]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/sched/core.c
sched/core: Add missing update_rq_clock() call in sched_move_task()
[mirror_ubuntu-eoan-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 #include <linux/mutex.h>
79
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 #include <asm/irq_regs.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_update_flags & RQCF_ACT_SKIP)
106 return;
107
108 #ifdef CONFIG_SCHED_DEBUG
109 rq->clock_update_flags |= RQCF_UPDATED;
110 #endif
111 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
112 if (delta < 0)
113 return;
114 rq->clock += delta;
115 update_rq_clock_task(rq, delta);
116 }
117
118 /*
119 * Debugging: various feature bits
120 */
121
122 #define SCHED_FEAT(name, enabled) \
123 (1UL << __SCHED_FEAT_##name) * enabled |
124
125 const_debug unsigned int sysctl_sched_features =
126 #include "features.h"
127 0;
128
129 #undef SCHED_FEAT
130
131 /*
132 * Number of tasks to iterate in a single balance run.
133 * Limited because this is done with IRQs disabled.
134 */
135 const_debug unsigned int sysctl_sched_nr_migrate = 32;
136
137 /*
138 * period over which we average the RT time consumption, measured
139 * in ms.
140 *
141 * default: 1s
142 */
143 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
144
145 /*
146 * period over which we measure -rt task cpu usage in us.
147 * default: 1s
148 */
149 unsigned int sysctl_sched_rt_period = 1000000;
150
151 __read_mostly int scheduler_running;
152
153 /*
154 * part of the period that we allow rt tasks to run in us.
155 * default: 0.95s
156 */
157 int sysctl_sched_rt_runtime = 950000;
158
159 /* cpus with isolated domains */
160 cpumask_var_t cpu_isolated_map;
161
162 /*
163 * this_rq_lock - lock this runqueue and disable interrupts.
164 */
165 static struct rq *this_rq_lock(void)
166 __acquires(rq->lock)
167 {
168 struct rq *rq;
169
170 local_irq_disable();
171 rq = this_rq();
172 raw_spin_lock(&rq->lock);
173
174 return rq;
175 }
176
177 /*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 __acquires(rq->lock)
182 {
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 rq_pin_lock(rq, rf);
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199 }
200
201 /*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207 {
208 struct rq *rq;
209
210 for (;;) {
211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
224 * If we observe the old cpu in task_rq_lock, the acquire of
225 * the old rq->lock will fully serialize against the stores.
226 *
227 * If we observe the new cpu in task_rq_lock, the acquire will
228 * pair with the WMB to ensure we must then also see migrating.
229 */
230 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
231 rq_pin_lock(rq, rf);
232 return rq;
233 }
234 raw_spin_unlock(&rq->lock);
235 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
236
237 while (unlikely(task_on_rq_migrating(p)))
238 cpu_relax();
239 }
240 }
241
242 #ifdef CONFIG_SCHED_HRTICK
243 /*
244 * Use HR-timers to deliver accurate preemption points.
245 */
246
247 static void hrtick_clear(struct rq *rq)
248 {
249 if (hrtimer_active(&rq->hrtick_timer))
250 hrtimer_cancel(&rq->hrtick_timer);
251 }
252
253 /*
254 * High-resolution timer tick.
255 * Runs from hardirq context with interrupts disabled.
256 */
257 static enum hrtimer_restart hrtick(struct hrtimer *timer)
258 {
259 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
260
261 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
262
263 raw_spin_lock(&rq->lock);
264 update_rq_clock(rq);
265 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
266 raw_spin_unlock(&rq->lock);
267
268 return HRTIMER_NORESTART;
269 }
270
271 #ifdef CONFIG_SMP
272
273 static void __hrtick_restart(struct rq *rq)
274 {
275 struct hrtimer *timer = &rq->hrtick_timer;
276
277 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
278 }
279
280 /*
281 * called from hardirq (IPI) context
282 */
283 static void __hrtick_start(void *arg)
284 {
285 struct rq *rq = arg;
286
287 raw_spin_lock(&rq->lock);
288 __hrtick_restart(rq);
289 rq->hrtick_csd_pending = 0;
290 raw_spin_unlock(&rq->lock);
291 }
292
293 /*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
298 void hrtick_start(struct rq *rq, u64 delay)
299 {
300 struct hrtimer *timer = &rq->hrtick_timer;
301 ktime_t time;
302 s64 delta;
303
304 /*
305 * Don't schedule slices shorter than 10000ns, that just
306 * doesn't make sense and can cause timer DoS.
307 */
308 delta = max_t(s64, delay, 10000LL);
309 time = ktime_add_ns(timer->base->get_time(), delta);
310
311 hrtimer_set_expires(timer, time);
312
313 if (rq == this_rq()) {
314 __hrtick_restart(rq);
315 } else if (!rq->hrtick_csd_pending) {
316 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
317 rq->hrtick_csd_pending = 1;
318 }
319 }
320
321 #else
322 /*
323 * Called to set the hrtick timer state.
324 *
325 * called with rq->lock held and irqs disabled
326 */
327 void hrtick_start(struct rq *rq, u64 delay)
328 {
329 /*
330 * Don't schedule slices shorter than 10000ns, that just
331 * doesn't make sense. Rely on vruntime for fairness.
332 */
333 delay = max_t(u64, delay, 10000LL);
334 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
335 HRTIMER_MODE_REL_PINNED);
336 }
337 #endif /* CONFIG_SMP */
338
339 static void init_rq_hrtick(struct rq *rq)
340 {
341 #ifdef CONFIG_SMP
342 rq->hrtick_csd_pending = 0;
343
344 rq->hrtick_csd.flags = 0;
345 rq->hrtick_csd.func = __hrtick_start;
346 rq->hrtick_csd.info = rq;
347 #endif
348
349 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
350 rq->hrtick_timer.function = hrtick;
351 }
352 #else /* CONFIG_SCHED_HRTICK */
353 static inline void hrtick_clear(struct rq *rq)
354 {
355 }
356
357 static inline void init_rq_hrtick(struct rq *rq)
358 {
359 }
360 #endif /* CONFIG_SCHED_HRTICK */
361
362 /*
363 * cmpxchg based fetch_or, macro so it works for different integer types
364 */
365 #define fetch_or(ptr, mask) \
366 ({ \
367 typeof(ptr) _ptr = (ptr); \
368 typeof(mask) _mask = (mask); \
369 typeof(*_ptr) _old, _val = *_ptr; \
370 \
371 for (;;) { \
372 _old = cmpxchg(_ptr, _val, _val | _mask); \
373 if (_old == _val) \
374 break; \
375 _val = _old; \
376 } \
377 _old; \
378 })
379
380 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
381 /*
382 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
383 * this avoids any races wrt polling state changes and thereby avoids
384 * spurious IPIs.
385 */
386 static bool set_nr_and_not_polling(struct task_struct *p)
387 {
388 struct thread_info *ti = task_thread_info(p);
389 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390 }
391
392 /*
393 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
394 *
395 * If this returns true, then the idle task promises to call
396 * sched_ttwu_pending() and reschedule soon.
397 */
398 static bool set_nr_if_polling(struct task_struct *p)
399 {
400 struct thread_info *ti = task_thread_info(p);
401 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
402
403 for (;;) {
404 if (!(val & _TIF_POLLING_NRFLAG))
405 return false;
406 if (val & _TIF_NEED_RESCHED)
407 return true;
408 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
409 if (old == val)
410 break;
411 val = old;
412 }
413 return true;
414 }
415
416 #else
417 static bool set_nr_and_not_polling(struct task_struct *p)
418 {
419 set_tsk_need_resched(p);
420 return true;
421 }
422
423 #ifdef CONFIG_SMP
424 static bool set_nr_if_polling(struct task_struct *p)
425 {
426 return false;
427 }
428 #endif
429 #endif
430
431 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
432 {
433 struct wake_q_node *node = &task->wake_q;
434
435 /*
436 * Atomically grab the task, if ->wake_q is !nil already it means
437 * its already queued (either by us or someone else) and will get the
438 * wakeup due to that.
439 *
440 * This cmpxchg() implies a full barrier, which pairs with the write
441 * barrier implied by the wakeup in wake_up_q().
442 */
443 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
444 return;
445
446 get_task_struct(task);
447
448 /*
449 * The head is context local, there can be no concurrency.
450 */
451 *head->lastp = node;
452 head->lastp = &node->next;
453 }
454
455 void wake_up_q(struct wake_q_head *head)
456 {
457 struct wake_q_node *node = head->first;
458
459 while (node != WAKE_Q_TAIL) {
460 struct task_struct *task;
461
462 task = container_of(node, struct task_struct, wake_q);
463 BUG_ON(!task);
464 /* task can safely be re-inserted now */
465 node = node->next;
466 task->wake_q.next = NULL;
467
468 /*
469 * wake_up_process() implies a wmb() to pair with the queueing
470 * in wake_q_add() so as not to miss wakeups.
471 */
472 wake_up_process(task);
473 put_task_struct(task);
474 }
475 }
476
477 /*
478 * resched_curr - mark rq's current task 'to be rescheduled now'.
479 *
480 * On UP this means the setting of the need_resched flag, on SMP it
481 * might also involve a cross-CPU call to trigger the scheduler on
482 * the target CPU.
483 */
484 void resched_curr(struct rq *rq)
485 {
486 struct task_struct *curr = rq->curr;
487 int cpu;
488
489 lockdep_assert_held(&rq->lock);
490
491 if (test_tsk_need_resched(curr))
492 return;
493
494 cpu = cpu_of(rq);
495
496 if (cpu == smp_processor_id()) {
497 set_tsk_need_resched(curr);
498 set_preempt_need_resched();
499 return;
500 }
501
502 if (set_nr_and_not_polling(curr))
503 smp_send_reschedule(cpu);
504 else
505 trace_sched_wake_idle_without_ipi(cpu);
506 }
507
508 void resched_cpu(int cpu)
509 {
510 struct rq *rq = cpu_rq(cpu);
511 unsigned long flags;
512
513 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
514 return;
515 resched_curr(rq);
516 raw_spin_unlock_irqrestore(&rq->lock, flags);
517 }
518
519 #ifdef CONFIG_SMP
520 #ifdef CONFIG_NO_HZ_COMMON
521 /*
522 * In the semi idle case, use the nearest busy cpu for migrating timers
523 * from an idle cpu. This is good for power-savings.
524 *
525 * We don't do similar optimization for completely idle system, as
526 * selecting an idle cpu will add more delays to the timers than intended
527 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
528 */
529 int get_nohz_timer_target(void)
530 {
531 int i, cpu = smp_processor_id();
532 struct sched_domain *sd;
533
534 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
535 return cpu;
536
537 rcu_read_lock();
538 for_each_domain(cpu, sd) {
539 for_each_cpu(i, sched_domain_span(sd)) {
540 if (cpu == i)
541 continue;
542
543 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
544 cpu = i;
545 goto unlock;
546 }
547 }
548 }
549
550 if (!is_housekeeping_cpu(cpu))
551 cpu = housekeeping_any_cpu();
552 unlock:
553 rcu_read_unlock();
554 return cpu;
555 }
556 /*
557 * When add_timer_on() enqueues a timer into the timer wheel of an
558 * idle CPU then this timer might expire before the next timer event
559 * which is scheduled to wake up that CPU. In case of a completely
560 * idle system the next event might even be infinite time into the
561 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
562 * leaves the inner idle loop so the newly added timer is taken into
563 * account when the CPU goes back to idle and evaluates the timer
564 * wheel for the next timer event.
565 */
566 static void wake_up_idle_cpu(int cpu)
567 {
568 struct rq *rq = cpu_rq(cpu);
569
570 if (cpu == smp_processor_id())
571 return;
572
573 if (set_nr_and_not_polling(rq->idle))
574 smp_send_reschedule(cpu);
575 else
576 trace_sched_wake_idle_without_ipi(cpu);
577 }
578
579 static bool wake_up_full_nohz_cpu(int cpu)
580 {
581 /*
582 * We just need the target to call irq_exit() and re-evaluate
583 * the next tick. The nohz full kick at least implies that.
584 * If needed we can still optimize that later with an
585 * empty IRQ.
586 */
587 if (cpu_is_offline(cpu))
588 return true; /* Don't try to wake offline CPUs. */
589 if (tick_nohz_full_cpu(cpu)) {
590 if (cpu != smp_processor_id() ||
591 tick_nohz_tick_stopped())
592 tick_nohz_full_kick_cpu(cpu);
593 return true;
594 }
595
596 return false;
597 }
598
599 /*
600 * Wake up the specified CPU. If the CPU is going offline, it is the
601 * caller's responsibility to deal with the lost wakeup, for example,
602 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
603 */
604 void wake_up_nohz_cpu(int cpu)
605 {
606 if (!wake_up_full_nohz_cpu(cpu))
607 wake_up_idle_cpu(cpu);
608 }
609
610 static inline bool got_nohz_idle_kick(void)
611 {
612 int cpu = smp_processor_id();
613
614 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
615 return false;
616
617 if (idle_cpu(cpu) && !need_resched())
618 return true;
619
620 /*
621 * We can't run Idle Load Balance on this CPU for this time so we
622 * cancel it and clear NOHZ_BALANCE_KICK
623 */
624 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
625 return false;
626 }
627
628 #else /* CONFIG_NO_HZ_COMMON */
629
630 static inline bool got_nohz_idle_kick(void)
631 {
632 return false;
633 }
634
635 #endif /* CONFIG_NO_HZ_COMMON */
636
637 #ifdef CONFIG_NO_HZ_FULL
638 bool sched_can_stop_tick(struct rq *rq)
639 {
640 int fifo_nr_running;
641
642 /* Deadline tasks, even if single, need the tick */
643 if (rq->dl.dl_nr_running)
644 return false;
645
646 /*
647 * If there are more than one RR tasks, we need the tick to effect the
648 * actual RR behaviour.
649 */
650 if (rq->rt.rr_nr_running) {
651 if (rq->rt.rr_nr_running == 1)
652 return true;
653 else
654 return false;
655 }
656
657 /*
658 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
659 * forced preemption between FIFO tasks.
660 */
661 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
662 if (fifo_nr_running)
663 return true;
664
665 /*
666 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
667 * if there's more than one we need the tick for involuntary
668 * preemption.
669 */
670 if (rq->nr_running > 1)
671 return false;
672
673 return true;
674 }
675 #endif /* CONFIG_NO_HZ_FULL */
676
677 void sched_avg_update(struct rq *rq)
678 {
679 s64 period = sched_avg_period();
680
681 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
682 /*
683 * Inline assembly required to prevent the compiler
684 * optimising this loop into a divmod call.
685 * See __iter_div_u64_rem() for another example of this.
686 */
687 asm("" : "+rm" (rq->age_stamp));
688 rq->age_stamp += period;
689 rq->rt_avg /= 2;
690 }
691 }
692
693 #endif /* CONFIG_SMP */
694
695 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
696 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697 /*
698 * Iterate task_group tree rooted at *from, calling @down when first entering a
699 * node and @up when leaving it for the final time.
700 *
701 * Caller must hold rcu_lock or sufficient equivalent.
702 */
703 int walk_tg_tree_from(struct task_group *from,
704 tg_visitor down, tg_visitor up, void *data)
705 {
706 struct task_group *parent, *child;
707 int ret;
708
709 parent = from;
710
711 down:
712 ret = (*down)(parent, data);
713 if (ret)
714 goto out;
715 list_for_each_entry_rcu(child, &parent->children, siblings) {
716 parent = child;
717 goto down;
718
719 up:
720 continue;
721 }
722 ret = (*up)(parent, data);
723 if (ret || parent == from)
724 goto out;
725
726 child = parent;
727 parent = parent->parent;
728 if (parent)
729 goto up;
730 out:
731 return ret;
732 }
733
734 int tg_nop(struct task_group *tg, void *data)
735 {
736 return 0;
737 }
738 #endif
739
740 static void set_load_weight(struct task_struct *p)
741 {
742 int prio = p->static_prio - MAX_RT_PRIO;
743 struct load_weight *load = &p->se.load;
744
745 /*
746 * SCHED_IDLE tasks get minimal weight:
747 */
748 if (idle_policy(p->policy)) {
749 load->weight = scale_load(WEIGHT_IDLEPRIO);
750 load->inv_weight = WMULT_IDLEPRIO;
751 return;
752 }
753
754 load->weight = scale_load(sched_prio_to_weight[prio]);
755 load->inv_weight = sched_prio_to_wmult[prio];
756 }
757
758 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
759 {
760 update_rq_clock(rq);
761 if (!(flags & ENQUEUE_RESTORE))
762 sched_info_queued(rq, p);
763 p->sched_class->enqueue_task(rq, p, flags);
764 }
765
766 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
767 {
768 update_rq_clock(rq);
769 if (!(flags & DEQUEUE_SAVE))
770 sched_info_dequeued(rq, p);
771 p->sched_class->dequeue_task(rq, p, flags);
772 }
773
774 void activate_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 if (task_contributes_to_load(p))
777 rq->nr_uninterruptible--;
778
779 enqueue_task(rq, p, flags);
780 }
781
782 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
783 {
784 if (task_contributes_to_load(p))
785 rq->nr_uninterruptible++;
786
787 dequeue_task(rq, p, flags);
788 }
789
790 static void update_rq_clock_task(struct rq *rq, s64 delta)
791 {
792 /*
793 * In theory, the compile should just see 0 here, and optimize out the call
794 * to sched_rt_avg_update. But I don't trust it...
795 */
796 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
797 s64 steal = 0, irq_delta = 0;
798 #endif
799 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
800 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
801
802 /*
803 * Since irq_time is only updated on {soft,}irq_exit, we might run into
804 * this case when a previous update_rq_clock() happened inside a
805 * {soft,}irq region.
806 *
807 * When this happens, we stop ->clock_task and only update the
808 * prev_irq_time stamp to account for the part that fit, so that a next
809 * update will consume the rest. This ensures ->clock_task is
810 * monotonic.
811 *
812 * It does however cause some slight miss-attribution of {soft,}irq
813 * time, a more accurate solution would be to update the irq_time using
814 * the current rq->clock timestamp, except that would require using
815 * atomic ops.
816 */
817 if (irq_delta > delta)
818 irq_delta = delta;
819
820 rq->prev_irq_time += irq_delta;
821 delta -= irq_delta;
822 #endif
823 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
824 if (static_key_false((&paravirt_steal_rq_enabled))) {
825 steal = paravirt_steal_clock(cpu_of(rq));
826 steal -= rq->prev_steal_time_rq;
827
828 if (unlikely(steal > delta))
829 steal = delta;
830
831 rq->prev_steal_time_rq += steal;
832 delta -= steal;
833 }
834 #endif
835
836 rq->clock_task += delta;
837
838 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
839 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
840 sched_rt_avg_update(rq, irq_delta + steal);
841 #endif
842 }
843
844 void sched_set_stop_task(int cpu, struct task_struct *stop)
845 {
846 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
847 struct task_struct *old_stop = cpu_rq(cpu)->stop;
848
849 if (stop) {
850 /*
851 * Make it appear like a SCHED_FIFO task, its something
852 * userspace knows about and won't get confused about.
853 *
854 * Also, it will make PI more or less work without too
855 * much confusion -- but then, stop work should not
856 * rely on PI working anyway.
857 */
858 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
859
860 stop->sched_class = &stop_sched_class;
861 }
862
863 cpu_rq(cpu)->stop = stop;
864
865 if (old_stop) {
866 /*
867 * Reset it back to a normal scheduling class so that
868 * it can die in pieces.
869 */
870 old_stop->sched_class = &rt_sched_class;
871 }
872 }
873
874 /*
875 * __normal_prio - return the priority that is based on the static prio
876 */
877 static inline int __normal_prio(struct task_struct *p)
878 {
879 return p->static_prio;
880 }
881
882 /*
883 * Calculate the expected normal priority: i.e. priority
884 * without taking RT-inheritance into account. Might be
885 * boosted by interactivity modifiers. Changes upon fork,
886 * setprio syscalls, and whenever the interactivity
887 * estimator recalculates.
888 */
889 static inline int normal_prio(struct task_struct *p)
890 {
891 int prio;
892
893 if (task_has_dl_policy(p))
894 prio = MAX_DL_PRIO-1;
895 else if (task_has_rt_policy(p))
896 prio = MAX_RT_PRIO-1 - p->rt_priority;
897 else
898 prio = __normal_prio(p);
899 return prio;
900 }
901
902 /*
903 * Calculate the current priority, i.e. the priority
904 * taken into account by the scheduler. This value might
905 * be boosted by RT tasks, or might be boosted by
906 * interactivity modifiers. Will be RT if the task got
907 * RT-boosted. If not then it returns p->normal_prio.
908 */
909 static int effective_prio(struct task_struct *p)
910 {
911 p->normal_prio = normal_prio(p);
912 /*
913 * If we are RT tasks or we were boosted to RT priority,
914 * keep the priority unchanged. Otherwise, update priority
915 * to the normal priority:
916 */
917 if (!rt_prio(p->prio))
918 return p->normal_prio;
919 return p->prio;
920 }
921
922 /**
923 * task_curr - is this task currently executing on a CPU?
924 * @p: the task in question.
925 *
926 * Return: 1 if the task is currently executing. 0 otherwise.
927 */
928 inline int task_curr(const struct task_struct *p)
929 {
930 return cpu_curr(task_cpu(p)) == p;
931 }
932
933 /*
934 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
935 * use the balance_callback list if you want balancing.
936 *
937 * this means any call to check_class_changed() must be followed by a call to
938 * balance_callback().
939 */
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947
948 p->sched_class->switched_to(rq, p);
949 } else if (oldprio != p->prio || dl_task(p))
950 p->sched_class->prio_changed(rq, p, oldprio);
951 }
952
953 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
954 {
955 const struct sched_class *class;
956
957 if (p->sched_class == rq->curr->sched_class) {
958 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
959 } else {
960 for_each_class(class) {
961 if (class == rq->curr->sched_class)
962 break;
963 if (class == p->sched_class) {
964 resched_curr(rq);
965 break;
966 }
967 }
968 }
969
970 /*
971 * A queue event has occurred, and we're going to schedule. In
972 * this case, we can save a useless back to back clock update.
973 */
974 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
975 rq_clock_skip_update(rq, true);
976 }
977
978 #ifdef CONFIG_SMP
979 /*
980 * This is how migration works:
981 *
982 * 1) we invoke migration_cpu_stop() on the target CPU using
983 * stop_one_cpu().
984 * 2) stopper starts to run (implicitly forcing the migrated thread
985 * off the CPU)
986 * 3) it checks whether the migrated task is still in the wrong runqueue.
987 * 4) if it's in the wrong runqueue then the migration thread removes
988 * it and puts it into the right queue.
989 * 5) stopper completes and stop_one_cpu() returns and the migration
990 * is done.
991 */
992
993 /*
994 * move_queued_task - move a queued task to new rq.
995 *
996 * Returns (locked) new rq. Old rq's lock is released.
997 */
998 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
999 {
1000 lockdep_assert_held(&rq->lock);
1001
1002 p->on_rq = TASK_ON_RQ_MIGRATING;
1003 dequeue_task(rq, p, 0);
1004 set_task_cpu(p, new_cpu);
1005 raw_spin_unlock(&rq->lock);
1006
1007 rq = cpu_rq(new_cpu);
1008
1009 raw_spin_lock(&rq->lock);
1010 BUG_ON(task_cpu(p) != new_cpu);
1011 enqueue_task(rq, p, 0);
1012 p->on_rq = TASK_ON_RQ_QUEUED;
1013 check_preempt_curr(rq, p, 0);
1014
1015 return rq;
1016 }
1017
1018 struct migration_arg {
1019 struct task_struct *task;
1020 int dest_cpu;
1021 };
1022
1023 /*
1024 * Move (not current) task off this cpu, onto dest cpu. We're doing
1025 * this because either it can't run here any more (set_cpus_allowed()
1026 * away from this CPU, or CPU going down), or because we're
1027 * attempting to rebalance this task on exec (sched_exec).
1028 *
1029 * So we race with normal scheduler movements, but that's OK, as long
1030 * as the task is no longer on this CPU.
1031 */
1032 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1033 {
1034 if (unlikely(!cpu_active(dest_cpu)))
1035 return rq;
1036
1037 /* Affinity changed (again). */
1038 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1039 return rq;
1040
1041 rq = move_queued_task(rq, p, dest_cpu);
1042
1043 return rq;
1044 }
1045
1046 /*
1047 * migration_cpu_stop - this will be executed by a highprio stopper thread
1048 * and performs thread migration by bumping thread off CPU then
1049 * 'pushing' onto another runqueue.
1050 */
1051 static int migration_cpu_stop(void *data)
1052 {
1053 struct migration_arg *arg = data;
1054 struct task_struct *p = arg->task;
1055 struct rq *rq = this_rq();
1056
1057 /*
1058 * The original target cpu might have gone down and we might
1059 * be on another cpu but it doesn't matter.
1060 */
1061 local_irq_disable();
1062 /*
1063 * We need to explicitly wake pending tasks before running
1064 * __migrate_task() such that we will not miss enforcing cpus_allowed
1065 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1066 */
1067 sched_ttwu_pending();
1068
1069 raw_spin_lock(&p->pi_lock);
1070 raw_spin_lock(&rq->lock);
1071 /*
1072 * If task_rq(p) != rq, it cannot be migrated here, because we're
1073 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1074 * we're holding p->pi_lock.
1075 */
1076 if (task_rq(p) == rq) {
1077 if (task_on_rq_queued(p))
1078 rq = __migrate_task(rq, p, arg->dest_cpu);
1079 else
1080 p->wake_cpu = arg->dest_cpu;
1081 }
1082 raw_spin_unlock(&rq->lock);
1083 raw_spin_unlock(&p->pi_lock);
1084
1085 local_irq_enable();
1086 return 0;
1087 }
1088
1089 /*
1090 * sched_class::set_cpus_allowed must do the below, but is not required to
1091 * actually call this function.
1092 */
1093 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1094 {
1095 cpumask_copy(&p->cpus_allowed, new_mask);
1096 p->nr_cpus_allowed = cpumask_weight(new_mask);
1097 }
1098
1099 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1100 {
1101 struct rq *rq = task_rq(p);
1102 bool queued, running;
1103
1104 lockdep_assert_held(&p->pi_lock);
1105
1106 queued = task_on_rq_queued(p);
1107 running = task_current(rq, p);
1108
1109 if (queued) {
1110 /*
1111 * Because __kthread_bind() calls this on blocked tasks without
1112 * holding rq->lock.
1113 */
1114 lockdep_assert_held(&rq->lock);
1115 dequeue_task(rq, p, DEQUEUE_SAVE);
1116 }
1117 if (running)
1118 put_prev_task(rq, p);
1119
1120 p->sched_class->set_cpus_allowed(p, new_mask);
1121
1122 if (queued)
1123 enqueue_task(rq, p, ENQUEUE_RESTORE);
1124 if (running)
1125 set_curr_task(rq, p);
1126 }
1127
1128 /*
1129 * Change a given task's CPU affinity. Migrate the thread to a
1130 * proper CPU and schedule it away if the CPU it's executing on
1131 * is removed from the allowed bitmask.
1132 *
1133 * NOTE: the caller must have a valid reference to the task, the
1134 * task must not exit() & deallocate itself prematurely. The
1135 * call is not atomic; no spinlocks may be held.
1136 */
1137 static int __set_cpus_allowed_ptr(struct task_struct *p,
1138 const struct cpumask *new_mask, bool check)
1139 {
1140 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1141 unsigned int dest_cpu;
1142 struct rq_flags rf;
1143 struct rq *rq;
1144 int ret = 0;
1145
1146 rq = task_rq_lock(p, &rf);
1147
1148 if (p->flags & PF_KTHREAD) {
1149 /*
1150 * Kernel threads are allowed on online && !active CPUs
1151 */
1152 cpu_valid_mask = cpu_online_mask;
1153 }
1154
1155 /*
1156 * Must re-check here, to close a race against __kthread_bind(),
1157 * sched_setaffinity() is not guaranteed to observe the flag.
1158 */
1159 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1160 ret = -EINVAL;
1161 goto out;
1162 }
1163
1164 if (cpumask_equal(&p->cpus_allowed, new_mask))
1165 goto out;
1166
1167 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1168 ret = -EINVAL;
1169 goto out;
1170 }
1171
1172 do_set_cpus_allowed(p, new_mask);
1173
1174 if (p->flags & PF_KTHREAD) {
1175 /*
1176 * For kernel threads that do indeed end up on online &&
1177 * !active we want to ensure they are strict per-cpu threads.
1178 */
1179 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1180 !cpumask_intersects(new_mask, cpu_active_mask) &&
1181 p->nr_cpus_allowed != 1);
1182 }
1183
1184 /* Can the task run on the task's current CPU? If so, we're done */
1185 if (cpumask_test_cpu(task_cpu(p), new_mask))
1186 goto out;
1187
1188 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1189 if (task_running(rq, p) || p->state == TASK_WAKING) {
1190 struct migration_arg arg = { p, dest_cpu };
1191 /* Need help from migration thread: drop lock and wait. */
1192 task_rq_unlock(rq, p, &rf);
1193 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1194 tlb_migrate_finish(p->mm);
1195 return 0;
1196 } else if (task_on_rq_queued(p)) {
1197 /*
1198 * OK, since we're going to drop the lock immediately
1199 * afterwards anyway.
1200 */
1201 rq_unpin_lock(rq, &rf);
1202 rq = move_queued_task(rq, p, dest_cpu);
1203 rq_repin_lock(rq, &rf);
1204 }
1205 out:
1206 task_rq_unlock(rq, p, &rf);
1207
1208 return ret;
1209 }
1210
1211 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1212 {
1213 return __set_cpus_allowed_ptr(p, new_mask, false);
1214 }
1215 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1216
1217 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1218 {
1219 #ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * We should never call set_task_cpu() on a blocked task,
1222 * ttwu() will sort out the placement.
1223 */
1224 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1225 !p->on_rq);
1226
1227 /*
1228 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1229 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1230 * time relying on p->on_rq.
1231 */
1232 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1233 p->sched_class == &fair_sched_class &&
1234 (p->on_rq && !task_on_rq_migrating(p)));
1235
1236 #ifdef CONFIG_LOCKDEP
1237 /*
1238 * The caller should hold either p->pi_lock or rq->lock, when changing
1239 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1240 *
1241 * sched_move_task() holds both and thus holding either pins the cgroup,
1242 * see task_group().
1243 *
1244 * Furthermore, all task_rq users should acquire both locks, see
1245 * task_rq_lock().
1246 */
1247 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1248 lockdep_is_held(&task_rq(p)->lock)));
1249 #endif
1250 #endif
1251
1252 trace_sched_migrate_task(p, new_cpu);
1253
1254 if (task_cpu(p) != new_cpu) {
1255 if (p->sched_class->migrate_task_rq)
1256 p->sched_class->migrate_task_rq(p);
1257 p->se.nr_migrations++;
1258 perf_event_task_migrate(p);
1259 }
1260
1261 __set_task_cpu(p, new_cpu);
1262 }
1263
1264 static void __migrate_swap_task(struct task_struct *p, int cpu)
1265 {
1266 if (task_on_rq_queued(p)) {
1267 struct rq *src_rq, *dst_rq;
1268
1269 src_rq = task_rq(p);
1270 dst_rq = cpu_rq(cpu);
1271
1272 p->on_rq = TASK_ON_RQ_MIGRATING;
1273 deactivate_task(src_rq, p, 0);
1274 set_task_cpu(p, cpu);
1275 activate_task(dst_rq, p, 0);
1276 p->on_rq = TASK_ON_RQ_QUEUED;
1277 check_preempt_curr(dst_rq, p, 0);
1278 } else {
1279 /*
1280 * Task isn't running anymore; make it appear like we migrated
1281 * it before it went to sleep. This means on wakeup we make the
1282 * previous cpu our target instead of where it really is.
