqueue lock. (Doing it
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1778 */
1779 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1780 __releases(rq->lock)
1781 {
1782 struct mm_struct *mm = rq->prev_mm;
1783 long prev_state;
1784
1785 rq->prev_mm = NULL;
1786
1787 /*
1788 * A task struct has one reference for the use as "current".
1789 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1790 * schedule one last time. The schedule call will never return, and
1791 * the scheduled task must drop that reference.
1792 * The test for TASK_DEAD must occur while the runqueue locks are
1793 * still held, otherwise prev could be scheduled on another cpu, die
1794 * there before we look at prev->state, and then the reference would
1795 * be dropped twice.
1796 * Manfred Spraul <manfred@colorfullife.com>
1797 */
1798 prev_state = prev->state;
1799 vtime_task_switch(prev);
1800 finish_arch_switch(prev);
1801 perf_event_task_sched_in(prev, current);
1802 finish_lock_switch(rq, prev);
1803 finish_arch_post_lock_switch();
1804
1805 fire_sched_in_preempt_notifiers(current);
1806 if (mm)
1807 mmdrop(mm);
1808 if (unlikely(prev_state == TASK_DEAD)) {
1809 /*
1810 * Remove function-return probe instances associated with this
1811 * task and put them back on the free list.
1812 */
1813 kprobe_flush_task(prev);
1814 put_task_struct(prev);
1815 }
1816 }
1817
1818 #ifdef CONFIG_SMP
1819
1820 /* assumes rq->lock is held */
1821 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1822 {
1823 if (prev->sched_class->pre_schedule)
1824 prev->sched_class->pre_schedule(rq, prev);
1825 }
1826
1827 /* rq->lock is NOT held, but preemption is disabled */
1828 static inline void post_schedule(struct rq *rq)
1829 {
1830 if (rq->post_schedule) {
1831 unsigned long flags;
1832
1833 raw_spin_lock_irqsave(&rq->lock, flags);
1834 if (rq->curr->sched_class->post_schedule)
1835 rq->curr->sched_class->post_schedule(rq);
1836 raw_spin_unlock_irqrestore(&rq->lock, flags);
1837
1838 rq->post_schedule = 0;
1839 }
1840 }
1841
1842 #else
1843
1844 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1845 {
1846 }
1847
1848 static inline void post_schedule(struct rq *rq)
1849 {
1850 }
1851
1852 #endif
1853
1854 /**
1855 * schedule_tail - first thing a freshly forked thread must call.
1856 * @prev: the thread we just switched away from.
1857 */
1858 asmlinkage void schedule_tail(struct task_struct *prev)
1859 __releases(rq->lock)
1860 {
1861 struct rq *rq = this_rq();
1862
1863 finish_task_switch(rq, prev);
1864
1865 /*
1866 * FIXME: do we need to worry about rq being invalidated by the
1867 * task_switch?
1868 */
1869 post_schedule(rq);
1870
1871 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1872 /* In this case, finish_task_switch does not reenable preemption */
1873 preempt_enable();
1874 #endif
1875 if (current->set_child_tid)
1876 put_user(task_pid_vnr(current), current->set_child_tid);
1877 }
1878
1879 /*
1880 * context_switch - switch to the new MM and the new
1881 * thread's register state.
1882 */
1883 static inline void
1884 context_switch(struct rq *rq, struct task_struct *prev,
1885 struct task_struct *next)
1886 {
1887 struct mm_struct *mm, *oldmm;
1888
1889 prepare_task_switch(rq, prev, next);
1890
1891 mm = next->mm;
1892 oldmm = prev->active_mm;
1893 /*
1894 * For paravirt, this is coupled with an exit in switch_to to
1895 * combine the page table reload and the switch backend into
1896 * one hypercall.
1897 */
1898 arch_start_context_switch(prev);
1899
1900 if (!mm) {
1901 next->active_mm = oldmm;
1902 atomic_inc(&oldmm->mm_count);
1903 enter_lazy_tlb(oldmm, next);
1904 } else
1905 switch_mm(oldmm, mm, next);
1906
1907 if (!prev->mm) {
1908 prev->active_mm = NULL;
1909 rq->prev_mm = oldmm;
1910 }
1911 /*
1912 * Since the runqueue lock will be released by the next
1913 * task (which is an invalid locking op but in the case
1914 * of the scheduler it's an obvious special-case), so we
1915 * do an early lockdep release here:
1916 */
1917 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1918 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1919 #endif
1920
1921 /* Here we just switch the register state and the stack. */
1922 rcu_switch(prev, next);
1923 switch_to(prev, next, prev);
1924
1925 barrier();
1926 /*
1927 * this_rq must be evaluated again because prev may have moved
1928 * CPUs since it called schedule(), thus the 'rq' on its stack
1929 * frame will be invalid.
1930 */
1931 finish_task_switch(this_rq(), prev);
1932 }
1933
1934 /*
1935 * nr_running, nr_uninterruptible and nr_context_switches:
1936 *
1937 * externally visible scheduler statistics: current number of runnable
1938 * threads, current number of uninterruptible-sleeping threads, total
1939 * number of context switches performed since bootup.
1940 */
1941 unsigned long nr_running(void)
1942 {
1943 unsigned long i, sum = 0;
1944
1945 for_each_online_cpu(i)
1946 sum += cpu_rq(i)->nr_running;
1947
1948 return sum;
1949 }
1950
1951 unsigned long nr_uninterruptible(void)
1952 {
1953 unsigned long i, sum = 0;
1954
1955 for_each_possible_cpu(i)
1956 sum += cpu_rq(i)->nr_uninterruptible;
1957
1958 /*
1959 * Since we read the counters lockless, it might be slightly
1960 * inaccurate. Do not allow it to go below zero though:
1961 */
1962 if (unlikely((long)sum < 0))
1963 sum = 0;
1964
1965 return sum;
1966 }
1967
1968 unsigned long long nr_context_switches(void)
1969 {
1970 int i;
1971 unsigned long long sum = 0;
1972
1973 for_each_possible_cpu(i)
1974 sum += cpu_rq(i)->nr_switches;
1975
1976 return sum;
1977 }
1978
1979 unsigned long nr_iowait(void)
1980 {
1981 unsigned long i, sum = 0;
1982
1983 for_each_possible_cpu(i)
1984 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1985
1986 return sum;
1987 }
1988
1989 unsigned long nr_iowait_cpu(int cpu)
1990 {
1991 struct rq *this = cpu_rq(cpu);
1992 return atomic_read(&this->nr_iowait);
1993 }
1994
1995 unsigned long this_cpu_load(void)
1996 {
1997 struct rq *this = this_rq();
1998 return this->cpu_load[0];
1999 }
2000
2001
2002 /*
2003 * Global load-average calculations
2004 *
2005 * We take a distributed and async approach to calculating the global load-avg
2006 * in order to minimize overhead.
2007 *
2008 * The global load average is an exponentially decaying average of nr_running +
2009 * nr_uninterruptible.
2010 *
2011 * Once every LOAD_FREQ:
2012 *
2013 * nr_active = 0;
2014 * for_each_possible_cpu(cpu)
2015 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2016 *
2017 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2018 *
2019 * Due to a number of reasons the above turns in the mess below:
2020 *
2021 * - for_each_possible_cpu() is prohibitively expensive on machines with
2022 * serious number of cpus, therefore we need to take a distributed approach
2023 * to calculating nr_active.
2024 *
2025 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2026 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2027 *
2028 * So assuming nr_active := 0 when we start out -- true per definition, we
2029 * can simply take per-cpu deltas and fold those into a global accumulate
2030 * to obtain the same result. See calc_load_fold_active().
2031 *
2032 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2033 * across the machine, we assume 10 ticks is sufficient time for every
2034 * cpu to have completed this task.
2035 *
2036 * This places an upper-bound on the IRQ-off latency of the machine. Then
2037 * again, being late doesn't loose the delta, just wrecks the sample.
2038 *
2039 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2040 * this would add another cross-cpu cacheline miss and atomic operation
2041 * to the wakeup path. Instead we increment on whatever cpu the task ran
2042 * when it went into uninterruptible state and decrement on whatever cpu
2043 * did the wakeup. This means that only the sum of nr_uninterruptible over
2044 * all cpus yields the correct result.
2045 *
2046 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2047 */
2048
2049 /* Variables and functions for calc_load */
2050 static atomic_long_t calc_load_tasks;
2051 static unsigned long calc_load_update;
2052 unsigned long avenrun[3];
2053 EXPORT_SYMBOL(avenrun); /* should be removed */
2054
2055 /**
2056 * get_avenrun - get the load average array
2057 * @loads: pointer to dest load array
2058 * @offset: offset to add
2059 * @shift: shift count to shift the result left
2060 *
2061 * These values are estimates at best, so no need for locking.
2062 */
2063 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2064 {
2065 loads[0] = (avenrun[0] + offset) << shift;
2066 loads[1] = (avenrun[1] + offset) << shift;
2067 loads[2] = (avenrun[2] + offset) << shift;
2068 }
2069
2070 static long calc_load_fold_active(struct rq *this_rq)
2071 {
2072 long nr_active, delta = 0;
2073
2074 nr_active = this_rq->nr_running;
2075 nr_active += (long) this_rq->nr_uninterruptible;
2076
2077 if (nr_active != this_rq->calc_load_active) {
2078 delta = nr_active - this_rq->calc_load_active;
2079 this_rq->calc_load_active = nr_active;
2080 }
2081
2082 return delta;
2083 }
2084
2085 /*
2086 * a1 = a0 * e + a * (1 - e)
2087 */
2088 static unsigned long
2089 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2090 {
2091 load *= exp;
2092 load += active * (FIXED_1 - exp);
2093 load += 1UL << (FSHIFT - 1);
2094 return load >> FSHIFT;
2095 }
2096
2097 #ifdef CONFIG_NO_HZ
2098 /*
2099 * Handle NO_HZ for the global load-average.
2100 *
2101 * Since the above described distributed algorithm to compute the global
2102 * load-average relies on per-cpu sampling from the tick, it is affected by
2103 * NO_HZ.
2104 *
2105 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2106 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2107 * when we read the global state.
2108 *
2109 * Obviously reality has to ruin such a delightfully simple scheme:
2110 *
2111 * - When we go NO_HZ idle during the window, we can negate our sample
2112 * contribution, causing under-accounting.
2113 *
2114 * We avoid this by keeping two idle-delta counters and flipping them
2115 * when the window starts, thus separating old and new NO_HZ load.
2116 *
2117 * The only trick is the slight shift in index flip for read vs write.
2118 *
2119 * 0s 5s 10s 15s
2120 * +10 +10 +10 +10
2121 * |-|-----------|-|-----------|-|-----------|-|
2122 * r:0 0 1 1 0 0 1 1 0
2123 * w:0 1 1 0 0 1 1 0 0
2124 *
2125 * This ensures we'll fold the old idle contribution in this window while
2126 * accumlating the new one.
2127 *
2128 * - When we wake up from NO_HZ idle during the window, we push up our
2129 * contribution, since we effectively move our sample point to a known
2130 * busy state.
2131 *
2132 * This is solved by pushing the window forward, and thus skipping the
2133 * sample, for this cpu (effectively using the idle-delta for this cpu which
2134 * was in effect at the time the window opened). This also solves the issue
2135 * of having to deal with a cpu having been in NOHZ idle for multiple
2136 * LOAD_FREQ intervals.
2137 *
2138 * When making the ILB scale, we should try to pull this in as well.
2139 */
2140 static atomic_long_t calc_load_idle[2];
2141 static int calc_load_idx;
2142
2143 static inline int calc_load_write_idx(void)
2144 {
2145 int idx = calc_load_idx;
2146
2147 /*
2148 * See calc_global_nohz(), if we observe the new index, we also
2149 * need to observe the new update time.
2150 */
2151 smp_rmb();
2152
2153 /*
2154 * If the folding window started, make sure we start writing in the
2155 * next idle-delta.
2156 */
2157 if (!time_before(jiffies, calc_load_update))
2158 idx++;
2159
2160 return idx & 1;
2161 }
2162
2163 static inline int calc_load_read_idx(void)
2164 {
2165 return calc_load_idx & 1;
2166 }
2167
2168 void calc_load_enter_idle(void)
2169 {
2170 struct rq *this_rq = this_rq();
2171 long delta;
2172
2173 /*
2174 * We're going into NOHZ mode, if there's any pending delta, fold it
2175 * into the pending idle delta.
2176 */
2177 delta = calc_load_fold_active(this_rq);
2178 if (delta) {
2179 int idx = calc_load_write_idx();
2180 atomic_long_add(delta, &calc_load_idle[idx]);
2181 }
2182 }
2183
2184 void calc_load_exit_idle(void)
2185 {
2186 struct rq *this_rq = this_rq();
2187
2188 /*
2189 * If we're still before the sample window, we're done.
2190 */
2191 if (time_before(jiffies, this_rq->calc_load_update))
2192 return;
2193
2194 /*
2195 * We woke inside or after the sample window, this means we're already
2196 * accounted through the nohz accounting, so skip the entire deal and
2197 * sync up for the next window.
2198 */
2199 this_rq->calc_load_update = calc_load_update;
2200 if (time_before(jiffies, this_rq->calc_load_update + 10))
2201 this_rq->calc_load_update += LOAD_FREQ;
2202 }
2203
2204 static long calc_load_fold_idle(void)
2205 {
2206 int idx = calc_load_read_idx();
2207 long delta = 0;
2208
2209 if (atomic_long_read(&calc_load_idle[idx]))
2210 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2211
2212 return delta;
2213 }
2214
2215 /**
2216 * fixed_power_int - compute: x^n, in O(log n) time
2217 *
2218 * @x: base of the power
2219 * @frac_bits: fractional bits of @x
2220 * @n: power to raise @x to.
2221 *
2222 * By exploiting the relation between the definition of the natural power
2223 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2224 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2225 * (where: n_i \elem {0, 1}, the binary vector representing n),
2226 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2227 * of course trivially computable in O(log_2 n), the length of our binary
2228 * vector.
2229 */
2230 static unsigned long
2231 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2232 {
2233 unsigned long result = 1UL << frac_bits;
2234
2235 if (n) for (;;) {
2236 if (n & 1) {
2237 result *= x;
2238 result += 1UL << (frac_bits - 1);
2239 result >>= frac_bits;
2240 }
2241 n >>= 1;
2242 if (!n)
2243 break;
2244 x *= x;
2245 x += 1UL << (frac_bits - 1);
2246 x >>= frac_bits;
2247 }
2248
2249 return result;
2250 }
2251
2252 /*
2253 * a1 = a0 * e + a * (1 - e)
2254 *
2255 * a2 = a1 * e + a * (1 - e)
2256 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2257 * = a0 * e^2 + a * (1 - e) * (1 + e)
2258 *
2259 * a3 = a2 * e + a * (1 - e)
2260 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2261 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2262 *
2263 * ...
2264 *
2265 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2266 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2267 * = a0 * e^n + a * (1 - e^n)
2268 *
2269 * [1] application of the geometric series:
2270 *
2271 * n 1 - x^(n+1)
2272 * S_n := \Sum x^i = -------------
2273 * i=0 1 - x
2274 */
2275 static unsigned long
2276 calc_load_n(unsigned long load, unsigned long exp,
2277 unsigned long active, unsigned int n)
2278 {
2279
2280 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2281 }
2282
2283 /*
2284 * NO_HZ can leave us missing all per-cpu ticks calling
2285 * calc_load_account_active(), but since an idle CPU folds its delta into
2286 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2287 * in the pending idle delta if our idle period crossed a load cycle boundary.
2288 *
2289 * Once we've updated the global active value, we need to apply the exponential
2290 * weights adjusted to the number of cycles missed.
2291 */
2292 static void calc_global_nohz(void)
2293 {
2294 long delta, active, n;
2295
2296 if (!time_before(jiffies, calc_load_update + 10)) {
2297 /*
2298 * Catch-up, fold however many we are behind still
2299 */
2300 delta = jiffies - calc_load_update - 10;
2301 n = 1 + (delta / LOAD_FREQ);
2302
2303 active = atomic_long_read(&calc_load_tasks);
2304 active = active > 0 ? active * FIXED_1 : 0;
2305
2306 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2307 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2308 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2309
2310 calc_load_update += n * LOAD_FREQ;
2311 }
2312
2313 /*
2314 * Flip the idle index...
2315 *
2316 * Make sure we first write the new time then flip the index, so that
2317 * calc_load_write_idx() will see the new time when it reads the new
2318 * index, this avoids a double flip messing things up.
2319 */
2320 smp_wmb();
2321 calc_load_idx++;
2322 }
2323 #else /* !CONFIG_NO_HZ */
2324
2325 static inline long calc_load_fold_idle(void) { return 0; }
2326 static inline void calc_global_nohz(void) { }
2327
2328 #endif /* CONFIG_NO_HZ */
2329
2330 /*
2331 * calc_load - update the avenrun load estimates 10 ticks after the
2332 * CPUs have updated calc_load_tasks.
2333 */
2334 void calc_global_load(unsigned long ticks)
2335 {
2336 long active, delta;
2337
2338 if (time_before(jiffies, calc_load_update + 10))
2339 return;
2340
2341 /*
2342 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2343 */
2344 delta = calc_load_fold_idle();
2345 if (delta)
2346 atomic_long_add(delta, &calc_load_tasks);
2347
2348 active = atomic_long_read(&calc_load_tasks);
2349 active = active > 0 ? active * FIXED_1 : 0;
2350
2351 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2352 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2353 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2354
2355 calc_load_update += LOAD_FREQ;
2356
2357 /*
2358 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2359 */
2360 calc_global_nohz();
2361 }
2362
2363 /*
2364 * Called from update_cpu_load() to periodically update this CPU's
2365 * active count.
2366 */
2367 static void calc_load_account_active(struct rq *this_rq)
2368 {
2369 long delta;
2370
2371 if (time_before(jiffies, this_rq->calc_load_update))
2372 return;
2373
2374 delta = calc_load_fold_active(this_rq);
2375 if (delta)
2376 atomic_long_add(delta, &calc_load_tasks);
2377
2378 this_rq->calc_load_update += LOAD_FREQ;
2379 }
2380
2381 /*
2382 * End of global load-average stuff
2383 */
2384
2385 /*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412 #define DEGRADE_SHIFT 7
2413 static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415 static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423 /*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428 static unsigned long
2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430 {
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450 }
2451
2452 /*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2458 unsigned long pending_updates)
2459 {
2460 int i, scale;
2461
2462 this_rq->nr_load_updates++;
2463
2464 /* Update our load: */
2465 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2466 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2467 unsigned long old_load, new_load;
2468
2469 /* scale is effectively 1 << i now, and >> i divides by scale */
2470
2471 old_load = this_rq->cpu_load[i];
2472 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2473 new_load = this_load;
2474 /*
2475 * Round up the averaging division if load is increasing. This
2476 * prevents us from getting stuck on 9 if the load is 10, for
2477 * example.
2478 */
2479 if (new_load > old_load)
2480 new_load += scale - 1;
2481
2482 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2483 }
2484
2485 sched_avg_update(this_rq);
2486 }
2487
2488 #ifdef CONFIG_NO_HZ
2489 /*
2490 * There is no sane way to deal with nohz on smp when using jiffies because the
2491 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2492 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2493 *
2494 * Therefore we cannot use the delta approach from the regular tick since that
2495 * would seriously skew the load calculation. However we'll make do for those
2496 * updates happening while idle (nohz_idle_balance) or coming out of idle
2497 * (tick_nohz_idle_exit).
2498 *
2499 * This means we might still be one tick off for nohz periods.
2500 */
2501
2502 /*
2503 * Called from nohz_idle_balance() to update the load ratings before doing the
2504 * idle balance.
2505 */
2506 void update_idle_cpu_load(struct rq *this_rq)
2507 {
2508 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2509 unsigned long load = this_rq->load.weight;
2510 unsigned long pending_updates;
2511
2512 /*
2513 * bail if there's load or we're actually up-to-date.
2514 */
2515 if (load || curr_jiffies == this_rq->last_load_update_tick)
2516 return;
2517
2518 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2519 this_rq->last_load_update_tick = curr_jiffies;
2520
2521 __update_cpu_load(this_rq, load, pending_updates);
2522 }
2523
2524 /*
2525 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2526 */
2527 void update_cpu_load_nohz(void)
2528 {
2529 struct rq *this_rq = this_rq();
2530 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2531 unsigned long pending_updates;
2532
2533 if (curr_jiffies == this_rq->last_load_update_tick)
2534 return;
2535
2536 raw_spin_lock(&this_rq->lock);
2537 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2538 if (pending_updates) {
2539 this_rq->last_load_update_tick = curr_jiffies;
2540 /*
2541 * We were idle, this means load 0, the current load might be
2542 * !0 due to remote wakeups and the sort.
2543 */
2544 __update_cpu_load(this_rq, 0, pending_updates);
2545 }
2546 raw_spin_unlock(&this_rq->lock);
2547 }
2548 #endif /* CONFIG_NO_HZ */
2549
2550 /*
2551 * Called from scheduler_tick()
2552 */
2553 static void update_cpu_load_active(struct rq *this_rq)
2554 {
2555 /*
2556 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2557 */
2558 this_rq->last_load_update_tick = jiffies;
2559 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2560
2561 calc_load_account_active(this_rq);
2562 }
2563
2564 #ifdef CONFIG_SMP
2565
2566 /*
2567 * sched_exec - execve() is a valuable balancing opportunity, because at
2568 * this point the task has the smallest effective memory and cache footprint.
2569 */
2570 void sched_exec(void)
2571 {
2572 struct task_struct *p = current;
2573 unsigned long flags;
2574 int dest_cpu;
2575
2576 raw_spin_lock_irqsave(&p->pi_lock, flags);
2577 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2578 if (dest_cpu == smp_processor_id())
2579 goto unlock;
2580
2581 if (likely(cpu_active(dest_cpu))) {
2582 struct migration_arg arg = { p, dest_cpu };
2583
2584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2585 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2586 return;
2587 }
2588 unlock:
2589 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2590 }
2591
2592 #endif
2593
2594 DEFINE_PER_CPU(struct kernel_stat, kstat);
2595 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2596
2597 EXPORT_PER_CPU_SYMBOL(kstat);
2598 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2599
2600 /*
2601 * Return any ns on the sched_clock that have not yet been accounted in
2602 * @p in case that task is currently running.
2603 *
2604 * Called with task_rq_lock() held on @rq.