1283 */
1284 p->wake_cpu = cpu;
1285 }
1286 }
1287
1288 struct migration_swap_arg {
1289 struct task_struct *src_task, *dst_task;
1290 int src_cpu, dst_cpu;
1291 };
1292
1293 static int migrate_swap_stop(void *data)
1294 {
1295 struct migration_swap_arg *arg = data;
1296 struct rq *src_rq, *dst_rq;
1297 int ret = -EAGAIN;
1298
1299 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1300 return -EAGAIN;
1301
1302 src_rq = cpu_rq(arg->src_cpu);
1303 dst_rq = cpu_rq(arg->dst_cpu);
1304
1305 double_raw_lock(&arg->src_task->pi_lock,
1306 &arg->dst_task->pi_lock);
1307 double_rq_lock(src_rq, dst_rq);
1308
1309 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1310 goto unlock;
1311
1312 if (task_cpu(arg->src_task) != arg->src_cpu)
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1316 goto unlock;
1317
1318 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1319 goto unlock;
1320
1321 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1322 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1323
1324 ret = 0;
1325
1326 unlock:
1327 double_rq_unlock(src_rq, dst_rq);
1328 raw_spin_unlock(&arg->dst_task->pi_lock);
1329 raw_spin_unlock(&arg->src_task->pi_lock);
1330
1331 return ret;
1332 }
1333
1334 /*
1335 * Cross migrate two tasks
1336 */
1337 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1338 {
1339 struct migration_swap_arg arg;
1340 int ret = -EINVAL;
1341
1342 arg = (struct migration_swap_arg){
1343 .src_task = cur,
1344 .src_cpu = task_cpu(cur),
1345 .dst_task = p,
1346 .dst_cpu = task_cpu(p),
1347 };
1348
1349 if (arg.src_cpu == arg.dst_cpu)
1350 goto out;
1351
1352 /*
1353 * These three tests are all lockless; this is OK since all of them
1354 * will be re-checked with proper locks held further down the line.
1355 */
1356 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1360 goto out;
1361
1362 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1363 goto out;
1364
1365 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1366 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1367
1368 out:
1369 return ret;
1370 }
1371
1372 /*
1373 * wait_task_inactive - wait for a thread to unschedule.
1374 *
1375 * If @match_state is nonzero, it's the @p->state value just checked and
1376 * not expected to change. If it changes, i.e. @p might have woken up,
1377 * then return zero. When we succeed in waiting for @p to be off its CPU,
1378 * we return a positive number (its total switch count). If a second call
1379 * a short while later returns the same number, the caller can be sure that
1380 * @p has remained unscheduled the whole time.
1381 *
1382 * The caller must ensure that the task *will* unschedule sometime soon,
1383 * else this function might spin for a *long* time. This function can't
1384 * be called with interrupts off, or it may introduce deadlock with
1385 * smp_call_function() if an IPI is sent by the same process we are
1386 * waiting to become inactive.
1387 */
1388 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1389 {
1390 int running, queued;
1391 struct rq_flags rf;
1392 unsigned long ncsw;
1393 struct rq *rq;
1394
1395 for (;;) {
1396 /*
1397 * We do the initial early heuristics without holding
1398 * any task-queue locks at all. We'll only try to get
1399 * the runqueue lock when things look like they will
1400 * work out!
1401 */
1402 rq = task_rq(p);
1403
1404 /*
1405 * If the task is actively running on another CPU
1406 * still, just relax and busy-wait without holding
1407 * any locks.
1408 *
1409 * NOTE! Since we don't hold any locks, it's not
1410 * even sure that "rq" stays as the right runqueue!
1411 * But we don't care, since "task_running()" will
1412 * return false if the runqueue has changed and p
1413 * is actually now running somewhere else!
1414 */
1415 while (task_running(rq, p)) {
1416 if (match_state && unlikely(p->state != match_state))
1417 return 0;
1418 cpu_relax();
1419 }
1420
1421 /*
1422 * Ok, time to look more closely! We need the rq
1423 * lock now, to be *sure*. If we're wrong, we'll
1424 * just go back and repeat.
1425 */
1426 rq = task_rq_lock(p, &rf);
1427 trace_sched_wait_task(p);
1428 running = task_running(rq, p);
1429 queued = task_on_rq_queued(p);
1430 ncsw = 0;
1431 if (!match_state || p->state == match_state)
1432 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1433 task_rq_unlock(rq, p, &rf);
1434
1435 /*
1436 * If it changed from the expected state, bail out now.
1437 */
1438 if (unlikely(!ncsw))
1439 break;
1440
1441 /*
1442 * Was it really running after all now that we
1443 * checked with the proper locks actually held?
1444 *
1445 * Oops. Go back and try again..
1446 */
1447 if (unlikely(running)) {
1448 cpu_relax();
1449 continue;
1450 }
1451
1452 /*
1453 * It's not enough that it's not actively running,
1454 * it must be off the runqueue _entirely_, and not
1455 * preempted!
1456 *
1457 * So if it was still runnable (but just not actively
1458 * running right now), it's preempted, and we should
1459 * yield - it could be a while.
1460 */
1461 if (unlikely(queued)) {
1462 ktime_t to = NSEC_PER_SEC / HZ;
1463
1464 set_current_state(TASK_UNINTERRUPTIBLE);
1465 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1466 continue;
1467 }
1468
1469 /*
1470 * Ahh, all good. It wasn't running, and it wasn't
1471 * runnable, which means that it will never become
1472 * running in the future either. We're all done!
1473 */
1474 break;
1475 }
1476
1477 return ncsw;
1478 }
1479
1480 /***
1481 * kick_process - kick a running thread to enter/exit the kernel
1482 * @p: the to-be-kicked thread
1483 *
1484 * Cause a process which is running on another CPU to enter
1485 * kernel-mode, without any delay. (to get signals handled.)
1486 *
1487 * NOTE: this function doesn't have to take the runqueue lock,
1488 * because all it wants to ensure is that the remote task enters
1489 * the kernel. If the IPI races and the task has been migrated
1490 * to another CPU then no harm is done and the purpose has been
1491 * achieved as well.
1492 */
1493 void kick_process(struct task_struct *p)
1494 {
1495 int cpu;
1496
1497 preempt_disable();
1498 cpu = task_cpu(p);
1499 if ((cpu != smp_processor_id()) && task_curr(p))
1500 smp_send_reschedule(cpu);
1501 preempt_enable();
1502 }
1503 EXPORT_SYMBOL_GPL(kick_process);
1504
1505 /*
1506 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1507 *
1508 * A few notes on cpu_active vs cpu_online:
1509 *
1510 * - cpu_active must be a subset of cpu_online
1511 *
1512 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1513 * see __set_cpus_allowed_ptr(). At this point the newly online
1514 * cpu isn't yet part of the sched domains, and balancing will not
1515 * see it.
1516 *
1517 * - on cpu-down we clear cpu_active() to mask the sched domains and
1518 * avoid the load balancer to place new tasks on the to be removed
1519 * cpu. Existing tasks will remain running there and will be taken
1520 * off.
1521 *
1522 * This means that fallback selection must not select !active CPUs.
1523 * And can assume that any active CPU must be online. Conversely
1524 * select_task_rq() below may allow selection of !active CPUs in order
1525 * to satisfy the above rules.
1526 */
1527 static int select_fallback_rq(int cpu, struct task_struct *p)
1528 {
1529 int nid = cpu_to_node(cpu);
1530 const struct cpumask *nodemask = NULL;
1531 enum { cpuset, possible, fail } state = cpuset;
1532 int dest_cpu;
1533
1534 /*
1535 * If the node that the cpu is on has been offlined, cpu_to_node()
1536 * will return -1. There is no cpu on the node, and we should
1537 * select the cpu on the other node.
1538 */
1539 if (nid != -1) {
1540 nodemask = cpumask_of_node(nid);
1541
1542 /* Look for allowed, online CPU in same node. */
1543 for_each_cpu(dest_cpu, nodemask) {
1544 if (!cpu_active(dest_cpu))
1545 continue;
1546 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1547 return dest_cpu;
1548 }
1549 }
1550
1551 for (;;) {
1552 /* Any allowed, online CPU? */
1553 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1554 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1555 continue;
1556 if (!cpu_online(dest_cpu))
1557 continue;
1558 goto out;
1559 }
1560
1561 /* No more Mr. Nice Guy. */
1562 switch (state) {
1563 case cpuset:
1564 if (IS_ENABLED(CONFIG_CPUSETS)) {
1565 cpuset_cpus_allowed_fallback(p);
1566 state = possible;
1567 break;
1568 }
1569 /* fall-through */
1570 case possible:
1571 do_set_cpus_allowed(p, cpu_possible_mask);
1572 state = fail;
1573 break;
1574
1575 case fail:
1576 BUG();
1577 break;
1578 }
1579 }
1580
1581 out:
1582 if (state != cpuset) {
1583 /*
1584 * Don't tell them about moving exiting tasks or
1585 * kernel threads (both mm NULL), since they never
1586 * leave kernel.
1587 */
1588 if (p->mm && printk_ratelimit()) {
1589 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1590 task_pid_nr(p), p->comm, cpu);
1591 }
1592 }
1593
1594 return dest_cpu;
1595 }
1596
1597 /*
1598 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1599 */
1600 static inline
1601 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1602 {
1603 lockdep_assert_held(&p->pi_lock);
1604
1605 if (tsk_nr_cpus_allowed(p) > 1)
1606 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1607 else
1608 cpu = cpumask_any(tsk_cpus_allowed(p));
1609
1610 /*
1611 * In order not to call set_task_cpu() on a blocking task we need
1612 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1613 * cpu.
1614 *
1615 * Since this is common to all placement strategies, this lives here.
1616 *
1617 * [ this allows ->select_task() to simply return task_cpu(p) and
1618 * not worry about this generic constraint ]
1619 */
1620 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1621 !cpu_online(cpu)))
1622 cpu = select_fallback_rq(task_cpu(p), p);
1623
1624 return cpu;
1625 }
1626
1627 static void update_avg(u64 *avg, u64 sample)
1628 {
1629 s64 diff = sample - *avg;
1630 *avg += diff >> 3;
1631 }
1632
1633 #else
1634
1635 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1636 const struct cpumask *new_mask, bool check)
1637 {
1638 return set_cpus_allowed_ptr(p, new_mask);
1639 }
1640
1641 #endif /* CONFIG_SMP */
1642
1643 static void
1644 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1645 {
1646 struct rq *rq;
1647
1648 if (!schedstat_enabled())
1649 return;
1650
1651 rq = this_rq();
1652
1653 #ifdef CONFIG_SMP
1654 if (cpu == rq->cpu) {
1655 schedstat_inc(rq->ttwu_local);
1656 schedstat_inc(p->se.statistics.nr_wakeups_local);
1657 } else {
1658 struct sched_domain *sd;
1659
1660 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1661 rcu_read_lock();
1662 for_each_domain(rq->cpu, sd) {
1663 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1664 schedstat_inc(sd->ttwu_wake_remote);
1665 break;
1666 }
1667 }
1668 rcu_read_unlock();
1669 }
1670
1671 if (wake_flags & WF_MIGRATED)
1672 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1673 #endif /* CONFIG_SMP */
1674
1675 schedstat_inc(rq->ttwu_count);
1676 schedstat_inc(p->se.statistics.nr_wakeups);
1677
1678 if (wake_flags & WF_SYNC)
1679 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1680 }
1681
1682 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1683 {
1684 activate_task(rq, p, en_flags);
1685 p->on_rq = TASK_ON_RQ_QUEUED;
1686
1687 /* if a worker is waking up, notify workqueue */
1688 if (p->flags & PF_WQ_WORKER)
1689 wq_worker_waking_up(p, cpu_of(rq));
1690 }
1691
1692 /*
1693 * Mark the task runnable and perform wakeup-preemption.
1694 */
1695 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1696 struct rq_flags *rf)
1697 {
1698 check_preempt_curr(rq, p, wake_flags);
1699 p->state = TASK_RUNNING;
1700 trace_sched_wakeup(p);
1701
1702 #ifdef CONFIG_SMP
1703 if (p->sched_class->task_woken) {
1704 /*
1705 * Our task @p is fully woken up and running; so its safe to
1706 * drop the rq->lock, hereafter rq is only used for statistics.
1707 */
1708 rq_unpin_lock(rq, rf);
1709 p->sched_class->task_woken(rq, p);
1710 rq_repin_lock(rq, rf);
1711 }
1712
1713 if (rq->idle_stamp) {
1714 u64 delta = rq_clock(rq) - rq->idle_stamp;
1715 u64 max = 2*rq->max_idle_balance_cost;
1716
1717 update_avg(&rq->avg_idle, delta);
1718
1719 if (rq->avg_idle > max)
1720 rq->avg_idle = max;
1721
1722 rq->idle_stamp = 0;
1723 }
1724 #endif
1725 }
1726
1727 static void
1728 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1729 struct rq_flags *rf)
1730 {
1731 int en_flags = ENQUEUE_WAKEUP;
1732
1733 lockdep_assert_held(&rq->lock);
1734
1735 #ifdef CONFIG_SMP
1736 if (p->sched_contributes_to_load)
1737 rq->nr_uninterruptible--;
1738
1739 if (wake_flags & WF_MIGRATED)
1740 en_flags |= ENQUEUE_MIGRATED;
1741 #endif
1742
1743 ttwu_activate(rq, p, en_flags);
1744 ttwu_do_wakeup(rq, p, wake_flags, rf);
1745 }
1746
1747 /*
1748 * Called in case the task @p isn't fully descheduled from its runqueue,
1749 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1750 * since all we need to do is flip p->state to TASK_RUNNING, since
1751 * the task is still ->on_rq.
1752 */
1753 static int ttwu_remote(struct task_struct *p, int wake_flags)
1754 {
1755 struct rq_flags rf;
1756 struct rq *rq;
1757 int ret = 0;
1758
1759 rq = __task_rq_lock(p, &rf);
1760 if (task_on_rq_queued(p)) {
1761 /* check_preempt_curr() may use rq clock */
1762 update_rq_clock(rq);
1763 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1764 ret = 1;
1765 }
1766 __task_rq_unlock(rq, &rf);
1767
1768 return ret;
1769 }
1770
1771 #ifdef CONFIG_SMP
1772 void sched_ttwu_pending(void)
1773 {
1774 struct rq *rq = this_rq();
1775 struct llist_node *llist = llist_del_all(&rq->wake_list);
1776 struct task_struct *p;
1777 unsigned long flags;
1778 struct rq_flags rf;
1779
1780 if (!llist)
1781 return;
1782
1783 raw_spin_lock_irqsave(&rq->lock, flags);
1784 rq_pin_lock(rq, &rf);
1785
1786 while (llist) {
1787 int wake_flags = 0;
1788
1789 p = llist_entry(llist, struct task_struct, wake_entry);
1790 llist = llist_next(llist);
1791
1792 if (p->sched_remote_wakeup)
1793 wake_flags = WF_MIGRATED;
1794
1795 ttwu_do_activate(rq, p, wake_flags, &rf);
1796 }
1797
1798 rq_unpin_lock(rq, &rf);
1799 raw_spin_unlock_irqrestore(&rq->lock, flags);
1800 }
1801
1802 void scheduler_ipi(void)
1803 {
1804 /*
1805 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1806 * TIF_NEED_RESCHED remotely (for the first time) will also send
1807 * this IPI.
1808 */
1809 preempt_fold_need_resched();
1810
1811 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1812 return;
1813
1814 /*
1815 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1816 * traditionally all their work was done from the interrupt return
1817 * path. Now that we actually do some work, we need to make sure
1818 * we do call them.
1819 *
1820 * Some archs already do call them, luckily irq_enter/exit nest
1821 * properly.
1822 *
1823 * Arguably we should visit all archs and update all handlers,
1824 * however a fair share of IPIs are still resched only so this would
1825 * somewhat pessimize the simple resched case.
1826 */
1827 irq_enter();
1828 sched_ttwu_pending();
1829
1830 /*
1831 * Check if someone kicked us for doing the nohz idle load balance.
1832 */
1833 if (unlikely(got_nohz_idle_kick())) {
1834 this_rq()->idle_balance = 1;
1835 raise_softirq_irqoff(SCHED_SOFTIRQ);
1836 }
1837 irq_exit();
1838 }
1839
1840 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1841 {
1842 struct rq *rq = cpu_rq(cpu);
1843
1844 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1845
1846 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1847 if (!set_nr_if_polling(rq->idle))
1848 smp_send_reschedule(cpu);
1849 else
1850 trace_sched_wake_idle_without_ipi(cpu);
1851 }
1852 }
1853
1854 void wake_up_if_idle(int cpu)
1855 {
1856 struct rq *rq = cpu_rq(cpu);
1857 unsigned long flags;
1858
1859 rcu_read_lock();
1860
1861 if (!is_idle_task(rcu_dereference(rq->curr)))
1862 goto out;
1863
1864 if (set_nr_if_polling(rq->idle)) {
1865 trace_sched_wake_idle_without_ipi(cpu);
1866 } else {
1867 raw_spin_lock_irqsave(&rq->lock, flags);
1868 if (is_idle_task(rq->curr))
1869 smp_send_reschedule(cpu);
1870 /* Else cpu is not in idle, do nothing here */
1871 raw_spin_unlock_irqrestore(&rq->lock, flags);
1872 }
1873
1874 out:
1875 rcu_read_unlock();
1876 }
1877
1878 bool cpus_share_cache(int this_cpu, int that_cpu)
1879 {
1880 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1881 }
1882 #endif /* CONFIG_SMP */
1883
1884 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1885 {
1886 struct rq *rq = cpu_rq(cpu);
1887 struct rq_flags rf;
1888
1889 #if defined(CONFIG_SMP)
1890 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1891 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1892 ttwu_queue_remote(p, cpu, wake_flags);
1893 return;
1894 }
1895 #endif
1896
1897 raw_spin_lock(&rq->lock);
1898 rq_pin_lock(rq, &rf);
1899 ttwu_do_activate(rq, p, wake_flags, &rf);
1900 rq_unpin_lock(rq, &rf);
1901 raw_spin_unlock(&rq->lock);
1902 }
1903
1904 /*
1905 * Notes on Program-Order guarantees on SMP systems.
1906 *
1907 * MIGRATION
1908 *
1909 * The basic program-order guarantee on SMP systems is that when a task [t]
1910 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1911 * execution on its new cpu [c1].
1912 *
1913 * For migration (of runnable tasks) this is provided by the following means:
1914 *
1915 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1916 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1917 * rq(c1)->lock (if not at the same time, then in that order).
1918 * C) LOCK of the rq(c1)->lock scheduling in task
1919 *
1920 * Transitivity guarantees that B happens after A and C after B.
1921 * Note: we only require RCpc transitivity.
1922 * Note: the cpu doing B need not be c0 or c1
1923 *
1924 * Example:
1925 *
1926 * CPU0 CPU1 CPU2
1927 *
1928 * LOCK rq(0)->lock
1929 * sched-out X
1930 * sched-in Y
1931 * UNLOCK rq(0)->lock
1932 *
1933 * LOCK rq(0)->lock // orders against CPU0
1934 * dequeue X
1935 * UNLOCK rq(0)->lock
1936 *
1937 * LOCK rq(1)->lock
1938 * enqueue X
1939 * UNLOCK rq(1)->lock
1940 *
1941 * LOCK rq(1)->lock // orders against CPU2
1942 * sched-out Z
1943 * sched-in X
1944 * UNLOCK rq(1)->lock
1945 *
1946 *
1947 * BLOCKING -- aka. SLEEP + WAKEUP
1948 *
1949 * For blocking we (obviously) need to provide the same guarantee as for
1950 * migration. However the means are completely different as there is no lock
1951 * chain to provide order. Instead we do:
1952 *
1953 * 1) smp_store_release(X->on_cpu, 0)
1954 * 2) smp_cond_load_acquire(!X->on_cpu)
1955 *
1956 * Example:
1957 *
1958 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1959 *
1960 * LOCK rq(0)->lock LOCK X->pi_lock
1961 * dequeue X
1962 * sched-out X
1963 * smp_store_release(X->on_cpu, 0);
1964 *
1965 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1966 * X->state = WAKING
1967 * set_task_cpu(X,2)
1968 *
1969 * LOCK rq(2)->lock
1970 * enqueue X
1971 * X->state = RUNNING
1972 * UNLOCK rq(2)->lock
1973 *
1974 * LOCK rq(2)->lock // orders against CPU1
1975 * sched-out Z
1976 * sched-in X
1977 * UNLOCK rq(2)->lock
1978 *
1979 * UNLOCK X->pi_lock
1980 * UNLOCK rq(0)->lock
1981 *
1982 *
1983 * However; for wakeups there is a second guarantee we must provide, namely we
1984 * must observe the state that lead to our wakeup. That is, not only must our
1985 * task observe its own prior state, it must also observe the stores prior to
1986 * its wakeup.
1987 *
1988 * This means that any means of doing remote wakeups must order the CPU doing
1989 * the wakeup against the CPU the task is going to end up running on. This,
1990 * however, is already required for the regular Program-Order guarantee above,
1991 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1992 *
1993 */
1994
1995 /**
1996 * try_to_wake_up - wake up a thread
1997 * @p: the thread to be awakened
1998 * @state: the mask of task states that can be woken
1999 * @wake_flags: wake modifier flags (WF_*)
2000 *
2001 * If (@state & @p->state) @p->state = TASK_RUNNING.
2002 *
2003 * If the task was not queued/runnable, also place it back on a runqueue.
2004 *
2005 * Atomic against schedule() which would dequeue a task, also see
2006 * set_current_state().
2007 *
2008 * Return: %true if @p->state changes (an actual wakeup was done),
2009 * %false otherwise.
2010 */
2011 static int
2012 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2013 {
2014 unsigned long flags;
2015 int cpu, success = 0;
2016
2017 /*
2018 * If we are going to wake up a thread waiting for CONDITION we
2019 * need to ensure that CONDITION=1 done by the caller can not be
2020 * reordered with p->state check below. This pairs with mb() in
2021 * set_current_state() the waiting thread does.
2022 */
2023 smp_mb__before_spinlock();
2024 raw_spin_lock_irqsave(&p->pi_lock, flags);
2025 if (!(p->state & state))
2026 goto out;
2027
2028 trace_sched_waking(p);
2029
2030 success = 1; /* we're going to change ->state */
2031 cpu = task_cpu(p);
2032
2033 /*
2034 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2035 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2036 * in smp_cond_load_acquire() below.
2037 *
2038 * sched_ttwu_pending() try_to_wake_up()
2039 * [S] p->on_rq = 1; [L] P->state
2040 * UNLOCK rq->lock -----.
2041 * \
2042 * +--- RMB
2043 * schedule() /
2044 * LOCK rq->lock -----'
2045 * UNLOCK rq->lock
2046 *
2047 * [task p]
2048 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2049 *
2050 * Pairs with the UNLOCK+LOCK on rq->lock from the
2051 * last wakeup of our task and the schedule that got our task
2052 * current.
2053 */
2054 smp_rmb();
2055 if (p->on_rq && ttwu_remote(p, wake_flags))
2056 goto stat;
2057
2058 #ifdef CONFIG_SMP
2059 /*
2060 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2061 * possible to, falsely, observe p->on_cpu == 0.
2062 *
2063 * One must be running (->on_cpu == 1) in order to remove oneself
2064 * from the runqueue.
2065 *
2066 * [S] ->on_cpu = 1; [L] ->on_rq
2067 * UNLOCK rq->lock
2068 * RMB
2069 * LOCK rq->lock
2070 * [S] ->on_rq = 0; [L] ->on_cpu
2071 *
2072 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2073 * from the consecutive calls to schedule(); the first switching to our
2074 * task, the second putting it to sleep.
2075 */
2076 smp_rmb();
2077
2078 /*
2079 * If the owning (remote) cpu is still in the middle of schedule() with
2080 * this task as prev, wait until its done referencing the task.
2081 *
2082 * Pairs with the smp_store_release() in finish_lock_switch().
2083 *
2084 * This ensures that tasks getting woken will be fully ordered against
2085 * their previous state and preserve Program Order.
2086 */
2087 smp_cond_load_acquire(&p->on_cpu, !VAL);
2088
2089 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2090 p->state = TASK_WAKING;
2091
2092 if (p->in_iowait) {
2093 delayacct_blkio_end();
2094 atomic_dec(&task_rq(p)->nr_iowait);
2095 }
2096
2097 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2098 if (task_cpu(p) != cpu) {
2099 wake_flags |= WF_MIGRATED;
2100 set_task_cpu(p, cpu);
2101 }
2102
2103 #else /* CONFIG_SMP */
2104
2105 if (p->in_iowait) {
2106 delayacct_blkio_end();
2107 atomic_dec(&task_rq(p)->nr_iowait);
2108 }
2109
2110 #endif /* CONFIG_SMP */
2111
2112 ttwu_queue(p, cpu, wake_flags);
2113 stat:
2114 ttwu_stat(p, cpu, wake_flags);
2115 out:
2116 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2117
2118 return success;
2119 }
2120
2121 /**
2122 * try_to_wake_up_local - try to wake up a local task with rq lock held
2123 * @p: the thread to be awakened
2124 * @cookie: context's cookie for pinning
2125 *
2126 * Put @p on the run-queue if it's not already there. The caller must
2127 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2128 * the current task.
2129 */
2130 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2131 {
2132 struct rq *rq = task_rq(p);
2133
2134 if (WARN_ON_ONCE(rq != this_rq()) ||
2135 WARN_ON_ONCE(p == current))
2136 return;
2137
2138 lockdep_assert_held(&rq->lock);
2139
2140 if (!raw_spin_trylock(&p->pi_lock)) {
2141 /*
2142 * This is OK, because current is on_cpu, which avoids it being
2143 * picked for load-balance and preemption/IRQs are still
2144 * disabled avoiding further scheduler activity on it and we've
2145 * not yet picked a replacement task.
2146 */
2147 rq_unpin_lock(rq, rf);
2148 raw_spin_unlock(&rq->lock);
2149 raw_spin_lock(&p->pi_lock);
2150 raw_spin_lock(&rq->lock);
2151 rq_repin_lock(rq, rf);
2152 }
2153
2154 if (!(p->state & TASK_NORMAL))
2155 goto out;
2156
2157 trace_sched_waking(p);
2158
2159 if (!task_on_rq_queued(p)) {
2160 if (p->in_iowait) {
2161 delayacct_blkio_end();
2162 atomic_dec(&rq->nr_iowait);
2163 }
2164 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2165 }
2166
2167 ttwu_do_wakeup(rq, p, 0, rf);
2168 ttwu_stat(p, smp_processor_id(), 0);
2169 out:
2170 raw_spin_unlock(&p->pi_lock);
2171 }
2172
2173 /**
2174 * wake_up_process - Wake up a specific process
2175 * @p: The process to be woken up.
2176 *
2177 * Attempt to wake up the nominated process and move it to the set of runnable
2178 * processes.
2179 *
2180 * Return: 1 if the process was woken up, 0 if it was already running.
2181 *
2182 * It may be assumed that this function implies a write memory barrier before
2183 * changing the task state if and only if any tasks are woken up.
2184 */
2185 int wake_up_process(struct task_struct *p)
2186 {
2187 return try_to_wake_up(p, TASK_NORMAL, 0);
2188 }
2189 EXPORT_SYMBOL(wake_up_process);
2190
2191 int wake_up_state(struct task_struct *p, unsigned int state)
2192 {
2193 return try_to_wake_up(p, state, 0);
2194 }
2195
2196 /*
2197 * This function clears the sched_dl_entity static params.
2198 */
2199 void __dl_clear_params(struct task_struct *p)
2200 {
2201 struct sched_dl_entity *dl_se = &p->dl;
2202
2203 dl_se->dl_runtime = 0;
2204 dl_se->dl_deadline = 0;
2205 dl_se->dl_period = 0;
2206 dl_se->flags = 0;
2207 dl_se->dl_bw = 0;
2208
2209 dl_se->dl_throttled = 0;
2210 dl_se->dl_yielded = 0;
2211 }
2212
2213 /*
2214 * Perform scheduler related setup for a newly forked process p.
2215 * p is forked by current.
2216 *
2217 * __sched_fork() is basic setup used by init_idle() too:
2218 */
2219 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2220 {
2221 p->on_rq = 0;
2222
2223 p->se.on_rq = 0;
2224 p->se.exec_start = 0;
2225 p->se.sum_exec_runtime = 0;
2226 p->se.prev_sum_exec_runtime = 0;
2227 p->se.nr_migrations = 0;
2228 p->se.vruntime = 0;
2229 INIT_LIST_HEAD(&p->se.group_node);
2230
2231 #ifdef CONFIG_FAIR_GROUP_SCHED
2232 p->se.cfs_rq = NULL;
2233 #endif
2234
2235 #ifdef CONFIG_SCHEDSTATS
2236 /* Even if schedstat is disabled, there should not be garbage */
2237 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2238 #endif
2239
2240 RB_CLEAR_NODE(&p->dl.rb_node);
2241 init_dl_task_timer(&p->dl);
2242 __dl_clear_params(p);
2243
2244 INIT_LIST_HEAD(&p->rt.run_list);
2245 p->rt.timeout = 0;
2246 p->rt.time_slice = sched_rr_timeslice;
2247 p->rt.on_rq = 0;
2248 p->rt.on_list = 0;
2249
2250 #ifdef CONFIG_PREEMPT_NOTIFIERS
2251 INIT_HLIST_HEAD(&p->preempt_notifiers);
2252 #endif
2253
2254 #ifdef CONFIG_NUMA_BALANCING
2255 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2256 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2257 p->mm->numa_scan_seq = 0;
2258 }
2259
2260 if (clone_flags & CLONE_VM)
2261 p->numa_preferred_nid = current->numa_preferred_nid;
2262 else
2263 p->numa_preferred_nid = -1;
2264
2265 p->node_stamp = 0ULL;
2266 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2267 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2268 p->numa_work.next = &p->numa_work;
2269 p->numa_faults = NULL;
2270 p->last_task_numa_placement = 0;
2271 p->last_sum_exec_runtime = 0;
2272
2273 p->numa_group = NULL;
2274 #endif /* CONFIG_NUMA_BALANCING */
2275 }
2276
2277 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2278
2279 #ifdef CONFIG_NUMA_BALANCING
2280
2281 void set_numabalancing_state(bool enabled)
2282 {
2283 if (enabled)
2284 static_branch_enable(&sched_numa_balancing);
2285 else
2286 static_branch_disable(&sched_numa_balancing);
2287 }
2288
2289 #ifdef CONFIG_PROC_SYSCTL
2290 int sysctl_numa_balancing(struct ctl_table *table, int write,
2291 void __user *buffer, size_t *lenp, loff_t *ppos)
2292 {
2293 struct ctl_table t;
2294 int err;
2295 int state = static_branch_likely(&sched_numa_balancing);
2296
2297 if (write && !capable(CAP_SYS_ADMIN))
2298 return -EPERM;
2299
2300 t = *table;
2301 t.data = &state;
2302 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2303 if (err < 0)
2304 return err;
2305 if (write)
2306 set_numabalancing_state(state);
2307 return err;
2308 }
2309 #endif
2310 #endif
2311
2312 #ifdef CONFIG_SCHEDSTATS
2313
2314 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2315 static bool __initdata __sched_schedstats = false;
2316
2317 static void set_schedstats(bool enabled)
2318 {
2319 if (enabled)
2320 static_branch_enable(&sched_schedstats);
2321 else
2322 static_branch_disable(&sched_schedstats);
2323 }
2324
2325 void force_schedstat_enabled(void)
2326 {
2327 if (!schedstat_enabled()) {
2328 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2329 static_branch_enable(&sched_schedstats);
2330 }
2331 }
2332
2333 static int __init setup_schedstats(char *str)
2334 {
2335 int ret = 0;
2336 if (!str)
2337 goto out;
2338
2339 /*
2340 * This code is called before jump labels have been set up, so we can't
2341 * change the static branch directly just yet. Instead set a temporary
2342 * variable so init_schedstats() can do it later.
2343 */
2344 if (!strcmp(str, "enable")) {
2345 __sched_schedstats = true;
2346 ret = 1;
2347 } else if (!strcmp(str, "disable")) {
2348 __sched_schedstats = false;
2349 ret = 1;
2350 }
2351 out:
2352 if (!ret)
2353 pr_warn("Unable to parse schedstats=\n");
2354
2355 return ret;
2356 }
2357 __setup("schedstats=", setup_schedstats);
2358
2359 static void __init init_schedstats(void)
2360 {
2361 set_schedstats(__sched_schedstats);
2362 }
2363
2364 #ifdef CONFIG_PROC_SYSCTL
2365 int sysctl_schedstats(struct ctl_table *table, int write,
2366 void __user *buffer, size_t *lenp, loff_t *ppos)
2367 {
2368 struct ctl_table t;
2369 int err;
2370 int state = static_branch_likely(&sched_schedstats);
2371
2372 if (write && !capable(CAP_SYS_ADMIN))
2373 return -EPERM;
2374
2375 t = *table;
2376 t.data = &state;
2377 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2378 if (err < 0)
2379 return err;
2380 if (write)
2381 set_schedstats(state);
2382 return err;
2383 }
2384 #endif /* CONFIG_PROC_SYSCTL */
2385 #else /* !CONFIG_SCHEDSTATS */
2386 static inline void init_schedstats(void) {}
2387 #endif /* CONFIG_SCHEDSTATS */
2388
2389 /*
2390 * fork()/clone()-time setup:
2391 */
2392 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2393 {
2394 unsigned long flags;
2395 int cpu = get_cpu();
2396
2397 __sched_fork(clone_flags, p);
2398 /*
2399 * We mark the process as NEW here. This guarantees that
2400 * nobody will actually run it, and a signal or other external
2401 * event cannot wake it up and insert it on the runqueue either.
2402 */
2403 p->state = TASK_NEW;
2404
2405 /*
2406 * Make sure we do not leak PI boosting priority to the child.
2407 */
2408 p->prio = current->normal_prio;
2409
2410 /*
2411 * Revert to default priority/policy on fork if requested.
2412 */
2413 if (unlikely(p->sched_reset_on_fork)) {
2414 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2415 p->policy = SCHED_NORMAL;
2416 p->static_prio = NICE_TO_PRIO(0);
2417 p->rt_priority = 0;
2418 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2419 p->static_prio = NICE_TO_PRIO(0);
2420
2421 p->prio = p->normal_prio = __normal_prio(p);
2422 set_load_weight(p);
2423
2424 /*
2425 * We don't need the reset flag anymore after the fork. It has
2426 * fulfilled its duty:
2427 */
2428 p->sched_reset_on_fork = 0;
2429 }
2430
2431 if (dl_prio(p->prio)) {
2432 put_cpu();
2433 return -EAGAIN;
2434 } else if (rt_prio(p->prio)) {
2435 p->sched_class = &rt_sched_class;
2436 } else {
2437 p->sched_class = &fair_sched_class;
2438 }
2439
2440 init_entity_runnable_average(&p->se);
2441
2442 /*
2443 * The child is not yet in the pid-hash so no cgroup attach races,
2444 * and the cgroup is pinned to this child due to cgroup_fork()
2445 * is ran before sched_fork().
2446 *
2447 * Silence PROVE_RCU.
2448 */
2449 raw_spin_lock_irqsave(&p->pi_lock, flags);
2450 /*
2451 * We're setting the cpu for the first time, we don't migrate,
2452 * so use __set_task_cpu().
2453 */
2454 __set_task_cpu(p, cpu);
2455 if (p->sched_class->task_fork)
2456 p->sched_class->task_fork(p);
2457 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2458
2459 #ifdef CONFIG_SCHED_INFO
2460 if (likely(sched_info_on()))
2461 memset(&p->sched_info, 0, sizeof(p->sched_info));
2462 #endif
2463 #if defined(CONFIG_SMP)
2464 p->on_cpu = 0;
2465 #endif
2466 init_task_preempt_count(p);
2467 #ifdef CONFIG_SMP
2468 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2469 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2470 #endif
2471
2472 put_cpu();
2473 return 0;
2474 }
2475
2476 unsigned long to_ratio(u64 period, u64 runtime)
2477 {
2478 if (runtime == RUNTIME_INF)
2479 return 1ULL << 20;
2480
2481 /*
2482 * Doing this here saves a lot of checks in all
2483 * the calling paths, and returning zero seems
2484 * safe for them anyway.
2485 */
2486 if (period == 0)
2487 return 0;
2488
2489 return div64_u64(runtime << 20, period);
2490 }
2491
2492 #ifdef CONFIG_SMP
2493 inline struct dl_bw *dl_bw_of(int i)
2494 {
2495 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2496 "sched RCU must be held");
2497 return &cpu_rq(i)->rd->dl_bw;
2498 }
2499
2500 static inline int dl_bw_cpus(int i)
2501 {
2502 struct root_domain *rd = cpu_rq(i)->rd;
2503 int cpus = 0;
2504
2505 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2506 "sched RCU must be held");
2507 for_each_cpu_and(i, rd->span, cpu_active_mask)
2508 cpus++;
2509
2510 return cpus;
2511 }
2512 #else
2513 inline struct dl_bw *dl_bw_of(int i)
2514 {
2515 return &cpu_rq(i)->dl.dl_bw;
2516 }
2517
2518 static inline int dl_bw_cpus(int i)
2519 {
2520 return 1;
2521 }
2522 #endif
2523
2524 /*
2525 * We must be sure that accepting a new task (or allowing changing the
2526 * parameters of an existing one) is consistent with the bandwidth
2527 * constraints. If yes, this function also accordingly updates the currently
2528 * allocated bandwidth to reflect the new situation.
2529 *
2530 * This function is called while holding p's rq->lock.
2531 *
2532 * XXX we should delay bw change until the task's 0-lag point, see
2533 * __setparam_dl().
2534 */
2535 static int dl_overflow(struct task_struct *p, int policy,
2536 const struct sched_attr *attr)
2537 {
2538
2539 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2540 u64 period = attr->sched_period ?: attr->sched_deadline;
2541 u64 runtime = attr->sched_runtime;
2542 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2543 int cpus, err = -1;
2544
2545 /* !deadline task may carry old deadline bandwidth */
2546 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2547 return 0;
2548
2549 /*
2550 * Either if a task, enters, leave, or stays -deadline but changes
2551 * its parameters, we may need to update accordingly the total
2552 * allocated bandwidth of the container.
2553 */
2554 raw_spin_lock(&dl_b->lock);
2555 cpus = dl_bw_cpus(task_cpu(p));
2556 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2557 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2558 __dl_add(dl_b, new_bw);
2559 err = 0;
2560 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2561 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2562 __dl_clear(dl_b, p->dl.dl_bw);
2563 __dl_add(dl_b, new_bw);
2564 err = 0;
2565 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2566 __dl_clear(dl_b, p->dl.dl_bw);
2567 err = 0;
2568 }
2569 raw_spin_unlock(&dl_b->lock);
2570
2571 return err;
2572 }
2573
2574 extern void init_dl_bw(struct dl_bw *dl_b);
2575
2576 /*
2577 * wake_up_new_task - wake up a newly created task for the first time.
2578 *
2579 * This function will do some initial scheduler statistics housekeeping
2580 * that must be done for every newly created context, then puts the task
2581 * on the runqueue and wakes it.
2582 */
2583 void wake_up_new_task(struct task_struct *p)
2584 {
2585 struct rq_flags rf;
2586 struct rq *rq;
2587
2588 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2589 p->state = TASK_RUNNING;
2590 #ifdef CONFIG_SMP
2591 /*
2592 * Fork balancing, do it here and not earlier because:
2593 * - cpus_allowed can change in the fork path
2594 * - any previously selected cpu might disappear through hotplug
2595 *
2596 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2597 * as we're not fully set-up yet.
2598 */
2599 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2600 #endif
2601 rq = __task_rq_lock(p, &rf);
2602 update_rq_clock(rq);
2603 post_init_entity_util_avg(&p->se);
2604
2605 activate_task(rq, p, 0);
2606 p->on_rq = TASK_ON_RQ_QUEUED;
2607 trace_sched_wakeup_new(p);
2608 check_preempt_curr(rq, p, WF_FORK);
2609 #ifdef CONFIG_SMP
2610 if (p->sched_class->task_woken) {
2611 /*
2612 * Nothing relies on rq->lock after this, so its fine to
2613 * drop it.
2614 */
2615 rq_unpin_lock(rq, &rf);
2616 p->sched_class->task_woken(rq, p);
2617 rq_repin_lock(rq, &rf);
2618 }
2619 #endif
2620 task_rq_unlock(rq, p, &rf);
2621 }
2622
2623 #ifdef CONFIG_PREEMPT_NOTIFIERS
2624
2625 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2626
2627 void preempt_notifier_inc(void)
2628 {
2629 static_key_slow_inc(&preempt_notifier_key);
2630 }
2631 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2632
2633 void preempt_notifier_dec(void)
2634 {
2635 static_key_slow_dec(&preempt_notifier_key);
2636 }
2637 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2638
2639 /**
2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2641 * @notifier: notifier struct to register
2642 */
2643 void preempt_notifier_register(struct preempt_notifier *notifier)
2644 {
2645 if (!static_key_false(&preempt_notifier_key))
2646 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2647
2648 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2649 }
2650 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2651
2652 /**
2653 * preempt_notifier_unregister - no longer interested in preemption notifications
2654 * @notifier: notifier struct to unregister
2655 *
2656 * This is *not* safe to call from within a preemption notifier.
2657 */
2658 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2659 {
2660 hlist_del(&notifier->link);
2661 }
2662 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2663
2664 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2665 {
2666 struct preempt_notifier *notifier;
2667
2668 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2669 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670 }
2671
2672 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673 {
2674 if (static_key_false(&preempt_notifier_key))
2675 __fire_sched_in_preempt_notifiers(curr);
2676 }
2677
2678 static void
2679 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2680 struct task_struct *next)
2681 {
2682 struct preempt_notifier *notifier;
2683
2684 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2685 notifier->ops->sched_out(notifier, next);
2686 }
2687
2688 static __always_inline void
2689 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2690 struct task_struct *next)
2691 {
2692 if (static_key_false(&preempt_notifier_key))
2693 __fire_sched_out_preempt_notifiers(curr, next);
2694 }
2695
2696 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2697
2698 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2699 {
2700 }
2701
2702 static inline void
2703 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2704 struct task_struct *next)
2705 {
2706 }
2707
2708 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2709
2710 /**
2711 * prepare_task_switch - prepare to switch tasks
2712 * @rq: the runqueue preparing to switch
2713 * @prev: the current task that is being switched out
2714 * @next: the task we are going to switch to.
2715 *
2716 * This is called with the rq lock held and interrupts off. It must
2717 * be paired with a subsequent finish_task_switch after the context
2718 * switch.
2719 *
2720 * prepare_task_switch sets up locking and calls architecture specific
2721 * hooks.
2722 */
2723 static inline void
2724 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2725 struct task_struct *next)
2726 {
2727 sched_info_switch(rq, prev, next);
2728 perf_event_task_sched_out(prev, next);
2729 fire_sched_out_preempt_notifiers(prev, next);
2730 prepare_lock_switch(rq, next);
2731 prepare_arch_switch(next);
2732 }
2733
2734 /**
2735 * finish_task_switch - clean up after a task-switch
2736 * @prev: the thread we just switched away from.
2737 *
2738 * finish_task_switch must be called after the context switch, paired
2739 * with a prepare_task_switch call before the context switch.
2740 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2741 * and do any other architecture-specific cleanup actions.
2742 *
2743 * Note that we may have delayed dropping an mm in context_switch(). If
2744 * so, we finish that here outside of the runqueue lock. (Doing it
2745 * with the lock held can cause deadlocks; see schedule() for
2746 * details.)
2747 *
2748 * The context switch have flipped the stack from under us and restored the
2749 * local variables which were saved when this task called schedule() in the
2750 * past. prev == current is still correct but we need to recalculate this_rq
2751 * because prev may have moved to another CPU.
2752 */
2753 static struct rq *finish_task_switch(struct task_struct *prev)
2754 __releases(rq->lock)
2755 {
2756 struct rq *rq = this_rq();
2757 struct mm_struct *mm = rq->prev_mm;
2758 long prev_state;
2759
2760 /*
2761 * The previous task will have left us with a preempt_count of 2
2762 * because it left us after:
2763 *
2764 * schedule()
2765 * preempt_disable(); // 1
2766 * __schedule()
2767 * raw_spin_lock_irq(&rq->lock) // 2
2768 *
2769 * Also, see FORK_PREEMPT_COUNT.
2770 */
2771 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2772 "corrupted preempt_count: %s/%d/0x%x\n",
2773 current->comm, current->pid, preempt_count()))
2774 preempt_count_set(FORK_PREEMPT_COUNT);
2775
2776 rq->prev_mm = NULL;
2777
2778 /*
2779 * A task struct has one reference for the use as "current".
2780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2781 * schedule one last time. The schedule call will never return, and
2782 * the scheduled task must drop that reference.
2783 *
2784 * We must observe prev->state before clearing prev->on_cpu (in
2785 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2786 * running on another CPU and we could rave with its RUNNING -> DEAD
2787 * transition, resulting in a double drop.
2788 */
2789 prev_state = prev->state;
2790 vtime_task_switch(prev);
2791 perf_event_task_sched_in(prev, current);
2792 finish_lock_switch(rq, prev);
2793 finish_arch_post_lock_switch();
2794
2795 fire_sched_in_preempt_notifiers(current);
2796 if (mm)
2797 mmdrop(mm);
2798 if (unlikely(prev_state == TASK_DEAD)) {
2799 if (prev->sched_class->task_dead)
2800 prev->sched_class->task_dead(prev);
2801
2802 /*
2803 * Remove function-return probe instances associated with this
2804 * task and put them back on the free list.
2805 */
2806 kprobe_flush_task(prev);
2807
2808 /* Task is done with its stack. */
2809 put_task_stack(prev);
2810
2811 put_task_struct(prev);
2812 }
2813
2814 tick_nohz_task_switch();
2815 return rq;
2816 }
2817
2818 #ifdef CONFIG_SMP
2819
2820 /* rq->lock is NOT held, but preemption is disabled */
2821 static void __balance_callback(struct rq *rq)
2822 {
2823 struct callback_head *head, *next;
2824 void (*func)(struct rq *rq);
2825 unsigned long flags;
2826
2827 raw_spin_lock_irqsave(&rq->lock, flags);
2828 head = rq->balance_callback;
2829 rq->balance_callback = NULL;
2830 while (head) {
2831 func = (void (*)(struct rq *))head->func;
2832 next = head->next;
2833 head->next = NULL;
2834 head = next;
2835
2836 func(rq);
2837 }
2838 raw_spin_unlock_irqrestore(&rq->lock, flags);
2839 }
2840
2841 static inline void balance_callback(struct rq *rq)
2842 {
2843 if (unlikely(rq->balance_callback))
2844 __balance_callback(rq);
2845 }
2846
2847 #else
2848
2849 static inline void balance_callback(struct rq *rq)
2850 {
2851 }
2852
2853 #endif
2854
2855 /**
2856 * schedule_tail - first thing a freshly forked thread must call.
2857 * @prev: the thread we just switched away from.
2858 */
2859 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2860 __releases(rq->lock)
2861 {
2862 struct rq *rq;
2863
2864 /*
2865 * New tasks start with FORK_PREEMPT_COUNT, see there and
2866 * finish_task_switch() for details.
2867 *
2868 * finish_task_switch() will drop rq->lock() and lower preempt_count
2869 * and the preempt_enable() will end up enabling preemption (on
2870 * PREEMPT_COUNT kernels).
2871 */
2872
2873 rq = finish_task_switch(prev);
2874 balance_callback(rq);
2875 preempt_enable();
2876
2877 if (current->set_child_tid)
2878 put_user(task_pid_vnr(current), current->set_child_tid);
2879 }
2880
2881 /*
2882 * context_switch - switch to the new MM and the new thread's register state.
2883 */
2884 static __always_inline struct rq *
2885 context_switch(struct rq *rq, struct task_struct *prev,
2886 struct task_struct *next, struct rq_flags *rf)
2887 {
2888 struct mm_struct *mm, *oldmm;
2889
2890 prepare_task_switch(rq, prev, next);
2891
2892 mm = next->mm;
2893 oldmm = prev->active_mm;
2894 /*
2895 * For paravirt, this is coupled with an exit in switch_to to
2896 * combine the page table reload and the switch backend into
2897 * one hypercall.
2898 */
2899 arch_start_context_switch(prev);
2900
2901 if (!mm) {
2902 next->active_mm = oldmm;
2903 atomic_inc(&oldmm->mm_count);
2904 enter_lazy_tlb(oldmm, next);
2905 } else
2906 switch_mm_irqs_off(oldmm, mm, next);
2907
2908 if (!prev->mm) {
2909 prev->active_mm = NULL;
2910 rq->prev_mm = oldmm;
2911 }
2912
2913 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2914
2915 /*
2916 * Since the runqueue lock will be released by the next
2917 * task (which is an invalid locking op but in the case
2918 * of the scheduler it's an obvious special-case), so we
2919 * do an early lockdep release here:
2920 */
2921 rq_unpin_lock(rq, rf);
2922 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2923
2924 /* Here we just switch the register state and the stack. */
2925 switch_to(prev, next, prev);
2926 barrier();
2927
2928 return finish_task_switch(prev);
2929 }
2930
2931 /*
2932 * nr_running and nr_context_switches:
2933 *
2934 * externally visible scheduler statistics: current number of runnable
2935 * threads, total number of context switches performed since bootup.
2936 */
2937 unsigned long nr_running(void)
2938 {
2939 unsigned long i, sum = 0;
2940
2941 for_each_online_cpu(i)
2942 sum += cpu_rq(i)->nr_running;
2943
2944 return sum;
2945 }
2946
2947 /*
2948 * Check if only the current task is running on the cpu.
2949 *
2950 * Caution: this function does not check that the caller has disabled
2951 * preemption, thus the result might have a time-of-check-to-time-of-use
2952 * race. The caller is responsible to use it correctly, for example:
2953 *
2954 * - from a non-preemptable section (of course)
2955 *
2956 * - from a thread that is bound to a single CPU
2957 *
2958 * - in a loop with very short iterations (e.g. a polling loop)
2959 */
2960 bool single_task_running(void)
2961 {
2962 return raw_rq()->nr_running == 1;
2963 }
2964 EXPORT_SYMBOL(single_task_running);
2965
2966 unsigned long long nr_context_switches(void)
2967 {
2968 int i;
2969 unsigned long long sum = 0;
2970
2971 for_each_possible_cpu(i)
2972 sum += cpu_rq(i)->nr_switches;
2973
2974 return sum;
2975 }
2976
2977 /*
2978 * IO-wait accounting, and how its mostly bollocks (on SMP).
2979 *
2980 * The idea behind IO-wait account is to account the idle time that we could
2981 * have spend running if it were not for IO. That is, if we were to improve the
2982 * storage performance, we'd have a proportional reduction in IO-wait time.
2983 *
2984 * This all works nicely on UP, where, when a task blocks on IO, we account
2985 * idle time as IO-wait, because if the storage were faster, it could've been
2986 * running and we'd not be idle.
2987 *
2988 * This has been extended to SMP, by doing the same for each CPU. This however
2989 * is broken.
2990 *
2991 * Imagine for instance the case where two tasks block on one CPU, only the one
2992 * CPU will have IO-wait accounted, while the other has regular idle. Even
2993 * though, if the storage were faster, both could've ran at the same time,
2994 * utilising both CPUs.
2995 *
2996 * This means, that when looking globally, the current IO-wait accounting on
2997 * SMP is a lower bound, by reason of under accounting.
2998 *
2999 * Worse, since the numbers are provided per CPU, they are sometimes
3000 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3001 * associated with any one particular CPU, it can wake to another CPU than it
3002 * blocked on. This means the per CPU IO-wait number is meaningless.
3003 *
3004 * Task CPU affinities can make all that even more 'interesting'.
3005 */
3006
3007 unsigned long nr_iowait(void)
3008 {
3009 unsigned long i, sum = 0;
3010
3011 for_each_possible_cpu(i)
3012 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3013
3014 return sum;
3015 }
3016
3017 /*
3018 * Consumers of these two interfaces, like for example the cpufreq menu
3019 * governor are using nonsensical data. Boosting frequency for a CPU that has
3020 * IO-wait which might not even end up running the task when it does become
3021 * runnable.
3022 */
3023
3024 unsigned long nr_iowait_cpu(int cpu)
3025 {
3026 struct rq *this = cpu_rq(cpu);
3027 return atomic_read(&this->nr_iowait);
3028 }
3029
3030 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
3031 {
3032 struct rq *rq = this_rq();
3033 *nr_waiters = atomic_read(&rq->nr_iowait);
3034 *load = rq->load.weight;
3035 }
3036
3037 #ifdef CONFIG_SMP
3038
3039 /*
3040 * sched_exec - execve() is a valuable balancing opportunity, because at
3041 * this point the task has the smallest effective memory and cache footprint.
3042 */
3043 void sched_exec(void)
3044 {
3045 struct task_struct *p = current;
3046 unsigned long flags;
3047 int dest_cpu;
3048
3049 raw_spin_lock_irqsave(&p->pi_lock, flags);
3050 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3051 if (dest_cpu == smp_processor_id())
3052 goto unlock;
3053
3054 if (likely(cpu_active(dest_cpu))) {
3055 struct migration_arg arg = { p, dest_cpu };
3056
3057 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3058 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3059 return;
3060 }
3061 unlock:
3062 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3063 }
3064
3065 #endif
3066
3067 DEFINE_PER_CPU(struct kernel_stat, kstat);
3068 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3069
3070 EXPORT_PER_CPU_SYMBOL(kstat);
3071 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3072
3073 /*
3074 * The function fair_sched_class.update_curr accesses the struct curr
3075 * and its field curr->exec_start; when called from task_sched_runtime(),
3076 * we observe a high rate of cache misses in practice.
3077 * Prefetching this data results in improved performance.
3078 */
3079 static inline void prefetch_curr_exec_start(struct task_struct *p)
3080 {
3081 #ifdef CONFIG_FAIR_GROUP_SCHED
3082 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3083 #else
3084 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3085 #endif
3086 prefetch(curr);
3087 prefetch(&curr->exec_start);
3088 }
3089
3090 /*
3091 * Return accounted runtime for the task.
3092 * In case the task is currently running, return the runtime plus current's
3093 * pending runtime that have not been accounted yet.
3094 */
3095 unsigned long long task_sched_runtime(struct task_struct *p)
3096 {
3097 struct rq_flags rf;
3098 struct rq *rq;
3099 u64 ns;
3100
3101 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3102 /*
3103 * 64-bit doesn't need locks to atomically read a 64bit value.
3104 * So we have a optimization chance when the task's delta_exec is 0.
3105 * Reading ->on_cpu is racy, but this is ok.
3106 *
3107 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3108 * If we race with it entering cpu, unaccounted time is 0. This is
3109 * indistinguishable from the read occurring a few cycles earlier.
3110 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3111 * been accounted, so we're correct here as well.
3112 */
3113 if (!p->on_cpu || !task_on_rq_queued(p))
3114 return p->se.sum_exec_runtime;
3115 #endif
3116
3117 rq = task_rq_lock(p, &rf);
3118 /*
3119 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3120 * project cycles that may never be accounted to this
3121 * thread, breaking clock_gettime().
3122 */
3123 if (task_current(rq, p) && task_on_rq_queued(p)) {
3124 prefetch_curr_exec_start(p);
3125 update_rq_clock(rq);
3126 p->sched_class->update_curr(rq);
3127 }
3128 ns = p->se.sum_exec_runtime;
3129 task_rq_unlock(rq, p, &rf);
3130
3131 return ns;
3132 }
3133
3134 /*
3135 * This function gets called by the timer code, with HZ frequency.
3136 * We call it with interrupts disabled.
3137 */
3138 void scheduler_tick(void)
3139 {
3140 int cpu = smp_processor_id();
3141 struct rq *rq = cpu_rq(cpu);
3142 struct task_struct *curr = rq->curr;
3143
3144 sched_clock_tick();
3145
3146 raw_spin_lock(&rq->lock);
3147 update_rq_clock(rq);
3148 curr->sched_class->task_tick(rq, curr, 0);
3149 cpu_load_update_active(rq);
3150 calc_global_load_tick(rq);
3151 raw_spin_unlock(&rq->lock);
3152
3153 perf_event_task_tick();
3154
3155 #ifdef CONFIG_SMP
3156 rq->idle_balance = idle_cpu(cpu);
3157 trigger_load_balance(rq);
3158 #endif
3159 rq_last_tick_reset(rq);
3160 }
3161
3162 #ifdef CONFIG_NO_HZ_FULL
3163 /**
3164 * scheduler_tick_max_deferment
3165 *
3166 * Keep at least one tick per second when a single
3167 * active task is running because the scheduler doesn't
3168 * yet completely support full dynticks environment.
3169 *
3170 * This makes sure that uptime, CFS vruntime, load
3171 * balancing, etc... continue to move forward, even
3172 * with a very low granularity.
3173 *
3174 * Return: Maximum deferment in nanoseconds.
3175 */
3176 u64 scheduler_tick_max_deferment(void)
3177 {
3178 struct rq *rq = this_rq();
3179 unsigned long next, now = READ_ONCE(jiffies);
3180
3181 next = rq->last_sched_tick + HZ;
3182
3183 if (time_before_eq(next, now))
3184 return 0;
3185
3186 return jiffies_to_nsecs(next - now);
3187 }
3188 #endif
3189
3190 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3191 defined(CONFIG_PREEMPT_TRACER))
3192 /*
3193 * If the value passed in is equal to the current preempt count
3194 * then we just disabled preemption. Start timing the latency.
3195 */
3196 static inline void preempt_latency_start(int val)
3197 {
3198 if (preempt_count() == val) {
3199 unsigned long ip = get_lock_parent_ip();
3200 #ifdef CONFIG_DEBUG_PREEMPT
3201 current->preempt_disable_ip = ip;
3202 #endif
3203 trace_preempt_off(CALLER_ADDR0, ip);
3204 }
3205 }
3206
3207 void preempt_count_add(int val)
3208 {
3209 #ifdef CONFIG_DEBUG_PREEMPT
3210 /*
3211 * Underflow?
3212 */
3213 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3214 return;
3215 #endif
3216 __preempt_count_add(val);
3217 #ifdef CONFIG_DEBUG_PREEMPT
3218 /*
3219 * Spinlock count overflowing soon?
3220 */
3221 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3222 PREEMPT_MASK - 10);
3223 #endif
3224 preempt_latency_start(val);
3225 }
3226 EXPORT_SYMBOL(preempt_count_add);
3227 NOKPROBE_SYMBOL(preempt_count_add);
3228
3229 /*
3230 * If the value passed in equals to the current preempt count
3231 * then we just enabled preemption. Stop timing the latency.
3232 */
3233 static inline void preempt_latency_stop(int val)
3234 {
3235 if (preempt_count() == val)
3236 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3237 }
3238
3239 void preempt_count_sub(int val)
3240 {
3241 #ifdef CONFIG_DEBUG_PREEMPT
3242 /*
3243 * Underflow?
3244 */
3245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3246 return;
3247 /*
3248 * Is the spinlock portion underflowing?
3249 */
3250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3251 !(preempt_count() & PREEMPT_MASK)))
3252 return;
3253 #endif
3254
3255 preempt_latency_stop(val);
3256 __preempt_count_sub(val);
3257 }
3258 EXPORT_SYMBOL(preempt_count_sub);
3259 NOKPROBE_SYMBOL(preempt_count_sub);
3260
3261 #else
3262 static inline void preempt_latency_start(int val) { }
3263 static inline void preempt_latency_stop(int val) { }
3264 #endif
3265
3266 /*
3267 * Print scheduling while atomic bug:
3268 */
3269 static noinline void __schedule_bug(struct task_struct *prev)
3270 {
3271 /* Save this before calling printk(), since that will clobber it */
3272 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3273
3274 if (oops_in_progress)
3275 return;
3276
3277 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3278 prev->comm, prev->pid, preempt_count());
3279
3280 debug_show_held_locks(prev);
3281 print_modules();
3282 if (irqs_disabled())
3283 print_irqtrace_events(prev);
3284 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3285 && in_atomic_preempt_off()) {
3286 pr_err("Preemption disabled at:");
3287 print_ip_sym(preempt_disable_ip);
3288 pr_cont("\n");
3289 }
3290 if (panic_on_warn)
3291 panic("scheduling while atomic\n");
3292
3293 dump_stack();
3294 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3295 }
3296
3297 /*
3298 * Various schedule()-time debugging checks and statistics:
3299 */
3300 static inline void schedule_debug(struct task_struct *prev)
3301 {
3302 #ifdef CONFIG_SCHED_STACK_END_CHECK
3303 if (task_stack_end_corrupted(prev))
3304 panic("corrupted stack end detected inside scheduler\n");
3305 #endif
3306
3307 if (unlikely(in_atomic_preempt_off())) {
3308 __schedule_bug(prev);
3309 preempt_count_set(PREEMPT_DISABLED);
3310 }
3311 rcu_sleep_check();
3312
3313 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3314
3315 schedstat_inc(this_rq()->sched_count);
3316 }
3317
3318 /*
3319 * Pick up the highest-prio task:
3320 */
3321 static inline struct task_struct *
3322 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3323 {
3324 const struct sched_class *class;
3325 struct task_struct *p;
3326
3327 /*
3328 * Optimization: we know that if all tasks are in
3329 * the fair class we can call that function directly:
3330 */
3331 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3332 p = fair_sched_class.pick_next_task(rq, prev, rf);
3333 if (unlikely(p == RETRY_TASK))
3334 goto again;
3335
3336 /* assumes fair_sched_class->next == idle_sched_class */
3337 if (unlikely(!p))
3338 p = idle_sched_class.pick_next_task(rq, prev, rf);
3339
3340 return p;
3341 }
3342
3343 again:
3344 for_each_class(class) {
3345 p = class->pick_next_task(rq, prev, rf);
3346 if (p) {
3347 if (unlikely(p == RETRY_TASK))
3348 goto again;
3349 return p;
3350 }
3351 }
3352
3353 BUG(); /* the idle class will always have a runnable task */
3354 }
3355
3356 /*
3357 * __schedule() is the main scheduler function.
3358 *
3359 * The main means of driving the scheduler and thus entering this function are:
3360 *
3361 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3362 *
3363 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3364 * paths. For example, see arch/x86/entry_64.S.
3365 *
3366 * To drive preemption between tasks, the scheduler sets the flag in timer
3367 * interrupt handler scheduler_tick().
3368 *
3369 * 3. Wakeups don't really cause entry into schedule(). They add a
3370 * task to the run-queue and that's it.
3371 *
3372 * Now, if the new task added to the run-queue preempts the current
3373 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3374 * called on the nearest possible occasion:
3375 *
3376 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3377 *
3378 * - in syscall or exception context, at the next outmost
3379 * preempt_enable(). (this might be as soon as the wake_up()'s
3380 * spin_unlock()!)
3381 *
3382 * - in IRQ context, return from interrupt-handler to
3383 * preemptible context
3384 *
3385 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3386 * then at the next:
3387 *
3388 * - cond_resched() call
3389 * - explicit schedule() call
3390 * - return from syscall or exception to user-space
3391 * - return from interrupt-handler to user-space
3392 *
3393 * WARNING: must be called with preemption disabled!
3394 */
3395 static void __sched notrace __schedule(bool preempt)
3396 {
3397 struct task_struct *prev, *next;
3398 unsigned long *switch_count;
3399 struct rq_flags rf;
3400 struct rq *rq;
3401 int cpu;
3402
3403 cpu = smp_processor_id();
3404 rq = cpu_rq(cpu);
3405 prev = rq->curr;
3406
3407 schedule_debug(prev);
3408
3409 if (sched_feat(HRTICK))
3410 hrtick_clear(rq);
3411
3412 local_irq_disable();
3413 rcu_note_context_switch();
3414
3415 /*
3416 * Make sure that signal_pending_state()->signal_pending() below
3417 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3418 * done by the caller to avoid the race with signal_wake_up().
3419 */
3420 smp_mb__before_spinlock();
3421 raw_spin_lock(&rq->lock);
3422 rq_pin_lock(rq, &rf);
3423
3424 rq->clock_update_flags <<= 1; /* promote REQ to ACT */
3425
3426 switch_count = &prev->nivcsw;
3427 if (!preempt && prev->state) {
3428 if (unlikely(signal_pending_state(prev->state, prev))) {
3429 prev->state = TASK_RUNNING;
3430 } else {
3431 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3432 prev->on_rq = 0;
3433
3434 if (prev->in_iowait) {
3435 atomic_inc(&rq->nr_iowait);
3436 delayacct_blkio_start();
3437 }
3438
3439 /*
3440 * If a worker went to sleep, notify and ask workqueue
3441 * whether it wants to wake up a task to maintain
3442 * concurrency.