2605 */
2606 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2607 {
2608 u64 ns = 0;
2609
2610 if (task_current(rq, p)) {
2611 update_rq_clock(rq);
2612 ns = rq->clock_task - p->se.exec_start;
2613 if ((s64)ns < 0)
2614 ns = 0;
2615 }
2616
2617 return ns;
2618 }
2619
2620 unsigned long long task_delta_exec(struct task_struct *p)
2621 {
2622 unsigned long flags;
2623 struct rq *rq;
2624 u64 ns = 0;
2625
2626 rq = task_rq_lock(p, &flags);
2627 ns = do_task_delta_exec(p, rq);
2628 task_rq_unlock(rq, p, &flags);
2629
2630 return ns;
2631 }
2632
2633 /*
2634 * Return accounted runtime for the task.
2635 * In case the task is currently running, return the runtime plus current's
2636 * pending runtime that have not been accounted yet.
2637 */
2638 unsigned long long task_sched_runtime(struct task_struct *p)
2639 {
2640 unsigned long flags;
2641 struct rq *rq;
2642 u64 ns = 0;
2643
2644 rq = task_rq_lock(p, &flags);
2645 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2646 task_rq_unlock(rq, p, &flags);
2647
2648 return ns;
2649 }
2650
2651 /*
2652 * This function gets called by the timer code, with HZ frequency.
2653 * We call it with interrupts disabled.
2654 */
2655 void scheduler_tick(void)
2656 {
2657 int cpu = smp_processor_id();
2658 struct rq *rq = cpu_rq(cpu);
2659 struct task_struct *curr = rq->curr;
2660
2661 sched_clock_tick();
2662
2663 raw_spin_lock(&rq->lock);
2664 update_rq_clock(rq);
2665 update_cpu_load_active(rq);
2666 curr->sched_class->task_tick(rq, curr, 0);
2667 raw_spin_unlock(&rq->lock);
2668
2669 perf_event_task_tick();
2670
2671 #ifdef CONFIG_SMP
2672 rq->idle_balance = idle_cpu(cpu);
2673 trigger_load_balance(rq, cpu);
2674 #endif
2675 }
2676
2677 notrace unsigned long get_parent_ip(unsigned long addr)
2678 {
2679 if (in_lock_functions(addr)) {
2680 addr = CALLER_ADDR2;
2681 if (in_lock_functions(addr))
2682 addr = CALLER_ADDR3;
2683 }
2684 return addr;
2685 }
2686
2687 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2688 defined(CONFIG_PREEMPT_TRACER))
2689
2690 void __kprobes add_preempt_count(int val)
2691 {
2692 #ifdef CONFIG_DEBUG_PREEMPT
2693 /*
2694 * Underflow?
2695 */
2696 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2697 return;
2698 #endif
2699 preempt_count() += val;
2700 #ifdef CONFIG_DEBUG_PREEMPT
2701 /*
2702 * Spinlock count overflowing soon?
2703 */
2704 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2705 PREEMPT_MASK - 10);
2706 #endif
2707 if (preempt_count() == val)
2708 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2709 }
2710 EXPORT_SYMBOL(add_preempt_count);
2711
2712 void __kprobes sub_preempt_count(int val)
2713 {
2714 #ifdef CONFIG_DEBUG_PREEMPT
2715 /*
2716 * Underflow?
2717 */
2718 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2719 return;
2720 /*
2721 * Is the spinlock portion underflowing?
2722 */
2723 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2724 !(preempt_count() & PREEMPT_MASK)))
2725 return;
2726 #endif
2727
2728 if (preempt_count() == val)
2729 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2730 preempt_count() -= val;
2731 }
2732 EXPORT_SYMBOL(sub_preempt_count);
2733
2734 #endif
2735
2736 /*
2737 * Print scheduling while atomic bug:
2738 */
2739 static noinline void __schedule_bug(struct task_struct *prev)
2740 {
2741 if (oops_in_progress)
2742 return;
2743
2744 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2745 prev->comm, prev->pid, preempt_count());
2746
2747 debug_show_held_locks(prev);
2748 print_modules();
2749 if (irqs_disabled())
2750 print_irqtrace_events(prev);
2751 dump_stack();
2752 add_taint(TAINT_WARN);
2753 }
2754
2755 /*
2756 * Various schedule()-time debugging checks and statistics:
2757 */
2758 static inline void schedule_debug(struct task_struct *prev)
2759 {
2760 /*
2761 * Test if we are atomic. Since do_exit() needs to call into
2762 * schedule() atomically, we ignore that path for now.
2763 * Otherwise, whine if we are scheduling when we should not be.
2764 */
2765 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2766 __schedule_bug(prev);
2767 rcu_sleep_check();
2768
2769 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2770
2771 schedstat_inc(this_rq(), sched_count);
2772 }
2773
2774 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2775 {
2776 if (prev->on_rq || rq->skip_clock_update < 0)
2777 update_rq_clock(rq);
2778 prev->sched_class->put_prev_task(rq, prev);
2779 }
2780
2781 /*
2782 * Pick up the highest-prio task:
2783 */
2784 static inline struct task_struct *
2785 pick_next_task(struct rq *rq)
2786 {
2787 const struct sched_class *class;
2788 struct task_struct *p;
2789
2790 /*
2791 * Optimization: we know that if all tasks are in
2792 * the fair class we can call that function directly:
2793 */
2794 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2795 p = fair_sched_class.pick_next_task(rq);
2796 if (likely(p))
2797 return p;
2798 }
2799
2800 for_each_class(class) {
2801 p = class->pick_next_task(rq);
2802 if (p)
2803 return p;
2804 }
2805
2806 BUG(); /* the idle class will always have a runnable task */
2807 }
2808
2809 /*
2810 * __schedule() is the main scheduler function.
2811 *
2812 * The main means of driving the scheduler and thus entering this function are:
2813 *
2814 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2815 *
2816 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2817 * paths. For example, see arch/x86/entry_64.S.
2818 *
2819 * To drive preemption between tasks, the scheduler sets the flag in timer
2820 * interrupt handler scheduler_tick().
2821 *
2822 * 3. Wakeups don't really cause entry into schedule(). They add a
2823 * task to the run-queue and that's it.
2824 *
2825 * Now, if the new task added to the run-queue preempts the current
2826 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2827 * called on the nearest possible occasion:
2828 *
2829 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2830 *
2831 * - in syscall or exception context, at the next outmost
2832 * preempt_enable(). (this might be as soon as the wake_up()'s
2833 * spin_unlock()!)
2834 *
2835 * - in IRQ context, return from interrupt-handler to
2836 * preemptible context
2837 *
2838 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2839 * then at the next:
2840 *
2841 * - cond_resched() call
2842 * - explicit schedule() call
2843 * - return from syscall or exception to user-space
2844 * - return from interrupt-handler to user-space
2845 */
2846 static void __sched __schedule(void)
2847 {
2848 struct task_struct *prev, *next;
2849 unsigned long *switch_count;
2850 struct rq *rq;
2851 int cpu;
2852
2853 need_resched:
2854 preempt_disable();
2855 cpu = smp_processor_id();
2856 rq = cpu_rq(cpu);
2857 rcu_note_context_switch(cpu);
2858 prev = rq->curr;
2859
2860 schedule_debug(prev);
2861
2862 if (sched_feat(HRTICK))
2863 hrtick_clear(rq);
2864
2865 raw_spin_lock_irq(&rq->lock);
2866
2867 switch_count = &prev->nivcsw;
2868 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2869 if (unlikely(signal_pending_state(prev->state, prev))) {
2870 prev->state = TASK_RUNNING;
2871 } else {
2872 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2873 prev->on_rq = 0;
2874
2875 /*
2876 * If a worker went to sleep, notify and ask workqueue
2877 * whether it wants to wake up a task to maintain
2878 * concurrency.
2879 */
2880 if (prev->flags & PF_WQ_WORKER) {
2881 struct task_struct *to_wakeup;
2882
2883 to_wakeup = wq_worker_sleeping(prev, cpu);
2884 if (to_wakeup)
2885 try_to_wake_up_local(to_wakeup);
2886 }
2887 }
2888 switch_count = &prev->nvcsw;
2889 }
2890
2891 pre_schedule(rq, prev);
2892
2893 if (unlikely(!rq->nr_running))
2894 idle_balance(cpu, rq);
2895
2896 put_prev_task(rq, prev);
2897 next = pick_next_task(rq);
2898 clear_tsk_need_resched(prev);
2899 rq->skip_clock_update = 0;
2900
2901 if (likely(prev != next)) {
2902 rq->nr_switches++;
2903 rq->curr = next;
2904 ++*switch_count;
2905
2906 context_switch(rq, prev, next); /* unlocks the rq */
2907 /*
2908 * The context switch have flipped the stack from under us
2909 * and restored the local variables which were saved when
2910 * this task called schedule() in the past. prev == current
2911 * is still correct, but it can be moved to another cpu/rq.
2912 */
2913 cpu = smp_processor_id();
2914 rq = cpu_rq(cpu);
2915 } else
2916 raw_spin_unlock_irq(&rq->lock);
2917
2918 post_schedule(rq);
2919
2920 sched_preempt_enable_no_resched();
2921 if (need_resched())
2922 goto need_resched;
2923 }
2924
2925 static inline void sched_submit_work(struct task_struct *tsk)
2926 {
2927 if (!tsk->state || tsk_is_pi_blocked(tsk))
2928 return;
2929 /*
2930 * If we are going to sleep and we have plugged IO queued,
2931 * make sure to submit it to avoid deadlocks.
2932 */
2933 if (blk_needs_flush_plug(tsk))
2934 blk_schedule_flush_plug(tsk);
2935 }
2936
2937 asmlinkage void __sched schedule(void)
2938 {
2939 struct task_struct *tsk = current;
2940
2941 sched_submit_work(tsk);
2942 __schedule();
2943 }
2944 EXPORT_SYMBOL(schedule);
2945
2946 #ifdef CONFIG_RCU_USER_QS
2947 asmlinkage void __sched schedule_user(void)
2948 {
2949 /*
2950 * If we come here after a random call to set_need_resched(),
2951 * or we have been woken up remotely but the IPI has not yet arrived,
2952 * we haven't yet exited the RCU idle mode. Do it here manually until
2953 * we find a better solution.
2954 */
2955 rcu_user_exit();
2956 schedule();
2957 rcu_user_enter();
2958 }
2959 #endif
2960
2961 /**
2962 * schedule_preempt_disabled - called with preemption disabled
2963 *
2964 * Returns with preemption disabled. Note: preempt_count must be 1
2965 */
2966 void __sched schedule_preempt_disabled(void)
2967 {
2968 sched_preempt_enable_no_resched();
2969 schedule();
2970 preempt_disable();
2971 }
2972
2973 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2974
2975 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2976 {
2977 if (lock->owner != owner)
2978 return false;
2979
2980 /*
2981 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2982 * lock->owner still matches owner, if that fails, owner might
2983 * point to free()d memory, if it still matches, the rcu_read_lock()
2984 * ensures the memory stays valid.
2985 */
2986 barrier();
2987
2988 return owner->on_cpu;
2989 }
2990
2991 /*
2992 * Look out! "owner" is an entirely speculative pointer
2993 * access and not reliable.
2994 */
2995 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2996 {
2997 if (!sched_feat(OWNER_SPIN))
2998 return 0;
2999
3000 rcu_read_lock();
3001 while (owner_running(lock, owner)) {
3002 if (need_resched())
3003 break;
3004
3005 arch_mutex_cpu_relax();
3006 }
3007 rcu_read_unlock();
3008
3009 /*
3010 * We break out the loop above on need_resched() and when the
3011 * owner changed, which is a sign for heavy contention. Return
3012 * success only when lock->owner is NULL.
3013 */
3014 return lock->owner == NULL;
3015 }
3016 #endif
3017
3018 #ifdef CONFIG_PREEMPT
3019 /*
3020 * this is the entry point to schedule() from in-kernel preemption
3021 * off of preempt_enable. Kernel preemptions off return from interrupt
3022 * occur there and call schedule directly.
3023 */
3024 asmlinkage void __sched notrace preempt_schedule(void)
3025 {
3026 struct thread_info *ti = current_thread_info();
3027
3028 /*
3029 * If there is a non-zero preempt_count or interrupts are disabled,
3030 * we do not want to preempt the current task. Just return..
3031 */
3032 if (likely(ti->preempt_count || irqs_disabled()))
3033 return;
3034
3035 do {
3036 add_preempt_count_notrace(PREEMPT_ACTIVE);
3037 __schedule();
3038 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3039
3040 /*
3041 * Check again in case we missed a preemption opportunity
3042 * between schedule and now.
3043 */
3044 barrier();
3045 } while (need_resched());
3046 }
3047 EXPORT_SYMBOL(preempt_schedule);
3048
3049 /*
3050 * this is the entry point to schedule() from kernel preemption
3051 * off of irq context.
3052 * Note, that this is called and return with irqs disabled. This will
3053 * protect us against recursive calling from irq.
3054 */
3055 asmlinkage void __sched preempt_schedule_irq(void)
3056 {
3057 struct thread_info *ti = current_thread_info();
3058
3059 /* Catch callers which need to be fixed */
3060 BUG_ON(ti->preempt_count || !irqs_disabled());
3061
3062 rcu_user_exit();
3063 do {
3064 add_preempt_count(PREEMPT_ACTIVE);
3065 local_irq_enable();
3066 __schedule();
3067 local_irq_disable();
3068 sub_preempt_count(PREEMPT_ACTIVE);
3069
3070 /*
3071 * Check again in case we missed a preemption opportunity
3072 * between schedule and now.
3073 */
3074 barrier();
3075 } while (need_resched());
3076 }
3077
3078 #endif /* CONFIG_PREEMPT */
3079
3080 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3081 void *key)
3082 {
3083 return try_to_wake_up(curr->private, mode, wake_flags);
3084 }
3085 EXPORT_SYMBOL(default_wake_function);
3086
3087 /*
3088 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3089 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3090 * number) then we wake all the non-exclusive tasks and one exclusive task.
3091 *
3092 * There are circumstances in which we can try to wake a task which has already
3093 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3094 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3095 */
3096 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3097 int nr_exclusive, int wake_flags, void *key)
3098 {
3099 wait_queue_t *curr, *next;
3100
3101 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3102 unsigned flags = curr->flags;
3103
3104 if (curr->func(curr, mode, wake_flags, key) &&
3105 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3106 break;
3107 }
3108 }
3109
3110 /**
3111 * __wake_up - wake up threads blocked on a waitqueue.
3112 * @q: the waitqueue
3113 * @mode: which threads
3114 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3115 * @key: is directly passed to the wakeup function
3116 *
3117 * It may be assumed that this function implies a write memory barrier before
3118 * changing the task state if and only if any tasks are woken up.
3119 */
3120 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3121 int nr_exclusive, void *key)
3122 {
3123 unsigned long flags;
3124
3125 spin_lock_irqsave(&q->lock, flags);
3126 __wake_up_common(q, mode, nr_exclusive, 0, key);
3127 spin_unlock_irqrestore(&q->lock, flags);
3128 }
3129 EXPORT_SYMBOL(__wake_up);
3130
3131 /*
3132 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3133 */
3134 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3135 {
3136 __wake_up_common(q, mode, nr, 0, NULL);
3137 }
3138 EXPORT_SYMBOL_GPL(__wake_up_locked);
3139
3140 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3141 {
3142 __wake_up_common(q, mode, 1, 0, key);
3143 }
3144 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3145
3146 /**
3147 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3148 * @q: the waitqueue
3149 * @mode: which threads
3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151 * @key: opaque value to be passed to wakeup targets
3152 *
3153 * The sync wakeup differs that the waker knows that it will schedule
3154 * away soon, so while the target thread will be woken up, it will not
3155 * be migrated to another CPU - ie. the two threads are 'synchronized'
3156 * with each other. This can prevent needless bouncing between CPUs.
3157 *
3158 * On UP it can prevent extra preemption.
3159 *
3160 * It may be assumed that this function implies a write memory barrier before
3161 * changing the task state if and only if any tasks are woken up.
3162 */
3163 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3164 int nr_exclusive, void *key)
3165 {
3166 unsigned long flags;
3167 int wake_flags = WF_SYNC;
3168
3169 if (unlikely(!q))
3170 return;
3171
3172 if (unlikely(!nr_exclusive))
3173 wake_flags = 0;
3174
3175 spin_lock_irqsave(&q->lock, flags);
3176 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3177 spin_unlock_irqrestore(&q->lock, flags);
3178 }
3179 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3180
3181 /*
3182 * __wake_up_sync - see __wake_up_sync_key()
3183 */
3184 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3185 {
3186 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3187 }
3188 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3189
3190 /**
3191 * complete: - signals a single thread waiting on this completion
3192 * @x: holds the state of this particular completion
3193 *
3194 * This will wake up a single thread waiting on this completion. Threads will be
3195 * awakened in the same order in which they were queued.
3196 *
3197 * See also complete_all(), wait_for_completion() and related routines.
3198 *
3199 * It may be assumed that this function implies a write memory barrier before
3200 * changing the task state if and only if any tasks are woken up.
3201 */
3202 void complete(struct completion *x)
3203 {
3204 unsigned long flags;
3205
3206 spin_lock_irqsave(&x->wait.lock, flags);
3207 x->done++;
3208 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3209 spin_unlock_irqrestore(&x->wait.lock, flags);
3210 }
3211 EXPORT_SYMBOL(complete);
3212
3213 /**
3214 * complete_all: - signals all threads waiting on this completion
3215 * @x: holds the state of this particular completion
3216 *
3217 * This will wake up all threads waiting on this particular completion event.
3218 *
3219 * It may be assumed that this function implies a write memory barrier before
3220 * changing the task state if and only if any tasks are woken up.
3221 */
3222 void complete_all(struct completion *x)
3223 {
3224 unsigned long flags;
3225
3226 spin_lock_irqsave(&x->wait.lock, flags);
3227 x->done += UINT_MAX/2;
3228 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3229 spin_unlock_irqrestore(&x->wait.lock, flags);
3230 }
3231 EXPORT_SYMBOL(complete_all);
3232
3233 static inline long __sched
3234 do_wait_for_common(struct completion *x, long timeout, int state)
3235 {
3236 if (!x->done) {
3237 DECLARE_WAITQUEUE(wait, current);
3238
3239 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3240 do {
3241 if (signal_pending_state(state, current)) {
3242 timeout = -ERESTARTSYS;
3243 break;
3244 }
3245 __set_current_state(state);
3246 spin_unlock_irq(&x->wait.lock);
3247 timeout = schedule_timeout(timeout);
3248 spin_lock_irq(&x->wait.lock);
3249 } while (!x->done && timeout);
3250 __remove_wait_queue(&x->wait, &wait);
3251 if (!x->done)
3252 return timeout;
3253 }
3254 x->done--;
3255 return timeout ?: 1;
3256 }
3257
3258 static long __sched
3259 wait_for_common(struct completion *x, long timeout, int state)
3260 {
3261 might_sleep();
3262
3263 spin_lock_irq(&x->wait.lock);
3264 timeout = do_wait_for_common(x, timeout, state);
3265 spin_unlock_irq(&x->wait.lock);
3266 return timeout;
3267 }
3268
3269 /**
3270 * wait_for_completion: - waits for completion of a task
3271 * @x: holds the state of this particular completion
3272 *
3273 * This waits to be signaled for completion of a specific task. It is NOT
3274 * interruptible and there is no timeout.
3275 *
3276 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3277 * and interrupt capability. Also see complete().
3278 */
3279 void __sched wait_for_completion(struct completion *x)
3280 {
3281 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3282 }
3283 EXPORT_SYMBOL(wait_for_completion);
3284
3285 /**
3286 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3287 * @x: holds the state of this particular completion
3288 * @timeout: timeout value in jiffies
3289 *
3290 * This waits for either a completion of a specific task to be signaled or for a
3291 * specified timeout to expire. The timeout is in jiffies. It is not
3292 * interruptible.
3293 *
3294 * The return value is 0 if timed out, and positive (at least 1, or number of
3295 * jiffies left till timeout) if completed.
3296 */
3297 unsigned long __sched
3298 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3299 {
3300 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3301 }
3302 EXPORT_SYMBOL(wait_for_completion_timeout);
3303
3304 /**
3305 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3306 * @x: holds the state of this particular completion
3307 *
3308 * This waits for completion of a specific task to be signaled. It is
3309 * interruptible.
3310 *
3311 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3312 */
3313 int __sched wait_for_completion_interruptible(struct completion *x)
3314 {
3315 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3316 if (t == -ERESTARTSYS)
3317 return t;
3318 return 0;
3319 }
3320 EXPORT_SYMBOL(wait_for_completion_interruptible);
3321
3322 /**
3323 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3324 * @x: holds the state of this particular completion
3325 * @timeout: timeout value in jiffies
3326 *
3327 * This waits for either a completion of a specific task to be signaled or for a
3328 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3329 *
3330 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3331 * positive (at least 1, or number of jiffies left till timeout) if completed.
3332 */
3333 long __sched
3334 wait_for_completion_interruptible_timeout(struct completion *x,
3335 unsigned long timeout)
3336 {
3337 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3338 }
3339 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3340
3341 /**
3342 * wait_for_completion_killable: - waits for completion of a task (killable)
3343 * @x: holds the state of this particular completion
3344 *
3345 * This waits to be signaled for completion of a specific task. It can be
3346 * interrupted by a kill signal.
3347 *
3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3349 */
3350 int __sched wait_for_completion_killable(struct completion *x)
3351 {
3352 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3353 if (t == -ERESTARTSYS)
3354 return t;
3355 return 0;
3356 }
3357 EXPORT_SYMBOL(wait_for_completion_killable);
3358
3359 /**
3360 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be
3365 * signaled or for a specified timeout to expire. It can be
3366 * interrupted by a kill signal. The timeout is in jiffies.
3367 *
3368 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3369 * positive (at least 1, or number of jiffies left till timeout) if completed.
3370 */
3371 long __sched
3372 wait_for_completion_killable_timeout(struct completion *x,
3373 unsigned long timeout)
3374 {
3375 return wait_for_common(x, timeout, TASK_KILLABLE);
3376 }
3377 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3378
3379 /**
3380 * try_wait_for_completion - try to decrement a completion without blocking
3381 * @x: completion structure
3382 *
3383 * Returns: 0 if a decrement cannot be done without blocking
3384 * 1 if a decrement succeeded.
3385 *
3386 * If a completion is being used as a counting completion,
3387 * attempt to decrement the counter without blocking. This
3388 * enables us to avoid waiting if the resource the completion
3389 * is protecting is not available.