3443 */
3444 if (prev->flags & PF_WQ_WORKER) {
3445 struct task_struct *to_wakeup;
3446
3447 to_wakeup = wq_worker_sleeping(prev);
3448 if (to_wakeup)
3449 try_to_wake_up_local(to_wakeup, &rf);
3450 }
3451 }
3452 switch_count = &prev->nvcsw;
3453 }
3454
3455 if (task_on_rq_queued(prev))
3456 update_rq_clock(rq);
3457
3458 next = pick_next_task(rq, prev, &rf);
3459 clear_tsk_need_resched(prev);
3460 clear_preempt_need_resched();
3461
3462 if (likely(prev != next)) {
3463 rq->nr_switches++;
3464 rq->curr = next;
3465 ++*switch_count;
3466
3467 trace_sched_switch(preempt, prev, next);
3468 rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
3469 } else {
3470 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3471 rq_unpin_lock(rq, &rf);
3472 raw_spin_unlock_irq(&rq->lock);
3473 }
3474
3475 balance_callback(rq);
3476 }
3477
3478 void __noreturn do_task_dead(void)
3479 {
3480 /*
3481 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3482 * when the following two conditions become true.
3483 * - There is race condition of mmap_sem (It is acquired by
3484 * exit_mm()), and
3485 * - SMI occurs before setting TASK_RUNINNG.
3486 * (or hypervisor of virtual machine switches to other guest)
3487 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3488 *
3489 * To avoid it, we have to wait for releasing tsk->pi_lock which
3490 * is held by try_to_wake_up()
3491 */
3492 smp_mb();
3493 raw_spin_unlock_wait(&current->pi_lock);
3494
3495 /* causes final put_task_struct in finish_task_switch(). */
3496 __set_current_state(TASK_DEAD);
3497 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3498 __schedule(false);
3499 BUG();
3500 /* Avoid "noreturn function does return". */
3501 for (;;)
3502 cpu_relax(); /* For when BUG is null */
3503 }
3504
3505 static inline void sched_submit_work(struct task_struct *tsk)
3506 {
3507 if (!tsk->state || tsk_is_pi_blocked(tsk))
3508 return;
3509 /*
3510 * If we are going to sleep and we have plugged IO queued,
3511 * make sure to submit it to avoid deadlocks.
3512 */
3513 if (blk_needs_flush_plug(tsk))
3514 blk_schedule_flush_plug(tsk);
3515 }
3516
3517 asmlinkage __visible void __sched schedule(void)
3518 {
3519 struct task_struct *tsk = current;
3520
3521 sched_submit_work(tsk);
3522 do {
3523 preempt_disable();
3524 __schedule(false);
3525 sched_preempt_enable_no_resched();
3526 } while (need_resched());
3527 }
3528 EXPORT_SYMBOL(schedule);
3529
3530 #ifdef CONFIG_CONTEXT_TRACKING
3531 asmlinkage __visible void __sched schedule_user(void)
3532 {
3533 /*
3534 * If we come here after a random call to set_need_resched(),
3535 * or we have been woken up remotely but the IPI has not yet arrived,
3536 * we haven't yet exited the RCU idle mode. Do it here manually until
3537 * we find a better solution.
3538 *
3539 * NB: There are buggy callers of this function. Ideally we
3540 * should warn if prev_state != CONTEXT_USER, but that will trigger
3541 * too frequently to make sense yet.
3542 */
3543 enum ctx_state prev_state = exception_enter();
3544 schedule();
3545 exception_exit(prev_state);
3546 }
3547 #endif
3548
3549 /**
3550 * schedule_preempt_disabled - called with preemption disabled
3551 *
3552 * Returns with preemption disabled. Note: preempt_count must be 1
3553 */
3554 void __sched schedule_preempt_disabled(void)
3555 {
3556 sched_preempt_enable_no_resched();
3557 schedule();
3558 preempt_disable();
3559 }
3560
3561 static void __sched notrace preempt_schedule_common(void)
3562 {
3563 do {
3564 /*
3565 * Because the function tracer can trace preempt_count_sub()
3566 * and it also uses preempt_enable/disable_notrace(), if
3567 * NEED_RESCHED is set, the preempt_enable_notrace() called
3568 * by the function tracer will call this function again and
3569 * cause infinite recursion.
3570 *
3571 * Preemption must be disabled here before the function
3572 * tracer can trace. Break up preempt_disable() into two
3573 * calls. One to disable preemption without fear of being
3574 * traced. The other to still record the preemption latency,
3575 * which can also be traced by the function tracer.
3576 */
3577 preempt_disable_notrace();
3578 preempt_latency_start(1);
3579 __schedule(true);
3580 preempt_latency_stop(1);
3581 preempt_enable_no_resched_notrace();
3582
3583 /*
3584 * Check again in case we missed a preemption opportunity
3585 * between schedule and now.
3586 */
3587 } while (need_resched());
3588 }
3589
3590 #ifdef CONFIG_PREEMPT
3591 /*
3592 * this is the entry point to schedule() from in-kernel preemption
3593 * off of preempt_enable. Kernel preemptions off return from interrupt
3594 * occur there and call schedule directly.
3595 */
3596 asmlinkage __visible void __sched notrace preempt_schedule(void)
3597 {
3598 /*
3599 * If there is a non-zero preempt_count or interrupts are disabled,
3600 * we do not want to preempt the current task. Just return..
3601 */
3602 if (likely(!preemptible()))
3603 return;
3604
3605 preempt_schedule_common();
3606 }
3607 NOKPROBE_SYMBOL(preempt_schedule);
3608 EXPORT_SYMBOL(preempt_schedule);
3609
3610 /**
3611 * preempt_schedule_notrace - preempt_schedule called by tracing
3612 *
3613 * The tracing infrastructure uses preempt_enable_notrace to prevent
3614 * recursion and tracing preempt enabling caused by the tracing
3615 * infrastructure itself. But as tracing can happen in areas coming
3616 * from userspace or just about to enter userspace, a preempt enable
3617 * can occur before user_exit() is called. This will cause the scheduler
3618 * to be called when the system is still in usermode.
3619 *
3620 * To prevent this, the preempt_enable_notrace will use this function
3621 * instead of preempt_schedule() to exit user context if needed before
3622 * calling the scheduler.
3623 */
3624 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3625 {
3626 enum ctx_state prev_ctx;
3627
3628 if (likely(!preemptible()))
3629 return;
3630
3631 do {
3632 /*
3633 * Because the function tracer can trace preempt_count_sub()
3634 * and it also uses preempt_enable/disable_notrace(), if
3635 * NEED_RESCHED is set, the preempt_enable_notrace() called
3636 * by the function tracer will call this function again and
3637 * cause infinite recursion.
3638 *
3639 * Preemption must be disabled here before the function
3640 * tracer can trace. Break up preempt_disable() into two
3641 * calls. One to disable preemption without fear of being
3642 * traced. The other to still record the preemption latency,
3643 * which can also be traced by the function tracer.
3644 */
3645 preempt_disable_notrace();
3646 preempt_latency_start(1);
3647 /*
3648 * Needs preempt disabled in case user_exit() is traced
3649 * and the tracer calls preempt_enable_notrace() causing
3650 * an infinite recursion.
3651 */
3652 prev_ctx = exception_enter();
3653 __schedule(true);
3654 exception_exit(prev_ctx);
3655
3656 preempt_latency_stop(1);
3657 preempt_enable_no_resched_notrace();
3658 } while (need_resched());
3659 }
3660 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3661
3662 #endif /* CONFIG_PREEMPT */
3663
3664 /*
3665 * this is the entry point to schedule() from kernel preemption
3666 * off of irq context.
3667 * Note, that this is called and return with irqs disabled. This will
3668 * protect us against recursive calling from irq.
3669 */
3670 asmlinkage __visible void __sched preempt_schedule_irq(void)
3671 {
3672 enum ctx_state prev_state;
3673
3674 /* Catch callers which need to be fixed */
3675 BUG_ON(preempt_count() || !irqs_disabled());
3676
3677 prev_state = exception_enter();
3678
3679 do {
3680 preempt_disable();
3681 local_irq_enable();
3682 __schedule(true);
3683 local_irq_disable();
3684 sched_preempt_enable_no_resched();
3685 } while (need_resched());
3686
3687 exception_exit(prev_state);
3688 }
3689
3690 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3691 void *key)
3692 {
3693 return try_to_wake_up(curr->private, mode, wake_flags);
3694 }
3695 EXPORT_SYMBOL(default_wake_function);
3696
3697 #ifdef CONFIG_RT_MUTEXES
3698
3699 /*
3700 * rt_mutex_setprio - set the current priority of a task
3701 * @p: task
3702 * @prio: prio value (kernel-internal form)
3703 *
3704 * This function changes the 'effective' priority of a task. It does
3705 * not touch ->normal_prio like __setscheduler().
3706 *
3707 * Used by the rt_mutex code to implement priority inheritance
3708 * logic. Call site only calls if the priority of the task changed.
3709 */
3710 void rt_mutex_setprio(struct task_struct *p, int prio)
3711 {
3712 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3713 const struct sched_class *prev_class;
3714 struct rq_flags rf;
3715 struct rq *rq;
3716
3717 BUG_ON(prio > MAX_PRIO);
3718
3719 rq = __task_rq_lock(p, &rf);
3720 update_rq_clock(rq);
3721
3722 /*
3723 * Idle task boosting is a nono in general. There is one
3724 * exception, when PREEMPT_RT and NOHZ is active:
3725 *
3726 * The idle task calls get_next_timer_interrupt() and holds
3727 * the timer wheel base->lock on the CPU and another CPU wants
3728 * to access the timer (probably to cancel it). We can safely
3729 * ignore the boosting request, as the idle CPU runs this code
3730 * with interrupts disabled and will complete the lock
3731 * protected section without being interrupted. So there is no
3732 * real need to boost.
3733 */
3734 if (unlikely(p == rq->idle)) {
3735 WARN_ON(p != rq->curr);
3736 WARN_ON(p->pi_blocked_on);
3737 goto out_unlock;
3738 }
3739
3740 trace_sched_pi_setprio(p, prio);
3741 oldprio = p->prio;
3742
3743 if (oldprio == prio)
3744 queue_flag &= ~DEQUEUE_MOVE;
3745
3746 prev_class = p->sched_class;
3747 queued = task_on_rq_queued(p);
3748 running = task_current(rq, p);
3749 if (queued)
3750 dequeue_task(rq, p, queue_flag);
3751 if (running)
3752 put_prev_task(rq, p);
3753
3754 /*
3755 * Boosting condition are:
3756 * 1. -rt task is running and holds mutex A
3757 * --> -dl task blocks on mutex A
3758 *
3759 * 2. -dl task is running and holds mutex A
3760 * --> -dl task blocks on mutex A and could preempt the
3761 * running task
3762 */
3763 if (dl_prio(prio)) {
3764 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3765 if (!dl_prio(p->normal_prio) ||
3766 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3767 p->dl.dl_boosted = 1;
3768 queue_flag |= ENQUEUE_REPLENISH;
3769 } else
3770 p->dl.dl_boosted = 0;
3771 p->sched_class = &dl_sched_class;
3772 } else if (rt_prio(prio)) {
3773 if (dl_prio(oldprio))
3774 p->dl.dl_boosted = 0;
3775 if (oldprio < prio)
3776 queue_flag |= ENQUEUE_HEAD;
3777 p->sched_class = &rt_sched_class;
3778 } else {
3779 if (dl_prio(oldprio))
3780 p->dl.dl_boosted = 0;
3781 if (rt_prio(oldprio))
3782 p->rt.timeout = 0;
3783 p->sched_class = &fair_sched_class;
3784 }
3785
3786 p->prio = prio;
3787
3788 if (queued)
3789 enqueue_task(rq, p, queue_flag);
3790 if (running)
3791 set_curr_task(rq, p);
3792
3793 check_class_changed(rq, p, prev_class, oldprio);
3794 out_unlock:
3795 preempt_disable(); /* avoid rq from going away on us */
3796 __task_rq_unlock(rq, &rf);
3797
3798 balance_callback(rq);
3799 preempt_enable();
3800 }
3801 #endif
3802
3803 void set_user_nice(struct task_struct *p, long nice)
3804 {
3805 bool queued, running;
3806 int old_prio, delta;
3807 struct rq_flags rf;
3808 struct rq *rq;
3809
3810 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3811 return;
3812 /*
3813 * We have to be careful, if called from sys_setpriority(),
3814 * the task might be in the middle of scheduling on another CPU.
3815 */
3816 rq = task_rq_lock(p, &rf);
3817 update_rq_clock(rq);
3818
3819 /*
3820 * The RT priorities are set via sched_setscheduler(), but we still
3821 * allow the 'normal' nice value to be set - but as expected
3822 * it wont have any effect on scheduling until the task is
3823 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3824 */
3825 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3826 p->static_prio = NICE_TO_PRIO(nice);
3827 goto out_unlock;
3828 }
3829 queued = task_on_rq_queued(p);
3830 running = task_current(rq, p);
3831 if (queued)
3832 dequeue_task(rq, p, DEQUEUE_SAVE);
3833 if (running)
3834 put_prev_task(rq, p);
3835
3836 p->static_prio = NICE_TO_PRIO(nice);
3837 set_load_weight(p);
3838 old_prio = p->prio;
3839 p->prio = effective_prio(p);
3840 delta = p->prio - old_prio;
3841
3842 if (queued) {
3843 enqueue_task(rq, p, ENQUEUE_RESTORE);
3844 /*
3845 * If the task increased its priority or is running and
3846 * lowered its priority, then reschedule its CPU:
3847 */
3848 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3849 resched_curr(rq);
3850 }
3851 if (running)
3852 set_curr_task(rq, p);
3853 out_unlock:
3854 task_rq_unlock(rq, p, &rf);
3855 }
3856 EXPORT_SYMBOL(set_user_nice);
3857
3858 /*
3859 * can_nice - check if a task can reduce its nice value
3860 * @p: task
3861 * @nice: nice value
3862 */
3863 int can_nice(const struct task_struct *p, const int nice)
3864 {
3865 /* convert nice value [19,-20] to rlimit style value [1,40] */
3866 int nice_rlim = nice_to_rlimit(nice);
3867
3868 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3869 capable(CAP_SYS_NICE));
3870 }
3871
3872 #ifdef __ARCH_WANT_SYS_NICE
3873
3874 /*
3875 * sys_nice - change the priority of the current process.
3876 * @increment: priority increment
3877 *
3878 * sys_setpriority is a more generic, but much slower function that
3879 * does similar things.
3880 */
3881 SYSCALL_DEFINE1(nice, int, increment)
3882 {
3883 long nice, retval;
3884
3885 /*
3886 * Setpriority might change our priority at the same moment.
3887 * We don't have to worry. Conceptually one call occurs first
3888 * and we have a single winner.
3889 */
3890 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3891 nice = task_nice(current) + increment;
3892
3893 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3894 if (increment < 0 && !can_nice(current, nice))
3895 return -EPERM;
3896
3897 retval = security_task_setnice(current, nice);
3898 if (retval)
3899 return retval;
3900
3901 set_user_nice(current, nice);
3902 return 0;
3903 }
3904
3905 #endif
3906
3907 /**
3908 * task_prio - return the priority value of a given task.
3909 * @p: the task in question.
3910 *
3911 * Return: The priority value as seen by users in /proc.
3912 * RT tasks are offset by -200. Normal tasks are centered
3913 * around 0, value goes from -16 to +15.
3914 */
3915 int task_prio(const struct task_struct *p)
3916 {
3917 return p->prio - MAX_RT_PRIO;
3918 }
3919
3920 /**
3921 * idle_cpu - is a given cpu idle currently?
3922 * @cpu: the processor in question.
3923 *
3924 * Return: 1 if the CPU is currently idle. 0 otherwise.
3925 */
3926 int idle_cpu(int cpu)
3927 {
3928 struct rq *rq = cpu_rq(cpu);
3929
3930 if (rq->curr != rq->idle)
3931 return 0;
3932
3933 if (rq->nr_running)
3934 return 0;
3935
3936 #ifdef CONFIG_SMP
3937 if (!llist_empty(&rq->wake_list))
3938 return 0;
3939 #endif
3940
3941 return 1;
3942 }
3943
3944 /**
3945 * idle_task - return the idle task for a given cpu.
3946 * @cpu: the processor in question.
3947 *
3948 * Return: The idle task for the cpu @cpu.
3949 */
3950 struct task_struct *idle_task(int cpu)
3951 {
3952 return cpu_rq(cpu)->idle;
3953 }
3954
3955 /**
3956 * find_process_by_pid - find a process with a matching PID value.
3957 * @pid: the pid in question.
3958 *
3959 * The task of @pid, if found. %NULL otherwise.
3960 */
3961 static struct task_struct *find_process_by_pid(pid_t pid)
3962 {
3963 return pid ? find_task_by_vpid(pid) : current;
3964 }
3965
3966 /*
3967 * This function initializes the sched_dl_entity of a newly becoming
3968 * SCHED_DEADLINE task.
3969 *
3970 * Only the static values are considered here, the actual runtime and the
3971 * absolute deadline will be properly calculated when the task is enqueued
3972 * for the first time with its new policy.
3973 */
3974 static void
3975 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3976 {
3977 struct sched_dl_entity *dl_se = &p->dl;
3978
3979 dl_se->dl_runtime = attr->sched_runtime;
3980 dl_se->dl_deadline = attr->sched_deadline;
3981 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3982 dl_se->flags = attr->sched_flags;
3983 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3984
3985 /*
3986 * Changing the parameters of a task is 'tricky' and we're not doing
3987 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3988 *
3989 * What we SHOULD do is delay the bandwidth release until the 0-lag
3990 * point. This would include retaining the task_struct until that time
3991 * and change dl_overflow() to not immediately decrement the current
3992 * amount.
3993 *
3994 * Instead we retain the current runtime/deadline and let the new
3995 * parameters take effect after the current reservation period lapses.
3996 * This is safe (albeit pessimistic) because the 0-lag point is always
3997 * before the current scheduling deadline.
3998 *
3999 * We can still have temporary overloads because we do not delay the
4000 * change in bandwidth until that time; so admission control is
4001 * not on the safe side. It does however guarantee tasks will never
4002 * consume more than promised.
4003 */
4004 }
4005
4006 /*
4007 * sched_setparam() passes in -1 for its policy, to let the functions
4008 * it calls know not to change it.
4009 */
4010 #define SETPARAM_POLICY -1
4011
4012 static void __setscheduler_params(struct task_struct *p,
4013 const struct sched_attr *attr)
4014 {
4015 int policy = attr->sched_policy;
4016
4017 if (policy == SETPARAM_POLICY)
4018 policy = p->policy;
4019
4020 p->policy = policy;
4021
4022 if (dl_policy(policy))
4023 __setparam_dl(p, attr);
4024 else if (fair_policy(policy))
4025 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4026
4027 /*
4028 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4029 * !rt_policy. Always setting this ensures that things like
4030 * getparam()/getattr() don't report silly values for !rt tasks.
4031 */
4032 p->rt_priority = attr->sched_priority;
4033 p->normal_prio = normal_prio(p);
4034 set_load_weight(p);
4035 }
4036
4037 /* Actually do priority change: must hold pi & rq lock. */
4038 static void __setscheduler(struct rq *rq, struct task_struct *p,
4039 const struct sched_attr *attr, bool keep_boost)
4040 {
4041 __setscheduler_params(p, attr);
4042
4043 /*
4044 * Keep a potential priority boosting if called from
4045 * sched_setscheduler().
4046 */
4047 if (keep_boost)
4048 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4049 else
4050 p->prio = normal_prio(p);
4051
4052 if (dl_prio(p->prio))
4053 p->sched_class = &dl_sched_class;
4054 else if (rt_prio(p->prio))
4055 p->sched_class = &rt_sched_class;
4056 else
4057 p->sched_class = &fair_sched_class;
4058 }
4059
4060 static void
4061 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4062 {
4063 struct sched_dl_entity *dl_se = &p->dl;
4064
4065 attr->sched_priority = p->rt_priority;
4066 attr->sched_runtime = dl_se->dl_runtime;
4067 attr->sched_deadline = dl_se->dl_deadline;
4068 attr->sched_period = dl_se->dl_period;
4069 attr->sched_flags = dl_se->flags;
4070 }
4071
4072 /*
4073 * This function validates the new parameters of a -deadline task.
4074 * We ask for the deadline not being zero, and greater or equal
4075 * than the runtime, as well as the period of being zero or
4076 * greater than deadline. Furthermore, we have to be sure that
4077 * user parameters are above the internal resolution of 1us (we
4078 * check sched_runtime only since it is always the smaller one) and
4079 * below 2^63 ns (we have to check both sched_deadline and
4080 * sched_period, as the latter can be zero).
4081 */
4082 static bool
4083 __checkparam_dl(const struct sched_attr *attr)
4084 {
4085 /* deadline != 0 */
4086 if (attr->sched_deadline == 0)
4087 return false;
4088
4089 /*
4090 * Since we truncate DL_SCALE bits, make sure we're at least
4091 * that big.
4092 */
4093 if (attr->sched_runtime < (1ULL << DL_SCALE))
4094 return false;
4095
4096 /*
4097 * Since we use the MSB for wrap-around and sign issues, make
4098 * sure it's not set (mind that period can be equal to zero).
4099 */
4100 if (attr->sched_deadline & (1ULL << 63) ||
4101 attr->sched_period & (1ULL << 63))
4102 return false;
4103
4104 /* runtime <= deadline <= period (if period != 0) */
4105 if ((attr->sched_period != 0 &&
4106 attr->sched_period < attr->sched_deadline) ||
4107 attr->sched_deadline < attr->sched_runtime)
4108 return false;
4109
4110 return true;
4111 }
4112
4113 /*
4114 * check the target process has a UID that matches the current process's
4115 */
4116 static bool check_same_owner(struct task_struct *p)
4117 {
4118 const struct cred *cred = current_cred(), *pcred;
4119 bool match;
4120
4121 rcu_read_lock();
4122 pcred = __task_cred(p);
4123 match = (uid_eq(cred->euid, pcred->euid) ||
4124 uid_eq(cred->euid, pcred->uid));
4125 rcu_read_unlock();
4126 return match;
4127 }
4128
4129 static bool dl_param_changed(struct task_struct *p,
4130 const struct sched_attr *attr)
4131 {
4132 struct sched_dl_entity *dl_se = &p->dl;
4133
4134 if (dl_se->dl_runtime != attr->sched_runtime ||
4135 dl_se->dl_deadline != attr->sched_deadline ||
4136 dl_se->dl_period != attr->sched_period ||
4137 dl_se->flags != attr->sched_flags)
4138 return true;
4139
4140 return false;
4141 }
4142
4143 static int __sched_setscheduler(struct task_struct *p,
4144 const struct sched_attr *attr,
4145 bool user, bool pi)
4146 {
4147 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4148 MAX_RT_PRIO - 1 - attr->sched_priority;
4149 int retval, oldprio, oldpolicy = -1, queued, running;
4150 int new_effective_prio, policy = attr->sched_policy;
4151 const struct sched_class *prev_class;
4152 struct rq_flags rf;
4153 int reset_on_fork;
4154 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4155 struct rq *rq;
4156
4157 /* may grab non-irq protected spin_locks */
4158 BUG_ON(in_interrupt());
4159 recheck:
4160 /* double check policy once rq lock held */
4161 if (policy < 0) {
4162 reset_on_fork = p->sched_reset_on_fork;
4163 policy = oldpolicy = p->policy;
4164 } else {
4165 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4166
4167 if (!valid_policy(policy))
4168 return -EINVAL;
4169 }
4170
4171 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4172 return -EINVAL;
4173
4174 /*
4175 * Valid priorities for SCHED_FIFO and SCHED_RR are
4176 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4177 * SCHED_BATCH and SCHED_IDLE is 0.
4178 */
4179 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4180 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4181 return -EINVAL;
4182 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4183 (rt_policy(policy) != (attr->sched_priority != 0)))
4184 return -EINVAL;
4185
4186 /*
4187 * Allow unprivileged RT tasks to decrease priority:
4188 */
4189 if (user && !capable(CAP_SYS_NICE)) {
4190 if (fair_policy(policy)) {
4191 if (attr->sched_nice < task_nice(p) &&
4192 !can_nice(p, attr->sched_nice))
4193 return -EPERM;
4194 }
4195
4196 if (rt_policy(policy)) {
4197 unsigned long rlim_rtprio =
4198 task_rlimit(p, RLIMIT_RTPRIO);
4199
4200 /* can't set/change the rt policy */
4201 if (policy != p->policy && !rlim_rtprio)
4202 return -EPERM;
4203
4204 /* can't increase priority */
4205 if (attr->sched_priority > p->rt_priority &&
4206 attr->sched_priority > rlim_rtprio)
4207 return -EPERM;
4208 }
4209
4210 /*
4211 * Can't set/change SCHED_DEADLINE policy at all for now
4212 * (safest behavior); in the future we would like to allow
4213 * unprivileged DL tasks to increase their relative deadline
4214 * or reduce their runtime (both ways reducing utilization)
4215 */
4216 if (dl_policy(policy))
4217 return -EPERM;
4218
4219 /*
4220 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4222 */
4223 if (idle_policy(p->policy) && !idle_policy(policy)) {
4224 if (!can_nice(p, task_nice(p)))
4225 return -EPERM;
4226 }
4227
4228 /* can't change other user's priorities */
4229 if (!check_same_owner(p))
4230 return -EPERM;
4231
4232 /* Normal users shall not reset the sched_reset_on_fork flag */
4233 if (p->sched_reset_on_fork && !reset_on_fork)
4234 return -EPERM;
4235 }
4236
4237 if (user) {
4238 retval = security_task_setscheduler(p);
4239 if (retval)
4240 return retval;
4241 }
4242
4243 /*
4244 * make sure no PI-waiters arrive (or leave) while we are
4245 * changing the priority of the task:
4246 *
4247 * To be able to change p->policy safely, the appropriate
4248 * runqueue lock must be held.
4249 */
4250 rq = task_rq_lock(p, &rf);
4251 update_rq_clock(rq);
4252
4253 /*
4254 * Changing the policy of the stop threads its a very bad idea
4255 */
4256 if (p == rq->stop) {
4257 task_rq_unlock(rq, p, &rf);
4258 return -EINVAL;
4259 }
4260
4261 /*
4262 * If not changing anything there's no need to proceed further,
4263 * but store a possible modification of reset_on_fork.
4264 */
4265 if (unlikely(policy == p->policy)) {
4266 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4267 goto change;
4268 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4269 goto change;
4270 if (dl_policy(policy) && dl_param_changed(p, attr))
4271 goto change;
4272
4273 p->sched_reset_on_fork = reset_on_fork;
4274 task_rq_unlock(rq, p, &rf);
4275 return 0;
4276 }
4277 change:
4278
4279 if (user) {
4280 #ifdef CONFIG_RT_GROUP_SCHED
4281 /*
4282 * Do not allow realtime tasks into groups that have no runtime
4283 * assigned.
4284 */
4285 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4286 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4287 !task_group_is_autogroup(task_group(p))) {
4288 task_rq_unlock(rq, p, &rf);
4289 return -EPERM;
4290 }
4291 #endif
4292 #ifdef CONFIG_SMP
4293 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4294 cpumask_t *span = rq->rd->span;
4295
4296 /*
4297 * Don't allow tasks with an affinity mask smaller than
4298 * the entire root_domain to become SCHED_DEADLINE. We
4299 * will also fail if there's no bandwidth available.
4300 */
4301 if (!cpumask_subset(span, &p->cpus_allowed) ||
4302 rq->rd->dl_bw.bw == 0) {
4303 task_rq_unlock(rq, p, &rf);
4304 return -EPERM;
4305 }
4306 }
4307 #endif
4308 }
4309
4310 /* recheck policy now with rq lock held */
4311 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4312 policy = oldpolicy = -1;
4313 task_rq_unlock(rq, p, &rf);
4314 goto recheck;
4315 }
4316
4317 /*
4318 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4319 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4320 * is available.
4321 */
4322 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4323 task_rq_unlock(rq, p, &rf);
4324 return -EBUSY;
4325 }
4326
4327 p->sched_reset_on_fork = reset_on_fork;
4328 oldprio = p->prio;
4329
4330 if (pi) {
4331 /*
4332 * Take priority boosted tasks into account. If the new
4333 * effective priority is unchanged, we just store the new
4334 * normal parameters and do not touch the scheduler class and
4335 * the runqueue. This will be done when the task deboost
4336 * itself.
4337 */
4338 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4339 if (new_effective_prio == oldprio)
4340 queue_flags &= ~DEQUEUE_MOVE;
4341 }
4342
4343 queued = task_on_rq_queued(p);
4344 running = task_current(rq, p);
4345 if (queued)
4346 dequeue_task(rq, p, queue_flags);
4347 if (running)
4348 put_prev_task(rq, p);
4349
4350 prev_class = p->sched_class;
4351 __setscheduler(rq, p, attr, pi);
4352
4353 if (queued) {
4354 /*
4355 * We enqueue to tail when the priority of a task is
4356 * increased (user space view).
4357 */
4358 if (oldprio < p->prio)
4359 queue_flags |= ENQUEUE_HEAD;
4360
4361 enqueue_task(rq, p, queue_flags);
4362 }
4363 if (running)
4364 set_curr_task(rq, p);
4365
4366 check_class_changed(rq, p, prev_class, oldprio);
4367 preempt_disable(); /* avoid rq from going away on us */
4368 task_rq_unlock(rq, p, &rf);
4369
4370 if (pi)
4371 rt_mutex_adjust_pi(p);
4372
4373 /*
4374 * Run balance callbacks after we've adjusted the PI chain.
4375 */
4376 balance_callback(rq);
4377 preempt_enable();
4378
4379 return 0;
4380 }
4381
4382 static int _sched_setscheduler(struct task_struct *p, int policy,
4383 const struct sched_param *param, bool check)
4384 {
4385 struct sched_attr attr = {
4386 .sched_policy = policy,
4387 .sched_priority = param->sched_priority,
4388 .sched_nice = PRIO_TO_NICE(p->static_prio),
4389 };
4390
4391 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4392 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4393 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4394 policy &= ~SCHED_RESET_ON_FORK;
4395 attr.sched_policy = policy;
4396 }
4397
4398 return __sched_setscheduler(p, &attr, check, true);
4399 }
4400 /**
4401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4402 * @p: the task in question.
4403 * @policy: new policy.
4404 * @param: structure containing the new RT priority.
4405 *
4406 * Return: 0 on success. An error code otherwise.
4407 *
4408 * NOTE that the task may be already dead.
4409 */
4410 int sched_setscheduler(struct task_struct *p, int policy,
4411 const struct sched_param *param)
4412 {
4413 return _sched_setscheduler(p, policy, param, true);
4414 }
4415 EXPORT_SYMBOL_GPL(sched_setscheduler);
4416
4417 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4418 {
4419 return __sched_setscheduler(p, attr, true, true);
4420 }
4421 EXPORT_SYMBOL_GPL(sched_setattr);
4422
4423 /**
4424 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4425 * @p: the task in question.
4426 * @policy: new policy.
4427 * @param: structure containing the new RT priority.
4428 *
4429 * Just like sched_setscheduler, only don't bother checking if the
4430 * current context has permission. For example, this is needed in
4431 * stop_machine(): we create temporary high priority worker threads,
4432 * but our caller might not have that capability.
4433 *
4434 * Return: 0 on success. An error code otherwise.
4435 */
4436 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4437 const struct sched_param *param)
4438 {
4439 return _sched_setscheduler(p, policy, param, false);
4440 }
4441 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4442
4443 static int
4444 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4445 {
4446 struct sched_param lparam;
4447 struct task_struct *p;
4448 int retval;
4449
4450 if (!param || pid < 0)
4451 return -EINVAL;
4452 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4453 return -EFAULT;
4454
4455 rcu_read_lock();
4456 retval = -ESRCH;
4457 p = find_process_by_pid(pid);
4458 if (p != NULL)
4459 retval = sched_setscheduler(p, policy, &lparam);
4460 rcu_read_unlock();
4461
4462 return retval;
4463 }
4464
4465 /*
4466 * Mimics kernel/events/core.c perf_copy_attr().
4467 */
4468 static int sched_copy_attr(struct sched_attr __user *uattr,
4469 struct sched_attr *attr)
4470 {
4471 u32 size;
4472 int ret;
4473
4474 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4475 return -EFAULT;
4476
4477 /*
4478 * zero the full structure, so that a short copy will be nice.
4479 */
4480 memset(attr, 0, sizeof(*attr));
4481
4482 ret = get_user(size, &uattr->size);
4483 if (ret)
4484 return ret;
4485
4486 if (size > PAGE_SIZE) /* silly large */
4487 goto err_size;
4488
4489 if (!size) /* abi compat */
4490 size = SCHED_ATTR_SIZE_VER0;
4491
4492 if (size < SCHED_ATTR_SIZE_VER0)
4493 goto err_size;
4494
4495 /*
4496 * If we're handed a bigger struct than we know of,
4497 * ensure all the unknown bits are 0 - i.e. new
4498 * user-space does not rely on any kernel feature
4499 * extensions we dont know about yet.
4500 */
4501 if (size > sizeof(*attr)) {
4502 unsigned char __user *addr;
4503 unsigned char __user *end;
4504 unsigned char val;
4505
4506 addr = (void __user *)uattr + sizeof(*attr);
4507 end = (void __user *)uattr + size;
4508
4509 for (; addr < end; addr++) {
4510 ret = get_user(val, addr);
4511 if (ret)
4512 return ret;
4513 if (val)
4514 goto err_size;
4515 }
4516 size = sizeof(*attr);
4517 }
4518
4519 ret = copy_from_user(attr, uattr, size);
4520 if (ret)
4521 return -EFAULT;
4522
4523 /*
4524 * XXX: do we want to be lenient like existing syscalls; or do we want
4525 * to be strict and return an error on out-of-bounds values?
4526 */
4527 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4528
4529 return 0;
4530
4531 err_size:
4532 put_user(sizeof(*attr), &uattr->size);
4533 return -E2BIG;
4534 }
4535
4536 /**
4537 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4538 * @pid: the pid in question.
4539 * @policy: new policy.
4540 * @param: structure containing the new RT priority.
4541 *
4542 * Return: 0 on success. An error code otherwise.
4543 */
4544 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4545 struct sched_param __user *, param)
4546 {
4547 /* negative values for policy are not valid */
4548 if (policy < 0)
4549 return -EINVAL;
4550
4551 return do_sched_setscheduler(pid, policy, param);
4552 }
4553
4554 /**
4555 * sys_sched_setparam - set/change the RT priority of a thread
4556 * @pid: the pid in question.
4557 * @param: structure containing the new RT priority.
4558 *
4559 * Return: 0 on success. An error code otherwise.
4560 */
4561 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4562 {
4563 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4564 }
4565
4566 /**
4567 * sys_sched_setattr - same as above, but with extended sched_attr
4568 * @pid: the pid in question.
4569 * @uattr: structure containing the extended parameters.
4570 * @flags: for future extension.
4571 */
4572 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4573 unsigned int, flags)
4574 {
4575 struct sched_attr attr;
4576 struct task_struct *p;
4577 int retval;
4578
4579 if (!uattr || pid < 0 || flags)
4580 return -EINVAL;
4581
4582 retval = sched_copy_attr(uattr, &attr);
4583 if (retval)
4584 return retval;
4585
4586 if ((int)attr.sched_policy < 0)
4587 return -EINVAL;
4588
4589 rcu_read_lock();
4590 retval = -ESRCH;
4591 p = find_process_by_pid(pid);
4592 if (p != NULL)
4593 retval = sched_setattr(p, &attr);
4594 rcu_read_unlock();
4595
4596 return retval;
4597 }
4598
4599 /**
4600 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4601 * @pid: the pid in question.
4602 *
4603 * Return: On success, the policy of the thread. Otherwise, a negative error
4604 * code.
4605 */
4606 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4607 {
4608 struct task_struct *p;
4609 int retval;
4610
4611 if (pid < 0)
4612 return -EINVAL;
4613
4614 retval = -ESRCH;
4615 rcu_read_lock();
4616 p = find_process_by_pid(pid);
4617 if (p) {
4618 retval = security_task_getscheduler(p);
4619 if (!retval)
4620 retval = p->policy
4621 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4622 }
4623 rcu_read_unlock();
4624 return retval;
4625 }
4626
4627 /**
4628 * sys_sched_getparam - get the RT priority of a thread
4629 * @pid: the pid in question.
4630 * @param: structure containing the RT priority.
4631 *
4632 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4633 * code.
4634 */
4635 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4636 {
4637 struct sched_param lp = { .sched_priority = 0 };
4638 struct task_struct *p;
4639 int retval;
4640
4641 if (!param || pid < 0)
4642 return -EINVAL;
4643
4644 rcu_read_lock();
4645 p = find_process_by_pid(pid);
4646 retval = -ESRCH;
4647 if (!p)
4648 goto out_unlock;
4649
4650 retval = security_task_getscheduler(p);
4651 if (retval)
4652 goto out_unlock;
4653
4654 if (task_has_rt_policy(p))
4655 lp.sched_priority = p->rt_priority;
4656 rcu_read_unlock();
4657
4658 /*
4659 * This one might sleep, we cannot do it with a spinlock held ...
4660 */
4661 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4662
4663 return retval;
4664
4665 out_unlock:
4666 rcu_read_unlock();
4667 return retval;
4668 }
4669
4670 static int sched_read_attr(struct sched_attr __user *uattr,
4671 struct sched_attr *attr,
4672 unsigned int usize)
4673 {
4674 int ret;
4675
4676 if (!access_ok(VERIFY_WRITE, uattr, usize))
4677 return -EFAULT;
4678
4679 /*
4680 * If we're handed a smaller struct than we know of,
4681 * ensure all the unknown bits are 0 - i.e. old
4682 * user-space does not get uncomplete information.
4683 */
4684 if (usize < sizeof(*attr)) {
4685 unsigned char *addr;
4686 unsigned char *end;
4687
4688 addr = (void *)attr + usize;
4689 end = (void *)attr + sizeof(*attr);
4690
4691 for (; addr < end; addr++) {
4692 if (*addr)
4693 return -EFBIG;
4694 }
4695
4696 attr->size = usize;
4697 }
4698
4699 ret = copy_to_user(uattr, attr, attr->size);
4700 if (ret)
4701 return -EFAULT;
4702
4703 return 0;
4704 }
4705
4706 /**
4707 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4708 * @pid: the pid in question.
4709 * @uattr: structure containing the extended parameters.
4710 * @size: sizeof(attr) for fwd/bwd comp.
4711 * @flags: for future extension.
4712 */
4713 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4714 unsigned int, size, unsigned int, flags)
4715 {
4716 struct sched_attr attr = {
4717 .size = sizeof(struct sched_attr),
4718 };
4719 struct task_struct *p;
4720 int retval;
4721
4722 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4723 size < SCHED_ATTR_SIZE_VER0 || flags)
4724 return -EINVAL;
4725
4726 rcu_read_lock();
4727 p = find_process_by_pid(pid);
4728 retval = -ESRCH;
4729 if (!p)
4730 goto out_unlock;
4731
4732 retval = security_task_getscheduler(p);
4733 if (retval)
4734 goto out_unlock;
4735
4736 attr.sched_policy = p->policy;
4737 if (p->sched_reset_on_fork)
4738 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4739 if (task_has_dl_policy(p))
4740 __getparam_dl(p, &attr);
4741 else if (task_has_rt_policy(p))
4742 attr.sched_priority = p->rt_priority;
4743 else
4744 attr.sched_nice = task_nice(p);
4745
4746 rcu_read_unlock();
4747
4748 retval = sched_read_attr(uattr, &attr, size);
4749 return retval;
4750
4751 out_unlock:
4752 rcu_read_unlock();
4753 return retval;
4754 }
4755
4756 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4757 {
4758 cpumask_var_t cpus_allowed, new_mask;
4759 struct task_struct *p;
4760 int retval;
4761
4762 rcu_read_lock();
4763
4764 p = find_process_by_pid(pid);
4765 if (!p) {
4766 rcu_read_unlock();
4767 return -ESRCH;
4768 }
4769
4770 /* Prevent p going away */
4771 get_task_struct(p);
4772 rcu_read_unlock();
4773
4774 if (p->flags & PF_NO_SETAFFINITY) {
4775 retval = -EINVAL;
4776 goto out_put_task;
4777 }
4778 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4779 retval = -ENOMEM;
4780 goto out_put_task;
4781 }
4782 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4783 retval = -ENOMEM;
4784 goto out_free_cpus_allowed;
4785 }
4786 retval = -EPERM;
4787 if (!check_same_owner(p)) {
4788 rcu_read_lock();
4789 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4790 rcu_read_unlock();
4791 goto out_free_new_mask;
4792 }
4793 rcu_read_unlock();
4794 }
4795
4796 retval = security_task_setscheduler(p);
4797 if (retval)
4798 goto out_free_new_mask;
4799
4800
4801 cpuset_cpus_allowed(p, cpus_allowed);
4802 cpumask_and(new_mask, in_mask, cpus_allowed);
4803
4804 /*
4805 * Since bandwidth control happens on root_domain basis,
4806 * if admission test is enabled, we only admit -deadline
4807 * tasks allowed to run on all the CPUs in the task's
4808 * root_domain.
4809 */
4810 #ifdef CONFIG_SMP
4811 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4812 rcu_read_lock();
4813 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4814 retval = -EBUSY;
4815 rcu_read_unlock();
4816 goto out_free_new_mask;
4817 }
4818 rcu_read_unlock();
4819 }
4820 #endif
4821 again:
4822 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4823
4824 if (!retval) {
4825 cpuset_cpus_allowed(p, cpus_allowed);
4826 if (!cpumask_subset(new_mask, cpus_allowed)) {
4827 /*
4828 * We must have raced with a concurrent cpuset
4829 * update. Just reset the cpus_allowed to the
4830 * cpuset's cpus_allowed
4831 */
4832 cpumask_copy(new_mask, cpus_allowed);
4833 goto again;
4834 }
4835 }
4836 out_free_new_mask:
4837 free_cpumask_var(new_mask);
4838 out_free_cpus_allowed:
4839 free_cpumask_var(cpus_allowed);
4840 out_put_task:
4841 put_task_struct(p);
4842 return retval;
4843 }
4844
4845 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4846 struct cpumask *new_mask)
4847 {
4848 if (len < cpumask_size())
4849 cpumask_clear(new_mask);
4850 else if (len > cpumask_size())
4851 len = cpumask_size();
4852
4853 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4854 }
4855
4856 /**
4857 * sys_sched_setaffinity - set the cpu affinity of a process
4858 * @pid: pid of the process
4859 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4860 * @user_mask_ptr: user-space pointer to the new cpu mask
4861 *
4862 * Return: 0 on success. An error code otherwise.
4863 */
4864 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4865 unsigned long __user *, user_mask_ptr)
4866 {
4867 cpumask_var_t new_mask;
4868 int retval;
4869
4870 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4871 return -ENOMEM;
4872
4873 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4874 if (retval == 0)
4875 retval = sched_setaffinity(pid, new_mask);
4876 free_cpumask_var(new_mask);
4877 return retval;
4878 }
4879
4880 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4881 {
4882 struct task_struct *p;
4883 unsigned long flags;
4884 int retval;
4885
4886 rcu_read_lock();
4887
4888 retval = -ESRCH;
4889 p = find_process_by_pid(pid);
4890 if (!p)
4891 goto out_unlock;
4892
4893 retval = security_task_getscheduler(p);
4894 if (retval)
4895 goto out_unlock;
4896
4897 raw_spin_lock_irqsave(&p->pi_lock, flags);
4898 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4899 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4900
4901 out_unlock:
4902 rcu_read_unlock();
4903
4904 return retval;
4905 }
4906
4907 /**
4908 * sys_sched_getaffinity - get the cpu affinity of a process
4909 * @pid: pid of the process
4910 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4911 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4912 *
4913 * Return: size of CPU mask copied to user_mask_ptr on success. An
4914 * error code otherwise.
4915 */
4916 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4917 unsigned long __user *, user_mask_ptr)
4918 {
4919 int ret;
4920 cpumask_var_t mask;
4921
4922 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4923 return -EINVAL;
4924 if (len & (sizeof(unsigned long)-1))
4925 return -EINVAL;
4926
4927 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4928 return -ENOMEM;
4929
4930 ret = sched_getaffinity(pid, mask);
4931 if (ret == 0) {
4932 size_t retlen = min_t(size_t, len, cpumask_size());
4933
4934 if (copy_to_user(user_mask_ptr, mask, retlen))
4935 ret = -EFAULT;
4936 else
4937 ret = retlen;
4938 }
4939 free_cpumask_var(mask);
4940
4941 return ret;
4942 }
4943
4944 /**
4945 * sys_sched_yield - yield the current processor to other threads.
4946 *
4947 * This function yields the current CPU to other tasks. If there are no
4948 * other threads running on this CPU then this function will return.
4949 *
4950 * Return: 0.
4951 */
4952 SYSCALL_DEFINE0(sched_yield)
4953 {
4954 struct rq *rq = this_rq_lock();
4955
4956 schedstat_inc(rq->yld_count);
4957 current->sched_class->yield_task(rq);
4958
4959 /*
4960 * Since we are going to call schedule() anyway, there's
4961 * no need to preempt or enable interrupts:
4962 */
4963 __release(rq->lock);
4964 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4965 do_raw_spin_unlock(&rq->lock);
4966 sched_preempt_enable_no_resched();
4967
4968 schedule();
4969
4970 return 0;
4971 }
4972
4973 #ifndef CONFIG_PREEMPT
4974 int __sched _cond_resched(void)
4975 {
4976 if (should_resched(0)) {
4977 preempt_schedule_common();
4978 return 1;
4979 }
4980 return 0;
4981 }
4982 EXPORT_SYMBOL(_cond_resched);
4983 #endif
4984
4985 /*
4986 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4987 * call schedule, and on return reacquire the lock.
4988 *
4989 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4990 * operations here to prevent schedule() from being called twice (once via
4991 * spin_unlock(), once by hand).
4992 */
4993 int __cond_resched_lock(spinlock_t *lock)
4994 {
4995 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4996 int ret = 0;
4997
4998 lockdep_assert_held(lock);
4999
5000 if (spin_needbreak(lock) || resched) {
5001 spin_unlock(lock);
5002 if (resched)
5003 preempt_schedule_common();
5004 else
5005 cpu_relax();
5006 ret = 1;
5007 spin_lock(lock);
5008 }
5009 return ret;
5010 }
5011 EXPORT_SYMBOL(__cond_resched_lock);
5012
5013 int __sched __cond_resched_softirq(void)
5014 {
5015 BUG_ON(!in_softirq());
5016
5017 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5018 local_bh_enable();
5019 preempt_schedule_common();
5020 local_bh_disable();
5021 return 1;
5022 }
5023 return 0;
5024 }
5025 EXPORT_SYMBOL(__cond_resched_softirq);
5026
5027 /**
5028 * yield - yield the current processor to other threads.
5029 *
5030 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5031 *
5032 * The scheduler is at all times free to pick the calling task as the most
5033 * eligible task to run, if removing the yield() call from your code breaks
5034 * it, its already broken.
5035 *
5036 * Typical broken usage is:
5037 *
5038 * while (!event)
5039 * yield();
5040 *
5041 * where one assumes that yield() will let 'the other' process run that will
5042 * make event true. If the current task is a SCHED_FIFO task that will never
5043 * happen. Never use yield() as a progress guarantee!!
5044 *
5045 * If you want to use yield() to wait for something, use wait_event().
5046 * If you want to use yield() to be 'nice' for others, use cond_resched().
5047 * If you still want to use yield(), do not!
5048 */
5049 void __sched yield(void)
5050 {
5051 set_current_state(TASK_RUNNING);
5052 sys_sched_yield();
5053 }
5054 EXPORT_SYMBOL(yield);
5055
5056 /**
5057 * yield_to - yield the current processor to another thread in
5058 * your thread group, or accelerate that thread toward the
5059 * processor it's on.
5060 * @p: target task
5061 * @preempt: whether task preemption is allowed or not
5062 *
5063 * It's the caller's job to ensure that the target task struct
5064 * can't go away on us before we can do any checks.
5065 *
5066 * Return:
5067 * true (>0) if we indeed boosted the target task.
5068 * false (0) if we failed to boost the target.
5069 * -ESRCH if there's no task to yield to.
5070 */
5071 int __sched yield_to(struct task_struct *p, bool preempt)
5072 {
5073 struct task_struct *curr = current;
5074 struct rq *rq, *p_rq;
5075 unsigned long flags;
5076 int yielded = 0;
5077
5078 local_irq_save(flags);
5079 rq = this_rq();
5080
5081 again:
5082 p_rq = task_rq(p);
5083 /*
5084 * If we're the only runnable task on the rq and target rq also
5085 * has only one task, there's absolutely no point in yielding.
5086 */
5087 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5088 yielded = -ESRCH;
5089 goto out_irq;
5090 }
5091
5092 double_rq_lock(rq, p_rq);
5093 if (task_rq(p) != p_rq) {
5094 double_rq_unlock(rq, p_rq);
5095 goto again;
5096 }
5097
5098 if (!curr->sched_class->yield_to_task)
5099 goto out_unlock;
5100
5101 if (curr->sched_class != p->sched_class)
5102 goto out_unlock;
5103
5104 if (task_running(p_rq, p) || p->state)
5105 goto out_unlock;
5106
5107 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5108 if (yielded) {
5109 schedstat_inc(rq->yld_count);
5110 /*
5111 * Make p's CPU reschedule; pick_next_entity takes care of
5112 * fairness.
5113 */
5114 if (preempt && rq != p_rq)
5115 resched_curr(p_rq);
5116 }
5117
5118 out_unlock:
5119 double_rq_unlock(rq, p_rq);
5120 out_irq:
5121 local_irq_restore(flags);
5122
5123 if (yielded > 0)
5124 schedule();
5125
5126 return yielded;
5127 }
5128 EXPORT_SYMBOL_GPL(yield_to);
5129
5130 int io_schedule_prepare(void)
5131 {
5132 int old_iowait = current->in_iowait;
5133
5134 current->in_iowait = 1;
5135 blk_schedule_flush_plug(current);
5136
5137 return old_iowait;
5138 }
5139
5140 void io_schedule_finish(int token)
5141 {
5142 current->in_iowait = token;
5143 }
5144
5145 /*
5146 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5147 * that process accounting knows that this is a task in IO wait state.
5148 */
5149 long __sched io_schedule_timeout(long timeout)
5150 {
5151 int token;
5152 long ret;
5153
5154 token = io_schedule_prepare();
5155 ret = schedule_timeout(timeout);
5156 io_schedule_finish(token);
5157
5158 return ret;
5159 }
5160 EXPORT_SYMBOL(io_schedule_timeout);
5161
5162 void io_schedule(void)
5163 {
5164 int token;
5165
5166 token = io_schedule_prepare();
5167 schedule();
5168 io_schedule_finish(token);
5169 }
5170 EXPORT_SYMBOL(io_schedule);
5171
5172 /**
5173 * sys_sched_get_priority_max - return maximum RT priority.
5174 * @policy: scheduling class.
5175 *
5176 * Return: On success, this syscall returns the maximum
5177 * rt_priority that can be used by a given scheduling class.
5178 * On failure, a negative error code is returned.
5179 */
5180 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5181 {
5182 int ret = -EINVAL;
5183
5184 switch (policy) {
5185 case SCHED_FIFO:
5186 case SCHED_RR:
5187 ret = MAX_USER_RT_PRIO-1;
5188 break;
5189 case SCHED_DEADLINE:
5190 case SCHED_NORMAL:
5191 case SCHED_BATCH:
5192 case SCHED_IDLE:
5193 ret = 0;
5194 break;
5195 }
5196 return ret;
5197 }
5198
5199 /**
5200 * sys_sched_get_priority_min - return minimum RT priority.
5201 * @policy: scheduling class.
5202 *
5203 * Return: On success, this syscall returns the minimum
5204 * rt_priority that can be used by a given scheduling class.
5205 * On failure, a negative error code is returned.
5206 */
5207 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5208 {
5209 int ret = -EINVAL;
5210
5211 switch (policy) {
5212 case SCHED_FIFO:
5213 case SCHED_RR:
5214 ret = 1;
5215 break;
5216 case SCHED_DEADLINE:
5217 case SCHED_NORMAL:
5218 case SCHED_BATCH:
5219 case SCHED_IDLE:
5220 ret = 0;
5221 }
5222 return ret;
5223 }
5224
5225 /**
5226 * sys_sched_rr_get_interval - return the default timeslice of a process.
5227 * @pid: pid of the process.
5228 * @interval: userspace pointer to the timeslice value.
5229 *
5230 * this syscall writes the default timeslice value of a given process
5231 * into the user-space timespec buffer. A value of '0' means infinity.
5232 *
5233 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5234 * an error code.
5235 */
5236 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5237 struct timespec __user *, interval)
5238 {
5239 struct task_struct *p;
5240 unsigned int time_slice;
5241 struct rq_flags rf;
5242 struct timespec t;
5243 struct rq *rq;
5244 int retval;
5245
5246 if (pid < 0)
5247 return -EINVAL;
5248
5249 retval = -ESRCH;
5250 rcu_read_lock();
5251 p = find_process_by_pid(pid);
5252 if (!p)
5253 goto out_unlock;
5254
5255 retval = security_task_getscheduler(p);
5256 if (retval)
5257 goto out_unlock;
5258
5259 rq = task_rq_lock(p, &rf);
5260 time_slice = 0;
5261 if (p->sched_class->get_rr_interval)
5262 time_slice = p->sched_class->get_rr_interval(rq, p);
5263 task_rq_unlock(rq, p, &rf);
5264
5265 rcu_read_unlock();
5266 jiffies_to_timespec(time_slice, &t);
5267 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5268 return retval;
5269
5270 out_unlock:
5271 rcu_read_unlock();
5272 return retval;
5273 }
5274
5275 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5276
5277 void sched_show_task(struct task_struct *p)
5278 {
5279 unsigned long free = 0;
5280 int ppid;
5281 unsigned long state = p->state;
5282
5283 if (!try_get_task_stack(p))
5284 return;
5285 if (state)
5286 state = __ffs(state) + 1;
5287 printk(KERN_INFO "%-15.15s %c", p->comm,
5288 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5289 if (state == TASK_RUNNING)
5290 printk(KERN_CONT " running task ");
5291 #ifdef CONFIG_DEBUG_STACK_USAGE
5292 free = stack_not_used(p);
5293 #endif
5294 ppid = 0;
5295 rcu_read_lock();
5296 if (pid_alive(p))
5297 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5298 rcu_read_unlock();
5299 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5300 task_pid_nr(p), ppid,
5301 (unsigned long)task_thread_info(p)->flags);
5302
5303 print_worker_info(KERN_INFO, p);
5304 show_stack(p, NULL);
5305 put_task_stack(p);
5306 }
5307
5308 void show_state_filter(unsigned long state_filter)
5309 {
5310 struct task_struct *g, *p;
5311
5312 #if BITS_PER_LONG == 32
5313 printk(KERN_INFO
5314 " task PC stack pid father\n");
5315 #else
5316 printk(KERN_INFO
5317 " task PC stack pid father\n");
5318 #endif
5319 rcu_read_lock();
5320 for_each_process_thread(g, p) {
5321 /*
5322 * reset the NMI-timeout, listing all files on a slow
5323 * console might take a lot of time:
5324 * Also, reset softlockup watchdogs on all CPUs, because
5325 * another CPU might be blocked waiting for us to process
5326 * an IPI.
5327 */
5328 touch_nmi_watchdog();
5329 touch_all_softlockup_watchdogs();
5330 if (!state_filter || (p->state & state_filter))
5331 sched_show_task(p);
5332 }
5333
5334 #ifdef CONFIG_SCHED_DEBUG
5335 if (!state_filter)
5336 sysrq_sched_debug_show();
5337 #endif
5338 rcu_read_unlock();
5339 /*
5340 * Only show locks if all tasks are dumped:
5341 */
5342 if (!state_filter)
5343 debug_show_all_locks();
5344 }
5345
5346 void init_idle_bootup_task(struct task_struct *idle)
5347 {
5348 idle->sched_class = &idle_sched_class;
5349 }
5350
5351 /**
5352 * init_idle - set up an idle thread for a given CPU
5353 * @idle: task in question
5354 * @cpu: cpu the idle task belongs to
5355 *
5356 * NOTE: this function does not set the idle thread's NEED_RESCHED
5357 * flag, to make booting more robust.
5358 */
5359 void init_idle(struct task_struct *idle, int cpu)
5360 {
5361 struct rq *rq = cpu_rq(cpu);
5362 unsigned long flags;
5363
5364 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5365 raw_spin_lock(&rq->lock);
5366
5367 __sched_fork(0, idle);
5368 idle->state = TASK_RUNNING;
5369 idle->se.exec_start = sched_clock();
5370 idle->flags |= PF_IDLE;
5371
5372 kasan_unpoison_task_stack(idle);
5373
5374 #ifdef CONFIG_SMP
5375 /*
5376 * Its possible that init_idle() gets called multiple times on a task,
5377 * in that case do_set_cpus_allowed() will not do the right thing.
5378 *
5379 * And since this is boot we can forgo the serialization.
5380 */
5381 set_cpus_allowed_common(idle, cpumask_of(cpu));
5382 #endif
5383 /*
5384 * We're having a chicken and egg problem, even though we are
5385 * holding rq->lock, the cpu isn't yet set to this cpu so the
5386 * lockdep check in task_group() will fail.
5387 *
5388 * Similar case to sched_fork(). / Alternatively we could
5389 * use task_rq_lock() here and obtain the other rq->lock.
5390 *
5391 * Silence PROVE_RCU
5392 */
5393 rcu_read_lock();
5394 __set_task_cpu(idle, cpu);
5395 rcu_read_unlock();
5396
5397 rq->curr = rq->idle = idle;
5398 idle->on_rq = TASK_ON_RQ_QUEUED;
5399 #ifdef CONFIG_SMP
5400 idle->on_cpu = 1;
5401 #endif
5402 raw_spin_unlock(&rq->lock);
5403 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5404
5405 /* Set the preempt count _outside_ the spinlocks! */
5406 init_idle_preempt_count(idle, cpu);
5407
5408 /*
5409 * The idle tasks have their own, simple scheduling class:
5410 */
5411 idle->sched_class = &idle_sched_class;
5412 ftrace_graph_init_idle_task(idle, cpu);
5413 vtime_init_idle(idle, cpu);
5414 #ifdef CONFIG_SMP
5415 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5416 #endif
5417 }
5418
5419 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5420 const struct cpumask *trial)
5421 {
5422 int ret = 1, trial_cpus;
5423 struct dl_bw *cur_dl_b;
5424 unsigned long flags;
5425
5426 if (!cpumask_weight(cur))
5427 return ret;
5428
5429 rcu_read_lock_sched();
5430 cur_dl_b = dl_bw_of(cpumask_any(cur));
5431 trial_cpus = cpumask_weight(trial);
5432
5433 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5434 if (cur_dl_b->bw != -1 &&
5435 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5436 ret = 0;
5437 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5438 rcu_read_unlock_sched();
5439
5440 return ret;
5441 }
5442
5443 int task_can_attach(struct task_struct *p,
5444 const struct cpumask *cs_cpus_allowed)
5445 {
5446 int ret = 0;
5447
5448 /*
5449 * Kthreads which disallow setaffinity shouldn't be moved
5450 * to a new cpuset; we don't want to change their cpu
5451 * affinity and isolating such threads by their set of
5452 * allowed nodes is unnecessary. Thus, cpusets are not
5453 * applicable for such threads. This prevents checking for
5454 * success of set_cpus_allowed_ptr() on all attached tasks
5455 * before cpus_allowed may be changed.
5456 */
5457 if (p->flags & PF_NO_SETAFFINITY) {
5458 ret = -EINVAL;
5459 goto out;
5460 }
5461
5462 #ifdef CONFIG_SMP
5463 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5464 cs_cpus_allowed)) {
5465 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5466 cs_cpus_allowed);
5467 struct dl_bw *dl_b;
5468 bool overflow;
5469 int cpus;
5470 unsigned long flags;
5471
5472 rcu_read_lock_sched();
5473 dl_b = dl_bw_of(dest_cpu);
5474 raw_spin_lock_irqsave(&dl_b->lock, flags);
5475 cpus = dl_bw_cpus(dest_cpu);
5476 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5477 if (overflow)
5478 ret = -EBUSY;
5479 else {
5480 /*
5481 * We reserve space for this task in the destination
5482 * root_domain, as we can't fail after this point.
5483 * We will free resources in the source root_domain
5484 * later on (see set_cpus_allowed_dl()).
5485 */
5486 __dl_add(dl_b, p->dl.dl_bw);
5487 }
5488 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5489 rcu_read_unlock_sched();
5490
5491 }
5492 #endif
5493 out:
5494 return ret;
5495 }
5496
5497 #ifdef CONFIG_SMP
5498
5499 static bool sched_smp_initialized __read_mostly;
5500
5501 #ifdef CONFIG_NUMA_BALANCING
5502 /* Migrate current task p to target_cpu */
5503 int migrate_task_to(struct task_struct *p, int target_cpu)
5504 {
5505 struct migration_arg arg = { p, target_cpu };
5506 int curr_cpu = task_cpu(p);
5507
5508 if (curr_cpu == target_cpu)
5509 return 0;
5510
5511 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5512 return -EINVAL;
5513
5514 /* TODO: This is not properly updating schedstats */
5515
5516 trace_sched_move_numa(p, curr_cpu, target_cpu);
5517 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5518 }
5519
5520 /*
5521 * Requeue a task on a given node and accurately track the number of NUMA
5522 * tasks on the runqueues
5523 */
5524 void sched_setnuma(struct task_struct *p, int nid)
5525 {
5526 bool queued, running;
5527 struct rq_flags rf;
5528 struct rq *rq;
5529
5530 rq = task_rq_lock(p, &rf);
5531 queued = task_on_rq_queued(p);
5532 running = task_current(rq, p);
5533
5534 if (queued)
5535 dequeue_task(rq, p, DEQUEUE_SAVE);
5536 if (running)
5537 put_prev_task(rq, p);
5538
5539 p->numa_preferred_nid = nid;
5540
5541 if (queued)
5542 enqueue_task(rq, p, ENQUEUE_RESTORE);
5543 if (running)
5544 set_curr_task(rq, p);
5545 task_rq_unlock(rq, p, &rf);
5546 }
5547 #endif /* CONFIG_NUMA_BALANCING */
5548
5549 #ifdef CONFIG_HOTPLUG_CPU
5550 /*
5551 * Ensures that the idle task is using init_mm right before its cpu goes
5552 * offline.
5553 */
5554 void idle_task_exit(void)
5555 {
5556 struct mm_struct *mm = current->active_mm;
5557
5558 BUG_ON(cpu_online(smp_processor_id()));
5559
5560 if (mm != &init_mm) {
5561 switch_mm_irqs_off(mm, &init_mm, current);
5562 finish_arch_post_lock_switch();
5563 }
5564 mmdrop(mm);
5565 }
5566
5567 /*
5568 * Since this CPU is going 'away' for a while, fold any nr_active delta
5569 * we might have. Assumes we're called after migrate_tasks() so that the
5570 * nr_active count is stable. We need to take the teardown thread which
5571 * is calling this into account, so we hand in adjust = 1 to the load
5572 * calculation.
5573 *
5574 * Also see the comment "Global load-average calculations".
5575 */
5576 static void calc_load_migrate(struct rq *rq)
5577 {
5578 long delta = calc_load_fold_active(rq, 1);
5579 if (delta)
5580 atomic_long_add(delta, &calc_load_tasks);
5581 }
5582
5583 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5584 {
5585 }
5586
5587 static const struct sched_class fake_sched_class = {
5588 .put_prev_task = put_prev_task_fake,
5589 };
5590
5591 static struct task_struct fake_task = {
5592 /*
5593 * Avoid pull_{rt,dl}_task()
5594 */
5595 .prio = MAX_PRIO + 1,
5596 .sched_class = &fake_sched_class,
5597 };
5598
5599 /*
5600 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5601 * try_to_wake_up()->select_task_rq().
5602 *
5603 * Called with rq->lock held even though we'er in stop_machine() and
5604 * there's no concurrency possible, we hold the required locks anyway
5605 * because of lock validation efforts.
5606 */
5607 static void migrate_tasks(struct rq *dead_rq)
5608 {
5609 struct rq *rq = dead_rq;
5610 struct task_struct *next, *stop = rq->stop;
5611 struct rq_flags rf;
5612 int dest_cpu;
5613
5614 /*
5615 * Fudge the rq selection such that the below task selection loop
5616 * doesn't get stuck on the currently eligible stop task.
5617 *
5618 * We're currently inside stop_machine() and the rq is either stuck
5619 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5620 * either way we should never end up calling schedule() until we're
5621 * done here.