3390 */
3391 bool try_wait_for_completion(struct completion *x)
3392 {
3393 unsigned long flags;
3394 int ret = 1;
3395
3396 spin_lock_irqsave(&x->wait.lock, flags);
3397 if (!x->done)
3398 ret = 0;
3399 else
3400 x->done--;
3401 spin_unlock_irqrestore(&x->wait.lock, flags);
3402 return ret;
3403 }
3404 EXPORT_SYMBOL(try_wait_for_completion);
3405
3406 /**
3407 * completion_done - Test to see if a completion has any waiters
3408 * @x: completion structure
3409 *
3410 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3411 * 1 if there are no waiters.
3412 *
3413 */
3414 bool completion_done(struct completion *x)
3415 {
3416 unsigned long flags;
3417 int ret = 1;
3418
3419 spin_lock_irqsave(&x->wait.lock, flags);
3420 if (!x->done)
3421 ret = 0;
3422 spin_unlock_irqrestore(&x->wait.lock, flags);
3423 return ret;
3424 }
3425 EXPORT_SYMBOL(completion_done);
3426
3427 static long __sched
3428 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3429 {
3430 unsigned long flags;
3431 wait_queue_t wait;
3432
3433 init_waitqueue_entry(&wait, current);
3434
3435 __set_current_state(state);
3436
3437 spin_lock_irqsave(&q->lock, flags);
3438 __add_wait_queue(q, &wait);
3439 spin_unlock(&q->lock);
3440 timeout = schedule_timeout(timeout);
3441 spin_lock_irq(&q->lock);
3442 __remove_wait_queue(q, &wait);
3443 spin_unlock_irqrestore(&q->lock, flags);
3444
3445 return timeout;
3446 }
3447
3448 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3449 {
3450 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3451 }
3452 EXPORT_SYMBOL(interruptible_sleep_on);
3453
3454 long __sched
3455 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3456 {
3457 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3458 }
3459 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3460
3461 void __sched sleep_on(wait_queue_head_t *q)
3462 {
3463 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3464 }
3465 EXPORT_SYMBOL(sleep_on);
3466
3467 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3468 {
3469 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3470 }
3471 EXPORT_SYMBOL(sleep_on_timeout);
3472
3473 #ifdef CONFIG_RT_MUTEXES
3474
3475 /*
3476 * rt_mutex_setprio - set the current priority of a task
3477 * @p: task
3478 * @prio: prio value (kernel-internal form)
3479 *
3480 * This function changes the 'effective' priority of a task. It does
3481 * not touch ->normal_prio like __setscheduler().
3482 *
3483 * Used by the rt_mutex code to implement priority inheritance logic.
3484 */
3485 void rt_mutex_setprio(struct task_struct *p, int prio)
3486 {
3487 int oldprio, on_rq, running;
3488 struct rq *rq;
3489 const struct sched_class *prev_class;
3490
3491 BUG_ON(prio < 0 || prio > MAX_PRIO);
3492
3493 rq = __task_rq_lock(p);
3494
3495 /*
3496 * Idle task boosting is a nono in general. There is one
3497 * exception, when PREEMPT_RT and NOHZ is active:
3498 *
3499 * The idle task calls get_next_timer_interrupt() and holds
3500 * the timer wheel base->lock on the CPU and another CPU wants
3501 * to access the timer (probably to cancel it). We can safely
3502 * ignore the boosting request, as the idle CPU runs this code
3503 * with interrupts disabled and will complete the lock
3504 * protected section without being interrupted. So there is no
3505 * real need to boost.
3506 */
3507 if (unlikely(p == rq->idle)) {
3508 WARN_ON(p != rq->curr);
3509 WARN_ON(p->pi_blocked_on);
3510 goto out_unlock;
3511 }
3512
3513 trace_sched_pi_setprio(p, prio);
3514 oldprio = p->prio;
3515 prev_class = p->sched_class;
3516 on_rq = p->on_rq;
3517 running = task_current(rq, p);
3518 if (on_rq)
3519 dequeue_task(rq, p, 0);
3520 if (running)
3521 p->sched_class->put_prev_task(rq, p);
3522
3523 if (rt_prio(prio))
3524 p->sched_class = &rt_sched_class;
3525 else
3526 p->sched_class = &fair_sched_class;
3527
3528 p->prio = prio;
3529
3530 if (running)
3531 p->sched_class->set_curr_task(rq);
3532 if (on_rq)
3533 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3534
3535 check_class_changed(rq, p, prev_class, oldprio);
3536 out_unlock:
3537 __task_rq_unlock(rq);
3538 }
3539 #endif
3540 void set_user_nice(struct task_struct *p, long nice)
3541 {
3542 int old_prio, delta, on_rq;
3543 unsigned long flags;
3544 struct rq *rq;
3545
3546 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3547 return;
3548 /*
3549 * We have to be careful, if called from sys_setpriority(),
3550 * the task might be in the middle of scheduling on another CPU.
3551 */
3552 rq = task_rq_lock(p, &flags);
3553 /*
3554 * The RT priorities are set via sched_setscheduler(), but we still
3555 * allow the 'normal' nice value to be set - but as expected
3556 * it wont have any effect on scheduling until the task is
3557 * SCHED_FIFO/SCHED_RR:
3558 */
3559 if (task_has_rt_policy(p)) {
3560 p->static_prio = NICE_TO_PRIO(nice);
3561 goto out_unlock;
3562 }
3563 on_rq = p->on_rq;
3564 if (on_rq)
3565 dequeue_task(rq, p, 0);
3566
3567 p->static_prio = NICE_TO_PRIO(nice);
3568 set_load_weight(p);
3569 old_prio = p->prio;
3570 p->prio = effective_prio(p);
3571 delta = p->prio - old_prio;
3572
3573 if (on_rq) {
3574 enqueue_task(rq, p, 0);
3575 /*
3576 * If the task increased its priority or is running and
3577 * lowered its priority, then reschedule its CPU:
3578 */
3579 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3580 resched_task(rq->curr);
3581 }
3582 out_unlock:
3583 task_rq_unlock(rq, p, &flags);
3584 }
3585 EXPORT_SYMBOL(set_user_nice);
3586
3587 /*
3588 * can_nice - check if a task can reduce its nice value
3589 * @p: task
3590 * @nice: nice value
3591 */
3592 int can_nice(const struct task_struct *p, const int nice)
3593 {
3594 /* convert nice value [19,-20] to rlimit style value [1,40] */
3595 int nice_rlim = 20 - nice;
3596
3597 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3598 capable(CAP_SYS_NICE));
3599 }
3600
3601 #ifdef __ARCH_WANT_SYS_NICE
3602
3603 /*
3604 * sys_nice - change the priority of the current process.
3605 * @increment: priority increment
3606 *
3607 * sys_setpriority is a more generic, but much slower function that
3608 * does similar things.
3609 */
3610 SYSCALL_DEFINE1(nice, int, increment)
3611 {
3612 long nice, retval;
3613
3614 /*
3615 * Setpriority might change our priority at the same moment.
3616 * We don't have to worry. Conceptually one call occurs first
3617 * and we have a single winner.
3618 */
3619 if (increment < -40)
3620 increment = -40;
3621 if (increment > 40)
3622 increment = 40;
3623
3624 nice = TASK_NICE(current) + increment;
3625 if (nice < -20)
3626 nice = -20;
3627 if (nice > 19)
3628 nice = 19;
3629
3630 if (increment < 0 && !can_nice(current, nice))
3631 return -EPERM;
3632
3633 retval = security_task_setnice(current, nice);
3634 if (retval)
3635 return retval;
3636
3637 set_user_nice(current, nice);
3638 return 0;
3639 }
3640
3641 #endif
3642
3643 /**
3644 * task_prio - return the priority value of a given task.
3645 * @p: the task in question.
3646 *
3647 * This is the priority value as seen by users in /proc.
3648 * RT tasks are offset by -200. Normal tasks are centered
3649 * around 0, value goes from -16 to +15.
3650 */
3651 int task_prio(const struct task_struct *p)
3652 {
3653 return p->prio - MAX_RT_PRIO;
3654 }
3655
3656 /**
3657 * task_nice - return the nice value of a given task.
3658 * @p: the task in question.
3659 */
3660 int task_nice(const struct task_struct *p)
3661 {
3662 return TASK_NICE(p);
3663 }
3664 EXPORT_SYMBOL(task_nice);
3665
3666 /**
3667 * idle_cpu - is a given cpu idle currently?
3668 * @cpu: the processor in question.
3669 */
3670 int idle_cpu(int cpu)
3671 {
3672 struct rq *rq = cpu_rq(cpu);
3673
3674 if (rq->curr != rq->idle)
3675 return 0;
3676
3677 if (rq->nr_running)
3678 return 0;
3679
3680 #ifdef CONFIG_SMP
3681 if (!llist_empty(&rq->wake_list))
3682 return 0;
3683 #endif
3684
3685 return 1;
3686 }
3687
3688 /**
3689 * idle_task - return the idle task for a given cpu.
3690 * @cpu: the processor in question.
3691 */
3692 struct task_struct *idle_task(int cpu)
3693 {
3694 return cpu_rq(cpu)->idle;
3695 }
3696
3697 /**
3698 * find_process_by_pid - find a process with a matching PID value.
3699 * @pid: the pid in question.
3700 */
3701 static struct task_struct *find_process_by_pid(pid_t pid)
3702 {
3703 return pid ? find_task_by_vpid(pid) : current;
3704 }
3705
3706 /* Actually do priority change: must hold rq lock. */
3707 static void
3708 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3709 {
3710 p->policy = policy;
3711 p->rt_priority = prio;
3712 p->normal_prio = normal_prio(p);
3713 /* we are holding p->pi_lock already */
3714 p->prio = rt_mutex_getprio(p);
3715 if (rt_prio(p->prio))
3716 p->sched_class = &rt_sched_class;
3717 else
3718 p->sched_class = &fair_sched_class;
3719 set_load_weight(p);
3720 }
3721
3722 /*
3723 * check the target process has a UID that matches the current process's
3724 */
3725 static bool check_same_owner(struct task_struct *p)
3726 {
3727 const struct cred *cred = current_cred(), *pcred;
3728 bool match;
3729
3730 rcu_read_lock();
3731 pcred = __task_cred(p);
3732 match = (uid_eq(cred->euid, pcred->euid) ||
3733 uid_eq(cred->euid, pcred->uid));
3734 rcu_read_unlock();
3735 return match;
3736 }
3737
3738 static int __sched_setscheduler(struct task_struct *p, int policy,
3739 const struct sched_param *param, bool user)
3740 {
3741 int retval, oldprio, oldpolicy = -1, on_rq, running;
3742 unsigned long flags;
3743 const struct sched_class *prev_class;
3744 struct rq *rq;
3745 int reset_on_fork;
3746
3747 /* may grab non-irq protected spin_locks */
3748 BUG_ON(in_interrupt());
3749 recheck:
3750 /* double check policy once rq lock held */
3751 if (policy < 0) {
3752 reset_on_fork = p->sched_reset_on_fork;
3753 policy = oldpolicy = p->policy;
3754 } else {
3755 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3756 policy &= ~SCHED_RESET_ON_FORK;
3757
3758 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3759 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3760 policy != SCHED_IDLE)
3761 return -EINVAL;
3762 }
3763
3764 /*
3765 * Valid priorities for SCHED_FIFO and SCHED_RR are
3766 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3767 * SCHED_BATCH and SCHED_IDLE is 0.
3768 */
3769 if (param->sched_priority < 0 ||
3770 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3771 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3772 return -EINVAL;
3773 if (rt_policy(policy) != (param->sched_priority != 0))
3774 return -EINVAL;
3775
3776 /*
3777 * Allow unprivileged RT tasks to decrease priority:
3778 */
3779 if (user && !capable(CAP_SYS_NICE)) {
3780 if (rt_policy(policy)) {
3781 unsigned long rlim_rtprio =
3782 task_rlimit(p, RLIMIT_RTPRIO);
3783
3784 /* can't set/change the rt policy */
3785 if (policy != p->policy && !rlim_rtprio)
3786 return -EPERM;
3787
3788 /* can't increase priority */
3789 if (param->sched_priority > p->rt_priority &&
3790 param->sched_priority > rlim_rtprio)
3791 return -EPERM;
3792 }
3793
3794 /*
3795 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3797 */
3798 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3799 if (!can_nice(p, TASK_NICE(p)))
3800 return -EPERM;
3801 }
3802
3803 /* can't change other user's priorities */
3804 if (!check_same_owner(p))
3805 return -EPERM;
3806
3807 /* Normal users shall not reset the sched_reset_on_fork flag */
3808 if (p->sched_reset_on_fork && !reset_on_fork)
3809 return -EPERM;
3810 }
3811
3812 if (user) {
3813 retval = security_task_setscheduler(p);
3814 if (retval)
3815 return retval;
3816 }
3817
3818 /*
3819 * make sure no PI-waiters arrive (or leave) while we are
3820 * changing the priority of the task:
3821 *
3822 * To be able to change p->policy safely, the appropriate
3823 * runqueue lock must be held.
3824 */
3825 rq = task_rq_lock(p, &flags);
3826
3827 /*
3828 * Changing the policy of the stop threads its a very bad idea
3829 */
3830 if (p == rq->stop) {
3831 task_rq_unlock(rq, p, &flags);
3832 return -EINVAL;
3833 }
3834
3835 /*
3836 * If not changing anything there's no need to proceed further:
3837 */
3838 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3839 param->sched_priority == p->rt_priority))) {
3840 task_rq_unlock(rq, p, &flags);
3841 return 0;
3842 }
3843
3844 #ifdef CONFIG_RT_GROUP_SCHED
3845 if (user) {
3846 /*
3847 * Do not allow realtime tasks into groups that have no runtime
3848 * assigned.
3849 */
3850 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3851 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3852 !task_group_is_autogroup(task_group(p))) {
3853 task_rq_unlock(rq, p, &flags);
3854 return -EPERM;
3855 }
3856 }
3857 #endif
3858
3859 /* recheck policy now with rq lock held */
3860 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3861 policy = oldpolicy = -1;
3862 task_rq_unlock(rq, p, &flags);
3863 goto recheck;
3864 }
3865 on_rq = p->on_rq;
3866 running = task_current(rq, p);
3867 if (on_rq)
3868 dequeue_task(rq, p, 0);
3869 if (running)
3870 p->sched_class->put_prev_task(rq, p);
3871
3872 p->sched_reset_on_fork = reset_on_fork;
3873
3874 oldprio = p->prio;
3875 prev_class = p->sched_class;
3876 __setscheduler(rq, p, policy, param->sched_priority);
3877
3878 if (running)
3879 p->sched_class->set_curr_task(rq);
3880 if (on_rq)
3881 enqueue_task(rq, p, 0);
3882
3883 check_class_changed(rq, p, prev_class, oldprio);
3884 task_rq_unlock(rq, p, &flags);
3885
3886 rt_mutex_adjust_pi(p);
3887
3888 return 0;
3889 }
3890
3891 /**
3892 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3893 * @p: the task in question.
3894 * @policy: new policy.
3895 * @param: structure containing the new RT priority.
3896 *
3897 * NOTE that the task may be already dead.
3898 */
3899 int sched_setscheduler(struct task_struct *p, int policy,
3900 const struct sched_param *param)
3901 {
3902 return __sched_setscheduler(p, policy, param, true);
3903 }
3904 EXPORT_SYMBOL_GPL(sched_setscheduler);
3905
3906 /**
3907 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3908 * @p: the task in question.
3909 * @policy: new policy.
3910 * @param: structure containing the new RT priority.
3911 *
3912 * Just like sched_setscheduler, only don't bother checking if the
3913 * current context has permission. For example, this is needed in
3914 * stop_machine(): we create temporary high priority worker threads,
3915 * but our caller might not have that capability.
3916 */
3917 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3918 const struct sched_param *param)
3919 {
3920 return __sched_setscheduler(p, policy, param, false);
3921 }
3922
3923 static int
3924 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3925 {
3926 struct sched_param lparam;
3927 struct task_struct *p;
3928 int retval;
3929
3930 if (!param || pid < 0)
3931 return -EINVAL;
3932 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3933 return -EFAULT;
3934
3935 rcu_read_lock();
3936 retval = -ESRCH;
3937 p = find_process_by_pid(pid);
3938 if (p != NULL)
3939 retval = sched_setscheduler(p, policy, &lparam);
3940 rcu_read_unlock();
3941
3942 return retval;
3943 }
3944
3945 /**
3946 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3947 * @pid: the pid in question.
3948 * @policy: new policy.
3949 * @param: structure containing the new RT priority.
3950 */
3951 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3952 struct sched_param __user *, param)
3953 {
3954 /* negative values for policy are not valid */
3955 if (policy < 0)
3956 return -EINVAL;
3957
3958 return do_sched_setscheduler(pid, policy, param);
3959 }
3960
3961 /**
3962 * sys_sched_setparam - set/change the RT priority of a thread
3963 * @pid: the pid in question.
3964 * @param: structure containing the new RT priority.
3965 */
3966 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3967 {
3968 return do_sched_setscheduler(pid, -1, param);
3969 }
3970
3971 /**
3972 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3973 * @pid: the pid in question.
3974 */
3975 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3976 {
3977 struct task_struct *p;
3978 int retval;
3979
3980 if (pid < 0)
3981 return -EINVAL;
3982
3983 retval = -ESRCH;
3984 rcu_read_lock();
3985 p = find_process_by_pid(pid);
3986 if (p) {
3987 retval = security_task_getscheduler(p);
3988 if (!retval)
3989 retval = p->policy
3990 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3991 }
3992 rcu_read_unlock();
3993 return retval;
3994 }
3995
3996 /**
3997 * sys_sched_getparam - get the RT priority of a thread
3998 * @pid: the pid in question.
3999 * @param: structure containing the RT priority.
4000 */
4001 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4002 {
4003 struct sched_param lp;
4004 struct task_struct *p;
4005 int retval;
4006
4007 if (!param || pid < 0)
4008 return -EINVAL;
4009
4010 rcu_read_lock();
4011 p = find_process_by_pid(pid);
4012 retval = -ESRCH;
4013 if (!p)
4014 goto out_unlock;
4015
4016 retval = security_task_getscheduler(p);
4017 if (retval)
4018 goto out_unlock;
4019
4020 lp.sched_priority = p->rt_priority;
4021 rcu_read_unlock();
4022
4023 /*
4024 * This one might sleep, we cannot do it with a spinlock held ...
4025 */
4026 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4027
4028 return retval;
4029
4030 out_unlock:
4031 rcu_read_unlock();
4032 return retval;
4033 }
4034
4035 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4036 {
4037 cpumask_var_t cpus_allowed, new_mask;
4038 struct task_struct *p;
4039 int retval;
4040
4041 get_online_cpus();
4042 rcu_read_lock();
4043
4044 p = find_process_by_pid(pid);
4045 if (!p) {
4046 rcu_read_unlock();
4047 put_online_cpus();
4048 return -ESRCH;
4049 }
4050
4051 /* Prevent p going away */
4052 get_task_struct(p);
4053 rcu_read_unlock();
4054
4055 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4056 retval = -ENOMEM;
4057 goto out_put_task;
4058 }
4059 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4060 retval = -ENOMEM;
4061 goto out_free_cpus_allowed;
4062 }
4063 retval = -EPERM;
4064 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4065 goto out_unlock;
4066
4067 retval = security_task_setscheduler(p);
4068 if (retval)
4069 goto out_unlock;
4070
4071 cpuset_cpus_allowed(p, cpus_allowed);
4072 cpumask_and(new_mask, in_mask, cpus_allowed);
4073 again:
4074 retval = set_cpus_allowed_ptr(p, new_mask);
4075
4076 if (!retval) {
4077 cpuset_cpus_allowed(p, cpus_allowed);
4078 if (!cpumask_subset(new_mask, cpus_allowed)) {
4079 /*
4080 * We must have raced with a concurrent cpuset
4081 * update. Just reset the cpus_allowed to the
4082 * cpuset's cpus_allowed
4083 */
4084 cpumask_copy(new_mask, cpus_allowed);
4085 goto again;
4086 }
4087 }
4088 out_unlock:
4089 free_cpumask_var(new_mask);
4090 out_free_cpus_allowed:
4091 free_cpumask_var(cpus_allowed);
4092 out_put_task:
4093 put_task_struct(p);
4094 put_online_cpus();
4095 return retval;
4096 }
4097
4098 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4099 struct cpumask *new_mask)
4100 {
4101 if (len < cpumask_size())
4102 cpumask_clear(new_mask);
4103 else if (len > cpumask_size())
4104 len = cpumask_size();
4105
4106 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4107 }
4108
4109 /**
4110 * sys_sched_setaffinity - set the cpu affinity of a process
4111 * @pid: pid of the process
4112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4113 * @user_mask_ptr: user-space pointer to the new cpu mask
4114 */
4115 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4116 unsigned long __user *, user_mask_ptr)
4117 {
4118 cpumask_var_t new_mask;
4119 int retval;
4120
4121 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4122 return -ENOMEM;
4123
4124 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4125 if (retval == 0)
4126 retval = sched_setaffinity(pid, new_mask);
4127 free_cpumask_var(new_mask);
4128 return retval;
4129 }
4130
4131 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4132 {
4133 struct task_struct *p;
4134 unsigned long flags;
4135 int retval;
4136
4137 get_online_cpus();
4138 rcu_read_lock();
4139
4140 retval = -ESRCH;
4141 p = find_process_by_pid(pid);
4142 if (!p)
4143 goto out_unlock;
4144
4145 retval = security_task_getscheduler(p);
4146 if (retval)
4147 goto out_unlock;
4148
4149 raw_spin_lock_irqsave(&p->pi_lock, flags);
4150 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4151 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4152
4153 out_unlock:
4154 rcu_read_unlock();
4155 put_online_cpus();
4156
4157 return retval;
4158 }
4159
4160 /**
4161 * sys_sched_getaffinity - get the cpu affinity of a process
4162 * @pid: pid of the process
4163 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4164 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4165 */
4166 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4167 unsigned long __user *, user_mask_ptr)
4168 {
4169 int ret;
4170 cpumask_var_t mask;
4171
4172 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4173 return -EINVAL;
4174 if (len & (sizeof(unsigned long)-1))
4175 return -EINVAL;
4176
4177 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4178 return -ENOMEM;
4179
4180 ret = sched_getaffinity(pid, mask);
4181 if (ret == 0) {
4182 size_t retlen = min_t(size_t, len, cpumask_size());
4183
4184 if (copy_to_user(user_mask_ptr, mask, retlen))
4185 ret = -EFAULT;
4186 else
4187 ret = retlen;
4188 }
4189 free_cpumask_var(mask);
4190
4191 return ret;
4192 }
4193
4194 /**
4195 * sys_sched_yield - yield the current processor to other threads.