5622 */
5623 rq->stop = NULL;
5624
5625 /*
5626 * put_prev_task() and pick_next_task() sched
5627 * class method both need to have an up-to-date
5628 * value of rq->clock[_task]
5629 */
5630 update_rq_clock(rq);
5631
5632 for (;;) {
5633 /*
5634 * There's this thread running, bail when that's the only
5635 * remaining thread.
5636 */
5637 if (rq->nr_running == 1)
5638 break;
5639
5640 /*
5641 * pick_next_task assumes pinned rq->lock.
5642 */
5643 rq_pin_lock(rq, &rf);
5644 next = pick_next_task(rq, &fake_task, &rf);
5645 BUG_ON(!next);
5646 next->sched_class->put_prev_task(rq, next);
5647
5648 /*
5649 * Rules for changing task_struct::cpus_allowed are holding
5650 * both pi_lock and rq->lock, such that holding either
5651 * stabilizes the mask.
5652 *
5653 * Drop rq->lock is not quite as disastrous as it usually is
5654 * because !cpu_active at this point, which means load-balance
5655 * will not interfere. Also, stop-machine.
5656 */
5657 rq_unpin_lock(rq, &rf);
5658 raw_spin_unlock(&rq->lock);
5659 raw_spin_lock(&next->pi_lock);
5660 raw_spin_lock(&rq->lock);
5661
5662 /*
5663 * Since we're inside stop-machine, _nothing_ should have
5664 * changed the task, WARN if weird stuff happened, because in
5665 * that case the above rq->lock drop is a fail too.
5666 */
5667 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5668 raw_spin_unlock(&next->pi_lock);
5669 continue;
5670 }
5671
5672 /* Find suitable destination for @next, with force if needed. */
5673 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5674
5675 rq = __migrate_task(rq, next, dest_cpu);
5676 if (rq != dead_rq) {
5677 raw_spin_unlock(&rq->lock);
5678 rq = dead_rq;
5679 raw_spin_lock(&rq->lock);
5680 }
5681 raw_spin_unlock(&next->pi_lock);
5682 }
5683
5684 rq->stop = stop;
5685 }
5686 #endif /* CONFIG_HOTPLUG_CPU */
5687
5688 static void set_rq_online(struct rq *rq)
5689 {
5690 if (!rq->online) {
5691 const struct sched_class *class;
5692
5693 cpumask_set_cpu(rq->cpu, rq->rd->online);
5694 rq->online = 1;
5695
5696 for_each_class(class) {
5697 if (class->rq_online)
5698 class->rq_online(rq);
5699 }
5700 }
5701 }
5702
5703 static void set_rq_offline(struct rq *rq)
5704 {
5705 if (rq->online) {
5706 const struct sched_class *class;
5707
5708 for_each_class(class) {
5709 if (class->rq_offline)
5710 class->rq_offline(rq);
5711 }
5712
5713 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5714 rq->online = 0;
5715 }
5716 }
5717
5718 static void set_cpu_rq_start_time(unsigned int cpu)
5719 {
5720 struct rq *rq = cpu_rq(cpu);
5721
5722 rq->age_stamp = sched_clock_cpu(cpu);
5723 }
5724
5725 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5726
5727 #ifdef CONFIG_SCHED_DEBUG
5728
5729 static __read_mostly int sched_debug_enabled;
5730
5731 static int __init sched_debug_setup(char *str)
5732 {
5733 sched_debug_enabled = 1;
5734
5735 return 0;
5736 }
5737 early_param("sched_debug", sched_debug_setup);
5738
5739 static inline bool sched_debug(void)
5740 {
5741 return sched_debug_enabled;
5742 }
5743
5744 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5745 struct cpumask *groupmask)
5746 {
5747 struct sched_group *group = sd->groups;
5748
5749 cpumask_clear(groupmask);
5750
5751 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5752
5753 if (!(sd->flags & SD_LOAD_BALANCE)) {
5754 printk("does not load-balance\n");
5755 if (sd->parent)
5756 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5757 " has parent");
5758 return -1;
5759 }
5760
5761 printk(KERN_CONT "span %*pbl level %s\n",
5762 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5763
5764 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5765 printk(KERN_ERR "ERROR: domain->span does not contain "
5766 "CPU%d\n", cpu);
5767 }
5768 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5769 printk(KERN_ERR "ERROR: domain->groups does not contain"
5770 " CPU%d\n", cpu);
5771 }
5772
5773 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5774 do {
5775 if (!group) {
5776 printk("\n");
5777 printk(KERN_ERR "ERROR: group is NULL\n");
5778 break;
5779 }
5780
5781 if (!cpumask_weight(sched_group_cpus(group))) {
5782 printk(KERN_CONT "\n");
5783 printk(KERN_ERR "ERROR: empty group\n");
5784 break;
5785 }
5786
5787 if (!(sd->flags & SD_OVERLAP) &&
5788 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5789 printk(KERN_CONT "\n");
5790 printk(KERN_ERR "ERROR: repeated CPUs\n");
5791 break;
5792 }
5793
5794 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5795
5796 printk(KERN_CONT " %*pbl",
5797 cpumask_pr_args(sched_group_cpus(group)));
5798 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5799 printk(KERN_CONT " (cpu_capacity = %lu)",
5800 group->sgc->capacity);
5801 }
5802
5803 group = group->next;
5804 } while (group != sd->groups);
5805 printk(KERN_CONT "\n");
5806
5807 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5808 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5809
5810 if (sd->parent &&
5811 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5812 printk(KERN_ERR "ERROR: parent span is not a superset "
5813 "of domain->span\n");
5814 return 0;
5815 }
5816
5817 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5818 {
5819 int level = 0;
5820
5821 if (!sched_debug_enabled)
5822 return;
5823
5824 if (!sd) {
5825 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5826 return;
5827 }
5828
5829 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5830
5831 for (;;) {
5832 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5833 break;
5834 level++;
5835 sd = sd->parent;
5836 if (!sd)
5837 break;
5838 }
5839 }
5840 #else /* !CONFIG_SCHED_DEBUG */
5841
5842 # define sched_debug_enabled 0
5843 # define sched_domain_debug(sd, cpu) do { } while (0)
5844 static inline bool sched_debug(void)
5845 {
5846 return false;
5847 }
5848 #endif /* CONFIG_SCHED_DEBUG */
5849
5850 static int sd_degenerate(struct sched_domain *sd)
5851 {
5852 if (cpumask_weight(sched_domain_span(sd)) == 1)
5853 return 1;
5854
5855 /* Following flags need at least 2 groups */
5856 if (sd->flags & (SD_LOAD_BALANCE |
5857 SD_BALANCE_NEWIDLE |
5858 SD_BALANCE_FORK |
5859 SD_BALANCE_EXEC |
5860 SD_SHARE_CPUCAPACITY |
5861 SD_ASYM_CPUCAPACITY |
5862 SD_SHARE_PKG_RESOURCES |
5863 SD_SHARE_POWERDOMAIN)) {
5864 if (sd->groups != sd->groups->next)
5865 return 0;
5866 }
5867
5868 /* Following flags don't use groups */
5869 if (sd->flags & (SD_WAKE_AFFINE))
5870 return 0;
5871
5872 return 1;
5873 }
5874
5875 static int
5876 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5877 {
5878 unsigned long cflags = sd->flags, pflags = parent->flags;
5879
5880 if (sd_degenerate(parent))
5881 return 1;
5882
5883 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5884 return 0;
5885
5886 /* Flags needing groups don't count if only 1 group in parent */
5887 if (parent->groups == parent->groups->next) {
5888 pflags &= ~(SD_LOAD_BALANCE |
5889 SD_BALANCE_NEWIDLE |
5890 SD_BALANCE_FORK |
5891 SD_BALANCE_EXEC |
5892 SD_ASYM_CPUCAPACITY |
5893 SD_SHARE_CPUCAPACITY |
5894 SD_SHARE_PKG_RESOURCES |
5895 SD_PREFER_SIBLING |
5896 SD_SHARE_POWERDOMAIN);
5897 if (nr_node_ids == 1)
5898 pflags &= ~SD_SERIALIZE;
5899 }
5900 if (~cflags & pflags)
5901 return 0;
5902
5903 return 1;
5904 }
5905
5906 static void free_rootdomain(struct rcu_head *rcu)
5907 {
5908 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5909
5910 cpupri_cleanup(&rd->cpupri);
5911 cpudl_cleanup(&rd->cpudl);
5912 free_cpumask_var(rd->dlo_mask);
5913 free_cpumask_var(rd->rto_mask);
5914 free_cpumask_var(rd->online);
5915 free_cpumask_var(rd->span);
5916 kfree(rd);
5917 }
5918
5919 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5920 {
5921 struct root_domain *old_rd = NULL;
5922 unsigned long flags;
5923
5924 raw_spin_lock_irqsave(&rq->lock, flags);
5925
5926 if (rq->rd) {
5927 old_rd = rq->rd;
5928
5929 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5930 set_rq_offline(rq);
5931
5932 cpumask_clear_cpu(rq->cpu, old_rd->span);
5933
5934 /*
5935 * If we dont want to free the old_rd yet then
5936 * set old_rd to NULL to skip the freeing later
5937 * in this function:
5938 */
5939 if (!atomic_dec_and_test(&old_rd->refcount))
5940 old_rd = NULL;
5941 }
5942
5943 atomic_inc(&rd->refcount);
5944 rq->rd = rd;
5945
5946 cpumask_set_cpu(rq->cpu, rd->span);
5947 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5948 set_rq_online(rq);
5949
5950 raw_spin_unlock_irqrestore(&rq->lock, flags);
5951
5952 if (old_rd)
5953 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5954 }
5955
5956 static int init_rootdomain(struct root_domain *rd)
5957 {
5958 memset(rd, 0, sizeof(*rd));
5959
5960 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5961 goto out;
5962 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5963 goto free_span;
5964 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5965 goto free_online;
5966 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5967 goto free_dlo_mask;
5968
5969 init_dl_bw(&rd->dl_bw);
5970 if (cpudl_init(&rd->cpudl) != 0)
5971 goto free_dlo_mask;
5972
5973 if (cpupri_init(&rd->cpupri) != 0)
5974 goto free_rto_mask;
5975 return 0;
5976
5977 free_rto_mask:
5978 free_cpumask_var(rd->rto_mask);
5979 free_dlo_mask:
5980 free_cpumask_var(rd->dlo_mask);
5981 free_online:
5982 free_cpumask_var(rd->online);
5983 free_span:
5984 free_cpumask_var(rd->span);
5985 out:
5986 return -ENOMEM;
5987 }
5988
5989 /*
5990 * By default the system creates a single root-domain with all cpus as
5991 * members (mimicking the global state we have today).
5992 */
5993 struct root_domain def_root_domain;
5994
5995 static void init_defrootdomain(void)
5996 {
5997 init_rootdomain(&def_root_domain);
5998
5999 atomic_set(&def_root_domain.refcount, 1);
6000 }
6001
6002 static struct root_domain *alloc_rootdomain(void)
6003 {
6004 struct root_domain *rd;
6005
6006 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6007 if (!rd)
6008 return NULL;
6009
6010 if (init_rootdomain(rd) != 0) {
6011 kfree(rd);
6012 return NULL;
6013 }
6014
6015 return rd;
6016 }
6017
6018 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6019 {
6020 struct sched_group *tmp, *first;
6021
6022 if (!sg)
6023 return;
6024
6025 first = sg;
6026 do {
6027 tmp = sg->next;
6028
6029 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6030 kfree(sg->sgc);
6031
6032 kfree(sg);
6033 sg = tmp;
6034 } while (sg != first);
6035 }
6036
6037 static void destroy_sched_domain(struct sched_domain *sd)
6038 {
6039 /*
6040 * If its an overlapping domain it has private groups, iterate and
6041 * nuke them all.
6042 */
6043 if (sd->flags & SD_OVERLAP) {
6044 free_sched_groups(sd->groups, 1);
6045 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6046 kfree(sd->groups->sgc);
6047 kfree(sd->groups);
6048 }
6049 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
6050 kfree(sd->shared);
6051 kfree(sd);
6052 }
6053
6054 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
6055 {
6056 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6057
6058 while (sd) {
6059 struct sched_domain *parent = sd->parent;
6060 destroy_sched_domain(sd);
6061 sd = parent;
6062 }
6063 }
6064
6065 static void destroy_sched_domains(struct sched_domain *sd)
6066 {
6067 if (sd)
6068 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
6069 }
6070
6071 /*
6072 * Keep a special pointer to the highest sched_domain that has
6073 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6074 * allows us to avoid some pointer chasing select_idle_sibling().
6075 *
6076 * Also keep a unique ID per domain (we use the first cpu number in
6077 * the cpumask of the domain), this allows us to quickly tell if
6078 * two cpus are in the same cache domain, see cpus_share_cache().
6079 */
6080 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6081 DEFINE_PER_CPU(int, sd_llc_size);
6082 DEFINE_PER_CPU(int, sd_llc_id);
6083 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6084 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6085 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6086
6087 static void update_top_cache_domain(int cpu)
6088 {
6089 struct sched_domain_shared *sds = NULL;
6090 struct sched_domain *sd;
6091 int id = cpu;
6092 int size = 1;
6093
6094 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6095 if (sd) {
6096 id = cpumask_first(sched_domain_span(sd));
6097 size = cpumask_weight(sched_domain_span(sd));
6098 sds = sd->shared;
6099 }
6100
6101 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6102 per_cpu(sd_llc_size, cpu) = size;
6103 per_cpu(sd_llc_id, cpu) = id;
6104 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6105
6106 sd = lowest_flag_domain(cpu, SD_NUMA);
6107 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6108
6109 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6110 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6111 }
6112
6113 /*
6114 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6115 * hold the hotplug lock.
6116 */
6117 static void
6118 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6119 {
6120 struct rq *rq = cpu_rq(cpu);
6121 struct sched_domain *tmp;
6122
6123 /* Remove the sched domains which do not contribute to scheduling. */
6124 for (tmp = sd; tmp; ) {
6125 struct sched_domain *parent = tmp->parent;
6126 if (!parent)
6127 break;
6128
6129 if (sd_parent_degenerate(tmp, parent)) {
6130 tmp->parent = parent->parent;
6131 if (parent->parent)
6132 parent->parent->child = tmp;
6133 /*
6134 * Transfer SD_PREFER_SIBLING down in case of a
6135 * degenerate parent; the spans match for this
6136 * so the property transfers.
6137 */
6138 if (parent->flags & SD_PREFER_SIBLING)
6139 tmp->flags |= SD_PREFER_SIBLING;
6140 destroy_sched_domain(parent);
6141 } else
6142 tmp = tmp->parent;
6143 }
6144
6145 if (sd && sd_degenerate(sd)) {
6146 tmp = sd;
6147 sd = sd->parent;
6148 destroy_sched_domain(tmp);
6149 if (sd)
6150 sd->child = NULL;
6151 }
6152
6153 sched_domain_debug(sd, cpu);
6154
6155 rq_attach_root(rq, rd);
6156 tmp = rq->sd;
6157 rcu_assign_pointer(rq->sd, sd);
6158 destroy_sched_domains(tmp);
6159
6160 update_top_cache_domain(cpu);
6161 }
6162
6163 /* Setup the mask of cpus configured for isolated domains */
6164 static int __init isolated_cpu_setup(char *str)
6165 {
6166 int ret;
6167
6168 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6169 ret = cpulist_parse(str, cpu_isolated_map);
6170 if (ret) {
6171 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6172 return 0;
6173 }
6174 return 1;
6175 }
6176 __setup("isolcpus=", isolated_cpu_setup);
6177
6178 struct s_data {
6179 struct sched_domain ** __percpu sd;
6180 struct root_domain *rd;
6181 };
6182
6183 enum s_alloc {
6184 sa_rootdomain,
6185 sa_sd,
6186 sa_sd_storage,
6187 sa_none,
6188 };
6189
6190 /*
6191 * Build an iteration mask that can exclude certain CPUs from the upwards
6192 * domain traversal.
6193 *
6194 * Asymmetric node setups can result in situations where the domain tree is of
6195 * unequal depth, make sure to skip domains that already cover the entire
6196 * range.
6197 *
6198 * In that case build_sched_domains() will have terminated the iteration early
6199 * and our sibling sd spans will be empty. Domains should always include the
6200 * cpu they're built on, so check that.
6201 *
6202 */
6203 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6204 {
6205 const struct cpumask *span = sched_domain_span(sd);
6206 struct sd_data *sdd = sd->private;
6207 struct sched_domain *sibling;
6208 int i;
6209
6210 for_each_cpu(i, span) {
6211 sibling = *per_cpu_ptr(sdd->sd, i);
6212 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6213 continue;
6214
6215 cpumask_set_cpu(i, sched_group_mask(sg));
6216 }
6217 }
6218
6219 /*
6220 * Return the canonical balance cpu for this group, this is the first cpu
6221 * of this group that's also in the iteration mask.
6222 */
6223 int group_balance_cpu(struct sched_group *sg)
6224 {
6225 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6226 }
6227
6228 static int
6229 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6230 {
6231 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6232 const struct cpumask *span = sched_domain_span(sd);
6233 struct cpumask *covered = sched_domains_tmpmask;
6234 struct sd_data *sdd = sd->private;
6235 struct sched_domain *sibling;
6236 int i;
6237
6238 cpumask_clear(covered);
6239
6240 for_each_cpu(i, span) {
6241 struct cpumask *sg_span;
6242
6243 if (cpumask_test_cpu(i, covered))
6244 continue;
6245
6246 sibling = *per_cpu_ptr(sdd->sd, i);
6247
6248 /* See the comment near build_group_mask(). */
6249 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6250 continue;
6251
6252 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6253 GFP_KERNEL, cpu_to_node(cpu));
6254
6255 if (!sg)
6256 goto fail;
6257
6258 sg_span = sched_group_cpus(sg);
6259 if (sibling->child)
6260 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6261 else
6262 cpumask_set_cpu(i, sg_span);
6263
6264 cpumask_or(covered, covered, sg_span);
6265
6266 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6267 if (atomic_inc_return(&sg->sgc->ref) == 1)
6268 build_group_mask(sd, sg);
6269
6270 /*
6271 * Initialize sgc->capacity such that even if we mess up the
6272 * domains and no possible iteration will get us here, we won't
6273 * die on a /0 trap.
6274 */
6275 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6276 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6277
6278 /*
6279 * Make sure the first group of this domain contains the
6280 * canonical balance cpu. Otherwise the sched_domain iteration
6281 * breaks. See update_sg_lb_stats().
6282 */
6283 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6284 group_balance_cpu(sg) == cpu)
6285 groups = sg;
6286
6287 if (!first)
6288 first = sg;
6289 if (last)
6290 last->next = sg;
6291 last = sg;
6292 last->next = first;
6293 }
6294 sd->groups = groups;
6295
6296 return 0;
6297
6298 fail:
6299 free_sched_groups(first, 0);
6300
6301 return -ENOMEM;
6302 }
6303
6304 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6305 {
6306 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6307 struct sched_domain *child = sd->child;
6308
6309 if (child)
6310 cpu = cpumask_first(sched_domain_span(child));
6311
6312 if (sg) {
6313 *sg = *per_cpu_ptr(sdd->sg, cpu);
6314 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6315 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6316 }
6317
6318 return cpu;
6319 }
6320
6321 /*
6322 * build_sched_groups will build a circular linked list of the groups
6323 * covered by the given span, and will set each group's ->cpumask correctly,
6324 * and ->cpu_capacity to 0.
6325 *
6326 * Assumes the sched_domain tree is fully constructed
6327 */
6328 static int
6329 build_sched_groups(struct sched_domain *sd, int cpu)
6330 {
6331 struct sched_group *first = NULL, *last = NULL;
6332 struct sd_data *sdd = sd->private;
6333 const struct cpumask *span = sched_domain_span(sd);
6334 struct cpumask *covered;
6335 int i;
6336
6337 get_group(cpu, sdd, &sd->groups);
6338 atomic_inc(&sd->groups->ref);
6339
6340 if (cpu != cpumask_first(span))
6341 return 0;
6342
6343 lockdep_assert_held(&sched_domains_mutex);
6344 covered = sched_domains_tmpmask;
6345
6346 cpumask_clear(covered);
6347
6348 for_each_cpu(i, span) {
6349 struct sched_group *sg;
6350 int group, j;
6351
6352 if (cpumask_test_cpu(i, covered))
6353 continue;
6354
6355 group = get_group(i, sdd, &sg);
6356 cpumask_setall(sched_group_mask(sg));
6357
6358 for_each_cpu(j, span) {
6359 if (get_group(j, sdd, NULL) != group)
6360 continue;
6361
6362 cpumask_set_cpu(j, covered);
6363 cpumask_set_cpu(j, sched_group_cpus(sg));
6364 }
6365
6366 if (!first)
6367 first = sg;
6368 if (last)
6369 last->next = sg;
6370 last = sg;
6371 }
6372 last->next = first;
6373
6374 return 0;
6375 }
6376
6377 /*
6378 * Initialize sched groups cpu_capacity.
6379 *
6380 * cpu_capacity indicates the capacity of sched group, which is used while
6381 * distributing the load between different sched groups in a sched domain.
6382 * Typically cpu_capacity for all the groups in a sched domain will be same
6383 * unless there are asymmetries in the topology. If there are asymmetries,
6384 * group having more cpu_capacity will pickup more load compared to the
6385 * group having less cpu_capacity.
6386 */
6387 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6388 {
6389 struct sched_group *sg = sd->groups;
6390
6391 WARN_ON(!sg);
6392
6393 do {
6394 int cpu, max_cpu = -1;
6395
6396 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6397
6398 if (!(sd->flags & SD_ASYM_PACKING))
6399 goto next;
6400
6401 for_each_cpu(cpu, sched_group_cpus(sg)) {
6402 if (max_cpu < 0)
6403 max_cpu = cpu;
6404 else if (sched_asym_prefer(cpu, max_cpu))
6405 max_cpu = cpu;
6406 }
6407 sg->asym_prefer_cpu = max_cpu;
6408
6409 next:
6410 sg = sg->next;
6411 } while (sg != sd->groups);
6412
6413 if (cpu != group_balance_cpu(sg))
6414 return;
6415
6416 update_group_capacity(sd, cpu);
6417 }
6418
6419 /*
6420 * Initializers for schedule domains
6421 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6422 */
6423
6424 static int default_relax_domain_level = -1;
6425 int sched_domain_level_max;
6426
6427 static int __init setup_relax_domain_level(char *str)
6428 {
6429 if (kstrtoint(str, 0, &default_relax_domain_level))
6430 pr_warn("Unable to set relax_domain_level\n");
6431
6432 return 1;
6433 }
6434 __setup("relax_domain_level=", setup_relax_domain_level);
6435
6436 static void set_domain_attribute(struct sched_domain *sd,
6437 struct sched_domain_attr *attr)
6438 {
6439 int request;
6440
6441 if (!attr || attr->relax_domain_level < 0) {
6442 if (default_relax_domain_level < 0)
6443 return;
6444 else
6445 request = default_relax_domain_level;
6446 } else
6447 request = attr->relax_domain_level;
6448 if (request < sd->level) {
6449 /* turn off idle balance on this domain */
6450 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6451 } else {
6452 /* turn on idle balance on this domain */
6453 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6454 }
6455 }
6456
6457 static void __sdt_free(const struct cpumask *cpu_map);
6458 static int __sdt_alloc(const struct cpumask *cpu_map);
6459
6460 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6461 const struct cpumask *cpu_map)
6462 {
6463 switch (what) {
6464 case sa_rootdomain:
6465 if (!atomic_read(&d->rd->refcount))
6466 free_rootdomain(&d->rd->rcu); /* fall through */
6467 case sa_sd:
6468 free_percpu(d->sd); /* fall through */
6469 case sa_sd_storage:
6470 __sdt_free(cpu_map); /* fall through */
6471 case sa_none:
6472 break;
6473 }
6474 }
6475
6476 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6477 const struct cpumask *cpu_map)
6478 {
6479 memset(d, 0, sizeof(*d));
6480
6481 if (__sdt_alloc(cpu_map))
6482 return sa_sd_storage;
6483 d->sd = alloc_percpu(struct sched_domain *);
6484 if (!d->sd)
6485 return sa_sd_storage;
6486 d->rd = alloc_rootdomain();
6487 if (!d->rd)
6488 return sa_sd;
6489 return sa_rootdomain;
6490 }
6491
6492 /*
6493 * NULL the sd_data elements we've used to build the sched_domain and
6494 * sched_group structure so that the subsequent __free_domain_allocs()
6495 * will not free the data we're using.
6496 */
6497 static void claim_allocations(int cpu, struct sched_domain *sd)
6498 {
6499 struct sd_data *sdd = sd->private;
6500
6501 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6502 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6503
6504 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6505 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6506
6507 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6508 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6509
6510 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6511 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6512 }
6513
6514 #ifdef CONFIG_NUMA
6515 static int sched_domains_numa_levels;
6516 enum numa_topology_type sched_numa_topology_type;
6517 static int *sched_domains_numa_distance;
6518 int sched_max_numa_distance;
6519 static struct cpumask ***sched_domains_numa_masks;
6520 static int sched_domains_curr_level;
6521 #endif
6522
6523 /*
6524 * SD_flags allowed in topology descriptions.
6525 *
6526 * These flags are purely descriptive of the topology and do not prescribe
6527 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6528 * function:
6529 *
6530 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6531 * SD_SHARE_PKG_RESOURCES - describes shared caches
6532 * SD_NUMA - describes NUMA topologies
6533 * SD_SHARE_POWERDOMAIN - describes shared power domain
6534 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6535 *
6536 * Odd one out, which beside describing the topology has a quirk also
6537 * prescribes the desired behaviour that goes along with it:
6538 *
6539 * SD_ASYM_PACKING - describes SMT quirks
6540 */
6541 #define TOPOLOGY_SD_FLAGS \
6542 (SD_SHARE_CPUCAPACITY | \
6543 SD_SHARE_PKG_RESOURCES | \
6544 SD_NUMA | \
6545 SD_ASYM_PACKING | \
6546 SD_ASYM_CPUCAPACITY | \
6547 SD_SHARE_POWERDOMAIN)
6548
6549 static struct sched_domain *
6550 sd_init(struct sched_domain_topology_level *tl,
6551 const struct cpumask *cpu_map,
6552 struct sched_domain *child, int cpu)
6553 {
6554 struct sd_data *sdd = &tl->data;
6555 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6556 int sd_id, sd_weight, sd_flags = 0;
6557
6558 #ifdef CONFIG_NUMA
6559 /*
6560 * Ugly hack to pass state to sd_numa_mask()...
6561 */
6562 sched_domains_curr_level = tl->numa_level;
6563 #endif
6564
6565 sd_weight = cpumask_weight(tl->mask(cpu));
6566
6567 if (tl->sd_flags)
6568 sd_flags = (*tl->sd_flags)();
6569 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6570 "wrong sd_flags in topology description\n"))
6571 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6572
6573 *sd = (struct sched_domain){
6574 .min_interval = sd_weight,
6575 .max_interval = 2*sd_weight,
6576 .busy_factor = 32,
6577 .imbalance_pct = 125,
6578
6579 .cache_nice_tries = 0,
6580 .busy_idx = 0,
6581 .idle_idx = 0,
6582 .newidle_idx = 0,
6583 .wake_idx = 0,
6584 .forkexec_idx = 0,
6585
6586 .flags = 1*SD_LOAD_BALANCE
6587 | 1*SD_BALANCE_NEWIDLE
6588 | 1*SD_BALANCE_EXEC
6589 | 1*SD_BALANCE_FORK
6590 | 0*SD_BALANCE_WAKE
6591 | 1*SD_WAKE_AFFINE
6592 | 0*SD_SHARE_CPUCAPACITY
6593 | 0*SD_SHARE_PKG_RESOURCES
6594 | 0*SD_SERIALIZE
6595 | 0*SD_PREFER_SIBLING
6596 | 0*SD_NUMA
6597 | sd_flags
6598 ,
6599
6600 .last_balance = jiffies,
6601 .balance_interval = sd_weight,
6602 .smt_gain = 0,
6603 .max_newidle_lb_cost = 0,
6604 .next_decay_max_lb_cost = jiffies,
6605 .child = child,
6606 #ifdef CONFIG_SCHED_DEBUG
6607 .name = tl->name,
6608 #endif
6609 };
6610
6611 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6612 sd_id = cpumask_first(sched_domain_span(sd));
6613
6614 /*
6615 * Convert topological properties into behaviour.
6616 */
6617
6618 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6619 struct sched_domain *t = sd;
6620
6621 for_each_lower_domain(t)
6622 t->flags |= SD_BALANCE_WAKE;
6623 }
6624
6625 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6626 sd->flags |= SD_PREFER_SIBLING;
6627 sd->imbalance_pct = 110;
6628 sd->smt_gain = 1178; /* ~15% */
6629
6630 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6631 sd->imbalance_pct = 117;
6632 sd->cache_nice_tries = 1;
6633 sd->busy_idx = 2;
6634
6635 #ifdef CONFIG_NUMA
6636 } else if (sd->flags & SD_NUMA) {
6637 sd->cache_nice_tries = 2;
6638 sd->busy_idx = 3;
6639 sd->idle_idx = 2;
6640
6641 sd->flags |= SD_SERIALIZE;
6642 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6643 sd->flags &= ~(SD_BALANCE_EXEC |
6644 SD_BALANCE_FORK |
6645 SD_WAKE_AFFINE);
6646 }
6647
6648 #endif
6649 } else {
6650 sd->flags |= SD_PREFER_SIBLING;
6651 sd->cache_nice_tries = 1;
6652 sd->busy_idx = 2;
6653 sd->idle_idx = 1;
6654 }
6655
6656 /*
6657 * For all levels sharing cache; connect a sched_domain_shared
6658 * instance.
6659 */
6660 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6661 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6662 atomic_inc(&sd->shared->ref);
6663 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6664 }
6665
6666 sd->private = sdd;
6667
6668 return sd;
6669 }
6670
6671 /*
6672 * Topology list, bottom-up.
6673 */
6674 static struct sched_domain_topology_level default_topology[] = {
6675 #ifdef CONFIG_SCHED_SMT
6676 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6677 #endif
6678 #ifdef CONFIG_SCHED_MC
6679 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6680 #endif
6681 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6682 { NULL, },
6683 };
6684
6685 static struct sched_domain_topology_level *sched_domain_topology =
6686 default_topology;
6687
6688 #define for_each_sd_topology(tl) \
6689 for (tl = sched_domain_topology; tl->mask; tl++)
6690
6691 void set_sched_topology(struct sched_domain_topology_level *tl)
6692 {
6693 if (WARN_ON_ONCE(sched_smp_initialized))
6694 return;
6695
6696 sched_domain_topology = tl;
6697 }
6698
6699 #ifdef CONFIG_NUMA
6700
6701 static const struct cpumask *sd_numa_mask(int cpu)
6702 {
6703 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6704 }
6705
6706 static void sched_numa_warn(const char *str)
6707 {
6708 static int done = false;
6709 int i,j;
6710
6711 if (done)
6712 return;
6713
6714 done = true;
6715
6716 printk(KERN_WARNING "ERROR: %s\n\n", str);
6717
6718 for (i = 0; i < nr_node_ids; i++) {
6719 printk(KERN_WARNING " ");
6720 for (j = 0; j < nr_node_ids; j++)
6721 printk(KERN_CONT "%02d ", node_distance(i,j));
6722 printk(KERN_CONT "\n");
6723 }
6724 printk(KERN_WARNING "\n");
6725 }
6726
6727 bool find_numa_distance(int distance)
6728 {
6729 int i;
6730
6731 if (distance == node_distance(0, 0))
6732 return true;
6733
6734 for (i = 0; i < sched_domains_numa_levels; i++) {
6735 if (sched_domains_numa_distance[i] == distance)
6736 return true;
6737 }
6738
6739 return false;
6740 }
6741
6742 /*
6743 * A system can have three types of NUMA topology:
6744 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6745 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6746 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6747 *
6748 * The difference between a glueless mesh topology and a backplane
6749 * topology lies in whether communication between not directly
6750 * connected nodes goes through intermediary nodes (where programs
6751 * could run), or through backplane controllers. This affects
6752 * placement of programs.
6753 *
6754 * The type of topology can be discerned with the following tests:
6755 * - If the maximum distance between any nodes is 1 hop, the system
6756 * is directly connected.