4196 *
4197 * This function yields the current CPU to other tasks. If there are no
4198 * other threads running on this CPU then this function will return.
4199 */
4200 SYSCALL_DEFINE0(sched_yield)
4201 {
4202 struct rq *rq = this_rq_lock();
4203
4204 schedstat_inc(rq, yld_count);
4205 current->sched_class->yield_task(rq);
4206
4207 /*
4208 * Since we are going to call schedule() anyway, there's
4209 * no need to preempt or enable interrupts:
4210 */
4211 __release(rq->lock);
4212 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213 do_raw_spin_unlock(&rq->lock);
4214 sched_preempt_enable_no_resched();
4215
4216 schedule();
4217
4218 return 0;
4219 }
4220
4221 static inline int should_resched(void)
4222 {
4223 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4224 }
4225
4226 static void __cond_resched(void)
4227 {
4228 add_preempt_count(PREEMPT_ACTIVE);
4229 __schedule();
4230 sub_preempt_count(PREEMPT_ACTIVE);
4231 }
4232
4233 int __sched _cond_resched(void)
4234 {
4235 if (should_resched()) {
4236 __cond_resched();
4237 return 1;
4238 }
4239 return 0;
4240 }
4241 EXPORT_SYMBOL(_cond_resched);
4242
4243 /*
4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4245 * call schedule, and on return reacquire the lock.
4246 *
4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4250 */
4251 int __cond_resched_lock(spinlock_t *lock)
4252 {
4253 int resched = should_resched();
4254 int ret = 0;
4255
4256 lockdep_assert_held(lock);
4257
4258 if (spin_needbreak(lock) || resched) {
4259 spin_unlock(lock);
4260 if (resched)
4261 __cond_resched();
4262 else
4263 cpu_relax();
4264 ret = 1;
4265 spin_lock(lock);
4266 }
4267 return ret;
4268 }
4269 EXPORT_SYMBOL(__cond_resched_lock);
4270
4271 int __sched __cond_resched_softirq(void)
4272 {
4273 BUG_ON(!in_softirq());
4274
4275 if (should_resched()) {
4276 local_bh_enable();
4277 __cond_resched();
4278 local_bh_disable();
4279 return 1;
4280 }
4281 return 0;
4282 }
4283 EXPORT_SYMBOL(__cond_resched_softirq);
4284
4285 /**
4286 * yield - yield the current processor to other threads.
4287 *
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4289 *
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4293 *
4294 * Typical broken usage is:
4295 *
4296 * while (!event)
4297 * yield();
4298 *
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4302 *
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
4306 */
4307 void __sched yield(void)
4308 {
4309 set_current_state(TASK_RUNNING);
4310 sys_sched_yield();
4311 }
4312 EXPORT_SYMBOL(yield);
4313
4314 /**
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
4318 * @p: target task
4319 * @preempt: whether task preemption is allowed or not
4320 *
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4323 *
4324 * Returns true if we indeed boosted the target task.
4325 */
4326 bool __sched yield_to(struct task_struct *p, bool preempt)
4327 {
4328 struct task_struct *curr = current;
4329 struct rq *rq, *p_rq;
4330 unsigned long flags;
4331 bool yielded = 0;
4332
4333 local_irq_save(flags);
4334 rq = this_rq();
4335
4336 again:
4337 p_rq = task_rq(p);
4338 double_rq_lock(rq, p_rq);
4339 while (task_rq(p) != p_rq) {
4340 double_rq_unlock(rq, p_rq);
4341 goto again;
4342 }
4343
4344 if (!curr->sched_class->yield_to_task)
4345 goto out;
4346
4347 if (curr->sched_class != p->sched_class)
4348 goto out;
4349
4350 if (task_running(p_rq, p) || p->state)
4351 goto out;
4352
4353 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4354 if (yielded) {
4355 schedstat_inc(rq, yld_count);
4356 /*
4357 * Make p's CPU reschedule; pick_next_entity takes care of
4358 * fairness.
4359 */
4360 if (preempt && rq != p_rq)
4361 resched_task(p_rq->curr);
4362 }
4363
4364 out:
4365 double_rq_unlock(rq, p_rq);
4366 local_irq_restore(flags);
4367
4368 if (yielded)
4369 schedule();
4370
4371 return yielded;
4372 }
4373 EXPORT_SYMBOL_GPL(yield_to);
4374
4375 /*
4376 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4377 * that process accounting knows that this is a task in IO wait state.
4378 */
4379 void __sched io_schedule(void)
4380 {
4381 struct rq *rq = raw_rq();
4382
4383 delayacct_blkio_start();
4384 atomic_inc(&rq->nr_iowait);
4385 blk_flush_plug(current);
4386 current->in_iowait = 1;
4387 schedule();
4388 current->in_iowait = 0;
4389 atomic_dec(&rq->nr_iowait);
4390 delayacct_blkio_end();
4391 }
4392 EXPORT_SYMBOL(io_schedule);
4393
4394 long __sched io_schedule_timeout(long timeout)
4395 {
4396 struct rq *rq = raw_rq();
4397 long ret;
4398
4399 delayacct_blkio_start();
4400 atomic_inc(&rq->nr_iowait);
4401 blk_flush_plug(current);
4402 current->in_iowait = 1;
4403 ret = schedule_timeout(timeout);
4404 current->in_iowait = 0;
4405 atomic_dec(&rq->nr_iowait);
4406 delayacct_blkio_end();
4407 return ret;
4408 }
4409
4410 /**
4411 * sys_sched_get_priority_max - return maximum RT priority.
4412 * @policy: scheduling class.
4413 *
4414 * this syscall returns the maximum rt_priority that can be used
4415 * by a given scheduling class.
4416 */
4417 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4418 {
4419 int ret = -EINVAL;
4420
4421 switch (policy) {
4422 case SCHED_FIFO:
4423 case SCHED_RR:
4424 ret = MAX_USER_RT_PRIO-1;
4425 break;
4426 case SCHED_NORMAL:
4427 case SCHED_BATCH:
4428 case SCHED_IDLE:
4429 ret = 0;
4430 break;
4431 }
4432 return ret;
4433 }
4434
4435 /**
4436 * sys_sched_get_priority_min - return minimum RT priority.
4437 * @policy: scheduling class.
4438 *
4439 * this syscall returns the minimum rt_priority that can be used
4440 * by a given scheduling class.
4441 */
4442 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4443 {
4444 int ret = -EINVAL;
4445
4446 switch (policy) {
4447 case SCHED_FIFO:
4448 case SCHED_RR:
4449 ret = 1;
4450 break;
4451 case SCHED_NORMAL:
4452 case SCHED_BATCH:
4453 case SCHED_IDLE:
4454 ret = 0;
4455 }
4456 return ret;
4457 }
4458
4459 /**
4460 * sys_sched_rr_get_interval - return the default timeslice of a process.
4461 * @pid: pid of the process.
4462 * @interval: userspace pointer to the timeslice value.
4463 *
4464 * this syscall writes the default timeslice value of a given process
4465 * into the user-space timespec buffer. A value of '0' means infinity.
4466 */
4467 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4468 struct timespec __user *, interval)
4469 {
4470 struct task_struct *p;
4471 unsigned int time_slice;
4472 unsigned long flags;
4473 struct rq *rq;
4474 int retval;
4475 struct timespec t;
4476
4477 if (pid < 0)
4478 return -EINVAL;
4479
4480 retval = -ESRCH;
4481 rcu_read_lock();
4482 p = find_process_by_pid(pid);
4483 if (!p)
4484 goto out_unlock;
4485
4486 retval = security_task_getscheduler(p);
4487 if (retval)
4488 goto out_unlock;
4489
4490 rq = task_rq_lock(p, &flags);
4491 time_slice = p->sched_class->get_rr_interval(rq, p);
4492 task_rq_unlock(rq, p, &flags);
4493
4494 rcu_read_unlock();
4495 jiffies_to_timespec(time_slice, &t);
4496 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4497 return retval;
4498
4499 out_unlock:
4500 rcu_read_unlock();
4501 return retval;
4502 }
4503
4504 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4505
4506 void sched_show_task(struct task_struct *p)
4507 {
4508 unsigned long free = 0;
4509 unsigned state;
4510
4511 state = p->state ? __ffs(p->state) + 1 : 0;
4512 printk(KERN_INFO "%-15.15s %c", p->comm,
4513 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4514 #if BITS_PER_LONG == 32
4515 if (state == TASK_RUNNING)
4516 printk(KERN_CONT " running ");
4517 else
4518 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4519 #else
4520 if (state == TASK_RUNNING)
4521 printk(KERN_CONT " running task ");
4522 else
4523 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4524 #endif
4525 #ifdef CONFIG_DEBUG_STACK_USAGE
4526 free = stack_not_used(p);
4527 #endif
4528 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4529 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4530 (unsigned long)task_thread_info(p)->flags);
4531
4532 show_stack(p, NULL);
4533 }
4534
4535 void show_state_filter(unsigned long state_filter)
4536 {
4537 struct task_struct *g, *p;
4538
4539 #if BITS_PER_LONG == 32
4540 printk(KERN_INFO
4541 " task PC stack pid father\n");
4542 #else
4543 printk(KERN_INFO
4544 " task PC stack pid father\n");
4545 #endif
4546 rcu_read_lock();
4547 do_each_thread(g, p) {
4548 /*
4549 * reset the NMI-timeout, listing all files on a slow
4550 * console might take a lot of time:
4551 */
4552 touch_nmi_watchdog();
4553 if (!state_filter || (p->state & state_filter))
4554 sched_show_task(p);
4555 } while_each_thread(g, p);
4556
4557 touch_all_softlockup_watchdogs();
4558
4559 #ifdef CONFIG_SCHED_DEBUG
4560 sysrq_sched_debug_show();
4561 #endif
4562 rcu_read_unlock();
4563 /*
4564 * Only show locks if all tasks are dumped:
4565 */
4566 if (!state_filter)
4567 debug_show_all_locks();
4568 }
4569
4570 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4571 {
4572 idle->sched_class = &idle_sched_class;
4573 }
4574
4575 /**
4576 * init_idle - set up an idle thread for a given CPU
4577 * @idle: task in question
4578 * @cpu: cpu the idle task belongs to
4579 *
4580 * NOTE: this function does not set the idle thread's NEED_RESCHED
4581 * flag, to make booting more robust.
4582 */
4583 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4584 {
4585 struct rq *rq = cpu_rq(cpu);
4586 unsigned long flags;
4587
4588 raw_spin_lock_irqsave(&rq->lock, flags);
4589
4590 __sched_fork(idle);
4591 idle->state = TASK_RUNNING;
4592 idle->se.exec_start = sched_clock();
4593
4594 do_set_cpus_allowed(idle, cpumask_of(cpu));
4595 /*
4596 * We're having a chicken and egg problem, even though we are
4597 * holding rq->lock, the cpu isn't yet set to this cpu so the
4598 * lockdep check in task_group() will fail.
4599 *
4600 * Similar case to sched_fork(). / Alternatively we could
4601 * use task_rq_lock() here and obtain the other rq->lock.
4602 *
4603 * Silence PROVE_RCU
4604 */
4605 rcu_read_lock();
4606 __set_task_cpu(idle, cpu);
4607 rcu_read_unlock();
4608
4609 rq->curr = rq->idle = idle;
4610 #if defined(CONFIG_SMP)
4611 idle->on_cpu = 1;
4612 #endif
4613 raw_spin_unlock_irqrestore(&rq->lock, flags);
4614
4615 /* Set the preempt count _outside_ the spinlocks! */
4616 task_thread_info(idle)->preempt_count = 0;
4617
4618 /*
4619 * The idle tasks have their own, simple scheduling class:
4620 */
4621 idle->sched_class = &idle_sched_class;
4622 ftrace_graph_init_idle_task(idle, cpu);
4623 #if defined(CONFIG_SMP)
4624 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4625 #endif
4626 }
4627
4628 #ifdef CONFIG_SMP
4629 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4630 {
4631 if (p->sched_class && p->sched_class->set_cpus_allowed)
4632 p->sched_class->set_cpus_allowed(p, new_mask);
4633
4634 cpumask_copy(&p->cpus_allowed, new_mask);
4635 p->nr_cpus_allowed = cpumask_weight(new_mask);
4636 }
4637
4638 /*
4639 * This is how migration works:
4640 *
4641 * 1) we invoke migration_cpu_stop() on the target CPU using
4642 * stop_one_cpu().
4643 * 2) stopper starts to run (implicitly forcing the migrated thread
4644 * off the CPU)
4645 * 3) it checks whether the migrated task is still in the wrong runqueue.
4646 * 4) if it's in the wrong runqueue then the migration thread removes
4647 * it and puts it into the right queue.
4648 * 5) stopper completes and stop_one_cpu() returns and the migration
4649 * is done.
4650 */
4651
4652 /*
4653 * Change a given task's CPU affinity. Migrate the thread to a
4654 * proper CPU and schedule it away if the CPU it's executing on
4655 * is removed from the allowed bitmask.
4656 *
4657 * NOTE: the caller must have a valid reference to the task, the
4658 * task must not exit() & deallocate itself prematurely. The
4659 * call is not atomic; no spinlocks may be held.
4660 */
4661 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4662 {
4663 unsigned long flags;
4664 struct rq *rq;
4665 unsigned int dest_cpu;
4666 int ret = 0;
4667
4668 rq = task_rq_lock(p, &flags);
4669
4670 if (cpumask_equal(&p->cpus_allowed, new_mask))
4671 goto out;
4672
4673 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4674 ret = -EINVAL;
4675 goto out;
4676 }
4677
4678 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4679 ret = -EINVAL;
4680 goto out;
4681 }
4682
4683 do_set_cpus_allowed(p, new_mask);
4684
4685 /* Can the task run on the task's current CPU? If so, we're done */
4686 if (cpumask_test_cpu(task_cpu(p), new_mask))
4687 goto out;
4688
4689 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4690 if (p->on_rq) {
4691 struct migration_arg arg = { p, dest_cpu };
4692 /* Need help from migration thread: drop lock and wait. */
4693 task_rq_unlock(rq, p, &flags);
4694 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4695 tlb_migrate_finish(p->mm);
4696 return 0;
4697 }
4698 out:
4699 task_rq_unlock(rq, p, &flags);
4700
4701 return ret;
4702 }
4703 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4704
4705 /*
4706 * Move (not current) task off this cpu, onto dest cpu. We're doing
4707 * this because either it can't run here any more (set_cpus_allowed()
4708 * away from this CPU, or CPU going down), or because we're
4709 * attempting to rebalance this task on exec (sched_exec).
4710 *
4711 * So we race with normal scheduler movements, but that's OK, as long
4712 * as the task is no longer on this CPU.
4713 *
4714 * Returns non-zero if task was successfully migrated.
4715 */
4716 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4717 {
4718 struct rq *rq_dest, *rq_src;
4719 int ret = 0;
4720
4721 if (unlikely(!cpu_active(dest_cpu)))
4722 return ret;
4723
4724 rq_src = cpu_rq(src_cpu);
4725 rq_dest = cpu_rq(dest_cpu);
4726
4727 raw_spin_lock(&p->pi_lock);
4728 double_rq_lock(rq_src, rq_dest);
4729 /* Already moved. */
4730 if (task_cpu(p) != src_cpu)
4731 goto done;
4732 /* Affinity changed (again). */
4733 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4734 goto fail;
4735
4736 /*
4737 * If we're not on a rq, the next wake-up will ensure we're
4738 * placed properly.
4739 */
4740 if (p->on_rq) {
4741 dequeue_task(rq_src, p, 0);
4742 set_task_cpu(p, dest_cpu);
4743 enqueue_task(rq_dest, p, 0);
4744 check_preempt_curr(rq_dest, p, 0);
4745 }
4746 done:
4747 ret = 1;
4748 fail:
4749 double_rq_unlock(rq_src, rq_dest);
4750 raw_spin_unlock(&p->pi_lock);
4751 return ret;
4752 }
4753
4754 /*
4755 * migration_cpu_stop - this will be executed by a highprio stopper thread
4756 * and performs thread migration by bumping thread off CPU then
4757 * 'pushing' onto another runqueue.
4758 */
4759 static int migration_cpu_stop(void *data)
4760 {
4761 struct migration_arg *arg = data;
4762
4763 /*
4764 * The original target cpu might have gone down and we might
4765 * be on another cpu but it doesn't matter.
4766 */
4767 local_irq_disable();
4768 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4769 local_irq_enable();
4770 return 0;
4771 }
4772
4773 #ifdef CONFIG_HOTPLUG_CPU
4774
4775 /*
4776 * Ensures that the idle task is using init_mm right before its cpu goes
4777 * offline.
4778 */
4779 void idle_task_exit(void)
4780 {
4781 struct mm_struct *mm = current->active_mm;
4782
4783 BUG_ON(cpu_online(smp_processor_id()));
4784
4785 if (mm != &init_mm)
4786 switch_mm(mm, &init_mm, current);
4787 mmdrop(mm);
4788 }
4789
4790 /*
4791 * Since this CPU is going 'away' for a while, fold any nr_active delta
4792 * we might have. Assumes we're called after migrate_tasks() so that the
4793 * nr_active count is stable.
4794 *
4795 * Also see the comment "Global load-average calculations".
4796 */
4797 static void calc_load_migrate(struct rq *rq)
4798 {
4799 long delta = calc_load_fold_active(rq);
4800 if (delta)
4801 atomic_long_add(delta, &calc_load_tasks);
4802 }
4803
4804 /*
4805 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4806 * try_to_wake_up()->select_task_rq().
4807 *
4808 * Called with rq->lock held even though we'er in stop_machine() and
4809 * there's no concurrency possible, we hold the required locks anyway
4810 * because of lock validation efforts.
4811 */
4812 static void migrate_tasks(unsigned int dead_cpu)
4813 {
4814 struct rq *rq = cpu_rq(dead_cpu);
4815 struct task_struct *next, *stop = rq->stop;
4816 int dest_cpu;
4817
4818 /*
4819 * Fudge the rq selection such that the below task selection loop
4820 * doesn't get stuck on the currently eligible stop task.
4821 *
4822 * We're currently inside stop_machine() and the rq is either stuck
4823 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4824 * either way we should never end up calling schedule() until we're
4825 * done here.
4826 */
4827 rq->stop = NULL;
4828
4829 for ( ; ; ) {
4830 /*
4831 * There's this thread running, bail when that's the only
4832 * remaining thread.
4833 */
4834 if (rq->nr_running == 1)
4835 break;
4836
4837 next = pick_next_task(rq);
4838 BUG_ON(!next);
4839 next->sched_class->put_prev_task(rq, next);
4840
4841 /* Find suitable destination for @next, with force if needed. */
4842 dest_cpu = select_fallback_rq(dead_cpu, next);
4843 raw_spin_unlock(&rq->lock);
4844
4845 __migrate_task(next, dead_cpu, dest_cpu);
4846
4847 raw_spin_lock(&rq->lock);
4848 }
4849
4850 rq->stop = stop;
4851 }
4852
4853 #endif /* CONFIG_HOTPLUG_CPU */
4854
4855 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4856
4857 static struct ctl_table sd_ctl_dir[] = {
4858 {
4859 .procname = "sched_domain",
4860 .mode = 0555,
4861 },
4862 {}
4863 };
4864
4865 static struct ctl_table sd_ctl_root[] = {
4866 {
4867 .procname = "kernel",
4868 .mode = 0555,
4869 .child = sd_ctl_dir,
4870 },
4871 {}
4872 };
4873
4874 static struct ctl_table *sd_alloc_ctl_entry(int n)
4875 {
4876 struct ctl_table *entry =
4877 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4878
4879 return entry;
4880 }
4881
4882 static void sd_free_ctl_entry(struct ctl_table **tablep)
4883 {
4884 struct ctl_table *entry;
4885
4886 /*
4887 * In the intermediate directories, both the child directory and
4888 * procname are dynamically allocated and could fail but the mode
4889 * will always be set. In the lowest directory the names are
4890 * static strings and all have proc handlers.
4891 */
4892 for (entry = *tablep; entry->mode; entry++) {
4893 if (entry->child)
4894 sd_free_ctl_entry(&entry->child);
4895 if (entry->proc_handler == NULL)
4896 kfree(entry->procname);
4897 }
4898
4899 kfree(*tablep);
4900 *tablep = NULL;
4901 }
4902
4903 static int min_load_idx = 0;
4904 static int max_load_idx = CPU_LOAD_IDX_MAX;
4905
4906 static void
4907 set_table_entry(struct ctl_table *entry,
4908 const char *procname, void *data, int maxlen,
4909 umode_t mode, proc_handler *proc_handler,
4910 bool load_idx)
4911 {
4912 entry->procname = procname;
4913 entry->data = data;
4914 entry->maxlen = maxlen;
4915 entry->mode = mode;
4916 entry->proc_handler = proc_handler;
4917
4918 if (load_idx) {
4919 entry->extra1 = &min_load_idx;
4920 entry->extra2 = &max_load_idx;
4921 }
4922 }
4923
4924 static struct ctl_table *
4925 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4926 {
4927 struct ctl_table *table = sd_alloc_ctl_entry(13);
4928
4929 if (table == NULL)
4930 return NULL;
4931
4932 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4933 sizeof(long), 0644, proc_doulongvec_minmax, false);
4934 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4935 sizeof(long), 0644, proc_doulongvec_minmax, false);
4936 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4937 sizeof(int), 0644, proc_dointvec_minmax, true);
4938 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4939 sizeof(int), 0644, proc_dointvec_minmax, true);
4940 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4941 sizeof(int), 0644, proc_dointvec_minmax, true);
4942 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4943 sizeof(int), 0644, proc_dointvec_minmax, true);
4944 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4945 sizeof(int), 0644, proc_dointvec_minmax, true);
4946 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4947 sizeof(int), 0644, proc_dointvec_minmax, false);
4948 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4949 sizeof(int), 0644, proc_dointvec_minmax, false);
4950 set_table_entry(&table[9], "cache_nice_tries",
4951 &sd->cache_nice_tries,
4952 sizeof(int), 0644, proc_dointvec_minmax, false);
4953 set_table_entry(&table[10], "flags", &sd->flags,
4954 sizeof(int), 0644, proc_dointvec_minmax, false);
4955 set_table_entry(&table[11], "name", sd->name,
4956 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4957 /* &table[12] is terminator */
4958
4959 return table;
4960 }
4961
4962 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4963 {
4964 struct ctl_table *entry, *table;
4965 struct sched_domain *sd;
4966 int domain_num = 0, i;
4967 char buf[32];
4968
4969 for_each_domain(cpu, sd)
4970 domain_num++;
4971 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4972 if (table == NULL)
4973 return NULL;
4974
4975 i = 0;
4976 for_each_domain(cpu, sd) {
4977 snprintf(buf, 32, "domain%d", i);
4978 entry->procname = kstrdup(buf, GFP_KERNEL);
4979 entry->mode = 0555;
4980 entry->child = sd_alloc_ctl_domain_table(sd);
4981 entry++;
4982 i++;
4983 }
4984 return table;
4985 }
4986
4987 static struct ctl_table_header *sd_sysctl_header;
4988 static void register_sched_domain_sysctl(void)
4989 {
4990 int i, cpu_num = num_possible_cpus();
4991 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4992 char buf[32];
4993
4994 WARN_ON(sd_ctl_dir[0].child);
4995 sd_ctl_dir[0].child = entry;
4996
4997 if (entry == NULL)
4998 return;
4999
5000 for_each_possible_cpu(i) {
5001 snprintf(buf, 32, "cpu%d", i);
5002 entry->procname = kstrdup(buf, GFP_KERNEL);
5003 entry->mode = 0555;
5004 entry->child = sd_alloc_ctl_cpu_table(i);
5005 entry++;
5006 }
5007
5008 WARN_ON(sd_sysctl_header);
5009 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5010 }
5011
5012 /* may be called multiple times per register */
5013 static void unregister_sched_domain_sysctl(void)
5014 {
5015 if (sd_sysctl_header)
5016 unregister_sysctl_table(sd_sysctl_header);
5017 sd_sysctl_header = NULL;
5018 if (sd_ctl_dir[0].child)
5019 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5020 }
5021 #else
5022 static void register_sched_domain_sysctl(void)
5023 {
5024 }
5025 static void unregister_sched_domain_sysctl(void)
5026 {
5027 }
5028 #endif
5029
5030 static void set_rq_online(struct rq *rq)
5031 {
5032 if (!rq->online) {
5033 const struct sched_class *class;
5034
5035 cpumask_set_cpu(rq->cpu, rq->rd->online);
5036 rq->online = 1;
5037
5038 for_each_class(class) {
5039 if (class->rq_online)
5040 class->rq_online(rq);
5041 }
5042 }
5043 }
5044
5045 static void set_rq_offline(struct rq *rq)
5046 {
5047 if (rq->online) {
5048 const struct sched_class *class;
5049
5050 for_each_class(class) {
5051 if (class->rq_offline)
5052 class->rq_offline(rq);
5053 }
5054
5055 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5056 rq->online = 0;
5057 }
5058 }
5059
5060 /*
5061 * migration_call - callback that gets triggered when a CPU is added.
5062 * Here we can start up the necessary migration thread for the new CPU.
5063 */
5064 static int __cpuinit
5065 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5066 {
5067 int cpu = (long)hcpu;
5068 unsigned long flags;
5069 struct rq *rq = cpu_rq(cpu);
5070
5071 switch (action & ~CPU_TASKS_FROZEN) {
5072
5073 case CPU_UP_PREPARE:
5074 rq->calc_load_update = calc_load_update;
5075 break;
5076
5077 case CPU_ONLINE:
5078 /* Update our root-domain */
5079 raw_spin_lock_irqsave(&rq->lock, flags);
5080 if (rq->rd) {
5081 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5082
5083 set_rq_online(rq);
5084 }
5085 raw_spin_unlock_irqrestore(&rq->lock, flags);
5086 break;
5087
5088 #ifdef CONFIG_HOTPLUG_CPU
5089 case CPU_DYING:
5090 sched_ttwu_pending();
5091 /* Update our root-domain */
5092 raw_spin_lock_irqsave(&rq->lock, flags);
5093 if (rq->rd) {
5094 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5095 set_rq_offline(rq);
5096 }
5097 migrate_tasks(cpu);
5098 BUG_ON(rq->nr_running != 1); /* the migration thread */
5099 raw_spin_unlock_irqrestore(&rq->lock, flags);
5100 break;
5101
5102 case CPU_DEAD:
5103 calc_load_migrate(rq);
5104 break;
5105 #endif
5106 }
5107
5108 update_max_interval();
5109
5110 return NOTIFY_OK;
5111 }
5112
5113 /*
5114 * Register at high priority so that task migration (migrate_all_tasks)
5115 * happens before everything else. This has to be lower priority than
5116 * the notifier in the perf_event subsystem, though.
5117 */
5118 static struct notifier_block __cpuinitdata migration_notifier = {
5119 .notifier_call = migration_call,
5120 .priority = CPU_PRI_MIGRATION,
5121 };
5122
5123 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5124 unsigned long action, void *hcpu)
5125 {
5126 switch (action & ~CPU_TASKS_FROZEN) {
5127 case CPU_STARTING:
5128 case CPU_DOWN_FAILED:
5129 set_cpu_active((long)hcpu, true);
5130 return NOTIFY_OK;
5131 default:
5132 return NOTIFY_DONE;
5133 }
5134 }
5135
5136 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5137 unsigned long action, void *hcpu)
5138 {
5139 switch (action & ~CPU_TASKS_FROZEN) {
5140 case CPU_DOWN_PREPARE:
5141 set_cpu_active((long)hcpu, false);
5142 return NOTIFY_OK;
5143 default:
5144 return NOTIFY_DONE;
5145 }
5146 }
5147
5148 static int __init migration_init(void)
5149 {
5150 void *cpu = (void *)(long)smp_processor_id();
5151 int err;
5152
5153 /* Initialize migration for the boot CPU */
5154 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5155 BUG_ON(err == NOTIFY_BAD);
5156 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5157 register_cpu_notifier(&migration_notifier);
5158
5159 /* Register cpu active notifiers */
5160 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5161 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5162
5163 return 0;
5164 }
5165 early_initcall(migration_init);
5166 #endif
5167
5168 #ifdef CONFIG_SMP
5169
5170 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5171
5172 #ifdef CONFIG_SCHED_DEBUG
5173
5174 static __read_mostly int sched_debug_enabled;
5175
5176 static int __init sched_debug_setup(char *str)
5177 {
5178 sched_debug_enabled = 1;
5179
5180 return 0;
5181 }
5182 early_param("sched_debug", sched_debug_setup);
5183
5184 static inline bool sched_debug(void)
5185 {
5186 return sched_debug_enabled;
5187 }
5188
5189 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5190 struct cpumask *groupmask)
5191 {
5192 struct sched_group *group = sd->groups;
5193 char str[256];
5194
5195 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5196 cpumask_clear(groupmask);
5197
5198 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5199
5200 if (!(sd->flags & SD_LOAD_BALANCE)) {
5201 printk("does not load-balance\n");
5202 if (sd->parent)
5203 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5204 " has parent");
5205 return -1;
5206 }
5207
5208 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5209
5210 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5211 printk(KERN_ERR "ERROR: domain->span does not contain "
5212 "CPU%d\n", cpu);
5213 }
5214 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5215 printk(KERN_ERR "ERROR: domain->groups does not contain"
5216 " CPU%d\n", cpu);
5217 }
5218
5219 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5220 do {
5221 if (!group) {
5222 printk("\n");
5223 printk(KERN_ERR "ERROR: group is NULL\n");
5224 break;
5225 }
5226
5227 /*
5228 * Even though we initialize ->power to something semi-sane,
5229 * we leave power_orig unset. This allows us to detect if
5230 * domain iteration is still funny without causing /0 traps.
5231 */
5232 if (!group->sgp->power_orig) {
5233 printk(KERN_CONT "\n");
5234 printk(KERN_ERR "ERROR: domain->cpu_power not "
5235 "set\n");
5236 break;
5237 }
5238
5239 if (!cpumask_weight(sched_group_cpus(group))) {
5240 printk(KERN_CONT "\n");
5241 printk(KERN_ERR "ERROR: empty group\n");
5242 break;
5243 }
5244
5245 if (!(sd->flags & SD_OVERLAP) &&
5246 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5247 printk(KERN_CONT "\n");
5248 printk(KERN_ERR "ERROR: repeated CPUs\n");
5249 break;
5250 }
5251
5252 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5253
5254 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5255
5256 printk(KERN_CONT " %s", str);
5257 if (group->sgp->power != SCHED_POWER_SCALE) {
5258 printk(KERN_CONT " (cpu_power = %d)",
5259 group->sgp->power);
5260 }
5261
5262 group = group->next;
5263 } while (group != sd->groups);
5264 printk(KERN_CONT "\n");
5265
5266 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5267 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5268
5269 if (sd->parent &&
5270 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5271 printk(KERN_ERR "ERROR: parent span is not a superset "
5272 "of domain->span\n");
5273 return 0;
5274 }
5275
5276 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5277 {
5278 int level = 0;
5279
5280 if (!sched_debug_enabled)
5281 return;
5282
5283 if (!sd) {
5284 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5285 return;
5286 }
5287
5288 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5289
5290 for (;;) {
5291 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5292 break;
5293 level++;
5294 sd = sd->parent;
5295 if (!sd)
5296 break;
5297 }
5298 }
5299 #else /* !CONFIG_SCHED_DEBUG */
5300 # define sched_domain_debug(sd, cpu) do { } while (0)
5301 static inline bool sched_debug(void)
5302 {
5303 return false;
5304 }
5305 #endif /* CONFIG_SCHED_DEBUG */
5306
5307 static int sd_degenerate(struct sched_domain *sd)
5308 {
5309 if (cpumask_weight(sched_domain_span(sd)) == 1)
5310 return 1;
5311
5312 /* Following flags need at least 2 groups */
5313 if (sd->flags & (SD_LOAD_BALANCE |
5314 SD_BALANCE_NEWIDLE |
5315 SD_BALANCE_FORK |
5316 SD_BALANCE_EXEC |
5317 SD_SHARE_CPUPOWER |
5318 SD_SHARE_PKG_RESOURCES)) {
5319 if (sd->groups != sd->groups->next)
5320 return 0;
5321 }
5322
5323 /* Following flags don't use groups */
5324 if (sd->flags & (SD_WAKE_AFFINE))
5325 return 0;
5326
5327 return 1;
5328 }
5329
5330 static int
5331 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5332 {
5333 unsigned long cflags = sd->flags, pflags = parent->flags;
5334
5335 if (sd_degenerate(parent))
5336 return 1;
5337
5338 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5339 return 0;
5340
5341 /* Flags needing groups don't count if only 1 group in parent */
5342 if (parent->groups == parent->groups->next) {
5343 pflags &= ~(SD_LOAD_BALANCE |
5344 SD_BALANCE_NEWIDLE |
5345 SD_BALANCE_FORK |
5346 SD_BALANCE_EXEC |
5347 SD_SHARE_CPUPOWER |
5348 SD_SHARE_PKG_RESOURCES);
5349 if (nr_node_ids == 1)
5350 pflags &= ~SD_SERIALIZE;
5351 }
5352 if (~cflags & pflags)
5353 return 0;
5354
5355 return 1;
5356 }
5357
5358 static void free_rootdomain(struct rcu_head *rcu)
5359 {
5360 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5361
5362 cpupri_cleanup(&rd->cpupri);
5363 free_cpumask_var(rd->rto_mask);
5364 free_cpumask_var(rd->online);
5365 free_cpumask_var(rd->span);
5366 kfree(rd);
5367 }
5368
5369 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5370 {
5371 struct root_domain *old_rd = NULL;
5372 unsigned long flags;
5373
5374 raw_spin_lock_irqsave(&rq->lock, flags);
5375
5376 if (rq->rd) {
5377 old_rd = rq->rd;
5378
5379 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5380 set_rq_offline(rq);
5381
5382 cpumask_clear_cpu(rq->cpu, old_rd->span);
5383
5384 /*
5385 * If we dont want to free the old_rt yet then
5386 * set old_rd to NULL to skip the freeing later
5387 * in this function:
5388 */
5389 if (!atomic_dec_and_test(&old_rd->refcount))
5390 old_rd = NULL;
5391 }
5392
5393 atomic_inc(&rd->refcount);
5394 rq->rd = rd;
5395
5396 cpumask_set_cpu(rq->cpu, rd->span);
5397 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5398 set_rq_online(rq);
5399
5400 raw_spin_unlock_irqrestore(&rq->lock, flags);
5401
5402 if (old_rd)
5403 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5404 }
5405
5406 static int init_rootdomain(struct root_domain *rd)
5407 {
5408 memset(rd, 0, sizeof(*rd));
5409
5410 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5411 goto out;
5412 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5413 goto free_span;
5414 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5415 goto free_online;
5416
5417 if (cpupri_init(&rd->cpupri) != 0)
5418 goto free_rto_mask;
5419 return 0;
5420
5421 free_rto_mask:
5422 free_cpumask_var(rd->rto_mask);
5423 free_online:
5424 free_cpumask_var(rd->online);
5425 free_span:
5426 free_cpumask_var(rd->span);
5427 out:
5428 return -ENOMEM;
5429 }
5430
5431 /*
5432 * By default the system creates a single root-domain with all cpus as
5433 * members (mimicking the global state we have today).
5434 */
5435 struct root_domain def_root_domain;
5436
5437 static void init_defrootdomain(void)
5438 {
5439 init_rootdomain(&def_root_domain);
5440
5441 atomic_set(&def_root_domain.refcount, 1);
5442 }
5443
5444 static struct root_domain *alloc_rootdomain(void)
5445 {
5446 struct root_domain *rd;
5447
5448 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5449 if (!rd)
5450 return NULL;
5451
5452 if (init_rootdomain(rd) != 0) {
5453 kfree(rd);
5454 return NULL;
5455 }
5456
5457 return rd;
5458 }
5459
5460 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5461 {
5462 struct sched_group *tmp, *first;
5463
5464 if (!sg)
5465 return;
5466
5467 first = sg;
5468 do {
5469 tmp = sg->next;
5470
5471 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5472 kfree(sg->sgp);
5473
5474 kfree(sg);
5475 sg = tmp;
5476 } while (sg != first);
5477 }
5478
5479 static void free_sched_domain(struct rcu_head *rcu)
5480 {
5481 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5482
5483 /*
5484 * If its an overlapping domain it has private groups, iterate and
5485 * nuke them all.
5486 */
5487 if (sd->flags & SD_OVERLAP) {
5488 free_sched_groups(sd->groups, 1);
5489 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5490 kfree(sd->groups->sgp);
5491 kfree(sd->groups);
5492 }
5493 kfree(sd);
5494 }
5495
5496 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5497 {
5498 call_rcu(&sd->rcu, free_sched_domain);
5499 }
5500
5501 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5502 {
5503 for (; sd; sd = sd->parent)
5504 destroy_sched_domain(sd, cpu);
5505 }
5506
5507 /*
5508 * Keep a special pointer to the highest sched_domain that has
5509 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5510 * allows us to avoid some pointer chasing select_idle_sibling().
5511 *
5512 * Also keep a unique ID per domain (we use the first cpu number in
5513 * the cpumask of the domain), this allows us to quickly tell if
5514 * two cpus are in the same cache domain, see cpus_share_cache().
5515 */
5516 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5517 DEFINE_PER_CPU(int, sd_llc_id);
5518
5519 static void update_top_cache_domain(int cpu)
5520 {
5521 struct sched_domain *sd;
5522 int id = cpu;
5523
5524 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5525 if (sd)
5526 id = cpumask_first(sched_domain_span(sd));
5527
5528 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5529 per_cpu(sd_llc_id, cpu) = id;
5530 }
5531
5532 /*
5533 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5534 * hold the hotplug lock.
5535 */
5536 static void
5537 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5538 {
5539 struct rq *rq = cpu_rq(cpu);
5540 struct sched_domain *tmp;
5541
5542 /* Remove the sched domains which do not contribute to scheduling. */
5543 for (tmp = sd; tmp; ) {
5544 struct sched_domain *parent = tmp->parent;
5545 if (!parent)
5546 break;
5547
5548 if (sd_parent_degenerate(tmp, parent)) {
5549 tmp->parent = parent->parent;
5550 if (parent->parent)
5551 parent->parent->child = tmp;
5552 destroy_sched_domain(parent, cpu);
5553 } else
5554 tmp = tmp->parent;
5555 }
5556
5557 if (sd && sd_degenerate(sd)) {
5558 tmp = sd;
5559 sd = sd->parent;
5560 destroy_sched_domain(tmp, cpu);
5561 if (sd)
5562 sd->child = NULL;
5563 }
5564
5565 sched_domain_debug(sd, cpu);
5566
5567 rq_attach_root(rq, rd);
5568 tmp = rq->sd;
5569 rcu_assign_pointer(rq->sd, sd);
5570 destroy_sched_domains(tmp, cpu);
5571
5572 update_top_cache_domain(cpu);
5573 }
5574
5575 /* cpus with isolated domains */
5576 static cpumask_var_t cpu_isolated_map;
5577
5578 /* Setup the mask of cpus configured for isolated domains */
5579 static int __init isolated_cpu_setup(char *str)
5580 {
5581 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5582 cpulist_parse(str, cpu_isolated_map);
5583 return 1;
5584 }
5585
5586 __setup("isolcpus=", isolated_cpu_setup);
5587
5588 static const struct cpumask *cpu_cpu_mask(int cpu)
5589 {
5590 return cpumask_of_node(cpu_to_node(cpu));
5591 }
5592
5593 struct sd_data {
5594 struct sched_domain **__percpu sd;
5595 struct sched_group **__percpu sg;
5596 struct sched_group_power **__percpu sgp;
5597 };
5598
5599 struct s_data {
5600 struct sched_domain ** __percpu sd;
5601 struct root_domain *rd;
5602 };
5603
5604 enum s_alloc {
5605 sa_rootdomain,
5606 sa_sd,
5607 sa_sd_storage,
5608 sa_none,
5609 };
5610
5611 struct sched_domain_topology_level;
5612
5613 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5614 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5615
5616 #define SDTL_OVERLAP 0x01
5617
5618 struct sched_domain_topology_level {
5619 sched_domain_init_f init;
5620 sched_domain_mask_f mask;
5621 int flags;
5622 int numa_level;
5623 struct sd_data data;
5624 };
5625
5626 /*
5627 * Build an iteration mask that can exclude certain CPUs from the upwards
5628 * domain traversal.
5629 *
5630 * Asymmetric node setups can result in situations where the domain tree is of
5631 * unequal depth, make sure to skip domains that already cover the entire
5632 * range.
5633 *
5634 * In that case build_sched_domains() will have terminated the iteration early
5635 * and our sibling sd spans will be empty. Domains should always include the
5636 * cpu they're built on, so check that.
5637 *
5638 */
5639 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5640 {
5641 const struct cpumask *span = sched_domain_span(sd);
5642 struct sd_data *sdd = sd->private;
5643 struct sched_domain *sibling;
5644 int i;
5645
5646 for_each_cpu(i, span) {
5647 sibling = *per_cpu_ptr(sdd->sd, i);
5648 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5649 continue;
5650
5651 cpumask_set_cpu(i, sched_group_mask(sg));
5652 }
5653 }
5654
5655 /*
5656 * Return the canonical balance cpu for this group, this is the first cpu
5657 * of this group that's also in the iteration mask.
5658 */
5659 int group_balance_cpu(struct sched_group *sg)
5660 {
5661 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5662 }
5663
5664 static int
5665 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5666 {
5667 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5668 const struct cpumask *span = sched_domain_span(sd);
5669 struct cpumask *covered = sched_domains_tmpmask;
5670 struct sd_data *sdd = sd->private;
5671 struct sched_domain *child;
5672 int i;
5673
5674 cpumask_clear(covered);
5675
5676 for_each_cpu(i, span) {
5677 struct cpumask *sg_span;
5678
5679 if (cpumask_test_cpu(i, covered))
5680 continue;
5681
5682 child = *per_cpu_ptr(sdd->sd, i);
5683
5684 /* See the comment near build_group_mask(). */
5685 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5686 continue;
5687
5688 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5689 GFP_KERNEL, cpu_to_node(cpu));
5690
5691 if (!sg)
5692 goto fail;
5693
5694 sg_span = sched_group_cpus(sg);
5695 if (child->child) {
5696 child = child->child;
5697 cpumask_copy(sg_span, sched_domain_span(child));
5698 } else
5699 cpumask_set_cpu(i, sg_span);
5700
5701 cpumask_or(covered, covered, sg_span);
5702
5703 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5704 if (atomic_inc_return(&sg->sgp->ref) == 1)
5705 build_group_mask(sd, sg);
5706
5707 /*
5708 * Initialize sgp->power such that even if we mess up the
5709 * domains and no possible iteration will get us here, we won't
5710 * die on a /0 trap.
5711 */
5712 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5713
5714 /*
5715 * Make sure the first group of this domain contains the
5716 * canonical balance cpu. Otherwise the sched_domain iteration
5717 * breaks. See update_sg_lb_stats().
5718 */
5719 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5720 group_balance_cpu(sg) == cpu)
5721 groups = sg;
5722
5723 if (!first)
5724 first = sg;
5725 if (last)
5726 last->next = sg;
5727 last = sg;
5728 last->next = first;
5729 }
5730 sd->groups = groups;
5731
5732 return 0;
5733
5734 fail:
5735 free_sched_groups(first, 0);
5736
5737 return -ENOMEM;
5738 }
5739
5740 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5741 {
5742 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5743 struct sched_domain *child = sd->child;
5744
5745 if (child)
5746 cpu = cpumask_first(sched_domain_span(child));
5747
5748 if (sg) {
5749 *sg = *per_cpu_ptr(sdd->sg, cpu);
5750 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5751 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5752 }
5753
5754 return cpu;
5755 }
5756
5757 /*
5758 * build_sched_groups will build a circular linked list of the groups
5759 * covered by the given span, and will set each group's ->cpumask correctly,
5760 * and ->cpu_power to 0.
5761 *
5762 * Assumes the sched_domain tree is fully constructed
5763 */
5764 static int
5765 build_sched_groups(struct sched_domain *sd, int cpu)
5766 {
5767 struct sched_group *first = NULL, *last = NULL;
5768 struct sd_data *sdd = sd->private;
5769 const struct cpumask *span = sched_domain_span(sd);
5770 struct cpumask *covered;
5771 int i;
5772
5773 get_group(cpu, sdd, &sd->groups);
5774 atomic_inc(&sd->groups->ref);
5775
5776 if (cpu != cpumask_first(sched_domain_span(sd)))
5777 return 0;
5778
5779 lockdep_assert_held(&sched_domains_mutex);
5780 covered = sched_domains_tmpmask;
5781
5782 cpumask_clear(covered);
5783
5784 for_each_cpu(i, span) {
5785 struct sched_group *sg;
5786 int group = get_group(i, sdd, &sg);
5787 int j;
5788
5789 if (cpumask_test_cpu(i, covered))
5790 continue;
5791
5792 cpumask_clear(sched_group_cpus(sg));
5793 sg->sgp->power = 0;
5794 cpumask_setall(sched_group_mask(sg));
5795
5796 for_each_cpu(j, span) {
5797 if (get_group(j, sdd, NULL) != group)
5798 continue;
5799
5800 cpumask_set_cpu(j, covered);
5801 cpumask_set_cpu(j, sched_group_cpus(sg));
5802 }
5803
5804 if (!first)
5805 first = sg;
5806 if (last)
5807 last->next = sg;
5808 last = sg;
5809 }
5810 last->next = first;
5811
5812 return 0;
5813 }
5814
5815 /*
5816 * Initialize sched groups cpu_power.