6757 * - If for two nodes A and B, located N > 1 hops away from each other,
6758 * there is an intermediary node C, which is < N hops away from both
6759 * nodes A and B, the system is a glueless mesh.
6760 */
6761 static void init_numa_topology_type(void)
6762 {
6763 int a, b, c, n;
6764
6765 n = sched_max_numa_distance;
6766
6767 if (sched_domains_numa_levels <= 1) {
6768 sched_numa_topology_type = NUMA_DIRECT;
6769 return;
6770 }
6771
6772 for_each_online_node(a) {
6773 for_each_online_node(b) {
6774 /* Find two nodes furthest removed from each other. */
6775 if (node_distance(a, b) < n)
6776 continue;
6777
6778 /* Is there an intermediary node between a and b? */
6779 for_each_online_node(c) {
6780 if (node_distance(a, c) < n &&
6781 node_distance(b, c) < n) {
6782 sched_numa_topology_type =
6783 NUMA_GLUELESS_MESH;
6784 return;
6785 }
6786 }
6787
6788 sched_numa_topology_type = NUMA_BACKPLANE;
6789 return;
6790 }
6791 }
6792 }
6793
6794 static void sched_init_numa(void)
6795 {
6796 int next_distance, curr_distance = node_distance(0, 0);
6797 struct sched_domain_topology_level *tl;
6798 int level = 0;
6799 int i, j, k;
6800
6801 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6802 if (!sched_domains_numa_distance)
6803 return;
6804
6805 /*
6806 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6807 * unique distances in the node_distance() table.
6808 *
6809 * Assumes node_distance(0,j) includes all distances in
6810 * node_distance(i,j) in order to avoid cubic time.
6811 */
6812 next_distance = curr_distance;
6813 for (i = 0; i < nr_node_ids; i++) {
6814 for (j = 0; j < nr_node_ids; j++) {
6815 for (k = 0; k < nr_node_ids; k++) {
6816 int distance = node_distance(i, k);
6817
6818 if (distance > curr_distance &&
6819 (distance < next_distance ||
6820 next_distance == curr_distance))
6821 next_distance = distance;
6822
6823 /*
6824 * While not a strong assumption it would be nice to know
6825 * about cases where if node A is connected to B, B is not
6826 * equally connected to A.
6827 */
6828 if (sched_debug() && node_distance(k, i) != distance)
6829 sched_numa_warn("Node-distance not symmetric");
6830
6831 if (sched_debug() && i && !find_numa_distance(distance))
6832 sched_numa_warn("Node-0 not representative");
6833 }
6834 if (next_distance != curr_distance) {
6835 sched_domains_numa_distance[level++] = next_distance;
6836 sched_domains_numa_levels = level;
6837 curr_distance = next_distance;
6838 } else break;
6839 }
6840
6841 /*
6842 * In case of sched_debug() we verify the above assumption.
6843 */
6844 if (!sched_debug())
6845 break;
6846 }
6847
6848 if (!level)
6849 return;
6850
6851 /*
6852 * 'level' contains the number of unique distances, excluding the
6853 * identity distance node_distance(i,i).
6854 *
6855 * The sched_domains_numa_distance[] array includes the actual distance
6856 * numbers.
6857 */
6858
6859 /*
6860 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6861 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6862 * the array will contain less then 'level' members. This could be
6863 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6864 * in other functions.
6865 *
6866 * We reset it to 'level' at the end of this function.
6867 */
6868 sched_domains_numa_levels = 0;
6869
6870 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6871 if (!sched_domains_numa_masks)
6872 return;
6873
6874 /*
6875 * Now for each level, construct a mask per node which contains all
6876 * cpus of nodes that are that many hops away from us.
6877 */
6878 for (i = 0; i < level; i++) {
6879 sched_domains_numa_masks[i] =
6880 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6881 if (!sched_domains_numa_masks[i])
6882 return;
6883
6884 for (j = 0; j < nr_node_ids; j++) {
6885 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6886 if (!mask)
6887 return;
6888
6889 sched_domains_numa_masks[i][j] = mask;
6890
6891 for_each_node(k) {
6892 if (node_distance(j, k) > sched_domains_numa_distance[i])
6893 continue;
6894
6895 cpumask_or(mask, mask, cpumask_of_node(k));
6896 }
6897 }
6898 }
6899
6900 /* Compute default topology size */
6901 for (i = 0; sched_domain_topology[i].mask; i++);
6902
6903 tl = kzalloc((i + level + 1) *
6904 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6905 if (!tl)
6906 return;
6907
6908 /*
6909 * Copy the default topology bits..
6910 */
6911 for (i = 0; sched_domain_topology[i].mask; i++)
6912 tl[i] = sched_domain_topology[i];
6913
6914 /*
6915 * .. and append 'j' levels of NUMA goodness.
6916 */
6917 for (j = 0; j < level; i++, j++) {
6918 tl[i] = (struct sched_domain_topology_level){
6919 .mask = sd_numa_mask,
6920 .sd_flags = cpu_numa_flags,
6921 .flags = SDTL_OVERLAP,
6922 .numa_level = j,
6923 SD_INIT_NAME(NUMA)
6924 };
6925 }
6926
6927 sched_domain_topology = tl;
6928
6929 sched_domains_numa_levels = level;
6930 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6931
6932 init_numa_topology_type();
6933 }
6934
6935 static void sched_domains_numa_masks_set(unsigned int cpu)
6936 {
6937 int node = cpu_to_node(cpu);
6938 int i, j;
6939
6940 for (i = 0; i < sched_domains_numa_levels; i++) {
6941 for (j = 0; j < nr_node_ids; j++) {
6942 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6943 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6944 }
6945 }
6946 }
6947
6948 static void sched_domains_numa_masks_clear(unsigned int cpu)
6949 {
6950 int i, j;
6951
6952 for (i = 0; i < sched_domains_numa_levels; i++) {
6953 for (j = 0; j < nr_node_ids; j++)
6954 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6955 }
6956 }
6957
6958 #else
6959 static inline void sched_init_numa(void) { }
6960 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6961 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6962 #endif /* CONFIG_NUMA */
6963
6964 static int __sdt_alloc(const struct cpumask *cpu_map)
6965 {
6966 struct sched_domain_topology_level *tl;
6967 int j;
6968
6969 for_each_sd_topology(tl) {
6970 struct sd_data *sdd = &tl->data;
6971
6972 sdd->sd = alloc_percpu(struct sched_domain *);
6973 if (!sdd->sd)
6974 return -ENOMEM;
6975
6976 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6977 if (!sdd->sds)
6978 return -ENOMEM;
6979
6980 sdd->sg = alloc_percpu(struct sched_group *);
6981 if (!sdd->sg)
6982 return -ENOMEM;
6983
6984 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6985 if (!sdd->sgc)
6986 return -ENOMEM;
6987
6988 for_each_cpu(j, cpu_map) {
6989 struct sched_domain *sd;
6990 struct sched_domain_shared *sds;
6991 struct sched_group *sg;
6992 struct sched_group_capacity *sgc;
6993
6994 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6995 GFP_KERNEL, cpu_to_node(j));
6996 if (!sd)
6997 return -ENOMEM;
6998
6999 *per_cpu_ptr(sdd->sd, j) = sd;
7000
7001 sds = kzalloc_node(sizeof(struct sched_domain_shared),
7002 GFP_KERNEL, cpu_to_node(j));
7003 if (!sds)
7004 return -ENOMEM;
7005
7006 *per_cpu_ptr(sdd->sds, j) = sds;
7007
7008 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7009 GFP_KERNEL, cpu_to_node(j));
7010 if (!sg)
7011 return -ENOMEM;
7012
7013 sg->next = sg;
7014
7015 *per_cpu_ptr(sdd->sg, j) = sg;
7016
7017 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7018 GFP_KERNEL, cpu_to_node(j));
7019 if (!sgc)
7020 return -ENOMEM;
7021
7022 *per_cpu_ptr(sdd->sgc, j) = sgc;
7023 }
7024 }
7025
7026 return 0;
7027 }
7028
7029 static void __sdt_free(const struct cpumask *cpu_map)
7030 {
7031 struct sched_domain_topology_level *tl;
7032 int j;
7033
7034 for_each_sd_topology(tl) {
7035 struct sd_data *sdd = &tl->data;
7036
7037 for_each_cpu(j, cpu_map) {
7038 struct sched_domain *sd;
7039
7040 if (sdd->sd) {
7041 sd = *per_cpu_ptr(sdd->sd, j);
7042 if (sd && (sd->flags & SD_OVERLAP))
7043 free_sched_groups(sd->groups, 0);
7044 kfree(*per_cpu_ptr(sdd->sd, j));
7045 }
7046
7047 if (sdd->sds)
7048 kfree(*per_cpu_ptr(sdd->sds, j));
7049 if (sdd->sg)
7050 kfree(*per_cpu_ptr(sdd->sg, j));
7051 if (sdd->sgc)
7052 kfree(*per_cpu_ptr(sdd->sgc, j));
7053 }
7054 free_percpu(sdd->sd);
7055 sdd->sd = NULL;
7056 free_percpu(sdd->sds);
7057 sdd->sds = NULL;
7058 free_percpu(sdd->sg);
7059 sdd->sg = NULL;
7060 free_percpu(sdd->sgc);
7061 sdd->sgc = NULL;
7062 }
7063 }
7064
7065 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7066 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7067 struct sched_domain *child, int cpu)
7068 {
7069 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
7070
7071 if (child) {
7072 sd->level = child->level + 1;
7073 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7074 child->parent = sd;
7075
7076 if (!cpumask_subset(sched_domain_span(child),
7077 sched_domain_span(sd))) {
7078 pr_err("BUG: arch topology borken\n");
7079 #ifdef CONFIG_SCHED_DEBUG
7080 pr_err(" the %s domain not a subset of the %s domain\n",
7081 child->name, sd->name);
7082 #endif
7083 /* Fixup, ensure @sd has at least @child cpus. */
7084 cpumask_or(sched_domain_span(sd),
7085 sched_domain_span(sd),
7086 sched_domain_span(child));
7087 }
7088
7089 }
7090 set_domain_attribute(sd, attr);
7091
7092 return sd;
7093 }
7094
7095 /*
7096 * Build sched domains for a given set of cpus and attach the sched domains
7097 * to the individual cpus
7098 */
7099 static int build_sched_domains(const struct cpumask *cpu_map,
7100 struct sched_domain_attr *attr)
7101 {
7102 enum s_alloc alloc_state;
7103 struct sched_domain *sd;
7104 struct s_data d;
7105 struct rq *rq = NULL;
7106 int i, ret = -ENOMEM;
7107
7108 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7109 if (alloc_state != sa_rootdomain)
7110 goto error;
7111
7112 /* Set up domains for cpus specified by the cpu_map. */
7113 for_each_cpu(i, cpu_map) {
7114 struct sched_domain_topology_level *tl;
7115
7116 sd = NULL;
7117 for_each_sd_topology(tl) {
7118 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7119 if (tl == sched_domain_topology)
7120 *per_cpu_ptr(d.sd, i) = sd;
7121 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7122 sd->flags |= SD_OVERLAP;
7123 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7124 break;
7125 }
7126 }
7127
7128 /* Build the groups for the domains */
7129 for_each_cpu(i, cpu_map) {
7130 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7131 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7132 if (sd->flags & SD_OVERLAP) {
7133 if (build_overlap_sched_groups(sd, i))
7134 goto error;
7135 } else {
7136 if (build_sched_groups(sd, i))
7137 goto error;
7138 }
7139 }
7140 }
7141
7142 /* Calculate CPU capacity for physical packages and nodes */
7143 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7144 if (!cpumask_test_cpu(i, cpu_map))
7145 continue;
7146
7147 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7148 claim_allocations(i, sd);
7149 init_sched_groups_capacity(i, sd);
7150 }
7151 }
7152
7153 /* Attach the domains */
7154 rcu_read_lock();
7155 for_each_cpu(i, cpu_map) {
7156 rq = cpu_rq(i);
7157 sd = *per_cpu_ptr(d.sd, i);
7158
7159 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7160 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7161 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7162
7163 cpu_attach_domain(sd, d.rd, i);
7164 }
7165 rcu_read_unlock();
7166
7167 if (rq && sched_debug_enabled) {
7168 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7169 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7170 }
7171
7172 ret = 0;
7173 error:
7174 __free_domain_allocs(&d, alloc_state, cpu_map);
7175 return ret;
7176 }
7177
7178 static cpumask_var_t *doms_cur; /* current sched domains */
7179 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7180 static struct sched_domain_attr *dattr_cur;
7181 /* attribues of custom domains in 'doms_cur' */
7182
7183 /*
7184 * Special case: If a kmalloc of a doms_cur partition (array of
7185 * cpumask) fails, then fallback to a single sched domain,
7186 * as determined by the single cpumask fallback_doms.
7187 */
7188 static cpumask_var_t fallback_doms;
7189
7190 /*
7191 * arch_update_cpu_topology lets virtualized architectures update the
7192 * cpu core maps. It is supposed to return 1 if the topology changed
7193 * or 0 if it stayed the same.
7194 */
7195 int __weak arch_update_cpu_topology(void)
7196 {
7197 return 0;
7198 }
7199
7200 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7201 {
7202 int i;
7203 cpumask_var_t *doms;
7204
7205 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7206 if (!doms)
7207 return NULL;
7208 for (i = 0; i < ndoms; i++) {
7209 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7210 free_sched_domains(doms, i);
7211 return NULL;
7212 }
7213 }
7214 return doms;
7215 }
7216
7217 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7218 {
7219 unsigned int i;
7220 for (i = 0; i < ndoms; i++)
7221 free_cpumask_var(doms[i]);
7222 kfree(doms);
7223 }
7224
7225 /*
7226 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7227 * For now this just excludes isolated cpus, but could be used to
7228 * exclude other special cases in the future.
7229 */
7230 static int init_sched_domains(const struct cpumask *cpu_map)
7231 {
7232 int err;
7233
7234 arch_update_cpu_topology();
7235 ndoms_cur = 1;
7236 doms_cur = alloc_sched_domains(ndoms_cur);
7237 if (!doms_cur)
7238 doms_cur = &fallback_doms;
7239 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7240 err = build_sched_domains(doms_cur[0], NULL);
7241 register_sched_domain_sysctl();
7242
7243 return err;
7244 }
7245
7246 /*
7247 * Detach sched domains from a group of cpus specified in cpu_map
7248 * These cpus will now be attached to the NULL domain
7249 */
7250 static void detach_destroy_domains(const struct cpumask *cpu_map)
7251 {
7252 int i;
7253
7254 rcu_read_lock();
7255 for_each_cpu(i, cpu_map)
7256 cpu_attach_domain(NULL, &def_root_domain, i);
7257 rcu_read_unlock();
7258 }
7259
7260 /* handle null as "default" */
7261 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7262 struct sched_domain_attr *new, int idx_new)
7263 {
7264 struct sched_domain_attr tmp;
7265
7266 /* fast path */
7267 if (!new && !cur)
7268 return 1;
7269
7270 tmp = SD_ATTR_INIT;
7271 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7272 new ? (new + idx_new) : &tmp,
7273 sizeof(struct sched_domain_attr));
7274 }
7275
7276 /*
7277 * Partition sched domains as specified by the 'ndoms_new'
7278 * cpumasks in the array doms_new[] of cpumasks. This compares
7279 * doms_new[] to the current sched domain partitioning, doms_cur[].
7280 * It destroys each deleted domain and builds each new domain.
7281 *
7282 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7283 * The masks don't intersect (don't overlap.) We should setup one
7284 * sched domain for each mask. CPUs not in any of the cpumasks will
7285 * not be load balanced. If the same cpumask appears both in the
7286 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7287 * it as it is.
7288 *
7289 * The passed in 'doms_new' should be allocated using
7290 * alloc_sched_domains. This routine takes ownership of it and will
7291 * free_sched_domains it when done with it. If the caller failed the
7292 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7293 * and partition_sched_domains() will fallback to the single partition
7294 * 'fallback_doms', it also forces the domains to be rebuilt.
7295 *
7296 * If doms_new == NULL it will be replaced with cpu_online_mask.
7297 * ndoms_new == 0 is a special case for destroying existing domains,
7298 * and it will not create the default domain.
7299 *
7300 * Call with hotplug lock held
7301 */
7302 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7303 struct sched_domain_attr *dattr_new)
7304 {
7305 int i, j, n;
7306 int new_topology;
7307
7308 mutex_lock(&sched_domains_mutex);
7309
7310 /* always unregister in case we don't destroy any domains */
7311 unregister_sched_domain_sysctl();
7312
7313 /* Let architecture update cpu core mappings. */
7314 new_topology = arch_update_cpu_topology();
7315
7316 n = doms_new ? ndoms_new : 0;
7317
7318 /* Destroy deleted domains */
7319 for (i = 0; i < ndoms_cur; i++) {
7320 for (j = 0; j < n && !new_topology; j++) {
7321 if (cpumask_equal(doms_cur[i], doms_new[j])
7322 && dattrs_equal(dattr_cur, i, dattr_new, j))
7323 goto match1;
7324 }
7325 /* no match - a current sched domain not in new doms_new[] */
7326 detach_destroy_domains(doms_cur[i]);
7327 match1:
7328 ;
7329 }
7330
7331 n = ndoms_cur;
7332 if (doms_new == NULL) {
7333 n = 0;
7334 doms_new = &fallback_doms;
7335 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7336 WARN_ON_ONCE(dattr_new);
7337 }
7338
7339 /* Build new domains */
7340 for (i = 0; i < ndoms_new; i++) {
7341 for (j = 0; j < n && !new_topology; j++) {
7342 if (cpumask_equal(doms_new[i], doms_cur[j])
7343 && dattrs_equal(dattr_new, i, dattr_cur, j))
7344 goto match2;
7345 }
7346 /* no match - add a new doms_new */
7347 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7348 match2:
7349 ;
7350 }
7351
7352 /* Remember the new sched domains */
7353 if (doms_cur != &fallback_doms)
7354 free_sched_domains(doms_cur, ndoms_cur);
7355 kfree(dattr_cur); /* kfree(NULL) is safe */
7356 doms_cur = doms_new;
7357 dattr_cur = dattr_new;
7358 ndoms_cur = ndoms_new;
7359
7360 register_sched_domain_sysctl();
7361
7362 mutex_unlock(&sched_domains_mutex);
7363 }
7364
7365 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7366
7367 /*
7368 * Update cpusets according to cpu_active mask. If cpusets are
7369 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7370 * around partition_sched_domains().
7371 *
7372 * If we come here as part of a suspend/resume, don't touch cpusets because we
7373 * want to restore it back to its original state upon resume anyway.
7374 */
7375 static void cpuset_cpu_active(void)
7376 {
7377 if (cpuhp_tasks_frozen) {
7378 /*
7379 * num_cpus_frozen tracks how many CPUs are involved in suspend
7380 * resume sequence. As long as this is not the last online
7381 * operation in the resume sequence, just build a single sched
7382 * domain, ignoring cpusets.
7383 */
7384 num_cpus_frozen--;
7385 if (likely(num_cpus_frozen)) {
7386 partition_sched_domains(1, NULL, NULL);
7387 return;
7388 }
7389 /*
7390 * This is the last CPU online operation. So fall through and
7391 * restore the original sched domains by considering the
7392 * cpuset configurations.
7393 */
7394 }
7395 cpuset_update_active_cpus(true);
7396 }
7397
7398 static int cpuset_cpu_inactive(unsigned int cpu)
7399 {
7400 unsigned long flags;
7401 struct dl_bw *dl_b;
7402 bool overflow;
7403 int cpus;
7404
7405 if (!cpuhp_tasks_frozen) {
7406 rcu_read_lock_sched();
7407 dl_b = dl_bw_of(cpu);
7408
7409 raw_spin_lock_irqsave(&dl_b->lock, flags);
7410 cpus = dl_bw_cpus(cpu);
7411 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7412 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7413
7414 rcu_read_unlock_sched();
7415
7416 if (overflow)
7417 return -EBUSY;
7418 cpuset_update_active_cpus(false);
7419 } else {
7420 num_cpus_frozen++;
7421 partition_sched_domains(1, NULL, NULL);
7422 }
7423 return 0;
7424 }
7425
7426 int sched_cpu_activate(unsigned int cpu)
7427 {
7428 struct rq *rq = cpu_rq(cpu);
7429 unsigned long flags;
7430
7431 set_cpu_active(cpu, true);
7432
7433 if (sched_smp_initialized) {
7434 sched_domains_numa_masks_set(cpu);
7435 cpuset_cpu_active();
7436 }
7437
7438 /*
7439 * Put the rq online, if not already. This happens:
7440 *
7441 * 1) In the early boot process, because we build the real domains
7442 * after all cpus have been brought up.
7443 *
7444 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7445 * domains.
7446 */
7447 raw_spin_lock_irqsave(&rq->lock, flags);
7448 if (rq->rd) {
7449 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7450 set_rq_online(rq);
7451 }
7452 raw_spin_unlock_irqrestore(&rq->lock, flags);
7453
7454 update_max_interval();
7455
7456 return 0;
7457 }
7458
7459 int sched_cpu_deactivate(unsigned int cpu)
7460 {
7461 int ret;
7462
7463 set_cpu_active(cpu, false);
7464 /*
7465 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7466 * users of this state to go away such that all new such users will
7467 * observe it.
7468 *
7469 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7470 * not imply sync_sched(), so wait for both.
7471 *
7472 * Do sync before park smpboot threads to take care the rcu boost case.
7473 */
7474 if (IS_ENABLED(CONFIG_PREEMPT))
7475 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7476 else
7477 synchronize_rcu();
7478
7479 if (!sched_smp_initialized)
7480 return 0;
7481
7482 ret = cpuset_cpu_inactive(cpu);
7483 if (ret) {
7484 set_cpu_active(cpu, true);
7485 return ret;
7486 }
7487 sched_domains_numa_masks_clear(cpu);
7488 return 0;
7489 }
7490
7491 static void sched_rq_cpu_starting(unsigned int cpu)
7492 {
7493 struct rq *rq = cpu_rq(cpu);
7494
7495 rq->calc_load_update = calc_load_update;
7496 update_max_interval();
7497 }
7498
7499 int sched_cpu_starting(unsigned int cpu)
7500 {
7501 set_cpu_rq_start_time(cpu);
7502 sched_rq_cpu_starting(cpu);
7503 return 0;
7504 }
7505
7506 #ifdef CONFIG_HOTPLUG_CPU
7507 int sched_cpu_dying(unsigned int cpu)
7508 {
7509 struct rq *rq = cpu_rq(cpu);
7510 unsigned long flags;
7511
7512 /* Handle pending wakeups and then migrate everything off */
7513 sched_ttwu_pending();
7514 raw_spin_lock_irqsave(&rq->lock, flags);
7515 if (rq->rd) {
7516 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7517 set_rq_offline(rq);
7518 }
7519 migrate_tasks(rq);
7520 BUG_ON(rq->nr_running != 1);
7521 raw_spin_unlock_irqrestore(&rq->lock, flags);
7522 calc_load_migrate(rq);
7523 update_max_interval();
7524 nohz_balance_exit_idle(cpu);
7525 hrtick_clear(rq);
7526 return 0;
7527 }
7528 #endif
7529
7530 #ifdef CONFIG_SCHED_SMT
7531 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7532
7533 static void sched_init_smt(void)
7534 {
7535 /*
7536 * We've enumerated all CPUs and will assume that if any CPU
7537 * has SMT siblings, CPU0 will too.
7538 */
7539 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7540 static_branch_enable(&sched_smt_present);
7541 }
7542 #else
7543 static inline void sched_init_smt(void) { }
7544 #endif
7545
7546 void __init sched_init_smp(void)
7547 {
7548 cpumask_var_t non_isolated_cpus;
7549
7550 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7551 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7552
7553 sched_init_numa();
7554
7555 /*
7556 * There's no userspace yet to cause hotplug operations; hence all the
7557 * cpu masks are stable and all blatant races in the below code cannot
7558 * happen.
7559 */
7560 mutex_lock(&sched_domains_mutex);
7561 init_sched_domains(cpu_active_mask);
7562 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7563 if (cpumask_empty(non_isolated_cpus))
7564 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7565 mutex_unlock(&sched_domains_mutex);
7566
7567 /* Move init over to a non-isolated CPU */
7568 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7569 BUG();
7570 sched_init_granularity();
7571 free_cpumask_var(non_isolated_cpus);
7572
7573 init_sched_rt_class();
7574 init_sched_dl_class();
7575
7576 sched_init_smt();
7577 sched_clock_init_late();
7578
7579 sched_smp_initialized = true;
7580 }
7581
7582 static int __init migration_init(void)
7583 {
7584 sched_rq_cpu_starting(smp_processor_id());
7585 return 0;
7586 }
7587 early_initcall(migration_init);
7588
7589 #else
7590 void __init sched_init_smp(void)
7591 {
7592 sched_init_granularity();
7593 sched_clock_init_late();
7594 }
7595 #endif /* CONFIG_SMP */
7596
7597 int in_sched_functions(unsigned long addr)
7598 {
7599 return in_lock_functions(addr) ||
7600 (addr >= (unsigned long)__sched_text_start
7601 && addr < (unsigned long)__sched_text_end);
7602 }
7603
7604 #ifdef CONFIG_CGROUP_SCHED
7605 /*
7606 * Default task group.
7607 * Every task in system belongs to this group at bootup.
7608 */
7609 struct task_group root_task_group;
7610 LIST_HEAD(task_groups);
7611
7612 /* Cacheline aligned slab cache for task_group */
7613 static struct kmem_cache *task_group_cache __read_mostly;
7614 #endif
7615
7616 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7617 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7618
7619 #define WAIT_TABLE_BITS 8
7620 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7621 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7622
7623 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7624 {
7625 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7626 unsigned long val = (unsigned long)word << shift | bit;
7627
7628 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7629 }
7630 EXPORT_SYMBOL(bit_waitqueue);
7631
7632 void __init sched_init(void)
7633 {
7634 int i, j;
7635 unsigned long alloc_size = 0, ptr;
7636
7637 sched_clock_init();
7638
7639 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7640 init_waitqueue_head(bit_wait_table + i);
7641
7642 #ifdef CONFIG_FAIR_GROUP_SCHED
7643 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7644 #endif
7645 #ifdef CONFIG_RT_GROUP_SCHED
7646 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7647 #endif
7648 if (alloc_size) {
7649 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7650
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 root_task_group.se = (struct sched_entity **)ptr;
7653 ptr += nr_cpu_ids * sizeof(void **);
7654
7655 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7656 ptr += nr_cpu_ids * sizeof(void **);
7657
7658 #endif /* CONFIG_FAIR_GROUP_SCHED */
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7661 ptr += nr_cpu_ids * sizeof(void **);
7662
7663 root_task_group.rt_rq = (struct rt_rq **)ptr;
7664 ptr += nr_cpu_ids * sizeof(void **);
7665
7666 #endif /* CONFIG_RT_GROUP_SCHED */
7667 }
7668 #ifdef CONFIG_CPUMASK_OFFSTACK
7669 for_each_possible_cpu(i) {
7670 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7671 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7672 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7673 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7674 }
7675 #endif /* CONFIG_CPUMASK_OFFSTACK */
7676
7677 init_rt_bandwidth(&def_rt_bandwidth,
7678 global_rt_period(), global_rt_runtime());
7679 init_dl_bandwidth(&def_dl_bandwidth,
7680 global_rt_period(), global_rt_runtime());
7681
7682 #ifdef CONFIG_SMP
7683 init_defrootdomain();
7684 #endif
7685
7686 #ifdef CONFIG_RT_GROUP_SCHED
7687 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7688 global_rt_period(), global_rt_runtime());
7689 #endif /* CONFIG_RT_GROUP_SCHED */
7690
7691 #ifdef CONFIG_CGROUP_SCHED
7692 task_group_cache = KMEM_CACHE(task_group, 0);
7693
7694 list_add(&root_task_group.list, &task_groups);
7695 INIT_LIST_HEAD(&root_task_group.children);
7696 INIT_LIST_HEAD(&root_task_group.siblings);
7697 autogroup_init(&init_task);
7698 #endif /* CONFIG_CGROUP_SCHED */
7699
7700 for_each_possible_cpu(i) {
7701 struct rq *rq;
7702
7703 rq = cpu_rq(i);
7704 raw_spin_lock_init(&rq->lock);
7705 rq->nr_running = 0;
7706 rq->calc_load_active = 0;
7707 rq->calc_load_update = jiffies + LOAD_FREQ;
7708 init_cfs_rq(&rq->cfs);
7709 init_rt_rq(&rq->rt);
7710 init_dl_rq(&rq->dl);
7711 #ifdef CONFIG_FAIR_GROUP_SCHED
7712 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7713 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7714 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7715 /*
7716 * How much cpu bandwidth does root_task_group get?
7717 *
7718 * In case of task-groups formed thr' the cgroup filesystem, it
7719 * gets 100% of the cpu resources in the system. This overall
7720 * system cpu resource is divided among the tasks of
7721 * root_task_group and its child task-groups in a fair manner,
7722 * based on each entity's (task or task-group's) weight
7723 * (se->load.weight).
7724 *
7725 * In other words, if root_task_group has 10 tasks of weight
7726 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7727 * then A0's share of the cpu resource is:
7728 *
7729 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7730 *
7731 * We achieve this by letting root_task_group's tasks sit
7732 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7733 */
7734 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7735 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7736 #endif /* CONFIG_FAIR_GROUP_SCHED */
7737
7738 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7739 #ifdef CONFIG_RT_GROUP_SCHED
7740 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7741 #endif
7742
7743 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7744 rq->cpu_load[j] = 0;
7745
7746 #ifdef CONFIG_SMP
7747 rq->sd = NULL;
7748 rq->rd = NULL;
7749 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7750 rq->balance_callback = NULL;
7751 rq->active_balance = 0;
7752 rq->next_balance = jiffies;
7753 rq->push_cpu = 0;
7754 rq->cpu = i;
7755 rq->online = 0;
7756 rq->idle_stamp = 0;
7757 rq->avg_idle = 2*sysctl_sched_migration_cost;
7758 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7759
7760 INIT_LIST_HEAD(&rq->cfs_tasks);
7761
7762 rq_attach_root(rq, &def_root_domain);
7763 #ifdef CONFIG_NO_HZ_COMMON
7764 rq->last_load_update_tick = jiffies;
7765 rq->nohz_flags = 0;
7766 #endif
7767 #ifdef CONFIG_NO_HZ_FULL
7768 rq->last_sched_tick = 0;
7769 #endif
7770 #endif /* CONFIG_SMP */
7771 init_rq_hrtick(rq);
7772 atomic_set(&rq->nr_iowait, 0);
7773 }
7774
7775 set_load_weight(&init_task);
7776
7777 /*
7778 * The boot idle thread does lazy MMU switching as well:
7779 */
7780 atomic_inc(&init_mm.mm_count);
7781 enter_lazy_tlb(&init_mm, current);
7782
7783 /*
7784 * Make us the idle thread. Technically, schedule() should not be
7785 * called from this thread, however somewhere below it might be,
7786 * but because we are the idle thread, we just pick up running again
7787 * when this runqueue becomes "idle".
7788 */
7789 init_idle(current, smp_processor_id());
7790
7791 calc_load_update = jiffies + LOAD_FREQ;
7792
7793 #ifdef CONFIG_SMP
7794 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7795 /* May be allocated at isolcpus cmdline parse time */
7796 if (cpu_isolated_map == NULL)
7797 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7798 idle_thread_set_boot_cpu();
7799 set_cpu_rq_start_time(smp_processor_id());
7800 #endif
7801 init_sched_fair_class();
7802
7803 init_schedstats();
7804
7805 scheduler_running = 1;
7806 }
7807
7808 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7809 static inline int preempt_count_equals(int preempt_offset)
7810 {
7811 int nested = preempt_count() + rcu_preempt_depth();
7812
7813 return (nested == preempt_offset);
7814 }
7815
7816 void __might_sleep(const char *file, int line, int preempt_offset)
7817 {
7818 /*
7819 * Blocking primitives will set (and therefore destroy) current->state,
7820 * since we will exit with TASK_RUNNING make sure we enter with it,
7821 * otherwise we will destroy state.