5817 *
5818 * cpu_power indicates the capacity of sched group, which is used while
5819 * distributing the load between different sched groups in a sched domain.
5820 * Typically cpu_power for all the groups in a sched domain will be same unless
5821 * there are asymmetries in the topology. If there are asymmetries, group
5822 * having more cpu_power will pickup more load compared to the group having
5823 * less cpu_power.
5824 */
5825 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5826 {
5827 struct sched_group *sg = sd->groups;
5828
5829 WARN_ON(!sd || !sg);
5830
5831 do {
5832 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5833 sg = sg->next;
5834 } while (sg != sd->groups);
5835
5836 if (cpu != group_balance_cpu(sg))
5837 return;
5838
5839 update_group_power(sd, cpu);
5840 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5841 }
5842
5843 int __weak arch_sd_sibling_asym_packing(void)
5844 {
5845 return 0*SD_ASYM_PACKING;
5846 }
5847
5848 /*
5849 * Initializers for schedule domains
5850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5851 */
5852
5853 #ifdef CONFIG_SCHED_DEBUG
5854 # define SD_INIT_NAME(sd, type) sd->name = #type
5855 #else
5856 # define SD_INIT_NAME(sd, type) do { } while (0)
5857 #endif
5858
5859 #define SD_INIT_FUNC(type) \
5860 static noinline struct sched_domain * \
5861 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5862 { \
5863 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5864 *sd = SD_##type##_INIT; \
5865 SD_INIT_NAME(sd, type); \
5866 sd->private = &tl->data; \
5867 return sd; \
5868 }
5869
5870 SD_INIT_FUNC(CPU)
5871 #ifdef CONFIG_SCHED_SMT
5872 SD_INIT_FUNC(SIBLING)
5873 #endif
5874 #ifdef CONFIG_SCHED_MC
5875 SD_INIT_FUNC(MC)
5876 #endif
5877 #ifdef CONFIG_SCHED_BOOK
5878 SD_INIT_FUNC(BOOK)
5879 #endif
5880
5881 static int default_relax_domain_level = -1;
5882 int sched_domain_level_max;
5883
5884 static int __init setup_relax_domain_level(char *str)
5885 {
5886 if (kstrtoint(str, 0, &default_relax_domain_level))
5887 pr_warn("Unable to set relax_domain_level\n");
5888
5889 return 1;
5890 }
5891 __setup("relax_domain_level=", setup_relax_domain_level);
5892
5893 static void set_domain_attribute(struct sched_domain *sd,
5894 struct sched_domain_attr *attr)
5895 {
5896 int request;
5897
5898 if (!attr || attr->relax_domain_level < 0) {
5899 if (default_relax_domain_level < 0)
5900 return;
5901 else
5902 request = default_relax_domain_level;
5903 } else
5904 request = attr->relax_domain_level;
5905 if (request < sd->level) {
5906 /* turn off idle balance on this domain */
5907 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5908 } else {
5909 /* turn on idle balance on this domain */
5910 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5911 }
5912 }
5913
5914 static void __sdt_free(const struct cpumask *cpu_map);
5915 static int __sdt_alloc(const struct cpumask *cpu_map);
5916
5917 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5918 const struct cpumask *cpu_map)
5919 {
5920 switch (what) {
5921 case sa_rootdomain:
5922 if (!atomic_read(&d->rd->refcount))
5923 free_rootdomain(&d->rd->rcu); /* fall through */
5924 case sa_sd:
5925 free_percpu(d->sd); /* fall through */
5926 case sa_sd_storage:
5927 __sdt_free(cpu_map); /* fall through */
5928 case sa_none:
5929 break;
5930 }
5931 }
5932
5933 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5934 const struct cpumask *cpu_map)
5935 {
5936 memset(d, 0, sizeof(*d));
5937
5938 if (__sdt_alloc(cpu_map))
5939 return sa_sd_storage;
5940 d->sd = alloc_percpu(struct sched_domain *);
5941 if (!d->sd)
5942 return sa_sd_storage;
5943 d->rd = alloc_rootdomain();
5944 if (!d->rd)
5945 return sa_sd;
5946 return sa_rootdomain;
5947 }
5948
5949 /*
5950 * NULL the sd_data elements we've used to build the sched_domain and
5951 * sched_group structure so that the subsequent __free_domain_allocs()
5952 * will not free the data we're using.
5953 */
5954 static void claim_allocations(int cpu, struct sched_domain *sd)
5955 {
5956 struct sd_data *sdd = sd->private;
5957
5958 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5959 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5960
5961 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5962 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5963
5964 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5965 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5966 }
5967
5968 #ifdef CONFIG_SCHED_SMT
5969 static const struct cpumask *cpu_smt_mask(int cpu)
5970 {
5971 return topology_thread_cpumask(cpu);
5972 }
5973 #endif
5974
5975 /*
5976 * Topology list, bottom-up.
5977 */
5978 static struct sched_domain_topology_level default_topology[] = {
5979 #ifdef CONFIG_SCHED_SMT
5980 { sd_init_SIBLING, cpu_smt_mask, },
5981 #endif
5982 #ifdef CONFIG_SCHED_MC
5983 { sd_init_MC, cpu_coregroup_mask, },
5984 #endif
5985 #ifdef CONFIG_SCHED_BOOK
5986 { sd_init_BOOK, cpu_book_mask, },
5987 #endif
5988 { sd_init_CPU, cpu_cpu_mask, },
5989 { NULL, },
5990 };
5991
5992 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5993
5994 #ifdef CONFIG_NUMA
5995
5996 static int sched_domains_numa_levels;
5997 static int *sched_domains_numa_distance;
5998 static struct cpumask ***sched_domains_numa_masks;
5999 static int sched_domains_curr_level;
6000
6001 static inline int sd_local_flags(int level)
6002 {
6003 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6004 return 0;
6005
6006 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6007 }
6008
6009 static struct sched_domain *
6010 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6011 {
6012 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6013 int level = tl->numa_level;
6014 int sd_weight = cpumask_weight(
6015 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6016
6017 *sd = (struct sched_domain){
6018 .min_interval = sd_weight,
6019 .max_interval = 2*sd_weight,
6020 .busy_factor = 32,
6021 .imbalance_pct = 125,
6022 .cache_nice_tries = 2,
6023 .busy_idx = 3,
6024 .idle_idx = 2,
6025 .newidle_idx = 0,
6026 .wake_idx = 0,
6027 .forkexec_idx = 0,
6028
6029 .flags = 1*SD_LOAD_BALANCE
6030 | 1*SD_BALANCE_NEWIDLE
6031 | 0*SD_BALANCE_EXEC
6032 | 0*SD_BALANCE_FORK
6033 | 0*SD_BALANCE_WAKE
6034 | 0*SD_WAKE_AFFINE
6035 | 0*SD_SHARE_CPUPOWER
6036 | 0*SD_SHARE_PKG_RESOURCES
6037 | 1*SD_SERIALIZE
6038 | 0*SD_PREFER_SIBLING
6039 | sd_local_flags(level)
6040 ,
6041 .last_balance = jiffies,
6042 .balance_interval = sd_weight,
6043 };
6044 SD_INIT_NAME(sd, NUMA);
6045 sd->private = &tl->data;
6046
6047 /*
6048 * Ugly hack to pass state to sd_numa_mask()...
6049 */
6050 sched_domains_curr_level = tl->numa_level;
6051
6052 return sd;
6053 }
6054
6055 static const struct cpumask *sd_numa_mask(int cpu)
6056 {
6057 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6058 }
6059
6060 static void sched_numa_warn(const char *str)
6061 {
6062 static int done = false;
6063 int i,j;
6064
6065 if (done)
6066 return;
6067
6068 done = true;
6069
6070 printk(KERN_WARNING "ERROR: %s\n\n", str);
6071
6072 for (i = 0; i < nr_node_ids; i++) {
6073 printk(KERN_WARNING " ");
6074 for (j = 0; j < nr_node_ids; j++)
6075 printk(KERN_CONT "%02d ", node_distance(i,j));
6076 printk(KERN_CONT "\n");
6077 }
6078 printk(KERN_WARNING "\n");
6079 }
6080
6081 static bool find_numa_distance(int distance)
6082 {
6083 int i;
6084
6085 if (distance == node_distance(0, 0))
6086 return true;
6087
6088 for (i = 0; i < sched_domains_numa_levels; i++) {
6089 if (sched_domains_numa_distance[i] == distance)
6090 return true;
6091 }
6092
6093 return false;
6094 }
6095
6096 static void sched_init_numa(void)
6097 {
6098 int next_distance, curr_distance = node_distance(0, 0);
6099 struct sched_domain_topology_level *tl;
6100 int level = 0;
6101 int i, j, k;
6102
6103 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6104 if (!sched_domains_numa_distance)
6105 return;
6106
6107 /*
6108 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6109 * unique distances in the node_distance() table.
6110 *
6111 * Assumes node_distance(0,j) includes all distances in
6112 * node_distance(i,j) in order to avoid cubic time.
6113 */
6114 next_distance = curr_distance;
6115 for (i = 0; i < nr_node_ids; i++) {
6116 for (j = 0; j < nr_node_ids; j++) {
6117 for (k = 0; k < nr_node_ids; k++) {
6118 int distance = node_distance(i, k);
6119
6120 if (distance > curr_distance &&
6121 (distance < next_distance ||
6122 next_distance == curr_distance))
6123 next_distance = distance;
6124
6125 /*
6126 * While not a strong assumption it would be nice to know
6127 * about cases where if node A is connected to B, B is not
6128 * equally connected to A.
6129 */
6130 if (sched_debug() && node_distance(k, i) != distance)
6131 sched_numa_warn("Node-distance not symmetric");
6132
6133 if (sched_debug() && i && !find_numa_distance(distance))
6134 sched_numa_warn("Node-0 not representative");
6135 }
6136 if (next_distance != curr_distance) {
6137 sched_domains_numa_distance[level++] = next_distance;
6138 sched_domains_numa_levels = level;
6139 curr_distance = next_distance;
6140 } else break;
6141 }
6142
6143 /*
6144 * In case of sched_debug() we verify the above assumption.
6145 */
6146 if (!sched_debug())
6147 break;
6148 }
6149 /*
6150 * 'level' contains the number of unique distances, excluding the
6151 * identity distance node_distance(i,i).
6152 *
6153 * The sched_domains_nume_distance[] array includes the actual distance
6154 * numbers.
6155 */
6156
6157 /*
6158 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6159 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6160 * the array will contain less then 'level' members. This could be
6161 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6162 * in other functions.
6163 *
6164 * We reset it to 'level' at the end of this function.
6165 */
6166 sched_domains_numa_levels = 0;
6167
6168 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6169 if (!sched_domains_numa_masks)
6170 return;
6171
6172 /*
6173 * Now for each level, construct a mask per node which contains all
6174 * cpus of nodes that are that many hops away from us.
6175 */
6176 for (i = 0; i < level; i++) {
6177 sched_domains_numa_masks[i] =
6178 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6179 if (!sched_domains_numa_masks[i])
6180 return;
6181
6182 for (j = 0; j < nr_node_ids; j++) {
6183 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6184 if (!mask)
6185 return;
6186
6187 sched_domains_numa_masks[i][j] = mask;
6188
6189 for (k = 0; k < nr_node_ids; k++) {
6190 if (node_distance(j, k) > sched_domains_numa_distance[i])
6191 continue;
6192
6193 cpumask_or(mask, mask, cpumask_of_node(k));
6194 }
6195 }
6196 }
6197
6198 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6199 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6200 if (!tl)
6201 return;
6202
6203 /*
6204 * Copy the default topology bits..
6205 */
6206 for (i = 0; default_topology[i].init; i++)
6207 tl[i] = default_topology[i];
6208
6209 /*
6210 * .. and append 'j' levels of NUMA goodness.
6211 */
6212 for (j = 0; j < level; i++, j++) {
6213 tl[i] = (struct sched_domain_topology_level){
6214 .init = sd_numa_init,
6215 .mask = sd_numa_mask,
6216 .flags = SDTL_OVERLAP,
6217 .numa_level = j,
6218 };
6219 }
6220
6221 sched_domain_topology = tl;
6222
6223 sched_domains_numa_levels = level;
6224 }
6225
6226 static void sched_domains_numa_masks_set(int cpu)
6227 {
6228 int i, j;
6229 int node = cpu_to_node(cpu);
6230
6231 for (i = 0; i < sched_domains_numa_levels; i++) {
6232 for (j = 0; j < nr_node_ids; j++) {
6233 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6234 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6235 }
6236 }
6237 }
6238
6239 static void sched_domains_numa_masks_clear(int cpu)
6240 {
6241 int i, j;
6242 for (i = 0; i < sched_domains_numa_levels; i++) {
6243 for (j = 0; j < nr_node_ids; j++)
6244 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6245 }
6246 }
6247
6248 /*
6249 * Update sched_domains_numa_masks[level][node] array when new cpus
6250 * are onlined.
6251 */
6252 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6253 unsigned long action,
6254 void *hcpu)
6255 {
6256 int cpu = (long)hcpu;
6257
6258 switch (action & ~CPU_TASKS_FROZEN) {
6259 case CPU_ONLINE:
6260 sched_domains_numa_masks_set(cpu);
6261 break;
6262
6263 case CPU_DEAD:
6264 sched_domains_numa_masks_clear(cpu);
6265 break;
6266
6267 default:
6268 return NOTIFY_DONE;
6269 }
6270
6271 return NOTIFY_OK;
6272 }
6273 #else
6274 static inline void sched_init_numa(void)
6275 {
6276 }
6277
6278 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6279 unsigned long action,
6280 void *hcpu)
6281 {
6282 return 0;
6283 }
6284 #endif /* CONFIG_NUMA */
6285
6286 static int __sdt_alloc(const struct cpumask *cpu_map)
6287 {
6288 struct sched_domain_topology_level *tl;
6289 int j;
6290
6291 for (tl = sched_domain_topology; tl->init; tl++) {
6292 struct sd_data *sdd = &tl->data;
6293
6294 sdd->sd = alloc_percpu(struct sched_domain *);
6295 if (!sdd->sd)
6296 return -ENOMEM;
6297
6298 sdd->sg = alloc_percpu(struct sched_group *);
6299 if (!sdd->sg)
6300 return -ENOMEM;
6301
6302 sdd->sgp = alloc_percpu(struct sched_group_power *);
6303 if (!sdd->sgp)
6304 return -ENOMEM;
6305
6306 for_each_cpu(j, cpu_map) {
6307 struct sched_domain *sd;
6308 struct sched_group *sg;
6309 struct sched_group_power *sgp;
6310
6311 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6312 GFP_KERNEL, cpu_to_node(j));
6313 if (!sd)
6314 return -ENOMEM;
6315
6316 *per_cpu_ptr(sdd->sd, j) = sd;
6317
6318 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6319 GFP_KERNEL, cpu_to_node(j));
6320 if (!sg)
6321 return -ENOMEM;
6322
6323 sg->next = sg;
6324
6325 *per_cpu_ptr(sdd->sg, j) = sg;
6326
6327 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6328 GFP_KERNEL, cpu_to_node(j));
6329 if (!sgp)
6330 return -ENOMEM;
6331
6332 *per_cpu_ptr(sdd->sgp, j) = sgp;
6333 }
6334 }
6335
6336 return 0;
6337 }
6338
6339 static void __sdt_free(const struct cpumask *cpu_map)
6340 {
6341 struct sched_domain_topology_level *tl;
6342 int j;
6343
6344 for (tl = sched_domain_topology; tl->init; tl++) {
6345 struct sd_data *sdd = &tl->data;
6346
6347 for_each_cpu(j, cpu_map) {
6348 struct sched_domain *sd;
6349
6350 if (sdd->sd) {
6351 sd = *per_cpu_ptr(sdd->sd, j);
6352 if (sd && (sd->flags & SD_OVERLAP))
6353 free_sched_groups(sd->groups, 0);
6354 kfree(*per_cpu_ptr(sdd->sd, j));
6355 }
6356
6357 if (sdd->sg)
6358 kfree(*per_cpu_ptr(sdd->sg, j));
6359 if (sdd->sgp)
6360 kfree(*per_cpu_ptr(sdd->sgp, j));
6361 }
6362 free_percpu(sdd->sd);
6363 sdd->sd = NULL;
6364 free_percpu(sdd->sg);
6365 sdd->sg = NULL;
6366 free_percpu(sdd->sgp);
6367 sdd->sgp = NULL;
6368 }
6369 }
6370
6371 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6372 struct s_data *d, const struct cpumask *cpu_map,
6373 struct sched_domain_attr *attr, struct sched_domain *child,
6374 int cpu)
6375 {
6376 struct sched_domain *sd = tl->init(tl, cpu);
6377 if (!sd)
6378 return child;
6379
6380 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6381 if (child) {
6382 sd->level = child->level + 1;
6383 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6384 child->parent = sd;
6385 }
6386 sd->child = child;
6387 set_domain_attribute(sd, attr);
6388
6389 return sd;
6390 }
6391
6392 /*
6393 * Build sched domains for a given set of cpus and attach the sched domains
6394 * to the individual cpus
6395 */
6396 static int build_sched_domains(const struct cpumask *cpu_map,
6397 struct sched_domain_attr *attr)
6398 {
6399 enum s_alloc alloc_state = sa_none;
6400 struct sched_domain *sd;
6401 struct s_data d;
6402 int i, ret = -ENOMEM;
6403
6404 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6405 if (alloc_state != sa_rootdomain)
6406 goto error;
6407
6408 /* Set up domains for cpus specified by the cpu_map. */
6409 for_each_cpu(i, cpu_map) {
6410 struct sched_domain_topology_level *tl;
6411
6412 sd = NULL;
6413 for (tl = sched_domain_topology; tl->init; tl++) {
6414 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6415 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6416 sd->flags |= SD_OVERLAP;
6417 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6418 break;
6419 }
6420
6421 while (sd->child)
6422 sd = sd->child;
6423
6424 *per_cpu_ptr(d.sd, i) = sd;
6425 }
6426
6427 /* Build the groups for the domains */
6428 for_each_cpu(i, cpu_map) {
6429 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6430 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6431 if (sd->flags & SD_OVERLAP) {
6432 if (build_overlap_sched_groups(sd, i))
6433 goto error;
6434 } else {
6435 if (build_sched_groups(sd, i))
6436 goto error;
6437 }
6438 }
6439 }
6440
6441 /* Calculate CPU power for physical packages and nodes */
6442 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6443 if (!cpumask_test_cpu(i, cpu_map))
6444 continue;
6445
6446 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6447 claim_allocations(i, sd);
6448 init_sched_groups_power(i, sd);
6449 }
6450 }
6451
6452 /* Attach the domains */
6453 rcu_read_lock();
6454 for_each_cpu(i, cpu_map) {
6455 sd = *per_cpu_ptr(d.sd, i);
6456 cpu_attach_domain(sd, d.rd, i);
6457 }
6458 rcu_read_unlock();
6459
6460 ret = 0;
6461 error:
6462 __free_domain_allocs(&d, alloc_state, cpu_map);
6463 return ret;
6464 }
6465
6466 static cpumask_var_t *doms_cur; /* current sched domains */
6467 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6468 static struct sched_domain_attr *dattr_cur;
6469 /* attribues of custom domains in 'doms_cur' */
6470
6471 /*
6472 * Special case: If a kmalloc of a doms_cur partition (array of
6473 * cpumask) fails, then fallback to a single sched domain,
6474 * as determined by the single cpumask fallback_doms.
6475 */
6476 static cpumask_var_t fallback_doms;
6477
6478 /*
6479 * arch_update_cpu_topology lets virtualized architectures update the
6480 * cpu core maps. It is supposed to return 1 if the topology changed
6481 * or 0 if it stayed the same.
6482 */
6483 int __attribute__((weak)) arch_update_cpu_topology(void)
6484 {
6485 return 0;
6486 }
6487
6488 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6489 {
6490 int i;
6491 cpumask_var_t *doms;
6492
6493 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6494 if (!doms)
6495 return NULL;
6496 for (i = 0; i < ndoms; i++) {
6497 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6498 free_sched_domains(doms, i);
6499 return NULL;
6500 }
6501 }
6502 return doms;
6503 }
6504
6505 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6506 {
6507 unsigned int i;
6508 for (i = 0; i < ndoms; i++)
6509 free_cpumask_var(doms[i]);
6510 kfree(doms);
6511 }
6512
6513 /*
6514 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6515 * For now this just excludes isolated cpus, but could be used to
6516 * exclude other special cases in the future.
6517 */
6518 static int init_sched_domains(const struct cpumask *cpu_map)
6519 {
6520 int err;
6521
6522 arch_update_cpu_topology();
6523 ndoms_cur = 1;
6524 doms_cur = alloc_sched_domains(ndoms_cur);
6525 if (!doms_cur)
6526 doms_cur = &fallback_doms;
6527 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6528 err = build_sched_domains(doms_cur[0], NULL);
6529 register_sched_domain_sysctl();
6530
6531 return err;
6532 }
6533
6534 /*
6535 * Detach sched domains from a group of cpus specified in cpu_map
6536 * These cpus will now be attached to the NULL domain
6537 */
6538 static void detach_destroy_domains(const struct cpumask *cpu_map)
6539 {
6540 int i;
6541
6542 rcu_read_lock();
6543 for_each_cpu(i, cpu_map)
6544 cpu_attach_domain(NULL, &def_root_domain, i);
6545 rcu_read_unlock();
6546 }
6547
6548 /* handle null as "default" */
6549 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6550 struct sched_domain_attr *new, int idx_new)
6551 {
6552 struct sched_domain_attr tmp;
6553
6554 /* fast path */
6555 if (!new && !cur)
6556 return 1;
6557
6558 tmp = SD_ATTR_INIT;
6559 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6560 new ? (new + idx_new) : &tmp,
6561 sizeof(struct sched_domain_attr));
6562 }
6563
6564 /*
6565 * Partition sched domains as specified by the 'ndoms_new'
6566 * cpumasks in the array doms_new[] of cpumasks. This compares
6567 * doms_new[] to the current sched domain partitioning, doms_cur[].