7822 */
7823 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7824 "do not call blocking ops when !TASK_RUNNING; "
7825 "state=%lx set at [<%p>] %pS\n",
7826 current->state,
7827 (void *)current->task_state_change,
7828 (void *)current->task_state_change);
7829
7830 ___might_sleep(file, line, preempt_offset);
7831 }
7832 EXPORT_SYMBOL(__might_sleep);
7833
7834 void ___might_sleep(const char *file, int line, int preempt_offset)
7835 {
7836 static unsigned long prev_jiffy; /* ratelimiting */
7837 unsigned long preempt_disable_ip;
7838
7839 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7840 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7841 !is_idle_task(current)) ||
7842 system_state != SYSTEM_RUNNING || oops_in_progress)
7843 return;
7844 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7845 return;
7846 prev_jiffy = jiffies;
7847
7848 /* Save this before calling printk(), since that will clobber it */
7849 preempt_disable_ip = get_preempt_disable_ip(current);
7850
7851 printk(KERN_ERR
7852 "BUG: sleeping function called from invalid context at %s:%d\n",
7853 file, line);
7854 printk(KERN_ERR
7855 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7856 in_atomic(), irqs_disabled(),
7857 current->pid, current->comm);
7858
7859 if (task_stack_end_corrupted(current))
7860 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7861
7862 debug_show_held_locks(current);
7863 if (irqs_disabled())
7864 print_irqtrace_events(current);
7865 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7866 && !preempt_count_equals(preempt_offset)) {
7867 pr_err("Preemption disabled at:");
7868 print_ip_sym(preempt_disable_ip);
7869 pr_cont("\n");
7870 }
7871 dump_stack();
7872 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7873 }
7874 EXPORT_SYMBOL(___might_sleep);
7875 #endif
7876
7877 #ifdef CONFIG_MAGIC_SYSRQ
7878 void normalize_rt_tasks(void)
7879 {
7880 struct task_struct *g, *p;
7881 struct sched_attr attr = {
7882 .sched_policy = SCHED_NORMAL,
7883 };
7884
7885 read_lock(&tasklist_lock);
7886 for_each_process_thread(g, p) {
7887 /*
7888 * Only normalize user tasks:
7889 */
7890 if (p->flags & PF_KTHREAD)
7891 continue;
7892
7893 p->se.exec_start = 0;
7894 schedstat_set(p->se.statistics.wait_start, 0);
7895 schedstat_set(p->se.statistics.sleep_start, 0);
7896 schedstat_set(p->se.statistics.block_start, 0);
7897
7898 if (!dl_task(p) && !rt_task(p)) {
7899 /*
7900 * Renice negative nice level userspace
7901 * tasks back to 0:
7902 */
7903 if (task_nice(p) < 0)
7904 set_user_nice(p, 0);
7905 continue;
7906 }
7907
7908 __sched_setscheduler(p, &attr, false, false);
7909 }
7910 read_unlock(&tasklist_lock);
7911 }
7912
7913 #endif /* CONFIG_MAGIC_SYSRQ */
7914
7915 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7916 /*
7917 * These functions are only useful for the IA64 MCA handling, or kdb.
7918 *
7919 * They can only be called when the whole system has been
7920 * stopped - every CPU needs to be quiescent, and no scheduling
7921 * activity can take place. Using them for anything else would
7922 * be a serious bug, and as a result, they aren't even visible
7923 * under any other configuration.
7924 */
7925
7926 /**
7927 * curr_task - return the current task for a given cpu.
7928 * @cpu: the processor in question.
7929 *
7930 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7931 *
7932 * Return: The current task for @cpu.
7933 */
7934 struct task_struct *curr_task(int cpu)
7935 {
7936 return cpu_curr(cpu);
7937 }
7938
7939 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7940
7941 #ifdef CONFIG_IA64
7942 /**
7943 * set_curr_task - set the current task for a given cpu.
7944 * @cpu: the processor in question.
7945 * @p: the task pointer to set.
7946 *
7947 * Description: This function must only be used when non-maskable interrupts
7948 * are serviced on a separate stack. It allows the architecture to switch the
7949 * notion of the current task on a cpu in a non-blocking manner. This function
7950 * must be called with all CPU's synchronized, and interrupts disabled, the
7951 * and caller must save the original value of the current task (see
7952 * curr_task() above) and restore that value before reenabling interrupts and
7953 * re-starting the system.
7954 *
7955 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7956 */
7957 void ia64_set_curr_task(int cpu, struct task_struct *p)
7958 {
7959 cpu_curr(cpu) = p;
7960 }
7961
7962 #endif
7963
7964 #ifdef CONFIG_CGROUP_SCHED
7965 /* task_group_lock serializes the addition/removal of task groups */
7966 static DEFINE_SPINLOCK(task_group_lock);
7967
7968 static void sched_free_group(struct task_group *tg)
7969 {
7970 free_fair_sched_group(tg);
7971 free_rt_sched_group(tg);
7972 autogroup_free(tg);
7973 kmem_cache_free(task_group_cache, tg);
7974 }
7975
7976 /* allocate runqueue etc for a new task group */
7977 struct task_group *sched_create_group(struct task_group *parent)
7978 {
7979 struct task_group *tg;
7980
7981 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7982 if (!tg)
7983 return ERR_PTR(-ENOMEM);
7984
7985 if (!alloc_fair_sched_group(tg, parent))
7986 goto err;
7987
7988 if (!alloc_rt_sched_group(tg, parent))
7989 goto err;
7990
7991 return tg;
7992
7993 err:
7994 sched_free_group(tg);
7995 return ERR_PTR(-ENOMEM);
7996 }
7997
7998 void sched_online_group(struct task_group *tg, struct task_group *parent)
7999 {
8000 unsigned long flags;
8001
8002 spin_lock_irqsave(&task_group_lock, flags);
8003 list_add_rcu(&tg->list, &task_groups);
8004
8005 WARN_ON(!parent); /* root should already exist */
8006
8007 tg->parent = parent;
8008 INIT_LIST_HEAD(&tg->children);
8009 list_add_rcu(&tg->siblings, &parent->children);
8010 spin_unlock_irqrestore(&task_group_lock, flags);
8011
8012 online_fair_sched_group(tg);
8013 }
8014
8015 /* rcu callback to free various structures associated with a task group */
8016 static void sched_free_group_rcu(struct rcu_head *rhp)
8017 {
8018 /* now it should be safe to free those cfs_rqs */
8019 sched_free_group(container_of(rhp, struct task_group, rcu));
8020 }
8021
8022 void sched_destroy_group(struct task_group *tg)
8023 {
8024 /* wait for possible concurrent references to cfs_rqs complete */
8025 call_rcu(&tg->rcu, sched_free_group_rcu);
8026 }
8027
8028 void sched_offline_group(struct task_group *tg)
8029 {
8030 unsigned long flags;
8031
8032 /* end participation in shares distribution */
8033 unregister_fair_sched_group(tg);
8034
8035 spin_lock_irqsave(&task_group_lock, flags);
8036 list_del_rcu(&tg->list);
8037 list_del_rcu(&tg->siblings);
8038 spin_unlock_irqrestore(&task_group_lock, flags);
8039 }
8040
8041 static void sched_change_group(struct task_struct *tsk, int type)
8042 {
8043 struct task_group *tg;
8044
8045 /*
8046 * All callers are synchronized by task_rq_lock(); we do not use RCU
8047 * which is pointless here. Thus, we pass "true" to task_css_check()
8048 * to prevent lockdep warnings.
8049 */
8050 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8051 struct task_group, css);
8052 tg = autogroup_task_group(tsk, tg);
8053 tsk->sched_task_group = tg;
8054
8055 #ifdef CONFIG_FAIR_GROUP_SCHED
8056 if (tsk->sched_class->task_change_group)
8057 tsk->sched_class->task_change_group(tsk, type);
8058 else
8059 #endif
8060 set_task_rq(tsk, task_cpu(tsk));
8061 }
8062
8063 /*
8064 * Change task's runqueue when it moves between groups.
8065 *
8066 * The caller of this function should have put the task in its new group by
8067 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8068 * its new group.
8069 */
8070 void sched_move_task(struct task_struct *tsk)
8071 {
8072 int queued, running;
8073 struct rq_flags rf;
8074 struct rq *rq;
8075
8076 rq = task_rq_lock(tsk, &rf);
8077 update_rq_clock(rq);
8078
8079 running = task_current(rq, tsk);
8080 queued = task_on_rq_queued(tsk);
8081
8082 if (queued)
8083 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8084 if (unlikely(running))
8085 put_prev_task(rq, tsk);
8086
8087 sched_change_group(tsk, TASK_MOVE_GROUP);
8088
8089 if (queued)
8090 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
8091 if (unlikely(running))
8092 set_curr_task(rq, tsk);
8093
8094 task_rq_unlock(rq, tsk, &rf);
8095 }
8096 #endif /* CONFIG_CGROUP_SCHED */
8097
8098 #ifdef CONFIG_RT_GROUP_SCHED
8099 /*
8100 * Ensure that the real time constraints are schedulable.
8101 */
8102 static DEFINE_MUTEX(rt_constraints_mutex);
8103
8104 /* Must be called with tasklist_lock held */
8105 static inline int tg_has_rt_tasks(struct task_group *tg)
8106 {
8107 struct task_struct *g, *p;
8108
8109 /*
8110 * Autogroups do not have RT tasks; see autogroup_create().
8111 */
8112 if (task_group_is_autogroup(tg))
8113 return 0;
8114
8115 for_each_process_thread(g, p) {
8116 if (rt_task(p) && task_group(p) == tg)
8117 return 1;
8118 }
8119
8120 return 0;
8121 }
8122
8123 struct rt_schedulable_data {
8124 struct task_group *tg;
8125 u64 rt_period;
8126 u64 rt_runtime;
8127 };
8128
8129 static int tg_rt_schedulable(struct task_group *tg, void *data)
8130 {
8131 struct rt_schedulable_data *d = data;
8132 struct task_group *child;
8133 unsigned long total, sum = 0;
8134 u64 period, runtime;
8135
8136 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8137 runtime = tg->rt_bandwidth.rt_runtime;
8138
8139 if (tg == d->tg) {
8140 period = d->rt_period;
8141 runtime = d->rt_runtime;
8142 }
8143
8144 /*
8145 * Cannot have more runtime than the period.
8146 */
8147 if (runtime > period && runtime != RUNTIME_INF)
8148 return -EINVAL;
8149
8150 /*
8151 * Ensure we don't starve existing RT tasks.
8152 */
8153 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8154 return -EBUSY;
8155
8156 total = to_ratio(period, runtime);
8157
8158 /*
8159 * Nobody can have more than the global setting allows.
8160 */
8161 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8162 return -EINVAL;
8163
8164 /*
8165 * The sum of our children's runtime should not exceed our own.
8166 */
8167 list_for_each_entry_rcu(child, &tg->children, siblings) {
8168 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8169 runtime = child->rt_bandwidth.rt_runtime;
8170
8171 if (child == d->tg) {
8172 period = d->rt_period;
8173 runtime = d->rt_runtime;
8174 }
8175
8176 sum += to_ratio(period, runtime);
8177 }
8178
8179 if (sum > total)
8180 return -EINVAL;
8181
8182 return 0;
8183 }
8184
8185 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8186 {
8187 int ret;
8188
8189 struct rt_schedulable_data data = {
8190 .tg = tg,
8191 .rt_period = period,
8192 .rt_runtime = runtime,
8193 };
8194
8195 rcu_read_lock();
8196 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8197 rcu_read_unlock();
8198
8199 return ret;
8200 }
8201
8202 static int tg_set_rt_bandwidth(struct task_group *tg,
8203 u64 rt_period, u64 rt_runtime)
8204 {
8205 int i, err = 0;
8206
8207 /*
8208 * Disallowing the root group RT runtime is BAD, it would disallow the
8209 * kernel creating (and or operating) RT threads.
8210 */
8211 if (tg == &root_task_group && rt_runtime == 0)
8212 return -EINVAL;
8213
8214 /* No period doesn't make any sense. */
8215 if (rt_period == 0)
8216 return -EINVAL;
8217
8218 mutex_lock(&rt_constraints_mutex);
8219 read_lock(&tasklist_lock);
8220 err = __rt_schedulable(tg, rt_period, rt_runtime);
8221 if (err)
8222 goto unlock;
8223
8224 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8225 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8226 tg->rt_bandwidth.rt_runtime = rt_runtime;
8227
8228 for_each_possible_cpu(i) {
8229 struct rt_rq *rt_rq = tg->rt_rq[i];
8230
8231 raw_spin_lock(&rt_rq->rt_runtime_lock);
8232 rt_rq->rt_runtime = rt_runtime;
8233 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8234 }
8235 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8236 unlock:
8237 read_unlock(&tasklist_lock);
8238 mutex_unlock(&rt_constraints_mutex);
8239
8240 return err;
8241 }
8242
8243 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8244 {
8245 u64 rt_runtime, rt_period;
8246
8247 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8248 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8249 if (rt_runtime_us < 0)
8250 rt_runtime = RUNTIME_INF;
8251
8252 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8253 }
8254
8255 static long sched_group_rt_runtime(struct task_group *tg)
8256 {
8257 u64 rt_runtime_us;
8258
8259 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8260 return -1;
8261
8262 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8263 do_div(rt_runtime_us, NSEC_PER_USEC);
8264 return rt_runtime_us;
8265 }
8266
8267 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8268 {
8269 u64 rt_runtime, rt_period;
8270
8271 rt_period = rt_period_us * NSEC_PER_USEC;
8272 rt_runtime = tg->rt_bandwidth.rt_runtime;
8273
8274 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8275 }
8276
8277 static long sched_group_rt_period(struct task_group *tg)
8278 {
8279 u64 rt_period_us;
8280
8281 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8282 do_div(rt_period_us, NSEC_PER_USEC);
8283 return rt_period_us;
8284 }
8285 #endif /* CONFIG_RT_GROUP_SCHED */
8286
8287 #ifdef CONFIG_RT_GROUP_SCHED
8288 static int sched_rt_global_constraints(void)
8289 {
8290 int ret = 0;
8291
8292 mutex_lock(&rt_constraints_mutex);
8293 read_lock(&tasklist_lock);
8294 ret = __rt_schedulable(NULL, 0, 0);
8295 read_unlock(&tasklist_lock);
8296 mutex_unlock(&rt_constraints_mutex);
8297
8298 return ret;
8299 }
8300
8301 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8302 {
8303 /* Don't accept realtime tasks when there is no way for them to run */
8304 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8305 return 0;
8306
8307 return 1;
8308 }
8309
8310 #else /* !CONFIG_RT_GROUP_SCHED */
8311 static int sched_rt_global_constraints(void)
8312 {
8313 unsigned long flags;
8314 int i;
8315
8316 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8317 for_each_possible_cpu(i) {
8318 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8319
8320 raw_spin_lock(&rt_rq->rt_runtime_lock);
8321 rt_rq->rt_runtime = global_rt_runtime();
8322 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8323 }
8324 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8325
8326 return 0;
8327 }
8328 #endif /* CONFIG_RT_GROUP_SCHED */
8329
8330 static int sched_dl_global_validate(void)
8331 {
8332 u64 runtime = global_rt_runtime();
8333 u64 period = global_rt_period();
8334 u64 new_bw = to_ratio(period, runtime);
8335 struct dl_bw *dl_b;
8336 int cpu, ret = 0;
8337 unsigned long flags;
8338
8339 /*
8340 * Here we want to check the bandwidth not being set to some
8341 * value smaller than the currently allocated bandwidth in
8342 * any of the root_domains.
8343 *
8344 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8345 * cycling on root_domains... Discussion on different/better
8346 * solutions is welcome!
8347 */
8348 for_each_possible_cpu(cpu) {
8349 rcu_read_lock_sched();
8350 dl_b = dl_bw_of(cpu);
8351
8352 raw_spin_lock_irqsave(&dl_b->lock, flags);
8353 if (new_bw < dl_b->total_bw)
8354 ret = -EBUSY;
8355 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8356
8357 rcu_read_unlock_sched();
8358
8359 if (ret)
8360 break;
8361 }
8362
8363 return ret;
8364 }
8365
8366 static void sched_dl_do_global(void)
8367 {
8368 u64 new_bw = -1;
8369 struct dl_bw *dl_b;
8370 int cpu;
8371 unsigned long flags;
8372
8373 def_dl_bandwidth.dl_period = global_rt_period();
8374 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8375
8376 if (global_rt_runtime() != RUNTIME_INF)
8377 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8378
8379 /*
8380 * FIXME: As above...
8381 */
8382 for_each_possible_cpu(cpu) {
8383 rcu_read_lock_sched();
8384 dl_b = dl_bw_of(cpu);
8385
8386 raw_spin_lock_irqsave(&dl_b->lock, flags);
8387 dl_b->bw = new_bw;
8388 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8389
8390 rcu_read_unlock_sched();
8391 }
8392 }
8393
8394 static int sched_rt_global_validate(void)
8395 {
8396 if (sysctl_sched_rt_period <= 0)
8397 return -EINVAL;
8398
8399 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8400 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8401 return -EINVAL;
8402
8403 return 0;
8404 }
8405
8406 static void sched_rt_do_global(void)
8407 {
8408 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8409 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8410 }
8411
8412 int sched_rt_handler(struct ctl_table *table, int write,
8413 void __user *buffer, size_t *lenp,
8414 loff_t *ppos)
8415 {
8416 int old_period, old_runtime;
8417 static DEFINE_MUTEX(mutex);
8418 int ret;
8419
8420 mutex_lock(&mutex);
8421 old_period = sysctl_sched_rt_period;
8422 old_runtime = sysctl_sched_rt_runtime;
8423
8424 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8425
8426 if (!ret && write) {
8427 ret = sched_rt_global_validate();
8428 if (ret)
8429 goto undo;
8430
8431 ret = sched_dl_global_validate();
8432 if (ret)
8433 goto undo;
8434
8435 ret = sched_rt_global_constraints();
8436 if (ret)
8437 goto undo;
8438
8439 sched_rt_do_global();
8440 sched_dl_do_global();
8441 }
8442 if (0) {
8443 undo:
8444 sysctl_sched_rt_period = old_period;
8445 sysctl_sched_rt_runtime = old_runtime;
8446 }
8447 mutex_unlock(&mutex);
8448
8449 return ret;
8450 }
8451
8452 int sched_rr_handler(struct ctl_table *table, int write,
8453 void __user *buffer, size_t *lenp,
8454 loff_t *ppos)
8455 {
8456 int ret;
8457 static DEFINE_MUTEX(mutex);
8458
8459 mutex_lock(&mutex);
8460 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8461 /* make sure that internally we keep jiffies */
8462 /* also, writing zero resets timeslice to default */
8463 if (!ret && write) {
8464 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8465 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8466 }
8467 mutex_unlock(&mutex);
8468 return ret;
8469 }
8470
8471 #ifdef CONFIG_CGROUP_SCHED
8472
8473 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8474 {
8475 return css ? container_of(css, struct task_group, css) : NULL;
8476 }
8477
8478 static struct cgroup_subsys_state *
8479 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8480 {
8481 struct task_group *parent = css_tg(parent_css);
8482 struct task_group *tg;
8483
8484 if (!parent) {
8485 /* This is early initialization for the top cgroup */
8486 return &root_task_group.css;
8487 }
8488
8489 tg = sched_create_group(parent);
8490 if (IS_ERR(tg))
8491 return ERR_PTR(-ENOMEM);
8492
8493 sched_online_group(tg, parent);
8494
8495 return &tg->css;
8496 }
8497
8498 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8499 {
8500 struct task_group *tg = css_tg(css);
8501
8502 sched_offline_group(tg);
8503 }
8504
8505 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8506 {
8507 struct task_group *tg = css_tg(css);
8508
8509 /*
8510 * Relies on the RCU grace period between css_released() and this.
8511 */
8512 sched_free_group(tg);
8513 }
8514
8515 /*
8516 * This is called before wake_up_new_task(), therefore we really only
8517 * have to set its group bits, all the other stuff does not apply.
8518 */
8519 static void cpu_cgroup_fork(struct task_struct *task)
8520 {
8521 struct rq_flags rf;
8522 struct rq *rq;
8523
8524 rq = task_rq_lock(task, &rf);
8525
8526 update_rq_clock(rq);
8527 sched_change_group(task, TASK_SET_GROUP);
8528
8529 task_rq_unlock(rq, task, &rf);
8530 }
8531
8532 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8533 {
8534 struct task_struct *task;
8535 struct cgroup_subsys_state *css;
8536 int ret = 0;
8537
8538 cgroup_taskset_for_each(task, css, tset) {
8539 #ifdef CONFIG_RT_GROUP_SCHED
8540 if (!sched_rt_can_attach(css_tg(css), task))
8541 return -EINVAL;
8542 #else
8543 /* We don't support RT-tasks being in separate groups */
8544 if (task->sched_class != &fair_sched_class)
8545 return -EINVAL;
8546 #endif
8547 /*
8548 * Serialize against wake_up_new_task() such that if its
8549 * running, we're sure to observe its full state.
8550 */
8551 raw_spin_lock_irq(&task->pi_lock);
8552 /*
8553 * Avoid calling sched_move_task() before wake_up_new_task()
8554 * has happened. This would lead to problems with PELT, due to
8555 * move wanting to detach+attach while we're not attached yet.
8556 */
8557 if (task->state == TASK_NEW)
8558 ret = -EINVAL;
8559 raw_spin_unlock_irq(&task->pi_lock);
8560
8561 if (ret)
8562 break;
8563 }
8564 return ret;
8565 }
8566
8567 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8568 {
8569 struct task_struct *task;
8570 struct cgroup_subsys_state *css;
8571
8572 cgroup_taskset_for_each(task, css, tset)
8573 sched_move_task(task);
8574 }
8575
8576 #ifdef CONFIG_FAIR_GROUP_SCHED
8577 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8578 struct cftype *cftype, u64 shareval)
8579 {
8580 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8581 }
8582
8583 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8584 struct cftype *cft)
8585 {
8586 struct task_group *tg = css_tg(css);
8587
8588 return (u64) scale_load_down(tg->shares);
8589 }
8590
8591 #ifdef CONFIG_CFS_BANDWIDTH
8592 static DEFINE_MUTEX(cfs_constraints_mutex);
8593
8594 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8595 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8596
8597 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8598
8599 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8600 {
8601 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8602 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8603
8604 if (tg == &root_task_group)
8605 return -EINVAL;
8606
8607 /*
8608 * Ensure we have at some amount of bandwidth every period. This is
8609 * to prevent reaching a state of large arrears when throttled via
8610 * entity_tick() resulting in prolonged exit starvation.
8611 */
8612 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8613 return -EINVAL;
8614
8615 /*
8616 * Likewise, bound things on the otherside by preventing insane quota
8617 * periods. This also allows us to normalize in computing quota
8618 * feasibility.
8619 */
8620 if (period > max_cfs_quota_period)
8621 return -EINVAL;
8622
8623 /*
8624 * Prevent race between setting of cfs_rq->runtime_enabled and
8625 * unthrottle_offline_cfs_rqs().
8626 */
8627 get_online_cpus();
8628 mutex_lock(&cfs_constraints_mutex);
8629 ret = __cfs_schedulable(tg, period, quota);
8630 if (ret)
8631 goto out_unlock;
8632
8633 runtime_enabled = quota != RUNTIME_INF;
8634 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8635 /*
8636 * If we need to toggle cfs_bandwidth_used, off->on must occur
8637 * before making related changes, and on->off must occur afterwards
8638 */
8639 if (runtime_enabled && !runtime_was_enabled)
8640 cfs_bandwidth_usage_inc();
8641 raw_spin_lock_irq(&cfs_b->lock);
8642 cfs_b->period = ns_to_ktime(period);
8643 cfs_b->quota = quota;
8644
8645 __refill_cfs_bandwidth_runtime(cfs_b);
8646 /* restart the period timer (if active) to handle new period expiry */
8647 if (runtime_enabled)
8648 start_cfs_bandwidth(cfs_b);
8649 raw_spin_unlock_irq(&cfs_b->lock);
8650
8651 for_each_online_cpu(i) {
8652 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8653 struct rq *rq = cfs_rq->rq;
8654
8655 raw_spin_lock_irq(&rq->lock);
8656 cfs_rq->runtime_enabled = runtime_enabled;
8657 cfs_rq->runtime_remaining = 0;
8658
8659 if (cfs_rq->throttled)
8660 unthrottle_cfs_rq(cfs_rq);
8661 raw_spin_unlock_irq(&rq->lock);
8662 }
8663 if (runtime_was_enabled && !runtime_enabled)
8664 cfs_bandwidth_usage_dec();
8665 out_unlock:
8666 mutex_unlock(&cfs_constraints_mutex);
8667 put_online_cpus();
8668
8669 return ret;
8670 }
8671
8672 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8673 {
8674 u64 quota, period;
8675
8676 period = ktime_to_ns(tg->cfs_bandwidth.period);
8677 if (cfs_quota_us < 0)
8678 quota = RUNTIME_INF;
8679 else
8680 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8681
8682 return tg_set_cfs_bandwidth(tg, period, quota);
8683 }
8684
8685 long tg_get_cfs_quota(struct task_group *tg)
8686 {
8687 u64 quota_us;
8688
8689 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8690 return -1;
8691
8692 quota_us = tg->cfs_bandwidth.quota;
8693 do_div(quota_us, NSEC_PER_USEC);
8694
8695 return quota_us;
8696 }
8697
8698 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8699 {
8700 u64 quota, period;
8701
8702 period = (u64)cfs_period_us * NSEC_PER_USEC;
8703 quota = tg->cfs_bandwidth.quota;
8704
8705 return tg_set_cfs_bandwidth(tg, period, quota);
8706 }
8707
8708 long tg_get_cfs_period(struct task_group *tg)
8709 {
8710 u64 cfs_period_us;
8711
8712 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8713 do_div(cfs_period_us, NSEC_PER_USEC);
8714
8715 return cfs_period_us;
8716 }
8717
8718 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8719 struct cftype *cft)
8720 {
8721 return tg_get_cfs_quota(css_tg(css));
8722 }
8723
8724 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8725 struct cftype *cftype, s64 cfs_quota_us)
8726 {
8727 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8728 }
8729
8730 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8731 struct cftype *cft)
8732 {
8733 return tg_get_cfs_period(css_tg(css));
8734 }
8735
8736 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8737 struct cftype *cftype, u64 cfs_period_us)
8738 {
8739 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8740 }
8741
8742 struct cfs_schedulable_data {
8743 struct task_group *tg;
8744 u64 period, quota;
8745 };
8746
8747 /*
8748 * normalize group quota/period to be quota/max_period
8749 * note: units are usecs
8750 */
8751 static u64 normalize_cfs_quota(struct task_group *tg,
8752 struct cfs_schedulable_data *d)
8753 {
8754 u64 quota, period;
8755
8756 if (tg == d->tg) {
8757 period = d->period;
8758 quota = d->quota;
8759 } else {
8760 period = tg_get_cfs_period(tg);
8761 quota = tg_get_cfs_quota(tg);
8762 }
8763
8764 /* note: these should typically be equivalent */
8765 if (quota == RUNTIME_INF || quota == -1)
8766 return RUNTIME_INF;
8767
8768 return to_ratio(period, quota);
8769 }
8770
8771 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8772 {
8773 struct cfs_schedulable_data *d = data;
8774 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8775 s64 quota = 0, parent_quota = -1;
8776
8777 if (!tg->parent) {
8778 quota = RUNTIME_INF;
8779 } else {
8780 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8781
8782 quota = normalize_cfs_quota(tg, d);
8783 parent_quota = parent_b->hierarchical_quota;
8784
8785 /*
8786 * ensure max(child_quota) <= parent_quota, inherit when no
8787 * limit is set
8788 */
8789 if (quota == RUNTIME_INF)
8790 quota = parent_quota;
8791 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8792 return -EINVAL;
8793 }
8794 cfs_b->hierarchical_quota = quota;
8795
8796 return 0;
8797 }
8798
8799 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8800 {
8801 int ret;
8802 struct cfs_schedulable_data data = {
8803 .tg = tg,
8804 .period = period,
8805 .quota = quota,
8806 };
8807
8808 if (quota != RUNTIME_INF) {
8809 do_div(data.period, NSEC_PER_USEC);
8810 do_div(data.quota, NSEC_PER_USEC);
8811 }
8812
8813 rcu_read_lock();
8814 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8815 rcu_read_unlock();
8816
8817 return ret;
8818 }
8819
8820 static int cpu_stats_show(struct seq_file *sf, void *v)
8821 {
8822 struct task_group *tg = css_tg(seq_css(sf));
8823 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8824
8825 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8826 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8827 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8828
8829 return 0;
8830 }
8831 #endif /* CONFIG_CFS_BANDWIDTH */
8832 #endif /* CONFIG_FAIR_GROUP_SCHED */
8833
8834 #ifdef CONFIG_RT_GROUP_SCHED
8835 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8836 struct cftype *cft, s64 val)
8837 {
8838 return sched_group_set_rt_runtime(css_tg(css), val);
8839 }
8840
8841 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8842 struct cftype *cft)
8843 {
8844 return sched_group_rt_runtime(css_tg(css));
8845 }
8846
8847 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8848 struct cftype *cftype, u64 rt_period_us)
8849 {
8850 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8851 }
8852
8853 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8854 struct cftype *cft)
8855 {
8856 return sched_group_rt_period(css_tg(css));
8857 }
8858 #endif /* CONFIG_RT_GROUP_SCHED */
8859
8860 static struct cftype cpu_files[] = {
8861 #ifdef CONFIG_FAIR_GROUP_SCHED
8862 {
8863 .name = "shares",
8864 .read_u64 = cpu_shares_read_u64,
8865 .write_u64 = cpu_shares_write_u64,
8866 },
8867 #endif
8868 #ifdef CONFIG_CFS_BANDWIDTH
8869 {
8870 .name = "cfs_quota_us",
8871 .read_s64 = cpu_cfs_quota_read_s64,
8872 .write_s64 = cpu_cfs_quota_write_s64,
8873 },
8874 {
8875 .name = "cfs_period_us",
8876 .read_u64 = cpu_cfs_period_read_u64,
8877 .write_u64 = cpu_cfs_period_write_u64,
8878 },
8879 {
8880 .name = "stat",
8881 .seq_show = cpu_stats_show,
8882 },
8883 #endif
8884 #ifdef CONFIG_RT_GROUP_SCHED
8885 {
8886 .name = "rt_runtime_us",
8887 .read_s64 = cpu_rt_runtime_read,
8888 .write_s64 = cpu_rt_runtime_write,
8889 },
8890 {
8891 .name = "rt_period_us",
8892 .read_u64 = cpu_rt_period_read_uint,
8893 .write_u64 = cpu_rt_period_write_uint,
8894 },
8895 #endif
8896 { } /* terminate */
8897 };
8898
8899 struct cgroup_subsys cpu_cgrp_subsys = {
8900 .css_alloc = cpu_cgroup_css_alloc,
8901 .css_released = cpu_cgroup_css_released,
8902 .css_free = cpu_cgroup_css_free,
8903 .fork = cpu_cgroup_fork,
8904 .can_attach = cpu_cgroup_can_attach,
8905 .attach = cpu_cgroup_attach,
8906 .legacy_cftypes = cpu_files,
8907 .early_init = true,
8908 };
8909
8910 #endif /* CONFIG_CGROUP_SCHED */
8911
8912 void dump_cpu_task(int cpu)
8913 {
8914 pr_info("Task dump for CPU %d:\n", cpu);
8915 sched_show_task(cpu_curr(cpu));
8916 }
8917
8918 /*
8919 * Nice levels are multiplicative, with a gentle 10% change for every
8920 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8921 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8922 * that remained on nice 0.
8923 *
8924 * The "10% effect" is relative and cumulative: from _any_ nice level,
8925 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8926 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8927 * If a task goes up by ~10% and another task goes down by ~10% then
8928 * the relative distance between them is ~25%.)
8929 */
8930 const int sched_prio_to_weight[40] = {
8931 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8932 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8933 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8934 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8935 /* 0 */ 1024, 820, 655, 526, 423,
8936 /* 5 */ 335, 272, 215, 172, 137,
8937 /* 10 */ 110, 87, 70, 56, 45,
8938 /* 15 */ 36, 29, 23, 18, 15,
8939 };
8940
8941 /*
8942 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8943 *
8944 * In cases where the weight does not change often, we can use the
8945 * precalculated inverse to speed up arithmetics by turning divisions
8946 * into multiplications:
8947 */
8948 const u32 sched_prio_to_wmult[40] = {
8949 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8950 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8951 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8952 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8953 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8954 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8955 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8956 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8957 };