6568 * It destroys each deleted domain and builds each new domain.
6569 *
6570 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6571 * The masks don't intersect (don't overlap.) We should setup one
6572 * sched domain for each mask. CPUs not in any of the cpumasks will
6573 * not be load balanced. If the same cpumask appears both in the
6574 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6575 * it as it is.
6576 *
6577 * The passed in 'doms_new' should be allocated using
6578 * alloc_sched_domains. This routine takes ownership of it and will
6579 * free_sched_domains it when done with it. If the caller failed the
6580 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6581 * and partition_sched_domains() will fallback to the single partition
6582 * 'fallback_doms', it also forces the domains to be rebuilt.
6583 *
6584 * If doms_new == NULL it will be replaced with cpu_online_mask.
6585 * ndoms_new == 0 is a special case for destroying existing domains,
6586 * and it will not create the default domain.
6587 *
6588 * Call with hotplug lock held
6589 */
6590 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6591 struct sched_domain_attr *dattr_new)
6592 {
6593 int i, j, n;
6594 int new_topology;
6595
6596 mutex_lock(&sched_domains_mutex);
6597
6598 /* always unregister in case we don't destroy any domains */
6599 unregister_sched_domain_sysctl();
6600
6601 /* Let architecture update cpu core mappings. */
6602 new_topology = arch_update_cpu_topology();
6603
6604 n = doms_new ? ndoms_new : 0;
6605
6606 /* Destroy deleted domains */
6607 for (i = 0; i < ndoms_cur; i++) {
6608 for (j = 0; j < n && !new_topology; j++) {
6609 if (cpumask_equal(doms_cur[i], doms_new[j])
6610 && dattrs_equal(dattr_cur, i, dattr_new, j))
6611 goto match1;
6612 }
6613 /* no match - a current sched domain not in new doms_new[] */
6614 detach_destroy_domains(doms_cur[i]);
6615 match1:
6616 ;
6617 }
6618
6619 if (doms_new == NULL) {
6620 ndoms_cur = 0;
6621 doms_new = &fallback_doms;
6622 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6623 WARN_ON_ONCE(dattr_new);
6624 }
6625
6626 /* Build new domains */
6627 for (i = 0; i < ndoms_new; i++) {
6628 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6629 if (cpumask_equal(doms_new[i], doms_cur[j])
6630 && dattrs_equal(dattr_new, i, dattr_cur, j))
6631 goto match2;
6632 }
6633 /* no match - add a new doms_new */
6634 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6635 match2:
6636 ;
6637 }
6638
6639 /* Remember the new sched domains */
6640 if (doms_cur != &fallback_doms)
6641 free_sched_domains(doms_cur, ndoms_cur);
6642 kfree(dattr_cur); /* kfree(NULL) is safe */
6643 doms_cur = doms_new;
6644 dattr_cur = dattr_new;
6645 ndoms_cur = ndoms_new;
6646
6647 register_sched_domain_sysctl();
6648
6649 mutex_unlock(&sched_domains_mutex);
6650 }
6651
6652 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6653
6654 /*
6655 * Update cpusets according to cpu_active mask. If cpusets are
6656 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6657 * around partition_sched_domains().
6658 *
6659 * If we come here as part of a suspend/resume, don't touch cpusets because we
6660 * want to restore it back to its original state upon resume anyway.
6661 */
6662 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6663 void *hcpu)
6664 {
6665 switch (action) {
6666 case CPU_ONLINE_FROZEN:
6667 case CPU_DOWN_FAILED_FROZEN:
6668
6669 /*
6670 * num_cpus_frozen tracks how many CPUs are involved in suspend
6671 * resume sequence. As long as this is not the last online
6672 * operation in the resume sequence, just build a single sched
6673 * domain, ignoring cpusets.
6674 */
6675 num_cpus_frozen--;
6676 if (likely(num_cpus_frozen)) {
6677 partition_sched_domains(1, NULL, NULL);
6678 break;
6679 }
6680
6681 /*
6682 * This is the last CPU online operation. So fall through and
6683 * restore the original sched domains by considering the
6684 * cpuset configurations.
6685 */
6686
6687 case CPU_ONLINE:
6688 case CPU_DOWN_FAILED:
6689 cpuset_update_active_cpus(true);
6690 break;
6691 default:
6692 return NOTIFY_DONE;
6693 }
6694 return NOTIFY_OK;
6695 }
6696
6697 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6698 void *hcpu)
6699 {
6700 switch (action) {
6701 case CPU_DOWN_PREPARE:
6702 cpuset_update_active_cpus(false);
6703 break;
6704 case CPU_DOWN_PREPARE_FROZEN:
6705 num_cpus_frozen++;
6706 partition_sched_domains(1, NULL, NULL);
6707 break;
6708 default:
6709 return NOTIFY_DONE;
6710 }
6711 return NOTIFY_OK;
6712 }
6713
6714 void __init sched_init_smp(void)
6715 {
6716 cpumask_var_t non_isolated_cpus;
6717
6718 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6719 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6720
6721 sched_init_numa();
6722
6723 get_online_cpus();
6724 mutex_lock(&sched_domains_mutex);
6725 init_sched_domains(cpu_active_mask);
6726 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6727 if (cpumask_empty(non_isolated_cpus))
6728 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6729 mutex_unlock(&sched_domains_mutex);
6730 put_online_cpus();
6731
6732 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6733 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6734 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6735
6736 /* RT runtime code needs to handle some hotplug events */
6737 hotcpu_notifier(update_runtime, 0);
6738
6739 init_hrtick();
6740
6741 /* Move init over to a non-isolated CPU */
6742 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6743 BUG();
6744 sched_init_granularity();
6745 free_cpumask_var(non_isolated_cpus);
6746
6747 init_sched_rt_class();
6748 }
6749 #else
6750 void __init sched_init_smp(void)
6751 {
6752 sched_init_granularity();
6753 }
6754 #endif /* CONFIG_SMP */
6755
6756 const_debug unsigned int sysctl_timer_migration = 1;
6757
6758 int in_sched_functions(unsigned long addr)
6759 {
6760 return in_lock_functions(addr) ||
6761 (addr >= (unsigned long)__sched_text_start
6762 && addr < (unsigned long)__sched_text_end);
6763 }
6764
6765 #ifdef CONFIG_CGROUP_SCHED
6766 struct task_group root_task_group;
6767 LIST_HEAD(task_groups);
6768 #endif
6769
6770 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6771
6772 void __init sched_init(void)
6773 {
6774 int i, j;
6775 unsigned long alloc_size = 0, ptr;
6776
6777 #ifdef CONFIG_FAIR_GROUP_SCHED
6778 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6779 #endif
6780 #ifdef CONFIG_RT_GROUP_SCHED
6781 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6782 #endif
6783 #ifdef CONFIG_CPUMASK_OFFSTACK
6784 alloc_size += num_possible_cpus() * cpumask_size();
6785 #endif
6786 if (alloc_size) {
6787 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6788
6789 #ifdef CONFIG_FAIR_GROUP_SCHED
6790 root_task_group.se = (struct sched_entity **)ptr;
6791 ptr += nr_cpu_ids * sizeof(void **);
6792
6793 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6794 ptr += nr_cpu_ids * sizeof(void **);
6795
6796 #endif /* CONFIG_FAIR_GROUP_SCHED */
6797 #ifdef CONFIG_RT_GROUP_SCHED
6798 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6799 ptr += nr_cpu_ids * sizeof(void **);
6800
6801 root_task_group.rt_rq = (struct rt_rq **)ptr;
6802 ptr += nr_cpu_ids * sizeof(void **);
6803
6804 #endif /* CONFIG_RT_GROUP_SCHED */
6805 #ifdef CONFIG_CPUMASK_OFFSTACK
6806 for_each_possible_cpu(i) {
6807 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6808 ptr += cpumask_size();
6809 }
6810 #endif /* CONFIG_CPUMASK_OFFSTACK */
6811 }
6812
6813 #ifdef CONFIG_SMP
6814 init_defrootdomain();
6815 #endif
6816
6817 init_rt_bandwidth(&def_rt_bandwidth,
6818 global_rt_period(), global_rt_runtime());
6819
6820 #ifdef CONFIG_RT_GROUP_SCHED
6821 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6822 global_rt_period(), global_rt_runtime());
6823 #endif /* CONFIG_RT_GROUP_SCHED */
6824
6825 #ifdef CONFIG_CGROUP_SCHED
6826 list_add(&root_task_group.list, &task_groups);
6827 INIT_LIST_HEAD(&root_task_group.children);
6828 INIT_LIST_HEAD(&root_task_group.siblings);
6829 autogroup_init(&init_task);
6830
6831 #endif /* CONFIG_CGROUP_SCHED */
6832
6833 #ifdef CONFIG_CGROUP_CPUACCT
6834 root_cpuacct.cpustat = &kernel_cpustat;
6835 root_cpuacct.cpuusage = alloc_percpu(u64);
6836 /* Too early, not expected to fail */
6837 BUG_ON(!root_cpuacct.cpuusage);
6838 #endif
6839 for_each_possible_cpu(i) {
6840 struct rq *rq;
6841
6842 rq = cpu_rq(i);
6843 raw_spin_lock_init(&rq->lock);
6844 rq->nr_running = 0;
6845 rq->calc_load_active = 0;
6846 rq->calc_load_update = jiffies + LOAD_FREQ;
6847 init_cfs_rq(&rq->cfs);
6848 init_rt_rq(&rq->rt, rq);
6849 #ifdef CONFIG_FAIR_GROUP_SCHED
6850 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6851 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6852 /*
6853 * How much cpu bandwidth does root_task_group get?
6854 *
6855 * In case of task-groups formed thr' the cgroup filesystem, it
6856 * gets 100% of the cpu resources in the system. This overall
6857 * system cpu resource is divided among the tasks of
6858 * root_task_group and its child task-groups in a fair manner,
6859 * based on each entity's (task or task-group's) weight
6860 * (se->load.weight).
6861 *
6862 * In other words, if root_task_group has 10 tasks of weight
6863 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6864 * then A0's share of the cpu resource is:
6865 *
6866 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6867 *
6868 * We achieve this by letting root_task_group's tasks sit
6869 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6870 */
6871 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6872 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6873 #endif /* CONFIG_FAIR_GROUP_SCHED */
6874
6875 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6876 #ifdef CONFIG_RT_GROUP_SCHED
6877 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6878 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6879 #endif
6880
6881 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6882 rq->cpu_load[j] = 0;
6883
6884 rq->last_load_update_tick = jiffies;
6885
6886 #ifdef CONFIG_SMP
6887 rq->sd = NULL;
6888 rq->rd = NULL;
6889 rq->cpu_power = SCHED_POWER_SCALE;
6890 rq->post_schedule = 0;
6891 rq->active_balance = 0;
6892 rq->next_balance = jiffies;
6893 rq->push_cpu = 0;
6894 rq->cpu = i;
6895 rq->online = 0;
6896 rq->idle_stamp = 0;
6897 rq->avg_idle = 2*sysctl_sched_migration_cost;
6898
6899 INIT_LIST_HEAD(&rq->cfs_tasks);
6900
6901 rq_attach_root(rq, &def_root_domain);
6902 #ifdef CONFIG_NO_HZ
6903 rq->nohz_flags = 0;
6904 #endif
6905 #endif
6906 init_rq_hrtick(rq);
6907 atomic_set(&rq->nr_iowait, 0);
6908 }
6909
6910 set_load_weight(&init_task);
6911
6912 #ifdef CONFIG_PREEMPT_NOTIFIERS
6913 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6914 #endif
6915
6916 #ifdef CONFIG_RT_MUTEXES
6917 plist_head_init(&init_task.pi_waiters);
6918 #endif
6919
6920 /*
6921 * The boot idle thread does lazy MMU switching as well:
6922 */
6923 atomic_inc(&init_mm.mm_count);
6924 enter_lazy_tlb(&init_mm, current);
6925
6926 /*
6927 * Make us the idle thread. Technically, schedule() should not be
6928 * called from this thread, however somewhere below it might be,
6929 * but because we are the idle thread, we just pick up running again
6930 * when this runqueue becomes "idle".
6931 */
6932 init_idle(current, smp_processor_id());
6933
6934 calc_load_update = jiffies + LOAD_FREQ;
6935
6936 /*
6937 * During early bootup we pretend to be a normal task:
6938 */
6939 current->sched_class = &fair_sched_class;
6940
6941 #ifdef CONFIG_SMP
6942 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6943 /* May be allocated at isolcpus cmdline parse time */
6944 if (cpu_isolated_map == NULL)
6945 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6946 idle_thread_set_boot_cpu();
6947 #endif
6948 init_sched_fair_class();
6949
6950 scheduler_running = 1;
6951 }
6952
6953 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6954 static inline int preempt_count_equals(int preempt_offset)
6955 {
6956 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6957
6958 return (nested == preempt_offset);
6959 }
6960
6961 void __might_sleep(const char *file, int line, int preempt_offset)
6962 {
6963 static unsigned long prev_jiffy; /* ratelimiting */
6964
6965 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6966 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6967 system_state != SYSTEM_RUNNING || oops_in_progress)
6968 return;
6969 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6970 return;
6971 prev_jiffy = jiffies;
6972
6973 printk(KERN_ERR
6974 "BUG: sleeping function called from invalid context at %s:%d\n",
6975 file, line);
6976 printk(KERN_ERR
6977 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6978 in_atomic(), irqs_disabled(),
6979 current->pid, current->comm);
6980
6981 debug_show_held_locks(current);
6982 if (irqs_disabled())
6983 print_irqtrace_events(current);
6984 dump_stack();
6985 }
6986 EXPORT_SYMBOL(__might_sleep);
6987 #endif
6988
6989 #ifdef CONFIG_MAGIC_SYSRQ
6990 static void normalize_task(struct rq *rq, struct task_struct *p)
6991 {
6992 const struct sched_class *prev_class = p->sched_class;
6993 int old_prio = p->prio;
6994 int on_rq;
6995
6996 on_rq = p->on_rq;
6997 if (on_rq)
6998 dequeue_task(rq, p, 0);
6999 __setscheduler(rq, p, SCHED_NORMAL, 0);
7000 if (on_rq) {
7001 enqueue_task(rq, p, 0);
7002 resched_task(rq->curr);
7003 }
7004
7005 check_class_changed(rq, p, prev_class, old_prio);
7006 }
7007
7008 void normalize_rt_tasks(void)
7009 {
7010 struct task_struct *g, *p;
7011 unsigned long flags;
7012 struct rq *rq;
7013
7014 read_lock_irqsave(&tasklist_lock, flags);
7015 do_each_thread(g, p) {
7016 /*
7017 * Only normalize user tasks:
7018 */
7019 if (!p->mm)
7020 continue;
7021
7022 p->se.exec_start = 0;
7023 #ifdef CONFIG_SCHEDSTATS
7024 p->se.statistics.wait_start = 0;
7025 p->se.statistics.sleep_start = 0;
7026 p->se.statistics.block_start = 0;
7027 #endif
7028
7029 if (!rt_task(p)) {
7030 /*
7031 * Renice negative nice level userspace
7032 * tasks back to 0:
7033 */
7034 if (TASK_NICE(p) < 0 && p->mm)
7035 set_user_nice(p, 0);
7036 continue;
7037 }
7038
7039 raw_spin_lock(&p->pi_lock);
7040 rq = __task_rq_lock(p);
7041
7042 normalize_task(rq, p);
7043
7044 __task_rq_unlock(rq);
7045 raw_spin_unlock(&p->pi_lock);
7046 } while_each_thread(g, p);
7047
7048 read_unlock_irqrestore(&tasklist_lock, flags);
7049 }
7050
7051 #endif /* CONFIG_MAGIC_SYSRQ */
7052
7053 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7054 /*
7055 * These functions are only useful for the IA64 MCA handling, or kdb.
7056 *
7057 * They can only be called when the whole system has been
7058 * stopped - every CPU needs to be quiescent, and no scheduling
7059 * activity can take place. Using them for anything else would
7060 * be a serious bug, and as a result, they aren't even visible
7061 * under any other configuration.
7062 */
7063
7064 /**
7065 * curr_task - return the current task for a given cpu.
7066 * @cpu: the processor in question.
7067 *
7068 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7069 */
7070 struct task_struct *curr_task(int cpu)
7071 {
7072 return cpu_curr(cpu);
7073 }
7074
7075 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7076
7077 #ifdef CONFIG_IA64
7078 /**
7079 * set_curr_task - set the current task for a given cpu.
7080 * @cpu: the processor in question.
7081 * @p: the task pointer to set.
7082 *
7083 * Description: This function must only be used when non-maskable interrupts
7084 * are serviced on a separate stack. It allows the architecture to switch the
7085 * notion of the current task on a cpu in a non-blocking manner. This function
7086 * must be called with all CPU's synchronized, and interrupts disabled, the
7087 * and caller must save the original value of the current task (see
7088 * curr_task() above) and restore that value before reenabling interrupts and
7089 * re-starting the system.
7090 *
7091 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7092 */
7093 void set_curr_task(int cpu, struct task_struct *p)
7094 {
7095 cpu_curr(cpu) = p;
7096 }
7097
7098 #endif
7099
7100 #ifdef CONFIG_CGROUP_SCHED
7101 /* task_group_lock serializes the addition/removal of task groups */
7102 static DEFINE_SPINLOCK(task_group_lock);
7103
7104 static void free_sched_group(struct task_group *tg)
7105 {
7106 free_fair_sched_group(tg);
7107 free_rt_sched_group(tg);
7108 autogroup_free(tg);
7109 kfree(tg);
7110 }
7111
7112 /* allocate runqueue etc for a new task group */
7113 struct task_group *sched_create_group(struct task_group *parent)
7114 {
7115 struct task_group *tg;
7116 unsigned long flags;
7117
7118 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7119 if (!tg)
7120 return ERR_PTR(-ENOMEM);
7121
7122 if (!alloc_fair_sched_group(tg, parent))
7123 goto err;
7124
7125 if (!alloc_rt_sched_group(tg, parent))
7126 goto err;
7127
7128 spin_lock_irqsave(&task_group_lock, flags);
7129 list_add_rcu(&tg->list, &task_groups);
7130
7131 WARN_ON(!parent); /* root should already exist */
7132
7133 tg->parent = parent;
7134 INIT_LIST_HEAD(&tg->children);
7135 list_add_rcu(&tg->siblings, &parent->children);
7136 spin_unlock_irqrestore(&task_group_lock, flags);
7137
7138 return tg;
7139
7140 err:
7141 free_sched_group(tg);
7142 return ERR_PTR(-ENOMEM);
7143 }
7144
7145 /* rcu callback to free various structures associated with a task group */
7146 static void free_sched_group_rcu(struct rcu_head *rhp)
7147 {
7148 /* now it should be safe to free those cfs_rqs */
7149 free_sched_group(container_of(rhp, struct task_group, rcu));
7150 }
7151
7152 /* Destroy runqueue etc associated with a task group */
7153 void sched_destroy_group(struct task_group *tg)
7154 {
7155 unsigned long flags;
7156 int i;
7157
7158 /* end participation in shares distribution */
7159 for_each_possible_cpu(i)
7160 unregister_fair_sched_group(tg, i);
7161
7162 spin_lock_irqsave(&task_group_lock, flags);
7163 list_del_rcu(&tg->list);
7164 list_del_rcu(&tg->siblings);
7165 spin_unlock_irqrestore(&task_group_lock, flags);
7166
7167 /* wait for possible concurrent references to cfs_rqs complete */
7168 call_rcu(&tg->rcu, free_sched_group_rcu);
7169 }
7170
7171 /* change task's runqueue when it moves between groups.
7172 * The caller of this function should have put the task in its new group
7173 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7174 * reflect its new group.
7175 */
7176 void sched_move_task(struct task_struct *tsk)
7177 {
7178 struct task_group *tg;
7179 int on_rq, running;
7180 unsigned long flags;
7181 struct rq *rq;
7182
7183 rq = task_rq_lock(tsk, &flags);
7184
7185 running = task_current(rq, tsk);
7186 on_rq = tsk->on_rq;
7187
7188 if (on_rq)
7189 dequeue_task(rq, tsk, 0);
7190 if (unlikely(running))
7191 tsk->sched_class->put_prev_task(rq, tsk);
7192
7193 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7194 lockdep_is_held(&tsk->sighand->siglock)),
7195 struct task_group, css);
7196 tg = autogroup_task_group(tsk, tg);
7197 tsk->sched_task_group = tg;
7198
7199 #ifdef CONFIG_FAIR_GROUP_SCHED
7200 if (tsk->sched_class->task_move_group)
7201 tsk->sched_class->task_move_group(tsk, on_rq);
7202 else
7203 #endif
7204 set_task_rq(tsk, task_cpu(tsk));
7205
7206 if (unlikely(running))
7207 tsk->sched_class->set_curr_task(rq);
7208 if (on_rq)
7209 enqueue_task(rq, tsk, 0);
7210
7211 task_rq_unlock(rq, tsk, &flags);
7212 }
7213 #endif /* CONFIG_CGROUP_SCHED */
7214
7215 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7216 static unsigned long to_ratio(u64 period, u64 runtime)
7217 {
7218 if (runtime == RUNTIME_INF)
7219 return 1ULL << 20;
7220
7221 return div64_u64(runtime << 20, period);
7222 }
7223 #endif
7224
7225 #ifdef CONFIG_RT_GROUP_SCHED
7226 /*
7227 * Ensure that the real time constraints are schedulable.
7228 */
7229 static DEFINE_MUTEX(rt_constraints_mutex);
7230
7231 /* Must be called with tasklist_lock held */
7232 static inline int tg_has_rt_tasks(struct task_group *tg)
7233 {
7234 struct task_struct *g, *p;
7235
7236 do_each_thread(g, p) {
7237 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7238 return 1;
7239 } while_each_thread(g, p);
7240
7241 return 0;
7242 }
7243
7244 struct rt_schedulable_data {
7245 struct task_group *tg;
7246 u64 rt_period;
7247 u64 rt_runtime;
7248 };
7249
7250 static int tg_rt_schedulable(struct task_group *tg, void *data)
7251 {
7252 struct rt_schedulable_data *d = data;
7253 struct task_group *child;
7254 unsigned long total, sum = 0;
7255 u64 period, runtime;
7256
7257 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7258 runtime = tg->rt_bandwidth.rt_runtime;
7259
7260 if (tg == d->tg) {
7261 period = d->rt_period;
7262 runtime = d->rt_runtime;
7263 }
7264
7265 /*
7266 * Cannot have more runtime than the period.
7267 */
7268 if (runtime > period && runtime != RUNTIME_INF)
7269 return -EINVAL;
7270
7271 /*
7272 * Ensure we don't starve existing RT tasks.
7273 */
7274 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7275 return -EBUSY;
7276
7277 total = to_ratio(period, runtime);
7278
7279 /*
7280 * Nobody can have more than the global setting allows.
7281 */
7282 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7283 return -EINVAL;
7284
7285 /*
7286 * The sum of our children's runtime should not exceed our own.
7287 */
7288 list_for_each_entry_rcu(child, &tg->children, siblings) {
7289 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7290 runtime = child->rt_bandwidth.rt_runtime;
7291
7292 if (child == d->tg) {
7293 period = d->rt_period;
7294 runtime = d->rt_runtime;
7295 }
7296
7297 sum += to_ratio(period, runtime);
7298 }
7299
7300 if (sum > total)
7301 return -EINVAL;
7302
7303 return 0;
7304 }
7305
7306 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7307 {
7308 int ret;
7309
7310 struct rt_schedulable_data data = {
7311 .tg = tg,
7312 .rt_period = period,
7313 .rt_runtime = runtime,
7314 };
7315
7316 rcu_read_lock();
7317 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7318 rcu_read_unlock();
7319
7320 return ret;
7321 }
7322
7323 static int tg_set_rt_bandwidth(struct task_group *tg,
7324 u64 rt_period, u64 rt_runtime)
7325 {
7326 int i, err = 0;
7327
7328 mutex_lock(&rt_constraints_mutex);
7329 read_lock(&tasklist_lock);
7330 err = __rt_schedulable(tg, rt_period, rt_runtime);
7331 if (err)
7332 goto unlock;
7333
7334 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7335 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7336 tg->rt_bandwidth.rt_runtime = rt_runtime;
7337
7338 for_each_possible_cpu(i) {
7339 struct rt_rq *rt_rq = tg->rt_rq[i];
7340
7341 raw_spin_lock(&rt_rq->rt_runtime_lock);
7342 rt_rq->rt_runtime = rt_runtime;
7343 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7344 }
7345 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7346 unlock:
7347 read_unlock(&tasklist_lock);
7348 mutex_unlock(&rt_constraints_mutex);
7349
7350 return err;
7351 }
7352
7353 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7354 {
7355 u64 rt_runtime, rt_period;
7356
7357 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7358 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7359 if (rt_runtime_us < 0)
7360 rt_runtime = RUNTIME_INF;
7361
7362 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7363 }
7364
7365 long sched_group_rt_runtime(struct task_group *tg)
7366 {
7367 u64 rt_runtime_us;
7368
7369 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7370 return -1;
7371
7372 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7373 do_div(rt_runtime_us, NSEC_PER_USEC);
7374 return rt_runtime_us;
7375 }
7376
7377 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7378 {
7379 u64 rt_runtime, rt_period;
7380
7381 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7382 rt_runtime = tg->rt_bandwidth.rt_runtime;
7383
7384 if (rt_period == 0)
7385 return -EINVAL;
7386
7387 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7388 }
7389
7390 long sched_group_rt_period(struct task_group *tg)
7391 {
7392 u64 rt_period_us;
7393
7394 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7395 do_div(rt_period_us, NSEC_PER_USEC);
7396 return rt_period_us;
7397 }
7398
7399 static int sched_rt_global_constraints(void)
7400 {
7401 u64 runtime, period;
7402 int ret = 0;
7403
7404 if (sysctl_sched_rt_period <= 0)
7405 return -EINVAL;
7406
7407 runtime = global_rt_runtime();
7408 period = global_rt_period();
7409
7410 /*
7411 * Sanity check on the sysctl variables.
7412 */
7413 if (runtime > period && runtime != RUNTIME_INF)
7414 return -EINVAL;
7415
7416 mutex_lock(&rt_constraints_mutex);
7417 read_lock(&tasklist_lock);
7418 ret = __rt_schedulable(NULL, 0, 0);
7419 read_unlock(&tasklist_lock);
7420 mutex_unlock(&rt_constraints_mutex);
7421
7422 return ret;
7423 }
7424
7425 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7426 {
7427 /* Don't accept realtime tasks when there is no way for them to run */
7428 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7429 return 0;
7430
7431 return 1;
7432 }
7433
7434 #else /* !CONFIG_RT_GROUP_SCHED */
7435 static int sched_rt_global_constraints(void)
7436 {
7437 unsigned long flags;
7438 int i;
7439
7440 if (sysctl_sched_rt_period <= 0)
7441 return -EINVAL;
7442
7443 /*
7444 * There's always some RT tasks in the root group
7445 * -- migration, kstopmachine etc..
7446 */
7447 if (sysctl_sched_rt_runtime == 0)
7448 return -EBUSY;
7449
7450 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7451 for_each_possible_cpu(i) {
7452 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7453
7454 raw_spin_lock(&rt_rq->rt_runtime_lock);
7455 rt_rq->rt_runtime = global_rt_runtime();
7456 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7457 }
7458 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7459
7460 return 0;
7461 }
7462 #endif /* CONFIG_RT_GROUP_SCHED */
7463
7464 int sched_rt_handler(struct ctl_table *table, int write,
7465 void __user *buffer, size_t *lenp,
7466 loff_t *ppos)
7467 {
7468 int ret;
7469 int old_period, old_runtime;
7470 static DEFINE_MUTEX(mutex);
7471
7472 mutex_lock(&mutex);
7473 old_period = sysctl_sched_rt_period;
7474 old_runtime = sysctl_sched_rt_runtime;
7475
7476 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7477
7478 if (!ret && write) {
7479 ret = sched_rt_global_constraints();
7480 if (ret) {
7481 sysctl_sched_rt_period = old_period;
7482 sysctl_sched_rt_runtime = old_runtime;
7483 } else {
7484 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7485 def_rt_bandwidth.rt_period =
7486 ns_to_ktime(global_rt_period());
7487 }
7488 }
7489 mutex_unlock(&mutex);
7490
7491 return ret;
7492 }
7493
7494 #ifdef CONFIG_CGROUP_SCHED
7495
7496 /* return corresponding task_group object of a cgroup */
7497 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7498 {
7499 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7500 struct task_group, css);
7501 }
7502
7503 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7504 {
7505 struct task_group *tg, *parent;
7506
7507 if (!cgrp->parent) {
7508 /* This is early initialization for the top cgroup */
7509 return &root_task_group.css;
7510 }
7511
7512 parent = cgroup_tg(cgrp->parent);
7513 tg = sched_create_group(parent);
7514 if (IS_ERR(tg))
7515 return ERR_PTR(-ENOMEM);
7516
7517 return &tg->css;
7518 }
7519
7520 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7521 {
7522 struct task_group *tg = cgroup_tg(cgrp);
7523
7524 sched_destroy_group(tg);
7525 }
7526
7527 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7528 struct cgroup_taskset *tset)
7529 {
7530 struct task_struct *task;
7531
7532 cgroup_taskset_for_each(task, cgrp, tset) {
7533 #ifdef CONFIG_RT_GROUP_SCHED
7534 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7535 return -EINVAL;
7536 #else
7537 /* We don't support RT-tasks being in separate groups */
7538 if (task->sched_class != &fair_sched_class)
7539 return -EINVAL;
7540 #endif
7541 }
7542 return 0;
7543 }
7544
7545 static void cpu_cgroup_attach(struct cgroup *cgrp,
7546 struct cgroup_taskset *tset)
7547 {
7548 struct task_struct *task;
7549
7550 cgroup_taskset_for_each(task, cgrp, tset)
7551 sched_move_task(task);
7552 }
7553
7554 static void
7555 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7556 struct task_struct *task)
7557 {
7558 /*
7559 * cgroup_exit() is called in the copy_process() failure path.
7560 * Ignore this case since the task hasn't ran yet, this avoids
7561 * trying to poke a half freed task state from generic code.
7562 */
7563 if (!(task->flags & PF_EXITING))
7564 return;
7565
7566 sched_move_task(task);
7567 }
7568
7569 #ifdef CONFIG_FAIR_GROUP_SCHED
7570 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7571 u64 shareval)
7572 {
7573 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7574 }
7575
7576 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7577 {
7578 struct task_group *tg = cgroup_tg(cgrp);
7579
7580 return (u64) scale_load_down(tg->shares);
7581 }
7582
7583 #ifdef CONFIG_CFS_BANDWIDTH
7584 static DEFINE_MUTEX(cfs_constraints_mutex);
7585
7586 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7587 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7588
7589 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7590
7591 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7592 {
7593 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7594 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7595
7596 if (tg == &root_task_group)
7597 return -EINVAL;
7598
7599 /*
7600 * Ensure we have at some amount of bandwidth every period. This is
7601 * to prevent reaching a state of large arrears when throttled via
7602 * entity_tick() resulting in prolonged exit starvation.
7603 */
7604 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7605 return -EINVAL;
7606
7607 /*
7608 * Likewise, bound things on the otherside by preventing insane quota
7609 * periods. This also allows us to normalize in computing quota
7610 * feasibility.
7611 */
7612 if (period > max_cfs_quota_period)
7613 return -EINVAL;
7614
7615 mutex_lock(&cfs_constraints_mutex);
7616 ret = __cfs_schedulable(tg, period, quota);
7617 if (ret)
7618 goto out_unlock;
7619
7620 runtime_enabled = quota != RUNTIME_INF;
7621 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7622 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7623 raw_spin_lock_irq(&cfs_b->lock);
7624 cfs_b->period = ns_to_ktime(period);
7625 cfs_b->quota = quota;
7626
7627 __refill_cfs_bandwidth_runtime(cfs_b);
7628 /* restart the period timer (if active) to handle new period expiry */
7629 if (runtime_enabled && cfs_b->timer_active) {
7630 /* force a reprogram */
7631 cfs_b->timer_active = 0;
7632 __start_cfs_bandwidth(cfs_b);
7633 }
7634 raw_spin_unlock_irq(&cfs_b->lock);
7635
7636 for_each_possible_cpu(i) {
7637 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7638 struct rq *rq = cfs_rq->rq;
7639
7640 raw_spin_lock_irq(&rq->lock);
7641 cfs_rq->runtime_enabled = runtime_enabled;
7642 cfs_rq->runtime_remaining = 0;
7643
7644 if (cfs_rq->throttled)
7645 unthrottle_cfs_rq(cfs_rq);
7646 raw_spin_unlock_irq(&rq->lock);
7647 }
7648 out_unlock:
7649 mutex_unlock(&cfs_constraints_mutex);
7650
7651 return ret;
7652 }
7653
7654 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7655 {
7656 u64 quota, period;
7657
7658 period = ktime_to_ns(tg->cfs_bandwidth.period);
7659 if (cfs_quota_us < 0)
7660 quota = RUNTIME_INF;
7661 else
7662 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7663
7664 return tg_set_cfs_bandwidth(tg, period, quota);
7665 }
7666
7667 long tg_get_cfs_quota(struct task_group *tg)
7668 {
7669 u64 quota_us;
7670
7671 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7672 return -1;
7673
7674 quota_us = tg->cfs_bandwidth.quota;
7675 do_div(quota_us, NSEC_PER_USEC);
7676
7677 return quota_us;
7678 }
7679
7680 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7681 {
7682 u64 quota, period;
7683
7684 period = (u64)cfs_period_us * NSEC_PER_USEC;
7685 quota = tg->cfs_bandwidth.quota;
7686
7687 return tg_set_cfs_bandwidth(tg, period, quota);
7688 }
7689
7690 long tg_get_cfs_period(struct task_group *tg)
7691 {
7692 u64 cfs_period_us;
7693
7694 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7695 do_div(cfs_period_us, NSEC_PER_USEC);
7696
7697 return cfs_period_us;
7698 }
7699
7700 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7701 {
7702 return tg_get_cfs_quota(cgroup_tg(cgrp));
7703 }
7704
7705 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7706 s64 cfs_quota_us)
7707 {
7708 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7709 }
7710
7711 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7712 {
7713 return tg_get_cfs_period(cgroup_tg(cgrp));
7714 }
7715
7716 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7717 u64 cfs_period_us)
7718 {
7719 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7720 }
7721
7722 struct cfs_schedulable_data {
7723 struct task_group *tg;
7724 u64 period, quota;
7725 };
7726
7727 /*
7728 * normalize group quota/period to be quota/max_period
7729 * note: units are usecs
7730 */
7731 static u64 normalize_cfs_quota(struct task_group *tg,
7732 struct cfs_schedulable_data *d)
7733 {
7734 u64 quota, period;
7735
7736 if (tg == d->tg) {
7737 period = d->period;
7738 quota = d->quota;
7739 } else {
7740 period = tg_get_cfs_period(tg);
7741 quota = tg_get_cfs_quota(tg);
7742 }
7743
7744 /* note: these should typically be equivalent */
7745 if (quota == RUNTIME_INF || quota == -1)
7746 return RUNTIME_INF;
7747
7748 return to_ratio(period, quota);
7749 }
7750
7751 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7752 {
7753 struct cfs_schedulable_data *d = data;
7754 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7755 s64 quota = 0, parent_quota = -1;
7756
7757 if (!tg->parent) {
7758 quota = RUNTIME_INF;
7759 } else {
7760 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7761
7762 quota = normalize_cfs_quota(tg, d);
7763 parent_quota = parent_b->hierarchal_quota;
7764
7765 /*
7766 * ensure max(child_quota) <= parent_quota, inherit when no
7767 * limit is set
7768 */
7769 if (quota == RUNTIME_INF)
7770 quota = parent_quota;
7771 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7772 return -EINVAL;
7773 }
7774 cfs_b->hierarchal_quota = quota;
7775
7776 return 0;
7777 }
7778
7779 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7780 {
7781 int ret;
7782 struct cfs_schedulable_data data = {
7783 .tg = tg,
7784 .period = period,
7785 .quota = quota,
7786 };
7787
7788 if (quota != RUNTIME_INF) {
7789 do_div(data.period, NSEC_PER_USEC);
7790 do_div(data.quota, NSEC_PER_USEC);
7791 }
7792
7793 rcu_read_lock();
7794 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7795 rcu_read_unlock();
7796
7797 return ret;
7798 }
7799
7800 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7801 struct cgroup_map_cb *cb)
7802 {
7803 struct task_group *tg = cgroup_tg(cgrp);
7804 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7805
7806 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7807 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7808 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7809
7810 return 0;
7811 }
7812 #endif /* CONFIG_CFS_BANDWIDTH */
7813 #endif /* CONFIG_FAIR_GROUP_SCHED */
7814
7815 #ifdef CONFIG_RT_GROUP_SCHED
7816 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7817 s64 val)
7818 {
7819 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7820 }
7821
7822 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7823 {
7824 return sched_group_rt_runtime(cgroup_tg(cgrp));
7825 }
7826
7827 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7828 u64 rt_period_us)
7829 {
7830 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7831 }
7832
7833 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7834 {
7835 return sched_group_rt_period(cgroup_tg(cgrp));
7836 }
7837 #endif /* CONFIG_RT_GROUP_SCHED */
7838
7839 static struct cftype cpu_files[] = {
7840 #ifdef CONFIG_FAIR_GROUP_SCHED
7841 {
7842 .name = "shares",
7843 .read_u64 = cpu_shares_read_u64,
7844 .write_u64 = cpu_shares_write_u64,
7845 },
7846 #endif
7847 #ifdef CONFIG_CFS_BANDWIDTH
7848 {
7849 .name = "cfs_quota_us",
7850 .read_s64 = cpu_cfs_quota_read_s64,
7851 .write_s64 = cpu_cfs_quota_write_s64,
7852 },
7853 {
7854 .name = "cfs_period_us",
7855 .read_u64 = cpu_cfs_period_read_u64,
7856 .write_u64 = cpu_cfs_period_write_u64,
7857 },
7858 {
7859 .name = "stat",
7860 .read_map = cpu_stats_show,
7861 },
7862 #endif
7863 #ifdef CONFIG_RT_GROUP_SCHED
7864 {
7865 .name = "rt_runtime_us",
7866 .read_s64 = cpu_rt_runtime_read,
7867 .write_s64 = cpu_rt_runtime_write,
7868 },
7869 {
7870 .name = "rt_period_us",
7871 .read_u64 = cpu_rt_period_read_uint,
7872 .write_u64 = cpu_rt_period_write_uint,
7873 },
7874 #endif
7875 { } /* terminate */
7876 };
7877
7878 struct cgroup_subsys cpu_cgroup_subsys = {
7879 .name = "cpu",
7880 .create = cpu_cgroup_create,
7881 .destroy = cpu_cgroup_destroy,
7882 .can_attach = cpu_cgroup_can_attach,
7883 .attach = cpu_cgroup_attach,
7884 .exit = cpu_cgroup_exit,
7885 .subsys_id = cpu_cgroup_subsys_id,
7886 .base_cftypes = cpu_files,
7887 .early_init = 1,
7888 };
7889
7890 #endif /* CONFIG_CGROUP_SCHED */
7891
7892 #ifdef CONFIG_CGROUP_CPUACCT
7893
7894 /*
7895 * CPU accounting code for task groups.
7896 *
7897 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7898 * (balbir@in.ibm.com).
7899 */
7900
7901 struct cpuacct root_cpuacct;
7902
7903 /* create a new cpu accounting group */
7904 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7905 {
7906 struct cpuacct *ca;
7907
7908 if (!cgrp->parent)
7909 return &root_cpuacct.css;
7910
7911 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7912 if (!ca)
7913 goto out;
7914
7915 ca->cpuusage = alloc_percpu(u64);
7916 if (!ca->cpuusage)
7917 goto out_free_ca;
7918
7919 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7920 if (!ca->cpustat)
7921 goto out_free_cpuusage;
7922
7923 return &ca->css;
7924
7925 out_free_cpuusage:
7926 free_percpu(ca->cpuusage);
7927 out_free_ca:
7928 kfree(ca);
7929 out:
7930 return ERR_PTR(-ENOMEM);
7931 }
7932
7933 /* destroy an existing cpu accounting group */
7934 static void cpuacct_destroy(struct cgroup *cgrp)
7935 {
7936 struct cpuacct *ca = cgroup_ca(cgrp);
7937
7938 free_percpu(ca->cpustat);
7939 free_percpu(ca->cpuusage);
7940 kfree(ca);
7941 }
7942
7943 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7944 {
7945 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7946 u64 data;
7947
7948 #ifndef CONFIG_64BIT
7949 /*
7950 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7951 */
7952 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7953 data = *cpuusage;
7954 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7955 #else
7956 data = *cpuusage;
7957 #endif
7958
7959 return data;
7960 }
7961
7962 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7963 {
7964 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7965
7966 #ifndef CONFIG_64BIT
7967 /*
7968 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7969 */
7970 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7971 *cpuusage = val;
7972 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7973 #else
7974 *cpuusage = val;
7975 #endif
7976 }
7977
7978 /* return total cpu usage (in nanoseconds) of a group */
7979 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7980 {
7981 struct cpuacct *ca = cgroup_ca(cgrp);
7982 u64 totalcpuusage = 0;
7983 int i;
7984
7985 for_each_present_cpu(i)
7986 totalcpuusage += cpuacct_cpuusage_read(ca, i);
7987
7988 return totalcpuusage;
7989 }
7990
7991 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7992 u64 reset)
7993 {
7994 struct cpuacct *ca = cgroup_ca(cgrp);
7995 int err = 0;
7996 int i;
7997
7998 if (reset) {
7999 err = -EINVAL;
8000 goto out;
8001 }
8002
8003 for_each_present_cpu(i)
8004 cpuacct_cpuusage_write(ca, i, 0);
8005
8006 out:
8007 return err;
8008 }
8009
8010 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8011 struct seq_file *m)
8012 {
8013 struct cpuacct *ca = cgroup_ca(cgroup);
8014 u64 percpu;
8015 int i;
8016
8017 for_each_present_cpu(i) {
8018 percpu = cpuacct_cpuusage_read(ca, i);
8019 seq_printf(m, "%llu ", (unsigned long long) percpu);
8020 }
8021 seq_printf(m, "\n");
8022 return 0;
8023 }
8024
8025 static const char *cpuacct_stat_desc[] = {
8026 [CPUACCT_STAT_USER] = "user",
8027 [CPUACCT_STAT_SYSTEM] = "system",
8028 };
8029
8030 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8031 struct cgroup_map_cb *cb)
8032 {
8033 struct cpuacct *ca = cgroup_ca(cgrp);
8034 int cpu;
8035 s64 val = 0;
8036
8037 for_each_online_cpu(cpu) {
8038 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8039 val += kcpustat->cpustat[CPUTIME_USER];
8040 val += kcpustat->cpustat[CPUTIME_NICE];
8041 }
8042 val = cputime64_to_clock_t(val);
8043 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8044
8045 val = 0;
8046 for_each_online_cpu(cpu) {
8047 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8048 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8049 val += kcpustat->cpustat[CPUTIME_IRQ];
8050 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8051 }
8052
8053 val = cputime64_to_clock_t(val);
8054 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8055
8056 return 0;
8057 }
8058
8059 static struct cftype files[] = {
8060 {
8061 .name = "usage",
8062 .read_u64 = cpuusage_read,
8063 .write_u64 = cpuusage_write,
8064 },
8065 {
8066 .name = "usage_percpu",
8067 .read_seq_string = cpuacct_percpu_seq_read,
8068 },
8069 {
8070 .name = "stat",
8071 .read_map = cpuacct_stats_show,
8072 },
8073 { } /* terminate */
8074 };
8075
8076 /*
8077 * charge this task's execution time to its accounting group.
8078 *
8079 * called with rq->lock held.
8080 */
8081 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8082 {
8083 struct cpuacct *ca;
8084 int cpu;
8085
8086 if (unlikely(!cpuacct_subsys.active))
8087 return;
8088
8089 cpu = task_cpu(tsk);
8090
8091 rcu_read_lock();
8092
8093 ca = task_ca(tsk);
8094
8095 for (; ca; ca = parent_ca(ca)) {
8096 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8097 *cpuusage += cputime;
8098 }
8099
8100 rcu_read_unlock();
8101 }
8102
8103 struct cgroup_subsys cpuacct_subsys = {
8104 .name = "cpuacct",
8105 .create = cpuacct_create,
8106 .destroy = cpuacct_destroy,
8107 .subsys_id = cpuacct_subsys_id,
8108 .base_cftypes = files,
8109 };
8110 #endif /* CONFIG_CGROUP_CPUACCT */